NASA Astrophysics Data System (ADS)
Yang, Hong
Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.
ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH
Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...
Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...
Ancient DNA analysis reveals woolly rhino evolutionary relationships.
Orlando, Ludovic; Leonard, Jennifer A; Thenot, Aurélie; Laudet, Vincent; Guerin, Claude; Hänni, Catherine
2003-09-01
With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.
Mitochondrial DNA Suggests a Western Eurasian Origin for Ancient (Proto-) Bulgarians.
Nesheva, D V; Karachanak-Yankova, S; Lari, M; Yordanov, Y; Galabov, A; Caramelli, D; Toncheva, D
2015-01-01
Ancient (proto-) Bulgarians have long been thought of as a Turkic population. However, evidence found in the past three decades shows that this is not the case. Until now, this evidence has not included ancient mitochondrial DNA (mtDNA) analysis. To fill this void, we collected human remains from the 8th to the 10th century AD located in three necropolises in Bulgaria: Nojarevo (Silistra region) and Monastery of Mostich (Shumen region), both in northeastern Bulgaria, and Tuhovishte (Satovcha region) in southwestern Bulgaria. The phylogenetic analysis of 13 ancient DNA samples (extracted from teeth) identified 12 independent haplotypes, which we further classified into mtDNA haplogroups found in present-day European and western Eurasian populations. Our results suggest a western Eurasian matrilineal origin for proto-Bulgarians, as well as a genetic similarity between proto- and modern Bulgarians. Our future work will provide additional data that will further clarify proto-Bulgarian origins, thereby adding new clues to the current understanding of European genetic evolution.
Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip
2010-01-01
The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251
Pusch, Carsten M; Bachmann, Lutz
2004-05-01
Proof of authenticity is the greatest challenge in palaeogenetic research, and many safeguards have become standard routine in laboratories specialized on ancient DNA research. Here we describe an as-yet unknown source of artifacts that will require special attention in the future. We show that ancient DNA extracts on their own can have an inhibitory and mutagenic effect under PCR. We have spiked PCR reactions including known human test DNA with 14 selected ancient DNA extracts from human and nonhuman sources. We find that the ancient DNA extracts inhibit the amplification of large fragments to different degrees, suggesting that the usual control against contaminations, i.e., the absence of long amplifiable fragments, is not sufficient. But even more important, we find that the extracts induce mutations in a nonrandom fashion. We have amplified a 148-bp stretch of the mitochondrial HVRI from contemporary human template DNA in spiked PCR reactions. Subsequent analysis of 547 sequences from cloned amplicons revealed that the vast majority (76.97%) differed from the correct sequence by single nucleotide substitutions and/or indels. In total, 34 positions of a 103-bp alignment are affected, and most mutations occur repeatedly in independent PCR amplifications. Several of the induced mutations occur at positions that have previously been detected in studies of ancient hominid sequences, including the Neandertal sequences. Our data imply that PCR-induced mutations are likely to be an intrinsic and general problem of PCR amplifications of ancient templates. Therefore, ancient DNA sequences should be considered with caution, at least as long as the molecular basis for the extract-induced mutations is not understood.
How microbial ancient DNA, found in association with human remains, can be interpreted.
Rollo, F; Marota, I
1999-01-01
The analysis of the DNA of ancient micro-organisms in archaeological and palaeontological human remains can contribute to the understanding of issues as different as the spreading of a new disease, a mummification process or the effect of diets on historical human populations. The quest for this type of DNA, however, can represent a particularly demanding task. This is mainly due to the abundance and diffusion of bacteria, fungi, yeasts, algae and protozoans in the most diverse environments of the present-day biosphere and the resulting difficulty in distinguishing between ancient and modern DNA. Nevertheless, at least under some special circumstances, by using rigorous protocols, which include an archaeometric survey of the specimens and evaluation of the palaeoecological consistency of the results of DNA sequence analysis, glimpses of the composition of the original microbial flora (e.g. colonic flora) can be caught in ancient human remains. Potentials and pitfalls of this research field are illustrated by the results of research works performed on prehistoric, pre-Columbian and Renaissance human mummies. PMID:10091251
Ancient DNA studies: new perspectives on old samples
2012-01-01
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611
Investigation on maternal lineage of a Neolithic group from northern Shaanxi based on ancient DNA.
Zhao, Jing; Liu, Fang-E; Lin, Song; Liu, Zhi-Zhen; Sun, Zhou-Yong; Wu, Xiao-Ming; Zhang, Hu-Qin
2017-09-01
A magnetic bead purification method was successfully used to extract ancient DNA from the skeletal remains of 10 specimens excavated from Wuzhuangguoliang (Wzhgl) site, which was located in northern Shaanxi. The multidimensional scaling (MDS) and analysis of molecular variance approach (AMOVA) revealed that ancient Wzhgl people bored a very high similarity to southern Han Chinese. By constructing the MJ-network of various modern people including Han Chinese and Japanese, the phylogenetic analysis indicated that the Wzhgl population had close maternal distance with ancient Shandong and Xinjiang people. These findings indicated that Wzhgl contributed to the gene pool of Han Chinese and modern Japanese. In addition, population migration and interflow between Wzhgl people and ancient Shandong or Xinjiang probably occurred in Neolithic period.
A combined method for DNA analysis and radiocarbon dating from a single sample.
Korlević, Petra; Talamo, Sahra; Meyer, Matthias
2018-03-07
Current protocols for ancient DNA and radiocarbon analysis of ancient bones and teeth call for multiple destructive samplings of a given specimen, thereby increasing the extent of undesirable damage to precious archaeological material. Here we present a method that makes it possible to obtain both ancient DNA sequences and radiocarbon dates from the same sample material. This is achieved by releasing DNA from the bone matrix through incubation with either EDTA or phosphate buffer prior to complete demineralization and collagen extraction utilizing the acid-base-acid-gelatinization and ultrafiltration procedure established in most radiocarbon dating laboratories. Using a set of 12 bones of different ages and preservation conditions we demonstrate that on average 89% of the DNA can be released from sample powder with minimal, or 38% without any, detectable collagen loss. We also detect no skews in radiocarbon dates compared to untreated samples. Given the different material demands for radiocarbon dating (500 mg of bone/dentine) and DNA analysis (10-100 mg), combined DNA and collagen extraction not only streamlines the sampling process but also drastically increases the amount of DNA that can be recovered from limited sample material.
Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles
Green, Eleanor Joan
2017-01-01
Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively “novel”. Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized. PMID:28703741
Palaeoproteomics for human evolution studies
NASA Astrophysics Data System (ADS)
Welker, Frido
2018-06-01
The commonplace sequencing of Neanderthal, Denisovan and ancient modern human DNA continues to revolutionize our understanding of hominin phylogeny and interaction(s). The challenge with older fossils is that the progressive fragmentation of DNA even under optimal conditions, a function of time and temperature, results in ever shorter fragments of DNA. This process continues until no DNA can be sequenced or reliably aligned. Ancient proteins ultimately suffer a similar fate, but are a potential alternative source of biomolecular sequence data to investigate hominin phylogeny given their slower rate of fragmentation. In addition, ancient proteins have been proposed to potentially provide insights into in vivo biological processes and can be used to provide additional ecological information through large scale ZooMS (Zooarchaeology by Mass Spectrometry) screening of unidentifiable bone fragments. However, as initially with ancient DNA, most ancient protein research has focused on Late Pleistocene or Holocene samples from Europe. In addition, only a limited number of studies on hominin remains have been published. Here, an updated review on ancient protein analysis in human evolutionary contexts is given, including the identification of specific knowledge gaps and existing analytical limits, as well as potential avenues to overcome these.
Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb
Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon
2015-01-01
Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples. PMID:25925186
Pros and cons of methylation-based enrichment methods for ancient DNA.
Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-07-02
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.
Pros and cons of methylation-based enrichment methods for ancient DNA
Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-01-01
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828
A new model for ancient DNA decay based on paleogenomic meta-analysis
Ware, Roselyn; Smith, Oliver; Collins, Matthew
2017-01-01
Abstract The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. PMID:28486705
Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China.
Zhao, Yong-Bin; Li, Hong-Jie; Cai, Da-Wei; Li, Chun-Xiang; Zhang, Quan-Chao; Zhu, Hong; Zhou, Hui
2010-04-01
Six human remains (dating approximately 2500 years ago) were excavated from Pengyang, China, an area occupied by both ancient nomadic and farming people. The funerary objects found with these remains suggested they were nomads. To further confirm their ancestry, we analyzed both the maternal lineages and paternal lineages of the ancient DNA. From the mitochondrial DNA, six haplotypes were identified as three haplogroups: C, D4 and M10. The haplotype-sharing populations and phylogenetic analyses revealed that these individuals were closely associated with the ancient Xiongnu and modern northern Asians. Single-nucleotide polymorphism analysis of Y chromosomes from four male samples that were typed as haplogroup Q indicated that these people had originated in Siberia. These results show that these ancient people from Pengyang present a close genetic affinity to nomadic people, indicating that northern nomads had reached the Central Plain area of China nearly 2500 years ago.
Ancient pathogens in museal dry bone specimens: analysis of paleocytology and aDNA.
Gaul, Johanna Sophia; Winter, Eduard; Grossschmidt, Karl
2015-04-01
Bone samples investigated in this study derive from the pathologic-anatomical collection of the Natural History Museum of Vienna. In order to explore the survival of treponemes and treponemal ancient DNA in museal dry bone specimens, we analyzed three individuals known to have been infected with Treponema pallidum pallidum. No reproducible evidence of surviving pathogen's ancient DNA (aDNA) was obtained, despite the highly sensitive extraction and amplification techniques (TPP15 and arp). Additionally, decalcification fluid of bone sections was smear stained with May-Gruenwald-Giemsa. The slides were examined using direct light microscope and dark field illumination. Remnants of spirochetal structures were detectable in every smear. Our results demonstrate that aDNA is unlikely to survive, but spirochetal remains are stainable and thus detectable.
Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Nyström, Veronica; Harjula, Janne; Taavitsainen, Jussi-Pekka; Storå, Jan; Lidén, Kerstin; Kantanen, Juha
2013-01-22
Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5'-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds.
2013-01-01
Background Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5’-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. Results A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Conclusions Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds. PMID:23339395
Early history of European domestic cattle as revealed by ancient DNA.
Bollongino, R; Edwards, C J; Alt, K W; Burger, J; Bradley, D G
2006-03-22
We present an extensive ancient DNA analysis of mainly Neolithic cattle bones sampled from archaeological sites along the route of Neolithic expansion, from Turkey to North-Central Europe and Britain. We place this first reasonable population sample of Neolithic cattle mitochondrial DNA sequence diversity in context to illustrate the continuity of haplotype variation patterns from the first European domestic cattle to the present. Interestingly, the dominant Central European pattern, a starburst phylogeny around the modal sequence, T3, has a Neolithic origin, and the reduced diversity within this cluster in the ancient samples accords with their shorter history of post-domestic accumulation of mutation.
High-Resolution Analysis of Cytosine Methylation in Ancient DNA
Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.
2012-01-01
Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161
Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal
Skoglund, Pontus; Northoff, Bernd H.; Shunkov, Michael V.; Derevianko, Anatoli P.; Pääbo, Svante; Krause, Johannes; Jakobsson, Mattias
2014-01-01
One of the main impediments for obtaining DNA sequences from ancient human skeletons is the presence of contaminating modern human DNA molecules in many fossil samples and laboratory reagents. However, DNA fragments isolated from ancient specimens show a characteristic DNA damage pattern caused by miscoding lesions that differs from present day DNA sequences. Here, we develop a framework for evaluating the likelihood of a sequence originating from a model with postmortem degradation—summarized in a postmortem degradation score—which allows the identification of DNA fragments that are unlikely to originate from present day sources. We apply this approach to a contaminated Neandertal specimen from Okladnikov Cave in Siberia to isolate its endogenous DNA from modern human contaminants and show that the reconstructed mitochondrial genome sequence is more closely related to the variation of Western Neandertals than what was discernible from previous analyses. Our method opens up the potential for genomic analysis of contaminated fossil material. PMID:24469802
A genetic investigation of Korean mummies from the Joseon Dynasty.
Kim, Na Young; Lee, Hwan Young; Park, Myung Jin; Yang, Woo Ick; Shin, Kyoung-Jin
2011-01-01
Two Korean mummies (Danwoong-mirra and Yoon-mirra) found in medieval tombs in the central region of the Korean peninsula were genetically investigated by analysis of mitochondrial DNA (mtDNA), Y-chromosomal short tandem repeat (Y-STR) and the ABO gene. Danwoong-mirra is a male child mummy and Yoon-mirra is a pregnant female mummy, dating back about 550 and 450 years, respectively. DNA was extracted from soft tissues or bones. mtDNA, Y-STR and the ABO gene were amplified using a small size amplicon strategy and were analyzed according to the criteria of ancient DNA analysis to ensure that authentic DNA typing results were obtained from these ancient samples. Analysis of mtDNA hypervariable region sequence and coding region single nucleotide polymorphism (SNP) information revealed that Danwoong-mirra and Yoon-mirra belong to the East Asian mtDNA haplogroups D4 and M7c, respectively. The Y-STRs were analyzed in the male child mummy (Danwoong-mirra) using the AmpFlSTR® Yfiler PCR Amplification Kit and an in-house Y-miniplex plus system, and could be characterized in 4 loci with small amplicon size. The analysis of ABO gene SNPs using multiplex single base extension methods revealed that the ABO blood types of Danwoong-mirra and Yoon-mirra are AO01 and AB, respectively. The small size amplicon strategy and the authentication process in the present study will be effectively applicable to future genetic analyses of various forensic and ancient samples.
A new model for ancient DNA decay based on paleogenomic meta-analysis.
Kistler, Logan; Ware, Roselyn; Smith, Oliver; Collins, Matthew; Allaby, Robin G
2017-06-20
The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka
2015-01-01
Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.
Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka
2015-01-01
Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976
A multidisciplinary study of archaeological grape seeds
NASA Astrophysics Data System (ADS)
Cappellini, Enrico; Gilbert, M. Thomas P.; Geuna, Filippo; Fiorentino, Girolamo; Hall, Allan; Thomas-Oates, Jane; Ashton, Peter D.; Ashford, David A.; Arthur, Paul; Campos, Paula F.; Kool, Johan; Willerslev, Eske; Collins, Matthew J.
2010-02-01
We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape ( Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh-eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth-fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean.
Cipollaro, M; Di Bernado, G; Forte, A; Galano, G; De Masi, L; Galderisi, U; Guarino, F M; Angelini, F; Cascino, A
1999-09-01
Thirteen skeletons found in the Caius Iulius Polybius house, which has been the object of intensive study since its discovery in Pompeii 250 years ago, have provided an opportunity to study either bone diagenesis by histological investigation or ancient DNA by polymerase chain reaction analysis. DNA analysis was done by amplifying both X- and Y-chromosomes amelogenin loci and Y-specific alphoid repeat locus. The von Willebrand factor (vWF) microsatellite locus on chromosome 12 was also analyzed for personal identification in two individuals showing alleles with 10/11 and 12/12 TCTA repeats, respectively. Technical problems were the scarcity of DNA content from osteocytes, DNA molecule fragmentation, microbial contamination which change bone structure, contaminating human DNA which results from mishandling, and frequent presence of Taq DNA polymerase inhibiting molecules like polyphenols and heavy metals. The results suggest that the remains contain endogenous human DNA that can be amplified and analyzed. The amplifiability of DNA corresponds to the bone preservation and dynamics of the burial conditions subsequent to the 79 A.D. eruption.
Sato, Takehiro; Razhev, Dmitry; Amano, Tetsuya; Masuda, Ryuichi
2011-08-01
In order to investigate the genetic features of ancient West Siberian people of the Middle Ages, we studied ancient DNA from bone remains excavated from two archeological sites in West Siberia: Saigatinsky 6 (eighth to eleventh centuries) and Zeleny Yar (thirteenth century). Polymerase chain reaction amplification and nucleotide sequencing of mitochondrial DNA (mtDNA) succeeded for 9 of 67 specimens examined, and the sequences were assigned to mtDNA haplogroups B4, C4, G2, H and U. This distribution pattern of mtDNA haplogroups in medieval West Siberian people was similar to those previously reported in modern populations living in West Siberia, such as the Mansi, Ket and Nganasan. Exact tests of population differentiation showed no significant differences between the medieval people and modern populations in West Siberia. The findings suggest that some medieval West Siberian people analyzed in the present study are included in direct ancestral lineages of modern populations native to West Siberia.
Human evolution: a tale from ancient genomes
2017-01-01
The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994125
Phylogenetic analysis of mtDNA lineages in South American mummies.
Monsalve, M V; Cardenas, F; Guhl, F; Delaney, A D; Devine, D V
1996-07-01
Some studies of mtDNA propose that contemporary Amerindians have descended from four haplotype groups, each defined by specific sets of polymorphisms. One recent study also found evidence of other potential founder haplotypes. We wanted to determine whether the four haplotypes in modern populations were also present in ancient South American aboriginals. We subjected mtDNA from Colombian mummies (470 to 1849 AD) to PCR amplification and restriction endonuclease analysis. The mtDNA D-loop region was surveyed for sequence variation by restriction analysis and a segment of this region was sequenced for each mummy to characterize the haplotypes. Our mummies exhibited three of the four major characteristic haplotypes of Amerindian populations defined by four markers. With sequence data obtained in the ancient samples and published data on contemporary Amerindians it was possible to infer the origin of these six mummies.
Silva, Nuno Miguel; Rio, Jeremy; Currat, Mathias
2017-12-15
Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.
Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon
2015-01-01
Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190
Setting the stage - building and working in an ancient DNA laboratory.
Knapp, Michael; Clarke, Andrew C; Horsburgh, K Ann; Matisoo-Smith, Elizabeth A
2012-01-20
With the introduction of next generation high throughput sequencing in 2005 and the resulting revolution in genetics, ancient DNA research has rapidly developed from an interesting but marginal field within evolutionary biology into one that can contribute significantly to our understanding of evolution in general and the development of our own species in particular. While the amount of sequence data available from ancient human, other animal and plant remains has increased dramatically over the past five years, some key limitations of ancient DNA research remain. Most notably, reduction of contamination and the authentication of results are of utmost importance. A number of studies have addressed different aspects of sampling, DNA extraction and DNA manipulation in order to establish protocols that most efficiently generate reproducible and authentic results. As increasing numbers of researchers from different backgrounds become interested in using ancient DNA technology to address key questions, the need for practical guidelines on how to construct and use an ancient DNA facility arises. The aim of this article is therefore to provide practical tips for building a state-of-the-art ancient DNA facility. It is intended to help researchers new to the field of ancient DNA research generally, and those considering the application of next generation sequencing, in their planning process. Copyright © 2011 Elsevier GmbH. All rights reserved.
2013-01-01
Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals. PMID:23317428
Draus-Barini, Jolanta; Walsh, Susan; Pośpiech, Ewelina; Kupiec, Tomasz; Głąb, Henryk; Branicki, Wojciech; Kayser, Manfred
2013-01-14
DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person's externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including ancient DNA studies, for the prediction of eye and hair colour of deceased individuals.
Evolutionary Patterns and Processes: Lessons from Ancient DNA.
Leonardi, Michela; Librado, Pablo; Der Sarkissian, Clio; Schubert, Mikkel; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Gamba, Cristina; Willerslev, Eske; Orlando, Ludovic
2017-01-01
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Evolutionary Patterns and Processes: Lessons from Ancient DNA
Leonardi, Michela; Librado, Pablo; Der Sarkissian, Clio; Schubert, Mikkel; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Gamba, Cristina; Willerslev, Eske
2017-01-01
Abstract Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data. PMID:28173586
Naumova O, Y u; Rychkov S, Y u
1998-03-01
On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.
Authenticated DNA from Ancient Wood Remains
LIEPELT, SASCHA; SPERISEN, CHRISTOPH; DEGUILLOUX, MARIE-FRANCE; PETIT, REMY J.; KISSLING, ROY; SPENCER, MATTHEW; DE BEAULIEU, JACQUES-LOUIS; TABERLET, PIERRE; GIELLY, LUDOVIC; ZIEGENHAGEN, BIRGIT
2006-01-01
• Background The reconstruction of biological processes and human activities during the last glacial cycle relies mainly on data from biological remains. Highly abundant tissues, such as wood, are candidates for a genetic analysis of past populations. While well-authenticated DNA has now been recovered from various fossil remains, the final ‘proof’ is still missing for wood, despite some promising studies. • Scope The goal of this study was to determine if ancient wood can be analysed routinely in studies of archaeology and palaeogenetics. An experiment was designed which included blind testing, independent replicates, extensive contamination controls and rigorous statistical tests. Ten samples of ancient wood from major European forest tree genera were analysed with plastid DNA markers. • Conclusions Authentic DNA was retrieved from wood samples up to 1000 years of age. A new tool for real-time vegetation history and archaeology is ready to use. PMID:16987920
Zhenilo, S V; Sokolov, A S; Prokhortchouk, E B
2016-01-01
Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS 1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences.
Ancient DNA analysis of dental calculus.
Weyrich, Laura S; Dobney, Keith; Cooper, Alan
2015-02-01
Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rannamäe, E; Lõugas, L; Niemi, M; Kantanen, J; Maldre, L; Kadõrova, N; Saarma, U
2016-04-01
Sheep were among the first domesticated animals to appear in Estonia in the late Neolithic and became one of the most widespread livestock species in the region from the Late Bronze Age onwards. However, the origin and historical expansion of local sheep populations in Estonia remain poorly understood. Here, we analysed fragments of the hypervariable D-loop of mitochondrial DNA (mtDNA; 213 bp) and the Y-chromosome SRY gene (130 bp) extracted from 31 archaeological sheep bones dated from approximately 800 BC to 1700 AD. The ancient DNA data of sheep from Estonia were compared with ancient sheep from Finland as well as a set of contemporary sheep breeds from across Eurasia in order to place them in a wider phylogeographical context. The analysis shows that: (i) 24 successfully amplified and analysed mtDNA sequences of ancient sheep cluster into two haplogroups, A and B, of which B is predominant; (ii) four of the ancient mtDNA haplotypes are novel; (iii) higher mtDNA haplotype diversity occurred during the Middle Ages as compared to other periods, a fact concordant with the historical context of expanding international trade during the Middle Ages; (iv) the proportion of rarer haplotypes declined during the expansion of sheep from the Near Eastern domestication centre to the northern European region; (v) three male samples showed the presence of the characteristic northern European haplotype, SNP G-oY1 of the Y-chromosome, and represent the earliest occurrence of this haplotype. Our results provide the first insight into the genetic diversity and phylogeographical background of ancient sheep in Estonia and provide basis for further studies on the temporal fluctuations of ancient sheep populations. © 2016 Stichting International Foundation for Animal Genetics.
Ancient DNA and the rewriting of human history: be sparing with Occam's razor.
Haber, Marc; Mezzavilla, Massimo; Xue, Yali; Tyler-Smith, Chris
2016-01-11
Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.
Characterizing DNA preservation in degraded specimens of Amara alpina (Carabidae: Coleoptera).
Heintzman, Peter D; Elias, Scott A; Moore, Karen; Paszkiewicz, Konrad; Barnes, Ian
2014-05-01
DNA preserved in degraded beetle (Coleoptera) specimens, including those derived from dry-stored museum and ancient permafrost-preserved environments, could provide a valuable resource for researchers interested in species and population histories over timescales from decades to millenia. However, the potential of these samples as genetic resources is currently unassessed. Here, using Sanger and Illumina shotgun sequence data, we explored DNA preservation in specimens of the ground beetle Amara alpina, from both museum and ancient environments. Nearly all museum specimens had amplifiable DNA, with the maximum amplifiable fragment length decreasing with age. Amplification of DNA was only possible in 45% of ancient specimens. Preserved mitochondrial DNA fragments were significantly longer than those of nuclear DNA in both museum and ancient specimens. Metagenomic characterization of extracted DNA demonstrated that parasite-derived sequences, including Wolbachia and Spiroplasma, are recoverable from museum beetle specimens. Ancient DNA extracts contained beetle DNA in amounts comparable to museum specimens. Overall, our data demonstrate that there is great potential for both museum and ancient specimens of beetles in future genetic studies, and we see no reason why this would not be the case for other orders of insect. © 2013 John Wiley & Sons Ltd.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
Ancient DNA Reveals Late Pleistocene Existence of Ostriches in Indian Sub-Continent.
Jain, Sonal; Rai, Niraj; Kumar, Giriraj; Pruthi, Parul Aggarwal; Thangaraj, Kumarasamy; Bajpai, Sunil; Pruthi, Vikas
2017-01-01
Ancient DNA (aDNA) analysis of extinct ratite species is of considerable interest as it provides important insights into their origin, evolution, paleogeographical distribution and vicariant speciation in congruence with continental drift theory. In this study, DNA hotspots were detected in fossilized eggshell fragments of ratites (dated ≥25000 years B.P. by radiocarbon dating) using confocal laser scanning microscopy (CLSM). DNA was isolated from five eggshell fragments and a 43 base pair (bp) sequence of a 16S rRNA mitochondrial-conserved region was successfully amplified and sequenced from one of the samples. Phylogenetic analysis of the DNA sequence revealed a 92% identity of the fossil eggshells to Struthio camelus and their position basal to other palaeognaths, consistent with the vicariant speciation model. Our study provides the first molecular evidence for the presence of ostriches in India, complementing the continental drift theory of biogeographical movement of ostriches in India, and opening up a new window into the evolutionary history of ratites.
2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.
Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena
2004-11-15
Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism. Copyright 2004 Wiley-Liss, Inc.
Ávila-Arcos, María C.; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Moreno-Mayar, J. Víctor; Rasmussen, Morten; Fordyce, Sarah L.; Montiel, Rafael; Vielle-Calzada, Jean-Philippe; Willerslev, Eske; Gilbert, M. Thomas P.
2011-01-01
The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples. We tested the performance of Agilent's SureSelect and Mycroarray's MySelect in-solution capture systems on Illumina sequencing libraries built from ancient maize to identify key factors influencing aDNA capture experiments. High levels of clonality as well as the presence of multiple-copy sequences in the capture targets led to biases in the data regardless of the capture method. Neither method consistently outperformed the other in terms of average target enrichment, and no obvious difference was observed either when two tiling designs were compared. In addition to demonstrating the plausibility of capturing aDNA from ancient plant material, our results also enable us to provide useful recommendations for those planning targeted-sequencing on aDNA. PMID:22355593
Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.
Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic
2017-09-01
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. © 2017 John Wiley & Sons Ltd.
Taylor M. Wilcox; Michael K. Schwartz; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe
2014-01-01
Environmental DNA (eDNA) is increasingly applied as a highly sensitive way to detect aquatic animals non-invasively. However, distinguishing closely related taxa can be particularly challenging. Previous studies of ancient DNA and genetic diet analysis have used blocking primers to enrich target template in the presence of abundant, non-target DNA. Here we apply a...
Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo.
González-Oliver, A; Márquez-Morfín, L; Jiménez, J C; Torre-Blanco, A
2001-11-01
Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin. Copyright 2001 Wiley-Liss, Inc.
Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand
2009-07-01
In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.
Genomic sequencing of Pleistocene cave bears
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noonan, James P.; Hofreiter, Michael; Smith, Doug
2005-04-01
Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less
Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.
Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N
2014-03-06
Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.
Ancient DNA provides new insight into the maternal lineages and domestication of Chinese donkeys.
Han, Lu; Zhu, Songbiao; Ning, Chao; Cai, Dawei; Wang, Kai; Chen, Quanjia; Hu, Songmei; Yang, Junkai; Shao, Jing; Zhu, Hong; Zhou, Hui
2014-11-30
The donkey (Equus asinus) is an important domestic animal that provides a reliable source of protein and method of transportation for many human populations. However, the process of domestication and the dispersal routes of the Chinese donkey are still unclear, as donkey remains are sparse in the archaeological record and often confused with horse remains. To explore the maternal origins and dispersal route of Chinese donkeys, both mitochondrial DNA D-loop and cytochrome b gene fragments of 21 suspected donkey remains from four archaeological sites in China were amplified and sequenced. Molecular methods of species identification show that 17 specimens were donkeys and three samples had the maternal genetic signature of horses. One sample that dates to about 20,000 years before present failed to amplify. In this study, the phylogenetic analysis reveals that ancient Chinese donkeys have high mitochondrial DNA diversity and two distinct mitochondrial maternal lineages, known as the Somali and Nubian lineages. These results indicate that the maternal origin of Chinese domestic donkeys was probably related to the African wild ass, which includes the Nubian wild ass (Equus africanus africanus) and the Somali wild ass (Equus africanus somaliensis). Combined with historical records, the results of this study implied that domestic donkeys spread into west and north China before the emergence of the Han dynasty. The number of Chinese domestic donkeys had increased primarily to meet demand for the expansion of trade, and they were likely used as commodities or for shipping goods along the Silk Road during the Tang Dynasty, when the Silk Road reached its golden age. This study is the first to provide valuable ancient animal DNA evidence for early trade between African and Asian populations. The ancient DNA analysis of Chinese donkeys also sheds light on the dynamic process of the maternal origin, domestication, and dispersal route of ancient Chinese donkeys.
Non-Destructive Sampling of Ancient Insect DNA
Thomsen, Philip Francis; Elias, Scott; Gilbert, M. Thomas P.; Haile, James; Munch, Kasper; Kuzmina, Svetlana; Froese, Duane G.; Holdaway, Richard N.; Willerslev, Eske
2009-01-01
Background A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago - an alternative approach that also does not involve destruction of valuable material. Methodology/Principal Findings The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77–204 base pairs (-bp) in size using species-specific and general insect primers. Conclusion/Significance The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity. PMID:19337382
Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes
Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T.; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic
2013-01-01
Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries. PMID:24205269
Extending the spectrum of DNA sequences retrieved from ancient bones and teeth
Glocke, Isabelle; Meyer, Matthias
2017-01-01
The number of DNA fragments surviving in ancient bones and teeth is known to decrease with fragment length. Recent genetic analyses of Middle Pleistocene remains have shown that the recovery of extremely short fragments can prove critical for successful retrieval of sequence information from particularly degraded ancient biological material. Current sample preparation techniques, however, are not optimized to recover DNA sequences from fragments shorter than ∼35 base pairs (bp). Here, we show that much shorter DNA fragments are present in ancient skeletal remains but lost during DNA extraction. We present a refined silica-based DNA extraction method that not only enables efficient recovery of molecules as short as 25 bp but also doubles the yield of sequences from longer fragments due to improved recovery of molecules with single-strand breaks. Furthermore, we present strategies for monitoring inefficiencies in library preparation that may result from co-extraction of inhibitory substances during DNA extraction. The combination of DNA extraction and library preparation techniques described here substantially increases the yield of DNA sequences from ancient remains and provides access to a yet unexploited source of highly degraded DNA fragments. Our work may thus open the door for genetic analyses on even older material. PMID:28408382
The presence of ancient human T-cell lymphotropic virus type I provirus DNA in an Andean mummy.
Li, H C; Fujiyoshi, T; Lou, H; Yashiki, S; Sonoda, S; Cartier, L; Nunez, L; Munoz, I; Horai, S; Tajima, K
1999-12-01
The worldwide geographic and ethnic clustering of patients with diseases related to human T-cell lymphotropic virus type I (HTLV-I) may be explained by the natural history of HTLV-I infection. The genetic characteristics of indigenous people in the Andes are similar to those of the Japanese, and HTLV-I is generally detected in both groups. To clarify the common origin of HTLV-I in Asia and the Andes, we analyzed HTLV-I provirus DNA from Andean mummies about 1,500 years old. Two of 104 mummy bone marrow specimens yielded a band of human beta-globin gene DNA 110 base pairs in length, and one of these two produced bands of HTLV-I-pX (open reading frame encoding p40x, p27x) and HTLV-I-LTR (long terminal repeat) gene DNA 159 base pairs and 157 base pairs in length, respectively. The nucleotide sequences of ancient HTLV-I-pX and HTLV-I-LTR clones isolated from mummy bone marrow were similar to those in contemporary Andeans and Japanese, although there was microheterogeneity in the sequences of some mummy DNA clones. This result provides evidence that HTLV-I was carried with ancient Mongoloids to the Andes before the Colonial era. Analysis of ancient HTLV-I sequences could be a useful tool for studying the history of human retroviral infection as well as human prehistoric migration.
Ancient HTLV type 1 provirus DNA of Andean mummy.
Sonoda, S; Li, H C; Cartier, L; Nunez, L; Tajima, K
2000-11-01
The worldwide geographic and ethnic clustering of patients with diseases related to human T cell lymphotropic virus type 1 (HTLV-1) may be explained by the natural history of HTLV-1 infection. The genetic characteristics of indigenous people in the Andes are similar to those of the Japanese, and HTLV-1 is generally detected in both groups. To clarify the common origin of HTLV-1 in Asia and the Andes, we analyzed HTLV-1 provirus DNA from Andean mummies about 1500 years old. Two of 104 mummy bone marrow specimens yielded a band of human beta-globin gene DNA 110 base pairs in length, and one of these two produced bands of HTLV-1-pX (open reading frame encoding p(40x), p(27x)) and HTLV-1-LTR (long terminal repeat) gene DNA 159 base pairs and 157 base pairs in length, respectively. The nucleotide sequences of ancient HTLV-1-pX and HTLV-1-LTR clones isolated from mummy bone marrow were similar to those in contemporary Andeans and Japanese, although there was microheterogeneity in the sequences of some mummy DNA clones. This result provides evidence that HTLV-1 was carried with ancient Mongoloids to the Andes before the Colonial era. Analysis of ancient HTLV-1 sequences could be a useful tool for studying the history of human retroviral infection as well as human prehistoric migration.
Toward high-resolution population genomics using archaeological samples
Morozova, Irina; Flegontov, Pavel; Mikheyev, Alexander S.; Bruskin, Sergey; Asgharian, Hosseinali; Ponomarenko, Petr; Klyuchnikov, Vladimir; ArunKumar, GaneshPrasad; Prokhortchouk, Egor; Gankin, Yuriy; Rogaev, Evgeny; Nikolsky, Yuri; Baranova, Ancha; Elhaik, Eran; Tatarinova, Tatiana V.
2016-01-01
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research. PMID:27436340
To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples
Winters, Misa; Barta, Jodi Lynn; Monroe, Cara; Kemp, Brian M.
2011-01-01
The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones. To address this issue, a comparative study was designed to examine both cloned and direct sequences amplified from ∼3,500 year-old ancient northern fur seal DNA extracts. Majority rules and the Consensus Confidence Program were used to generate consensus sequences for each individual from the cloned sequences, which exhibited damage at 31 of 139 base pairs across all clones. In no instance did the consensus of clones differ from the direct sequence. This study demonstrates that, when appropriate, cloning need not be the default method, but instead, should be used as a measure of authentication on a case-by-case basis, especially when this practice adds time and cost to studies where it may be superfluous. PMID:21738625
Evin, Allowen; Flink, Linus Girdland; Bălăşescu, Adrian; Popovici, Dragomir; Andreescu, Radian; Bailey, Douglas; Mirea, Pavel; Lazăr, Cătălin; Boroneanţ, Adina; Bonsall, Clive; Vidarsdottir, Una Strand; Brehard, Stéphanie; Tresset, Anne; Cucchi, Thomas; Larson, Greger; Dobney, Keith
2015-01-01
Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large ‘domestic shape’ specimens were present from the outset of the Romanian Neolithic (6100–5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory. PMID:25487340
Ancient DNA and the tropics: a rodent's tale.
Gutiérrez-García, Tania A; Vázquez-Domínguez, Ella; Arroyo-Cabrales, Joaquín; Kuch, Melanie; Enk, Jacob; King, Christine; Poinar, Hendrik N
2014-06-01
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
2011-01-01
Background Studies on allele length polymorphism designate several glacial refugia for Norway spruce (Picea abies) in the South Carpathian Mountains, but infer only limited expansion from these refugia after the last glaciation. To better understand the genetic dynamics of a South Carpathian spruce lineage, we compared ancient DNA from 10,700 and 11,000-year-old spruce pollen and macrofossils retrieved from Holocene lake sediment in the Retezat Mountains with DNA extracted from extant material from the same site. We used eight primer pairs that amplified short and variable regions of the spruce cpDNA. In addition, from the same lake sediment we obtained a 15,000-years-long pollen accumulation rate (PAR) record for spruce that helped us to infer changes in population size at this site. Results We obtained successful amplifications for Norway spruce from 17 out of 462 pollen grains tested, while the macrofossil material provided 22 DNA sequences. Two fossil sequences were found to be unique to the ancient material. Population genetic statistics showed higher genetic diversity in the ancient individuals compared to the extant ones. Similarly, statistically significant Ks and Kst values showed a considerable level of differentiation between extant and ancient populations at the same loci. Lateglacial and Holocene PAR values suggested that population size of the ancient population was small, in the range of 1/10 or 1/5 of the extant population. PAR analysis also detected two periods of rapid population growths (from ca. 11,100 and 3900 calibrated years before present (cal yr BP)) and three bottlenecks (around 9180, 7200 and 2200 cal yr BP), likely triggered by climatic change and human impact. Conclusion Our results suggest that the paternal lineages observed today in the Retezat Mountains persisted at this site at least since the early Holocene. Combination of the results from the genetic and the PAR analyses furthermore suggests that the higher level of genetic variation found in the ancient populations and the loss of ancient allele types detected in the extant individuals were likely due to the repeated bottlenecks during the Holocene; however our limited sample size did not allow us to exclude sampling effect. This study demonstrates how past population size changes inferred from PAR records can be efficiently used in combination with ancient DNA studies. The joint application of palaeoecological and population genetics analyses proved to be a powerful tool to understand the influence of past population demographic changes on the haplotype diversity and genetic composition of forest tree species. PMID:21392386
Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic
2015-01-01
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338
Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum
Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.
2017-01-01
Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388
Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology
RIVERA-PEREZ, JESSICA I.; SANTIAGO-RODRIGUEZ, TASHA M.; TORANZOS, GARY A.
2017-01-01
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses. PMID:27726770
Population genetic analysis reveals ancient evolution and recent migration of P. ramorum
Erica M. Goss; Meg Larsen; Ignazio Carbone; Donald R. Givens; Gary A. Chastagner; Niklaus J. Gr& uuml; nwald
2010-01-01
Phytophthora ramorum populations in North America and Europe are comprised of three clonal lineages based on several different genetic marker systems (Ivors and others 2006, Martin 2008). Whether these lineages are ancient or a recent artifact of introduction has been unclear. We analyzed DNA sequence variation at five nuclear loci in order to...
Tams, Katrine Wegener; Jensen Søe, Martin; Merkyte, Inga; Valeur Seersholm, Frederik; Henriksen, Peter Steen; Klingenberg, Susanne; Willerslev, Eske; Kjær, Kurt H; Hansen, Anders Johannes; Kapel, Christian Moliin Outzen
2018-01-01
In this study, we screen archaeological soil samples by microscopy and analyse the samples by next generation sequencing to obtain results with parasites at species level and untargeted findings of plant and animal DNA. Three separate sediment layers of an ancient man-made pond in Hoby, Denmark, ranging from 100 BC to 200 AD, were analysed by microscopy for presence of intestinal worm eggs and DNA analysis were performed to identify intestinal worms and dietary components. Ancient DNA of parasites, domestic animals and edible plants revealed a change in use of the pond over time reflecting the household practice in the adjacent Iron Age settlement. The most abundant parasite found belonged to the Ascaris genus, which was not possible to type at species level. For all sediment layers the presence of eggs of the human whipworm Trichuris trichiura and the beef tapeworm Taenia saginata suggests continuous disposal of human faeces in the pond. Moreover, the continuous findings of T. saginata further imply beef consumption and may suggest that cattle were living in the immediate surrounding of the site throughout the period. Findings of additional host-specific parasites suggest fluctuating presence of other domestic animals over time: Trichuris suis (pig), Parascaris univalens (horse), Taenia hydatigena (dog and sheep). Likewise, alternating occurrence of aDNA of edible plants may suggest changes in agricultural practices. Moreover, the composition of aDNA of parasites, plants and vertebrates suggests a significant change in the use of the ancient pond over a period of three centuries.
Ancient DNA Reveals Matrilineal Continuity in Present-Day Poland over the Last Two Millennia
Juras, Anna; Dabert, Miroslawa; Kushniarevich, Alena; Malmström, Helena; Raghavan, Maanasa; Kosicki, Jakub Z.; Metspalu, Ene; Willerslev, Eske; Piontek, Janusz
2014-01-01
While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC – 500 AD (Roman Iron Age) and for 20 samples dated to 1000–1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age. PMID:25337992
Amino Acid Racemization and the Preservation of Ancient DNA
NASA Technical Reports Server (NTRS)
Poinar, Hendrik N.; Hoss, Matthias
1996-01-01
The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.
Preservation of ancient DNA in thermally damaged archaeological bone
NASA Astrophysics Data System (ADS)
Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.
2009-02-01
Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.
Kim, Jae-Hwan; Oh, Ju-Hyung; Song, Ji-Hoon; Jeon, Jin-Tae; Han, Sang-Hyun; Jung, Yong-Hwan; Oh, Moon-You
2005-12-31
Ancient cattle bones were excavated from archaeological sites in Jeju, Korea. We used molecular genetic techniques to identify the species and establish its relationship to extant cattle breeds. Ancient DNA was extracted from four sources: a humerus (Gonae site, A.D. 700-800), two fragments of radius, and a tooth (Kwakji site, A.D. 0-900). The mitochondrial DNA (mtDNA) D-loop regions were cloned, sequenced, and compared with previously reported sequences of various cattle breeds (9 Asian, 8 European, and 3 African). The results revealed that these bones were of the breed, Bos taurus, and a phylogenetic tree indicated that the four cattle bones formed a monophyletic group with Jeju native black cattle. However, the patterns of sequence variation and reports from archaeological sites suggest that a few wild cattle, with a different maternal lineage, may have existed on Jeju Island. Our results will contribute to further studies of the origin of Jeju native cattle and the possible existence of local wild cattle.
New developments in ancient genomics.
