Science.gov

Sample records for ancient dna strontium

  1. Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age.

    PubMed

    Haak, Wolfgang; Brandt, Guido; de Jong, Hylke N; Meyer, Christian; Ganslmeier, Robert; Heyd, Volker; Hawkesworth, Chris; Pike, Alistair W G; Meller, Harald; Alt, Kurt W

    2008-11-25

    In 2005 four outstanding multiple burials were discovered near Eulau, Germany. The 4,600-year-old graves contained groups of adults and children buried facing each other. Skeletal and artifactual evidence and the simultaneous interment of the individuals suggest the supposed families fell victim to a violent event. In a multidisciplinary approach, archaeological, anthropological, geochemical (radiogenic isotopes), and molecular genetic (ancient DNA) methods were applied to these unique burials. Using autosomal, mitochondrial, and Y-chromosomal markers, we identified genetic kinship among the individuals. A direct child-parent relationship was detected in one burial, providing the oldest molecular genetic evidence of a nuclear family. Strontium isotope analyses point to different origins for males and children versus females. By this approach, we gain insight into a Late Stone Age society, which appears to have been exogamous and patrilocal, and in which genetic kinship seems to be a focal point of social organization.

  2. Ancient DNA, Strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age

    PubMed Central

    Haak, Wolfgang; Brandt, Guido; de Jong, Hylke N.; Meyer, Christian; Ganslmeier, Robert; Heyd, Volker; Hawkesworth, Chris; Pike, Alistair W. G.; Meller, Harald; Alt, Kurt W.

    2008-01-01

    In 2005 four outstanding multiple burials were discovered near Eulau, Germany. The 4,600-year-old graves contained groups of adults and children buried facing each other. Skeletal and artifactual evidence and the simultaneous interment of the individuals suggest the supposed families fell victim to a violent event. In a multidisciplinary approach, archaeological, anthropological, geochemical (radiogenic isotopes), and molecular genetic (ancient DNA) methods were applied to these unique burials. Using autosomal, mitochondrial, and Y-chromosomal markers, we identified genetic kinship among the individuals. A direct child-parent relationship was detected in one burial, providing the oldest molecular genetic evidence of a nuclear family. Strontium isotope analyses point to different origins for males and children versus females. By this approach, we gain insight into a Late Stone Age society, which appears to have been exogamous and patrilocal, and in which genetic kinship seems to be a focal point of social organization. PMID:19015520

  3. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  4. Epigenetics of Ancient DNA

    PubMed Central

    Zhenilo, S. V.; Sokolov, A.S.; Prokhortchouk, E. B.

    2016-01-01

    Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences. PMID:27795845

  5. Synchrotron Study of Strontium in Modern and Ancient Human Bones

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Cruz-Jimenez, G.

    2001-05-01

    Archaeologists use the strontium in human bone to reconstruct diet and migration in ancient populations. Because mammals discriminate against strontium relative to calcium, carnivores show lower bone Sr/Ca ratios than herbivores. Thus, in a single population, bone Sr/Ca ratios can discriminate a meat-rich from a vegetarian diet. Also, the ratio of 87-Sr to 86-Sr in soils varies with the underlying geology; incorporated into the food chain, this local signature becomes embedded in our bones. The Sr isotopic ratio in the bones of individuals or populations which migrate to a different geologic terrane will gradually change as bone remodels. In contrast, the isotopic ratio of tooth enamel is fixed at an early age and is not altered later in life. Addition of Sr to bone during post-mortem residence in moist soil or sediment compromises application of the Sr/Ca or Sr-isotope techniques. If this post-mortem Sr resides in a different atomic environment than the Sr deposited in vivo, x-ray absorption spectroscopy could allow us to distinguish pristine from contaminated, and thus unreliable, samples. Initial examination of a suite of modern and ancient human and animal bones by extended x-ray absorption fine structure (EXAFS) showed no obvious differences between the fresh and buried materials. We note, with obvious concern, that the actual location of Sr in modern bone is controversial: there is evidence both that Sr substitutes for Ca and that Sr is sorbed on the surfaces of bone crystallites. Additional material is being studied.

  6. Ancient DNA extraction from plants.

    PubMed

    Kistler, Logan

    2012-01-01

    A variety of protocols for DNA extraction from archaeological and paleobotanical plant specimens have been proposed. This is not surprising given the range of taxa and tissue types that may be preserved and the variety of conditions in which that preservation may take place. Commercially available DNA extraction kits can be used to recover ancient plant DNA, but modifications to standard approaches are often necessary to improve yield. In this chapter, I describe two protocols for extracting DNA from small amounts of ancient plant tissue. The CTAB protocol, which I recommend for use with single seeds, utilizes an incubation period in extraction buffer and subsequent chloroform extraction followed by DNA purification and suspension. The PTB protocol, which I recommend for use with gourd rind and similar tissues, utilizes an overnight incubation of pulverized tissue in extraction buffer, removal of the tissue by centrifugation, and DNA extraction from the buffer using commercial plant DNA extraction kits.

  7. Ancient DNA and human history

    PubMed Central

    Slatkin, Montgomery; Racimo, Fernando

    2016-01-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  8. Ancient DNA and human history.

    PubMed

    Slatkin, Montgomery; Racimo, Fernando

    2016-06-07

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history.

  9. Improving ancient DNA genome assembly

    PubMed Central

    Nieselt, Kay

    2017-01-01

    Most reconstruction methods for genomes of ancient origin that are used today require a closely related reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer approach, where multiple assemblies are generated in the first layer, which are then combined in the second layer. We used this two-layer assembly to generate assemblies for two different ancient samples and compared the results to current de novo assembly approaches. We are able to improve the assembly with respect to the length of the contigs and can resolve more repetitive regions. PMID:28392981

  10. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.

  11. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  12. [Biological evolution and ancient DNA].

    PubMed

    Debruyne, Régis; Barriel, Véronique

    2006-05-01

    Twenty years after the advent of ancient DNA studies, this discipline seems to have reached the maturity formerly lacking to the fulfilment of its objectives. In its early development paleogenetics, as it is now acknowledged, had to cope with very limited data due to the technical limitations of molecular biology. It led to phylogenetic assumptions often limited in their scope and sometimes non-focused or even spurious results that cast the reluctance of the scientific community. This time seems now over and huge amounts of sequences have become available which overcome the former limitations and bridge the gap between paleogenetics, genomics and population biology. The recent studies over the charismatic woolly mammoth (independent sequencing of the whole mitochondrial genome and of millions of base pairs of the nuclear genome) exemplify the growing accuracy of ancient DNA studies thanks to new molecular approaches. From the earliest publications up to now, the number of mammoth nucleotides was multiplied by 100,000. Likewise, populational approaches of ice-age taxa provide new historical scenarios about the diversification and extinction of the Pleistocene megafauna on the one hand, and about the processes of domestication of animal and vegetal species by Man on the other. They also shed light on the differential structure of molecular diversity between short-term populational research (below 2 My) and long-term (over 2 My) phylogenetic approaches. All those results confirm the growing importance of paleogenetics among the evolutionary biology disciplines.

  13. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of strontium are reviewed. Consumption for the year is estimated to have been about 35 kt for strontium contained in celestite, strontium carbonate, and strontium nitrate. Exports of strontium totaled only about 1.1 kt for the year. U.S. strontium imports and consumption increased about 30 percent in 1994 due to increased domestic production of color television picture tube glass. The average customs value of celestite coming into the U.S. was about $75/t, strontium carbonate was valued at $661/t, and strontium nitrate was valued at about $1,069/t.

  14. gargammel: a sequence simulator for ancient DNA.

    PubMed

    Renaud, Gabriel; Hanghøj, Kristian; Willerslev, Eske; Orlando, Ludovic

    2016-10-29

    Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico, we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets.

  15. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    1996-01-01

    Part of the Annual Commodities Review 1995. In 1995, U.S. strontium imports and consumption increased nearly 30 percent due to increased domestic production of color television picture tube glass. However, strontium compound exports fell during 1995. Strontium is also used in the production of permanent ceramic ferrite magnets. Strontium nitrate, strontium chromate, and strontium chloride are also commonly used materials. Although the development of an affordable flatscreen display could eliminate the need for strontium in television production, this technology is not expected to be perfected in the immediate future.

  16. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    2000-01-01

    Mexico is the leading producer of celestite, the most common strontium ore. Chemical Products is the only major US maker of strontium compounds. It produces all of its strontium carbonate from imported Mexican celestite. Mexico is also a large producer of strontium carbonate, as are China, Germany, Japan and the Republic of Korea. There has been no celestite production in the United States since 1959.

  17. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    China, Mexico, Spain and Turkey are the world's leading producers of celestite (strontium sulphate). These countries accounted for 98% of the total world production in 2005. For the same period, US apparent consumption of strontium decreased to 12.3 kt. Imports were 21.2 kt, of which 84% came from Mexico. Imports of celestite and strontium carbonate decreased 71% and 24% respectively.

  18. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    1994-01-01

    Production figures are not published for stronium carbonate because there is only one company producing strontium carbonate domestically. Strontium carbonate is produced in the U.S. from imported celestite. Consumption can be estimated from trade data published by the U.S. Bureau of the Census. Consumption is estimated at approximately 24.5 kt of strontium. The largest end-use of strontium carbonate is in the production of faceplate glass for color television picturetubes. Other applications and markets for strontium are discussed.

  19. ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...

  20. Ancient plant DNA in lake sediments.

    PubMed

    Parducci, Laura; Bennett, Keith D; Ficetola, Gentile Francesco; Alsos, Inger Greve; Suyama, Yoshihisa; Wood, Jamie R; Pedersen, Mikkel Winther

    2017-04-03

    Contents I. II. III. IV. V. VI. VII. VIII. IX. X. XI. References SUMMARY: Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras. Hitherto, ancient frozen soils have proved excellent in preserving DNA molecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a few metres from the sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNA from lake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here, we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progress made up to the present. We argue that aDNA analyses add new and additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.

  1. Faunal histories from Holocene ancient DNA.

    PubMed

    de Bruyn, Mark; Hoelzel, A Rus; Carvalho, Gary R; Hofreiter, Michael

    2011-08-01

    Recent studies using ancient DNA have been instrumental in advancing understanding of the impact of Holocene climate change on biodiversity. Ancient DNA has been used to track demography, migration and diversity, and is providing new insights into the long-term dynamics of species and population distributions. The Holocene is key to understanding how the past has impacted on the present, as it bridges the gap between contemporary phylogeographic studies and those with inference on Pleistocene patterns, based on ancient DNA studies. Here, we examine the major patterns of Holocene faunal population dynamics and connectivity; highlighting the dynamic nature of species and population responses to Holocene climatic change, thereby providing an 'analogue' for understanding potential impacts of future change.

  2. Strontium

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    In 2010, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) decreased by 11 percent to 10.4 kt (11,460 st) from 11.8 kt (13,000 st) in 2009. Gross weight of imports totaled 20.9 kt (23,000 st), of which 65 percent originated from Mexico.

  3. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    2013-01-01

    In 2012, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) decreased to 16.7 kt (18,400 st) from 17.3 kt (19,100 st) in 2011. Gross weight of imports was 34.3 kt (37,800 st), 86 percent of which originated in Mexico.

  4. Strontium

    USGS Publications Warehouse

    ,

    2012-01-01

    In 2011, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) increased markedly to 18.4 kt (20,300 st) from 10.4 kt (11,500 st) in 2010. Gross weight of imports was 34.4 kt (38,000 st), of which 76 percent originated from Mexico.

  5. Strontium

    USGS Publications Warehouse

    Angulo, M.A.

    2010-01-01

    In 2009, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) increased to 16 kt (17,600 st) from 10.6 kt (11,700 st) in 2008, an increase of 52 percent. This increase was attributed primarily to an increase in imported celestite. Gross weight of imports totaled 25.3 kt (27,900 st), of which 91 percent came from Mexico. Imports in 2009 were 18 percent more than in 2008. Exports of strontium compounds in 2009 decreased 15 percent to 9.3 kt (10,250 st) from 10.9 kt (12,000 st) in 2008. In 2009, the U.S. Customs value of imported strontium carbonate was 65 cents/kg (29 cents/lb); for strontium nitrate, the unit value was $ 1/kg (45 cents/lb). The unit value of imported celestite, all of which was from Mexico, was about $47/t ($43/st).