Millar, Craig D; Huynen, Leon; Subramanian, Sankar; Mohandesan, Elmira; Lambert, David M
2008-07-01
Ancient DNA research is on the crest of a 'third wave' of progress due to the introduction of a new generation of DNA sequencing technologies. Here we review the advantages and disadvantages of the four new DNA sequencers that are becoming available to researchers. These machines now allow the recovery of orders of magnitude more DNA sequence data, albeit as short sequence reads. Hence, the potential reassembly of complete ancient genomes seems imminent, and when used to screen libraries of ancient sequences, these methods are cost effective. This new wealth of data is also likely to herald investigations into the functional properties of extinct genes and gene complexes and will improve our understanding of the biological basis of extinct phenotypes.
Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.
2013-01-01
Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772
Identifications of ancient Egyptian royal mummies from the 18th Dynasty reconsidered.
Habicht, M E; Bouwman, A S; Rühli, F J
2016-01-01
For centuries, ancient Egyptian Royal mummies have drawn the attention both of the general public and scientists. Many royal mummies from the New Kingdom have survived. The discoveries of the bodies of these ancient rulers have always sparked much attention, yet not all identifications are clear even nowadays. This study presents a meta-analysis to demonstrate the difficulties in identifying ancient Egyptian royal mummies. Various methods and pitfalls in the identification of the Pharaohs are reassessed since new scientific methods can be used, such as ancient DNA-profiling and CT-scanning. While the ancestors of Tutankhamun have been identified, some identities are still highly controversial (e.g., the mystery of the KV-55 skeleton, recently most likely identified as the genetic father of Tutankhamun). The meta-analysis confirms the suggested identity of some mummies (e.g., Amenhotep III, Thutmosis IV, and Queen Tjye). © 2016 Wiley Periodicals, Inc.
Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund; Kapel, Christian Moliin Outzen
2015-02-01
Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura , using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology. The identification of T. trichiura eggs indicates that human fecal material is present and, hence, that the Ascaris sp. haplotype 07 was most likely a human variant in Viking-age Denmark. The location of the F. hepatica finding suggests that sheep or cattle are the most likely hosts. Further, we sequenced the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past.
Speller, Camilla F.; Hauser, Lorenz; Lepofsky, Dana; Moore, Jason; Rodrigues, Antonia T.; Moss, Madonna L.; McKechnie, Iain; Yang, Dongya Y.
2012-01-01
Pacific herring (Clupea pallasi) are an abundant and important component of the coastal ecosystems for the west coast of North America. Current Canadian federal herring management assumes five regional herring populations in British Columbia with a high degree of exchange between units, and few distinct local populations within them. Indigenous traditional knowledge and historic sources, however, suggest that locally adapted, distinct regional herring populations may have been more prevalent in the past. Within the last century, the combined effects of commercial fishing and other anthropogenic factors have resulted in severe declines of herring populations, with contemporary populations potentially reflecting only the remnants of a previously more abundant and genetically diverse metapopulation. Through the analysis of 85 archaeological herring bones, this study attempted to reconstruct the genetic diversity and population structure of ancient herring populations using three different marker systems (mitochondrial DNA (mtDNA), microsatellites and SNPs). A high success rate (91%) of DNA recovery was obtained from the extremely small herring bone samples (often <10 mg). The ancient herring mtDNA revealed high haplotype diversity comparable to modern populations, although population discrimination was not possible due to the limited power of the mtDNA marker. Ancient microsatellite diversity was also similar to modern samples, but the data quality was compromised by large allele drop-out and stuttering. In contrast, SNPs were found to have low error rates with no evidence for deviations from Hardy-Weinberg equilibrium, and simulations indicated high power to detect genetic differentiation if loci under selection are used. This study demonstrates that SNPs may be the most effective and feasible approach to survey genetic population structure in ancient remains, and further efforts should be made to screen for high differentiation markers.This study provides the much needed foundation for wider scale studies on temporal genetic variation in herring, with important implications for herring fisheries management, Aboriginal title rights and herring conservation. PMID:23226474
Dong, Yu; Li, Chunxiang; Luan, Fengshi; Li, Zhenguang; Li, Hongjie; Cui, Yinqiu; Zhou, Hui; Malhi, Ripan S
2015-01-01
To gain insight into the social organization of a population associated with the Dawenkou period, we performed ancient DNA analysis of 18 individuals from human remains from the Fujia site in Shandong Province, China. Directly radiocarbon dated to 4800-4500 cal BP, the Fujia site is assumed to be associated with a transitional phase from matrilineal clans to patrilineal monogamous families. Our results reveal a low mitochondrial DNA diversity from the site and population. Combined with Y chromosome data, the pattern observed at the Fujia site is most consistent with a matrilineal community. The patterns also suggest that the bond of marriage was de-emphasized compared with the bonds of descent at Fujia.
Genetic analysis and ethnic affinities from two Scytho-Siberian skeletons.
Ricaut, François-Xavier; Keyser-Tracqui, Christine; Cammaert, Laurence; Crubézy, Eric; Ludes, Bertrand
2004-04-01
We extracted DNA from two skeletons belonging to the Sytho-Siberian population, which were excavated from the Sebÿstei site (dating back 2,500 years) in the Altai Republic (Central Asia). Ancient DNA was analyzed by autosomal short tandem repeats (STRs) and by the sequencing of the hypervariable region 1 (HV1) of the mitochondrial DNA (mtDNA) control region. The results showed that these two skeletons were not close relatives. Moreover, their haplogroups were characteristic of Asian populations. Comparison with the haplogroup of 3,523 Asian and American individuals linked one skeleton with a putative ancestral paleo-Asiatic population and the other with Chinese populations. It appears that the genetic study of ancient populations of Central Asia brings important elements to the understanding of human population movements in Asia. Copyright 2003 Wiley-Liss, Inc.
Smith, Rick W A; Monroe, Cara; Bolnick, Deborah A
2015-01-01
While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches.
van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J
1995-06-01
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.
DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING
Traces of DNA may preserve on ancient stone tools. We examined 24 chipped stone artifacts recovered from the Bugas-Holding site in northwestern Wyoming for the presence of DNA residues, and we compared DNA preservation in bones and stone tools from the same stratigraphic context...
Freshly excavated fossil bones are best for amplification of ancient DNA.
Pruvost, Mélanie; Schwarz, Reinhard; Correia, Virginia Bessa; Champlot, Sophie; Braguier, Séverine; Morel, Nicolas; Fernandez-Jalvo, Yolanda; Grange, Thierry; Geigl, Eva-Maria
2007-01-16
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a approximately 3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.
Freshly excavated fossil bones are best for amplification of ancient DNA
Pruvost, Mélanie; Schwarz, Reinhard; Correia, Virginia Bessa; Champlot, Sophie; Braguier, Séverine; Morel, Nicolas; Fernandez-Jalvo, Yolanda; Grange, Thierry; Geigl, Eva-Maria
2007-01-01
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a ≈3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms. PMID:17210911
Time to Spread Your Wings: A Review of the Avian Ancient DNA Field
Grealy, Alicia; Rawlence, Nicolas J.
2017-01-01
Ancient DNA (aDNA) has the ability to inform the evolutionary history of both extant and extinct taxa; however, the use of aDNA in the study of avian evolution is lacking in comparison to other vertebrates, despite birds being one of the most species-rich vertebrate classes. Here, we review the field of “avian ancient DNA” by summarising the past three decades of literature on this topic. Most studies over this time have used avian aDNA to reconstruct phylogenetic relationships and clarify taxonomy based on the sequencing of a few mitochondrial loci, but recent studies are moving toward using a comparative genomics approach to address developmental and functional questions. Applying aDNA analysis with more practical outcomes in mind (such as managing conservation) is another increasingly popular trend among studies that utilise avian aDNA, but the majority of these have yet to influence management policy. We find that while there have been advances in extracting aDNA from a variety of avian substrates including eggshell, feathers, and coprolites, there is a bias in the temporal focus; the majority of the ca. 150 studies reviewed here obtained aDNA from late Holocene (100–1000 yBP) material, with few studies investigating Pleistocene-aged material. In addition, we identify and discuss several other issues within the field that require future attention. With more than one quarter of Holocene bird extinctions occurring in the last several hundred years, it is more important than ever to understand the mechanisms driving the evolution and extinction of bird species through the use of aDNA. PMID:28718817
Ancient mitochondrial DNA and ancestry of Paquimé inhabitants, Casas Grandes (A.D. 1200-1450).
Morales-Arce, Ana Y; Snow, Meradeth H; Kelley, Jane H; Anne Katzenberg, M
2017-07-01
The Casas Grandes (Paquimé) culture, located in the Northwest of Chihuahua, Mexico reached its apogee during the Medio Period (A.D. 1200-1450). Paquimé was abandoned by the end of the Medio Period (A.D. 1450), and the ancestry of its inhabitants remains unsolved. Some authors suggest that waves of Mesoamerican immigrants, possibly merchants, stimulated Paquimé's development during the Medio Period. Archaeological evidence suggests possible ties to groups that inhabited the Southwestern US cultures. This study uses ancient DNA analysis from fourteen samples to estimate genetic affinities of ancient Paquimé inhabitants. DNA was extracted from 14 dental ancient samples from Paquimé. PCR and Sanger sequencing were used to obtain mitochondrial control region sequences. Networks, PCoA, and Nei genetic distances were estimated to compare Paquimé haplotypes against available past haplotypes data from Southwestern and Mesoamerican groups. Haplogroups were characterized for 11 of the samples, and the results revealed the presence of four distinct Amerindian mitochondrial lineages: B (n = 5; 45%), A (n = 3; 27%), C (n = 2; 18%) and D (n = 1; 10%). Statistical analysis of the haplotypes, haplogroup frequencies, and Nei genetic distances showed close affinity of Paquimé with Mimbres. Although our results provide strong evidence of genetic affinities between Paquimé and Mimbres, with the majority of haplotypes shared or derived from ancient Southwest populations, the causes of cultural development at Paquimé still remain a question. These preliminary results provide evidence in support of other bioarchaeological studies, which have shown close biological affinities between Paquimé and Mimbres, a Puebloan culture, in the Southwestern US. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Rivkina, E.; Onstott, T. C.
2017-12-01
The prevalence of microorganisms in frozen permafrost has been well documented in ancient sediment up to several million years old. However, the long term survivability and metabolic activity of microbes over geological timespans remain underexplored. Siberian permafrost sediment was collected at various depths (1.4m, 11.8 m and 24.8m) to represent a wide range of geological time from thousands to millions of years. Extracellular (eDNA) and intracellular DNA (iDNA) was simultaneously recovered for sequencing to characterize the potentially extinct and extant microbial community. Additionally, aspartic acid racemization assay (D/L Asp) was used to infer the metabolic activity of microbes in ancient permafrost. As compared with the young sample (1.4m), DNA yield and content of aspartic acid dramatically decreased in old samples (11.8m and 24.8m). However, D/L Asp and eDNA/iDNA significantly increased with the geological age. Such findings suggested that ancient microbiomes might be subjected to racemization or even DNA/proteins degradation at subzero temperature over the wide geological time scale. Preliminary characterization of microbial community indicated that the majority of sequences in old samples were identified as bacteria and only a small fraction was identified as archaea from the iDNA pool. While the eDNA and iDNA fractions shared similar dominant taxa at phylum level, the relative abundance of Proteobacteria in eDNA library was much higher than iDNA. By contrast, the phylum affiliated with Firmicutes was more numerically abundant in the iDNA fraction. More dramatic differences were observed between eDNA and iDNA library at lower taxonomic levels. Particularly, the microbial lineages affiliated with the genera Methanoregula, Desulfosporosinus and Syntrophomonas were only detected in the iDNA library. Such taxonomic difference between the relic eDNA and iDNA suggested that numerous species become locally "extinct" whereas many other taxa might survive in ancient sediment. Ultimately, when coupling our current findings to the D/L Asp in cellular proteins and metaproteomics, a better understanding will be achieved about the microbial activity of the extant microbial community and their roles in biogeochemical cycling in ancient permafrost.
Ancient DNA in human bone remains from Pompeii archaeological site.
Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A
1998-06-29
aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.
Gold, David A; Robinson, Jacqueline; Farrell, Aisling B; Harris, John M; Thalmann, Olaf; Jacobs, David K
2014-02-01
Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material.
The genetics of the pre-Roman Iberian Peninsula: a mtDNA study of ancient Iberians.
Sampietro, M L; Caramelli, D; Lao, O; Calafell, F; Comas, D; Lari, M; Agustí, B; Bertranpetit, J; Lalueza-Fox, C
2005-09-01
The Iberians developed a surprisingly sophisticated culture in the Mediterranean coast of the Iberian Peninsula from the 6th century BC until their conquest by the Romans in the 2nd century BC. They spoke and wrote a non-Indo-European language that still cannot be understood; their origins and relationships with other non-Indo-European peoples, like the Etruscans, are unclear, since their funerary practices were based on the cremation of bodies, and therefore anthropology has been unable to approach the study of this people. We have retrieved mitochondrial DNA (mtDNA) from a few of the scarce skeletal remains that have been preserved, some of them belonging to ritualistically executed individuals. The most stringent authentication criteria proposed for ancient DNA, such as independent replication, amino-acid analysis, quantitation of template molecules, multiple extractions and cloning of PCR products, have been followed to obtain reliable sequences from the mtDNA hypervariable region 1 (HVR1), as well as some haplogroup diagnostic SNPs. Phylogeographic analyses show that the haplogroup composition of the ancient Iberians was very similar to that found in modern Iberian Peninsula populations, suggesting a long-term genetic continuity since pre-Roman times. Nonetheless, there is less genetic diversity in the ancient Iberians than is found among modern populations, a fact that could reflect the small population size at the origin of the population sampled, and the heterogenic tribal structure of the Iberian society. Moreover, the Iberians were not especially closely related to the Etruscans, which points to considerable genetic heterogeneity in Pre-Roman Western Europe.
Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone.
Pinhasi, Ron; Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Connell, Sarah; Alpaslan-Roodenberg, Songül; Gerritsen, Fokke; Moiseyev, Vyacheslav; Gromov, Andrey; Raczky, Pál; Anders, Alexandra; Pietrusewsky, Michael; Rollefson, Gary; Jovanovic, Marija; Trinhhoang, Hiep; Bar-Oz, Guy; Oxenham, Marc; Matsumura, Hirofumi; Hofreiter, Michael
2015-01-01
The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.
SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites.
Iñiguez, Alena Mayo; Reinhard, Karl; Carvalho Gonçalves, Marcelo Luiz; Ferreira, Luiz Fernando; Araújo, Adauto; Paulo Vicente, Ana Carolina
2006-11-01
Enterobius vermicularis, pinworm, is one of the most common helminths worldwide, infecting nearly a billion people at all socio-economic levels. In prehistoric populations the paleoparasitological findings show a pinworm homogeneous distribution among hunter-gatherers in North America, intensified with the advent of agriculture. This same increase also occurred in the transition from nomad hunter-gatherers to sedentary farmers in South America, although E. vermicularis infection encompasses only the ancient Andean peoples, with no record among the pre-Colombian populations in the South American lowlands. However, the outline of pinworm paleoepidemiology has been supported by microscopic finding of eggs recovered from coprolites. Since molecular techniques are precise and sensitive in detecting pathogen ancient DNA (aDNA), and also could provide insights into the parasite evolutionary history, in this work we have performed a molecular paleoparasitological study of E. vermicularis. aDNA was recovered and pinworm 5S rRNA spacer sequences were determined from pre-Columbian coprolites (4110 BC-AD 900) from four different North and South American archaeological sites. The sequence analysis confirmed E. vermicularis identity and revealed a similarity among ancient and modern sequences. Moreover, polymorphisms were identified at the relative positions 160, 173 and 180, in independent coprolite samples from Tulán, San Pedro de Atacama, Chile (1080-950 BC). We also verified the presence of peculiarities (Splicing leader (SL1) RNA sequence, spliced donor site, the Sm antigen biding site, and RNA secondary structure) which characterise the SL1 RNA gene. The analysis shows that the SL1 RNA gene of contemporary pinworms was present in pre-Columbian E. vermicularis by 6110 years ago. We were successful in detecting E. vermicularis aDNA even in coprolites without direct microscopic evidence of the eggs, improving the diagnosis of helminth infections in the past and further pinworm paleoepidemiological studies.
Museums and disease: using tissue archive and museum samples to study pathogens.
Tsangaras, Kyriakos; Greenwood, Alex D
2012-01-20
Molecular studies of archival and fossil samples have traditionally focused on the nucleic acids derived from the host species. However, there has recently been an increase in ancient DNA research on the identification and characterization of infectious agents within the hosts. The study of pathogens from the past provides great opportunities for discovering the causes of historical infection events, characterizing host-microorganism co-evolution and directly investigating the evolution of specific pathogens. Several research teams have been able to isolate and characterize a variety of different bacterial, parasite and viral microorganisms. However, this emerging field is not without obstacles. The diagenetic processes that make ancient DNA research generally difficult are also impediments to ancient pathogen research and perhaps more so given that their DNA may represent an even rarer proportion of the remaining nucleic acids in a fossil sample than host DNA. However, studies performed under controlled conditions and following stringent ancient DNA protocols can and have yielded reliable and often surprising results. This article reviews the advantages, problems, and failures of ancient microbiological research. Copyright © 2011 Elsevier GmbH. All rights reserved.
Faerman, Marina; Bar-Gal, Gila Kahila; Boaretto, Elisabetta; Boeskorov, Gennady G.; Dokuchaev, Nikolai E.; Ermakov, Oleg A.; Golenishchev, Fedor N.; Gubin, Stanislav V.; Mintz, Eugenia; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergei V.; Zanina, Oksana G.; Formozov, Nikolai A.
2017-01-01
In contrast to the abundant fossil record of arctic ground squirrels, Urocitellus parryii, from eastern Beringia, only a limited number of fossils is known from its western part. In 1946, unnamed GULAG prisoners discovered a nest with three mummified carcasses of arctic ground squirrels in the permafrost sediments of the El’ga river, Yakutia, Russia, that were later attributed to a new species, Citellus (Urocitellus) glacialis Vinogr. To verify this assignment and to explore phylogenetic relationships between ancient and present-day arctic ground squirrels, we performed 14C dating and ancient DNA analyses of one of the El’ga mummies and four contemporaneous fossils from Duvanny Yar, northeastern Yakutia. Phylogenetic reconstructions, based on complete cytochrome b gene sequences of five Late Pleistocene arctic ground squirrels and those of modern U. parryii from 21 locations across western Beringia, provided no support for earlier proposals that ancient arctic ground squirrels from Siberia constitute a distinct species. In fact, we observed genetic continuity of the glacialis mitochondrial DNA lineage in modern U. parryii of the Kamchatka peninsula. When viewed in a broader geographic perspective, our findings provide new insights into the genetic history of U. parryii in Late Pleistocene Beringia. PMID:28205612
A novel SERRS sandwich-hybridization assay to detect specific DNA target.
Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2011-01-01
In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.
A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target
Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2011-01-01
In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics. PMID:21655320
Jinam, Timothy A; Hong, Lih-Chun; Phipps, Maude E; Stoneking, Mark; Ameen, Mahmood; Edo, Juli; Saitou, Naruya
2012-11-01
The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations: the ancient "Out of Africa" migration ∼50,000 years before present (YBP) and the relatively recent "Out of Taiwan" expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration, whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single-nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar, and Temuan) showed high frequencies of mtDNA haplogroups, which originated from the Asian mainland ∼30,000-10,000 YBP, but low frequencies of "Out of Taiwan" markers. Principal component analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an "Early Train" migration originating from Indochina or South China around the late-Pleistocene to early-Holocene period, which predates, but may not necessarily exclude, the Austronesian expansion.
Deguilloux, Marie-France; Pemonge, Marie-Hélène; Dubut, Vincent; Hughes, Sandrine; Hänni, Catherine; Chollet, Lionel; Conte, Eric; Murail, Pascal
2011-02-01
Molecular anthropology has been widely used to infer the origin and processes of the colonization of Polynesia. However, there are still a lack of representative geographical studies of Eastern Polynesia and unchallenged genetic data about ancient Polynesian people. The absence of both of these elements prevents an accurate description of the demographic processes of internal dispersion within the Polynesian triangle. This study provides a twofold analysis of ancient and modern mtDNA in the eastern part of French Polynesia: the Gambier Islands. The paleogenetic analyses conducted on burials of the Temoe Atoll (14(th) -17(th) centuries) represent the first fully authenticated ancient human sequences from Polynesia. The identification of the "Melanesian" Q1 mtDNA lineage in ancient human remains substantiates the Near Oceanic contribution to the early gene pool of this region. Modern samples originate from Mangareva Island. Genealogical investigations enable us to reliably identify the conservation of the Melanesian component in Easternmost Polynesia, despite recent European colonization. Finally, the identification of rare mutations in sequences belonging to haplogroup B4a1a1a provides new perspectives to the debate on the internal peopling of the Polynesian region. Altogether, the results laid out in our study put the emphasis on the necessity of controlled sampling when discussing the internal settlement of Polynesia. 2010 Wiley-Liss, Inc.
Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.
2016-01-01
Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604
Olaitan, Abiola Olumuyiwa; Rolain, Jean-Marc
2016-08-01
Antibiotic resistance is an ancient biological mechanism in bacteria, although its proliferation in our contemporary world has been amplified through antimicrobial therapy. Recent studies conducted on ancient environmental and human samples have uncovered numerous antibiotic-resistant bacteria and resistance genes. The resistance genes that have been reported from the analysis of ancient bacterial DNA include genes coding for several classes of antibiotics, such as glycopeptides, β-lactams, tetracyclines, and macrolides. The investigation of the resistome of ancient bacteria is a recent and emerging field of research, and technological advancements such as next-generation sequencing will further contribute to its growth. It is hoped that the knowledge gained from this research will help us to better understand the evolution of antibiotic resistance genes and will also be used in drug design as a proactive measure against antibiotic resistance.
Ozga, Andrew T; Nieves-Colón, Maria A; Honap, Tanvi P; Sankaranarayanan, Krithivasan; Hofman, Courtney A; Milner, George R; Lewis, Cecil M; Stone, Anne C; Warinner, Christina
2016-06-01
Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus
Ozga, Andrew T.; Nieves‐Colón, Maria A.; Honap, Tanvi P.; Sankaranarayanan, Krithivasan; Hofman, Courtney A.; Milner, George R.; Lewis, Cecil M.; Stone, Anne C.
2016-01-01
ABSTRACT Objectives Archaeological dental calculus is a rich source of host‐associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Materials and Methods Extracted DNA from six individuals at the 700‐year‐old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in‐solution capture techniques, followed by Illumina high‐throughput sequencing. Results Full mitogenomes (7–34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92–100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Discussion Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220–228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. PMID:26989998
Ancient DNA analysis affirms the canid from Altai as a primitive dog.
Druzhkova, Anna S; Thalmann, Olaf; Trifonov, Vladimir A; Leonard, Jennifer A; Vorobieva, Nadezhda V; Ovodov, Nikolai D; Graphodatsky, Alexander S; Wayne, Robert K
2013-01-01
The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication.
Sato, Takehiro; Kazuta, Hisako; Amano, Tetsuya; Ono, Hiroko; Ishida, Hajime; Kodera, Haruto; Matsumura, Hirofumi; Yoneda, Minoru; Dodo, Yukio; Masuda, Ryuichi
2010-10-01
To investigate the genetic characteristics of the ancient populations of Hokkaido, northern Japan, polymorphisms of the ABO blood group gene were analyzed for 17 Jomon/Epi-Jomon specimens and 15 Okhotsk specimens using amplified product-length polymorphism and restriction fragment length polymorphism analyses. Five ABO alleles were identified from the Jomon/ Epi-Jomon and Okhotsk people. Allele frequencies of the Jomon/Epi-Jomon and Okhotsk people were compared with those of the modern Asian, European and Oceanic populations. The genetic relationships inferred from principal component analyses indicated that both Jomon/Epi-Jomon and Okhotsk people are included in the same group as modern Asian populations. However, the genetic characteristics of these ancient populations in Hokkaido were significantly different from each other, which is in agreement with the conclusions from mitochondrial DNA and ABCC11 gene analyses that were previously reported.
DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING
DNA residues may preserve on ancient stone tools used to process animals. We studied 24 stone tools recovered from the Bugas-Holding site in northwestern Wyoming. Nine tools that yielded DNA included five bifaces, two side scrapers, one end scraper, and one utilized flake. The...
McKechnie, Iain; Yang, Dongya Y.
2018-01-01
Rockfish (Sebastes spp.) are a common marine fish in nearshore and continental shelf environments in the North Pacific Ocean. They are frequently identified in coastal archaeological sites in western North America; however, the morphological similarity of rockfish species limits conventional zooarchaeological identifications to the genus level. This study applies ancient DNA analysis to 96 archaeological rockfish specimens from four sites on separate islands in an archipelago on western Vancouver Island, British Columbia, Canada. Two of the archaeological sites are located within a marine protected area specifically designed to facilitate the recovery of inshore rockfish populations; two sites are located outside this boundary and remain subject to considerable fishing pressure. Using mitochondrial 16S and control region DNA sequences, we identify at least twelve different rockfish species utilized during the past 2,500 years. Identification of rockfish at closely spaced and contemporaneously occupied sites confirms that a variety of Sebastes species were consistently exploited at each site, with more exposed areas having a higher number of species present. Identification results indicate that four of the twelve species did not occur within the conservation area boundary and, instead, were found in sites where commercial and recreational fishing continues to be permitted. This study demonstrates that ancient DNA identifications of archaeological assemblages can complement and expand perspective on modern day fisheries conservation and management in this National Park Reserve and First Nations ancestral territory. PMID:29438388
Rodrigues, Antonia T; McKechnie, Iain; Yang, Dongya Y
2018-01-01
Rockfish (Sebastes spp.) are a common marine fish in nearshore and continental shelf environments in the North Pacific Ocean. They are frequently identified in coastal archaeological sites in western North America; however, the morphological similarity of rockfish species limits conventional zooarchaeological identifications to the genus level. This study applies ancient DNA analysis to 96 archaeological rockfish specimens from four sites on separate islands in an archipelago on western Vancouver Island, British Columbia, Canada. Two of the archaeological sites are located within a marine protected area specifically designed to facilitate the recovery of inshore rockfish populations; two sites are located outside this boundary and remain subject to considerable fishing pressure. Using mitochondrial 16S and control region DNA sequences, we identify at least twelve different rockfish species utilized during the past 2,500 years. Identification of rockfish at closely spaced and contemporaneously occupied sites confirms that a variety of Sebastes species were consistently exploited at each site, with more exposed areas having a higher number of species present. Identification results indicate that four of the twelve species did not occur within the conservation area boundary and, instead, were found in sites where commercial and recreational fishing continues to be permitted. This study demonstrates that ancient DNA identifications of archaeological assemblages can complement and expand perspective on modern day fisheries conservation and management in this National Park Reserve and First Nations ancestral territory.
Kaminiwa, Junko; Honda, Katsuya; Sugano, Yukiko; Yano, Shizue; Nishi, Takeki; Sekine, Yuko
2013-05-01
Polymerase chain reaction (PCR) has been rapidly established as one of the most widely used techniques in molecular biology. Because most DNA analysis is PCR-based, the analysis of unamplifiable DNA of poor quality or low quantity is nearly impossible. However, we observed that if an appropriate concentration of vanadium chloride is added to the standard reaction mixture, the enzymatic amplification of DNA could be enhanced. Using multiplex PCR with the addition of vanadium, DNA typing was possible from even trace amounts of DNA that we were unable to amplify using normal reaction conditions. This method might be an effective tool for not only criminal investigations and ancient DNA analysis, but also for nearly all fields using DNA technology. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Doerr, Daniel; Chauve, Cedric
2017-01-01
Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains. PMID:29114402
NASA Astrophysics Data System (ADS)
Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.
2013-09-01
We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.
Ancient DNA evidence supports the contribution of Di-Qiang people to the han Chinese gene pool.
Zhao, Yong-Bin; Li, Hong-Jie; Li, Sheng-Nan; Yu, Chang-Chun; Gao, Shi-Zhu; Xu, Zhi; Jin, Li; Zhu, Hong; Zhou, Hui
2011-02-01
Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di-Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y-chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto-Burman populations (descendants of Di-Qiang populations) and Han Chinese, suggesting that the Di-Qiang populations may have contributed to the Han Chinese genetic pool. 2010 Wiley-Liss, Inc.
Marr, Melissa M; Brace, Selina; Schreve, Danielle C; Barnes, Ian
2018-02-09
Establishing true phylogenetic relationships between populations is a critical consideration when sourcing individuals for translocation. This presents huge difficulties with threatened and endangered species that have become extirpated from large areas of their former range. We utilise ancient DNA (aDNA) to reconstruct the phylogenetic relationships of a keystone species which has become extinct in Britain, the Eurasian beaver Castor fiber. We sequenced seventeen 492 bp partial tRNAPro and control region sequences from Late Pleistocene and Holocene age beavers and included these in network, demographic and genealogy analyses. The mode of postglacial population expansion from refugia was investigated by employing tests of neutrality and a pairwise mismatch distribution analysis. We found evidence of a pre-Late Glacial Maximum ancestor for the Western C. fiber clade which experienced a rapid demographic expansion during the terminal Pleistocene to early Holocene period. Ancient British beavers were found to originate from the Western phylogroup but showed no phylogenetic affinity to any one modern relict population over another. Instead, we find that they formed part of a large, continuous, pan-Western European clade that harbored little internal substructure. Our study highlights the utility of aDNA in reconstructing population histories of extirpated species which has real-world implications for conservation planning.
Relethford, John H; Smith, Fred H
2018-05-01
Ancient DNA analysis has shown that present-day humans of Eurasian ancestry are more similar to Neandertals than are present-day humans of sub-Saharan African ancestry, reflecting interbreeding after modern humans first left Africa. We use craniometric data to test the hypothesis that the crania of recent modern humans show the same pattern. We computed Mahalanobis squared distances between a published Neandertal centroid based on 37 craniometric traits and each of 2,413 recent modern humans from the Howells global data set (N = 373 sub-Saharan Africans, N = 2,040 individuals of Eurasian descent). The average distance to the Neandertal centroid is significantly lower for Eurasian crania than for sub-Saharan African crania as expected from the findings of ancient DNA (p < 0.001). This result holds when examining distances for separate geographic regions of humans of Eurasian descent (Europeans, Asians, Australasians, Native Americans, and Pacific Islanders). Most of these results are also seen when examining distances partitioning size and shape variation. Our results show that the genetic difference in Neandertal ancestry seen in the DNA of present-day sub-Saharan Africans and Eurasians is also found in patterns of recent modern human craniometric variation. © 2018 Wiley Periodicals, Inc.
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
snpAD: An ancient DNA genotype caller.
Prüfer, Kay
2018-06-21
The study of ancient genomes can elucidate the evolutionary past. However, analyses are complicated by base-modifications in ancient DNA molecules that result in errors in DNA sequences. These errors are particularly common near the ends of sequences and pose a challenge for genotype calling. I describe an iterative method that estimates genotype frequencies and errors along sequences to allow for accurate genotype calling from ancient sequences. The implementation of this method, called snpAD, performs well on high-coverage ancient data, as shown by simulations and by subsampling the data of a high-coverage Neandertal genome. Although estimates for low-coverage genomes are less accurate, I am able to derive approximate estimates of heterozygosity from several low-coverage Neandertals. These estimates show that low heterozygosity, compared to modern humans, was common among Neandertals. The C ++ code of snpAD is freely available at http://bioinf.eva.mpg.de/snpAD/. Supplementary data are available at Bioinformatics online.
Lia, Verónica V; Confalonieri, Viviana A; Ratto, Norma; Hernández, Julián A. Cámara; Alzogaray, Ana M. Miante; Poggio, Lidia; Brown, Terence A
2006-01-01
Archaeological maize specimens from Andean sites of southern South America, dating from 400 to 1400 years before present, were tested for the presence of ancient DNA and three microsatellite loci were typed in the specimens that gave positive results. Genotypes were also obtained for 146 individuals corresponding to modern landraces currently cultivated in the same areas and for 21 plants from Argentinian lowland races. Sequence analysis of cloned ancient DNA products revealed a high incidence of substitutions appearing in only one clone, with transitions prevalent. In the archaeological specimens, there was no evidence of polymorphism at any one of the three microsatellite loci: each exhibited a single allelic variant, identical to the most frequent allele found in contemporary populations belonging to races Amarillo Chico, Amarillo Grande, Blanco and Altiplano. Affiliation between ancient specimens and a set of races from the Andean complex was further supported by assignment tests. The striking genetic uniformity displayed by the ancient specimens and their close relationship with the Andean complex suggest that the latter gene pool has predominated in the western regions of southern South America for at least the past 1400 years. The results support hypotheses suggesting that maize cultivation initially spread into South America via a highland route, rather than through the lowlands. PMID:17476775
Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX.
Hanghøj, Kristian; Seguin-Orlando, Andaine; Schubert, Mikkel; Madsen, Tobias; Pedersen, Jakob Skou; Willerslev, Eske; Orlando, Ludovic
2016-12-01
The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias
2013-09-24
Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.
Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias
2013-01-01
Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490
Mitochondrial DNA variation in the Viking age population of Norway.
Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika
2015-01-19
The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Mitochondrial DNA variation in the Viking age population of Norway
Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika
2015-01-01
The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. PMID:25487335
Warner, Jeffery F; Harpole, Michael G; Crerar, Lorelei D
2017-01-01
Microsatellite DNA can provide more detailed population genetic information than mitochondrial DNA which is normally used to research ancient bone. The methods detailed in this chapter can be utilized for any type of bone. However, for this example, four microsatellite loci were isolated from Steller's sea cow (Hydrodamalis gigas) using published primers for manatee and dugong microsatellites. The primers DduC05 (Broderick et al., Mol Ecol Notes 6:1275-1277, 2007), Tmakb60, TmaSC5 (Pause et al., Mol Ecol Notes 6: 1073-1076, 2007), and TmaE11 (Garcia-Rodriguez et al., Mol Ecol 12:2161-2163, 2000) all successfully amplified microsatellites from H. gigas. The DNA samples were from bone collected on Bering or St. Lawrence Islands. DNA was analyzed using primers with the fluorescent label FAM-6. Sequenced alleles were then used to indicate a difference in the number of repeats and thus a difference in individuals. This is the first time that H. gigas microsatellite loci have been isolated. These techniques for ancient bone microsatellite analysis allow an estimate of population size for a newly discovered St. Lawrence Island sea cow population.
Verginelli, Fabio; Capelli, Cristian; Coia, Valentina; Musiani, Marco; Falchetti, Mario; Ottini, Laura; Palmirotta, Raffaele; Tagliacozzo, Antonio; De Grossi Mazzorin, Iacopo; Mariani-Costantini, Renato
2005-12-01
The question of the origins of the dog has been much debated. The dog is descended from the wolf that at the end of the last glaciation (the archaeologically hypothesized period of dog domestication) was one of the most widespread among Holarctic mammals. Scenarios provided by genetic studies range from multiple dog-founding events to a single origin in East Asia. The earliest fossil dogs, dated approximately 17-12,000 radiocarbon ((14)C) years ago (YA), were found in Europe and in the Middle East. Ancient DNA (a-DNA) evidence could contribute to the identification of dog-founder wolf populations. To gain insight into the relationships between ancient European wolves and dogs we analyzed a 262-bp mitochondrial DNA control region fragment retrieved from five prehistoric Italian canids ranging in age from approximately 15,000 to approximately 3,000 (14)C YA. These canids were compared to a worldwide sample of 547 purebred dogs and 341 wolves. The ancient sequences were highly diverse and joined the three major clades of extant dog sequences. Phylogenetic investigations highlighted relationships between the ancient sequences and geographically widespread extant dog matrilines and between the ancient sequences and extant wolf matrilines of mainly East European origin. The results provide a-DNA support for the involvement of European wolves in the origins of the three major dog clades. Genetic data also suggest multiple independent domestication events. East European wolves may still reflect the genetic variation of ancient dog-founder populations.
Characterization of Ancient DNA Supports Long-Term Survival of Haloarchaea
Lowenstein, Tim K.; Timofeeff, Michael N.; Schubert, Brian A.; Lum, J. Koji
2014-01-01
Abstract Bacteria and archaea isolated from crystals of halite 104 to 108 years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification, cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured from subsurface halite, Death Valley, California, 22,000 to 34,000 years old. We recovered 16S ribosomal DNA sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum DV427, which were previously isolated from the same halite interval. These results provide the best independent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches are sensitive to small amounts of DNA and could allow investigation of even older halites, 106 to 108 years old, from which microbial cultures have been reported. Such studies of microbial life in ancient salt are particularly important as we search for microbial signatures in similar deposits on Mars and elsewhere in the Solar System. Key Words: Ancient DNA—Halite—Haloarchaea—Long-term survival. Astrobiology 14, 553–560. PMID:24977469
Tamil merchant in ancient Mesopotamia.
Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping
2014-01-01
Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.
West, Catherine; Hofman, Courtney A; Ebbert, Steve; Martin, John; Shirazi, Sabrina; Dunning, Samantha; Maldonado, Jesus E
2017-10-01
The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because it affects vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers; however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska, challenge this timeline and suggest they colonized the islands long ago. We used 3 lines of evidence to address this problem: direct radiocarbon dating of archaeological squirrel remains; evidence of prehistoric human use of squirrels; and ancient DNA analysis of dated squirrel remains. Chirikof squirrels dated to at least 2000 years ago, and cut marks on squirrel bones suggested prehistoric use by people. Ancient squirrels also shared a mitochondrial haplotype with modern Chirikof squirrels. These results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. Thus, it appears ground squirrels are not a recent, human-mediated introduction and may have colonized the island via a natural dispersal event or an ancient human translocation. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
The study of human Y chromosome variation through ancient DNA.
Kivisild, Toomas
2017-05-01
High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.
Rapid quantification and sex determination of forensic evidence materials.
Andréasson, Hanna; Allen, Marie
2003-11-01
DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.
A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia.
Kim, Kijeong; Brenner, Charles H; Mair, Victor H; Lee, Kwang-Ho; Kim, Jae-Hyun; Gelegdorj, Eregzen; Batbold, Natsag; Song, Yi-Chung; Yun, Hyeung-Won; Chang, Eun-Jeong; Lkhagvasuren, Gavaachimed; Bazarragchaa, Munkhtsetseg; Park, Ae-Ja; Lim, Inja; Hong, Yun-Pyo; Kim, Wonyong; Chung, Sang-In; Kim, Dae-Jin; Chung, Yoon-Hee; Kim, Sung-Su; Lee, Won-Bok; Kim, Kyung-Yong
2010-07-01
We analyzed mitochondrial DNA (mtDNA), Y-chromosome single nucleotide polymorphisms (Y-SNP), and autosomal short tandem repeats (STR) of three skeletons found in a 2,000-year-old Xiongnu elite cemetery in Duurlig Nars of Northeast Mongolia. This study is one of the first reports of the detailed genetic analysis of ancient human remains using the three types of genetic markers. The DNA analyses revealed that one subject was an ancient male skeleton with maternal U2e1 and paternal R1a1 haplogroups. This is the first genetic evidence that a male of distinctive Indo-European lineages (R1a1) was present in the Xiongnu of Mongolia. This might indicate an Indo-European migration into Northeast Asia 2,000 years ago. Other specimens are a female with mtDNA haplogroup D4 and a male with Y-SNP haplogroup C3 and mtDNA haplogroup D4. Those haplogroups are common in Northeast Asia. There was no close kinship among them. The genetic evidence of U2e1 and R1a1 may help to clarify the migration patterns of Indo-Europeans and ancient East-West contacts of the Xiongnu Empire. Artifacts in the tombs suggested that the Xiongnu had a system of the social stratification. The West Eurasian male might show the racial tolerance of the Xiongnu Empire and some insight into the Xiongnu society. (c) 2010 Wiley-Liss, Inc.
Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.
Müller, Romy; Roberts, Charlotte A; Brown, Terence A
2014-04-22
The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.
Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M
1995-12-01
Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.
Paffetti, Donatella; Vettori, Cristina; Caramelli, David; Vernesi, Cristiano; Lari, Martina; Paganelli, Arturo; Paule, Ladislav; Giannini, Raffaello
2007-01-01
Background Phylogeographic analyses on the Western Euroasiatic Fagus taxa (F. orientalis, F. sylvatica, F. taurica and F. moesiaca) is available, however, the subdivision of Fagus spp. is unresolved and there is no consensus on the phylogeny and on the identification (both with morphological than molecular markers) of Fagus Eurasiatic taxa. For the first time molecular analyses of ancient pollen, dated at least 45,000 years ago, were used in combination with the phylogeny analysis on current species, to identify the Fagus spp. present during the Last Interglacial period in Italy. In this work we aim at testing if the trnL-trnF chloroplast DNA (cpDNA) region, that has been previously proved efficient in discriminating different Quercus taxa, can be employed in distinguishing the Fagus species and in identifying the ancient pollen. Results 86 populations from 4 Western Euroasistic taxa were sampled, and sequenced for the trnL-trnF region to verify the efficiency of this cpDNA region in identifying the Fagus spp.. Furthermore, Fagus crenata (2 populations), Fagus grandifolia (2 populations), Fagus japonica, Fagus hayatae, Quercus species and Castanea species were analysed to better resolve the phylogenetic inference. Our results show that this cpDNA region harbour some informative sites that allow to infer relationships among the species within the Fagaceae family. In particular, few specific and fixed mutations were able to discriminate and identify all the different Fagus species. Considering a short fragment of 176 base pairs within the trnL intron, 2 transversions were found able in distinguishing the F. orientalis complex taxa (F. orientalis, F. taurica and F. moesiaca) from the remaining Fagus spp. (F. sylvatica, F. japonica, F. hayataea, F. crenata and F. grandifolia). This permits to analyse this fragment also in ancient samples, where DNA is usually highly degraded. The sequences data indicate that the DNA recovered from ancient pollen belongs to the F. orientalis complex since it displays the informative sites characteristic of this complex. Conclusion The ancient DNA sequences demonstrate for the first time that, in contrast to current knowledge based on palynological and macrofossil data, the F. orientalis complex was already present during the Tyrrhenian period in what is now the Venice lagoon (Italy). This is a new and important insight considering that nowadays West Europe is not the natural area of Fagus orientalis complex, and up to now nobody has hypothesized the presence during the Last Interglacial period of F. orientalis complex in Italy. PMID:17767734
Moraga, Mauricio; Santoro, Calogero M; Standen, Vivien G; Carvallo, Pilar; Rothhammer, Francisco
2005-06-01
Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D tended to cluster together with nonclassical lineages. 2004 Wiley-Liss, Inc.