  6. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    1993-01-01

    Part of a special section reviewing the market performance of industrial minerals in 1992. Imports of celestite (strontium ore) reached nearly 45 kt, which represents an increase of 35 percent over 1991. Mexico supplied almost all of the celestite. Nearly 70 percent of the strontium consumed in the U.S. is used in television picture tube faceplate glass to block X-ray emissions.

  7. Ancient DNA analysis of dental calculus.

    PubMed

    Weyrich, Laura S; Dobney, Keith; Cooper, Alan

    2015-02-01

    Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine.

  8. Strontium

    USGS Publications Warehouse

    Ober, J.A.

    2003-01-01

    Mexico and Spain are the leading producers of celestite, the most common strontium ore. Those countries produced nearly 80 percent of the estimated 360 kt (397,000 st) of celestite produced worldwide during 2002. China and Turkey are other significant celestite producers.

  9. Strontium

    Integrated Risk Information System (IRIS)

    Strontium ; CASRN 7440 - 24 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  10. Fossil avian eggshell preserves ancient DNA.

    PubMed

    Oskam, Charlotte L; Haile, James; McLay, Emma; Rigby, Paul; Allentoft, Morten E; Olsen, Maia E; Bengtsson, Camilla; Miller, Gifford H; Schwenninger, Jean-Luc; Jacomb, Chris; Walter, Richard; Baynes, Alexander; Dortch, Joe; Parker-Pearson, Michael; Gilbert, M Thomas P; Holdaway, Richard N; Willerslev, Eske; Bunce, Michael

    2010-07-07

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.

  11. Ancient bacteria show evidence of DNA repair

    PubMed Central

    Johnson, Sarah Stewart; Hebsgaard, Martin B.; Christensen, Torben R.; Mastepanov, Mikhail; Nielsen, Rasmus; Munch, Kasper; Brand, Tina; Gilbert, M. Thomas P.; Zuber, Maria T.; Bunce, Michael; Rønn, Regin; Gilichinsky, David; Froese, Duane; Willerslev, Eske

    2007-01-01

    Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability. PMID:17728401

  12. European neolithization and ancient DNA: an assessment.

    PubMed

    Deguilloux, Marie-France; Leahy, Rachael; Pemonge, Marie-Hélène; Rottier, Stéphane

    2012-01-01

    Neolithic processes underlying the distribution of genetic diversity among European populations have been the subject of intense debate since the first genetic data became available. However, patterns observed in the current European gene pool are the outcome of Paleolithic and Neolithic processes, overlaid with four millennia of further developments. This observation encouraged paleogeneticists to contribute to the debate by directly comparing genetic variation from the ancient inhabitants of Europe to their contemporary counterparts. Pre-Neolithic and Neolithic paleogenetic data are becoming increasingly available for north and northwest European populations. Despite the numerous problems inherent in the paleogenetic approach, the accumulation of ancient DNA datasets offers new perspectives from which to interpret the interactions between hunter-gatherer and farming communities. In light of information emerging from diverse disciplines, including recent paleogenetic studies, the most plausible model explaining the movement of Neolithic pioneer groups in central Europe is that of leapfrog migration.

  13. Proving the Authenticity of Ancient DNA by Comparative Genomic Hybridization

    NASA Astrophysics Data System (ADS)

    Hummel, S.; Herrmann, B.; Rameckers, J.; Müller, D.; Sperling, K.; Neitzel, H.; Tönnies, H.

    In PCR-supported amplification of ancient, degraded DNA, contamination with contemporary DNA can lead to false-positive results, which frequently give rise to discussions in which the mere existence of ancient DNA is doubted. Our confirmation of ancient DNA using comparative genome hybridization (CGH) eliminates these doubts. Unlike PCR methods, CGH requires no amplification of the DNA to be analyzed if adequate amounts of specimen DNA is used. Thus, false results traceable to contaminations are practically ruled out. The examples provided here prove the authenticity of ancient DNA for a 250-year-old and a 3000-year-old sample. At the same time, the CGH of ancient DNA offers the chance to gain insight into the pattern of DNA degradation and to monitor the preservation of certain chromosomal segments.

  14. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  15. Evolutionary Patterns and Processes: Lessons from Ancient DNA.

    PubMed

    Leonardi, Michela; Librado, Pablo; Der Sarkissian, Clio; Schubert, Mikkel; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Gamba, Cristina; Willerslev, Eske; Orlando, Ludovic

    2016-07-05

    Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution-time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data. [Ancient DNA; metagenomics; palaeogenomics; population genomics; temporal sampling.].

  16. Amino Acid Racemization and the Preservation of Ancient DNA

    NASA Technical Reports Server (NTRS)

    Poinar, Hendrik N.; Hoss, Matthias

    1996-01-01

    The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.

  17. Computational challenges in the analysis of ancient DNA

    PubMed Central

    2010-01-01

    High-throughput sequencing technologies have opened up a new avenue for studying extinct organisms. Here we identify and quantify biases introduced by particular characteristics of ancient DNA samples. These analyses demonstrate the importance of closely related genomic sequence for correctly identifying and classifying bona fide endogenous DNA fragments. We show that more accurate genome divergence estimates from ancient DNA sequence can be attained using at least two outgroup genomes and appropriate filtering. PMID:20441577

  18. Improving access to endogenous DNA in ancient bones and teeth

    PubMed Central

    Damgaard, Peter B.; Margaryan, Ashot; Schroeder, Hannes; Orlando, Ludovic; Willerslev, Eske; Allentoft, Morten E.

    2015-01-01

    Poor DNA preservation is the most limiting factor in ancient genomic research. In the majority of ancient bones and teeth, endogenous DNA molecules represent a minor fraction of the whole DNA extract, rendering shot-gun sequencing inefficient for obtaining genomic data. Based on ancient human bone samples from temperate and tropical environments, we show that an EDTA-based enzymatic ‘pre-digestion’ of powdered bone increases the proportion of endogenous DNA several fold. By performing the pre-digestion step between 30 min and 6 hours on five bones, we observe an asymptotic increase in endogenous DNA content, with a 2.7-fold average increase reached at 1 hour. We repeat the experiment using a brief pre-digestion (15 or 30 mins) on 21 ancient bones and teeth from a variety of archaeological contexts and observe an improvement in 16 of these. We here advocate the implementation of a brief pre-digestion step as a standard procedure in ancient DNA extractions. Finally, we demonstrate on 14 ancient teeth that by targeting the outer layer of the roots we obtain up to 14 times more endogenous DNA than when using the inner dentine. Our presented methods are likely to increase the proportion of ancient samples that are suitable for genome-scale characterization. PMID:26081994

  19. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena

    2004-11-15

    Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism.

  20. Ancestry of modern Europeans: contributions of ancient DNA.

    PubMed

    Lacan, Marie; Keyser, Christine; Crubézy, Eric; Ludes, Bertrand

    2013-07-01

    Understanding the peopling history of Europe is crucial to comprehend the origins of modern populations. Of course, the analysis of current genetic data offers several explanations about human migration patterns which occurred on this continent, but it fails to explain precisely the impact of each demographic event. In this context, direct access to the DNA of ancient specimens allows the overcoming of recent demographic phenomena, which probably highly modified the constitution of the current European gene pool. In recent years, several DNA studies have been successfully conducted from ancient human remains thanks to the improvement of molecular techniques. They have brought new fundamental information on the peopling of Europe and allowed us to refine our understanding of European prehistory. In this review, we will detail all the ancient DNA studies performed to date on ancient European DNA from the Middle Paleolithic to the beginning of the protohistoric period.

  1. Improving the sensitivity of negative controls in ancient DNA extractions.

    PubMed

    Xu, Zhi; Zhang, Fan; Xu, Bosong; Tan, Jingze; Li, Shilin; Jin, Li

    2009-04-01

    Much attention has been paid on ancient DNA (aDNA) studies, and negative control was used as one of the stringent quality assurance criteria in order to detect potential contamination. However, the results of some aDNA studies showed the evidence of contamination despite their negative controls failed to do so. Using lambda DNA to mock extraneous contaminating DNA, our study showed that aDNA had a property of improving the efficiency of extraction including contaminating DNA, while negative controls had low sensitivity to detect contamination. To circumvent this problem, carrier DNA such as poly(dA) is suggested to be introduced into aDNA extraction.

  2. Ancient DNA and the tropics: a rodent's tale

    PubMed Central

    Gutiérrez-García, Tania A.; Vázquez-Domínguez, Ella; Arroyo-Cabrales, Joaquín; Kuch, Melanie; Enk, Jacob; King, Christine; Poinar, Hendrik N.

    2014-01-01

    Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene–Pliocene, diversified during the Pleistocene and went extinct in the Holocene. PMID:24899682

  3. Ancient DNA and the tropics: a rodent's tale.

    PubMed

    Gutiérrez-García, Tania A; Vázquez-Domínguez, Ella; Arroyo-Cabrales, Joaquín; Kuch, Melanie; Enk, Jacob; King, Christine; Poinar, Hendrik N

    2014-06-01

    Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene.

  4. A blind testing design for authenticating ancient DNA sequences.

    PubMed

    Yang, H; Golenberg, E M; Shoshani, J

    1997-04-01

    Reproducibility is a serious concern among researchers of ancient DNA. We designed a blind testing procedure to evaluate laboratory accuracy and authenticity of ancient DNA obtained from closely related extant and extinct species. Soft tissue and bones of fossil and contemporary museum proboscideans were collected and identified based on morphology by one researcher, and other researchers carried out DNA testing on the samples, which were assigned anonymous numbers. DNA extracted using three principal isolation methods served as template in PCR amplifications of a segment of the cytochrome b gene (mitochondrial genome), and the PCR product was directly sequenced and analyzed. The results show that such a blind testing design performed in one laboratory, when coupled with phylogenetic analysis, can nonarbitrarily test the consistency and reliability of ancient DNA results. Such reproducible results obtained from the blind testing can increase confidence in the authenticity of ancient sequences obtained from postmortem specimens and avoid bias in phylogenetic analysis. A blind testing design may be applicable as an alternative to confirm ancient DNA results in one laboratory when independent testing by two laboratories is not available.

  5. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA.

    PubMed

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-19

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.

  6. Proboscidean DNA from museum and fossil specimens: an assessment of ancient DNA extraction and amplification techniques.

    PubMed

    Yang, H; Golenberg, E M; Shoshani, J

    1997-06-01

    Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.

  7. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae).

    PubMed

    Mikić, Aleksandar M

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350-1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl(-1) of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide.

  8. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA.

    PubMed

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela; Gamba, Cristina; Barnett, Ross; Samaniego, José Alfredo; Madrigal, Jazmín Ramos; Orlando, Ludovic; Gilbert, M Thomas P

    2015-12-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained <3% endogenous DNA, but this enrichment is less pronounced when dsDNA preparations successfully recover short endogenous DNA fragments (mean size < 70 bp). Our findings can help researchers determine when to utilize the time- and resource-intensive ssDNA library preparation method.

  9. High-Resolution Analysis of Cytosine Methylation in Ancient DNA

    PubMed Central

    Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.

    2012-01-01

    Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161

  10. [Ancient DNA: Results and Prospects (the 30th Anniversary)].

    PubMed

    Druzhkova, A S; Vorobieva, N V; Trifonov, V A; Graphodatsky, A S

    2015-06-01

    Evolutionary genetics has reached a new level of research thanks to the opportunity to study the genomes of not only present-day but also of ancient organisms. The obtaining of reliable data when working with ancient DNA is possible only in the case of interdisciplinary collaboration between archaeologists, paleontologists, molecular geneticists, and bioinformaticians. Despite laborious and high-cost technologies, the results never cease to amaze and can not only fill the gaps in the knowledge of the evolutionary history of different species but can also review the existing ideas on population development and dynamics. In this review, we discuss the history of the development of investigative techniques in ancient DNA research and the most striking results of these studies, including the most recent achievements.

  11. DNA extraction from rice endosperm (including a protocol for extraction of DNA from ancient seed samples).

    PubMed

    Mutou, Chiaki; Tanaka, Katsunori; Ishikawa, Ryuji

    2014-01-01

    Deoxyribonucleic acid (DNA) extracted from endosperm can be effectively used for rapid genotyping using seed tissue, to evaluate seed quality from packaged grains and to determine the purity of milled grains. Methods outlined here are optimal procedures to isolate DNA from endosperm tissue of modern rice grains and of aged rice remains preserved between 50 and 100 years. The extracted DNA can be used to amplify regions of chloroplast genomic DNA (ctDNA), mitochondrial genomic DNA (mtDNA), and nuclear genomic DNA using standard PCR protocols. In addition, we describe an optimal procedure to process archaeological grain specimens, aged for a couple of thousand years, to isolate DNA from these ancient samples, referred to here as ancient DNA (aDNA). The aDNA can be successfully amplified by PCR using appropriate primer pairs designed specifically for aDNA amplification.

  12. The study of human Y chromosome variation through ancient DNA.

    PubMed

    Kivisild, Toomas

    2017-03-04

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  13. Ancient DNA studies: new perspectives on old samples

    PubMed Central

    2012-01-01

    In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611

  14. Selective enrichment of damaged DNA molecules for ancient genome sequencing

    PubMed Central

    2014-01-01

    Contamination by present-day human and microbial DNA is one of the major hindrances for large-scale genomic studies using ancient biological material. We describe a new molecular method, U selection, which exploits one of the most distinctive features of ancient DNA—the presence of deoxyuracils—for selective enrichment of endogenous DNA against a complex background of contamination during DNA library preparation. By applying the method to Neanderthal DNA extracts that are heavily contaminated with present-day human DNA, we show that the fraction of useful sequence information increases ∼10-fold and that the resulting sequences are more efficiently depleted of human contamination than when using purely computational approaches. Furthermore, we show that U selection can lead to a four- to fivefold increase in the proportion of endogenous DNA sequences relative to those of microbial contaminants in some samples. U selection may thus help to lower the costs for ancient genome sequencing of nonhuman samples also. PMID:25081630

  15. Mylodon darwinii DNA sequences from ancient fecal hair shafts.

    PubMed

    Clack, Andrew A; MacPhee, Ross D E; Poinar, Hendrik N

    2012-01-20

    Preserved hair has been increasingly used as an ancient DNA source in high throughput sequencing endeavors, and it may actually offer several advantages compared to more traditional ancient DNA substrates like bone. However, cold environments have yielded the most informative ancient hair specimens, while its preservation, and thus utility, in temperate regions is not well documented. Coprolites could represent a previously underutilized preservation substrate for hairs, which, if present therein, represent macroscopic packages of specific cells that are relatively simple to separate, clean and process. In this pilot study, we report amplicons 147-152 base pairs in length (w/primers) from hair shafts preserved in a south Chilean coprolite attributed to Darwin's extinct ground sloth, Mylodon darwinii. Our results suggest that hairs preserved in coprolites from temperate cave environments can serve as an effective source of ancient DNA. This bodes well for potential molecular-based population and phylogeographic studies on sloths, several species of which have been understudied despite leaving numerous coprolites in caves across of the Americas.

  16. An ancient protein-DNA interaction underlying metazoan sex determination.

    PubMed

    Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J

    2015-06-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  17. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae)

    PubMed Central

    Mikić, Aleksandar M.

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350–1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl-1 of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide. PMID:26635833

  18. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    PubMed Central

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.

    2017-01-01

    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  19. Ancient DNA perspectives on American colonization and population history.

    PubMed

    Raff, Jennifer A; Bolnick, Deborah A; Tackney, Justin; O'Rourke, Dennis H

    2011-12-01

    Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.

  20. Preamplification Procedure for the Analysis of Ancient DNA Samples

    PubMed Central

    Del Gaudio, Stefania; Cirillo, Alessandra; Di Bernardo, Giovanni; Galderisi, Umberto; Thanassoulas, Theodoros; Pitsios, Theodoros; Cipollaro, Marilena

    2013-01-01

    In ancient DNA studies the low amount of endogenous DNA represents a limiting factor that often hampers the result achievement. In this study we extracted the DNA from nine human skeletal remains of different ages found in the Byzantine cemetery of Abdera Halkidiki and in the medieval cemetery of St. Spiridion in Rhodes (Greece). Real-time quantitative polymerase chain reaction (qPCR) was used to detect in the extracts the presence of PCR inhibitors and to estimate the DNA content. As mitochondrial DNA was detected in all samples, amplification of nuclear targets, as amelogenin and the polymorphism M470V of the transmembrane conductance regulator gene, yielded positive results in one case only. In an effort to improve amplification success, we applied, for the first time in ancient DNA, a preamplification strategy based on TaqMan PreAmp Master Mix. A comparison between results obtained from nonpreamplified and preamplified samples is reported. Our data, even if preliminary, show that the TaqMan PreAmp procedure may improve the sensitivity of qPCR analysis. PMID:24187523

  1. Detection of DNA in ancient bones using histochemical methods.

    PubMed

    Guarino, F M; Angelini, F; Odierna, G; Bianco, M R; Di Bernardo, G; Forte, A; Cascino, A; Cipollaro, M

    2000-05-01

    We describe histochemical techniques for detecting DNA within the osteocytic lacunae of ancient bones. The bones examined were fragments of femurs from two human individuals found in the Pompeian C. I. Polybius house and fragments of metacarpals from two horses (Equus sp.) found in the Pompeian "Casti Amanti" house. Both buildings were buried by the 79 A. D. Vesuvius eruption. Fragments of femurs from a modern horse, a modern swine and a modern amphibian also were studied as controls. Some bone sections were stained with two different DNA-specific fluorochromes, 4'-'6-diamidino-2-phenylindole (DAPI) and chromomycin A3 (CMA), while others were stained by the Feulgen reaction. All of the techniques gave a positive reaction within the osteocytic lacunae. Histological analysis of the undecalcified, ground and unstained sections agreed well with results of bone sections stained with either the fluorochromes or the Feulgen reaction. Bones showing good histology also were positive by our DNA-specific stain. Histochemical and histological analyses correlated well with the success of DNA extraction and amplification. Using conventional DNA-specific histochemical techniques in conjunction with histological analysis can be useful in the study of DNA extracted from ancient bone remains while reducing both the amount of time and cost.

  2. Preamplification procedure for the analysis of ancient DNA samples.

    PubMed

    Del Gaudio, Stefania; Cirillo, Alessandra; Di Bernardo, Giovanni; Galderisi, Umberto; Thanassoulas, Theodoros; Pitsios, Theodoros; Cipollaro, Marilena

    2013-01-01

    In ancient DNA studies the low amount of endogenous DNA represents a limiting factor that often hampers the result achievement. In this study we extracted the DNA from nine human skeletal remains of different ages found in the Byzantine cemetery of Abdera Halkidiki and in the medieval cemetery of St. Spiridion in Rhodes (Greece). Real-time quantitative polymerase chain reaction (qPCR) was used to detect in the extracts the presence of PCR inhibitors and to estimate the DNA content. As mitochondrial DNA was detected in all samples, amplification of nuclear targets, as amelogenin and the polymorphism M470V of the transmembrane conductance regulator gene, yielded positive results in one case only. In an effort to improve amplification success, we applied, for the first time in ancient DNA, a preamplification strategy based on TaqMan PreAmp Master Mix. A comparison between results obtained from nonpreamplified and preamplified samples is reported. Our data, even if preliminary, show that the TaqMan PreAmp procedure may improve the sensitivity of qPCR analysis.

  3. Ancient mtDNA sequences from the First Australians revisited

    PubMed Central

    Subramanian, Sankar; Wright, Joanne L.; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D.; Willerslev, Eske; Lambert, David M.

    2016-01-01

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537–542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the “Out of Africa” model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains. PMID:27274055

  4. Ancient mtDNA sequences from the First Australians revisited.

    PubMed

    Heupink, Tim H; Subramanian, Sankar; Wright, Joanne L; Endicott, Phillip; Westaway, Michael Carrington; Huynen, Leon; Parson, Walther; Millar, Craig D; Willerslev, Eske; Lambert, David M

    2016-06-21

    The publication in 2001 by Adcock et al. [Adcock GJ, et al. (2001) Proc Natl Acad Sci USA 98(2):537-542] in PNAS reported the recovery of short mtDNA sequences from ancient Australians, including the 42,000-y-old Mungo Man [Willandra Lakes Hominid (WLH3)]. This landmark study in human ancient DNA suggested that an early modern human mitochondrial lineage emerged in Asia and that the theory of modern human origins could no longer be considered solely through the lens of the "Out of Africa" model. To evaluate these claims, we used second generation DNA sequencing and capture methods as well as PCR-based and single-primer extension (SPEX) approaches to reexamine the same four Willandra Lakes and Kow Swamp 8 (KS8) remains studied in the work by Adcock et al. Two of the remains sampled contained no identifiable human DNA (WLH15 and WLH55), whereas the Mungo Man (WLH3) sample contained no Aboriginal Australian DNA. KS8 reveals human mitochondrial sequences that differ from the previously inferred sequence. Instead, we recover a total of five modern European contaminants from Mungo Man (WLH3). We show that the remaining sample (WLH4) contains ∼1.4% human DNA, from which we assembled two complete mitochondrial genomes. One of these was a previously unidentified Aboriginal Australian haplotype belonging to haplogroup S2 that we sequenced to a high coverage. The other was a contaminating modern European mitochondrial haplotype. Although none of the sequences that we recovered matched those reported by Adcock et al., except a contaminant, these findings show the feasibility of obtaining important information from ancient Aboriginal Australian remains.

  5. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA.

    PubMed

    Boessenkool, Sanne; Epp, Laura S; Haile, James; Bellemain, Eva; Edwards, Mary; Coissac, Eric; Willerslev, Eske; Brochmann, Christian

    2012-04-01

    Analyses of degraded DNA are typically hampered by contamination, especially when employing universal primers such as commonly used in environmental DNA studies. In addition to false-positive results, the amplification of contaminant DNA may cause false-negative results because of competition, or bias, during the PCR. In this study, we test the utility of human-specific blocking primers in mammal diversity analyses of ancient permafrost samples from Siberia. Using quantitative PCR (qPCR) on human and mammoth DNA, we first optimized the design and concentration of blocking primer in the PCR. Subsequently, 454 pyrosequencing of ancient permafrost samples amplified with and without the addition of blocking primer revealed that DNA sequences from a diversity of mammalian representatives of the Beringian megafauna were retrieved only when the blocking primer was added to the PCR. Notably, we observe the first retrieval of woolly rhinoceros (Coelodonta antiquitatis) DNA from ancient permafrost cores. In contrast, reactions without blocking primer resulted in complete dominance by human DNA sequences. These results demonstrate that in ancient environmental analyses, the PCR can be biased towards the amplification of contaminant sequences to such an extent that retrieval of the endogenous DNA is severely restricted. The application of blocking primers is a promising tool to avoid this bias and can greatly enhance the quantity and the diversity of the endogenous DNA sequences that are amplified.

  6. Retroviral DNA Sequences as a Means for Determining Ancient Diets

    PubMed Central

    Rivera-Perez, Jessica I.; Cano, Raul J.; Narganes-Storde, Yvonne; Chanlatte-Baik, Luis; Toranzos, Gary A.

    2015-01-01

    For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host’s diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures. PMID:26660678

  7. [DNA analysis in the anthropological approach of ancient populations].

    PubMed

    Keyser, Christine; Crubézy, Eric; Ludes, Bertrand

    2013-01-01

    The authors highlight the opportunities to reconstruct the human Eurasian steppe migration movements with the analyses of nuclear DNA markers (short tandem repeats on autosomal DNA and on the Y chromosome) as well as mitochondrial DNA markers. They studied 26 ancient human samples from the Krasnoyarsk area (Southern Siberia). The specimens were dated from the middle of the second millennium BC to the fourth century AD. The Y chromosome and the mitochondrial analyses revealed that few of them seem to be related matrilineally or patrilineally, but all subjects belong to Y haplogroup R1a1a-M17 which is known as a marker of the eastward migration of the early Indo-Europeans. Their results are in accordance with the hypothesis that at the Bronze and Iron Ages south Siberia was settled predominantly by European subjects suggesting an eastward migration of kurgan people across the Russo-Kazakh steppe. The single nucleotide polymorphisms (SNP) analyses on the physical traits indicate that the ancient studied specimens were blue or green eyed, fair skinned and light-haired.