Relatively well preserved DNA is present in the crystal aggregates of fossil bones
Salamon, Michal; Tuross, Noreen; Arensburg, Baruch; Weiner, Steve
2005-01-01
DNA from fossil human bones could provide invaluable information about population migrations, genetic relations between different groups and the spread of diseases. The use of ancient DNA from bones to study the genetics of past populations is, however, very often compromised by the altered and degraded state of preservation of the extracted material. The universally observed postmortem degradation, together with the real possibility of contamination with modern human DNA, makes the acquisition of reliable data, from humans in particular, very difficult. We demonstrate that relatively well preserved DNA is occluded within clusters of intergrown bone crystals that are resistant to disaggregation by the strong oxidant NaOCl. We obtained reproducible authentic sequences from both modern and ancient animal bones, including humans, from DNA extracts of crystal aggregates. The treatment with NaOCl also minimizes the possibility of modern DNA contamination. We thus demonstrate the presence of a privileged niche within fossil bone, which contains DNA in a better state of preservation than the DNA present in the total bone. This counterintuitive approach to extracting relatively well preserved DNA from bones significantly improves the chances of obtaining authentic ancient DNA sequences, especially from human bones. PMID:16162675
Rodrigues, Antonia T.; Theodor, Jessica M.; Kooyman, Brian P.; Yang, Dongya Y.; Speller, Camilla F.
2017-01-01
Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study. PMID:28817644
Barrón-Ortiz, Christina I; Rodrigues, Antonia T; Theodor, Jessica M; Kooyman, Brian P; Yang, Dongya Y; Speller, Camilla F
2017-01-01
Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study.
Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).
Brouchkov, Anatoli; Kabilov, Marsel; Filippova, Svetlana; Baturina, Olga; Rogov, Victor; Galchenko, Valery; Mulyukin, Andrey; Fursova, Oksana; Pogorelko, Gennady
2017-12-15
Permanently frozen (approx. 3.5Ma) alluvial Neogene sediments exposed in the Aldan river valley at the Mammoth Mountain (Eastern Siberia) are unique, ancient, and poorly studied permafrost environments. So far, the structure of the indigenous bacterial community has remained unknown. Use of 16S metagenomic analysis with total DNA isolation using DNA Spin Kit for Soil (MO-Bio) and QIAamp DNA Stool Mini Kit (Qiagen) has revealed the major and minor bacterial lineages in the permafrost alluvium sediments. In sum, 61 Operational Taxonomic Units (OTUs) with 31,239 reads (Qiagen kit) and 15,404 reads (Mo-Bio kit) could be assigned to the known taxa. Only three phyla, Bacteroidetes, Proteobacteria and Firmicutes, comprised >5% of the OTUs abundance and accounted for 99% of the total reads. OTUs pertaining to the top families (Chitinophagaceae, Caulobacteraceae, Sphingomonadaceae, Bradyrhizobiaceae, Halomonadaceae) held >90% of reads. The abundance of Actinobacteria was less (0.7%), whereas members of other phyla (Deinococcus-Thermus, Cyanobacteria/Chloroplast, Fusobacteria, and Acidobacteria) constituted a minor fraction of reads. The bacterial community in the studied ancient alluvium differs from other permafrost sediments, mainly by predominance of Bacteroidetes (>52%). The diversity of this preserved bacterial community has the potential to cause effects unknown if prompted to thaw and spread with changing climate. Therefore, this study elicits further reason to study how reintroduction of these ancient bacteria could affect the surrounding ecosystem, including current bacterial species. Copyright © 2017 Elsevier B.V. All rights reserved.
Mitochondrial DNA Variation in Southeastern Pre-Columbian Canids.
Brzeski, Kristin E; DeBiasse, Melissa B; Rabon, David R; Chamberlain, Michael J; Taylor, Sabrina S
2016-05-01
The taxonomic status of the red wolf (Canis rufus) is heavily debated, but could be clarified by examining historic specimens from the southeastern United States. We analyzed mitochondrial DNA (mtDNA) from 3 ancient (350-1900 year olds) putative wolf samples excavated from middens and sinkholes within the historic red wolf range. We detected 3 unique mtDNA haplotypes, which grouped with the coyote mtDNA clade, suggesting that the canids inhabiting southeastern North America prior to human colonization from Europe were either coyotes, which would vastly expand historic coyote distributions, an ancient coyote-wolf hybrid, or a North American evolved red wolf lineage related to coyotes. Should the red wolf prove to be a distinct species, our results support the idea of either an ancient hybrid origin for red wolves or a shared common ancestor between coyotes and red wolves. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mitochondrial DNA Variation in Southeastern Pre-Columbian Canids
DeBiasse, Melissa B.; Rabon, David R.; Chamberlain, Michael J.; Taylor, Sabrina S.
2016-01-01
The taxonomic status of the red wolf (Canis rufus) is heavily debated, but could be clarified by examining historic specimens from the southeastern United States. We analyzed mitochondrial DNA (mtDNA) from 3 ancient (350–1900 year olds) putative wolf samples excavated from middens and sinkholes within the historic red wolf range. We detected 3 unique mtDNA haplotypes, which grouped with the coyote mtDNA clade, suggesting that the canids inhabiting southeastern North America prior to human colonization from Europe were either coyotes, which would vastly expand historic coyote distributions, an ancient coyote–wolf hybrid, or a North American evolved red wolf lineage related to coyotes. Should the red wolf prove to be a distinct species, our results support the idea of either an ancient hybrid origin for red wolves or a shared common ancestor between coyotes and red wolves. PMID:26774058
Insights into Modern Human Prehistory Using Ancient Genomes.
Yang, Melinda A; Fu, Qiaomei
2018-03-01
The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ancient DNA: Saber-Toothed Cats Are the Same Beasts After All.
Meachen, Julie A
2017-11-06
Ancient DNA from the saber-toothed cat Homotherium reveals that the late Pleistocene species from Europe and North America were the same. Homotherium turns out to be only distantly related to the well-known saber-toothed Smilodon. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike
2017-02-01
Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.
Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido
2008-01-01
Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960
Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin.
Di Lorenzo, Piera; Lancioni, Hovirag; Ceccobelli, Simone; Colli, Licia; Cardinali, Irene; Karsli, Taki; Capodiferro, Marco Rosario; Sahin, Emine; Ferretti, Luca; Ajmone Marsan, Paolo; Sarti, Francesca Maria; Lasagna, Emiliano; Panella, Francesco; Achilli, Alessandro
2018-01-01
Over the past 15 years, 300 out of 6000 breeds of all farm animal species identified by the Food and Agriculture Organization of the United Nations (FAO) have gone extinct. Among cattle, many Podolian breeds are seriously endangered in various European areas. Podolian cattle include a group of very ancient European breeds, phenotypically close to the aurochs ancestors (Bos primigenius). The aim of the present study was to assess the genetic diversity of Podolian breeds and to reconstruct their origin. The mitochondrial DNA (mtDNA) control-regions of 18 Podolian breeds have been phylogenetically assessed. Nine non-Podolian breeds have been also included for comparison. The overall analysis clearly highlights some peculiarities in the mtDNA gene pool of some Podolian breeds. In particular, a principal component analysis point to a genetic proximity between five breeds (Chianina, Marchigiana, Maremmana, Podolica Italiana and Romagnola) reared in Central Italy and the Turkish Grey. We here propose the suggestive hypothesis of a dual ancestral contribution to the present gene pool of Podolian breeds, one deriving from Eastern European cattle; the other arising from the arrival of Middle Eastern cattle into Central Italy through a different route, perhaps by sea, ferried by Etruscan boats. The historical migration of Podolian cattle from North Eastern Europe towards Italy has not cancelled the mtDNA footprints of this previous ancient migration.
Watanobe, Takuma; Ishiguro, Naotaka; Nakano, Masuo; Takamiya, Hiroto; Matsui, Akira; Hongo, Hitomi
2002-08-01
Ancient DNAs of Sus scrofa specimens excavated from archaeological sites on the Okinawa islands were examined to clarify the genetic relationships among prehistoric Sus scrofa, modern wild boars and domestic pigs inhabiting the Ryukyu archipelago, the Japanese islands, and the Asian continent. We extracted remain DNA from 161 bone specimens excavated from 12 archaeological sites on the Okinawa islands and successfully amplified mitochondrial DNA control region fragments from 33 of 161 specimens. Pairwise difference between prehistoric and modern S. scrofa nucleotide sequences showed that haplotypes of the East Asian domestic pig lineage were found from archaeological specimens together with Ryukyu wild boars native to the Ryukyu archipelago. Phylogenetic analysis of 14 ancient sequences (11 haplotypes; 574 bp) indicated that S. scrofa specimens from two Yayoi-Heian sites (Kitahara and Ara shellmiddens) and two Recent Times sites (Wakuta Kiln and Kiyuna sites) are grouped with modern East Asian domestic pigs. Sus scrofa specimens from Shimizu shellmidden (Yayoi-Heian Period) were very closely related to modern Sus scrofa riukiuanus but had a unique nucleotide insertion, indicating that the population is genetically distinct from the lineage of modern Ryukyu wild boars. This genetic evidence suggests that domestic pigs from the Asian continent were introduced to the Okinawa islands in the early Yayoi-Heian period (1700-2000 BP), or earlier.
Unravelling migrations in the steppe: mitochondrial DNA sequences from ancient central Asians.
Lalueza-Fox, C.; Sampietro, M. L.; Gilbert, M. T. P.; Castri, L.; Facchini, F.; Pettener, D.; Bertranpetit, J.
2004-01-01
This study helps to clarify the debate on the Western and Eastern genetic influences in Central Asia. Thirty-six skeletal remains from Kazakhstan (Central Asia), excavated from different sites dating between the fifteenth century BC to the fifth century AD, have been analysed for the hypervariable control region (HVR-I) and haplogroup diagnostic single nucleotide polymorphisms (SNPs) of the mitochondrial DNA genome. Standard authentication criteria for ancient DNA studies, including multiple extractions, cloning of PCR products and independent replication, have been followed. The distribution of east and west Eurasian lineages through time in the region is concordant with the available archaeological information: prior to the thirteenth-seventh century BC, all Kazakh samples belong to European lineages; while later an arrival of east Eurasian sequences that coexisted with the previous west Eurasian genetic substratum can be detected. The presence of an ancient genetic substratum of European origin in West Asia may be related to the discovery of ancient mummies with European features in Xinjiang and to the existence of an extinct Indo-European language, Tocharian. This study demonstrates the usefulness of the ancient DNA in unravelling complex patterns of past human migrations so as to help decipher the origin of present-day admixed populations. PMID:15255049
Curiously modern DNA for a "250 million-year-old" bacterium.
Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E
2002-01-01
Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.
Genetic Diversity among Ancient Nordic Populations
Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen
2010-01-01
Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597
Genome data from a sixteenth century pig illuminate modern breed relationships
Ramírez, O; Burgos-Paz, W; Casas, E; Ballester, M; Bianco, E; Olalde, I; Santpere, G; Novella, V; Gut, M; Lalueza-Fox, C; Saña, M; Pérez-Enciso, M
2015-01-01
Ancient DNA (aDNA) provides direct evidence of historical events that have modeled the genome of modern individuals. In livestock, resolving the differences between the effects of initial domestication and of subsequent modern breeding is not straight forward without aDNA data. Here, we have obtained shotgun genome sequence data from a sixteenth century pig from Northeastern Spain (Montsoriu castle), the ancient pig was obtained from an extremely well-preserved and diverse assemblage. In addition, we provide the sequence of three new modern genomes from an Iberian pig, Spanish wild boar and a Guatemalan Creole pig. Comparison with both mitochondrial and autosomal genome data shows that the ancient pig is closely related to extant Iberian pigs and to European wild boar. Although the ancient sample was clearly domestic, admixture with wild boar also occurred, according to the D-statistics. The close relationship between Iberian, European wild boar and the ancient pig confirms that Asian introgression in modern Iberian pigs has not existed or has been negligible. In contrast, the Guatemalan Creole pig clusters apart from the Iberian pig genome, likely due to introgression from international breeds. PMID:25204303
Fernández, Eva; Pérez-Pérez, Alejandro; Gamba, Cristina; Prats, Eva; Cuesta, Pedro; Anfruns, Josep; Molist, Miquel; Arroyo-Pardo, Eduardo; Turbón, Daniel
2014-06-01
The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja'de El Mughara dating between 8,700-6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete seem to suggest that the Neolithic was first introduced into Europe through pioneer seafaring colonization.
Fernández, Eva; Pérez-Pérez, Alejandro; Gamba, Cristina; Prats, Eva; Cuesta, Pedro; Anfruns, Josep; Molist, Miquel; Arroyo-Pardo, Eduardo; Turbón, Daniel
2014-01-01
The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja'de El Mughara dating between 8,700–6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete seem to suggest that the Neolithic was first introduced into Europe through pioneer seafaring colonization. PMID:24901650
Neolithic and medieval virus genomes reveal complex evolution of hepatitis B
Key, Felix M; Kühnert, Denise; Bosse, Esther; Immel, Alexander; Rinne, Christoph; Kornell, Sabin-Christin; Yepes, Diego; Franzenburg, Sören; Heyne, Henrike O; Meier, Thomas; Lösch, Sandra; Meller, Harald; Friederich, Susanne; Nicklisch, Nicole; Alt, Kurt W; Schreiber, Stefan; Tholey, Andreas; Herbig, Alexander; Nebel, Almut
2018-01-01
The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genome by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results demonstrated that HBV has circulated in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. The ancient viruses appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses. PMID:29745896
Kimura, Birgitta; Marshall, Fiona B; Chen, Shanyuan; Rosenbom, Sónia; Moehlman, Patricia D; Tuross, Noreen; Sabin, Richard C; Peters, Joris; Barich, Barbara; Yohannes, Hagos; Kebede, Fanuel; Teclai, Redae; Beja-Pereira, Albano; Mulligan, Connie J
2011-01-07
Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.
Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B.
Krause-Kyora, Ben; Susat, Julian; Key, Felix M; Kühnert, Denise; Bosse, Esther; Immel, Alexander; Rinne, Christoph; Kornell, Sabin-Christin; Yepes, Diego; Franzenburg, Sören; Heyne, Henrike O; Meier, Thomas; Lösch, Sandra; Meller, Harald; Friederich, Susanne; Nicklisch, Nicole; Alt, Kurt W; Schreiber, Stefan; Tholey, Andreas; Herbig, Alexander; Nebel, Almut; Krause, Johannes
2018-05-10
The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results show that HBV circulates in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. These ancient virus forms appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses. © 2018, Krause-Kyora et al.
Guimaraes, S; Pruvost, M; Daligault, J; Stoetzel, E; Bennett, E A; Côté, N M-L; Nicolas, V; Lalis, A; Denys, C; Geigl, E-M; Grange, T
2017-05-01
We present a cost-effective metabarcoding approach, aMPlex Torrent, which relies on an improved multiplex PCR adapted to highly degraded DNA, combining barcoding and next-generation sequencing to simultaneously analyse many heterogeneous samples. We demonstrate the strength of these improvements by generating a phylochronology through the genotyping of ancient rodent remains from a Moroccan cave whose stratigraphy covers the last 120 000 years. Rodents are important for epidemiology, agronomy and ecological investigations and can act as bioindicators for human- and/or climate-induced environmental changes. Efficient and reliable genotyping of ancient rodent remains has the potential to deliver valuable phylogenetic and paleoecological information. The analysis of multiple ancient skeletal remains of very small size with poor DNA preservation, however, requires a sensitive high-throughput method to generate sufficient data. We show this approach to be particularly adapted at accessing this otherwise difficult taxonomic and genetic resource. As a highly scalable, lower cost and less labour-intensive alternative to targeted sequence capture approaches, we propose the aMPlex Torrent strategy to be a useful tool for the genetic analysis of multiple degraded samples in studies involving ecology, archaeology, conservation and evolutionary biology. © 2016 John Wiley & Sons Ltd.
Star, Bastiaan; Nederbragt, Alexander J.; Hansen, Marianne H. S.; Skage, Morten; Gilfillan, Gregor D.; Bradbury, Ian R.; Pampoulie, Christophe; Stenseth, Nils Chr; Jakobsen, Kjetill S.; Jentoft, Sissel
2014-01-01
Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5′ and 3′-ends of sequencing reads. The palindromic sequences themselves have specific properties – the bases at the 5′-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3′-end. The terminal 3′ bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3′-end of DNA strands, with the 5′-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias. PMID:24608104
Mendum, Tom A; Schuenemann, Verena J; Roffey, Simon; Taylor, G Michael; Wu, Huihai; Singh, Pushpendra; Tucker, Katie; Hinds, Jason; Cole, Stewart T; Kierzek, Andrzej M; Nieselt, Kay; Krause, Johannes; Stewart, Graham R
2014-04-08
Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century.
NASA Astrophysics Data System (ADS)
Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.
2015-12-01
Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.
Meiri, Meirav; Huchon, Dorothée; Bar-Oz, Guy; Boaretto, Elisabetta; Horwitz, Liora Kolska; Maeir, Aren M.; Sapir-Hen, Lidar; Larson, Greger; Weiner, Steve; Finkelstein, Israel
2013-01-01
Near Eastern wild boars possess a characteristic DNA signature. Unexpectedly, wild boars from Israel have the DNA sequences of European wild boars and domestic pigs. To understand how this anomaly evolved, we sequenced DNA from ancient and modern pigs from Israel. Pigs from Late Bronze Age (until ca. 1150 BCE) in Israel shared haplotypes of modern and ancient Near Eastern pigs. European haplotypes became dominant only during the Iron Age (ca. 900 BCE). This raises the possibility that European pigs were brought to the region by the Sea Peoples who migrated to the Levant at that time. Then, a complete genetic turnover took place, most likely because of repeated admixture between local and introduced European domestic pigs that went feral. Severe population bottlenecks likely accelerated this process. Introductions by humans have strongly affected the phylogeography of wild animals, and interpretations of phylogeography based on modern DNA alone should be taken with caution. PMID:24186332
NASA Astrophysics Data System (ADS)
Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.
2007-12-01
Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.
Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.
Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom
2017-06-01
The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mak, Sarah Siu Tze; Gopalakrishnan, Shyam; Carøe, Christian; Geng, Chunyu; Liu, Shanlin; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Zhang, Wenwei; Fu, Shujin; Vieira, Filipe G; Germonpré, Mietje; Bocherens, Hervé; Fedorov, Sergey; Petersen, Bent; Sicheritz-Pontén, Thomas; Marques-Bonet, Tomas; Zhang, Guojie; Jiang, Hui; Gilbert, M Thomas P
2017-01-01
Abstract Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA. PMID:28854615
Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens.
Weiß, Clemens L; Schuenemann, Verena J; Devos, Jane; Shirsekar, Gautam; Reiter, Ella; Gould, Billie A; Stinchcombe, John R; Krause, Johannes; Burbano, Hernán A
2016-06-01
Herbaria archive a record of changes of worldwide plant biodiversity harbouring millions of specimens that contain DNA suitable for genome sequencing. To profit from this resource, it is fundamental to understand in detail the process of DNA degradation in herbarium specimens. We investigated patterns of DNA fragmentation and nucleotide misincorporation by analysing 86 herbarium samples spanning the last 300 years using Illumina shotgun sequencing. We found an exponential decay relationship between DNA fragmentation and time, and estimated a per nucleotide fragmentation rate of 1.66 × 10(-4) per year, which is six times faster than the rate estimated for ancient bones. Additionally, we found that strand breaks occur specially before purines, and that depurination-driven DNA breakage occurs constantly through time and can to a great extent explain decreasing fragment length over time. Similar to what has been found analysing ancient DNA from bones, we found a strong correlation between the deamination-driven accumulation of cytosine to thymine substitutions and time, which reinforces the importance of substitution patterns to authenticate the ancient/historical nature of DNA fragments. Accurate estimations of DNA degradation through time will allow informed decisions about laboratory and computational procedures to take advantage of the vast collection of worldwide herbarium specimens.
Biological chemistry as a foundation of DNA genealogy: the emergence of "molecular history".
Klyosov, A A
2011-05-01
This paper presents the basis of DNA genealogy, a new field of science, which is currently emerging as an unusual blend of biochemistry, history, linguistics, and chemical kinetics. The methodology of the new approach is comprised of chemical (biological) kinetics applied to a pattern of mutations in non-recombinant fragments of DNA (Y chromosome and mtDNA, the latter not being considered in this overview). The goal of the analysis is to translate DNA mutation patterns into time spans to the most recent common ancestors of a given population or tribe and to the dating of ancient migration routes. To illustrate this approach, time spans to the common ancestors are calculated for ethnic Russians, that is Eastern Slavs (R1a1 tribe), Western Slavs (I1 and I2 tribes), and Northern (or Uralic) Slavs (N1c tribe), which were found to live around 4600 years before present (R1a1), 3650 ybp (I1), 3000 and 10,500 ybp (I2, two principal DNA lineages), and 3525 ybp (N1c) (confidence intervals are given in the main text). The data were compared with the respective dates for the nearest common ancestor of the R1a1 "Indo-European" population in India, who lived 4050 years before present, whose descendants represent the majority of the upper castes in India today (up to 72%). Furthermore, it was found that the haplotypes of ethnic Russians of the R1a1 haplogroup (up to 62% of the population in the Russian Federation) and those of the R1a1 Indians (more than 100 million today) are practically identical to each other, up to 67-marker haplotypes. This essentially solves a 200-year-old mystery of who were the Aryans who arrived in India around 3500 years before the present. Haplotypes and time spans to the ancient common ancestors were also compared for the ethnic Russians of haplogroups I1 and I2, on one hand, and the respective I1 and I2 populations in Eastern and Western Europe and Scandinavia, on the other. It is suggested that the approach described in this overview lays the foundation for "molecular history", in which the principal tool is high-technology analysis of DNA molecules of both our contemporaries and excavated ancient DNA samples, along with their biological kinetics.
Garrigos, Yareli Esquer; Hugueny, Bernard; Koerner, Kellie; Ibañez, Carla; Bonillo, Celine; Pruvost, Patrice; Causse, Romain; Cruaud, Corinne; Gaubert, Philippe
2013-01-01
Specimens stored in museum collections represent a crucial source of morphological and genetic information, notably for taxonomically problematic groups and extinct taxa. Although fluid-preserved specimens of groups such as teleosts may constitute an almost infinite source of DNA, few ancient DNA protocols have been applied to such material. In this study, we describe a non-invasive Guanidine-based (GuSCN) ancient DNA extraction protocol adapted to fluid-preserved specimens that we use to re-assess the systematics of the genus Orestias (Cyprinodontidae: Teleostei). The latter regroups pupfishes endemic to the inter-Andean basin that have been considered as a 'species flock', and for which the morphology-based taxonomic delimitations have been hotly debated. We extracted DNA from the type specimens of Orestias kept at the Muséum National d'Histoire Naturelle of Paris, France, including the extinct species O. cuvieri. We then built the first molecular (control region [CR] and rhodopsin [RH]) phylogeny including historical and recently collected representatives of all the Orestias complexes as recognized by Parenti (1984a): agassizii, cuvieri, gilsoni and mulleri. Our ancient DNA extraction protocol was validated after PCR amplification through an approach based on fragment-by-fragment chimera detection. After optimization, we were able to amplify < 200 bp fragments from both mitochondrial and nuclear DNA (CR and RH, respectively) from probably formalin-fixed type specimens bathed entirely in the extraction fluid. Most of the individuals exhibited few modifications of their external structures after GuSCN bath. Our approach combining type material and 'fresh' specimens allowed us to taxonomically delineate four clades recovered from the well-resolved CR tree into four redefined complexes: agassizii (sensu stricto, i.e. excluding luteus-like species), luteus, cuvieri and gilsoni. The mulleri complex is polyphyletic. Our phylogenetic analyses based on both mitochondrial and nuclear DNA revealed a main, deep dichotomy within the genus Orestias, separating the agassizii complex from a clade grouped under shallow dichotomies as (luteus, (cuvieri, gilsoni)). This 'deep and shallow' diversification pattern could fit within a scenario of ancient divergence between the agassizii complex and the rest of Orestias, followed by a recent diversification or adaptive radiation within each complex during the Pleistocene, in- and outside the Lake Titicaca. We could not recover the reciprocal monophyly of any of the 15 species or morphotypes that were considered in our analyses, possibly due to incomplete lineage sorting and/or hybridization events. As a consequence, our results starkly question the delineation of a series of diagnostic characters listed in the literature for Orestias. Although not included in our phylogenetic analysis, the syntype of O. jussiei could not be assigned to the agassizii complex as newly defined. The CR sequence of the extinct O. cuvieri was recovered within the cuvieri clade (same haplotype as one representative of O. pentlandii), so the mtDNA of the former species might still be represented in the wild.
Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans
Slatkin, Montgomery
2016-01-01
When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965
Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch
Chen, Li-Fang; Zhou, Yanchen; Shapiro, Beth; Stiller, Mathias; Varsani, Arvind; Kondov, Nikola O.; Wong, Walt; Deng, Xutao; Andrews, Thomas D.; Moorman, Brian J.; Meulendyk, Thomas; MacKay, Glen; Gilbertson, Robert L.; Delwart, Eric
2014-01-01
Viruses preserved in ancient materials provide snapshots of past viral diversity and a means to trace viral evolution through time. Here, we use a metagenomics approach to identify filterable and nuclease-resistant nucleic acids preserved in 700-y-old caribou feces frozen in a permanent ice patch. We were able to recover and characterize two viruses in replicated experiments performed in two different laboratories: a small circular DNA viral genome (ancient caribou feces associated virus, or aCFV) and a partial RNA viral genome (Ancient Northwest Territories cripavirus, or aNCV). Phylogenetic analysis identifies aCFV as distantly related to the plant-infecting geminiviruses and the fungi-infecting Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 and aNCV as within the insect-infecting Cripavirus genus. We hypothesize that these viruses originate from plant material ingested by caribou or from flying insects and that their preservation can be attributed to protection within viral capsids maintained at cold temperatures. To investigate the tropism of aCFV, we used the geminiviral reverse genetic system and introduced a multimeric clone into the laboratory model plant Nicotiana benthamiana. Evidence for infectivity came from the detection of viral DNA in newly emerged leaves and the precise excision of the viral genome from the multimeric clones in inoculated leaves. Our findings indicate that viral genomes may in some circumstances be protected from degradation for centuries. PMID:25349412
Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang
2013-01-01
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans. PMID:23459685
USDA-ARS?s Scientific Manuscript database
Recent advances in genome analysis and biochemical pathway mapping have advanced our understanding of how biological systems have evolved over time. Protein and DNA marker comparisons suggest that several of these systems are both ancient in origin but highly conserved into today’s evolved species. ...
Letter to the editor: Genetics and the archaeology of ancient Israel.
Brody, Aaron J; King, Roy J
2013-12-01
This letter is a call for DNA testing on ancient skeletal materials from the southern Levant to begin a database of genetic information of the inhabitants of this crossroads region. In this region, during the Iron I period traditionally dated to circa 1200-1000 BCE, archaeologists and biblical historians view the earliest presence of a group that called itself Israel. They lived in villages in the varied hill countries of the region, contemporary with urban settlements in the coastal plains, inland valleys, and central hill country attributed to varied indigenous groups collectively called Canaanite. The remnants of Egyptian imperial presence in the region lasted until around 1150 BCE, postdating the arrival of an immigrant group from the Aegean called the Philistines circa 1175 BCE. The period that follows in the southern Levant is marked by the development of territorial states throughout the region, circa 1000-800 BCE. These patrimonial kingdoms, including the United Kingdom of Israel and the divided kingdoms of northern Israel and Judah, coalesced varied peoples under central leadership and newly founded administrative and religious bureaucracies. Ancient DNA testing will give us a further refined understanding of the individuals who peopled the region of the southern Levant throughout its varied archaeological and historic periods and provide scientific data that will support, refute, or nuance our sociohistoric reconstruction of ancient group identities. These social identities may or may not map onto genetic data, but without sampling of ancient DNA we may never know. A database of ancient DNA will also allow for comparisons with modern DNA samples collected throughout the greater region and the Mediterranean littoral, giving a more robust understanding of the long historical trajectories of regional human genetics and the genetics of varied ancestral groups of today's Jewish populations and other cultural groups in the modern Middle East and Mediterranean. Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.
Granado, José; Putelat, Olivier; Arbogast, Rose-Marie; Drucker, Dorothée; Eberhard, Anna; Schmutz, Anja; Klaefiger, Yuri; Lang, Gérard; Salzburger, Walter; Schibler, Joerg; Schlumbaum, Angela; Bocherens, Hervé
2018-01-01
In north-eastern France, red deer (Cervus elaphus L.) populations were rebuilt from a few hundred individuals, which have subsisted in remote valleys of the Vosges mountains, and to a lesser extent from individuals escaped from private enclosures; at present times, this species occupies large areas, mainly in the Vosges Mountains. In this study, we examined the population dynamics of red deer in the Vosges Mountains using ancient and contemporary mitochondrial DNA (mtDNA) from 140 samples (23 ancient + 117 modern) spanning the last 7’000 years. In addition, we reconstructed the feeding habits and the habitat of red deer since the beginning of agriculture applying isotopic analyses in order to establish a basis for current environmental management strategies. We show that past and present red deer in the Vosges Mountains belong to mtDNA haplogroup A, suggesting that they originated from the Iberian refugium after the last glacial maximum (LGM). Palaeogenetic analysis of ancient bone material revealed the presence of two distinct haplotypes with different temporal distributions. Individuals belonging to the two haplotype groups apparently occupied two different habitats over at least 7’000 years. AM6 correlates with an ecological type that feeds in densely forested mountain landscapes, while AM235 correlates with feeding in lowland landscapes, composed of a mixture of meadows and riverine, herb-rich woodlands. Our results suggest that red deer of north-eastern France was able to adapt, over the long term, to these different habitat types, possibly due to efficient ethological barriers. Modern haplotype patterns support the historical record that red deer has been exposed to strong anthropogenic influences as a major game species. PMID:29304165
Barlow, Axel; Cooper, Alan; Hou, Xin-Dong; Ji, Xue-Ping; Zhong, Bo-Jian; Liu, Hong; Flynn, Lawrence J.; Yuan, Jun-Xia; Wang, Li-Rui; Basler, Nikolas; Westbury, Michael V.; Hofreiter, Michael; Lai, Xu-Long
2018-01-01
The giant panda was widely distributed in China and south-eastern Asia during the middle to late Pleistocene, prior to its habitat becoming rapidly reduced in the Holocene. While conservation reserves have been established and population numbers of the giant panda have recently increased, the interpretation of its genetic diversity remains controversial. Previous analyses, surprisingly, have indicated relatively high levels of genetic diversity raising issues concerning the efficiency and usefulness of reintroducing individuals from captive populations. However, due to a lack of DNA data from fossil specimens, it is unknown whether genetic diversity was even higher prior to the most recent population decline. We amplified complete cytb and 12s rRNA, partial 16s rRNA and ND1, and control region sequences from the mitochondrial genomes of two Holocene panda specimens. We estimated genetic diversity and population demography by analyzing the ancient mitochondrial DNA sequences alongside those from modern giant pandas, as well as from other members of the bear family (Ursidae). Phylogenetic analyses show that one of the ancient haplotypes is sister to all sampled modern pandas and the second ancient individual is nested among the modern haplotypes, suggesting that genetic diversity may indeed have been higher earlier during the Holocene. Bayesian skyline plot analysis supports this view and indicates a slight decline in female effective population size starting around 6000 years B.P., followed by a recovery around 2000 years ago. Therefore, while the genetic diversity of the giant panda has been affected by recent habitat contraction, it still harbors substantial genetic diversity. Moreover, while its still low population numbers require continued conservation efforts, there seem to be no immediate threats from the perspective of genetic evolutionary potential. PMID:29642393
Sheng, Gui-Lian; Barlow, Axel; Cooper, Alan; Hou, Xin-Dong; Ji, Xue-Ping; Jablonski, Nina G; Zhong, Bo-Jian; Liu, Hong; Flynn, Lawrence J; Yuan, Jun-Xia; Wang, Li-Rui; Basler, Nikolas; Westbury, Michael V; Hofreiter, Michael; Lai, Xu-Long
2018-04-06
The giant panda was widely distributed in China and south-eastern Asia during the middle to late Pleistocene, prior to its habitat becoming rapidly reduced in the Holocene. While conservation reserves have been established and population numbers of the giant panda have recently increased, the interpretation of its genetic diversity remains controversial. Previous analyses, surprisingly, have indicated relatively high levels of genetic diversity raising issues concerning the efficiency and usefulness of reintroducing individuals from captive populations. However, due to a lack of DNA data from fossil specimens, it is unknown whether genetic diversity was even higher prior to the most recent population decline. We amplified complete cyt b and 12s rRNA, partial 16s rRNA and ND1 , and control region sequences from the mitochondrial genomes of two Holocene panda specimens. We estimated genetic diversity and population demography by analyzing the ancient mitochondrial DNA sequences alongside those from modern giant pandas, as well as from other members of the bear family (Ursidae). Phylogenetic analyses show that one of the ancient haplotypes is sister to all sampled modern pandas and the second ancient individual is nested among the modern haplotypes, suggesting that genetic diversity may indeed have been higher earlier during the Holocene. Bayesian skyline plot analysis supports this view and indicates a slight decline in female effective population size starting around 6000 years B.P., followed by a recovery around 2000 years ago. Therefore, while the genetic diversity of the giant panda has been affected by recent habitat contraction, it still harbors substantial genetic diversity. Moreover, while its still low population numbers require continued conservation efforts, there seem to be no immediate threats from the perspective of genetic evolutionary potential.
Lega, C; Fulgione, D; Genovese, A; Rook, L; Masseti, M; Meiri, M; Cinzia Marra, A; Carotenuto, F; Raia, P
2017-02-01
Southern Italy has a long history of human occupation and passage of different cultures since the Early Holocene. Repeated, ancient introductions of pigs in several geographic areas in Europe make it difficult to understand pig translocation and domestication in Italy. The archeozoological record may provide fundamental information on this, hence shedding light on peopling and on trading among different ancient cultures in the Mediterranean. Yet, because of the scanty nature of the fossil record, ancient remains from human-associated animals are somewhat rare. Fortunately, ancient DNA analysis as applied to domestic species proved to be a powerful tool in revealing human migrations. Herein, we analyzed 80-bp fragment of mitochondrial DNA control region from 27 Sus scrofa ancient samples retrieved from Southern Italian and Sardinian archeological sites, spanning in age from the Mesolithic to the Roman period. Our results surprisingly indicate the presence of the Near Eastern haplotype Y1 on both Italy's major islands (Sardinia and Sicily) during the Bronze Age, suggesting the seaborne transportation of domestic pigs by humans at least during 1600-1300 BC. The presence of the Italian E2 clade in domestic contexts shows that the indigenous wild boar was effectively domesticated or incorporated into domestic stocks in Southern Italy during the Bronze Age, although the E2 haplotype has never been found in modern domestic breeds. Pigs belonging to the endemic E2 clade were thus traded between the Peninsula and Sardinia by the end of the second millennium BC and this genetic signature is still detected in Sardinian feral pigs.
Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes
Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas
2014-01-01
The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089
News from the west: ancient DNA from a French megalithic burial chamber.
Deguilloux, Marie-France; Soler, Ludovic; Pemonge, Marie-Hélène; Scarre, Chris; Joussaume, Roger; Laporte, Luc
2011-01-01
Recent paleogenetic studies have confirmed that the spread of the Neolithic across Europe was neither genetically nor geographically uniform. To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR-I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long-distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices. Copyright © 2010 Wiley-Liss, Inc.
Gabbianelli, F; Gargani, M; Pariset, L; Mariotti, M; Alhaique, F; De Minicis, E; Barelli, L; Ciammetti, E; Redi, F; Valentini, A
2015-06-01
We retrieved 34 medieval ovicaprine remains, from three archaeological sites of central Italy dating to about 1000 years old, and analyzed them using mitochondrial DNA. We compared the reconstructed haplogroups with modern sheep samples from Europe and the Middle East and sequences from the literature. In modern sheep, haplogroup HA is present in countries with access to the Mediterranean and close to the domestication center, whereas it is very rare or absent in the rest of Europe. The haplogroup HB was predominant in ancient samples (90%), whereas haplogroup HA was found at 10%. Ancient haplogroups match the present distribution in modern sheep in Italy, indicating that the current proportion of HA/HB was already established in the Middle Ages and is not the result of subsequent events such as selective breeding practices. © 2015 Stichting International Foundation for Animal Genetics.
Anastasiou, Evilena; Mitchell, Piers D
2013-10-01
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Barreto Romero, María Inés; Flores Espinoza, Isabel; Cooper, Alan; Fehren-Schmitz, Lars
2016-01-01
The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650–1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region’s demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500–700 AD), Wari (Middle Horizon, 800–1000 AD) and Ychsma (Late Intermediate Period, 1000–1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast. PMID:27248693
Valverde, Guido; Barreto Romero, María Inés; Flores Espinoza, Isabel; Cooper, Alan; Fehren-Schmitz, Lars; Llamas, Bastien; Haak, Wolfgang
2016-01-01
The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region's demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.
Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin
2013-05-01
Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.
Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication
Kimura, Birgitta; Marshall, Fiona B.; Chen, Shanyuan; Rosenbom, Sónia; Moehlman, Patricia D.; Tuross, Noreen; Sabin, Richard C.; Peters, Joris; Barich, Barbara; Yohannes, Hagos; Kebede, Fanuel; Teclai, Redae; Beja-Pereira, Albano; Mulligan, Connie J.
2011-01-01
Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass. PMID:20667880
Genome-wide comparison of medieval and modern Mycobacterium leprae.
Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A; Krause-Kyora, Ben; Jäger, Günter; Bos, Kirsten I; Herbig, Alexander; Economou, Christos; Benjak, Andrej; Busso, Philippe; Nebel, Almut; Boldsen, Jesper L; Kjellström, Anna; Wu, Huihai; Stewart, Graham R; Taylor, G Michael; Bauer, Peter; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Tucker, Katie; Roffey, Simon; Sow, Samba O; Cole, Stewart T; Nieselt, Kay; Krause, Johannes
2013-07-12
Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.
Speller, Camilla F.; Burley, David V.; Woodward, Robyn P.; Yang, Dongya Y.
2013-01-01
The Columbian Exchange resulted in a widespread movement of humans, plants and animals between the Old and New Worlds. The late 15th to early 16th century transfer of cattle from the Iberian Peninsula and Canary Islands to the Caribbean laid the foundation for the development of American creole cattle (Bos taurus) breeds. Genetic analyses of modern cattle from the Americas reveal a mixed ancestry of European, African and Indian origins. Recent debate in the genetic literature centers on the ‘African’ haplogroup T1 and its subhaplogroups, alternatively tying their origins to the initial Spanish herds, and/or from subsequent movements of taurine cattle through the African slave trade. We examine this problem through ancient DNA analysis of early 16th century cattle bone from Sevilla la Nueva, the first Spanish colony in Jamaica. In spite of poor DNA preservation, both T3 and T1 haplogroups were identified in the cattle remains, confirming the presence of T1 in the earliest Spanish herds. The absence, however, of “African-derived American” haplotypes (AA/T1c1a1) in the Sevilla la Nueva sample, leaves open the origins of this sub-haplogroup in contemporary Caribbean cattle. PMID:23894505
What can ancient mummies teach us about atherosclerosis?
Wann, Samuel; Thomas, Gregory S
2014-10-01
Ancient mummies have captivated a wide variety of audiences for centuries. In order to better understand the evolution and causative features of atherosclerosis, the Horus group is applying modern scientific methods to study ancient mummies. We have used CT scanning to detect calcification in arteries as an indication of the presence of atherosclerosis, and are correlating these results with cultural and lifestyle features of various populations of ancient people as represented by their ancient mummified remains. We are also pursuing related studies of ancient DNA to define genotypes associated with atherosclerotic phenotypes. Copyright © 2014 Elsevier Inc. All rights reserved.
Cats of the Pharaohs: Genetic Comparison of Egyptian Cat Mummies to their Feline Contemporaries
Kurushima, Jennifer D.; Ikram, Salima; Knudsen, Joan; Bleiberg, Edward; Grahn, Robert A.; Lyons, Leslie A.
2012-01-01
The ancient Egyptians mummified an abundance of cats during the Late Period (664 - 332 BC). The overlapping morphology and sizes of developing wildcats and domestic cats confounds the identity of mummified cat species. Genetic analyses should support mummy identification and was conducted on two long bones and a mandible of three cats that were mummified by the ancient Egyptians. The mummy DNA was extracted in a dedicated ancient DNA laboratory at the University of California – Davis, then directly sequencing between 246 and 402 bp of the mtDNA control region from each bone. When compared to a dataset of wildcats (Felis silvestris silvestris, F. s. tristrami, and F. chaus) as well as a previously published worldwide dataset of modern domestic cat samples, including Egypt, the DNA evidence suggests the three mummies represent common contemporary domestic cat mitotypes prevalent in modern Egypt and the Middle East. Divergence estimates date the origin of the mummies’ mitotypes to between two and 7.5 thousand years prior to their mummification, likely prior to or during Egyptian Predyanstic and Early Dynastic Periods. These data are the first genetic evidence supporting that the ancient Egyptians used domesticated cats, F. s. catus, for votive mummies, and likely implies cats were domesticated prior to extensive mummification of cats. PMID:22923880
Orlando, Ludovic; Eisenmann, Véra; Reynier, Frédéric; Sondaar, Paul; Hänni, Catherine
2003-01-01
Unusual equids named hippidions inhabited South America for more than 2 MY (million years). Like many other animals they succumbed to the worldwide climatic change that occurred 10 KY (thousand years) ago and completely disappeared during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages are known to have diverged prior to 10 MY. Some equid bones from Rio Verde and Ultima Esperanza (Patagonia, Chile) dating back to the late Pleistocene period (8-13 KY) have been identified as Hippidion saldiasi, while a few teeth have been assigned to Equus. Six samples of those remains have been obtained from the Zoological Museum of Amsterdam for ancient DNA analysis to try to place Hippidion in the evolutive tree of Perissodactyla. Two samples of Hippidion and one sample of Equus yielded 241-394 bp of the mtDNA control region and 172-296 bp of the cytochrome b gene. Unexpectedly, all the sequences clustered deep inside the Equus genus, casting doubt on the initial identification of the bones. For paleontologists, one of the striking and classical diagnostic characters of Hippidion is their extremely short and massive metapodials, a probable locomotory adaptation to the Andine steep slopes. However, our DNA analysis reveals that a very Hippidion-like metapod might also have been possessed by another South American equid, i.e., Equus (Amerhippus), an interpretation supported by complementary anatomical observations. This adaptive convergence between members of the two South American equid genera may lead paleontologists to limb bone misidentification.