  8. Ancient DNA and the rewriting of human history: be sparing with Occam's razor.

    PubMed

    Haber, Marc; Mezzavilla, Massimo; Xue, Yali; Tyler-Smith, Chris

    2016-01-11

    Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

  9. No Ancient DNA Damage in Actinobacteria from the Neanderthal Bone

    PubMed Central

    Zaremba-Niedźwiedzka, Katarzyna; Andersson, Siv G. E.

    2013-01-01

    Background The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. Principal Findings Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. Conclusions/Significance Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the sample. PMID:23658776

  10. Bayesian estimation of sequence damage in ancient DNA.

    PubMed

    Ho, Simon Y W; Heupink, Tim H; Rambaut, Andrew; Shapiro, Beth

    2007-06-01

    DNA extracted from archaeological and paleontological remains is usually damaged by biochemical processes postmortem. Some of these processes lead to changes in the structure of the DNA molecule, which can result in the incorporation of incorrect nucleotides during polymerase chain reaction. These base misincorporations, or miscoding lesions, can lead to the inclusion of spurious additional mutations in ancient DNA (aDNA) data sets. This has the potential to affect the outcome of phylogenetic and population genetic analyses, including estimates of mutation rates and genetic diversity. We present a novel model, termed the delta model, which estimates the amount of damage in DNA data and accounts for its effects in a Bayesian phylogenetic framework. The ability of the delta model to estimate damage is first investigated using a simulation study. The model is then applied to 13 aDNA data sets. The amount of damage in these data sets is shown to be significant but low (about 1 damaged base per 750 nt), suggesting that precautions for limiting the influence of damaged sites, such as cloning and enzymatic treatment, are worthwhile. The results also suggest that relatively high rates of mutation previously estimated from aDNA data are not entirely an artifact of sequence damage and are likely to be due to other factors such as the persistence of transient polymorphisms. The delta model appears to be particularly useful for placing upper credibility limits on the amount of sequence damage in an alignment, and this capacity might be beneficial for future aDNA studies or for the estimation of sequencing errors in modern DNA.

  11. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene.

    PubMed

    Hofman, Courtney A; Rick, Torben C; Fleischer, Robert C; Maldonado, Jesús E

    2015-09-01

    There is growing consensus that we have entered the Anthropocene, a geologic epoch characterized by human domination of the ecosystems of the Earth. With the future uncertain, we are faced with understanding how global biodiversity will respond to anthropogenic perturbations. The archaeological record provides perspective on human-environment relations through time and across space. Ancient DNA (aDNA) analyses of plant and animal remains from archaeological sites are particularly useful for understanding past human-environment interactions, which can help guide conservation decisions during the environmental changes of the Anthropocene. Here, we define the emerging field of conservation archaeogenomics, which integrates archaeological and genomic data to generate baselines or benchmarks for scientists, managers, and policy-makers by evaluating climatic and human impacts on past, present, and future biodiversity.

  12. Bacillus DNA in fossil bees: an ancient symbiosis?

    PubMed Central

    Cano, R J; Borucki, M K; Higby-Schweitzer, M; Poinar, H N; Poinar, G O; Pollard, K J

    1994-01-01

    We report here the isolation of DNA from abdominal tissue of four extinct stingless bees (Proplebeia dominicana) in Dominican amber, PCR amplification of a 546-bp fragment of the 16S rRNA gene from Bacillus spp., and their corresponding nucleotide sequences. These sequences were used in basic local alignment search tool searches of nonredundant nucleic acid data bases, and the highest scores were obtained with 16S rRNA sequences from Bacillus spp. Phylogenetic inference analysis by the maximum-likelihood method revealed close phylogenetic relationships of the four presumed ancient Bacillus sequences with Bacillus pumilus, B. firmus, B. subtilis, and B. circulans. These four extant Bacillus spp. are commonly isolated from abdominal tissue of stingless bees. The close phylogenetic association of the extracted DNA sequences with these bee colonizers suggests that a similar bee-Bacillus association existed in the extinct species P. dominicana. PMID:8031102

  13. Case study: ancient sloth DNA recovered from hairs preserved in paleofeces.

    PubMed

    Clack, Andrew A; Macphee, Ross D E; Poinar, Hendrik N

    2012-01-01

    Ancient hair, which has proved to be an excellent source of well-preserved ancient DNA, is often preserved in paleofeces. Here, we separate and wash hair shafts preserved in a paleofecal specimen believed to be from a Darwin's ground sloth, Mylodon darwinii. After extracting DNA from the recovered and cleaned hair using a protocol optimized for DNA extraction from keratinous substrates, we amplify 12S and 16S rDNA sequences from the DNA extract. As expected, the recovered sequences most closely match previously published sequences of M. darwinii. Our results demonstrate that hair preserved in paleofeces, even from temperate cave environments, is an effective source of ancient DNA.

  14. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA

    PubMed Central

    Rohland, Nadin; Harney, Eadaoin; Mallick, Swapan; Nordenfelt, Susanne; Reich, David

    2015-01-01

    The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples. PMID:25487342

  15. Problems of reproducibility--does geologically ancient DNA survive in amber-preserved insects?

    PubMed Central

    Austin, J J; Ross, A J; Smith, A B; Fortey, R A; Thomas, R H

    1997-01-01

    Apparently ancient DNA has been reported from amber-preserved insects many millions of years old. Rigorous attempts to reproduce these DNA sequences from amber- and copal-preserved bees and flies have failed to detect any authentic ancient insect DNA. Lack of reproducibility suggests that DNA does not survive over millions of years even in amber, the most promising of fossil environments. PMID:9149422

  16. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route.

    PubMed

    Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Duranthon, Francis; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand

    2011-06-14

    The Neolithic is a key period in the history of the European settlement. Although archaeological and present-day genetic data suggest several hypotheses regarding the human migration patterns at this period, validation of these hypotheses with the use of ancient genetic data has been limited. In this context, we studied DNA extracted from 53 individuals buried in a necropolis used by a French local community 5,000 y ago. The relatively good DNA preservation of the samples allowed us to obtain autosomal, Y-chromosomal, and/or mtDNA data for 29 of the 53 samples studied. From these datasets, we established close parental relationships within the necropolis and determined maternal and paternal lineages as well as the absence of an allele associated with lactase persistence, probably carried by Neolithic cultures of central Europe. Our study provides an integrative view of the genetic past in southern France at the end of the Neolithic period. Furthermore, the Y-haplotype lineages characterized and the study of their current repartition in European populations confirm a greater influence of the Mediterranean than the Central European route in the peopling of southern Europe during the Neolithic transition.

  17. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route

    PubMed Central

    Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Duranthon, Francis; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand

    2011-01-01

    The Neolithic is a key period in the history of the European settlement. Although archaeological and present-day genetic data suggest several hypotheses regarding the human migration patterns at this period, validation of these hypotheses with the use of ancient genetic data has been limited. In this context, we studied DNA extracted from 53 individuals buried in a necropolis used by a French local community 5,000 y ago. The relatively good DNA preservation of the samples allowed us to obtain autosomal, Y-chromosomal, and/or mtDNA data for 29 of the 53 samples studied. From these datasets, we established close parental relationships within the necropolis and determined maternal and paternal lineages as well as the absence of an allele associated with lactase persistence, probably carried by Neolithic cultures of central Europe. Our study provides an integrative view of the genetic past in southern France at the end of the Neolithic period. Furthermore, the Y-haplotype lineages characterized and the study of their current repartition in European populations confirm a greater influence of the Mediterranean than the Central European route in the peopling of southern Europe during the Neolithic transition. PMID:21628562

  18. Ancient DNA and the human settlement of the Pacific: a review.

    PubMed

    Matisoo-Smith, Elizabeth

    2015-02-01

    The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.

  19. Setting the stage - building and working in an ancient DNA laboratory.

    PubMed

    Knapp, Michael; Clarke, Andrew C; Horsburgh, K Ann; Matisoo-Smith, Elizabeth A

    2012-01-20

    With the introduction of next generation high throughput sequencing in 2005 and the resulting revolution in genetics, ancient DNA research has rapidly developed from an interesting but marginal field within evolutionary biology into one that can contribute significantly to our understanding of evolution in general and the development of our own species in particular. While the amount of sequence data available from ancient human, other animal and plant remains has increased dramatically over the past five years, some key limitations of ancient DNA research remain. Most notably, reduction of contamination and the authentication of results are of utmost importance. A number of studies have addressed different aspects of sampling, DNA extraction and DNA manipulation in order to establish protocols that most efficiently generate reproducible and authentic results. As increasing numbers of researchers from different backgrounds become interested in using ancient DNA technology to address key questions, the need for practical guidelines on how to construct and use an ancient DNA facility arises. The aim of this article is therefore to provide practical tips for building a state-of-the-art ancient DNA facility. It is intended to help researchers new to the field of ancient DNA research generally, and those considering the application of next generation sequencing, in their planning process.

  20. Ancient DNA analysis of human remains from the Upper Capital City of Kublai Khan.

    PubMed

    Fu, Yuqin; Xie, Chengzhi; Xu, Xuelian; Li, Chunxiang; Zhang, Quanchao; Zhou, Hui; Zhu, Hong

    2009-01-01

    Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.

  1. Revising the recent evolutionary history of equids using ancient DNA

    PubMed Central

    Orlando, Ludovic; Metcalf, Jessica L.; Alberdi, Maria T.; Telles-Antunes, Miguel; Bonjean, Dominique; Otte, Marcel; Martin, Fabiana; Eisenmann, Véra; Mashkour, Marjan; Morello, Flavia; Prado, Jose L.; Salas-Gismondi, Rodolfo; Shockey, Bruce J.; Wrinn, Patrick J.; Vasil'ev, Sergei K.; Ovodov, Nikolai D.; Cherry, Michael I.; Hopwood, Blair; Male, Dean; Austin, Jeremy J.; Hänni, Catherine; Cooper, Alan

    2009-01-01

    The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87–688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses. PMID:20007379

  2. Ancient bacteria in permafrost soils fact or artefact? Considerations in recovering microbial DNA from geological ancient settings

    NASA Astrophysics Data System (ADS)

    Willerslev, E.

    2003-04-01

    Several recent reports claim that prokaryotic genetic sequences or viable cultures can survive for millions of years in geological settings. If substantiated, these findings could fundamentally alter views about bacterial physiology, ecology and evolution. However, both the culturing of microbes and the amplification of ancient DNA molecules from fossil remains are beset with difficulties. First, theoretical and empirical studies have shown that small DNA fragments (100 200 bp) do not survive in the geosphere for more than 104 years in temperate environments and 105 years in colder ones due to hydrolytic and oxidative damage. Therefore, the revivals of dormant bacteria with no active DNA repair from remains hundreds of thousands to millions of years old is, from a theoretical point, expected to be difficult, if not impossible. Second, the no specificity of the media used to culture micro organisms, as well as the great sensitivity of PCR, makes the risk of contamination with contemporary ubiquitous microbial cells and exogenous DNA molecules extremely high. Contamination poses risks at all stages of sample processing (e.g.) within the samples themselves, in the chemical reagents, on laboratory disposables or through the air. The high risk of contamination strongly suggests the need for standardized procedures within the field such as independent replication of results. This criterion of authenticity has not yet been full field in any of the studies claiming million year old microbial cultures or DNA. In order to tests the long-term survival of ancient bacteria DNA a study on permafrost was conducted using ancient DNA precautions, controls and criteria. Permafrost must be considered among the most promising environments for long term DNA survival due to its constant low temperatures (-10C to 12C Siberian or 20C Antarctica) and high cell numbers (107). We found that bacteria DNA could reproducibly be obtained from samples dated up to 300-400,000 years B.P. but not

  3. Case study: ancient DNA recovered from pleistocene-age remains of a Florida armadillo.

    PubMed

    Letts, Brandon; Shapiro, Beth

    2012-01-01

    Warm, humid regions are not ideal for long-term DNA preservation. Consequently, little ancient DNA research has been carried out involving taxa that lived in, for example, tropical and subtropical regions. Those studies that have isolated ancient DNA from warm environments have mostly been limited to the most recent several thousand years. Here, we discuss an ancient DNA experiment in which we attempt to amplify mitochondrial DNA from remains of armadillo, glyptodont, and pampathere from sites in Florida, USA, all believed to be around 10,000-12,000 years old. We were successful in recovering DNA from only one of these samples. However, based on the amount and distribution of DNA damage, the ancient DNA recovered was well-preserved despite the age and preservation environment. In this case study chapter, we discuss the experimental procedure we used to characterize the DNA from the Floridian samples, focusing on challenges of working with ancient specimens from warm environments and steps taken to confirm the authenticity of the recovered sequence.

  4. DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING

    EPA Science Inventory

    Traces of DNA may preserve on ancient stone tools. We examined 24 chipped stone artifacts recovered from the Bugas-Holding site in northwestern Wyoming for the presence of DNA residues, and we compared DNA preservation in bones and stone tools from the same stratigraphic context...

  5. Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects

    PubMed Central

    Yoshida, Kentaro; Sasaki, Eriko; Kamoun, Sophien

    2015-01-01

    The application of DNA sequencing technology to the study of ancient DNA has enabled the reconstruction of past epidemics from genomes of historically important plant-associated microbes. Recently, the genome sequences of the potato late blight pathogen Phytophthora infestans were analyzed from 19th century herbarium specimens. These herbarium samples originated from infected potatoes collected during and after the Irish potato famine. Herbaria have therefore great potential to help elucidate past epidemics of crops, date the emergence of pathogens, and inform about past pathogen population dynamics. DNA preservation in herbarium samples was unexpectedly good, raising the possibility of a whole new research area in plant and microbial genomics. However, the recovered DNA can be extremely fragmented resulting in specific challenges in reconstructing genome sequences. Here we review some of the challenges in computational analyses of ancient DNA from herbarium samples. We also applied the recently developed linkage method to haplotype reconstruction of diploid or polyploid genomes from fragmented ancient DNA. PMID:26442080

  6. Aspects of Ancient Mitochondrial DNA Analysis in Different Populations for Understanding Human Evolution

    PubMed Central

    Nesheva, DV

    2014-01-01

    The evolution of modern humans is a long and difficult process which started from their first appearance and continues to the present day. The study of the genetic origin of populations can help to determine population kinship and to better understand the gradual changes of the gene pool in space and time. Mitochondrial DNA (mtDNA) is a proper tool for the determination of the origin of populations due to its high evolutionary importance. Ancient mitochondrial DNA retrieved from museum specimens, archaeological finds and fossil remains can provide direct evidence for population origins and migration processes. Despite the problems with contaminations and authenticity of ancient mitochondrial DNA, there is a developed set of criteria and platforms for obtaining authentic ancient DNA. During the last two decades, the application of different methods and techniques for analysis of ancient mitochondrial DNA gave promising results. Still, the literature is relatively poor with information for the origin of human populations. Using comprehensive phylogeographic and population analyses we can observe the development and formation of the contemporary populations. The aim of this study was to shed light on human migratory processes and the formation of populations based on available ancient mtDNA data. PMID:25741209

  7. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    PubMed

    Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic

    2013-01-01

    Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  8. Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes

    PubMed Central

    Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T.; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic

    2013-01-01

    Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries. PMID:24205269

  9. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA

    PubMed Central

    Sawyer, Susanna; Krause, Johannes; Guschanski, Katerina; Savolainen, Vincent; Pääbo, Svante

    2012-01-01

    DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5′-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments. PMID:22479540

  10. DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING

    EPA Science Inventory

    DNA residues may preserve on ancient stone tools used to process animals. We studied 24 stone tools recovered from the Bugas-Holding site in northwestern Wyoming. Nine tools that yielded DNA included five bifaces, two side scrapers, one end scraper, and one utilized flake. The...

  11. Improving the performance of true single molecule sequencing for ancient DNA

    PubMed Central

    2012-01-01

    Background Second-generation sequencing technologies have revolutionized our ability to recover genetic information from the past, allowing the characterization of the first complete genomes from past individuals and extinct species. Recently, third generation Helicos sequencing platforms, which perform true Single-Molecule DNA Sequencing (tSMS), have shown great potential for sequencing DNA molecules from Pleistocene fossils. Here, we aim at improving even further the performance of tSMS for ancient DNA by testing two novel tSMS template preparation methods for Pleistocene bone fossils, namely oligonucleotide spiking and treatment with DNA phosphatase. Results We found that a significantly larger fraction of the horse genome could be covered following oligonucleotide spiking however not reproducibly and at the cost of extra post-sequencing filtering procedures and skewed %GC content. In contrast, we showed that treating ancient DNA extracts with DNA phosphatase improved the amount of endogenous sequence information recovered per sequencing channel by up to 3.3-fold, while still providing molecular signatures of endogenous ancient DNA damage, including cytosine deamination and fragmentation by depurination. Additionally, we confirmed the existence of molecular preservation niches in large bone crystals from which DNA could be preferentially extracted. Conclusions We propose DNA phosphatase treatment as a mechanism to increase sequence coverage of ancient genomes when using Helicos tSMS as a sequencing platform. Together with mild denaturation temperatures that favor access to endogenous ancient templates over modern DNA contaminants, this simple preparation procedure can improve overall Helicos tSMS performance when damaged DNA templates are targeted. PMID:22574620

  12. Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China.

    PubMed

    Zhao, Yong-Bin; Li, Hong-Jie; Cai, Da-Wei; Li, Chun-Xiang; Zhang, Quan-Chao; Zhu, Hong; Zhou, Hui

    2010-04-01

    Six human remains (dating approximately 2500 years ago) were excavated from Pengyang, China, an area occupied by both ancient nomadic and farming people. The funerary objects found with these remains suggested they were nomads. To further confirm their ancestry, we analyzed both the maternal lineages and paternal lineages of the ancient DNA. From the mitochondrial DNA, six haplotypes were identified as three haplogroups: C, D4 and M10. The haplotype-sharing populations and phylogenetic analyses revealed that these individuals were closely associated with the ancient Xiongnu and modern northern Asians. Single-nucleotide polymorphism analysis of Y chromosomes from four male samples that were typed as haplogroup Q indicated that these people had originated in Siberia. These results show that these ancient people from Pengyang present a close genetic affinity to nomadic people, indicating that northern nomads had reached the Central Plain area of China nearly 2500 years ago.

  13. Ancient DNA, climatic change, and loss of genetic diversity in an endemic Patagonian mammal

    NASA Astrophysics Data System (ADS)

    Chan, Y.; Lacey, E.; Ramakrishnan, U.; Pearson, O.; Hadly, E.

    2004-12-01

    Understanding the response of animal populations to climatic change is essential for the future maintenance of biodiversity. One question that remains difficult to answer, and is particularly important to conservation, is how animals respond over time scales relevant to evolutionary change. Ancient DNA provides a unique opportunity to track animal response to Holocene climate change and to study species replacement patterns and genetic diversity over time. We used ancient DNA to compare response to climatic change in two species, C. sociabilis and C. haigi, over the last 8,000 years. Our study site, Cueva Traful, is a late-Holocene raptor roost in Parque Nacional Nahuel Huapi, Argentina. A lack of genetic diversity in modern C. sociabilis populations is indicative of past bottleneck events and a previous ancient DNA study found that it had remained genetically identical for at least 1000 years in the face of climatic change and human disturbance. Since Cueva Traful goes back further in time, our first goal was to examine genetic diversity in order to place a longer term historical perspective on the modern bottleneck. The second goal was to compare changes in genetic diversity in C. sociabilis to C. haigi a closely related species that may respond differently to climatic change. The use of ancient DNA presents unique challenges due to low copy number, environmental damage to template, and high contamination risk. Despite these challenges, ancient DNA provides a unique perspective on evolutionary history.

  14. Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns

    PubMed Central

    Mishmar, Dan

    2016-01-01

    Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world. PMID:27812116

  15. Characterization of Ancient DNA Supports Long-Term Survival of Haloarchaea

    PubMed Central

    Lowenstein, Tim K.; Timofeeff, Michael N.; Schubert, Brian A.; Lum, J. Koji

    2014-01-01

    Abstract Bacteria and archaea isolated from crystals of halite 104 to 108 years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification, cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured from subsurface halite, Death Valley, California, 22,000 to 34,000 years old. We recovered 16S ribosomal DNA sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum DV427, which were previously isolated from the same halite interval. These results provide the best independent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches are sensitive to small amounts of DNA and could allow investigation of even older halites, 106 to 108 years old, from which microbial cultures have been reported. Such studies of microbial life in ancient salt are particularly important as we search for microbial signatures in similar deposits on Mars and elsewhere in the Solar System. Key Words: Ancient DNA—Halite—Haloarchaea—Long-term survival. Astrobiology 14, 553–560. PMID:24977469

  16. Detection of Cytosine Methylation in Ancient DNA from Five Native American Populations Using Bisulfite Sequencing

    PubMed Central

    Smith, Rick W. A.; Monroe, Cara; Bolnick, Deborah A.

    2015-01-01

    While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/μL generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches. PMID:26016479

  17. Enterobius vermicularis: ancient DNA from North and South American human coprolites.

    PubMed

    Iñiguez, Alena M; Reinhard, Karl J; Araújo, Adauto; Ferreira, Luiz Fernando; Vicente, Ana Carolina P

    2003-01-01

    A molecular paleoparasitological diagnostic approach was developed for Enterobius vermicularis. Ancient DNA was extracted from 27 coprolites from archaeological sites in Chile and USA. Enzymatic amplification of human mtDNA sequences confirmed the human origin. We designed primers specific to the E. vermicularis 5S ribosomal RNA spacer region and they allowed reproducible polymerase chain reaction identification of ancient material. We suggested that the paleoparasitological microscopic identification could accompany molecular diagnosis, which also opens the possibility of sequence analysis to understand parasite-host evolution.

  18. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    PubMed

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L.

  19. Strontium isotope (87Sr/86Sr) variability in the Nile Valley: identifying residential mobility during ancient Egyptian and Nubian sociopolitical changes in the New Kingdom and Napatan periods.

    PubMed

    Buzon, Michele R; Simonetti, Antonio

    2013-05-01

    As a successful technique for identifying residential mobility in other areas, this study investigates the feasibility of using 87Sr/86Sr analysis to track the movements of the ancient peoples of Egypt and Nubia in the Nile Valley, who interacted via trade, warfare, and political occupations over millennia. Dental enamel from faunal remains is used to examine variability in strontium sources in seven regional sites; human enamel samples are analyzed from eight Nile Valley sites in order to trace human movements. The faunal samples show a wide range of 87Sr/86Sr values demonstrating that some animals were raised in a variety of locales. The results of the human samples reveal overlap in 87Sr/86Sr values between Egyptian and Nubian sites; however, Egyptian 87Sr/86Sr values (mean/median [0.70777], sd [0.00027]) are statistically higher than the Nubian 87Sr/86Sr values (mean [0.70762], median [0.70757], sd [0.00036], suggesting that it is possible to identify if immigrant Egyptians were present at Nubian sites. Samples examined from the site of Tombos provide important information regarding the sociopolitical activities during the New Kingdom and Napatan periods. Based on a newly established local 87Sr/86Sr range, human values, and bioarchaeological evidence, this study confirms the preliminary idea that immigrants, likely from Egypt, were present during the Egyptian New Kingdom occupation of Nubia. In the subsequent Napatan period when Nubia ruled Egypt as the 25th Dynasty, 87Sr/86Sr values are statistically different from the New Kingdom component and indicate that only locals were present at Tombos during this developmental time.

  20. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing.

    PubMed

    Gamba, Cristina; Hanghøj, Kristian; Gaunitz, Charleen; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Bradley, Daniel G; Orlando, Ludovic

    2016-03-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost-effective solution for downstream applications, including DNA sequencing on HTS platforms.