An algebraic hypothesis about the primeval genetic code architecture.
Sánchez, Robersy; Grau, Ricardo
2009-09-01
A plausible architecture of an ancient genetic code is derived from an extended base triplet vector space over the Galois field of the extended base alphabet {D,A,C,G,U}, where symbol D represents one or more hypothetical bases with unspecific pairings. We hypothesized that the high degeneration of a primeval genetic code with five bases and the gradual origin and improvement of a primeval DNA repair system could make possible the transition from ancient to modern genetic codes. Our results suggest that the Watson-Crick base pairing G identical with C and A=U and the non-specific base pairing of the hypothetical ancestral base D used to define the sum and product operations are enough features to determine the coding constraints of the primeval and the modern genetic code, as well as, the transition from the former to the latter. Geometrical and algebraic properties of this vector space reveal that the present codon assignment of the standard genetic code could be induced from a primeval codon assignment. Besides, the Fourier spectrum of the extended DNA genome sequences derived from the multiple sequence alignment suggests that the called period-3 property of the present coding DNA sequences could also exist in the ancient coding DNA sequences. The phylogenetic analyses achieved with metrics defined in the N-dimensional vector space (B(3))(N) of DNA sequences and with the new evolutionary model presented here also suggest that an ancient DNA coding sequence with five or more bases does not contradict the expected evolutionary history.
Gould, Billie A; León, Blanca; Buffen, Aron M; Thompson, Lonnie G
2010-09-01
Around the world, tropical glaciers and ice caps are retreating at unprecedented rates because of climate change. In at least one location, along the margin of the Quelccaya Ice Cap in southeastern Peru, ancient plant remains have been continually uncovered since 2002. We used genetic analysis to identify plants that existed at these sites during the mid-Holocene. • We examined remains between 4576 and 5222 yr old, using PCR amplification, cloning, and sequencing of a fragment of the chloroplast trnL intron. We then matched these sequences to sequences in GenBank. • We found evidence of at least five taxa characteristic of wetlands, which occur primarily at lower elevations in the region today. • A diverse community most likely existed at these locations the last time they were ice-free and thus has the potential to reestablish with time. This is the first genetic analysis of vegetation uncovered by receding glacial ice, and it may become one of many as ancient plant materials are newly uncovered in a changing climate.
Evidence of authentic DNA from Danish Viking Age skeletons untouched by humans for 1,000 years.
Melchior, Linea; Kivisild, Toomas; Lynnerup, Niels; Dissing, Jørgen
2008-05-28
Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however, pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. We avoided some of these obstacles by analyzing DNA from ten Viking Age subjects that at the time of sampling were untouched by humans for 1,000 years. We removed teeth from the subjects prior to handling by archaeologists and anthropologists using protective equipment. An additional tooth was removed after standard archaeological and anthropological handling. All pre-PCR work was carried out in a "clean- laboratory" dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained with the "unhandled" teeth and there was no indication of contamination, while the latter was the case with half of the "handled" teeth. The results allowed the unequivocal assignment of a specific haplotype to each of the subjects, all haplotypes being compatible in their character states with a phylogenetic tree drawn from present day European populations. Several of the haplotypes are either infrequent or have not been observed in modern Scandinavians. The observation of haplogroup I in the present study (<2% in modern Scandinavians) supports our previous findings of a pronounced frequency of this haplogroup in Viking and Iron Age Danes. The present work provides further evidence that retrieval of ancient human DNA is a possible task provided adequate precautions are taken and well-considered sampling is applied.
Evidence of Authentic DNA from Danish Viking Age Skeletons Untouched by Humans for 1,000 Years
Melchior, Linea; Kivisild, Toomas; Lynnerup, Niels; Dissing, Jørgen
2008-01-01
Background Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however, pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. Methodology/Principal Findings We avoided some of these obstacles by analyzing DNA from ten Viking Age subjects that at the time of sampling were untouched by humans for 1,000 years. We removed teeth from the subjects prior to handling by archaeologists and anthropologists using protective equipment. An additional tooth was removed after standard archaeological and anthropological handling. All pre-PCR work was carried out in a “clean- laboratory” dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained with the “unhandled” teeth and there was no indication of contamination, while the latter was the case with half of the “handled” teeth. The results allowed the unequivocal assignment of a specific haplotype to each of the subjects, all haplotypes being compatible in their character states with a phylogenetic tree drawn from present day European populations. Several of the haplotypes are either infrequent or have not been observed in modern Scandinavians. The observation of haplogroup I in the present study (<2% in modern Scandinavians) supports our previous findings of a pronounced frequency of this haplogroup in Viking and Iron Age Danes. Conclusion The present work provides further evidence that retrieval of ancient human DNA is a possible task provided adequate precautions are taken and well-considered sampling is applied. PMID:18509537
Feuillie, Cécile; Merheb, Maxime M.; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2014-01-01
The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage. PMID:25502338
Feuillie, Cécile; Merheb, Maxime M; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2014-01-01
The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction - based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.
History of Smallpox and Its Spread in Human Populations.
Thèves, Catherine; Crubézy, Eric; Biagini, Philippe
2016-08-01
Smallpox is considered among the most devastating of human diseases. Its spread in populations, initiated for thousands of years following a probable transmission from an animal host, was concomitant with movements of people across regions and continents, trade and wars. Literature permitted to retrace the occurrence of epidemics from ancient times to recent human history, smallpox having affected all levels of past society including famous monarchs. The disease was officially declared eradicated in 1979 following intensive vaccination campaigns.Paleomicrobiology dedicated to variola virus is restricted to few studies, most unsuccessful, involving ancient material. Only one recent approach allowed the identification of viral DNA fragments from lung tissue of a 300-year-old body excavated from permafrost in Eastern Siberia; phylogenetic analysis revealed that this ancient strain was distinct from those described during the 20th century.
An ancient protein-DNA interaction underlying metazoan sex determination.
Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J
2015-06-01
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.
An ancient protein-DNA interaction underlying metazoan sex determination
Murphy, Mark W.; Lee, John K.; Rojo, Sandra; ...
2015-05-25
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less
An ancient protein-DNA interaction underlying metazoan sex determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Mark W.; Lee, John K.; Rojo, Sandra
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less
Origins of an Unmarked Georgia Cemetery Using Ancient DNA Analysis.
Ozga, Andrew T; Tito, Raúl Y; Kemp, Brian M; Matternes, Hugh; Obregon-Tito, Alexandra; Neal, Leslie; Lewis, Cecil M
2015-04-01
Determining the origins of those buried within undocumented cemeteries is of incredible importance to historical archaeologists and, in many cases, the nearby communities. In the case of Avondale Burial Place, a cemetery in Bibb County, Georgia, in use from 1820 to 1950, all written documentation of those interred within it has been lost. Osteological and archaeological evidence alone could not describe, with confidence, the ancestral origins of the 101 individuals buried there. In the present study, we used ancient DNA extraction methods in well-preserved skeletal fragments from 20 individuals buried in Avondale Burial Place to investigate the origins of the cemetery. Through examination of hypervariable region I (HVR1) in the mitochondrial genome (mtDNA), we determined haplotypes for all 20 of these individuals. Eighteen of these individuals belong to the L or U haplogroups, suggesting that Avondale Burial Place was most likely used primarily as a resting place for African Americans. After the surrounding Bibb County community expressed interest in investigating potential ancestral relationships to those within the cemetery, eight potential descendants provided saliva to obtain mtDNA HVR1 information. Three individuals from Avondale Burial Place matched three individuals with oral history ties to the cemetery. Using the online tool EMPOP, we calculated the likelihood of these exact matches occurring by chance alone (< 1%). The present findings exhibit the importance of genetic analysis of cemetery origins when archaeological and osteological data are inconclusive for estimating ancestry of anonymous historical individuals.
Foote, Andrew D; Hofreiter, Michael; Morin, Phillip A
2012-01-20
Marine mammals have long generation times and broad, difficult to sample distributions, which makes inferring evolutionary and demographic changes using field studies of extant populations challenging. However, molecular analyses from sub-fossil or historical materials of marine mammals such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an opportunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes in distribution and range of marine mammal species; we review these studies and discuss the limitations of such 'presence only' studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also discuss studies reconstructing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating for the marine reservoir effect when radiocarbon-dating such wide-ranging species. Copyright © 2011 Elsevier GmbH. All rights reserved.
Rosvold, Jørgen; Røed, Knut H; Hufthammer, Anne Karin; Andersen, Reidar; Stenøien, Hans K
2012-09-26
Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale. We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago. Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations. They also shed light on the northward post-glacial colonisation process of red deer in Europe and suggest increased precision in inferring past demographic events when including both ancient and contemporary DNA.
Genome-wide patterns of selection in 230 ancient Eurasians
Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David
2016-01-01
Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274
Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.
Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas; Parker, Brian J; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J; Kelly, Theresa K; Vang, Søren; Andersson, Robin; Jones, Peter A; Hoover, Cindi A; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M; Sandelin, Albin; Gilbert, M Thomas P; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic
2014-03-01
Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.
Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome
Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic
2014-01-01
Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735
Lega, C; Fulgione, D; Genovese, A; Rook, L; Masseti, M; Meiri, M; Cinzia Marra, A; Carotenuto, F; Raia, P
2017-01-01
Southern Italy has a long history of human occupation and passage of different cultures since the Early Holocene. Repeated, ancient introductions of pigs in several geographic areas in Europe make it difficult to understand pig translocation and domestication in Italy. The archeozoological record may provide fundamental information on this, hence shedding light on peopling and on trading among different ancient cultures in the Mediterranean. Yet, because of the scanty nature of the fossil record, ancient remains from human-associated animals are somewhat rare. Fortunately, ancient DNA analysis as applied to domestic species proved to be a powerful tool in revealing human migrations. Herein, we analyzed 80-bp fragment of mitochondrial DNA control region from 27 Sus scrofa ancient samples retrieved from Southern Italian and Sardinian archeological sites, spanning in age from the Mesolithic to the Roman period. Our results surprisingly indicate the presence of the Near Eastern haplotype Y1 on both Italy's major islands (Sardinia and Sicily) during the Bronze Age, suggesting the seaborne transportation of domestic pigs by humans at least during 1600–1300 BC. The presence of the Italian E2 clade in domestic contexts shows that the indigenous wild boar was effectively domesticated or incorporated into domestic stocks in Southern Italy during the Bronze Age, although the E2 haplotype has never been found in modern domestic breeds. Pigs belonging to the endemic E2 clade were thus traded between the Peninsula and Sardinia by the end of the second millennium BC and this genetic signature is still detected in Sardinian feral pigs. PMID:27649620
Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.
Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina
2015-11-13
To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.
Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification
Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina
2015-01-01
To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586
Fernandes, Daniel; Sirak, Kendra; Novak, Mario; Finarelli, John A.; Byrne, John; Connolly, Edward; Carlsson, Jeanette E. L.; Ferretti, Edmondo; Pinhasi, Ron; Carlsson, Jens
2017-01-01
Thomas Kent was an Irish rebel who was executed by British forces in the aftermath of the Easter Rising armed insurrection of 1916 and buried in a shallow grave on Cork prison’s grounds. In 2015, ninety-nine years after his death, a state funeral was offered to his living family to honor his role in the struggle for Irish independence. However, inaccuracies in record keeping did not allow the bodily remains that supposedly belonged to Kent to be identified with absolute certainty. Using a novel approach based on homozygous single nucleotide polymorphisms, we identified these remains to be those of Kent by comparing his genetic data to that of two known living relatives. As the DNA degradation found on Kent’s DNA, characteristic of ancient DNA, rendered traditional methods of relatedness estimation unusable, we forced all loci homozygous, in a process we refer to as “forced homozygote approach”. The results were confirmed using simulated data for different relatedness classes. We argue that this method provides a necessary alternative for relatedness estimations, not only in forensic analysis, but also in ancient DNA studies, where reduced amounts of genetic information can limit the application of traditional methods. PMID:28134350
Witt, Kelsey E; Judd, Kathleen; Kitchen, Andrew; Grier, Colin; Kohler, Timothy A; Ortman, Scott G; Kemp, Brian M; Malhi, Ripan S
2015-02-01
As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetic polymorphisms in prehistoric Pacific islanders determined by analysis of ancient bone DNA.
Hagelberg, E; Clegg, J B
1993-05-22
A previously characterized Asian-specific mitochondrial DNA (mtDNA) length mutation has been detected in DNA isolated from prehistoric human bones from Polynesia, including Hawaii, Chatham Islands and Society Islands. In contrast, the Asian mutation was absent in skeletal samples from the Melanesian archipelagos of New Britain and Vanuatu and in the oldest samples from Fiji, Tonga and Samoa in the central Pacific (2700-1600 years BP) although it was present in a more recent prehistoric sample from Tonga. These results, augmented by informative DNA sequence data from the hypervariable region of mtDNA, fail to support current views that the central Pacific was settled directly by voyagers from island Southeast Asia, the putative ancestors of modern Polynesians. An earlier occupation by peoples from the neighbouring Melanesian archipelagos seems more likely.
El Sharabasy, Sherif F; Soliman, Khaled A
2017-01-01
The date palm is an ancient domesticated plant with great diversity and has been cultivated in the Middle East and North Africa for at last 5000 years. Date palm cultivars are classified based on the fruit moisture content, as dry, semidry, and soft dates. There are a number of biochemical and molecular techniques available for characterization of the date palm variation. This chapter focuses on the DNA-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) techniques, in addition to biochemical markers based on isozyme analysis. These techniques coupled with appropriate statistical tools proved useful for determining phylogenetic relationships among date palm cultivars and provide information resources for date palm gene banks.
Zink, A. R.; Grabner, W.; Reischl, U.; Wolf, H.; Nerlich, A. G.
2003-01-01
We describe the molecular identification of human tuberculosis (TB) from vertebral bone tissue samples from three different populations of ancient Egypt. The specimens were obtained from the predynastic to early dynastic necropolis of Abydos (7 individuals, c. 3500-2650 B.C.), from a Middle Kingdom to Second Intermediate Period tomb of the necropolis of Thebes-West (37. c. 2100-1550 B.C.) and from five further Theban tombs used in the New Kingdom and the Late Period (39, c. 1450-500 B.C.). A total of 18 cases tested positive for the presence of ancient DNA (aDNA) of the M. tuberculosis complex. Out of the 9 cases with typical macromorphological signs of tuberculous spondylitis, 6 were positive for mycobacterial aDNA (66.7%). Of 24 cases with non-specific pathological alterations, 5 provided a positive result (20.8%). In 50 cases of normally appearing vertebral bones 7 tested positive (14.0%). There were only minor differences in the frequencies between the three populations. These data strongly support the notion that tuberculosis was present and prevalent in ancient Egypt since very early periods of this civilization. The unexpectedly high rate of mycobacterial aDNA in normal bone samples is presumably due to a pre- to perimortal systemic spread of the bacteria and indicates a generalized infection by M. tuberculosis. PMID:12729192
Mahal, David G; Matsoukas, Ianis G
2018-01-01
Several studies have evaluated the movements of large populations to the Indian subcontinent; however, the ancient geographic origins of smaller ethnic communities are not clear. Although historians have attempted to identify the origins of some ethnic groups, the evidence is typically anecdotal and based upon what others have written before. In this study, recent developments in DNA science were assessed to provide a contemporary perspective by analyzing the Y chromosome haplogroups of some key ethnic groups and tracing their ancient geographical origins from genetic markers on the Y-DNA haplogroup tree. A total of 2,504 Y-DNA haplotypes, representing 50 different ethnic groups in the Indian subcontinent, were analyzed. The results identified 14 different haplogroups with 14 geographic origins for these people. Moreover, every ethnic group had representation in more than one haplogroup, indicating multiple geographic origins for these communities. The results also showed that despite their varied languages and cultural differences, most ethnic groups shared some common ancestors because of admixture in the past. These findings provide new insights into the ancient geographic origins of ethnic groups in the Indian subcontinent. With about 2,000 other ethnic groups and tribes in the region, it is expected that more scientific discoveries will follow, providing insights into how, from where, and when the ancestors of these people arrived in the subcontinent to create so many different communities.
Mahal, David G.; Matsoukas, Ianis G.
2018-01-01
Several studies have evaluated the movements of large populations to the Indian subcontinent; however, the ancient geographic origins of smaller ethnic communities are not clear. Although historians have attempted to identify the origins of some ethnic groups, the evidence is typically anecdotal and based upon what others have written before. In this study, recent developments in DNA science were assessed to provide a contemporary perspective by analyzing the Y chromosome haplogroups of some key ethnic groups and tracing their ancient geographical origins from genetic markers on the Y-DNA haplogroup tree. A total of 2,504 Y-DNA haplotypes, representing 50 different ethnic groups in the Indian subcontinent, were analyzed. The results identified 14 different haplogroups with 14 geographic origins for these people. Moreover, every ethnic group had representation in more than one haplogroup, indicating multiple geographic origins for these communities. The results also showed that despite their varied languages and cultural differences, most ethnic groups shared some common ancestors because of admixture in the past. These findings provide new insights into the ancient geographic origins of ethnic groups in the Indian subcontinent. With about 2,000 other ethnic groups and tribes in the region, it is expected that more scientific discoveries will follow, providing insights into how, from where, and when the ancestors of these people arrived in the subcontinent to create so many different communities. PMID:29410676
Wang, Haijing; Chen, Lu; Ge, Binwen; Zhang, Ye; Zhu, Hong; Zhou, Hui
2012-08-01
Nomadic populations have played a significant role in the history of not only China but also in many nations worldwide. Because they had no written language, an important aspect in the study of these people is the discovery of their tombs. It has been generally accepted that Xiongnu was the first empire created by a nomadic tribe in the 3rd century BC. However, little population genetic information is available concerning the Donghu, another flourishing nomadic tribe at the same period because of the restriction of materials until the Jinggouzi site was excavated. In order to test the genetic characteristics of ancient people in this site and to explore the relationship between Jinggouzis and Donghus, two uniparentally inherited markers were analyzed from 42 human remains in this site, which was located in northern China, dated approximately 2500 years ago. With ancient DNA technology, four mtDNA haplogroups (D, G, C, and M10) and one Y chromosome haplogroup (C) were identified using mitochondrial DNA and Y-chromosome single nucleotide polymorphisms. Those haplogroups are common in North Asia and East Asia. The Jinggouzi people were genetically closest to the Xianbeis in ancient populations and to the Oroqens among extant populations, who were all pastoralists. This might indicate that ancient Jinggouzi people were nomads. Meanwhile, according to the genetic data and the evidences in archaeology, we inferred that Jinggouzi people were associated with Donghu. It is of much value to trace the history of the Donghu tribe and this might show some insight into the ancient nomadic society.
Palaeogenetic analysis of (pre)historic artifacts and its significance for anthropology.
Burger, J; Hummel, S; Pfeiffer, I; Herrmann, B
2000-03-01
The possibility of isolating ancient DNA (aDNA) from all kinds of (pre)historic anthropogenetic artifacts opens new perspectives. This study applies palaeogenetic techniques to three anthropological issues: 1. Palaeodiet. DNA sequences from organic residues in vessels identify Precolumbian Aztec diet. 2. (Pre)historic husbandry and economic structures. aDNA data can reveal the species and the genetic evolutionary stage of animals and plants and show the manner and the extent of their growth, cultivation, or domestication. 3. Production techniques, use, and functionality. Identification of the plant or animal source of an archaeological find can reveal the use or the function of the find. Examples from a Celtic "sausage-end" and an Aztec "eye salve" are given.
Paleogenetical study of pre-Columbian samples from Pampa Grande (Salta, Argentina).
Carnese, Fransisco R; Mendisco, Fanny; Keyser, Christine; Dejean, Cristina B; Dugoujon, Jean-Michel; Bravi, Claudio M; Ludes, Bertrand; Crubézy, Eric
2010-03-01
Ancient DNA recovered from 21 individuals excavated from burial sites in the Pampa Grande (PG) region (Salta province) of North-Western Argentina (NWA) was analyzed using various genetic markers (mitochondrial DNA, autosomal STRs, and Y chromosomal STRs). The results were compared to ancient and modern DNA from various populations in the Andean and North Argentinean regions, with the aim of establishing their relationships with PG. The mitochondrial haplogroup frequencies described (11% A, 47% B, and 42% D) presented values comparable to those found for the ancient Andean populations from Peru and San Pedro de Atacama. On the other hand, mitochondrial and Y chromosomal haplotypes were specific to PG, as they did not match any other of the South American populations studied. The described genetic diversity indicates homogeneity in the genetic structure of the ancient Andean populations, which was probably facilitated by the intense exchange network in the Andean zone, in particular among Tiwanaku, San Pedro de Atacama, and NWA. The discovery of haplotypes unique to PG could be due to a loss of genetic diversity caused by recent events affecting the autochthonous populations (establishment of the Inca Empire in the region, colonization by the Europeans).
Ancient and modern environmental DNA
Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske
2015-01-01
DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334
Isolation–By–Distance–and–Time in a stepping–stone model
Duforet-Frebourg, Nicolas; Slatkin, Montgomery
2015-01-01
With the great advances in ancient DNA extraction, genetic data are now obtained from geographically separated individuals from both present and past. However, population genetics theory about the joint effect of space and time has not been thoroughly studied. Based on the classical stepping–stone model, we develop the theory of Isolation by Distance and Time. We derive the correlation of allele frequencies between demes in the case where ancient samples are present, and investigate the impact of edge effects with forward–in–time simulations. We also derive results about coalescent times in circular and toroidal models. As one of the most common ways to investigate population structure is principal components analysis (PCA), we evaluate the impact of our theory on PCA plots. Our results demonstrate that time between samples is an important factor. Ancient samples tend to be drawn to the center of a PCA plot. PMID:26592162
Rice Varieties in Archaic East Asia: Reduction of Its Diversity from Past to Present Times.
Kumagai, Masahiko; Kanehara, Masaaki; Shoda, Shin'ya; Fujita, Saburo; Onuki, Shizuo; Ueda, Shintaroh; Wang, Li
2016-10-01
The Asian cultivated rice, Oryza sativa, is one of the most important crops feeding more than a third of global population. In spite of the studies for several decades, the origin and domestication history of rice varietal groups, japonica and indica, have not been fully unveiled. Genetic information of ancient rice remains is essential for direct and exclusive insight into the domestication history of rice. We performed ancient DNA analysis of 950- to 2,800-year-old rice remains excavated from Japan and Korea. We found the presence of both japonica- and indica-type varieties in the Yayoi period and the middle ages of Japan and the middle part of Korea Peninsula 2,000 years ago. It is popularly considered that japonica has been exclusively cultivated in northern part of East Asia including Japan and Korea. Our result disclosed unexpectedly wide diversity of rice varieties in archaic East Asia. The present results from ancient rice DNA reveal an exclusive insight for the domestication history of rice which is not provided as far as contemporary rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Inferring chronological age from DNA methylation patterns of human teeth.
Giuliani, Cristina; Cilli, Elisabetta; Bacalini, Maria Giulia; Pirazzini, Chiara; Sazzini, Marco; Gruppioni, Giorgio; Franceschi, Claudio; Garagnani, Paolo; Luiselli, Donata
2016-04-01
Current methods to determine chronological age from modern and ancient remains rely on both morphological and molecular approaches. However, low accuracy and the lack of standardized protocols make the development of alternative methods for the estimation of individual's age even more urgent for several research fields, such as biological anthropology, biodemography, forensics, evolutionary genetics, and ancient DNA studies. Therefore, the aim of this study is to identify genomic regions whose DNA methylation level correlates with age in modern teeth. We used MALDI-TOF mass spectrometry to analyze DNA methylation levels of specific CpGs located in the ELOVL2, FHL2, and PENK genes. We considered methylation data from cementum, dentin and pulp of 21 modern teeth (from 17 to 77 years old) to construct a mathematical model able to exploit DNA methylation values to predict age of the individuals. The median difference between the real age and that estimated using DNA methylation values is 1.20 years (SD = 1.9) if DNA is recovered from both cementum and pulp of the same modern teeth, 2.25 years (SD = 2.5) if DNA is recovered from dental pulp, 2.45 years (SD = 3.3) if DNA is extracted from cementum and 7.07 years (SD = 7.0) when DNA is recovered from dentin only. We propose for the first time the evaluation of DNA methylation at ELOVL2, FHL2, and PENK genes as a powerful tool to predict age in modern teeth for anthropological applications. Future studies are needed to apply this method also to historical and relatively ancient human teeth. © 2015 Wiley Periodicals, Inc.
Thomson, Vicki A.; Lebrasseur, Ophélie; Austin, Jeremy J.; Hunt, Terry L.; Burney, David A.; Denham, Tim; Rawlence, Nicolas J.; Wood, Jamie R.; Gongora, Jaime; Girdland Flink, Linus; Linderholm, Anna; Dobney, Keith; Larson, Greger; Cooper, Alan
2014-01-01
The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken. PMID:24639505
Taming the Past: Ancient DNA and the Study of Animal Domestication.
MacHugh, David E; Larson, Greger; Orlando, Ludovic
2017-02-08
During the last decade, ancient DNA research has been revolutionized by the availability of increasingly powerful DNA sequencing and ancillary genomics technologies, giving rise to the new field of paleogenomics. In this review, we show how our understanding of the genetic basis of animal domestication and the origins and dispersal of livestock and companion animals during the Upper Paleolithic and Neolithic periods is being rapidly transformed through new scientific knowledge generated with paleogenomic methods. These techniques have been particularly informative in revealing high-resolution patterns of artificial and natural selection and evidence for significant admixture between early domestic animal populations and their wild congeners.
Eichmann, Cordula; Parson, Walther
2008-09-01
The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.
Rawlence, Nicolas J; Kardamaki, Afroditi; Easton, Luke J; Tennyson, Alan J D; Scofield, R Paul; Waters, Jonathan M
2017-07-26
Prehistoric human impacts on megafaunal populations have dramatically reshaped ecosystems worldwide. However, the effects of human exploitation on smaller species, such as anatids (ducks, geese, and swans) are less clear. In this study we apply ancient DNA and osteological approaches to reassess the history of Australasia's iconic black swans ( Cygnus atratus ) including the palaeo-behaviour of prehistoric populations. Our study shows that at the time of human colonization, New Zealand housed a genetically, morphologically, and potentially ecologically distinct swan lineage ( C. sumnerensis , Poūwa), divergent from modern (Australian) C. atratus Morphological analyses indicate C. sumnerensis exhibited classic signs of the 'island rule' effect, being larger, and likely flight-reduced compared to C. atratus Our research reveals sudden extinction and replacement events within this anatid species complex, coinciding with recent human colonization of New Zealand. This research highlights the role of anthropogenic processes in rapidly reshaping island ecosystems and raises new questions for avian conservation, ecosystem re-wilding, and de-extinction. © 2017 The Author(s).
Palencia-Madrid, Leire; Cardoso, Sergio; Keyser, Christine; López-Quintana, Juan Carlos; Guenaga-Lizasu, Amagoia; de Pancorbo, Marian M
2017-05-01
The Basque population inhabits the Franco-Cantabrian region in southwest Europe where Palaeolithic human groups took refuge during the Last Glacial Maximum. Basques have been an isolated population, largely considered as one of the most ancient European populations and it is possible that they maintained some pre-Neolithic genetic characteristics. This work shows the results of mitochondrial DNA analysis of seven ancient human remains from the Cave of Santimamiñe in the Basque Country dated from Mesolithic to the Late Roman period. In addition, we compared these data with those obtained from a modern sample of Basque population, 158 individuals that nowadays inhabits next to the cave. The results support the hypothesis that Iberians might have been less affected by the Neolithic mitochondrial lineages carried from the Near East than populations of Central Europe and revealed the unexpected presence of prehistoric maternal lineages such as U5a2a and U3a in the Basque region. Comparison between ancient and current population samples upholds the hypothesis of continuity of the maternal lineages in the area of the Franco-Cantabrian region.
Surveying the repair of ancient DNA from bones via high-throughput sequencing.
Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik
2015-07-01
DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.
Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR
Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott
2004-01-01
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281
Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times.
Calvignac, Sebastien; Hughes, Sandrine; Tougard, Christelle; Michaux, Jacques; Thevenot, Michel; Philippe, Michel; Hamdine, Watik; Hänni, Catherine
2008-04-01
The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition.
Gao, Shi-Zhu; Zhang, Ye; Wei, Dong; Li, Hong-Jie; Zhao, Yong-Bin; Cui, Yin-Qiu; Zhou, Hui
2015-05-01
Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age. © 2014 Wiley Periodicals, Inc.
Fedorova, Sardana A; Reidla, Maere; Metspalu, Ene; Metspalu, Mait; Rootsi, Siiri; Tambets, Kristiina; Trofimova, Natalya; Zhadanov, Sergey I; Hooshiar Kashani, Baharak; Olivieri, Anna; Voevoda, Mikhail I; Osipova, Ludmila P; Platonov, Fedor A; Tomsky, Mikhail I; Khusnutdinova, Elza K; Torroni, Antonio; Villems, Richard
2013-06-19
Sakha--an area connecting South and Northeast Siberia--is significant for understanding the history of peopling of Northeast Eurasia and the Americas. Previous studies have shown a genetic contiguity between Siberia and East Asia and the key role of South Siberia in the colonization of Siberia. We report the results of a high-resolution phylogenetic analysis of 701 mtDNAs and 318 Y chromosomes from five native populations of Sakha (Yakuts, Evenks, Evens, Yukaghirs and Dolgans) and of the analysis of more than 500,000 autosomal SNPs of 758 individuals from 55 populations, including 40 previously unpublished samples from Siberia. Phylogenetically terminal clades of East Asian mtDNA haplogroups C and D and Y-chromosome haplogroups N1c, N1b and C3, constituting the core of the gene pool of the native populations from Sakha, connect Sakha and South Siberia. Analysis of autosomal SNP data confirms the genetic continuity between Sakha and South Siberia. Maternal lineages D5a2a2, C4a1c, C4a2, C5b1b and the Yakut-specific STR sub-clade of Y-chromosome haplogroup N1c can be linked to a migration of Yakut ancestors, while the paternal lineage C3c was most likely carried to Sakha by the expansion of the Tungusic people. MtDNA haplogroups Z1a1b and Z1a3, present in Yukaghirs, Evens and Dolgans, show traces of different and probably more ancient migration(s). Analysis of both haploid loci and autosomal SNP data revealed only minor genetic components shared between Sakha and the extreme Northeast Siberia. Although the major part of West Eurasian maternal and paternal lineages in Sakha could originate from recent admixture with East Europeans, mtDNA haplogroups H8, H20a and HV1a1a, as well as Y-chromosome haplogroup J, more probably reflect an ancient gene flow from West Eurasia through Central Asia and South Siberia. Our high-resolution phylogenetic dissection of mtDNA and Y-chromosome haplogroups as well as analysis of autosomal SNP data suggests that Sakha was colonized by repeated expansions from South Siberia with minor gene flow from the Lower Amur/Southern Okhotsk region and/or Kamchatka. The minor West Eurasian component in Sakha attests to both recent and ongoing admixture with East Europeans and an ancient gene flow from West Eurasia.
2013-01-01
Background Sakha – an area connecting South and Northeast Siberia – is significant for understanding the history of peopling of Northeast Eurasia and the Americas. Previous studies have shown a genetic contiguity between Siberia and East Asia and the key role of South Siberia in the colonization of Siberia. Results We report the results of a high-resolution phylogenetic analysis of 701 mtDNAs and 318 Y chromosomes from five native populations of Sakha (Yakuts, Evenks, Evens, Yukaghirs and Dolgans) and of the analysis of more than 500,000 autosomal SNPs of 758 individuals from 55 populations, including 40 previously unpublished samples from Siberia. Phylogenetically terminal clades of East Asian mtDNA haplogroups C and D and Y-chromosome haplogroups N1c, N1b and C3, constituting the core of the gene pool of the native populations from Sakha, connect Sakha and South Siberia. Analysis of autosomal SNP data confirms the genetic continuity between Sakha and South Siberia. Maternal lineages D5a2a2, C4a1c, C4a2, C5b1b and the Yakut-specific STR sub-clade of Y-chromosome haplogroup N1c can be linked to a migration of Yakut ancestors, while the paternal lineage C3c was most likely carried to Sakha by the expansion of the Tungusic people. MtDNA haplogroups Z1a1b and Z1a3, present in Yukaghirs, Evens and Dolgans, show traces of different and probably more ancient migration(s). Analysis of both haploid loci and autosomal SNP data revealed only minor genetic components shared between Sakha and the extreme Northeast Siberia. Although the major part of West Eurasian maternal and paternal lineages in Sakha could originate from recent admixture with East Europeans, mtDNA haplogroups H8, H20a and HV1a1a, as well as Y-chromosome haplogroup J, more probably reflect an ancient gene flow from West Eurasia through Central Asia and South Siberia. Conclusions Our high-resolution phylogenetic dissection of mtDNA and Y-chromosome haplogroups as well as analysis of autosomal SNP data suggests that Sakha was colonized by repeated expansions from South Siberia with minor gene flow from the Lower Amur/Southern Okhotsk region and/or Kamchatka. The minor West Eurasian component in Sakha attests to both recent and ongoing admixture with East Europeans and an ancient gene flow from West Eurasia. PMID:23782551
Raschke, Elena; Epp, Laura S.; Stoof-Leichsenring, Kathleen R.; Schwamborn, Georg; Herzschuh, Ulrike
2017-01-01
Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. PMID:29027988
DNA from extinct giant lemurs links archaeolemurids to extant indriids
2008-01-01
Background Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Results Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa – such as the Archaeolemuridae – still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. Conclusion This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids. PMID:18442367
Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.
Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine
2008-05-01
Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).
DNA from extinct giant lemurs links archaeolemurids to extant indriids.
Orlando, Ludovic; Calvignac, Sébastien; Schnebelen, Céline; Douady, Christophe J; Godfrey, Laurie R; Hänni, Catherine
2008-04-28
Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy. Ancient DNA recovered from subfossils recently supported a sister relationship between giant "sloth" lemurs and extant indriids and helped to revise the phylogenetic position of Megaladapis edwardsi among lemuriformes, but several taxa - such as the Archaeolemuridae - still await analysis. We therefore used ancient DNA technology to address the phylogenetic status of the two archaeolemurid genera (Archaeolemur and Hadropithecus). Despite poor DNA preservation conditions in subtropical environments, we managed to recover 94- to 539-bp sequences for two mitochondrial genes among 5 subfossil samples. This new sequence information provides evidence for the proximity of Archaeolemur and Hadropithecus to extant indriids, in agreement with earlier assessments of their taxonomic status (Primates, Indrioidea) and in contrast to recent suggestions of a closer relationship to the Lemuridae made on the basis of analyses of dental developmental and postcranial characters. These data provide new insights into the evolution of the locomotor apparatus among lemurids and indriids.
The Origins of Ashkenaz, Ashkenazic Jews, and Yiddish
Das, Ranajit; Wexler, Paul; Pirooznia, Mehdi; Elhaik, Eran
2017-01-01
Recently, the geographical origins of Ashkenazic Jews (AJs) and their native language Yiddish were investigated by applying the Geographic Population Structure (GPS) to a cohort of exclusively Yiddish-speaking and multilingual AJs. GPS localized most AJs along major ancient trade routes in northeastern Turkey adjacent to primeval villages with names that resemble the word “Ashkenaz.” These findings were compatible with the hypothesis of an Irano-Turko-Slavic origin for AJs and a Slavic origin for Yiddish and at odds with the Rhineland hypothesis advocating a Levantine origin for AJs and German origins for Yiddish. We discuss how these findings advance three ongoing debates concerning (1) the historical meaning of the term “Ashkenaz;” (2) the genetic structure of AJs and their geographical origins as inferred from multiple studies employing both modern and ancient DNA and original ancient DNA analyses; and (3) the development of Yiddish. We provide additional validation to the non-Levantine origin of AJs using ancient DNA from the Near East and the Levant. Due to the rising popularity of geo-localization tools to address questions of origin, we briefly discuss the advantages and limitations of popular tools with focus on the GPS approach. Our results reinforce the non-Levantine origins of AJs. PMID:28680441
False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing
2014-01-01
Background Identification of historic pathogens is challenging since false positives and negatives are a serious risk. Environmental non-pathogenic contaminants are ubiquitous. Furthermore, public genetic databases contain limited information regarding these species. High-throughput sequencing may help reliably detect and identify historic pathogens. Results We shotgun-sequenced 8 16th-century Mixtec individuals from the site of Teposcolula Yucundaa (Oaxaca, Mexico) who are reported to have died from the huey cocoliztli (‘Great Pestilence’ in Nahautl), an unknown disease that decimated native Mexican populations during the Spanish colonial period, in order to identify the pathogen. Comparison of these sequences with those deriving from the surrounding soil and from 4 precontact individuals from the site found a wide variety of contaminant organisms that confounded analyses. Without the comparative sequence data from the precontact individuals and soil, false positives for Yersinia pestis and rickettsiosis could have been reported. Conclusions False positives and negatives remain problematic in ancient DNA analyses despite the application of high-throughput sequencing. Our results suggest that several studies claiming the discovery of ancient pathogens may need further verification. Additionally, true single molecule sequencing’s short read lengths, inability to sequence through DNA lesions, and limited ancient-DNA-specific technical development hinder its application to palaeopathology. PMID:24568097
Ancient DNA identification of early 20th century simian T-cell leukemia virus type 1.
Calvignac, Sébastien; Terme, Jean-Michel; Hensley, Shannon M; Jalinot, Pierre; Greenwood, Alex D; Hänni, Catherine
2008-06-01
The molecular identification of proviruses from ancient tissues (and particularly from bones) remains a contentious issue. It can be expected that the copy number of proviruses will be low, which magnifies the risk of contamination with retroviruses from exogenous sources. To assess the feasibility of paleoretrovirological studies, we attempted to identify proviruses from early 20th century bones of museum specimens while following a strict ancient DNA methodology. Simian T-cell leukemia virus type 1 sequences were successfully obtained and authenticated from a Chlorocebus pygerythrus specimen. This represents the first clear evidence that it will be possible to use museum specimens to better characterize simian and human T-tropic retrovirus genetic diversity and analyze their origin and evolution, in greater detail.
Deep Sequencing of RNA from Ancient Maize Kernels
Rasmussen, Morten; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Alquezar-Planas, David E.; Penfield, Steven; Brown, Terence A.; Vielle-Calzada, Jean-Philippe; Montiel, Rafael; Jørgensen, Tina; Odegaard, Nancy; Jacobs, Michael; Arriaza, Bernardo; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Willerslev, Eske; Gilbert, M. Thomas P.
2013-01-01
The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited – perhaps due to dogma associated with the fragility of RNA. We hypothesize that seeds offer a plausible refuge for long-term RNA survival, due to the fundamental role of RNA during seed germination. Using RNA-Seq on cDNA synthesized from nucleic acid extracts, we validate this hypothesis through demonstration of partial transcriptomal recovery from two sources of ancient maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication. PMID:23326310
Moody, Michael L; Rieseberg, Loren H
2012-07-01
The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.
DNA AND PROTEIN RECOVERY FROM WASHED EXPERIMENTAL STONE TOOLS
DNA residues may preserve on ancient stone tools used to process animals. We studied 24 stone tools recovered from the Bugas-Holding site in northwestern Wyoming. Nine tools that yielded DNA included five bifaces, two side scrapers, one end scraper, and one utilized flake. The...