  1. Ancient DNA and Population Turnover in Southern Levantine Pigs- Signature of the Sea Peoples Migration?

    PubMed Central

    Meiri, Meirav; Huchon, Dorothée; Bar-Oz, Guy; Boaretto, Elisabetta; Horwitz, Liora Kolska; Maeir, Aren M.; Sapir-Hen, Lidar; Larson, Greger; Weiner, Steve; Finkelstein, Israel

    2013-01-01

    Near Eastern wild boars possess a characteristic DNA signature. Unexpectedly, wild boars from Israel have the DNA sequences of European wild boars and domestic pigs. To understand how this anomaly evolved, we sequenced DNA from ancient and modern pigs from Israel. Pigs from Late Bronze Age (until ca. 1150 BCE) in Israel shared haplotypes of modern and ancient Near Eastern pigs. European haplotypes became dominant only during the Iron Age (ca. 900 BCE). This raises the possibility that European pigs were brought to the region by the Sea Peoples who migrated to the Levant at that time. Then, a complete genetic turnover took place, most likely because of repeated admixture between local and introduced European domestic pigs that went feral. Severe population bottlenecks likely accelerated this process. Introductions by humans have strongly affected the phylogeography of wild animals, and interpretations of phylogeography based on modern DNA alone should be taken with caution. PMID:24186332

  2. Characterization of ancient DNA supports long-term survival of Haloarchaea.

    PubMed

    Sankaranarayanan, Krithivasan; Lowenstein, Tim K; Timofeeff, Michael N; Schubert, Brian A; Lum, J Koji

    2014-07-01

    Bacteria and archaea isolated from crystals of halite 10(4) to 10(8) years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification, cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured from subsurface halite, Death Valley, California, 22,000 to 34,000 years old. We recovered 16S ribosomal DNA sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum DV427, which were previously isolated from the same halite interval. These results provide the best independent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches are sensitive to small amounts of DNA and could allow investigation of even older halites, 10(6) to 10(8) years old, from which microbial cultures have been reported. Such studies of microbial life in ancient salt are particularly important as we search for microbial signatures in similar deposits on Mars and elsewhere in the Solar System.

  3. Attempted DNA extraction from a Rancho La Brea Columbian mammoth (Mammuthus columbi): prospects for ancient DNA from asphalt deposits.

    PubMed

    Gold, David A; Robinson, Jacqueline; Farrell, Aisling B; Harris, John M; Thalmann, Olaf; Jacobs, David K

    2014-02-01

    Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material.

  4. Attempted DNA extraction from a Rancho La Brea Columbian mammoth (Mammuthus columbi): prospects for ancient DNA from asphalt deposits

    PubMed Central

    Gold, David A; Robinson, Jacqueline; Farrell, Aisling B; Harris, John M; Thalmann, Olaf; Jacobs, David K

    2014-01-01

    Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material. PMID:24634719

  5. Pros and cons of methylation-based enrichment methods for ancient DNA.

    PubMed

    Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic

    2015-07-02

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.

  6. Pros and cons of methylation-based enrichment methods for ancient DNA

    PubMed Central

    Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic

    2015-01-01

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828

  7. Ancient whole genome enrichment using baits built from modern DNA.

    PubMed

    Enk, Jacob M; Devault, Alison M; Kuch, Melanie; Murgha, Yusuf E; Rouillard, Jean-Marie; Poinar, Hendrik N

    2014-05-01

    We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.

  8. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.

    PubMed

    Pääbo, S

    1989-03-01

    Several chemical and enzymatic properties were examined in the DNA extracted from dry remains of soft tissues that vary in age from 4 to 13,000 years and represent four species, including two extinct animals (the marsupial wolf and giant ground sloth). The DNA obtained was invariably of a low average molecular size and damaged by oxidative processes, which primarily manifest themselves as modifications of pyrimidines and sugar residues as well as baseless sites and intermolecular cross-links. This renders molecular cloning difficult. However, the polymerase chain reaction can be used to amplify and study short mitochondrial DNA sequences that are of anthropological and evolutionary significance. This opens up the prospect of performing diachronical studies of molecular evolutionary genetics.

  9. Ancient DNA from marine mammals: studying long-lived species over ecological and evolutionary timescales.

    PubMed

    Foote, Andrew D; Hofreiter, Michael; Morin, Phillip A

    2012-01-20

    Marine mammals have long generation times and broad, difficult to sample distributions, which makes inferring evolutionary and demographic changes using field studies of extant populations challenging. However, molecular analyses from sub-fossil or historical materials of marine mammals such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an opportunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes in distribution and range of marine mammal species; we review these studies and discuss the limitations of such 'presence only' studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also discuss studies reconstructing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating for the marine reservoir effect when radiocarbon-dating such wide-ranging species.

  10. Ancient DNA in human bone remains from Pompeii archaeological site.

    PubMed

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  11. Ancient DNA sequence revealed by error-correcting codes

    PubMed Central

    Brandão, Marcelo M.; Spoladore, Larissa; Faria, Luzinete C. B.; Rocha, Andréa S. L.; Silva-Filho, Marcio C.; Palazzo, Reginaldo

    2015-01-01

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code. PMID:26159228

  12. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach.

    PubMed

    Iñiguez, Alena M; Araújo, Adauto; Ferreira, Luiz Fernando; Vicente, Ana Carolina P

    2003-01-01

    The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR) inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.

  13. Ancient mitochondrial DNA analyses of ascaris eggs discovered in coprolites from joseon tomb.

    PubMed

    Oh, Chang Seok; Seo, Min; Hong, Jong Ha; Chai, Jong-Yil; Oh, Seung Whan; Park, Jun Bum; Shin, Dong Hoon

    2015-04-01

    Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples.

  14. Mitochondrial DNA of ancient Cumanians: culturally Asian steppe nomadic immigrants with substantially more western Eurasian mitochondrial DNA lineages.

    PubMed

    Bogácsi-Szabó, Erika; Kalmár, Tibor; Csányi, Bernadett; Tömöry, Gyöngyvér; Czibula, Agnes; Priskin, Katalin; Horváth, Ferenc; Downes, Christopher Stephen; Raskó, István

    2005-10-01

    The Cumanians were originally Asian pastoral nomads who in the 13th century migrated to Hungary. We have examined mitochondrial DNA from members of the earliest Cumanian population in Hungary from two archeologically well-documented excavations and from 74 modern Hungarians from different rural locations in Hungary. Haplogroups were defined based on HVS I sequences and examinations of haplogroup-associated polymorphic sites of the protein coding region and of HVS II. To exclude contamination, some ancient DNA samples were cloned. A database was created from previously published mtDNA HVS I sequences (representing 2,615 individuals from different Asian and European populations) and 74 modem Hungarian sequences from the present study. This database was used to determine the relationships between the ancient Cumanians, modern Hungarians, and Eurasian populations and to estimate the genetic distances between these populations. We attempted to deduce the genetic trace of the migration of Cumanians. This study is the first ancient DNA characterization of an eastern pastoral nomad population that migrated into Europe. The results indicate that, while still possessing a Central Asian steppe culture, the Cumanians received a large admixture of maternal genes from more westerly populations before arriving in Hungary. A similar dilution of genetic, but not cultural, factors may have accompanied the settlement of other Asian nomads in Europe.

  15. Freshly excavated fossil bones are best for amplification of ancient DNA.

    PubMed

    Pruvost, Mélanie; Schwarz, Reinhard; Correia, Virginia Bessa; Champlot, Sophie; Braguier, Séverine; Morel, Nicolas; Fernandez-Jalvo, Yolanda; Grange, Thierry; Geigl, Eva-Maria

    2007-01-16

    Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a approximately 3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.

  16. Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific.

    PubMed

    Thomson, Vicki A; Lebrasseur, Ophélie; Austin, Jeremy J; Hunt, Terry L; Burney, David A; Denham, Tim; Rawlence, Nicolas J; Wood, Jamie R; Gongora, Jaime; Girdland Flink, Linus; Linderholm, Anna; Dobney, Keith; Larson, Greger; Cooper, Alan

    2014-04-01

    The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.

  17. Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific

    PubMed Central

    Thomson, Vicki A.; Lebrasseur, Ophélie; Austin, Jeremy J.; Hunt, Terry L.; Burney, David A.; Denham, Tim; Rawlence, Nicolas J.; Wood, Jamie R.; Gongora, Jaime; Girdland Flink, Linus; Linderholm, Anna; Dobney, Keith; Larson, Greger; Cooper, Alan

    2014-01-01

    The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken. PMID:24639505

  18. High Potential for Using DNA from Ancient Herring Bones to Inform Modern Fisheries Management and Conservation

    PubMed Central

    Speller, Camilla F.; Hauser, Lorenz; Lepofsky, Dana; Moore, Jason; Rodrigues, Antonia T.; Moss, Madonna L.; McKechnie, Iain; Yang, Dongya Y.

    2012-01-01

    Pacific herring (Clupea pallasi) are an abundant and important component of the coastal ecosystems for the west coast of North America. Current Canadian federal herring management assumes five regional herring populations in British Columbia with a high degree of exchange between units, and few distinct local populations within them. Indigenous traditional knowledge and historic sources, however, suggest that locally adapted, distinct regional herring populations may have been more prevalent in the past. Within the last century, the combined effects of commercial fishing and other anthropogenic factors have resulted in severe declines of herring populations, with contemporary populations potentially reflecting only the remnants of a previously more abundant and genetically diverse metapopulation. Through the analysis of 85 archaeological herring bones, this study attempted to reconstruct the genetic diversity and population structure of ancient herring populations using three different marker systems (mitochondrial DNA (mtDNA), microsatellites and SNPs). A high success rate (91%) of DNA recovery was obtained from the extremely small herring bone samples (often <10 mg). The ancient herring mtDNA revealed high haplotype diversity comparable to modern populations, although population discrimination was not possible due to the limited power of the mtDNA marker. Ancient microsatellite diversity was also similar to modern samples, but the data quality was compromised by large allele drop-out and stuttering. In contrast, SNPs were found to have low error rates with no evidence for deviations from Hardy-Weinberg equilibrium, and simulations indicated high power to detect genetic differentiation if loci under selection are used. This study demonstrates that SNPs may be the most effective and feasible approach to survey genetic population structure in ancient remains, and further efforts should be made to screen for high differentiation markers.This study provides the much

  19. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium.

    PubMed

    Pawłowska, J; Lejzerowicz, F; Esling, P; Szczuciński, W; Zajączkowski, M; Pawlowski, J

    2014-07-01

    Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high-throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non-fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro-eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non-fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.

  20. Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA.

    PubMed Central

    Sorenson, M D; Cooper, A; Paxinos, E E; Quinn, T W; James, H F; Olson, S L; Fleischer, R C

    1999-01-01

    The extinct moa-nalos were very large, flightless waterfowl from the Hawaiian islands. We extracted, amplified and sequenced mitochondrial DNA from fossil moa-nalo bones to determine their systematic relationships and lend insight into their biogeographical history. The closest living relatives of these massive, goose-like birds are the familiar dabbling ducks (tribe Anatini). Moa-nalos, however, are not closely related to any one extant species, but represent an ancient lineage that colonized the Hawaiian islands and evolved flightlessness long before the emergence of the youngest island, Hawaii, from which they are absent. Ancient DNA yields a novel hypothesis for the relationships of these bizarre birds, whereas the evidence of phylogeny in morphological characters was obscured by the evolutionary transformation of a small, volant duck into a giant, terrestrial herbivore. PMID:10649633

  1. Brief communication: Conjoined twins at angel mounds? an ancient DNA perspective.

    PubMed

    Marshall, Charla; Tench, Patricia A; Cook, Della Collins; Kaestle, Frederika A

    2011-09-01

    Conjoined twins are born when a single fertilized egg partially splits into two fetuses. A hypothetical case of infant conjoined twins from Angel Mounds, a Middle Mississippian site (A.D. 1050-1400) on the Ohio River near Evansville, Indiana, was discovered in 1941. Morphological analysis does not rule out the field interpretation of this double burial as twins. Ancient mitochondrial DNA recovered from both infants demonstrates that they were not maternal relatives, and hence that they cannot have been conjoined twins.

  2. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.