Mushegian, Arcady; Karin, Eli Levy; Pupko, Tal
2018-01-01
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
van Geel, Bas; Fisher, Daniel C.; Rountrey, Adam N.; van Arkel, Jan; Duivenvoorden, Joost F.; Nieman, Aline M.; van Reenen, Guido B. A.; Tikhonov, Alexei N.; Buigues, Bernard; Gravendeel, Barbara
2011-12-01
Intestinal samples from the one-month-old Siberian mammoth calf 'Lyuba' were studied using light microscopy and ancient DNA to reconstruct its palaeo-environment and diet. The palynological record indicates a 'mammoth steppe'. At least some pollen of arboreal taxa was reworked, and thus the presence of trees on the landscape is uncertain. In addition to visual comparison of 11 microfossil spectra, a PCA analysis contributed to diet reconstruction. This yielded two clusters: one of samples from the small intestine and the other of large-intestine samples, indicating compositional differences in food remains along the intestinal tract, possibly reflecting different episodes of ingestion. Based on observed morphological damage we conclude that the cyperaceous plant remains and some remains of dwarf willows were originally eaten by a mature mammoth, most likely Lyuba's mother. The mammoth calf probably unintentionally swallowed well-preserved mosses and mineral particles while eating fecal material deposited on a soil surface covered with mosses. Coprophagy may have been a common habit for mammoths, and we therefore propose that fecal material should not be used to infer season of death of mammoths. DNA sequences of trnL and rbcL genes amplified from ancient DNA extracted from intestinal samples confirmed and supplemented plant identifications based on microfossils and macro-remains. Results from different extraction methods and barcoding markers complemented each other and show the value of longer protocols in addition to fast and commercially available extraction kits.
van Asch, Barbara; Zhang, Ai-bing; Oskarsson, Mattias C R; Klütsch, Cornelya F C; Amorim, António; Savolainen, Peter
2013-09-07
Dogs were present in pre-Columbian America, presumably brought by early human migrants from Asia. Studies of free-ranging village/street dogs have indicated almost total replacement of these original dogs by European dogs, but the extent to which Arctic, North and South American breeds are descendants of the original population remains to be assessed. Using a comprehensive phylogeographic analysis, we traced the origin of the mitochondrial DNA lineages for Inuit, Eskimo and Greenland dogs, Alaskan Malamute, Chihuahua, xoloitzcuintli and perro sín pelo del Peru, by comparing to extensive samples of East Asian (n = 984) and European dogs (n = 639), and previously published pre-Columbian sequences. Evidence for a pre-Columbian origin was found for all these breeds, except Alaskan Malamute for which results were ambigous. No European influence was indicated for the Arctic breeds Inuit, Eskimo and Greenland dog, and North/South American breeds had at most 30% European female lineages, suggesting marginal replacement by European dogs. Genetic continuity through time was shown by the sharing of a unique haplotype between the Mexican breed Chihuahua and ancient Mexican samples. We also analysed free-ranging dogs, confirming limited pre-Columbian ancestry overall, but also identifying pockets of remaining populations with high proportion of indigenous ancestry, and we provide the first DNA-based evidence that the Carolina dog, a free-ranging population in the USA, may have an ancient Asian origin.
Rubini, Mauro; Zaio, Paola; Spigelman, Mark; Donoghue, Helen D
2017-09-01
The study of past infectious diseases increases knowledge of the presence, impact and spread of pathogens within ancient populations. Polymerase chain reaction (PCR) was used to examine bones for the presence of Mycobacterium leprae ancient DNA (aDNA) as, even when leprosy is present, bony changes are not always pathognomonic of the disease. This study also examined the demographic profile of this population and compared it with two other populations to investigate any changes in mortality trends between different infectious diseases and between the pre-antibiotic and antibiotic eras. The individuals were from a site in Central Italy (6th-8th CE) and were examined for the presence of Mycobacterium leprae aDNA. In addition, an abridged life mortality table was constructed. Two individuals had typical leprosy palaeopathology, and one was positive for Mycobacterium leprae aDNA. However, the demographic profile shows a mortality curve similar to that of the standard, in contrast to a population that had been subjected to bubonic plague. This study shows that, in the historical population with leprosy, the risk factors for health seem to be constant and distributed across all age classes, similar to what is found today in the antibiotic era. There were no peaks of mortality equivalent to those found in fatal diseases such as the plague, probably due to the long clinical course of leprosy.
Kemp, Brian M.; Thorgaard, Gary H.
2018-01-01
The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have divergent demographic histories. PMID:29320518
Zhao, Yong-Bin; Zhang, Ye; Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong
2015-01-01
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.
Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong
2015-01-01
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511
Systematic prediction of control proteins and their DNA binding sites
Sorokin, Valeriy; Severinov, Konstantin; Gelfand, Mikhail S.
2009-01-01
We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for ∼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions. PMID:19056824
Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics.
Paijmans, Johanna L A; Barnett, Ross; Gilbert, M Thomas P; Zepeda-Mendoza, M Lisandra; Reumer, Jelle W F; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F; Leonard, Jennifer A; Rohland, Nadin; Westbury, Michael V; Barlow, Axel; Hofreiter, Michael
2017-11-06
Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rasteiro, Rita; Chikhi, Lounès
2013-01-01
The arrival of agriculture into Europe during the Neolithic transition brought a significant shift in human lifestyle and subsistence. However, the conditions under which the spread of the new culture and technologies occurred are still debated. Similarly, the roles played by women and men during the Neolithic transition are not well understood, probably due to the fact that mitochondrial DNA (mtDNA) and Y chromosome (NRY) data are usually studied independently rather than within the same statistical framework. Here, we applied an integrative approach, using different model-based inferential techniques, to analyse published datasets from contemporary and ancient European populations. By integrating mtDNA and NRY data into the same admixture approach, we show that both males and females underwent the same admixture history and both support the demic diffusion model of Ammerman and Cavalli-Sforza. Similarly, the patterns of genetic diversity found in extant and ancient populations demonstrate that both modern and ancient mtDNA support the demic diffusion model. They also show that population structure and differential growth between farmers and hunter-gatherers are necessary to explain both types of data. However, we also found some differences between male and female markers, suggesting that the female effective population size was larger than that of the males, probably due to different demographic histories. We argue that these differences are most probably related to the various shifts in cultural practices and lifestyles that followed the Neolithic Transition, such as sedentism, the shift from polygyny to monogamy or the increase of patrilocality. PMID:23613761
Rasteiro, Rita; Chikhi, Lounès
2013-01-01
The arrival of agriculture into Europe during the Neolithic transition brought a significant shift in human lifestyle and subsistence. However, the conditions under which the spread of the new culture and technologies occurred are still debated. Similarly, the roles played by women and men during the Neolithic transition are not well understood, probably due to the fact that mitochondrial DNA (mtDNA) and Y chromosome (NRY) data are usually studied independently rather than within the same statistical framework. Here, we applied an integrative approach, using different model-based inferential techniques, to analyse published datasets from contemporary and ancient European populations. By integrating mtDNA and NRY data into the same admixture approach, we show that both males and females underwent the same admixture history and both support the demic diffusion model of Ammerman and Cavalli-Sforza. Similarly, the patterns of genetic diversity found in extant and ancient populations demonstrate that both modern and ancient mtDNA support the demic diffusion model. They also show that population structure and differential growth between farmers and hunter-gatherers are necessary to explain both types of data. However, we also found some differences between male and female markers, suggesting that the female effective population size was larger than that of the males, probably due to different demographic histories. We argue that these differences are most probably related to the various shifts in cultural practices and lifestyles that followed the Neolithic Transition, such as sedentism, the shift from polygyny to monogamy or the increase of patrilocality.
Investigation of ancient DNA from Western Siberia and the Sargat culture.
Bennett, Casey C; Kaestle, Frederika A
2010-04-01
Mitochondrial DNA from 14 archaeological samples at the Ural State University in Yekaterinburg, Russia, was extracted to test the feasibility of ancient DNA work on their collection. These samples come from a number of sites that fall into two groupings. Seven samples are from three sites, dating to the 8th-12th century AD, that belong to a northern group of what are thought to be Ugrians, who lived along the Ural Mountains in northwestern Siberia. The remaining seven samples are from two sites that belong to a southern group representing the Sargat culture, dating between roughly the 5th century BC and the 5th century AD, from southwestern Siberia near the Ural Mountains and the present-day Kazakhstan border. The samples are derived from several burial types, including kurgan burials. They also represent a number of different skeletal elements and a range of observed preservation. The northern sites repeatedly failed to amplify after multiple extraction and amplification attempts, but the samples from the southern sites were successfully extracted and amplified. The sequences obtained from the southern sites support the hypothesis that the Sargat culture was a potential zone of intermixture between native Ugrian and/or Siberian populations and steppe peoples from the south, possibly early Iranian or Indo-Iranian, which has been previously suggested by archaeological analysis.
Ottoni, Claudio; Ricaut, François-X; Vanderheyden, Nancy; Brucato, Nicolas; Waelkens, Marc; Decorte, Ronny
2011-01-01
The archaeological site of Sagalassos is located in Southwest Turkey, in the western part of the Taurus mountain range. Human occupation of its territory is attested from the late 12th millennium BP up to the 13th century AD. By analysing the mtDNA variation in 85 skeletons from Sagalassos dated to the 11th–13th century AD, this study attempts to reconstruct the genetic signature potentially left in this region of Anatolia by the many civilizations, which succeeded one another over the centuries until the mid-Byzantine period (13th century BC). Authentic ancient DNA data were determined from the control region and some SNPs in the coding region of the mtDNA in 53 individuals. Comparative analyses with up to 157 modern populations allowed us to reconstruct the origin of the mid-Byzantine people still dwelling in dispersed hamlets in Sagalassos, and to detect the maternal contribution of their potential ancestors. By integrating the genetic data with historical and archaeological information, we were able to attest in Sagalassos a significant maternal genetic signature of Balkan/Greek populations, as well as ancient Persians and populations from the Italian peninsula. Some contribution from the Levant has been also detected, whereas no contribution from Central Asian population could be ascertained. PMID:21224890
Płoszaj, Tomasz; Jędrychowska-Dańska, Krystyna; Masłowska, Alicja; Kozłowski, Tomasz; Chudziak, Wojciech; Bojarski, Jacek; Robaszkiewicz, Agnieszka; Witas, Henryk W
2017-02-01
Contemporary historical anthropology and classical archaeology are concerned not only with such fundamental issues as the origins of ancient human populations and migration routes, but also with the formation and development of inter-population relations and the mixing of gene pools as a result of inter-breeding between individuals representing different cultural units. The contribution of immigrants to the analysed autochthonous population and their effect on the gene pool of that population has proven difficult to evaluate with classical morphological methods. The burial of one individual in the studied Napole cemetery located in central Poland had the form of a chamber grave, which is typical of Scandinavian culture from that period. However, this fact cannot be interpreted as absolute proof that the individual (in the biological sense) was allochtonous. This gives rise to the question as to who was actually buried in that cemetery. The ancient DNA results indicate that one of the individuals had an mtDNA haplotype typical of Iron Age northern Europe, which suggests that he could have arrived from that area at a later period. This seems to indirectly confirm the claims of many anthropologists that the development of the early medieval Polish state was significantly and directly influenced by the Scandinavians.
Archaeogenetics in evolutionary medicine.
Bouwman, Abigail; Rühli, Frank
2016-09-01
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - a review.
Darling, Millie I; Donoghue, Helen D
2014-04-01
This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation.
Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - A Review
Darling, Millie I; Donoghue, Helen D
2014-01-01
This review investigates ancient infectious diseases in the Americas dated to the pre-colonial period and considers what these findings can tell us about the history of the indigenous peoples of the Americas. It gives an overview, but focuses on four microbial pathogens from this period: Helicobacter pylori, Mycobacterium tuberculosis, Trypanosoma cruzi and Coccidioides immitis, which cause stomach ulceration and gastric cancer, tuberculosis, Chagas disease and valley fever, respectively. These pathogens were selected as H. pylori can give insight into ancient human migrations into the Americas, M. tuberculosis is associated with population density and urban development, T. cruzi can elucidate human living conditions and C. immitis can indicate agricultural development. A range of methods are used to diagnose infectious disease in ancient human remains, with DNA analysis by polymerase chain reaction one of the most reliable, provided strict precautions are taken against cross contamination. The review concludes with a brief summary of the changes that took place after European exploration and colonisation. PMID:24714964
STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?
Harder, Melanie; Renneberg, Rebecca; Meyer, Patrick; Krause-Kyora, Ben; von Wurmb-Schwark, Nicole
2012-01-01
Aim To comparatively test nine commercially available short tandem repeat (STR)-multiplex kits (PowerPlex 16, 16HS, ES, ESI17, ESX17, S5 [all Promega]; AmpFiSTR Identifiler, NGM and SEfiler [all Applied Biosystems]) for their efficiency and applicability to analyze ancient and thus highly degraded DNA samples. Methods Fifteen human skeletal remains from the late medieval age were obtained and analyzed using the nine polymerase chain reaction assays with slightly modified protocols. Data were systematically compared to find the most meaningful and sensitive assay. Results The ESI, ESX, and NGM kits showed the best overall results regarding amplification success, detection rate, identification of heterozygous alleles, sex determination, and reproducibility of the obtained data. Conclusion Since application of these three kits enables the employment of different primer sequences for all the investigated amplicons, a combined application is recommended for best possible and – most importantly – reliable genetic analysis of ancient skeletal material or otherwise highly degraded samples, eg, from forensic cases. PMID:23100203
Sharma, Swarkar; Saha, Anjana; Rai, Ekta; Bhat, Audesh; Bamezai, Ramesh
2005-01-01
We have analysed the hypervariable regions (HVR I and II) of human mitochondrial DNA (mtDNA) in individuals from Uttar Pradesh (UP), Bihar (BI) and Punjab (PUNJ), belonging to the Indo-European linguistic group, and from South India (SI), that have their linguistic roots in Dravidian language. Our analysis revealed the presence of known and novel mutations in both hypervariable regions in the studied population groups. Median joining network analyses based on mtDNA showed extensive overlap in mtDNA lineages despite the extensive cultural and linguistic diversity. MDS plot analysis based on Fst distances suggested increased maternal genetic proximity for the studied population groups compared with other world populations. Mismatch distribution curves, respective neighbour joining trees and other statistical analyses showed that there were significant expansions. The study revealed an ancient common ancestry for the studied population groups, most probably through common founder female lineage(s), and also indicated that human migrations occurred (maybe across and within the Indian subcontinent) even after the initial phase of female migration to India.
Søe, Martin Jensen; Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen
2018-01-01
High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology.
Nejsum, Peter; Seersholm, Frederik Valeur; Fredensborg, Brian Lund; Habraken, Ruben; Haase, Kirstine; Hald, Mette Marie; Simonsen, Rikke; Højlund, Flemming; Blanke, Louise; Merkyte, Inga; Willerslev, Eske; Kapel, Christian Moliin Outzen
2018-01-01
High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology. PMID:29694397
Toward a new history and geography of human genes informed by ancient DNA
Pickrell, Joseph K.; Reich, David
2014-01-01
Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world’s human populations. In light of this, we argue that it is time to critically re-evaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. PMID:25168683
NASA Astrophysics Data System (ADS)
Smittenberg, Rienk; Yamoah, Kweku; Callac, Nolwenn; Fru, Ernest Chi; Chabangborn, Akkaneewut; Rattray, Jayne; Wohlfarth, Barbara
2016-04-01
We investigated the decadal variations in phytoplankton communities, and their response to environmental and climatic conditions, from a ˜150 year long sedimentary archive of Lake Nong Thale Prong (NTP), southern Thailand. We applied a combination of analyses: lipid biomarkers, compound-specific hydrogen isotopes, bulk carbon and nitrogen concentrations and isotopes, environmental SEM, and fossil DNA using qPCR targeted to specific taxa. Past hydrological conditions were reconstructed using the hydrogen isotopic composition of leaf wax n-alkanes. Temperatures were reconstructed using the tetraether-based MBT/CBT index, measured using a new and efficient reverse-phase HPLC-MS method. The climatological data compared well with meteorological data from the last decades. Reconstructed drier and warmer conditions from ˜1857-1916 Common Era (CE) coincided with oligotrophic lake water conditions and dominance of the green algae Botryococcus braunii - evidenced by a combination of both fossil DNA and the occurrence of characteristic botryococcene lipids. A change to higher silica (Si) input ˜1916 CE was related to increased rainfall and lower temperatures concurring with an abrupt takeover by diatom blooms lasting for 50 years - as evidenced by ancient DNA, characteristic highly branched isoprenoid lipids, and SEM. From the 1970s onwards, more eutrophic conditions prevailed, and these were likely caused by increased levels of anthropogenic phosphate (P), aided by stronger lake stratification caused by dryer and warmer conditions. The eutrophic conditions led to increased primary productivity in the lake, consisting again of a Botryococcus sp., although this time not producing botryococcene lipids. Moreover, Cyanobacteria became dominant - again evidenced by ancient DNA and the characteristic C19 alkane. Throughout the record, stratification and primary production could be linked to the intensity of methane cycling, by targeting and quantifying the mcrA gene that is used both by methanogens and anaerobic methane oxidizers. Our results show that a combined multi-proxy approach, especially the combination of targeted qPCR and lipid biomarker analysis, allows a highly robust reconstruction of past microbial ecosystem responses to climatic and environmental changes.
Schuenemann, Verena J; Bos, Kirsten; DeWitte, Sharon; Schmedes, Sarah; Jamieson, Joslyn; Mittnik, Alissa; Forrest, Stephen; Coombes, Brian K; Wood, James W; Earn, David J D; White, William; Krause, Johannes; Poinar, Hendrik N
2011-09-20
Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.
Storey, Alice A.; Athens, J. Stephen; Bryant, David; Carson, Mike; Emery, Kitty; deFrance, Susan; Higham, Charles; Huynen, Leon; Intoh, Michiko; Jones, Sharyn; Kirch, Patrick V.; Ladefoged, Thegn; McCoy, Patrick; Morales-Muñiz, Arturo; Quiroz, Daniel; Reitz, Elizabeth; Robins, Judith; Walter, Richard; Matisoo-Smith, Elizabeth
2012-01-01
Data from morphology, linguistics, history, and archaeology have all been used to trace the dispersal of chickens from Asian domestication centers to their current global distribution. Each provides a unique perspective which can aid in the reconstruction of prehistory. This study expands on previous investigations by adding a temporal component from ancient DNA and, in some cases, direct dating of bones of individual chickens from a variety of sites in Europe, the Pacific, and the Americas. The results from the ancient DNA analyses of forty-eight archaeologically derived chicken bones provide support for archaeological hypotheses about the prehistoric human transport of chickens. Haplogroup E mtDNA signatures have been amplified from directly dated samples originating in Europe at 1000 B.P. and in the Pacific at 3000 B.P. indicating multiple prehistoric dispersals from a single Asian centre. These two dispersal pathways converged in the Americas where chickens were introduced both by Polynesians and later by Europeans. The results of this study also highlight the inappropriate application of the small stretch of D-loop, traditionally amplified for use in phylogenetic studies, to understanding discrete episodes of chicken translocation in the past. The results of this study lead to the proposal of four hypotheses which will require further scrutiny and rigorous future testing. PMID:22848352
Storey, Alice A; Athens, J Stephen; Bryant, David; Carson, Mike; Emery, Kitty; deFrance, Susan; Higham, Charles; Huynen, Leon; Intoh, Michiko; Jones, Sharyn; Kirch, Patrick V; Ladefoged, Thegn; McCoy, Patrick; Morales-Muñiz, Arturo; Quiroz, Daniel; Reitz, Elizabeth; Robins, Judith; Walter, Richard; Matisoo-Smith, Elizabeth
2012-01-01
Data from morphology, linguistics, history, and archaeology have all been used to trace the dispersal of chickens from Asian domestication centers to their current global distribution. Each provides a unique perspective which can aid in the reconstruction of prehistory. This study expands on previous investigations by adding a temporal component from ancient DNA and, in some cases, direct dating of bones of individual chickens from a variety of sites in Europe, the Pacific, and the Americas. The results from the ancient DNA analyses of forty-eight archaeologically derived chicken bones provide support for archaeological hypotheses about the prehistoric human transport of chickens. Haplogroup E mtDNA signatures have been amplified from directly dated samples originating in Europe at 1000 B.P. and in the Pacific at 3000 B.P. indicating multiple prehistoric dispersals from a single Asian centre. These two dispersal pathways converged in the Americas where chickens were introduced both by Polynesians and later by Europeans. The results of this study also highlight the inappropriate application of the small stretch of D-loop, traditionally amplified for use in phylogenetic studies, to understanding discrete episodes of chicken translocation in the past. The results of this study lead to the proposal of four hypotheses which will require further scrutiny and rigorous future testing.
Yersinia pestis Orientalis in Remains of Ancient Plague Patients
Drancourt, Michel; Signoli, Michel; Dang, La Vu; Bizot, Bruno; Roux, Véronique; Tzortzis, Stéfan
2007-01-01
Yersinia pestis DNA was recently detected in human remains from 2 ancient plague pandemics in France and Germany. We have now sequenced Y. pestis glpD gene in such remains, showing a 93-bp deletion specific for biotype Orientalis. These data show that only Orientalis type caused the 3 plague pandemics. PMID:17479906
Lech, T
2016-05-06
Historical parchments in the form of documents, manuscripts, books, or letters, make up a large portion of cultural heritage collections. Their priceless historical value is associated with not only their content, but also the information hidden in the DNA deposited on them. Analyses of ancient DNA (aDNA) retrieved from parchments can be used in various investigations, including, but not limited to, studying their authentication, tracing the development of the culture, diplomacy, and technology, as well as obtaining information on the usage and domestication of animals. This article proposes and verifies a procedure for aDNA recovery from historical parchments and its appropriate preparation for further analyses. This study involved experimental selection of an aDNA extraction method with the highest efficiency and quality of extracted genetic material, from among the multi-stage phenol-chloroform extraction methods, and the modern, column-based techniques that use selective DNA-binding membranes. Moreover, current techniques to amplify entire genetic material were questioned, and the possibility of using mitochondrial DNA for species identification was analyzed. The usefulness of the proposed procedure was successfully confirmed in identification tests of historical parchments dating back to the 13-16th century AD.
Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.
Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji
2011-01-01
Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.
TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts.
Madel, Maria-Bernadette; Niederstätter, Harald; Parson, Walther
2016-11-01
Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.
2017-12-01
Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.
Origin of the invasive Arundo donax (Poaceae): a trans-Asian expedition in herbaria.
Hardion, Laurent; Verlaque, Régine; Saltonstall, Kristin; Leriche, Agathe; Vila, Bruno
2014-09-01
The hypothesis of an ancient introduction, i.e. archaeophyte origin, is one of the most challenging questions in phylogeography. Arundo donax (Poaceae) is currently considered to be one of the worst invasive species globally, but it has also been widely utilzed by man across Eurasia for millennia. Despite a lack of phylogenetic data, recent literature has often speculated on its introduction to the Mediterranean region. This study tests the hypothesis of its ancient introduction from Asia to the Mediterranean by using plastid DNA sequencing and morphometric analysis on 127 herbarium specimens collected across sub-tropical Eurasia. In addition, a bioclimatic species distribution model calibrated on 1221 Mediterranean localities was used to identify similar ecological niches in Asia. Despite analysis of several plastid DNA hypervariable sites and the identification of 13 haplotypes, A. donax was represented by a single haplotype from the Mediterranean to the Middle East. This haplotype is shared with invasive samples worldwide, and its nearest phylogenetic relatives are located in the Middle East. Morphometric data characterized this invasive clone by a robust morphotype distinguishable from all other Asian samples. The ecological niche modelling designated the southern Caspian Sea, southern Iran and the Indus Valley as the most suitable regions of origin in Asia for the invasive clone of A. donax. Using an integrative approach, an ancient dispersion of this robust, polyploid and non-fruiting clone is hypothesized from the Middle East to the west, leading to its invasion throughout the Mediterranean Basin. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Amino acid racemization in amber-entombed insects: implications for DNA preservation
NASA Technical Reports Server (NTRS)
Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.
1994-01-01
DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.
Prediction of autosomal STR typing success in ancient and Second World War bone samples.
Zupanič Pajnič, Irena; Zupanc, Tomaž; Balažic, Jože; Geršak, Živa Miriam; Stojković, Oliver; Skadrić, Ivan; Črešnar, Matija
2017-03-01
Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is concluded that STR typing of old bones after quantification with the PowerQuant should be performed only when both Auto and Deg targets are detected simultaneously with no respect to [Auto]/[Deg] ratio. Prediction of STR typing success could be made according to successful amplification of Deg fragment. The PowerQuant kit is capable of identifying bone DNA samples that will not yield useful STR profiles using the NGM kit, and it can be used as a predictor of autosomal STR typing success of bone extracts obtained from ancient and WWII skeletal remains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Godinho, R; Mendonça, B; Crespo, E G; Ferrand, N
2006-06-01
The study of nuclear genealogies in natural populations of nonmodel organisms is expected to provide novel insights into the evolutionary history of populations, especially when developed in the framework of well-established mtDNA phylogeographical scenarios. In the Iberian Peninsula, the endemic Schreiber's green lizard Lacerta schreiberi exhibits two highly divergent and allopatric mtDNA lineages that started to split during the late Pliocene. In this work, we performed a fine-scale analysis of the putative mtDNA contact zone together with a global analysis of the patterns of variation observed at the nuclear beta-fibrinogen intron 7 (beta-fibint7). Using a combination of DNA sequencing with single-strand conformational polymorphism (SSCP) analysis, we show that the observed genealogy at the beta-fibint7 locus reveals extensive admixture between two formerly isolated lizard populations while the two mtDNA lineages remain essentially allopatric. In addition, a private beta-fibint7 haplotype detected in the single population where both mtDNA lineages were found in sympatry is probably the result of intragenic recombination between the two more common and divergent beta-fibint7 haplotypes. Our results suggest that the progressive incorporation of nuclear genealogies in investigating the ancient demography and admixture dynamics of divergent genomes will be necessary to obtain a more comprehensive picture of the evolutionary history of organisms.
Heupink, Tim H; van den Hoff, John; Lambert, David M
2012-08-23
Historically, king penguin populations on Macquarie Island have suffered greatly from human exploitation. Two large colonies on the island were drastically reduced to a single small colony as a result of harvesting for the blubber oil industry. However, recent conservation efforts have resulted in the king penguin population expanding in numbers and range to recolonize previous as well as new sites. Ancient DNA methods were used to estimate past genetic diversity and combined with studies of modern populations, we are now able to compare past levels of variation with extant populations on northern Macquarie Island. The ancient and modern populations are closely related and show a similar level of genetic diversity. These results suggest that the king penguin population has recovered past genetic diversity in just 80 years owing to conservation efforts, despite having seen the brink of extinction.
Phenotypes from ancient DNA: approaches, insights and prospects.
Fortes, Gloria G; Speller, Camilla F; Hofreiter, Michael; King, Turi E
2013-08-01
The great majority of phenotypic characteristics are complex traits, complicating the identification of the genes underlying their expression. However, both methodological and theoretical progress in genome-wide association studies have resulted in a much better understanding of the underlying genetics of many phenotypic traits, including externally visible characteristics (EVCs) such as eye and hair color. Consequently, it has become possible to predict EVCs from human samples lacking phenotypic information. Predicting EVCs from genetic evidence is clearly appealing for forensic applications involving the personal identification of human remains. Now, a recent paper has reported the genetic determination of eye and hair color in samples up to 800 years old. The ability to predict EVCs from ancient human remains opens up promising perspectives for ancient DNA research, as this could allow studies to directly address archaeological and evolutionary questions related to the temporal and geographical origins of the genetic variants underlying phenotypes. © 2013 WILEY Periodicals, Inc.
Heupink, Tim H.; van den Hoff, John; Lambert, David M.
2012-01-01
Historically, king penguin populations on Macquarie Island have suffered greatly from human exploitation. Two large colonies on the island were drastically reduced to a single small colony as a result of harvesting for the blubber oil industry. However, recent conservation efforts have resulted in the king penguin population expanding in numbers and range to recolonize previous as well as new sites. Ancient DNA methods were used to estimate past genetic diversity and combined with studies of modern populations, we are now able to compare past levels of variation with extant populations on northern Macquarie Island. The ancient and modern populations are closely related and show a similar level of genetic diversity. These results suggest that the king penguin population has recovered past genetic diversity in just 80 years owing to conservation efforts, despite having seen the brink of extinction. PMID:22357937
Welker, Frido; Hajdinjak, Mateja; Talamo, Sahra; Jaouen, Klervia; Dannemann, Michael; David, Francine; Julien, Michèle; Meyer, Matthias; Barnes, Ian; Brace, Selina; Kamminga, Pepijn; Fischer, Roman; Kessler, Benedikt M.; Stewart, John R.; Pääbo, Svante; Collins, Matthew J.; Hublin, Jean-Jacques
2016-01-01
In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this “transitional” assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal–Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne. PMID:27638212
Welker, Frido; Hajdinjak, Mateja; Talamo, Sahra; Jaouen, Klervia; Dannemann, Michael; David, Francine; Julien, Michèle; Meyer, Matthias; Kelso, Janet; Barnes, Ian; Brace, Selina; Kamminga, Pepijn; Fischer, Roman; Kessler, Benedikt M; Stewart, John R; Pääbo, Svante; Collins, Matthew J; Hublin, Jean-Jacques
2016-10-04
In Western Europe, the Middle to Upper Paleolithic transition is associated with the disappearance of Neandertals and the spread of anatomically modern humans (AMHs). Current chronological, behavioral, and biological models of this transitional period hinge on the Châtelperronian technocomplex. At the site of the Grotte du Renne, Arcy-sur-Cure, morphological Neandertal specimens are not directly dated but are contextually associated with the Châtelperronian, which contains bone points and beads. The association between Neandertals and this "transitional" assemblage has been controversial because of the lack either of a direct hominin radiocarbon date or of molecular confirmation of the Neandertal affiliation. Here we provide further evidence for a Neandertal-Châtelperronian association at the Grotte du Renne through biomolecular and chronological analysis. We identified 28 additional hominin specimens through zooarchaeology by mass spectrometry (ZooMS) screening of morphologically uninformative bone specimens from Châtelperronian layers at the Grotte du Renne. Next, we obtain an ancient hominin bone proteome through liquid chromatography-MS/MS analysis and error-tolerant amino acid sequence analysis. Analysis of this palaeoproteome allows us to provide phylogenetic and physiological information on these ancient hominin specimens. We distinguish Late Pleistocene clades within the genus Homo based on ancient protein evidence through the identification of an archaic-derived amino acid sequence for the collagen type X, alpha-1 (COL10α1) protein. We support this by obtaining ancient mtDNA sequences, which indicate a Neandertal ancestry for these specimens. Direct accelerator mass spectometry radiocarbon dating and Bayesian modeling confirm that the hominin specimens date to the Châtelperronian at the Grotte du Renne.
NASA Astrophysics Data System (ADS)
Aifat, N. R.; Yaakop, S.; Md-Zain, B. M.
2016-11-01
The IUCN Red List of Threatened Species has categorized Malaysian primates from being data deficient to critically endanger. Thus, ancient DNA analyses hold great potential to understand phylogeny, phylogeography and population history of extinct and extant species. Museum samples are one of the alternatives to provide important sources of biological materials for a large proportion of ancient DNA studies. In this study, a total of six museum skin samples from species Presbytis hosei (4 samples) and Presbytis frontata (2 samples), aged between 43 and 124 years old were extracted to obtain the DNA. Extraction was done by using QIAGEN QIAamp DNA Investigator Kit and the ability of this kit to extract museum skin samples was tested by amplification of partial Cyt b sequence using species-specific designed primer. Two primer pairs were designed specifically for P. hosei and P. frontata, respectively. These primer pairs proved to be efficient in amplifying 200bp of the targeted species in the optimized PCR conditions. The performance of the sequences were tested to determine genetic distance of genus Presbytis in Malaysia. From the analyses, P. hosei is closely related to P. chrysomelas and P. frontata with the value of 0.095 and 0.106, respectively. Cyt b gave a clear data in determining relationships among Bornean species. Thus, with the optimized condition, museum specimens can be used for molecular systematic studies of the Malaysian primates.
Huang, Shi
2009-01-01
There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth. PMID:18600632
Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese.
Li, Jiawei; Zeng, Wen; Zhang, Ye; Ko, Albert Min-Shan; Li, Chunxiang; Zhu, Hong; Fu, Qiaomei; Zhou, Hui
2017-12-04
Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300-3800 years ago. Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.
Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling
Tran, Thi-Nguyen-Ny; Aboudharam, Gérard; Gardeisen, Armelle; Davoust, Bernard; Bocquet-Appel, Jean-Pierre; Flaudrops, Christophe; Belghazi, Maya; Raoult, Didier; Drancourt, Michel
2011-01-01
Background The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals. PMID:21364886
de la Fuente, Constanza; Galimany, Jacqueline; Kemp, Brian M; Judd, Kathleen; Reyes, Omar; Moraga, Mauricio
2015-12-01
The human population history from Patagonia and Tierra del Fuego has been of great interest in the context of the American peopling. Different sources of evidence have contributed to the characterization of the local populations, but some main questions about their history remain unsolved. Among the native populations, two marine hunter-gatherers groups inhabited the Patagonian channels below the 478S: Kawéskar and Yámana. Regardless of their geographical proximity and cultural resemblance, their languages were mutually unintelligible. In this study we aim to evaluate the genetic diversity of uniparental genetic markers in both groups and to test if there is a high genetic differentiation between them, mirroring their linguistic differences. Ancient DNA was extracted from 37 samples from both populations. We compared their genetic variability of their mitochondrial lineages and Y-STR as well as with other modern native populations from the area and further north. We observed an important differentiation in their maternal lineages: while Kawéskar shows a high frequency of D (80%), Yámana shows a high frequency of C (90%). The analysis of paternal lineages reveals the presence of only Q1a2a1a1 and little variation was found between individuals. Both groups show very low levels of genetic diversity compared with modern populations. We also notice shared and unique mitochondrial DNA variants between modern and ancient samples of Kawéskar and Yámana. © 2015 Wiley Periodicals, Inc.
Kemp, Brian M; Lindo, John; Bolnick, Deborah A; Malhi, Ripan S; Chatters, James C
2015-02-20
Prüfer and Meyer raise concerns over the mitochondrial DNA (mtDNA) results we reported for the Hoyo Negro individual, citing failure of a portion of these data to conform to their expectations of ancient DNA (aDNA). Because damage patterns in aDNA vary, outright rejection of our findings on this basis is unwarranted, especially in light of our other observations. Copyright © 2015, American Association for the Advancement of Science.
Almathen, Faisal; Charruau, Pauline; Mohandesan, Elmira; Mwacharo, Joram M.; Orozco-terWengel, Pablo; Pitt, Daniel; Abdussamad, Abdussamad M.; Uerpmann, Margarethe; Uerpmann, Hans-Peter; De Cupere, Bea; Magee, Peter; Alnaqeeb, Majed A.; Salim, Bashir; Raziq, Abdul; Dessie, Tadelle; Abdelhadi, Omer M.; Banabazi, Mohammad H.; Al-Eknah, Marzook; Walzer, Chris; Faye, Bernard; Hofreiter, Michael; Peters, Joris; Hanotte, Olivier
2016-01-01
Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments. PMID:27162355
Witas, Henryk W.; Tomczyk, Jacek; Jędrychowska-Dańska, Krystyna; Chaubey, Gyaneshwer; Płoszaj, Tomasz
2013-01-01
Ancient DNA methodology was applied to analyse sequences extracted from freshly unearthed remains (teeth) of 4 individuals deeply deposited in slightly alkaline soil of the Tell Ashara (ancient Terqa) and Tell Masaikh (ancient Kar-Assurnasirpal) Syrian archaeological sites, both in the middle Euphrates valley. Dated to the period between 2.5 Kyrs BC and 0.5 Kyrs AD the studied individuals carried mtDNA haplotypes corresponding to the M4b1, M49 and/or M61 haplogroups, which are believed to have arisen in the area of the Indian subcontinent during the Upper Paleolithic and are absent in people living today in Syria. However, they are present in people inhabiting today’s Tibet, Himalayas, India and Pakistan. We anticipate that the analysed remains from Mesopotamia belonged to people with genetic affinity to the Indian subcontinent since the distribution of identified ancient haplotypes indicates solid link with populations from the region of South Asia-Tibet (Trans-Himalaya). They may have been descendants of migrants from much earlier times, spreading the clades of the macrohaplogroup M throughout Eurasia and founding regional Mesopotamian groups like that of Terqa or just merchants moving along trade routes passing near or through the region. None of the successfully identified nuclear alleles turned out to be ΔF508 CFTR, LCT-13910T or Δ32 CCR5. PMID:24040024
Toward a new history and geography of human genes informed by ancient DNA.
Pickrell, Joseph K; Reich, David
2014-09-01
Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture, and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world's human populations. In light of this we argue that it is time to critically reevaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Majtánová, Zuzana; Symonová, Radka; Arias-Rodriguez, Lenin; Sallan, Lauren; Ráb, Petr
2017-11-01
Bowfin belongs to an ancient lineage of nonteleost ray-finned fishes (actinopterygians) and is the only extant survivor of a once diverged group, the Halecomorphi or Amiiformes. Owing to the scarcity of extant nonteleost ray-finned lineages, also referred as "living fossils," their phylogenetic interrelationships have been the target of multiple hypotheses concerning their sister group relationships. Molecular and morphological data sets have produced controversial results; bowfin is considered as either the sister group to genome-duplicated teleosts (together forming the group of Halecostomi) or to gars (Lepisosteiformes; together forming the group of Holostei). However, any detailed cytogenetic analysis of bowfin chromosomes has never been performed to address this issue. Here we examined bowfin chromosomes by conventional (Giemsa-staining, C-banding, base-specific fluorescence and silver staining) and molecular (FISH with rDNA probes) cytogenetic protocols. We identified diploid chromosome number 2n = 46 with a middle-sized submetacentric chromosome pair as the major ribosomal DNA-bearing (45S rDNA), GC-positive and silver-positive element. The minor rDNA (5S rDNA) sites were localized in the pericentromeric region of one middle-sized acrocentric chromosome pair. Comparison with available cytogenetic data of other nonteleost actinopterygians (bichirs, sturgeons, gars) and teleost species including representative of basally branching lineages showed bowfin chromosomal characteristics more similar to the teleost type than to any other nonteleosts. Particularly striking differences were identified between bowfin and gars, the latter of which were found to mimic mammalian AT/GC genomic organisation. Such conclusion however contradicts the most recent phylogenomic results and raises the question what states are ancestral and what are derived. © 2017 Wiley Periodicals, Inc.
Ancient DNA sequence revealed by error-correcting codes.
Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo
2015-07-10
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.
Ancient DNA sequence revealed by error-correcting codes
Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo
2015-01-01
A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228
Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene.
Hofman, Courtney A; Rick, Torben C; Fleischer, Robert C; Maldonado, Jesús E
2015-09-01
There is growing consensus that we have entered the Anthropocene, a geologic epoch characterized by human domination of the ecosystems of the Earth. With the future uncertain, we are faced with understanding how global biodiversity will respond to anthropogenic perturbations. The archaeological record provides perspective on human-environment relations through time and across space. Ancient DNA (aDNA) analyses of plant and animal remains from archaeological sites are particularly useful for understanding past human-environment interactions, which can help guide conservation decisions during the environmental changes of the Anthropocene. Here, we define the emerging field of conservation archaeogenomics, which integrates archaeological and genomic data to generate baselines or benchmarks for scientists, managers, and policy-makers by evaluating climatic and human impacts on past, present, and future biodiversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lafferty, Kevin D.; Hopkins, Skylar R.
2018-01-01
Having split early from Gondwana, Zealandia (now modern New Zealand) escaped discovery until the late 13th century, and therefore remains an important glimpse into a human-free world. Without humans or other land mammals, diverse and peculiar birds evolved in isolation, including several flightless moa species, the giant pouakai eagle (Harpagornis moorei), the kiwi (Apteryx mantelli), and the kakapo parrot (Strigops habroptila). This unique community has fascinated paleoecologists, who have spent almost two centuries devising new ways to glean information from ancient bird remains. In PNAS, Boast et al. (1) apply one recent technological advance, ancient DNA (aDNA) metabarcoding, to confirm previous discoveries and report new details about moa and kakapo diets, parasites, and niches. Their efforts confirm Zealandia was a lot different before humans arrived.
A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts
Lu, Tzu-Chiao; Leu, Jun-Yi; Lin, Wen-Chang
2017-01-01
Abstract Novel genes arising from random DNA sequences (de novo genes) have been suggested to be widespread in the genomes of different organisms. However, our knowledge about the origin and evolution of de novo genes is still limited. To systematically understand the general features of de novo genes, we established a robust pipeline to analyze >20,000 transcript-supported coding sequences (CDSs) from the budding yeast Saccharomyces cerevisiae. Our analysis pipeline combined phylogeny, synteny, and sequence alignment information to identify possible orthologs across 20 Saccharomycetaceae yeasts and discovered 4,340 S. cerevisiae-specific de novo genes and 8,871 S. sensu stricto-specific de novo genes. We further combine information on CDS positions and transcript structures to show that >65% of de novo genes arose from transcript isoforms of ancient genes, especially in the upstream and internal regions of ancient genes. Fourteen identified de novo genes with high transcript levels were chosen to verify their protein expressions. Ten of them, including eight transcript isoform-associated CDSs, showed translation signals and five proteins exhibited specific cytosolic localizations. Our results suggest that de novo genes frequently arise in the S. sensu stricto complex and have the potential to be quickly integrated into ancient cellular network. PMID:28981695
Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru
2017-01-01
Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.
Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru
2017-01-01
Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096
Fang, Huimin; Huangfu, Liexiang; Chen, Rujia; Li, Pengcheng; Xu, Shuhui; Zhang, Enying; Cao, Wei; Liu, Li; Yao, Youli; Liang, Guohua; Xu, Chenwu; Zhou, Yong; Yang, Zefeng
2017-08-24
The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.
[When history meets molecular medicine: molecular history of human tuberculosis].
Ottini, Laura; Falchetti, Mario
2010-01-01
Tuberculosis represents one of the humankind's most socially devastating diseases. Despite a long history of medical research and the development of effective therapies, this disease remains a global health danger even in the 21st century. Tuberculosis may cause death but infected people with effective immunity may remain healthy for years, suggesting long-term host-pathogen co-existence. Because of its antiquity, a supposed association with human settlements and the tendency to leave typical lesions on skeletal and mummified remains, tuberculosis has been the object of intensive multidisciplinary studies, including paleo-pathological research. During the past 10 years molecular paleo-pathology developed as a new scientific discipline allowing the study of ancient pathogens by direct detection of their DNA. In this work, we reviewed evidences for tuberculosis in ancient human remains, current methods for identifying ancient mycobacterial DNA and explored current theories of Mycobacterium tuberculosis evolution and their implications in the global development of tuberculosis looking into the past and present at the same time.