    PubMed

    Racimo, Fernando; Renaud, Gabriel; Slatkin, Montgomery

    2016-04-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.

  3. Fossil DNA as a Recorder of Ancient Microbial Communities and Palaeoenvironments

    NASA Astrophysics Data System (ADS)

    Coolen, M. J.; Boere, A.; Abbas, B.; Muyzer, G.; Overmann, J.; Wakeham, S. G.; Volkman, J. K.; Sinninghe Damste, J. S.

    2005-12-01

    Fossilized organic components provide an archive of ancient aquatic microbial communities and, hence, can be used to reconstruct climate-induced environmental changes and their impacts on biodiversity. However, the interpretation of these data is complicated by the limited source specificity of some traditional biomarkers, such as lipids and pigments. The ultimate biomarkers are genes encoding for ribosomal RNA (rDNA), which sequences provide information at the species level by phylogenetic comparison but until recently was only applied to identify extant species within environmental samples. With the exception of excellent preservation conditions prevailing in permafrost sediments (3), it was generally believed that DNA becomes rapidly degraded within fossil records. However, we have recently shown that especially in the presence of hydrogen sulfide, DNA can survive in the Holocene fossil record (1, 2). In this presentation we will show how, and to what extent, fossil DNA extracted from Holocene sediments of stratified lakes (the Canadian Mahoney Lake and the Antarctic Ace Lake) and the deep-sea (Black Sea) can be used as a novel proxy to reconstruct the ancient palaeodepositional environments and evolution of past microbial communities. In addition, we will discuss the fate of fossil DNA; quantitative stratigraphic analysis of lipid biomarkers and rDNA from the same biological precursors revealed information on the survival of fossil DNA in comparison to lipid biomarkers. It was shown that most of the DNA was degraded before dead cells reach the bottom but the remaining part was found to be well protected and even less prone to diagenetic alteration compared to certain lipid biomarkers. Base-pair compositions did not change during the Holocene, however, the fossil DNA became fragmented after several thousands of years of deposition but without significantly biasing the qualitative and quantitative molecular biological analysis of at least 10-ka-old fossil DNA

  4. To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples

    PubMed Central

    Winters, Misa; Barta, Jodi Lynn; Monroe, Cara; Kemp, Brian M.

    2011-01-01

    The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones. To address this issue, a comparative study was designed to examine both cloned and direct sequences amplified from ∼3,500 year-old ancient northern fur seal DNA extracts. Majority rules and the Consensus Confidence Program were used to generate consensus sequences for each individual from the cloned sequences, which exhibited damage at 31 of 139 base pairs across all clones. In no instance did the consensus of clones differ from the direct sequence. This study demonstrates that, when appropriate, cloning need not be the default method, but instead, should be used as a measure of authentication on a case-by-case basis, especially when this practice adds time and cost to studies where it may be superfluous. PMID:21738625

  5. Using ancient DNA and coalescent-based methods to infer extinction.

    PubMed

    Chang, Dan; Shapiro, Beth

    2016-02-01

    DNA sequences extracted from preserved remains can add considerable resolution to inference of past population dynamics. For example, coalescent-based methods have been used to correlate declines in some arctic megafauna populations with habitat fragmentation during the last ice age. These methods, however, often fail to detect population declines preceding extinction, most likely owing to a combination of sparse sampling, uninformative genetic markers, and models that cannot account for the increasingly structured nature of populations as habitats decline. As ancient DNA research expands to include full-genome analyses, these data will provide greater resolution of the genomic consequences of environmental change and the genetic signatures of extinction.

  6. Using ancient DNA and coalescent-based methods to infer extinction

    PubMed Central

    Chang, Dan

    2016-01-01

    DNA sequences extracted from preserved remains can add considerable resolution to inference of past population dynamics. For example, coalescent-based methods have been used to correlate declines in some arctic megafauna populations with habitat fragmentation during the last ice age. These methods, however, often fail to detect population declines preceding extinction, most likely owing to a combination of sparse sampling, uninformative genetic markers, and models that cannot account for the increasingly structured nature of populations as habitats decline. As ancient DNA research expands to include full-genome analyses, these data will provide greater resolution of the genomic consequences of environmental change and the genetic signatures of extinction. PMID:26864783

  7. Taming the Past: Ancient DNA and the Study of Animal Domestication.

    PubMed

    MacHugh, David E; Larson, Greger; Orlando, Ludovic

    2017-02-08

    During the last decade, ancient DNA research has been revolutionized by the availability of increasingly powerful DNA sequencing and ancillary genomics technologies, giving rise to the new field of paleogenomics. In this review, we show how our understanding of the genetic basis of animal domestication and the origins and dispersal of livestock and companion animals during the Upper Paleolithic and Neolithic periods is being rapidly transformed through new scientific knowledge generated with paleogenomic methods. These techniques have been particularly informative in revealing high-resolution patterns of artificial and natural selection and evidence for significant admixture between early domestic animal populations and their wild congeners.

  8. Insights into early pig domestication provided by ancient DNA analysis

    PubMed Central

    Caliebe, Amke; Nebel, Almut; Makarewicz, Cheryl; Krawczak, Michael; Krause-Kyora, Ben

    2017-01-01

    Pigs (Sus scrofa) were first domesticated between 8,500 and 8,000 cal BC in the Near East, from where they were subsequently brought into Europe by agriculturalists. Soon after the arrival of the first domestic pigs in northern Europe (~4500 BC), farmers are thought to have started to incorporate local wild boars into their swine herds. This husbandry strategy ultimately resulted in the domestication of European wild boars. Here, we set out to provide a more precise geographic and temporal framework of the early management of suid populations in northern Europe, drawing upon mitochondrial DNA haplotype data from 116 Neolithic Sus specimens. We developed a quantitative mathematical model tracing the haplotypes of the domestic pigs back to their most likely geographic origin. Our modelling results suggest that, between 5000 and 4000 BC, almost all matrilines in the north originated from domesticated animals from the south of central Europe. In the following period (4000–3000 BC), an estimated 78–100% of domesticates in the north were of northern matrilineal origin, largely from local wild boars. These findings point towards a dramatic change in suid management strategies taking place throughout south-central and northern Europe after 4000 BC. PMID:28300151

  9. Nondestructive sampling of human skeletal remains yields ancient nuclear and mitochondrial DNA.

    PubMed

    Bolnick, Deborah A; Bonine, Holly M; Mata-Míguez, Jaime; Kemp, Brian M; Snow, Meradeth H; LeBlanc, Steven A

    2012-02-01

    Museum curators and living communities are sometimes reluctant to permit ancient DNA (aDNA) studies of human skeletal remains because the extraction of aDNA usually requires the destruction of at least some skeletal material. Whether these views stem from a desire to conserve precious materials or an objection to destroying ancestral remains, they limit the potential of aDNA research. To help address concerns about destructive analysis and to minimize damage to valuable specimens, we describe a nondestructive method for extracting DNA from ancient human remains. This method can be used with both teeth and bone, but it preserves the structural integrity of teeth much more effectively than that of bone. Using this method, we demonstrate that it is possible to extract both mitochondrial and nuclear DNA from human remains dating between 300 BC and 1600 AD. Importantly, the method does not expose the remains to hazardous chemicals, allowing them to be safely returned to curators, custodians, and/or owners of the samples. We successfully amplified mitochondrial DNA from 90% of the individuals tested, and we were able to analyze 1-9 nuclear loci in 70% of individuals. We also show that repeated nondestructive extractions from the same tooth can yield amplifiable mitochondrial and nuclear DNA. The high success rate of this method and its ability to yield DNA from samples spanning a wide geographic and temporal range without destroying the structural integrity of the sampled material may make possible the genetic study of skeletal collections that are not available for destructive analysis.

  10. [Phylogenetic analysis of ancient mitochondrial DNA lineages of human remains found in Yakutia].

    PubMed

    Fedorova, S A; Stepanov, A D; Adoian, M; Parik, J; Argunov, V A; Ozawa, T; Khusnutdinova, E K; Villems, R

    2008-01-01

    Molecular genetic analysis of ancient human remains are mostly based on mitochondrial DNA due to its better preservation in human skeletons in comparison with nuclear DNA. We investigated mtDNA extracted from human skeletons found in graves in Yakutia to determine their haplotypes and to compare them with lineages of modern populations. Ancient DNA was extracted from fragments of three skeletons of Yakut graves at At-Dabaan, Ojuluun and Jaraama sites (dating XVIII century) and two skeletons of Neolithic graves at Kerdugen site found in central Yakutia (Churapchinsky, Kangalassky and Megino-Kangalassky districts of Yakutia). Five different haplotypes belonging to specific Asian haplogroups were identified. Lineages of mtDNA of Yakut graves belong to haplo-groups C4a, D5a2 and B5b. Our results indicate the continuity of mitochondrial lineages in the Yakut gene pool during the last 300 years. Haplotypes of two humans from Kerdugen site graves belong to haplogroups A4 and G2a/D. We compared these haplotypes with that of 40,000 Eurasian individuals, 900 of them from Yakutia. No exact matches were found in Paleoasian populations of Chukchi, Eskimos, Koryaks and Itelmen. Phylogenetically close haplotypes (+/- 1 mutation) were found in populations of Yakuts and Evenks, as well as in some populations of China, Southern and Western Siberia.

  11. Experimental conditions improving in-solution target enrichment for ancient DNA.

    PubMed

    Cruz-Dávalos, Diana I; Llamas, Bastien; Gaunitz, Charleen; Fages, Antoine; Gamba, Cristina; Soubrier, Julien; Librado, Pablo; Seguin-Orlando, Andaine; Pruvost, Mélanie; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Scheu, Amelie; Beneke, Norbert; Ludwig, Arne; Cooper, Alan; Willerslev, Eske; Orlando, Ludovic

    2016-08-27

    High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods represent cost-effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in-solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate effect on capture outcomes. Starting DNA, probe tiling, the hybridization temperature and the proportion of endogenous DNA all affected the assay, however. Additionally, probe features such as their GC content, number of CpG dinucleotides, sequence complexity and entropy and self-annealing properties need to be carefully addressed during the design stage of the capture assay. The experimental conditions and probe molecular features identified in this study will improve the recovery of genetic information extracted from degraded and ancient remains.

  12. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    PubMed

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  13. Ancient DNA complements microfossil record in deep-sea subsurface sediments.

    PubMed

    Lejzerowicz, Franck; Esling, Philippe; Majewski, Wojciech; Szczuciński, Witold; Decelle, Johan; Obadia, Cyril; Arbizu, Pedro Martinez; Pawlowski, Jan

    2013-08-23

    Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-fossilized taxa. Here, we recover aDNA of eukaryotic origin across four cores collected at abyssal depths in the South Atlantic, in up to 32.5 thousand-year-old sediment layers. Our study focuses on Foraminifera and Radiolaria, two major groups of marine microfossils also comprising diverse non-fossilized taxa. We describe their assemblages in down-core sediment layers applying both micropalaeontological and environmental DNA sequencing approaches. Short fragments of the foraminiferal and radiolarian small subunit rRNA gene recovered from sedimentary DNA extracts provide evidence that eukaryotic aDNA is preserved in deep-sea sediments encompassing the last glacial maximum. Most aDNA were assigned to non-fossilized taxa that also dominate in molecular studies of modern environments. Our study reveals the potential of aDNA to better document the evolution of past marine ecosystems and opens new horizons for the development of deep-sea palaeogenomics.

  14. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past.

    PubMed

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine; Ilsøe, Peter C; Perrigault, Mickael; Butler, Paul; Chauvaud, Laurent; Eiríksson, Jón; Scourse, James; Paillard, Christine; Orlando, Ludovic

    2017-04-10

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity, and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation, and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data, and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities, and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management. This article is protected by copyright. All rights reserved.

  15. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary.

    PubMed

    Almathen, Faisal; Charruau, Pauline; Mohandesan, Elmira; Mwacharo, Joram M; Orozco-terWengel, Pablo; Pitt, Daniel; Abdussamad, Abdussamad M; Uerpmann, Margarethe; Uerpmann, Hans-Peter; De Cupere, Bea; Magee, Peter; Alnaqeeb, Majed A; Salim, Bashir; Raziq, Abdul; Dessie, Tadelle; Abdelhadi, Omer M; Banabazi, Mohammad H; Al-Eknah, Marzook; Walzer, Chris; Faye, Bernard; Hofreiter, Michael; Peters, Joris; Hanotte, Olivier; Burger, Pamela A

    2016-06-14

    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.