Origins and genetic legacies of the Caribbean Taino
Sikora, Martin; Gopalakrishnan, Shyam; Cassidy, Lara M.; Maisano Delser, Pierpaolo; Sandoval Velasco, Marcela; Rasmussen, Simon; Homburger, Julian R.; Ávila-Arcos, María C.; Allentoft, Morten E.; Moreno-Mayar, J. Víctor; Renaud, Gabriel; Gómez-Carballa, Alberto; Laffoon, Jason E.; Hopkins, Rachel J. A.; Higham, Thomas F. G.; Carr, Robert S.; Schaffer, William C.; Day, Jane S.; Hoogland, Menno; Salas, Antonio; Bustamante, Carlos D.; Nielsen, Rasmus; Bradley, Daniel G.; Hofman, Corinne L.; Willerslev, Eske
2018-01-01
The Caribbean was one of the last parts of the Americas to be settled by humans, but how and when the islands were first occupied remains a matter of debate. Ancient DNA can help answering these questions, but the work has been hampered by poor DNA preservation. We report the genome sequence of a 1,000-year-old Lucayan Taino individual recovered from the site of Preacher’s Cave in the Bahamas. We sequenced her genome to 12.4-fold coverage and show that she is genetically most closely related to present-day Arawakan speakers from northern South America, suggesting that the ancestors of the Lucayans originated there. Further, we find no evidence for recent inbreeding or isolation in the ancient genome, suggesting that the Lucayans had a relatively large effective population size. Finally, we show that the native American components in some present-day Caribbean genomes are closely related to the ancient Taino, demonstrating an element of continuity between precontact populations and present-day Latino populations in the Caribbean. PMID:29463742
Speller, Camilla F.; Kemp, Brian M.; Wyatt, Scott D.; Monroe, Cara; Lipe, William D.; Arndt, Ursula M.; Yang, Dongya Y.
2010-01-01
Although the cultural and nutritive importance of the turkey (Meleagris gallopavo) to precontact Native Americans and contemporary people worldwide is clear, little is known about the domestication of this bird compared to other domesticates. Mitochondrial DNA analysis of 149 turkey bones and 29 coprolites from 38 archaeological sites (200 BC–AD 1800) reveals a unique domesticated breed in the precontact Southwestern United States. Phylogeographic analyses indicate that this domestic breed originated from outside the region, but rules out the South Mexican domestic turkey (Meleagris gallopavo gallopavo) as a progenitor. A strong genetic bottleneck within the Southwest turkeys also reflects intensive human selection and breeding. This study points to at least two occurrences of turkey domestication in precontact North America and illuminates the intensity and sophistication of New World animal breeding practices. PMID:20133614
Hutchinson, William F; Culling, Mark; Orton, David C; Hänfling, Bernd; Lawson Handley, Lori; Hamilton-Dyer, Sheila; O'Connell, Tamsin C; Richards, Michael P; Barrett, James H
2015-09-01
A comparison of ancient DNA (single-nucleotide polymorphisms) and carbon and nitrogen stable isotope evidence suggests that stored cod provisions recovered from the wreck of the Tudor warship Mary Rose, which sank in the Solent, southern England, in 1545, had been caught in northern and transatlantic waters such as the northern North Sea and the fishing grounds of Iceland and Newfoundland. This discovery, underpinned by control data from archaeological samples of cod bones from potential source regions, illuminates the role of naval provisioning in the early development of extensive sea fisheries, with their long-term economic and ecological impacts.
Hutchinson, William F.; Culling, Mark; Orton, David C.; Hänfling, Bernd; Lawson Handley, Lori; Hamilton-Dyer, Sheila; O'Connell, Tamsin C.; Richards, Michael P.; Barrett, James H.
2015-01-01
A comparison of ancient DNA (single-nucleotide polymorphisms) and carbon and nitrogen stable isotope evidence suggests that stored cod provisions recovered from the wreck of the Tudor warship Mary Rose, which sank in the Solent, southern England, in 1545, had been caught in northern and transatlantic waters such as the northern North Sea and the fishing grounds of Iceland and Newfoundland. This discovery, underpinned by control data from archaeological samples of cod bones from potential source regions, illuminates the role of naval provisioning in the early development of extensive sea fisheries, with their long-term economic and ecological impacts. PMID:26473047
Absence of ancient DNA in sub-fossil insect inclusions preserved in 'Anthropocene' Colombian copal.
Penney, David; Wadsworth, Caroline; Fox, Graeme; Kennedy, Sandra L; Preziosi, Richard F; Brown, Terence A
2013-01-01
Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in 'Anthropocene' Colombian copal, dated to 'post-Bomb' and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal.
Absence of Ancient DNA in Sub-Fossil Insect Inclusions Preserved in ‘Anthropocene’ Colombian Copal
Penney, David; Wadsworth, Caroline; Fox, Graeme; Kennedy, Sandra L.; Preziosi, Richard F.; Brown, Terence A.
2013-01-01
Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in ‘Anthropocene’ Colombian copal, dated to ‘post-Bomb’ and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal. PMID:24039876
Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent
Chan, Yvonne L; Lacey, Eileen A; Pearson, Oliver P; Hadly, Elizabeth A
2005-01-01
Understanding how animal populations have evolved in response to palaeoenvironmental conditions is essential for predicting the impact of future environmental change on current biodiversity. Analyses of ancient DNA provide a unique opportunity to track population responses to prehistoric environments. We explored the effects of palaeoenvironmental change on the colonial tuco-tuco (Ctenomys sociabilis), a highly endemic species of Patagonian rodent that is currently listed as threatened by the IUCN. By combining surveys of modern genetic variation from throughout this species' current geographic range with analyses of DNA samples from fossil material dating back to 10 000 ybp, we demonstrate a striking decline in genetic diversity that is concordant with environmental events in the study region. Our results highlight the importance of non-anthropogenic factors in loss of diversity, including reductions in smaller mammals such as rodents. PMID:17148223
Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj
2010-12-01
Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct analysis of genetic material is not possible.
2010-01-01
Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct analysis of genetic material is not possible. PMID:21122100
Ancient DNA reveals kinship burial patterns of a pre-Columbian Andean community
2012-01-01
Background A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves. Results The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y–chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave. Conclusions Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site was organized into extended family groups that were buried in different graves. This finding is in congruence with known models of social organization of Andean communities. PMID:22524324
Hakonen, Anna H.; Heiskanen, Silja; Juvonen, Vesa; Lappalainen, Ilse; Luoma, Petri T.; Rantamäki, Maria; Goethem, Gert Van; Löfgren, Ann; Hackman, Peter; Paetau, Anders; Kaakkola, Seppo; Majamaa, Kari; Varilo, Teppo; Udd, Bjarne; Kääriäinen, Helena; Bindoff, Laurence A.; Suomalainen, Anu
2005-01-01
Mutations in the catalytic subunit of the mitochondrial DNA polymerase γ (POLG) have been found to be an important cause of neurological disease. Recently, we and collaborators reported a new neurodegenerative disorder with autosomal recessive ataxia in four patients homozygous for two amino acid changes in POLG: W748S in cis with E1143G. Here, we studied the frequency of this allele and found it to be among the most common genetic causes of inherited ataxia in Finland. We identified 27 patients with mitochondrial recessive ataxia syndrome (MIRAS) from 15 Finnish families, with a carrier frequency in the general population of 1:125. Since the mutation pair W748S+E1143G has also been described in European patients, we examined the haplotypes of 13 non-Finnish, European patients with the W748S mutation. Haplotype analysis revealed that all the chromosomes carrying these two changes, in patients from Finland, Norway, the United Kingdom, and Belgium, originate from a common ancient founder. In Finland and Norway, long, common, northern haplotypes, outside the core haplotype, could be identified. Despite having identical homozygous mutations, the Finnish patients with this adult- or juvenile-onset disease had surprisingly heterogeneous phenotypes, albeit with a characteristic set of features, including ataxia, peripheral neuropathy, dysarthria, mild cognitive impairment, involuntary movements, psychiatric symptoms, and epileptic seizures. The high carrier frequency in Finland, the high number of patients in Norway, and the ancient European founder chromosome indicate that this newly identified ataxia should be considered in the first-line differential diagnosis of progressive ataxia syndromes. PMID:16080118
DNA and bone structure preservation in medieval human skeletons.
Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B
2015-06-01
Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
High-Throughput DNA sequencing of ancient wood.
Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic
2018-03-01
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.
Donoghue, Helen D.; Lee, Oona Y.-C.; Minnikin, David E.; Besra, Gurdyal S.; Taylor, John H.; Spigelman, Mark
2010-01-01
‘Dr Granville's mummy’ was described to the Royal Society of London in 1825 and was the first ancient Egyptian mummy to be subjected to a scientific autopsy. The remains are those of a woman, Irtyersenu, aged about 50, from the necropolis of Thebes and dated to about 600 BC. Augustus Bozzi Granville (1783–1872), an eminent physician and obstetrician, described many organs still in situ and attributed the cause of death to a tumour of the ovary. However, subsequent histological investigations indicate that the tumour is a benign cystadenoma. Histology of the lungs demonstrated a potentially fatal pulmonary exudate and earlier studies attempted to associate this with particular disease conditions. Palaeopathology and ancient DNA analyses show that tuberculosis was widespread in ancient Egypt, so a systematic search for tuberculosis was made, using specific DNA and lipid biomarker analyses. Clear evidence for Mycobacterium tuberculosis complex DNA was obtained in lung tissue and gall bladder samples, based on nested PCR of the IS6110 locus. Lung and femurs were positive for specific M. tuberculosis complex cell-wall mycolic acids, demonstrated by high-performance liquid chromatography of pyrenebutyric acid–pentafluorobenzyl mycolates. Therefore, tuberculosis is likely to have been the major cause of death of Irtyersenu. PMID:19793751
NASA Astrophysics Data System (ADS)
Letts, Brandon; Shapiro, Beth
2010-05-01
Dasypus bellus, the 'beautiful armadillo,' is well known as a casualty of the Pleistocene megafaunal mass extinction event. Appearing in the fossil record about 2.5 Mya, D. bellus was widespread throughout the mid to southern United States and Mexico until it went extinct by about 10 kya. It was replaced by D. novemcinctus, the nine-banded armadillo, which is morphologically identical but smaller. The exact taxonomic status of D. bellus and its phylogenetic relationship with D. novemcinctus has been a subject of debate. In particular, it remains unresolved whether D. bellus was more closely related to North American than South American D. novemcinctus. To address this, we extracted and sequenced fragments of ancient mitochondrial DNA from surprisingly well-preserved remains of D. bellus recovered from Mefford Cave in Florida. Our results reveal a surprisingly close relationship between the extinct D. bellus and North American D. novemcinctus. Although southern climates have been considered inhospitable for the preservation of ancient DNA, thousands of bones per individual and the propensity of the armadillo to seek out shelter in caves makes preservation more likely than for other organisms. The armadillo may therefore make an excellent proxy organism for investigating the influence of climate change on animal populations south of the cold permafrost regions.
Assessing the Relationship of Ancient and Modern Populations
Schraiber, Joshua G.
2018-01-01
Genetic material sequenced from ancient samples is revolutionizing our understanding of the recent evolutionary past. However, ancient DNA is often degraded, resulting in low coverage, error-prone sequencing. Several solutions exist to this problem, ranging from simple approach, such as selecting a read at random for each site, to more complicated approaches involving genotype likelihoods. In this work, we present a novel method for assessing the relationship of an ancient sample with a modern population, while accounting for sequencing error and postmortem damage by analyzing raw reads from multiple ancient individuals simultaneously. We show that, when analyzing SNP data, it is better to sequence more ancient samples to low coverage: two samples sequenced to 0.5× coverage provide better resolution than a single sample sequenced to 2× coverage. We also examined the power to detect whether an ancient sample is directly ancestral to a modern population, finding that, with even a few high coverage individuals, even ancient samples that are very slightly diverged from the modern population can be detected with ease. When we applied our approach to European samples, we found that no ancient samples represent direct ancestors of modern Europeans. We also found that, as shown previously, the most ancient Europeans appear to have had the smallest effective population sizes, indicating a role for agriculture in modern population growth. PMID:29167200
Evidence of Coat Color Variation Sheds New Light on Ancient Canids
Ollivier, Morgane; Tresset, Anne; Hitte, Christophe; Petit, Coraline; Hughes, Sandrine; Gillet, Benjamin; Duffraisse, Marilyne; Pionnier-Capitan, Maud; Lagoutte, Laetitia; Arbogast, Rose-Marie; Balasescu, Adrian; Boroneant, Adina; Mashkour, Marjan; Vigne, Jean-Denis; Hänni, Catherine
2013-01-01
We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-β-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant KB allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10 000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process. PMID:24098367
Speller, Camilla; van den Hurk, Youri; Charpentier, Anne; Rodrigues, Ana; Gardeisen, Armelle; Wilkens, Barbara; McGrath, Krista; Rowsell, Keri; Spindler, Luke; Collins, Matthew
2016-01-01
Over the last few centuries, many cetacean species have witnessed dramatic global declines due to industrial overharvesting and other anthropogenic influences, and thus are key targets for conservation. Whale bones recovered from archaeological and palaeontological contexts can provide essential baseline information on the past geographical distribution and abundance of species required for developing informed conservation policies. Here we review the challenges with identifying whale bones through traditional anatomical methods, as well as the opportunities provided by new molecular analyses. Through a case study focused on the North Sea, we demonstrate how the utility of this (pre)historic data is currently limited by a lack of accurate taxonomic information for the majority of ancient cetacean remains. We then discuss current opportunities presented by molecular identification methods such as DNA barcoding and collagen peptide mass fingerprinting (zooarchaeology by mass spectrometry), and highlight the importance of molecular identifications in assessing ancient species’ distributions through a case study focused on the Mediterranean. We conclude by considering high-throughput molecular approaches such as hybridization capture followed by next-generation sequencing as cost-effective approaches for enhancing the ecological informativeness of these ancient sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481784
Evidence of coat color variation sheds new light on ancient canids.
Ollivier, Morgane; Tresset, Anne; Hitte, Christophe; Petit, Coraline; Hughes, Sandrine; Gillet, Benjamin; Duffraisse, Marilyne; Pionnier-Capitan, Maud; Lagoutte, Laetitia; Arbogast, Rose-Marie; Balasescu, Adrian; Boroneant, Adina; Mashkour, Marjan; Vigne, Jean-Denis; Hänni, Catherine
2013-01-01
We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-β-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant K(B) allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10,000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.
Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G.; de-la-Rua, Concepcion
2015-01-01
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations. PMID:26053041
Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G; de-la-Rua, Concepcion
2015-01-01
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.
Margesin, Rosa; Zhang, De-Chao; Frasson, David; Brouchkov, Anatoli
2016-02-01
The bacterial strain N1-38 T was isolated from ancient Siberian permafrost sediment. The strain was Gram-reaction-negative, motile by gliding, rod-shaped and psychrophilic, and showed good growth over a temperature range of - 5 to 25 °C. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain N1-38 T was most closely related to members of the genus Glaciimonas and shared the highest 16S rRNA gene sequence similarities with the type strains of Glaciimonas alpina (99.3 %), Glaciimonas immobilis (98.9 %) and Glaciimonas singularis (96.5 %). The predominant cellular fatty acids of strain N1-38 T were summed feature 3 (C 16 : 1 ω7 c and/or iso-C 15 : 0 2-OH), C 16 : 0 and C 18 : 1 ω7 c . The major respiratory quinone was ubiquinone 8 and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genomic DNA G+C content was 53.0 mol%. Combined data of phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain N1-38 T represents a novel species of the genus Glaciimonas , for which the name Glaciimonas frigoris sp. nov. is proposed. The type strain is N1-38 T ( = LMG 28868 T = CCOS 838 T ). An emended description of the genus Glaciimonas is also provided.
Habenicht, A; Quesada, A; Cerff, R
1997-10-01
A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.
Rocky Mountain Center for Conservation Genetics and Systematics
Oyler-McCance, S.J.; Quinn, T.W.
2005-01-01
The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.
2010-01-01
Background The Tarim Basin, located on the ancient Silk Road, played a very important role in the history of human migration and cultural communications between the West and the East. However, both the exact period at which the relevant events occurred and the origins of the people in the area remain very obscure. In this paper, we present data from the analyses of both Y chromosomal and mitochondrial DNA (mtDNA) derived from human remains excavated from the Xiaohe cemetery, the oldest archeological site with human remains discovered in the Tarim Basin thus far. Results Mitochondrial DNA analysis showed that the Xiaohe people carried both the East Eurasian haplogroup (C) and the West Eurasian haplogroups (H and K), whereas Y chromosomal DNA analysis revealed only the West Eurasian haplogroup R1a1a in the male individuals. Conclusion Our results demonstrated that the Xiaohe people were an admixture from populations originating from both the West and the East, implying that the Tarim Basin had been occupied by an admixed population since the early Bronze Age. To our knowledge, this is the earliest genetic evidence of an admixed population settled in the Tarim Basin. PMID:20163704
Hernández, Candela L; Dugoujon, Jean M; Novelletto, Andrea; Rodríguez, Juan N; Cuesta, Pedro; Calderón, Rosario
2017-05-19
The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Ishiguro, Naotaka; Inoshima, Yasuo; Yanai, Tokuma; Sasaki, Motoki; Matsui, Akira; Kikuchi, Hiroki; Maruyama, Masashi; Hongo, Hitomi; Vostretsov, Yuri E; Gasilin, Viatcheslav; Kosintsev, Pavel A; Quanjia, Chen; Chunxue, Wang
2016-02-01
The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.
Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).
Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli
2018-02-26
Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.
Phylogeographic Differentiation of Mitochondrial DNA in Han Chinese
Yao, Yong-Gang; Kong, Qing-Peng; Bandelt, Hans-Jürgen; Kivisild, Toomas; Zhang, Ya-Ping
2002-01-01
To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171–10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment–length–polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies. PMID:11836649
Müller, Romy; Roberts, Charlotte A; Brown, Terence A
2014-02-01
Tuberculosis is known to have afflicted humans throughout history and re-emerged towards the end of the 20th century, to an extent that it was declared a global emergency in 1993. The aim of this study was to apply a rigorous analytical regime to the detection of Mycobacterium tuberculosis complex (MTBC) DNA in 77 bone and tooth samples from 70 individuals from Britain and continental Europe, spanning the 1st-19th centuries AD. We performed the work in dedicated ancient DNA facilities designed to prevent all types of modern contamination, we checked the authenticity of all products obtained by the polymerase chain reaction, and we based our conclusions on up to four replicate experiments for each sample, some carried out in an independent laboratory. We identified 12 samples that, according to our strict criteria, gave definite evidence for the presence of MTBC DNA, and another 22 that we classified as "probable" or "possible." None of the definite samples came from vertebrae displaying lesions associated with TB. Instead, eight were from ribs displaying visceral new bone formation, one was a tooth from a skeleton with rib lesions, one was taken from a skeleton with endocranial lesions, one from an individual with lesions to the sacrum and sacroiliac joint and the last was from an individual with no lesions indicative of TB or possible TB. Our results add to information on the past temporal and geographical distribution of TB and affirm the suitability of ribs for studying ancient TB. Copyright © 2013 Wiley Periodicals, Inc.
Ottoni, Claudio; Girdland Flink, Linus; Evin, Allowen; Geörg, Christina; De Cupere, Bea; Van Neer, Wim; Bartosiewicz, László; Linderholm, Anna; Barnett, Ross; Peters, Joris; Decorte, Ronny; Waelkens, Marc; Vanderheyden, Nancy; Ricaut, François-Xavier; Çakırlar, Canan; Çevik, Özlem; Hoelzel, A. Rus; Mashkour, Marjan; Mohaseb Karimlu, Azadeh Fatemeh; Sheikhi Seno, Shiva; Daujat, Julie; Brock, Fiona; Pinhasi, Ron; Hongo, Hitomi; Perez-Enciso, Miguel; Rasmussen, Morten; Frantz, Laurent; Megens, Hendrik-Jan; Crooijmans, Richard; Groenen, Martien; Arbuckle, Benjamin; Benecke, Nobert; Strand Vidarsdottir, Una; Burger, Joachim; Cucchi, Thomas; Dobney, Keith; Larson, Greger
2013-01-01
Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages. PMID:23180578
García-Garcerà, Marc; Gigli, Elena; Sanchez-Quinto, Federico; Ramirez, Oscar; Calafell, Francesc; Civit, Sergi; Lalueza-Fox, Carles
2011-01-01
Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants. We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.
Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A
2006-03-01
Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.
Orlando, Ludovic
2014-06-01
By combining state-of-the-art approaches in ancient genomics, Meyer and co-workers have reconstructed the mitochondrial sequence of an archaic hominin that lived at Sierra de Atapuerca, Spain about 400,000 years ago. This achievement follows recent advances in molecular anthropology that delivered the genome sequence of younger archaic hominins, such as Neanderthals and Denisovans. Molecular phylogenetic reconstructions placed the Atapuercan as a sister group to Denisovans, although its morphology suggested closer affinities with Neanderthals. In addition to possibly challenging our interpretation of the fossil record, this study confirms that genomic information can be recovered from extremely damaged DNA molecules, even in the presence of significant levels of human contamination. Together with the recent characterization of a 700,000-year-old horse genome, this study opens the Middle Pleistocene to genomics, thereby extending the scope of ancient DNA to the last million years. © 2014 WILEY Periodicals, Inc.
Origins and genetic legacies of the Caribbean Taino.
Schroeder, Hannes; Sikora, Martin; Gopalakrishnan, Shyam; Cassidy, Lara M; Maisano Delser, Pierpaolo; Sandoval Velasco, Marcela; Schraiber, Joshua G; Rasmussen, Simon; Homburger, Julian R; Ávila-Arcos, María C; Allentoft, Morten E; Moreno-Mayar, J Víctor; Renaud, Gabriel; Gómez-Carballa, Alberto; Laffoon, Jason E; Hopkins, Rachel J A; Higham, Thomas F G; Carr, Robert S; Schaffer, William C; Day, Jane S; Hoogland, Menno; Salas, Antonio; Bustamante, Carlos D; Nielsen, Rasmus; Bradley, Daniel G; Hofman, Corinne L; Willerslev, Eske
2018-03-06
The Caribbean was one of the last parts of the Americas to be settled by humans, but how and when the islands were first occupied remains a matter of debate. Ancient DNA can help answering these questions, but the work has been hampered by poor DNA preservation. We report the genome sequence of a 1,000-year-old Lucayan Taino individual recovered from the site of Preacher's Cave in the Bahamas. We sequenced her genome to 12.4-fold coverage and show that she is genetically most closely related to present-day Arawakan speakers from northern South America, suggesting that the ancestors of the Lucayans originated there. Further, we find no evidence for recent inbreeding or isolation in the ancient genome, suggesting that the Lucayans had a relatively large effective population size. Finally, we show that the native American components in some present-day Caribbean genomes are closely related to the ancient Taino, demonstrating an element of continuity between precontact populations and present-day Latino populations in the Caribbean. Copyright © 2018 the Author(s). Published by PNAS.
Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M
2010-04-01
The evolutionary history of the endemic Lake Tanganyika cichlid tribe Tropheini, the sister group of the species flocks of Lake Malawi and the Lake Victoria region, was reconstructed from 2009 bp DNA sequence of two mitochondrial genes (ND2 and control region) and from 1293 AFLP markers. A period of rapid cladogenesis at the onset of the diversification of the Tropheini produced a multitude of specialized, predominantly rock-dwelling aufwuchs-feeders that now dominate in Lake Tanganyika's shallow habitat. Nested within the stenotopic rock-dwellers is a monophyletic group of species, which also utilize more sediment-rich habitat. Most of the extant species date back to at least 0.7 million years ago. Several instances of disagreement between AFLP and mtDNA tree topology are attributed to ancient incomplete lineage sorting, introgression and hybridization. A large degree of correspondence between AFLP clustering and trophic types indicated fewer cases of parallel evolution of trophic ecomorphology than previously inferred from mitochondrial data. (c) 2009 Elsevier Inc. All rights reserved.
Ancient DNA provides new insights into the history of south Siberian Kurgan people.
Keyser, Christine; Bouakaze, Caroline; Crubézy, Eric; Nikolaev, Valery G; Montagnon, Daniel; Reis, Tatiana; Ludes, Bertrand
2009-09-01
To help unravel some of the early Eurasian steppe migration movements, we determined the Y-chromosomal and mitochondrial haplotypes and haplogroups of 26 ancient human specimens from the Krasnoyarsk area dated from between the middle of the second millennium BC. to the fourth century AD. In order to go further in the search of the geographic origin and physical traits of these south Siberian specimens, we also typed phenotype-informative single nucleotide polymorphisms. Our autosomal, Y-chromosomal and mitochondrial DNA analyses reveal that whereas few specimens seem to be related matrilineally or patrilineally, nearly all subjects belong to haplogroup R1a1-M17 which is thought to mark the eastward migration of the early Indo-Europeans. Our results also confirm that at the Bronze and Iron Ages, south Siberia was a region of overwhelmingly predominant European settlement, suggesting an eastward migration of Kurgan people across the Russo-Kazakh steppe. Finally, our data indicate that at the Bronze and Iron Age timeframe, south Siberians were blue (or green)-eyed, fair-skinned and light-haired people and that they might have played a role in the early development of the Tarim Basin civilization. To the best of our knowledge, no equivalent molecular analysis has been undertaken so far.
Extinction and recolonization of coastal megafauna following human arrival in New Zealand
Collins, Catherine J.; Rawlence, Nicolas J.; Prost, Stefan; Anderson, Christian N. K.; Knapp, Michael; Scofield, R. Paul; Robertson, Bruce C.; Smith, Ian; Matisoo-Smith, Elizabeth A.; Chilvers, B. Louise; Waters, Jonathan M.
2014-01-01
Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction. PMID:24827440
Inskip, Sarah A.; Taylor, G. Michael; Zakrzewski, Sonia R.; Mays, Simon A.; Pike, Alistair W. G.; Llewellyn, Gareth; Williams, Christopher M.; Lee, Oona Y-C; Wu, Houdini H. T.; Minnikin, David E.; Besra, Gurdyal S.; Stewart, Graham R.
2015-01-01
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21–35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America. PMID:25970602
Inskip, Sarah A; Taylor, G Michael; Zakrzewski, Sonia R; Mays, Simon A; Pike, Alistair W G; Llewellyn, Gareth; Williams, Christopher M; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Stewart, Graham R
2015-01-01
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21-35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America.
Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus.
Weyrich, Laura S; Duchene, Sebastian; Soubrier, Julien; Arriola, Luis; Llamas, Bastien; Breen, James; Morris, Alan G; Alt, Kurt W; Caramelli, David; Dresely, Veit; Farrell, Milly; Farrer, Andrew G; Francken, Michael; Gully, Neville; Haak, Wolfgang; Hardy, Karen; Harvati, Katerina; Held, Petra; Holmes, Edward C; Kaidonis, John; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Semal, Patrick; Soltysiak, Arkadiusz; Townsend, Grant; Usai, Donatella; Wahl, Joachim; Huson, Daniel H; Dobney, Keith; Cooper, Alan
2017-04-20
Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.
[Biological evolution and ancient DNA].
Debruyne, Régis; Barriel, Véronique
2006-05-01
Twenty years after the advent of ancient DNA studies, this discipline seems to have reached the maturity formerly lacking to the fulfilment of its objectives. In its early development paleogenetics, as it is now acknowledged, had to cope with very limited data due to the technical limitations of molecular biology. It led to phylogenetic assumptions often limited in their scope and sometimes non-focused or even spurious results that cast the reluctance of the scientific community. This time seems now over and huge amounts of sequences have become available which overcome the former limitations and bridge the gap between paleogenetics, genomics and population biology. The recent studies over the charismatic woolly mammoth (independent sequencing of the whole mitochondrial genome and of millions of base pairs of the nuclear genome) exemplify the growing accuracy of ancient DNA studies thanks to new molecular approaches. From the earliest publications up to now, the number of mammoth nucleotides was multiplied by 100,000. Likewise, populational approaches of ice-age taxa provide new historical scenarios about the diversification and extinction of the Pleistocene megafauna on the one hand, and about the processes of domestication of animal and vegetal species by Man on the other. They also shed light on the differential structure of molecular diversity between short-term populational research (below 2 My) and long-term (over 2 My) phylogenetic approaches. All those results confirm the growing importance of paleogenetics among the evolutionary biology disciplines.
Godbout, Julie; Yeh, Francis C; Bousquet, Jean
2012-01-01
Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization. PMID:22957188
Amanzougaghene, Nadia; Mumcuoglu, Kosta Y; Fenollar, Florence; Alfi, Shir; Yesilyurt, Gonca; Raoult, Didier; Mediannikov, Oleg
2016-01-01
The human head louse, Pediculus humanus capitis, is subdivided into several significantly divergent mitochondrial haplogroups, each with particular geographical distributions. Historically, they are among the oldest human parasites, representing an excellent marker for tracking older events in human evolutionary history. In this study, ancient DNA analysis using real-time polymerase chain reaction (qPCR), combined with conventional PCR, was applied to the remains of twenty-four ancient head lice and their eggs from the Roman period which were recovered from Israel. The lice and eggs were found in three combs, one of which was recovered from archaeological excavations in the Hatzeva area of the Judean desert, and two of which found in Moa, in the Arava region, close to the Dead Sea. Results show that the head lice remains dating approximately to 2,000 years old have a cytb haplogroup A, which is worldwide in distribution, and haplogroup B, which has thus far only been found in contemporary lice from America, Europe, Australia and, most recently, Africa. More specifically, this haplogroup B has a B36 haplotype, the most common among B haplogroups, and has been present in America for at least 4,000 years. The present findings confirm that clade B lice existed, at least in the Middle East, prior to contacts between Native Americans and Europeans. These results support a Middle Eastern origin for clade B followed by its introduction into the New World with the early peoples. Lastly, the presence of Acinetobacter baumannii DNA was demonstrated by qPCR and sequencing in four head lice remains belonging to clade A.
Amanzougaghene, Nadia; Mumcuoglu, Kosta Y.; Fenollar, Florence; Alfi, Shir; Yesilyurt, Gonca; Raoult, Didier; Mediannikov, Oleg
2016-01-01
The human head louse, Pediculus humanus capitis, is subdivided into several significantly divergent mitochondrial haplogroups, each with particular geographical distributions. Historically, they are among the oldest human parasites, representing an excellent marker for tracking older events in human evolutionary history. In this study, ancient DNA analysis using real-time polymerase chain reaction (qPCR), combined with conventional PCR, was applied to the remains of twenty-four ancient head lice and their eggs from the Roman period which were recovered from Israel. The lice and eggs were found in three combs, one of which was recovered from archaeological excavations in the Hatzeva area of the Judean desert, and two of which found in Moa, in the Arava region, close to the Dead Sea. Results show that the head lice remains dating approximately to 2,000 years old have a cytb haplogroup A, which is worldwide in distribution, and haplogroup B, which has thus far only been found in contemporary lice from America, Europe, Australia and, most recently, Africa. More specifically, this haplogroup B has a B36 haplotype, the most common among B haplogroups, and has been present in America for at least 4,000 years. The present findings confirm that clade B lice existed, at least in the Middle East, prior to contacts between Native Americans and Europeans. These results support a Middle Eastern origin for clade B followed by its introduction into the New World with the early peoples. Lastly, the presence of Acinetobacter baumannii DNA was demonstrated by qPCR and sequencing in four head lice remains belonging to clade A. PMID:27741281
Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C.; Riehm, Julia M.
2013-01-01
Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14th century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study. PMID:24069445
Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C; Riehm, Julia M
2013-01-01
Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14(th) century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study.
Mitochondrial DNA, restoring Beethovens music.
Merheb, Maxime; Vaiedelich, Stéphane; Maniguet, Thiérry; Hänni, Catherine
2016-01-01
Great ancient composers have endured many obstacles and constraints which are very difficult to understand unless we perform the restoration process of ancient music. Species identification in leather used during manufacturing is the key step to start such a restoration process in order to produce a facsimile of a museum piano. Our study reveals the species identification in the leather covering the hammer head in a piano created by Erard in 1802. This is the last existing piano similar to the piano that Beethoven used with its leather preserved in its original state. The leather sample was not present in a homogeneous piece, yet combined with glue. Using a DNA extraction method that avoids PCR inhibitors; we discovered that sheep and cattle are the origin of the combination. To identify the species in the leather, we focused on the amounts of mitochondrial DNA in both leather and glue and results have led us to the conclusion that the leather used to cover the hammer head in this piano was made of cattle hide.
Quaternary beetle research: the state of the art
NASA Astrophysics Data System (ADS)
Elias, Scott A.
2006-08-01
Quaternary beetle research has progressed in a variety of ways during the last decade. New kinds of data are being extracted from the fossil specimens themselves, such as ancient DNA and stable isotopes. The ancient DNA studies hold the promise of proving new insights on the stability of beetle genotypes. The study of stable isotopes of H and O from fossil beetle chitin holds the promise of providing an independent proxy for the reconstruction of temperature and precipitation. The discipline is also expanding into previously unstudied regions, such as Australia, New Zealand, and northern Asia. Along with the new study regions, new schools of thought are also forming in the discipline, challenging old research paradigms. This is a necessary step forward for the discipline, as it grows and develops in the 21st Century.
Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.
2015-01-01
Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps. PMID:25992635
D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.
2016-01-01
Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.
Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K
2005-12-01
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.
Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.
2018-01-01
High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531
Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh
2015-01-01
Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873
Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity.
Boessenkool, Sanne; McGlynn, Gayle; Epp, Laura S; Taylor, David; Pimentel, Manuel; Gizaw, Abel; Nemomissa, Sileshi; Brochmann, Christian; Popp, Magnus
2014-04-01
Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited. © 2013 Society for Conservation Biology.
A draft genome of Yersinia pestis from victims of the Black Death
Bos, Kirsten I.; Schuenemann, Verena J.; Golding, G. Brian; Burbano, Hernán A.; Waglechner, Nicholas; Coombes, Brian K.; McPhee, Joseph B.; DeWitte, Sharon N.; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J. D.; Herring, D. Ann; Bauer, Peter; Poinar, Hendrik N.; Krause, Johannes
2013-01-01
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard1. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348–1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347–1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections. PMID:21993626
A draft genome of Yersinia pestis from victims of the Black Death.
Bos, Kirsten I; Schuenemann, Verena J; Golding, G Brian; Burbano, Hernán A; Waglechner, Nicholas; Coombes, Brian K; McPhee, Joseph B; DeWitte, Sharon N; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J D; Herring, D Ann; Bauer, Peter; Poinar, Hendrik N; Krause, Johannes
2011-10-12
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.
A molecular portrait of maternal sepsis from Byzantine Troy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devault, Alison M.; Mortimer, Tatum D.; Kitchen, Andrew
Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While we excavated a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis.Gardnerella vaginalisandStaphylococcus saprophyticusdominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed thatG. vaginalisTroy fell within contemporary genetic diversity, whereasS. saprophyticusTroy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculatemore » that the ecology ofS. saprophyticusinfection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. Our results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections.« less
A molecular portrait of maternal sepsis from Byzantine Troy
Devault, Alison M.; Mortimer, Tatum D.; Kitchen, Andrew; ...
2017-01-10
Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While we excavated a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis.Gardnerella vaginalisandStaphylococcus saprophyticusdominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed thatG. vaginalisTroy fell within contemporary genetic diversity, whereasS. saprophyticusTroy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculatemore » that the ecology ofS. saprophyticusinfection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. Our results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections.« less
Pathogens and host immunity in the ancient human oral cavity
Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico
2014-01-01
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188
Xuan Lin; Nurul Faridi; Claudio Casola
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In  eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to  move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively  ...
Michael K. Schwartz
2007-01-01
Until recently it was assumed that fishers (Martes pennanti) in the Rocky Mountains all were descended from reintroduced stocks. However, a recent study reported that mitochondrial DNA (cytochrome-b and control region) haplotypes of fishers found only in west-central Montana are likely derived from a relic population of fishers that escaped harvests conducted in the...
2011-01-01
Background For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. Results To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates). Conclusions Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry. PMID:21970613
Al-Zahery, Nadia; Pala, Maria; Battaglia, Vincenza; Grugni, Viola; Hamod, Mohammed A; Hooshiar Kashani, Baharak; Olivieri, Anna; Torroni, Antonio; Santachiara-Benerecetti, Augusta S; Semino, Ornella
2011-10-04
For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates). Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry.
Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing
Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.
2015-01-01
Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331
Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther
2017-01-01
The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125
The paradox of HBV evolution as revealed from a 16th century mummy
Duggan, Ana T.; Poinar, Debi; Poinar, Hendrik N.
2018-01-01
Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen. PMID:29300782
Jaeger, Lauren Hubert; Iñiguez, Alena Mayo
2014-01-01
Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694
Pişkin, Evangelia; Engin, Atilla; Özer, Füsun; Yüncü, Eren; Doğan, Şükrü Anıl; Togan, İnci
2013-01-01
In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE). PMID:24349158
Demirci, Sevgin; Koban Baştanlar, Evren; Dağtaş, Nihan Dilşad; Pişkin, Evangelia; Engin, Atilla; Ozer, Füsun; Yüncü, Eren; Doğan, Sükrü Anıl; Togan, Inci
2013-01-01
In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).
Structure Prediction and Analysis of DNA Transposon and LINE Retrotransposon Proteins*
Abrusán, György; Zhang, Yang; Szilágyi, András
2013-01-01
Despite the considerable amount of research on transposable elements, no large-scale structural analyses of the TE proteome have been performed so far. We predicted the structures of hundreds of proteins from a representative set of DNA and LINE transposable elements and used the obtained structural data to provide the first general structural characterization of TE proteins and to estimate the frequency of TE domestication and horizontal transfer events. We show that 1) ORF1 and Gag proteins of retrotransposons contain high amounts of structural disorder; thus, despite their very low conservation, the presence of disordered regions and probably their chaperone function is conserved. 2) The distribution of SCOP classes in DNA transposons and LINEs indicates that the proteins of DNA transposons are more ancient, containing folds that already existed when the first cellular organisms appeared. 3) DNA transposon proteins have lower contact order than randomly selected reference proteins, indicating rapid folding, most likely to avoid protein aggregation. 4) Structure-based searches for TE homologs indicate that the overall frequency of TE domestication events is low, whereas we found a relatively high number of cases where horizontal transfer, frequently involving parasites, is the most likely explanation for the observed homology. PMID:23530042
Leavitt, Dean H; Bezy, Robert L; Crandall, Keith A; Sites, Jack W
2007-11-01
The lizard genus Xantusia of southwestern North America has received recent attention in relation to delimiting species. Using more than 500 lizards from 156 localities, we further test hypothesized species boundaries and clarify phylogeographical patterns, particularly in regions of potential secondary contact. We sequenced the entire mitochondrial cytochrome b gene for every lizard in the study, plus a second mitochondrial DNA (mtDNA) region and two nuclear introns for subsets of the total sample. Phylogenetic analyses of the mtDNA recover a well-resolved, novel hypothesis for species in the Xantusia vigilis complex. The nuclear DNA (nDNA) data provide independent support for the recognition of X. arizonae, X. bezyi and X. wigginsi. Differences between the respective mtDNA and nDNA topologies result from either the effects of lineage sorting or ancient introgression. Nuclear data confirm the inference that some populations of X. vigilis in northwestern Arizona converged on rock-crevice-dwelling morphology and are not X. arizonae with an introgressed X. vigilis mtDNA genome. The historical independence of ancient cryptic lineages of Xantusia in southern California is also corroborated, though limited introgression is detected. Our proposed biogeographical scenario indicates that diversification of this group was driven by vicariance beginning in the late Miocene. Additionally, Pleistocene climatical changes influenced Xantusia distribution, and the now inhospitable Colorado Desert previously supported night lizard presence. The current taxonomy of the group likely underestimates species diversity within the group, and our results collectively show that while convergence on the rock-crevice-dwelling morphology is one hallmark of Xantusia evolution, morphological stasis is paradoxically another.
Y-STR Haplogroup Diversity in the Jat Population Reveals Several Different Ancient Origins.
Mahal, David G; Matsoukas, Ianis G
2017-01-01
The Jats represent a large ethnic community that has inhabited the northwest region of India and Pakistan for several thousand years. It is estimated the community has a population of over 123 million people. Many historians and academics have asserted that the Jats are descendants of Aryans, Scythians, or other ancient people that arrived and lived in northern India at one time. Essentially, the specific origin of these people has remained a matter of contention for a long time. This study demonstrated that the origins of Jats can be clarified by identifying their Y-chromosome haplogroups and tracing their genetic markers on the Y-DNA haplogroup tree. A sample of 302 Y-chromosome haplotypes of Jats in India and Pakistan was analyzed. The results showed that the sample population had several different lines of ancestry and emerged from at least nine different geographical regions of the world. It also became evident that the Jats did not have a unique set of genes, but shared an underlying genetic unity with several other ethnic communities in the Indian subcontinent. A startling new assessment of the genetic ancient origins of these people was revealed with DNA science.
Pereira, Joana B; Costa, Marta D; Vieira, Daniel; Pala, Maria; Bamford, Lisa; Harich, Nourdin; Cherni, Lotfi; Alshamali, Farida; Hatina, Jiři; Rychkov, Sergey; Stefanescu, Gheorghe; King, Turi; Torroni, Antonio; Soares, Pedro; Pereira, Luísa; Richards, Martin B
2017-03-29
Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europe. © 2017 The Author(s).
Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.
Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María
2016-08-09
Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Ancient Biomolecules and Evolutionary Inference.
Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske
2018-04-25
Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Improved multiple displacement amplification (iMDA) and ultraclean reagents.
Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W
2014-06-06
Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome. The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.
A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d.
Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E; Lindo, John; Hidalgo, Pedro C; Malhi, Ripan S
2015-01-01
Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748-12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years.
A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d
Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.
2015-01-01
Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686
Carmell, Michelle A; Dokshin, Gregoriy A; Skaletsky, Helen; Hu, Yueh-Chiang; van Wolfswinkel, Josien C; Igarashi, Kyomi J; Bellott, Daniel W; Nefedov, Michael; Reddien, Peter W; Enders, George C; Uversky, Vladimir N; Mello, Craig C; Page, David C
2016-01-01
The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya – either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome. DOI: http://dx.doi.org/10.7554/eLife.19993.001 PMID:27718356
Spyrou, Maria A; Tukhbatova, Rezeda I; Feldman, Michal; Drath, Joanna; Kacki, Sacha; Beltrán de Heredia, Julia; Arnold, Susanne; Sitdikov, Airat G; Castex, Dominique; Wahl, Joachim; Gazimzyanov, Ilgizar R; Nurgaliev, Danis K; Herbig, Alexander; Bos, Kirsten I; Krause, Johannes
2016-06-08
Ancient DNA analysis has revealed an involvement of the bacterial pathogen Yersinia pestis in several historical pandemics, including the second plague pandemic (Europe, mid-14(th) century Black Death until the mid-18(th) century AD). Here we present reconstructed Y. pestis genomes from plague victims of the Black Death and two subsequent historical outbreaks spanning Europe and its vicinity, namely Barcelona, Spain (1300-1420 cal AD), Bolgar City, Russia (1362-1400 AD), and Ellwangen, Germany (1485-1627 cal AD). Our results provide support for (1) a single entry of Y. pestis in Europe during the Black Death, (2) a wave of plague that traveled toward Asia to later become the source population for contemporary worldwide epidemics, and (3) the presence of an historical European plague focus involved in post-Black Death outbreaks that is now likely extinct. Copyright © 2016 Elsevier Inc. All rights reserved.
Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†
Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe
2007-01-01
Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669
Origins and genetic features of the Okhotsk people, revealed by ancient mitochondrial DNA analysis.
Sato, Takehiro; Amano, Tetsuya; Ono, Hiroko; Ishida, Hajime; Kodera, Haruto; Matsumura, Hirofumi; Yoneda, Minoru; Masuda, Ryuichi
2007-01-01
In order to investigate the phylogenetic status of the Okhotsk people that were distributed in northern and eastern Hokkaido as well as southern Sakhalin during the fifth to the thirteenth centuries, DNA was carefully extracted from human bone and tooth remains excavated from archaeological sites. The hypervariable region 1 sequences of the mitochondrial DNA (mtDNA) control region were successfully amplified and 16 mtDNA haplotypes were identified from 37 individuals of the Okhotsk people. Of the 16 haplotypes found, 6 were unique to the Okhotsk people, whereas the other 10 were shared by northeastern Asian people that are currently distributed around Sakhalin and downstream of the Amur River. The phylogenetic relationships inferred from mtDNA sequences showed that the Okhotsk people were more closely related to the Nivkhi and Ulchi people among populations of northeastern Asia. In addition, the Okhotsk people had a relatively closer genetic affinity with the Ainu people of Hokkaido, and were likely intermediates of gene flow from the northeastern Asian people to the Ainu people. These findings support the hypothesis that the Okhotsk culture joined the Satsumon culture (direct descendants of the Jomon people) resulting in the Ainu culture, as suggested by previous archaeological and anthropological studies.
Extinction and recolonization of coastal megafauna following human arrival in New Zealand.
Collins, Catherine J; Rawlence, Nicolas J; Prost, Stefan; Anderson, Christian N K; Knapp, Michael; Scofield, R Paul; Robertson, Bruce C; Smith, Ian; Matisoo-Smith, Elizabeth A; Chilvers, B Louise; Waters, Jonathan M
2014-07-07
Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction-replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark
2014-01-01
The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438
Myth or relict: Does ancient DNA detect the enigmatic Upland seal?
Salis, Alexander T; Easton, Luke J; Robertson, Bruce C; Gemmell, Neil; Smith, Ian W G; Weisler, Marshall I; Waters, Jonathan M; Rawlence, Nicolas J
2016-04-01
The biological status of the so-called 'Upland seal' has remained contentious ever since historical records described a distinct seal from the uplands of New Zealand's (NZ) remote sub-Antarctic islands. Subsequent genetic surveys of the NZ fur seal (Arctocephalus forsteri) detected two highly-divergent mtDNA clades, hypothesized to represent a post-sealing hybrid swarm between 'mainland' (Australia-NZ; A. forsteri) and sub-Antarctic (putative 'Upland'; A. snaresensis) lineages. We present ancient-DNA analyses of prehistoric mainland NZ and sub-Antarctic fur seals, revealing that both of these genetic lineages were already widely distributed across the region at the time of human arrival. These findings indicate that anthropogenic factors did not contribute to the admixture of these lineages, and cast doubt on the validity of the Upland seal. Human-mediated impacts on Arctocephalus genetic diversity are instead highlighted by a dramatic temporal haplotype frequency-shift due to genetic drift in heavily bottlenecked populations following the cessation of industrial-scale harvesting. These extinction-recolonisation dynamics add to a growing picture of human-mediated change in NZ's coastal and marine ecosystems. Copyright © 2015 Elsevier Inc. All rights reserved.
Ancient DNA and the population genetics of cave bears (Ursus spelaeus) through space and time.
Orlando, Ludovic; Bonjean, Dominique; Bocherens, Herve; Thenot, Aurelie; Argant, Alain; Otte, Marcel; Hänni, Catherine
2002-11-01
The cave bear spread from Western Europe to the Near East during the Riss glaciation (250 KYA) before becoming extinct approximately 12 KYA. During that period, the climatic conditions were highly dynamic, oscillating between glacial and temperate episodes. Such events have constrained the geographic repartition of species, the movements of populations and shaped their genetic diversity. We retrieved and analyzed ancient DNA from 21 samples from five European caves ranging from 40 to 130 KYA. Combined with available data, our data set accounts for a total of 41 sequences of cave bear, coming from 18 European caves. We distinguish four haplogroups at the level of the mitochondrial DNA control region. The large population size of cave bear could account for the maintenance of such polymorphism. Extensive gene flow seems to have connected European populations because two haplogroups cover wide geographic areas. Furthermore, the extensive sampling of the deposits of the Scladina cave located in Belgium allowed us to correlate changes in climatic conditions with the intrapopulational genetic diversity over 90 KY.
Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J. L.; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang
2014-01-01
Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake. PMID:25323386
Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J
2006-12-20
The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.
Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.
2006-01-01
The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991
Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines
Hudson, William
2017-01-01
Background Egyptian Arabian horses have been maintained in a state of genetic isolation for over a hundred years. There is only limited genetic proof that the studbook records of female lines of Egyptian Arabian pedigrees are reliable. This study characterized the mitochondrial DNA (mtDNA) signatures of 126 horses representing 14 matrilines in the Egyptian Agricultural Organization (EAO) horse-breeding program. Findings Analysis of the whole D-loop sequence yielded additional information compared to hypervariable region-1 (HVR1) analysis alone, with 42 polymorphic sites representing ten haplotypes compared to 16 polymorphic sites representing nine haplotypes, respectively. Most EAO haplotypes belonged to ancient haplogroups, suggesting origin from a wide geographical area over many thousands of years, although one haplotype was novel. Conclusions Historical families share haplotypes and some individuals from different strains belonged to the same haplogroup: the classical EAO strain designation is not equivalent to modern monophyletic matrilineal groups. Phylogenetic inference showed that the foundation mares of the historical haplotypes were highly likely to have the same haplotypes as the animals studied (p > 0.998 in all cases), confirming the reliability of EAO studbook records and providing the opportunity for breeders to confirm the ancestry of their horses. PMID:28859174
Manin, Aurelie; Corona-M, Eduardo; Alexander, Michelle; Craig, Abigail; Thornton, Erin Kennedy; Yang, Dongya Y; Richards, Michael; Speller, Camilla F
2018-01-01
The turkey ( Meleagris gallopavo ) represents one of the few domestic animals of the New World. While current research points to distinct domestication centres in the Southwest USA and Mesoamerica, several questions regarding the number of progenitor populations, and the timing and intensity of turkey husbandry remain unanswered. This study applied ancient mitochondrial DNA and stable isotope ( δ 13 C, δ 15 N) analysis to 55 archaeological turkey remains from Mexico to investigate pre-contact turkey exploitation in Mesoamerica. Three different (sub)species of turkeys were identified in the archaeological record ( M. g. mexicana , M. g. gallopavo and M. ocellata ), indicating the exploitation of diverse local populations, as well as the trade of captively reared birds into the Maya area. No evidence of shared maternal haplotypes was observed between Mesoamerica and the Southwest USA, in contrast with archaeological evidence for trade of other domestic products. Isotopic analysis indicates a range of feeding behaviours in ancient Mesoamerican turkeys, including wild foraging, human provisioning and mixed feeding ecologies. This variability in turkey diet decreases through time, with archaeological, genetic and isotopic evidence all pointing to the intensification of domestic turkey management and husbandry, culminating in the Postclassic period.
Manin, Aurelie; Corona-M, Eduardo; Craig, Abigail; Thornton, Erin Kennedy; Yang, Dongya Y.; Richards, Michael
2018-01-01
The turkey (Meleagris gallopavo) represents one of the few domestic animals of the New World. While current research points to distinct domestication centres in the Southwest USA and Mesoamerica, several questions regarding the number of progenitor populations, and the timing and intensity of turkey husbandry remain unanswered. This study applied ancient mitochondrial DNA and stable isotope (δ13C, δ15N) analysis to 55 archaeological turkey remains from Mexico to investigate pre-contact turkey exploitation in Mesoamerica. Three different (sub)species of turkeys were identified in the archaeological record (M. g. mexicana, M. g. gallopavo and M. ocellata), indicating the exploitation of diverse local populations, as well as the trade of captively reared birds into the Maya area. No evidence of shared maternal haplotypes was observed between Mesoamerica and the Southwest USA, in contrast with archaeological evidence for trade of other domestic products. Isotopic analysis indicates a range of feeding behaviours in ancient Mesoamerican turkeys, including wild foraging, human provisioning and mixed feeding ecologies. This variability in turkey diet decreases through time, with archaeological, genetic and isotopic evidence all pointing to the intensification of domestic turkey management and husbandry, culminating in the Postclassic period. PMID:29410864
Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber
NASA Astrophysics Data System (ADS)
Cano, Raul J.; Borucki, Monica K.
1995-05-01
A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.
Hernández, Candela L.; Soares, Pedro; Dugoujon, Jean M.; Novelletto, Andrea; Rodríguez, Juan N.; Rito, Teresa; Oliveira, Marisa; Melhaoui, Mohammed; Baali, Abdellatif; Pereira, Luisa; Calderón, Rosario
2015-01-01
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia. PMID:26509580
Ancient origin and maternal inheritance of blue cuckoo eggs.
Fossøy, Frode; Sorenson, Michael D; Liang, Wei; Ekrem, Torbjørn; Moksnes, Arne; Møller, Anders P; Rutila, Jarkko; Røskaft, Eivin; Takasu, Fugo; Yang, Canchao; Stokke, Bård G
2016-01-12
Maternal inheritance via the female-specific W chromosome was long ago proposed as a potential solution to the evolutionary enigma of co-existing host-specific races (or 'gentes') in avian brood parasites. Here we report the first unambiguous evidence for maternal inheritance of egg colouration in the brood-parasitic common cuckoo Cuculus canorus. Females laying blue eggs belong to an ancient (∼2.6 Myr) maternal lineage, as evidenced by both mitochondrial and W-linked DNA, but are indistinguishable at nuclear DNA from other common cuckoos. Hence, cuckoo host races with blue eggs are distinguished only by maternally inherited components of the genome, which maintain host-specific adaptation despite interbreeding among males and females reared by different hosts. A mitochondrial phylogeny suggests that blue eggs originated in Asia and then expanded westwards as female cuckoos laying blue eggs interbred with the existing European population, introducing an adaptive trait that expanded the range of potential hosts.
Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world.
Waters, Jonathan M; Grosser, Stefanie
2016-11-01
The spread of exotic species represents a major driver of biological change across the planet. While dispersal and colonization are natural biological processes, we suggest that the failure to recognize increasing rates of human-facilitated self-introductions may represent a threat to native lineages. Notably, recent biogeographic analyses have revealed numerous cases of biological range shifts in response to anthropogenic impacts and climate change. In particular, ancient DNA analyses have revealed several cases in which lineages traditionally thought to be long-established "natives" are in fact recent colonizers. Such range expansion events have apparently occurred in response to human-mediated native biodiversity declines and ecosystem change, particularly in recently colonized, isolated ecosystems such as New Zealand. While such events can potentially boost local biodiversity, the spread of exotic lineages may also hasten the decline of indigenous species, so it is essential that conservation managers recognize these rapid biotic shifts.. © 2016 WILEY Periodicals, Inc.
Kehlmaier, Christian; Barlow, Axel; Hastings, Alexander K.; Vamberger, Melita; Paijmans, Johanna L. A.; Steadman, David W.; Albury, Nancy A.; Franz, Richard; Hofreiter, Michael
2017-01-01
Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1 000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galápagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. PMID:28077774
Kehlmaier, Christian; Barlow, Axel; Hastings, Alexander K; Vamberger, Melita; Paijmans, Johanna L A; Steadman, David W; Albury, Nancy A; Franz, Richard; Hofreiter, Michael; Fritz, Uwe
2017-01-11
Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1 000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galápagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. © 2017 The Author(s).
Amemiya, Yutaka; Irwin, David M; Youson, John H
2006-10-01
Molecular cloning of teleost stanniocalcin (STC) cDNAs was undertaken in two species of order Osteoglossiformes of subdivision Osteoglossomorpha and one species of each of orders Cypriniformes and Perciformes within the subdivision Euteleostei. The elephantnose (Gnathonemus petersii) and the butterflyfish (Pantadon buchholzi) are basal teleosts in different osteoglossiforme suborders yet their 218 amino acid (aa) mature hormones, from prehormones of 249 and 251aa, respectively, have only 10 cysteine residues. A substitution for cysteine at the intermonomeric disulfide linkage site, implies that their STCs exist as monomeric peptides, as is the case with STC from another osteoglossormorph, arawana [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. The STC cDNA of the generalized teleost and cyprinid, the white sucker (Catostomus commersoni), encodes a prehormone of 249aa with a signal peptide of 31aa and a mature protein of 218aa that possesses 11 cysteine residues. The latter feature is consistent with a previous analysis that white sucker mature STC is a glycosylated, homodimeric peptide [Amemiya, Y., Marra, L.E., Reyhani, N., Youson, J.H., 2002. Stanniocalcin from an ancient teleost: a monomeric form of the hormone and a possible extracorpuscular distribution. Mol. Cell. Endocrinol. 188, 141-150]. An open reading frame of the STC cDNA of the derived teleost and perciforme, the smallmouth bass (Micropterus dolomieui), encodes a prehormone of 255aa with a signal peptide of 33aa and a mature protein of 222aa. The position of the 11 cysteines in smallmouth bass STC suggests that it exists as a homodimeric peptide. A phylogenetic analysis, using the new STC-1 amino acid sequences and those in the gene data base provided strong support for monophyly of the Osteoglossomorpha and indicated, with positioning of white sucker and smallmouth bass, that this molecule has some utility as a taxonomic marker. This analysis also suggested that two STC-1 gene sequences exist in multiple fish genomes, and that they may be a product of the fish-specific genome duplication. The mutation in the osteoglossomorph STC likely occurred after the appearance of the first teleosts and before movement of the tectonic plates.
A molecular portrait of maternal sepsis from Byzantine Troy
Devault, Alison M; Mortimer, Tatum D; Kitchen, Andrew; Kiesewetter, Henrike; Enk, Jacob M; Golding, G Brian; Southon, John; Kuch, Melanie; Duggan, Ana T; Aylward, William; Gardner, Shea N; Allen, Jonathan E; King, Andrew M; Wright, Gerard; Kuroda, Makoto; Kato, Kengo; Briggs, Derek EG; Fornaciari, Gino; Holmes, Edward C; Poinar, Hendrik N; Pepperell, Caitlin S
2017-01-01
Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections. DOI: http://dx.doi.org/10.7554/eLife.20983.001 PMID:28072390
Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.
2012-01-01
DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489
Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc
2015-01-01
Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave. PMID:26083419
Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc
2015-01-01
Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave.
Horizontal gene transfer from Agrobacterium to plants.
Matveeva, Tatiana V; Lutova, Ludmila A
2014-01-01
Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named "cellular T-DNA" (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.
Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA
NASA Astrophysics Data System (ADS)
Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara
2018-02-01
The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.
Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber
NASA Astrophysics Data System (ADS)
Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen
2009-05-01
Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.
Santana, Jonathan; Fregel, Rosa; Lightfoot, Emma; Morales, Jacob; Alamón, Martha; Guillén, José; Moreno, Marco; Rodríguez, Amelia
2016-02-01
The Canary Islands are considered one of the first places where Atlantic slave plantations with labourers of African origin were established, during the 15th century AD. In Gran Canaria (Canary Islands, Spain), a unique cemetery dated to the 15th and 17th centuries was discovered adjacent to an ancient sugar plantation with funerary practices that could be related to enslaved people. In this article, we investigate the origin and possible birthplace of each individual buried in this cemetery, as well as the identity and social status of these people. The sample consists of 14 individuals radiocarbon dated to the 15th and 17th centuries AD. We have employed several methods, including the analysis of ancient human DNA, stable isotopes, and skeletal markers of physical activity. 1) the funerary practices indicate a set of rituals not previously recorded in the Canary Islands; 2) genetic data show that some people buried in the cemetery could have North-African and sub-Saharan African lineages; 3) isotopic results suggest that some individuals were born outside Gran Canaria; and 4) markers of physical activity show a pattern of labour involving high levels of effort. This set of evidence, along with information from historical sources, suggests that Finca Clavijo was a cemetery for a multiethnic marginalized population that had being likely enslaved. Results also indicate that this population kept practicing non-Christian rituals well into the 17th century. We propose that this was possible because the location of the Canaries, far from mainland Spain and the control of the Spanish Crown, allowed the emergence of a new society with multicultural origins that was more tolerant to foreign rituals and syncretism. © 2015 Wiley Periodicals, Inc.
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps
Smircich, Pablo; Duhagon, María Ana; Garat, Beatriz
2015-01-01
In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes. PMID:26718450
Zhu, Zhixuan; Gui, Songtao; Jin, Jing; Yi, Rong; Wu, Zhihua; Qian, Qian; Ding, Yi
2016-09-01
Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Vences, Miguel; Aprea, Gennaro; Capriglione, Teresa; Andreone, Franco; Odierna, Gaetano
2002-01-01
Karyotypes of three microhylid frog species of the Malagasy relict genus Scaphiophryne were studied: Scaphiophryne gottlebei, S. madagascariensis and S. spinosa. The latter two showed a plesiomorphic ranoid karyotype of 2n = 26. In contrast, tetraploidy was demonstrated in S. gottlebei, which constitutes an exceptional state among Malagasy amphibians. A combination of different banding techniques and of rDNA-FISH provided evidence for allopolyploidy in the species and for a completed subsequent functional and structural diploidization. Phylogenetic analysis of mitochondrial 16S rDNA sequences revealed a significant deceleration of nucleotide substitution rates in Scaphiophryne. The tetraploidy of S. gottlebei probably occurred early in their radiation. Ecological and behavioural patterns of Scaphiophryne probably favoured intraspecific gene flow and hybridization events, thereby leading to slow molecular substitution rates and to allopolyploid chromosome speciation in S. gottlebei.
Inferring genealogical processes from patterns of Bronze-Age and modern DNA variation in Sardinia.
Ghirotto, Silvia; Mona, Stefano; Benazzo, Andrea; Paparazzo, Francesco; Caramelli, David; Barbujani, Guido
2010-04-01
The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers (for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data. We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age (nuragic) mtDNA sequences with those of 254 modern individuals from two regions, Ogliastra (a likely genetic isolate) and Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships between past and present populations, we developed seven explicit demographic models; we tested whether these models can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part to gene flow from the mainland.
Dovgerd, A P; Zharkov, D O
2014-01-01
PCR amplification of severely degraded DNA, including ancient DNA, forensic samples, and preparations from deeply processed foodstuffs, is a serious problem. Living organisms have a set of enzymes to repair lesions in their DNA. In this work, we have developed and characterized model systems of degraded high-molecular-weight DNA with a predominance of different types of damage. It was shown that depurination and oxidation of the model plasmid DNA template led to a decrease in the PCR efficiency. A set of enzymes performing a full cycle of excision repair of some lesions was determined. The treatment of model-damaged substrates with this set of enzymes resulted in an increased PCR product yield as compared with that of the unrepaired samples.
Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna.
Volkov, Roman A; Panchuk, Irina I; Borisjuk, Nikolai V; Hosiawa-Baranska, Marta; Maluszynska, Jolanta; Hemleben, Vera
2017-01-23
Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants. Because of their abundance and specific molecular organization (evolutionarily conserved coding regions linked to variable intergenic spacers, IGS), 45S and 5S rDNA are widely used in plant taxonomic and evolutionary studies. Molecular cloning and nucleotide sequencing of A. belladonna 45S rDNA repeats revealed a general structure characteristic of other Solanaceae species, and a very high sequence similarity of two length variants, with the only difference in number of short IGS subrepeats. These results combined with the detection of three pairs of 45S rDNA loci on separate chromosomes, presumably inherited from both tetraploid and diploid ancestor species, example intensive sequence homogenization that led to substitution/elimination of rDNA repeats of one parent. Chromosome silver-staining revealed that only four out of six 45S rDNA sites are frequently transcriptionally active, demonstrating nucleolar dominance. For 5S rDNA, three size variants of repeats were detected, with the major class represented by repeats containing all functional IGS elements required for transcription, the intermediate size repeats containing partially deleted IGS sequences, and the short 5S repeats containing severe defects both in the IGS and coding sequences. While shorter variants demonstrate increased rate of based substitution, probably in their transition into pseudogenes, the functional 5S rDNA variants are nearly identical at the sequence level, pointing to their origin from a single parental species. Localization of the 5S rDNA genes on two chromosome pairs further supports uniparental inheritance from the tetraploid progenitor. The obtained molecular, cytogenetic and phylogenetic data demonstrate complex evolutionary dynamics of rDNA loci in allohexaploid species of Atropa belladonna. The high level of sequence unification revealed in 45S and 5S rDNA loci of this ancient hybrid species have been seemingly achieved by different molecular mechanisms.
NASA Technical Reports Server (NTRS)
Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.
2002-01-01
The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods to search for signs of life in ancient icy formations, which might play a role in the long-term preservation and transportation of microbial life throughout the Universe.
NASA Astrophysics Data System (ADS)
Abyzov, S.; Hoover, R.; Imura, S.; Mitskevich, I.; Naganuma, T.; Poglazova, M.; Ivanov, M.
The ice sheet of the Central Antarctic is considered by world-wide scientific community as a model for elaboration of different methods for search of the life outside of the Earth. This problem became especially significant in connection with discovery the under glacial lake in the vicinity of the Russian Antarctic Station Vostok. This lake, later named "Lake Vostok" is considered by many scientists as an analog ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is great possibility of presence in this lake of relict forms of microorganisms well preserved since Ice Age period. The investigations through out the thickness of the ice sheet above the Lake Vostok shows the presence of microorganisms belonging to well-known different taxonomic groups even in the very ancient horizons close to floor of the glacier. Different methods were used for search of microorganisms which were rarely found in the deep ancient layers of the ice sheet. The method of aseptic sampling from the ice cores and results of control sterile conditions in all stages of conducting of these investigations are described in detail in previous reports. Primary investigations used try usual methods of sowing samples onto the different nutrient media permitted to obtain only a few part of the microorganisms which grow on the media used. The possibility of isolation of obtained organisms for further investigations by using modern methods including DNA-analysis appears to be preferential importance of this method. In the further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence and scanning electron microscopy methods of different modifications, were determined as quantity of microorganisms distributed on its different horizons, as well as the morphological diversity of obtained cells of microorganisms. Experience of many years standing investigations of micro flora in the very ancient strata of the Antarctic ice cover close to the bedrock testified the effectiveness of combination of different methods for search for signs of life in ancient icy formations evidently which may preserve and transport life in the Universe.
Fehren-Schmitz, Lars; Warnberg, Ole; Reindel, Markus; Seidenberg, Verena; Tomasto-Cagigao, Elsa; Isla-Cuadrado, Johny; Hummel, Susanne; Herrmann, Bernd
2011-03-01
This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.
Ancient host specificity within a single species of brood parasitic bird
Spottiswoode, Claire N.; Stryjewski, Katherine Faust; Quader, Suhel; Colebrook-Robjent, John F. R.; Sorenson, Michael D.
2011-01-01
Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms. PMID:21949391
Premoli, Andrea C; Mathiasen, Paula; Acosta, M Cristina; Ramos, Victor A
2012-01-01
• Here, we performed phylogenetic analyses and estimated the divergence times on mostly sympatric populations of five species within subgenus Nothofagus. We aimed to investigate whether phylogenetic relationships by nuclear internal transcribed spacer (ITS) and phylogeographic patterns by chloroplast DNA (cpDNA) mirror an ancient evolutionary history that was not erased by glacial eras. Extant species are restricted to Patagonia and share a pollen type that was formerly widespread in all southern land masses. Weak reproductive barriers exist among them. • Fifteen cpDNA haplotypes resulted from the analysis of three noncoding regions on 330 individuals with a total alignment of 1794 bp. Nuclear ITS data consisted of 822 bp. We found a deep cpDNA divergence dated 32 Ma at mid-latitudes of Patagonia that predates the phylogenetic divergence of extant taxa. Other more recent breaks by cpDNA occurred towards the north. • Complex paleogeographic features explain the genetic discontinuities. Long-lasting paleobasins and marine ingressions have impeded transoceanic dispersal during range expansion towards lower latitudes under cooler trends since the Oligocene. • Cycles of hybridization-introgression among extant and extinct taxa have resulted in widespread chloroplast capture events. Our data suggest that Nothofagus biogeography will be resolved only if thorough phylogeographic analyses and molecular dating methods are applied using distinct genetic markers. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Genetic data from algae sedimentary DNA reflect the influence of environment over geography
Stoof-Leichsenring, Kathleen R.; Herzschuh, Ulrike; Pestryakova, Luidmila A.; Klemm, Juliane; Epp, Laura S.; Tiedemann, Ralph
2015-01-01
Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern. PMID:26261899
Szécsényi-Nagy, Anna; Roth, Christina; Brandt, Guido; Rihuete-Herrada, Cristina; Tejedor-Rodríguez, Cristina; Held, Petra; García-Martínez-de-Lagrán, Íñigo; Arcusa Magallón, Héctor; Zesch, Stephanie; Knipper, Corina; Bánffy, Eszter; Friederich, Susanne; Meller, Harald; Bueno Ramírez, Primitiva; Barroso Bermejo, Rosa; de Balbín Behrmann, Rodrigo; Herrero-Corral, Ana M; Flores Fernández, Raúl; Alonso Fernández, Carmen; Jiménez Echevarria, Javier; Rindlisbacher, Laura; Oliart, Camila; Fregeiro, María-Inés; Soriano, Ignacio; Vicente, Oriol; Micó, Rafael; Lull, Vicente; Soler Díaz, Jorge; López Padilla, Juan Antonio; Roca de Togores Muñoz, Consuelo; Hernández Pérez, Mauro S; Jover Maestre, Francisco Javier; Lomba Maurandi, Joaquín; Avilés Fernández, Azucena; Lillios, Katina T; Silva, Ana Maria; Magalhães Ramalho, Miguel; Oosterbeek, Luiz Miguel; Cunha, Claudia; Waterman, Anna J; Roig Buxó, Jordi; Martínez, Andrés; Ponce Martínez, Juana; Hunt Ortiz, Mark; Mejías-García, Juan Carlos; Pecero Espín, Juan Carlos; Cruz-Auñón Briones, Rosario; Tomé, Tiago; Carmona Ballestero, Eduardo; Cardoso, João Luís; Araújo, Ana Cristina; Liesau von Lettow-Vorbeck, Corina; Blasco Bosqued, Concepción; Ríos Mendoza, Patricia; Pujante, Ana; Royo-Guillén, José I; Esquembre Beviá, Marco Aurelio; Dos Santos Goncalves, Victor Manuel; Parreira, Rui; Morán Hernández, Elena; Méndez Izquierdo, Elena; Vega Y Miguel, Jorge; Menduiña García, Roberto; Martínez Calvo, Victoria; López Jiménez, Oscar; Krause, Johannes; Pichler, Sandra L; Garrido-Pena, Rafael; Kunst, Michael; Risch, Roberto; Rojo-Guerra, Manuel A; Haak, Wolfgang; Alt, Kurt W
2017-11-15
Agriculture first reached the Iberian Peninsula around 5700 BCE. However, little is known about the genetic structure and changes of prehistoric populations in different geographic areas of Iberia. In our study, we focus on the maternal genetic makeup of the Neolithic (~ 5500-3000 BCE), Chalcolithic (~ 3000-2200 BCE) and Early Bronze Age (~ 2200-1500 BCE). We report ancient mitochondrial DNA results of 213 individuals (151 HVS-I sequences) from the northeast, central, southeast and southwest regions and thus on the largest archaeogenetic dataset from the Peninsula to date. Similar to other parts of Europe, we observe a discontinuity between hunter-gatherers and the first farmers of the Neolithic. During the subsequent periods, we detect regional continuity of Early Neolithic lineages across Iberia, however the genetic contribution of hunter-gatherers is generally higher than in other parts of Europe and varies regionally. In contrast to ancient DNA findings from Central Europe, we do not observe a major turnover in the mtDNA record of the Iberian Late Chalcolithic and Early Bronze Age, suggesting that the population history of the Iberian Peninsula is distinct in character.
A revised timescale for human evolution based on ancient mitochondrial genomes
Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2016-01-01
Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248
A revised timescale for human evolution based on ancient mitochondrial genomes.
Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2013-04-08
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetic data from algae sedimentary DNA reflect the influence of environment over geography.
Stoof-Leichsenring, Kathleen R; Herzschuh, Ulrike; Pestryakova, Luidmila A; Klemm, Juliane; Epp, Laura S; Tiedemann, Ralph
2015-08-11
Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.
Origins and Structural Properties of Novel and De Novo Protein Domains During Insect Evolution.
Klasberg, Steffen; Bitard-Feildel, Tristan; Callebaut, Isabelle; Bornberg-Bauer, Erich
2018-05-26
Over long time scales, protein evolution is characterised by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 my. We use established domain models and foldable domains delineated by Hydrophobic-Cluster-Analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, i.e. from previously non-coding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonisation of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multi-domain arrangements. Young domains, such as most HCA defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of denovo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterised by cross-species comparisons alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis
Pucholt, Pascal; Wright, Alison E.; Conze, Lei Liu; Mank, Judith E.; Berlin, Sofia
2017-01-01
Abstract Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. PMID:28453634
Hamilton-Brehm, Scott D; Hristova, Lidia T; Edwards, Susan R; Wedding, Jeffrey R; Snow, Meradeth; Kruger, Brittany R; Moser, Duane P
2018-01-01
Chewed and expectorated quids, indigestible stringy fibers from the roasted inner pulp of agave or yucca root, have proven resilient over long periods of time in dry cave environments and correspondingly, although little studied, are common in archaeological archives. In the late 1960s, thousands of quids were recovered from Mule Spring Rockshelter (Nevada, USA) deposits and stored without consideration to DNA preservation in a museum collection, remaining unstudied for over fifty years. To assess the utility of these materials as repositories for genetic information about past inhabitants of the region and their movements, twenty-one quids were selected from arbitrary excavation depths for detailed analysis. Human mitochondrial DNA sequences from the quids were amplified by PCR and screened for diagnostic single nucleotide polymorphisms. Most detected single nucleotide polymorphisms were consistent with recognized Native American haplogroup subclades B2a5, B2i1, C1, C1c, C1c2, and D1; with the majority of the sample set consistent with subclades C1, C1c, and C1c2. In parallel with the DNA analysis, each quid was radiocarbon dated, revealing a time-resolved pattern of occupancy from 347 to 977 calibrated years before present. In particular, this dataset reveals strong evidence for the presence of haplogroup C1/C1c at the Southwestern edge of the US Great Basin from ~670 to 980 cal YBP, which may temporally correspond with the beginnings of the so-called Numic Spread into the region. The research described here demonstrates an approach which combines targeted DNA analysis with radiocarbon age dating; thus enabling the genetic analysis of archaeological materials of uncertain stratigraphic context. Here we present a survey of the maternal genetic profiles from people who used the Mule Spring Rockshelter and the historic timing of their utilization of a key natural resource.
NASA Astrophysics Data System (ADS)
Carden, Ruth F.; McDevitt, Allan D.; Zachos, Frank E.; Woodman, Peter C.; O'Toole, Peter; Rose, Hugh; Monaghan, Nigel T.; Campana, Michael G.; Bradley, Daniel G.; Edwards, Ceiridwen J.
2012-05-01
The problem of how and when the island of Ireland attained its contemporary fauna has remained a key question in understanding Quaternary faunal assemblages. We assessed the complex history and origins of the red deer (Cervus elaphus) in Ireland using a multi-disciplinary approach. Mitochondrial sequences of contemporary and ancient red deer (dating from c 30,000 to 1700 cal. yr BP) were compared to decipher possible source populations of red deer in Ireland, in addition to craniometric analyses of skulls from candidate regions to distinguish between different colonization scenarios. Radiocarbon dating was undertaken on all bone fragments that were previously undated. Finally, a comprehensive review of the scientific literature, unpublished reports and other sources of data were also searched for red deer remains within Irish palaeontological and archaeological contexts. Despite being present in Ireland prior to the Last Glacial Maximum (LGM), there is a notable scarcity of red deer from the Younger Dryas stadial period until the Neolithic. The presence of red deer in Irish archaeological sites then occurs more frequently relative to other species. One population in the southwest of Ireland (Co. Kerry) shared haplotypes with the ancient Irish specimens and molecular dating and craniometric analysis suggests its persistence in Ireland since the Neolithic period. The synthesis of the results from this multi-disciplinary study all indicate that red deer were introduced by humans during the Irish Neolithic period and that one of these populations persists today. In conjunction with recent results from other species, Neolithic people from Ireland's nearest landmass, Britain, played a vital role in establishing its contemporary fauna and flora.
Harbeck, Michaela; Seifert, Lisa; Hänsch, Stephanie; Wagner, David M; Birdsell, Dawn; Parise, Katy L; Wiechmann, Ingrid; Grupe, Gisela; Thomas, Astrid; Keim, Paul; Zöller, Lothar; Bramanti, Barbara; Riehm, Julia M; Scholz, Holger C
2013-01-01
Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.
Reconstructing Druze population history
Marshall, Scarlett; Das, Ranajit; Pirooznia, Mehdi; Elhaik, Eran
2016-01-01
The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern–Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze. PMID:27848937
Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens
NASA Astrophysics Data System (ADS)
Siau, Jia Wei; Coffill, Cynthia R.; Zhang, Weiyun Villien; Tan, Yaw Sing; Hundt, Juliane; Lane, David; Verma, Chandra; Ghadessy, Farid
2016-09-01
The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.
Reconstructing Druze population history.
Marshall, Scarlett; Das, Ranajit; Pirooznia, Mehdi; Elhaik, Eran
2016-11-16
The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern-Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze.
Loog, Liisa; Thomas, Mark G; Barnett, Ross; Allen, Richard; Sykes, Naomi; Paxinos, Ptolemaios D; Lebrasseur, Ophélie; Dobney, Keith; Peters, Joris; Manica, Andrea; Larson, Greger; Eriksson, Anders
2017-08-01
Ancient DNA provides an opportunity to infer the drivers of natural selection by linking allele frequency changes to temporal shifts in environment or cultural practices. However, analyses have often been hampered by uneven sampling and uncertainties in sample dating, as well as being confounded by demographic processes. Here, we present a Bayesian statistical framework for quantifying the timing and strength of selection using ancient DNA that explicitly addresses these challenges. We applied this method to time series data for two loci: TSHR and BCDO2, both hypothesised to have undergone strong and recent selection in domestic chickens. The derived variant in TSHR, associated with reduced aggression to conspecifics and faster onset of egg laying, shows strong selection beginning around 1,100 years ago, coincident with archaeological evidence for intensified chicken production and documented changes in egg and chicken consumption. To our knowledge, this is the first example of preindustrial domesticate trait selection in response to a historically attested cultural shift in food preference. For BCDO2, we find support for selection, but demonstrate that the recent rise in allele frequency could also have been driven by gene flow from imported Asian chickens during more recent breed formations. Our findings highlight that traits found ubiquitously in modern domestic species may not necessarily have originated during the early stages of domestication. In addition, our results demonstrate the importance of precise estimation of allele frequency trajectories through time for understanding the drivers of selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
A code of ethics for evidence-based research with ancient human remains.
Kreissl Lonfat, Bettina M; Kaufmann, Ina Maria; Rühli, Frank
2015-06-01
As clinical research constantly advances and the concept of evolution becomes a strong and influential part of basic medical research, the absence of a discourse that deals with the use of ancient human remains in evidence-based research is becoming unbearable. While topics such as exhibition and excavation of human remains are established ethical fields of discourse, when faced with instrumentalization of ancient human remains for research (i.e., ancient DNA extractions for disease marker analyses) the answers from traditional ethics or even more practical fields of bio-ethics or more specific biomedical ethics are rare to non-existent. The Centre for Evolutionary Medicine at the University of Zurich solved their needs for discursive action through the writing of a self-given code of ethics which was written in dialogue with the researchers at the Institute and was published online in Sept. 2011: http://evolutionäremedizin.ch/coe/. The philosophico-ethical basis for this a code of conduct and ethics and the methods are published in this article. © 2015 Wiley Periodicals, Inc.
Characterization of defensin gene from abalone Haliotis discus hannai and its deduced protein
NASA Astrophysics Data System (ADS)
Hong, Xuguang; Sun, Xiuqin; Zheng, Minggang; Qu, Lingyun; Zan, Jindong; Zhang, Jinxing
2008-11-01
Defensin is one of preserved ancient host defensive materials formed in biological evolution. As a regulator and effector molecule, it is very important in animals’ acquired immune system. This paper reports the defensin gene from the mixed liver and kidney cDNA library of abalone Haliotis discus hannai Ino. Sequence analysis shows that the gene sequence of full-length cDNA encodes 42 mature peptides (including six Cys), molecular weight of 4 323 Da, and pI of 8.02. Amino acid sequence homology analysis shows that the peptides are highly similar (70% in common) to other insects defensin. Because of a typical insect-defensin structural character of mature peptide in the secondary structure, the polypeptide named Haliotis discus defensin (hd-def), a novel of antimicrobial peptides, belongs to insects defensin subfamily. The RT-PCR result of Haliotis discus defensin shows that the gene can be expressed only in the hepatopancreas by Gram-negative and positive bacteria stimulation, which is ascribed to inducible expression. Therefore, it is revealed that the Haliotis discus defensin gene expression was related to the antibacterial infection of Haliotis discus hannai Ino.
Neandertal and Denisovan DNA from Pleistocene sediments.
Slon, Viviane; Hopfe, Charlotte; Weiß, Clemens L; Mafessoni, Fabrizio; de la Rasilla, Marco; Lalueza-Fox, Carles; Rosas, Antonio; Soressi, Marie; Knul, Monika V; Miller, Rebecca; Stewart, John R; Derevianko, Anatoly P; Jacobs, Zenobia; Li, Bo; Roberts, Richard G; Shunkov, Michael V; de Lumley, Henry; Perrenoud, Christian; Gušić, Ivan; Kućan, Željko; Rudan, Pavao; Aximu-Petri, Ayinuer; Essel, Elena; Nagel, Sarah; Nickel, Birgit; Schmidt, Anna; Prüfer, Kay; Kelso, Janet; Burbano, Hernán A; Pääbo, Svante; Meyer, Matthias
2017-05-12
Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found. Copyright © 2017, American Association for the Advancement of Science.
Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang
2016-05-01
Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.
Kemp, Brian M.; González-Oliver, Angélica; Malhi, Ripan S.; Monroe, Cara; Schroeder, Kari Britt; Rhett, Gillian; Resendéz, Andres; Peñaloza-Espinosa, Rosenda I.; Buentello-Malo, Leonor; Gorodesky, Clara; Smith, David Glenn
2010-01-01
The Farming/Language Dispersal Hypothesis posits that prehistoric population expansions, precipitated by the innovation or early adop-tion of agriculture, played an important role in the uneven distribution of language families recorded across the world. In this case, the most widely spread language families today came to be distributed at the expense of those that have more restricted distributions. In the Americas, Uto-Aztecan is one such language family that may have been spread across Mesoamerica and the American Southwest by ancient farmers. We evaluated this hypothesis with a large-scale study of mitochondrial DNA (mtDNA) and Y-chromosomal DNA vari-ation in indigenous populations from these regions. Partial correlation coefficients, determined with Mantel tests, show that Y-chromosome variation in indigenous populations from the American Southwest and Mesoamerica correlates significantly with linguistic distances (r = 0.33–0.384; P < 0.02), whereas mtDNA diversity correlates significantly with only geographic distance (r = 0.619; P = 0.002). The lack of correlation between mtDNA and Y-chromosome diversity is consistent with differing population histories of males and females in these regions. Although unlikely, if groups of Uto-Aztecan speakers were responsible for the northward spread of agriculture and their languages from Mesoamerica to the Southwest, this migration was possibly biased to males. However, a recent in situ population expansion within the American Southwest (2,105 years before present; 99.5% confidence interval = 1,273–3,773 YBP), one that probably followed the introduction and intensification of maize agriculture in the region, may have blurred ancient mtDNA patterns, which might otherwise have revealed a closer genetic relationship between females in the Southwest and Mesoamerica. PMID:20351276
Rölleke, S; Muyzer, G; Wawer, C; Wanner, G; Lubitz, W
1996-01-01
Medieval wall paintings are often affected by biodecay. An inventory of the existing microorganisms associated with the damage to the paintings is not yet an integral part of the restoration process. This stems from the lack of effective means for such a stocktaking. Nevertheless, fungi and bacteria cause severe damage through mechanical processes from growth into the painting and its grounding and through their metabolism. Detailed information on the bacterial colonization of ancient wall paintings is essential for the protection of the paintings. We used a molecular approach based on the detection and identification of DNA sequences encoding rRNA (rDNA) to identify bacteria present on an ancient wall painting without prior cultivation of the organisms, since it has been shown that most of these bacteria cannot be cultivated under laboratory conditions. To trace the noncultivated fraction of bacteria, total DNA from a biodegraded wall painting sample from a 13th century fresco was extracted and 194-bp fragments of the 16S rDNA were amplified with eubacterial primers. The 16S rDNA fragments of uniform length obtained from the different bacterial species were separated according to their sequence differences by denaturing gradient gel electrophoresis (DGGE). By sequencing excised and reamplified individual DNA bands, we characterized the phylogenetic affiliation of the corresponding bacteria. Using this approach, we identified members or close relatives of the genera Halomonas, Clostridium, and Frankia. To our knowledge, these groups of bacteria have not yet been isolated and implicated by conventional microbiological techniques as contributing to the biodegradation of wall paintings. PMID:8787403
Unlocking the variation hidden in rice germplasm collections with genomics
USDA-ARS?s Scientific Manuscript database
Cultivated Asian rice (Oryza sativa) was domesticated from O. rufipogon (O. nivara). The O. sativa subspecies indica and japonica diverged in ancient times, and based on DNA markers, further subdivided into the five major subpopulations, aus, indica, aromatic, tropical japonica and temperate japoni...
Brief communication: DNA from early Holocene American dog.
Tito, Raul Y; Belknap, Samuel L; Sobolik, Kristin D; Ingraham, Robert C; Cleeland, Lauren M; Lewis, Cecil M
2011-08-01
We present the oldest genetically identified dog in the Americas, directly dated to 9,260 ± 170 Cal. B.P. The DNA was extracted from an occipital condyle imbedded in a human paleofecal sample from Hinds Cave in southwest Texas. A 368 base pair fragment of the mitochondrial genome control region was sequenced. These data were analyzed with comparable data, which included other ancient dogs and extant dogs, wolves and coyotes from around the world. Compiled with published data, our results characterize ancient American dogs within clades rooted by Eurasian wolves. In the Americas, these data provide no evidence of local interbreeding with wolves. This is a departure from the genetic pattern in other areas of the world where interbreeding with local wolf populations is apparent. Our discovery of domestic dog bone in a human paleofecal sample provides the earliest direct evidence for human consumption of dogs in the New World. These data support the hypothesis that dogs were a food source for early Paleoamericans. Copyright © 2011 Wiley-Liss, Inc.
Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene.
Li, Yu-Chun; Wang, Hua-Wei; Tian, Jiao-Yang; Liu, Li-Na; Yang, Li-Qin; Zhu, Chun-Ling; Wu, Shi-Fang; Kong, Qing-Peng; Zhang, Ya-Ping
2015-03-26
Given the existence of plenty of river valleys connecting Southeast and East Asia, it is possible that some inland route(s) might have been adopted by the initial settlers to migrate into the interior of East Asia. Here we analyzed mitochondrial DNA (mtDNA) HVS variants of 845 newly collected individuals from 14 Myanmar populations and 5,907 published individuals from 115 populations from Myanmar and its surroundings. Enrichment of basal lineages with the highest genetic diversity in Myanmar suggests that Myanmar was likely one of the differentiation centers of the early modern humans. Intriguingly, some haplogroups were shared merely between Myanmar and southwestern China, hinting certain genetic connection between both regions. Further analyses revealed that such connection was in fact attributed to both recent gene flow and certain ancient dispersals from Myanmar to southwestern China during 25-10 kya, suggesting that, besides the coastal route, the early modern humans also adopted an inland dispersal route to populate the interior of East Asia.
The origins of the enigmatic Falkland Islands wolf.
Austin, Jeremy J; Soubrier, Julien; Prevosti, Francisco J; Prates, Luciano; Trejo, Valentina; Mena, Francisco; Cooper, Alan
2013-01-01
The origins of the extinct Falkland Islands wolf (FIW), Dusicyon australis, have remained a mystery since it was first recorded by Europeans in the seventeenth century. It is the only terrestrial mammal on the Falkland Islands (also known as the Malvinas Islands), which lie ~460 km from Argentina, leading to suggestions of either human-mediated transport or overwater dispersal. Previous studies used ancient DNA from museum specimens to suggest that the FIW diverged from its closest living relative, the South American maned wolf (Chrysocyon brachyurus) around 7 Ma, and colonized the islands ~330 ka by unknown means. Here we retrieve ancient DNA from subfossils of an extinct mainland relative, Dusicyon avus, and reveal the FIW lineage became isolated only 16 ka (8-31 ka), during the last glacial phase. Submarine terraces, formed on the Argentine coastal shelf by low sea-stands during this period, suggest that the FIW colonized via a narrow, shallow marine strait, potentially while it was frozen over.
Kutanan, Wibhu; Kampuansai, Jatupol; Srikummool, Metawee; Kangwanpong, Daoroong; Ghirotto, Silvia; Brunelli, Andrea; Stoneking, Mark
2017-01-01
The Tai-Kadai (TK) language family is thought to have originated in southern China and spread to Thailand and Laos, but it is not clear if TK languages spread by demic diffusion (i.e., a migration of people from southern China) or by cultural diffusion, with native Austroasiatic (AA) speakers switching to TK languages. To address this and other questions, we obtained 1234 complete mtDNA genome sequences from 51 TK and AA groups from Thailand and Laos. We find high genetic heterogeneity across the region, with 212 different haplogroups, and significant genetic differentiation among different samples from the same ethnolinguistic group. TK groups are more genetically homogeneous than AA groups, with the latter exhibiting more ancient/basal mtDNA lineages, and showing more drift effects. Modeling of demic diffusion, cultural diffusion, and admixture scenarios consistently supports the spread of TK languages by demic diffusion.
Y-SNPs Do Not Indicate Hybridisation between European Aurochs and Domestic Cattle
Bollongino, Ruth; Elsner, Julia; Vigne, Jean-Denis; Burger, Joachim
2008-01-01
Background Previous genetic studies of modern and ancient mitochondrial DNA have confirmed the Near Eastern origin of early European domestic cattle. However, these studies were not able to test whether hybridisation with male aurochs occurred post-domestication. To address this issue, Götherström and colleagues (2005) investigated the frequencies of two Y-chromosomal haplotypes in extant bulls. They found a significant influence of wild aurochs males on domestic populations thus challenging the common view on early domestication and Neolithic stock-rearing. To test their hypothesis, we applied these Y-markers on Neolithic bone specimens from various European archaeological sites. Methods and Findings Here, we have analysed the ancient DNA of 59 Neolithic skeletal samples. After initial molecular sexing, two segregating Y-SNPs were identified in 13 bulls. Strikingly, our results do not support the hypothesis that these markers distinguish European aurochs from domesticated cattle. Conclusions The model of a rapid introduction of domestic cattle into Central Europe without significant crossbreeding with local wild cattle remains unchallenged. PMID:18852900
Early cave art and ancient DNA record the origin of European bison
Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan
2016-01-01
The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477
Amy2B copy number variation reveals starch diet adaptations in ancient European dogs.
Ollivier, Morgane; Tresset, Anne; Bastian, Fabiola; Lagoutte, Laetitia; Axelsson, Erik; Arendt, Maja-Louise; Bălăşescu, Adrian; Marshour, Marjan; Sablin, Mikhail V; Salanova, Laure; Vigne, Jean-Denis; Hitte, Christophe; Hänni, Catherine
2016-11-01
Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture.
Amy2B copy number variation reveals starch diet adaptations in ancient European dogs
Tresset, Anne; Bastian, Fabiola; Lagoutte, Laetitia; Arendt, Maja-Louise; Bălăşescu, Adrian; Marshour, Marjan; Sablin, Mikhail V.; Salanova, Laure; Vigne, Jean-Denis; Hitte, Christophe; Hänni, Catherine
2016-01-01
Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture. PMID:28018628
2009-06-01
mtDNA exists in the ancient remains with which the CIL must work . Secondly, mtDNA is wholly maternally inherited as a single unit and allows for...they should be instructed to work for a certain number of days strictly on trying to find maternal -eligible donors. The most important objective of the...In addition to the impact frequent deployments have on the staff’s personal life , impacts on their work in the lab are also significant. First and
Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M
2013-07-01
Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation-coastal or swamp vs terra firme-in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.
Budde, K B; González-Martínez, S C; Hardy, O J; Heuertz, M
2013-01-01
Understanding the history of forests and their species' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees. PMID:23572126
Metspalu, Mait; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Hudjashov, Georgi; Kaldma, Katrin; Serk, Piia; Karmin, Monika; Behar, Doron M; Gilbert, M Thomas P; Endicott, Phillip; Mastana, Sarabjit; Papiha, Surinder S; Skorecki, Karl; Torroni, Antonio; Villems, Richard
2004-01-01
Background Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia. Results Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades. Conclusions Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent. PMID:15339343
Tin, Mandy Man-Ying; Economo, Evan Philip; Mikheyev, Alexander Sergeyevich
2014-01-01
Ancient and archival DNA samples are valuable resources for the study of diverse historical processes. In particular, museum specimens provide access to biotas distant in time and space, and can provide insights into ecological and evolutionary changes over time. However, archival specimens are difficult to handle; they are often fragile and irreplaceable, and typically contain only short segments of denatured DNA. Here we present a set of tools for processing such samples for state-of-the-art genetic analysis. First, we report a protocol for minimally destructive DNA extraction of insect museum specimens, which produced sequenceable DNA from all of the samples assayed. The 11 specimens analyzed had fragmented DNA, rarely exceeding 100 bp in length, and could not be amplified by conventional PCR targeting the mitochondrial cytochrome oxidase I gene. Our approach made these samples amenable to analysis with commonly used next-generation sequencing-based molecular analytic tools, including RAD-tagging and shotgun genome re-sequencing. First, we used museum ant specimens from three species, each with its own reference genome, for RAD-tag mapping. Were able to use the degraded DNA sequences, which were sequenced in full, to identify duplicate reads and filter them prior to base calling. Second, we re-sequenced six Hawaiian Drosophila species, with millions of years of divergence, but with only a single available reference genome. Despite a shallow coverage of 0.37 ± 0.42 per base, we could recover a sufficient number of overlapping SNPs to fully resolve the species tree, which was consistent with earlier karyotypic studies, and previous molecular studies, at least in the regions of the tree that these studies could resolve. Although developed for use with degraded DNA, all of these techniques are readily applicable to more recent tissue, and are suitable for liquid handling automation.
Posth, Cosimo; Wißing, Christoph; Kitagawa, Keiko; Pagani, Luca; van Holstein, Laura; Racimo, Fernando; Wehrberger, Kurt; Conard, Nicholas J.; Kind, Claus Joachim; Bocherens, Hervé; Krause, Johannes
2017-01-01
Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods. PMID:28675384
Three Thousand Years of Continuity in the Maternal Lineages of Ancient Sheep (Ovis aries) in Estonia
Rannamäe, Eve; Lõugas, Lembi; Speller, Camilla F.; Valk, Heiki; Maldre, Liina; Wilczyński, Jarosław; Mikhailov, Aleksandr; Saarma, Urmas
2016-01-01
Although sheep (Ovis aries) have been one of the most exploited domestic animals in Estonia since the Late Bronze Age, relatively little is known about their genetic history. Here, we explore temporal changes in Estonian sheep populations and their mitochondrial genetic diversity over the last 3000 years. We target a 558 base pair fragment of the mitochondrial hypervariable region in 115 ancient sheep from 71 sites in Estonia (c. 1200 BC–AD 1900s), 19 ancient samples from Latvia, Russia, Poland and Greece (6800 BC–AD 1700), as well as 44 samples of modern Kihnu native sheep breed. Our analyses revealed: (1) 49 mitochondrial haplotypes, associated with sheep haplogroups A and B; (2) high haplotype diversity in Estonian ancient sheep; (3) continuity in mtDNA haplotypes through time; (4) possible population expansion during the first centuries of the Middle Ages (associated with the establishment of the new power regime related to 13th century crusades); (5) significant difference in genetic diversity between ancient populations and modern native sheep, in agreement with the beginning of large-scale breeding in the 19th century and population decline in local sheep. Overall, our results suggest that in spite of the observed fluctuations in ancient sheep populations, and changes in the natural and historical conditions, the utilisation of local sheep has been constant in the territory of Estonia, displaying matrilineal continuity from the Middle Bronze Age through the Modern Period, and into modern native sheep. PMID:27732668
Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.
Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C
2007-04-13
Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.
Jones, E P; Skirnisson, K; McGovern, T H; Gilbert, M T P; Willerslev, E; Searle, J B
2012-03-19
House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice--in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations.
Hofreiter, Michael
2011-02-01
Ten years after the first draft versions of the human genome were announced, technical progress in both DNA sequencing and ancient DNA analyses has allowed a research team around Ed Green and Svante Pääbo to complete this task from infinitely more difficult hominid samples: a few pieces of bone originating from our closest, albeit extinct, relatives, the Neanderthals. Pulling the Neanderthal sequences out of a sea of contaminating environmental DNA impregnating the bones and at the same time avoiding the problems of contamination with modern human DNA is in itself a remarkable accomplishment. However, the crucial question in the long run is, what can we learn from such genomic data about hominid evolution?
Lawrence, Diana M; Kemp, Brian M; Eshleman, Jason; Jantz, Richard L; Snow, Meradeth; George, Debra; Smith, David Glenn
2010-04-01
Mitochondrial DNA (mtDNA) was extracted from skeletal remains excavated from three Arikara sites in South Dakota occupied between AD 1600 and 1832. The diagnostic markers of four mtDNA haplogroups to which most Native Americans belong (A, B, C, and D) were successfully identified in the extracts of 55 (87%) of the 63 samples studied. The frequencies of the four haplogroups were 42%, 29%, 22%, and 7%, respectively, and principal coordinates analysis and Fisher's exact tests were conducted to compare these haplogroup frequencies with those from other populations. Both analyses showed closer similarity among the Mohawk, Arikara, and Sioux populations than between any of these three and any other of the comparison populations. Portions of the first hypervariable segment (HVSI) of the mitochondrial genome were successfully amplified and sequenced for 42 of these 55 samples, and haplotype networks were constructed for two of the four haplogroups. The sharing of highly derived lineages suggests that some recent admixture of the Arikara with Algonquian-speaking and Siouan-speaking groups has occurred. The Arikara shared more ancient lineages with both Siouan and Cherokee populations than with any other population, consistent with the Macro-Siouan language hypothesis that Iroquoian, Siouan, and Caddoan languages share a relatively recent common ancestry.
Driscoll, Carlos A.; Yamaguchi, Nobuyuki; Bar-Gal, Gila Kahila; Roca, Alfred L.; Luo, Shujin; Macdonald, David W.; O'Brien, Stephen J.
2009-01-01
The Caspian tiger (Panthera tigris virgata) flourished in Central Asian riverine forest systems in a range disjunct from that of other tigers, but was driven to extinction in 1970 prior to a modern molecular evaluation. For over a century naturalists puzzled over the taxonomic validity, placement, and biogeographic origin of this enigmatic animal. Using ancient-DNA (aDNA) methodology, we generated composite mtDNA haplotypes from twenty wild Caspian tigers from throughout their historic range sampled from museum collections. We found that Caspian tigers carry a major mtDNA haplotype differing by only a single nucleotide from the monomorphic haplotype found across all contemporary Amur tigers (P. t. altaica). Phylogeographic analysis with extant tiger subspecies suggests that less than 10,000 years ago the Caspian/Amur tiger ancestor colonized Central Asia via the Gansu Corridor (Silk Road) from eastern China then subsequently traversed Siberia eastward to establish the Amur tiger in the Russian Far East. The conservation implications of these findings are far reaching, as the observed genetic depletion characteristic of modern Amur tigers likely reflects these founder migrations and therefore predates human influence. Also, due to their evolutionary propinquity, living Amur tigers offer an appropriate genetic source should reintroductions to the former range of the Caspian tiger be implemented. PMID:19142238
Driscoll, Carlos A; Yamaguchi, Nobuyuki; Bar-Gal, Gila Kahila; Roca, Alfred L; Luo, Shujin; Macdonald, David W; O'Brien, Stephen J
2009-01-01
The Caspian tiger (Panthera tigris virgata) flourished in Central Asian riverine forest systems in a range disjunct from that of other tigers, but was driven to extinction in 1970 prior to a modern molecular evaluation. For over a century naturalists puzzled over the taxonomic validity, placement, and biogeographic origin of this enigmatic animal. Using ancient-DNA (aDNA) methodology, we generated composite mtDNA haplotypes from twenty wild Caspian tigers from throughout their historic range sampled from museum collections. We found that Caspian tigers carry a major mtDNA haplotype differing by only a single nucleotide from the monomorphic haplotype found across all contemporary Amur tigers (P. t. altaica). Phylogeographic analysis with extant tiger subspecies suggests that less than 10,000 years ago the Caspian/Amur tiger ancestor colonized Central Asia via the Gansu Corridor (Silk Road) from eastern China then subsequently traversed Siberia eastward to establish the Amur tiger in the Russian Far East. The conservation implications of these findings are far reaching, as the observed genetic depletion characteristic of modern Amur tigers likely reflects these founder migrations and therefore predates human influence. Also, due to their evolutionary propinquity, living Amur tigers offer an appropriate genetic source should reintroductions to the former range of the Caspian tiger be implemented.
The Kalash Genetic Isolate: Ancient Divergence, Drift, and Selection
Ayub, Qasim; Mezzavilla, Massimo; Pagani, Luca; Haber, Marc; Mohyuddin, Aisha; Khaliq, Shagufta; Mehdi, Syed Qasim; Tyler-Smith, Chris
2015-01-01
The Kalash represent an enigmatic isolated population of Indo-European speakers who have been living for centuries in the Hindu Kush mountain ranges of present-day Pakistan. Previous Y chromosome and mitochondrial DNA markers provided no support for their claimed Greek descent following Alexander III of Macedon's invasion of this region, and analysis of autosomal loci provided evidence of a strong genetic bottleneck. To understand their origins and demography further, we genotyped 23 unrelated Kalash samples on the Illumina HumanOmni2.5M-8 BeadChip and sequenced one male individual at high coverage on an Illumina HiSeq 2000. Comparison with published data from ancient hunter-gatherers and European farmers showed that the Kalash share genetic drift with the Paleolithic Siberian hunter-gatherers and might represent an extremely drifted ancient northern Eurasian population that also contributed to European and Near Eastern ancestry. Since the split from other South Asian populations, the Kalash have maintained a low long-term effective population size (2,319–2,603) and experienced no detectable gene flow from their geographic neighbors in Pakistan or from other extant Eurasian populations. The mean time of divergence between the Kalash and other populations currently residing in this region was estimated to be 11,800 (95% confidence interval = 10,600−12,600) years ago, and thus they represent present-day descendants of some of the earliest migrants into the Indian sub-continent from West Asia. PMID:25937445
The Kalash genetic isolate: ancient divergence, drift, and selection.
Ayub, Qasim; Mezzavilla, Massimo; Pagani, Luca; Haber, Marc; Mohyuddin, Aisha; Khaliq, Shagufta; Mehdi, Syed Qasim; Tyler-Smith, Chris
2015-05-07
The Kalash represent an enigmatic isolated population of Indo-European speakers who have been living for centuries in the Hindu Kush mountain ranges of present-day Pakistan. Previous Y chromosome and mitochondrial DNA markers provided no support for their claimed Greek descent following Alexander III of Macedon's invasion of this region, and analysis of autosomal loci provided evidence of a strong genetic bottleneck. To understand their origins and demography further, we genotyped 23 unrelated Kalash samples on the Illumina HumanOmni2.5M-8 BeadChip and sequenced one male individual at high coverage on an Illumina HiSeq 2000. Comparison with published data from ancient hunter-gatherers and European farmers showed that the Kalash share genetic drift with the Paleolithic Siberian hunter-gatherers and might represent an extremely drifted ancient northern Eurasian population that also contributed to European and Near Eastern ancestry. Since the split from other South Asian populations, the Kalash have maintained a low long-term effective population size (2,319-2,603) and experienced no detectable gene flow from their geographic neighbors in Pakistan or from other extant Eurasian populations. The mean time of divergence between the Kalash and other populations currently residing in this region was estimated to be 11,800 (95% confidence interval = 10,600-12,600) years ago, and thus they represent present-day descendants of some of the earliest migrants into the Indian sub-continent from West Asia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Meiri, Meirav; Lister, Adrian M.; Collins, Matthew J.; Tuross, Noreen; Goebel, Ted; Blockley, Simon; Zazula, Grant D.; van Doorn, Nienke; Dale Guthrie, R.; Boeskorov, Gennady G.; Baryshnikov, Gennady F.; Sher, Andrei; Barnes, Ian
2014-01-01
Human colonization of the New World is generally believed to have entailed migrations from Siberia across the Bering isthmus. However, the limited archaeological record of these migrations means that details of the timing, cause and rate remain cryptic. Here, we have used a combination of ancient DNA, 14C dating, hydrogen and oxygen isotopes, and collagen sequencing to explore the colonization history of one of the few other large mammals to have successfully migrated into the Americas at this time: the North American elk (Cervus elaphus canadensis), also known as wapiti. We identify a long-term occupation of northeast Siberia, far beyond the species’s current Old World distribution. Migration into North America occurred at the end of the last glaciation, while the northeast Siberian source population became extinct only within the last 500 years. This finding is congruent with a similar proposed delay in human colonization, inferred from modern human mitochondrial DNA, and suggestions that the Bering isthmus was not traversable during parts of the Late Pleistocene. Our data imply a fundamental constraint in crossing Beringia, placing limits on the age and mode of human settlement in the Americas, and further establish the utility of ancient DNA in palaeontological investigations of species histories. PMID:24335981
Ancient wolf lineages in India.
Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C
2004-01-01
All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402
Ancient wolf lineages in India.
Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C
2004-02-07
All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids.
Meiri, Meirav; Lister, Adrian M; Collins, Matthew J; Tuross, Noreen; Goebel, Ted; Blockley, Simon; Zazula, Grant D; van Doorn, Nienke; Dale Guthrie, R; Boeskorov, Gennady G; Baryshnikov, Gennady F; Sher, Andrei; Barnes, Ian
2014-02-07
Human colonization of the New World is generally believed to have entailed migrations from Siberia across the Bering isthmus. However, the limited archaeological record of these migrations means that details of the timing, cause and rate remain cryptic. Here, we have used a combination of ancient DNA, 14C dating, hydrogen and oxygen isotopes, and collagen sequencing to explore the colonization history of one of the few other large mammals to have successfully migrated into the Americas at this time: the North American elk (Cervus elaphus canadensis), also known as wapiti. We identify a long-term occupation of northeast Siberia, far beyond the species's current Old World distribution. Migration into North America occurred at the end of the last glaciation, while the northeast Siberian source population became extinct only within the last 500 years. This finding is congruent with a similar proposed delay in human colonization, inferred from modern human mitochondrial DNA, and suggestions that the Bering isthmus was not traversable during parts of the Late Pleistocene. Our data imply a fundamental constraint in crossing Beringia, placing limits on the age and mode of human settlement in the Americas, and further establish the utility of ancient DNA in palaeontological investigations of species histories.
Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant.
Städler, Thomas; Delph, Lynda F
2002-09-03
Because of their extremely low nucleotide mutation rates, plant mitochondrial genes are generally not expected to show variation within species. Remarkably, we found nine distinct cytochrome b sequence haplotypes in the gynodioecious alpine plant Silene acaulis, with two or more haplotypes coexisting locally in each of three sampled regions. Moreover, there is evidence for intragenic recombination in the history of the haplotype sample, implying at least transient heteroplasmy of mitochondrial DNA (mtDNA). Heteroplasmy might be achieved by one of two potential mechanisms, either continuous coexistence of subgenomic fragments in low stoichiometry, or occasional paternal leakage of mtDNA. On the basis of levels of synonymous nucleotide substitutions, the average divergence time between haplotypes is estimated to be at least 15 million years. Ancient coalescence of extant haplotypes is further indicated by the paucity of fixed differences in haplotypes obtained from related species, a pattern expected under trans-specific evolution. Our data are consistent with models of frequency-dependent selection on linked cytoplasmic male-sterility factors, the putative molecular basis of females in gynodioecious populations. However, associations between marker loci and the inferred male-sterility genes can be maintained only with very low rates of recombination. Heteroplasmy and recombination between divergent haplotypes imply unexplored consequences for the evolutionary dynamics of gynodioecy, a widespread plant breeding system.
Plasmodium falciparum malaria in 1st-2nd century CE southern Italy.
Marciniak, Stephanie; Prowse, Tracy L; Herring, D Ann; Klunk, Jennifer; Kuch, Melanie; Duggan, Ana T; Bondioli, Luca; Holmes, Edward C; Poinar, Hendrik N
2016-12-05
The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
HIGH-THROUGHPUT PHYLOGENOMICS: FROM ANCIENT DNA TO SIGNATURES OF HUMAN ANIMAL HUSBANDRY
USDA-ARS?s Scientific Manuscript database
We utilized the Illumina BovineSNP50 BeadChip with 54,693 single nucleotide polymorphism loci developed for Bos taurus taurus to rapidly genotype 677 individuals representing 61 Pecoran (horned ruminant) species diverged by up to 29 million years. We produced a completely bifurcating tree, the first...
Tracing the first steps of American sturgeon pioneers in Europe
Ludwig, A.; Arndt, U.; Lippold, S.; Benecke, N.; Debus, L.; King, T.L.; Matsumura, S.
2008-01-01
Background. A Baltic population of Atlantic sturgeon was founded ???1,200 years ago by migrants from North America, but after centuries of persistence, the population was extirpated in the 1960s, mainly as a result of over-harvest and habitat alterations. As there are four genetically distinct groups of Atlantic sturgeon inhabiting North American rivers today, we investigated the genetic provenance of the historic Baltic population by ancient DNA analyses using mitochondrial and nuclear markers. Results. The phylogeographic signal obtained from multilocus microsatellite DNA genotypes and mitochondrial DNA control region haplotypes, when compared to existing baseline datasets from extant populations, allowed for the identification of the region-of-origin of the North American Atlantic sturgeon founders. Moreover, statistical and simulation analyses of the multilocus genotypes allowed for the calculation of the effective number of individuals that originally founded the European population of Atlantic sturgeon. Our findings suggest that the Baltic population of A. oxyrinchus descended from a relatively small number of founders originating from the northern extent of the species' range in North America. Conclusion. These results demonstrate that the most northerly distributed North American A. oxyrinchus colonized the Baltic Sea ???1,200 years ago, suggesting that Canadian specimens should be the primary source of broodstock used for restoration in Baltic rivers. This study illustrates the great potential of patterns obtained from ancient DNA to identify population-of-origin to investigate historic genotype structure of extinct populations. ?? 2008 Ludwig et al; licensee BioMed Central Ltd.
Lin, Xuan; Faridi, Nurul; Casola, Claudio
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138
Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis.
Pucholt, Pascal; Wright, Alison E; Conze, Lei Liu; Mank, Judith E; Berlin, Sofia
2017-08-01
Sex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes. We detected no major sex differences in read coverage in the sex determination (SD) region, indicating that the W region has not significantly degenerated. However, single nucleotide polymorphism densities in the SD region are higher in females compared with males, indicating very recent recombination suppression, followed by the accumulation of sex-specific single nucleotide polymorphisms. Interestingly, we identified two female-specific scaffolds that likely represent W-chromosome-specific sequence. We show that genes located in the SD region display a mild excess of male-biased expression in sex-specific tissue, and we use allele-specific gene expression analysis to show that this is the result of masculinization of expression on the Z chromosome rather than degeneration of female-expression on the W chromosome. Together, our results demonstrate that insertion of small DNA fragments and accumulation of sex-biased gene expression can occur before the detectable decay of the sex-limited chromosome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Williams, Tom A.; Embley, T. Martin; Heinz, Eva
2011-01-01
Mimivirus is a nucleocytoplasmic large DNA virus (NCLDV) with a genome size (1.2 Mb) and coding capacity ( 1000 genes) comparable to that of some cellular organisms. Unlike other viruses, Mimivirus and its NCLDV relatives encode homologs of broadly conserved informational genes found in Bacteria, Archaea, and Eukaryotes, raising the possibility that they could be placed on the tree of life. A recent phylogenetic analysis of these genes showed the NCLDVs emerging as a monophyletic group branching between Eukaryotes and Archaea. These trees were interpreted as evidence for an independent “fourth domain” of life that may have contributed DNA processing genes to the ancestral eukaryote. However, the analysis of ancient evolutionary events is challenging, and tree reconstruction is susceptible to bias resulting from non-phylogenetic signals in the data. These include compositional heterogeneity and homoplasy, which can lead to the spurious grouping of compositionally-similar or fast-evolving sequences. Here, we show that these informational gene alignments contain both significant compositional heterogeneity and homoplasy, which were not adequately modelled in the original analysis. When we use more realistic evolutionary models that better fit the data, the resulting trees are unable to reject a simple null hypothesis in which these informational genes, like many other NCLDV genes, were acquired by horizontal transfer from eukaryotic hosts. Our results suggest that a fourth domain is not required to explain the available sequence data. PMID:21698163
Akgül, Gülfirde; Della Casa, Philippe; Rühli, Frank; Warinner, Christina
2014-01-01
Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies. These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71–80%, our results suggest that genetic lactase persistence likely reached modern levels before the historic population declines associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in this region. This new evidence sheds light on the dynamic evolutionary history of the European lactase persistence trait and its global cultural implications. PMID:24465990
Chen, Chuyun; Hong, Jiaming; Zhou, Weilin; Lin, Guohua; Wang, Zhengfei; Zhang, Qufei; Lu, Cuina; Lu, Lihong
2017-07-12
To construct a knowledge platform of acupuncture ancient books based on data mining technology, and to provide retrieval service for users. The Oracle 10 g database was applied and JAVA was selected as development language; based on the standard library and ancient books database established by manual entry, a variety of data mining technologies, including word segmentation, speech tagging, dependency analysis, rule extraction, similarity calculation, ambiguity analysis, supervised classification technology were applied to achieve text automatic extraction of ancient books; in the last, through association mining and decision analysis, the comprehensive and intelligent analysis of disease and symptom, meridians, acupoints, rules of acupuncture and moxibustion in acupuncture ancient books were realized, and retrieval service was provided for users through structure of browser/server (B/S). The platform realized full-text retrieval, word frequency analysis and association analysis; when diseases or acupoints were searched, the frequencies of meridian, acupoints (diseases) and techniques were presented from high to low, meanwhile the support degree and confidence coefficient between disease and acupoints (special acupoint), acupoints and acupoints in prescription, disease or acupoints and technique were presented. The experience platform of acupuncture ancient books based on data mining technology could be used as a reference for selection of disease, meridian and acupoint in clinical treatment and education of acupuncture and moxibustion.
Fugassa, M H; Petrigh, R S; Fernández, P M; Carballido Catalayud, M; Belleli, C
2018-06-11
This work aims to increase the information on the entero-parasitism in Holocene carnivores, by examining coprolites found in Patagonia. Molecular analysis was conducted following the Authenticity Criteria to Determine Ancient DNA sequences. The nucleotide sequences showed 99% of identity with the Control Region sequences of Lycalopex culpaeus (culpeo fox). Coprolites were positive for gastrointestinal parasites. The presence of Alaria sp. and Clonorchis sp. represents the first record for pre-Columbian America. The parasitological findings suggest the importance of these carnivores for the dissemination of their own parasites and those to their prey in rockshelters, areas with high re-use of space. Copyright © 2018. Published by Elsevier B.V.
Complete Mitochondrial Genome of Eruca sativa Mill. (Garden Rocket)
Yang, Qing; Chang, Shengxin; Chen, Jianmei; Hu, Maolong; Guan, Rongzhan
2014-01-01
Eruca sativa (Cruciferae family) is an ancient crop of great economic and agronomic importance. Here, the complete mitochondrial genome of Eruca sativa was sequenced and annotated. The circular molecule is 247 696 bp long, with a G+C content of 45.07%, containing 33 protein-coding genes, three rRNA genes, and 18 tRNA genes. The Eruca sativa mitochondrial genome may be divided into six master circles and four subgenomic molecules via three pairwise large repeats, resulting in a more dynamic structure of the Eruca sativa mtDNA compared with other cruciferous mitotypes. Comparison with the Brassica napus MtDNA revealed that most of the genes with known function are conserved between these two mitotypes except for the ccmFN2 and rrn18 genes, and 27 point mutations were scattered in the 14 protein-coding genes. Evolutionary relationships analysis suggested that Eruca sativa is more closely related to the Brassica species and to Raphanus sativus than to Arabidopsis thaliana. PMID:25157569
Ancient Genomics and the Peopling of the Southwest Pacific
Skoglund, Pontus; Posth, Cosimo; Sirak, Kendra; Spriggs, Matthew; Valentin, Frederique; Bedford, Stuart; Clark, Geoffrey; Reepmeyer, Christian; Petchey, Fiona; Fernandes, Daniel; Fu, Qiaomei; Harney, Eadaoin; Lipson, Mark; Mallick, Swapan; Novak, Mario; Rohland, Nadin; Stewardson, Kristin; Abdullah, Syafiq; Cox, Murray P.; Friedlaender, Françoise R.; Friedlaender, Jonathan S.; Kivisild, Toomas; Koki, George; Kusuma, Pradiptajati; Merriwether, D. Andrew; Ricaut, Francois-X.; Wee, Joseph T. S.; Patterson, Nick; Krause, Johannes; Pinhasi, Ron; Reich, David
2017-01-01
The appearance of people associated with the Lapita culture in the South Pacific ~3,000 years ago1 marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long established Papuans of the New Guinea region is unclear. We report genome-wide ancient DNA data from four individuals from Vanuatu (~3100-2700 years before present) and Tonga (~2700-2300 years before present), and co-analyze them with 778 present-day East Asians and Oceanians. Today, indigenous peoples of the South Pacific harbor a mixture of ancestry from Papuans and a population of East Asian origin that does not exist in unmixed form today, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five percent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, prior to the further expansion into Remote Oceania2–5. However, our finding that the ancient individuals had little to no Papuan ancestry implies later human population movements that spread Papuan ancestry through the South Pacific after the islands’ first peopling. PMID:27698418
Fernández, Helena; Hughes, Sandrine; Vigne, Jean-Denis; Helmer, Daniel; Hodgins, Greg; Miquel, Christian; Hänni, Catherine; Luikart, Gordon; Taberlet, Pierre
2006-01-01
Goats were among the first farm animals domesticated, ≈10,500 years ago, contributing to the rise of the “Neolithic revolution.” Previous genetic studies have revealed that contemporary domestic goats (Capra hircus) show far weaker intercontinental population structuring than other livestock species, suggesting that goats have been transported more extensively. However, the timing of these extensive movements in goats remains unknown. To address this question, we analyzed mtDNA sequences from 19 ancient goat bones (7,300–6,900 years old) from one of the earliest Neolithic sites in southwestern Europe. Phylogenetic analysis revealed that two highly divergent goat lineages coexisted in each of the two Early Neolithic layers of this site. This finding indicates that high mtDNA diversity was already present >7,000 years ago in European goats, far from their areas of initial domestication in the Near East. These results argue for substantial gene flow among goat populations dating back to the early neolithisation of Europe and for a dual domestication scenario in the Near East, with two independent but essentially contemporary origins (of both A and C domestic lineages) and several more remote and/or later origins. PMID:17030824
Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany
Star, Bastiaan; Boessenkool, Sanne; Gondek, Agata T.; Nikulina, Elena A.; Hufthammer, Anne Karin; Pampoulie, Christophe; Knutsen, Halvor; André, Carl; Nistelberger, Heidi M.; Dierking, Jan; Petereit, Christoph; Heinrich, Dirk; Jakobsen, Kjetill S.; Stenseth, Nils Chr.; Jentoft, Sissel
2017-01-01
Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15–46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800–1066 CE) and subsequent medieval (1066–1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age. PMID:28784790
I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies.
Hu, Zhengbing; Petoukhov, Sergey V; Petukhova, Elena S
2017-12-01
The ancient Chinese book I-Ching was written a few thousand years ago. It introduces the system of symbols Yin and Yang (equivalents of 0 and 1). It had a powerful impact on culture, medicine and science of ancient China and several other countries. From the modern standpoint, I-Ching declares the importance of dyadic groups of binary numbers for the Nature. The system of I-Ching is represented by the tables with dyadic groups of 4 bigrams, 8 trigrams and 64 hexagrams, which were declared as fundamental archetypes of the Nature. The ancient Chinese did not know about the genetic code of protein sequences of amino acids but this code is organized in accordance with the I-Ching: in particularly, the genetic code is constructed on DNA molecules using 4 nitrogenous bases, 16 doublets, and 64 triplets. The article also describes the usage of dyadic groups as a foundation of the bio-mathematical doctrine of the geno-logic code, which exists in parallel with the known genetic code of amino acids but serves for a different goal: to code the inherited algorithmic processes using the logical holography and the spectral logic of systems of genetic Boolean functions. Some relations of this doctrine with the I-Ching are discussed. In addition, the ratios of musical harmony that can be revealed in the parameters of DNA structure are also represented in the I-Ching book. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA
Larson, Greger; Liu, Ranran; Zhao, Xingbo; Yuan, Jing; Fuller, Dorian; Barton, Loukas; Dobney, Keith; Fan, Qipeng; Gu, Zhiliang; Liu, Xiao-Hui; Luo, Yunbing; Lv, Peng; Andersson, Leif; Li, Ning
2010-01-01
The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as “cryptic domestication,” given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East. PMID:20404179
Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany.
Star, Bastiaan; Boessenkool, Sanne; Gondek, Agata T; Nikulina, Elena A; Hufthammer, Anne Karin; Pampoulie, Christophe; Knutsen, Halvor; André, Carl; Nistelberger, Heidi M; Dierking, Jan; Petereit, Christoph; Heinrich, Dirk; Jakobsen, Kjetill S; Stenseth, Nils Chr; Jentoft, Sissel; Barrett, James H
2017-08-22
Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod ( Gadus morhua ) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.
The Ancient Evolutionary History of Polyomaviruses
Buck, Christopher B.; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M.; Tisza, Michael J.; An, Ping; Katz, Joshua P.; Pipas, James M.; McBride, Alison A.; Camus, Alvin C.; McDermott, Alexa J.; Dill, Jennifer A.; Delwart, Eric; Ng, Terry F. F.; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V.; Varsani, Arvind
2016-01-01
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155
USDA-ARS?s Scientific Manuscript database
Interrogation of modern and ancient bovine genome sequences provides a valuable model to study the evolution of cattle. Here, we analyse the first complete wild aurochs (Bos primigenius) genome sequence using DNA extracted from a ~ 6,750 year-old humerus bone retrieved from a cave site in Derbyshire...
The ancient Yakuts: a population genetic enigma
Keyser, Christine; Hollard, Clémence; Gonzalez, Angela; Fausser, Jean-Luc; Rivals, Eric; Alexeev, Anatoly Nikolayevich; Riberon, Alexandre; Crubézy, Eric; Ludes, Bertrand
2015-01-01
This study is part of an ongoing project aiming at determining the ethnogenesis of an eastern Siberian ethnic group, the Yakuts, on the basis of archaeological excavations carried out over a period of 10 years in three regions of Yakutia: Central Yakutia, the Vilyuy River basin and the Verkhoyansk area. In this study, genetic analyses were carried out on skeletal remains from 130 individuals of unknown ancestry dated mainly from the fifteenth to the nineteenth century AD. Kinship studies were conducted using sets of commercially available autosomal and Y-chromosomal short tandem repeats (STRs) along with hypervariable region I sequences of the mitochondrial DNA. An unexpected and intriguing finding of this work was that the uniparental marker systems did not always corroborate results from autosomal DNA analyses; in some cases, false-positive relationships were observed. These discrepancies revealed that 15 autosomal STR loci are not sufficient to discriminate between first degree relatives and more distantly related individuals in our ancient Yakut sample. The Y-STR analyses led to similar conclusions, because the current Y-STR panels provided the limited resolution of the paternal lineages. PMID:25487336
Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.
Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A; Burger, Richard L; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R Spencer; Politis, Gustavo; Santoro, Calogero M; Standen, Vivien G; Smith, Colin; Reich, David; Ho, Simon Y W; Cooper, Alan; Haak, Wolfgang
2016-04-01
The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.
Discovery of a new family of amphibians from northeast India with ancient links to Africa
Kamei, Rachunliu G.; Mauro, Diego San; Gower, David J.; Van Bocxlaer, Ines; Sherratt, Emma; Thomas, Ashish; Babu, Suresh; Bossuyt, Franky; Wilkinson, Mark; Biju, S. D.
2012-01-01
The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India—an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians. PMID:22357266
Overballe-Petersen, Søren; Willerslev, Eske
2014-01-01
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. PMID:25143190
Overballe-Petersen, Søren; Willerslev, Eske
2014-10-01
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love
2014-01-01
Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.
Kefi, Rym; Hechmi, Meriem; Naouali, Chokri; Jmel, Haifa; Hsouna, Sana; Bouzaid, Eric; Abdelhak, Sonia; Beraud-Colomb, Eliane; Stevanovitch, Alain
2018-01-01
The Western North African population was characterized by the presence of Iberomaurusian civilization at the Epiplaeolithic period (around 20,000 years before present (YBP) to 10,000 YBP). The origin of this population is still not clear: they may come from Europe, Near East, sub-Saharan Africa or they could have evolved in situ in North Africa. With the aim to contribute to a better knowledge of the settlement of North Africa we analysed the mitochondrial DNA extracted from Iberomaurusian skeletons exhumed from the archaeological site of Afalou (AFA) (15,000-11,000 YBP) in Algeria and from the archaeological site of Taforalt (TAF) (23,000-10,800 YBP) in Morocco. Then, we carried out a phylogenetic analysis relating these Iberomaurusians to 61 current Mediterranean populations. The genetic structure of TAF and AFA specimens contains only North African and Eurasian maternal lineages. These finding demonstrate the presence of these haplotypes in North Africa from at least 20,000 YBP. The very low contribution of a Sub-Saharan African haplotype in the Iberomaurusian samples is confirmed. We also highlighted the existence of genetic flows between Southern and Northern coast of the Mediterranean.
Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra
2018-05-01
DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1 ng and 10 ng exhibited >90% reportable SNPs. Finally, two-person male-male mixtures were tested at 10 ng in contributor varying ratios. Overall, 85-100% of alleles unique to the minor contributor were observed at all mixture ratios. Results from these studies using the SNP probe capture NGS system demonstrates proof of concept for application to forensically relevant degraded and mixed DNA samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.
Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla
2018-05-01
DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.