  16. Major transitions in human evolution revisited: a tribute to ancient DNA.

    PubMed

    Ermini, Luca; Der Sarkissian, Clio; Willerslev, Eske; Orlando, Ludovic

    2015-02-01

    The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.

  17. Ancient DNA reveals differences in behaviour and sociality between brown bears and extinct cave bears.

    PubMed

    Fortes, Gloria G; Grandal-d'Anglade, Aurora; Kolbe, Ben; Fernandes, Daniel; Meleg, Ioana N; García-Vázquez, Ana; Pinto-Llona, Ana C; Constantin, Silviu; de Torres, Trino J; Ortiz, Jose E; Frischauf, Christine; Rabeder, Gernot; Hofreiter, Michael; Barlow, Axel

    2016-10-01

    Ancient DNA studies have revolutionized the study of extinct species and populations, providing insights on phylogeny, phylogeography, admixture and demographic history. However, inferences on behaviour and sociality have been far less frequent. Here, we investigate the complete mitochondrial genomes of extinct Late Pleistocene cave bears and middle Holocene brown bears that each inhabited multiple geographically proximate caves in northern Spain. In cave bears, we find that, although most caves were occupied simultaneously, each cave almost exclusively contains a unique lineage of closely related haplotypes. This remarkable pattern suggests extreme fidelity to their birth site in cave bears, best described as homing behaviour, and that cave bears formed stable maternal social groups at least for hibernation. In contrast, brown bears do not show any strong association of mitochondrial lineage and cave, suggesting that these two closely related species differed in aspects of their behaviour and sociality. This difference is likely to have contributed to cave bear extinction, which occurred at a time in which competition for caves between bears and humans was likely intense and the ability to rapidly colonize new hibernation sites would have been crucial for the survival of a species so dependent on caves for hibernation as cave bears. Our study demonstrates the potential of ancient DNA to uncover patterns of behaviour and sociality in ancient species and populations, even those that went extinct many tens of thousands of years ago.

  18. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-03-06

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.

  19. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array

    PubMed Central

    Devault, Alison M.; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M.; Enk, Jacob M.; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N.; Dhody, Anna N.; Poinar, Hendrik N.

    2014-01-01

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis (“Black Death” plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time. PMID:24603850

  20. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary

    PubMed Central

    Almathen, Faisal; Charruau, Pauline; Mohandesan, Elmira; Mwacharo, Joram M.; Orozco-terWengel, Pablo; Pitt, Daniel; Abdussamad, Abdussamad M.; Uerpmann, Margarethe; Uerpmann, Hans-Peter; De Cupere, Bea; Magee, Peter; Alnaqeeb, Majed A.; Salim, Bashir; Raziq, Abdul; Dessie, Tadelle; Abdelhadi, Omer M.; Banabazi, Mohammad H.; Al-Eknah, Marzook; Walzer, Chris; Faye, Bernard; Hofreiter, Michael; Peters, Joris; Hanotte, Olivier

    2016-01-01

    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments. PMID:27162355

  1. News from the west: ancient DNA from a French megalithic burial chamber.

    PubMed

    Deguilloux, Marie-France; Soler, Ludovic; Pemonge, Marie-Hélène; Scarre, Chris; Joussaume, Roger; Laporte, Luc

    2011-01-01

    Recent paleogenetic studies have confirmed that the spread of the Neolithic across Europe was neither genetically nor geographically uniform. To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR-I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long-distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices.

  2. Ancient mitochondrial DNA from Malaysian hair samples: some indications of Southeast Asian population movements.

    PubMed

    Ricaut, François-X; Bellatti, M; Lahr, Marta Mirazon

    2006-01-01

    The late Pleistocene and early Holocene population history of Southeast Asia is not well-known. Our study provides new data on mitochondrial DNA (mtDNA) lineages of the aboriginal inhabitants of the Malay Peninsula, and through an extensive comparison to the known mtDNA diversity in Southeast and East Asia, provides some new insights into the origins and historical geography of certain mtDNA lineages in the region. We extracted DNA from hair samples (dating back 100 years) preserved in the Duckworth Collection and belonging to two Peninsular Malaysian individuals identified as "Negrito." Ancient DNA was analyzed by sequencing hypervariable region I (HVS-I) of the mtDNA control region and the mtDNA region V length polymorphism. The results show that the maternal lineages of these individuals belong to a recently defined haplogroup B sub-branch called B4c2. A comparison of mitochondrial haplotypes and haplogroups with those of 10,349 East Asian individuals indicates their very restricted geographical distribution (southwestern China, Southeast Asia Peninsula, and Indonesia). Recalculation of the B4c2 age across all of East Asia ( approximately 13,000 years) and in different subregions/populations suggests its rapid diffusion in Southeast Asia between the end of the Last Glacial Maximum and the Neolithic expansion of the Holocene.

  3. Ancient DNA Analysis Affirms the Canid from Altai as a Primitive Dog

    PubMed Central

    Trifonov, Vladimir A.; Leonard, Jennifer A.; Vorobieva, Nadezhda V.; Ovodov, Nikolai D.; Graphodatsky, Alexander S.; Wayne, Robert K.

    2013-01-01

    The origin of domestic dogs remains controversial, with genetic data indicating a separation between modern dogs and wolves in the Late Pleistocene. However, only a few dog-like fossils are found prior to the Last Glacial Maximum, and it is widely accepted that the dog domestication predates the beginning of agriculture about 10,000 years ago. In order to evaluate the genetic relationship of one of the oldest dogs, we have isolated ancient DNA from the recently described putative 33,000-year old Pleistocene dog from Altai and analysed 413 nucleotides of the mitochondrial control region. Our analyses reveal that the unique haplotype of the Altai dog is more closely related to modern dogs and prehistoric New World canids than it is to contemporary wolves. Further genetic analyses of ancient canids may reveal a more exact date and centre of domestication. PMID:23483925

  4. King penguin population on Macquarie Island recovers ancient DNA diversity after heavy exploitation in historic times

    PubMed Central

    Heupink, Tim H.; van den Hoff, John; Lambert, David M.

    2012-01-01

    Historically, king penguin populations on Macquarie Island have suffered greatly from human exploitation. Two large colonies on the island were drastically reduced to a single small colony as a result of harvesting for the blubber oil industry. However, recent conservation efforts have resulted in the king penguin population expanding in numbers and range to recolonize previous as well as new sites. Ancient DNA methods were used to estimate past genetic diversity and combined with studies of modern populations, we are now able to compare past levels of variation with extant populations on northern Macquarie Island. The ancient and modern populations are closely related and show a similar level of genetic diversity. These results suggest that the king penguin population has recovered past genetic diversity in just 80 years owing to conservation efforts, despite having seen the brink of extinction. PMID:22357937

  5. King penguin population on Macquarie Island recovers ancient DNA diversity after heavy exploitation in historic times.

    PubMed

    Heupink, Tim H; van den Hoff, John; Lambert, David M

    2012-08-23

    Historically, king penguin populations on Macquarie Island have suffered greatly from human exploitation. Two large colonies on the island were drastically reduced to a single small colony as a result of harvesting for the blubber oil industry. However, recent conservation efforts have resulted in the king penguin population expanding in numbers and range to recolonize previous as well as new sites. Ancient DNA methods were used to estimate past genetic diversity and combined with studies of modern populations, we are now able to compare past levels of variation with extant populations on northern Macquarie Island. The ancient and modern populations are closely related and show a similar level of genetic diversity. These results suggest that the king penguin population has recovered past genetic diversity in just 80 years owing to conservation efforts, despite having seen the brink of extinction.

  6. Ancient DNA Reveals Matrilineal Continuity in Present-Day Poland over the Last Two Millennia

    PubMed Central

    Juras, Anna; Dabert, Miroslawa; Kushniarevich, Alena; Malmström, Helena; Raghavan, Maanasa; Kosicki, Jakub Z.; Metspalu, Ene; Willerslev, Eske; Piontek, Janusz

    2014-01-01

    While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC – 500 AD (Roman Iron Age) and for 20 samples dated to 1000–1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age. PMID:25337992

  7. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites.

    PubMed

    Iñiguez, Alena Mayo; Reinhard, Karl; Carvalho Gonçalves, Marcelo Luiz; Ferreira, Luiz Fernando; Araújo, Adauto; Paulo Vicente, Ana Carolina

    2006-11-01

    Enterobius vermicularis, pinworm, is one of the most common helminths worldwide, infecting nearly a billion people at all socio-economic levels. In prehistoric populations the paleoparasitological findings show a pinworm homogeneous distribution among hunter-gatherers in North America, intensified with the advent of agriculture. This same increase also occurred in the transition from nomad hunter-gatherers to sedentary farmers in South America, although E. vermicularis infection encompasses only the ancient Andean peoples, with no record among the pre-Colombian populations in the South American lowlands. However, the outline of pinworm paleoepidemiology has been supported by microscopic finding of eggs recovered from coprolites. Since molecular techniques are precise and sensitive in detecting pathogen ancient DNA (aDNA), and also could provide insights into the parasite evolutionary history, in this work we have performed a molecular paleoparasitological study of E. vermicularis. aDNA was recovered and pinworm 5S rRNA spacer sequences were determined from pre-Columbian coprolites (4110 BC-AD 900) from four different North and South American archaeological sites. The sequence analysis confirmed E. vermicularis identity and revealed a similarity among ancient and modern sequences. Moreover, polymorphisms were identified at the relative positions 160, 173 and 180, in independent coprolite samples from Tulán, San Pedro de Atacama, Chile (1080-950 BC). We also verified the presence of peculiarities (Splicing leader (SL1) RNA sequence, spliced donor site, the Sm antigen biding site, and RNA secondary structure) which characterise the SL1 RNA gene. The analysis shows that the SL1 RNA gene of contemporary pinworms was present in pre-Columbian E. vermicularis by 6110 years ago. We were successful in detecting E. vermicularis aDNA even in coprolites without direct microscopic evidence of the eggs, improving the diagnosis of helminth infections in the past and further

  8. STRONTIUM PRECIPITATION

    DOEpatents

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  9. Ancient DNA in historical parchments - identifying a procedure for extraction and amplification of genetic material.

    PubMed

    Lech, T

    2016-05-06

    Historical parchments in the form of documents, manuscripts, books, or letters, make up a large portion of cultural heritage collections. Their priceless historical value is associated with not only their content, but also the information hidden in the DNA deposited on them. Analyses of ancient DNA (aDNA) retrieved from parchments can be used in various investigations, including, but not limited to, studying their authentication, tracing the development of the culture, diplomacy, and technology, as well as obtaining information on the usage and domestication of animals. This article proposes and verifies a procedure for aDNA recovery from historical parchments and its appropriate preparation for further analyses. This study involved experimental selection of an aDNA extraction method with the highest efficiency and quality of extracted genetic material, from among the multi-stage phenol-chloroform extraction methods, and the modern, column-based techniques that use selective DNA-binding membranes. Moreover, current techniques to amplify entire genetic material were questioned, and the possibility of using mitochondrial DNA for species identification was analyzed. The usefulness of the proposed procedure was successfully confirmed in identification tests of historical parchments dating back to the 13-16th century AD.

  10. Absence of ancient DNA in sub-fossil insect inclusions preserved in 'Anthropocene' Colombian copal.

    PubMed

    Penney, David; Wadsworth, Caroline; Fox, Graeme; Kennedy, Sandra L; Preziosi, Richard F; Brown, Terence A

    2013-01-01

    Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in 'Anthropocene' Colombian copal, dated to 'post-Bomb' and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal.

  11. Monitoring DNA contamination in handled vs. directly excavated ancient human skeletal remains.

    PubMed

    Pilli, Elena; Modi, Alessandra; Serpico, Ciro; Achilli, Alessandro; Lancioni, Hovirag; Lippi, Barbara; Bertoldi, Francesca; Gelichi, Sauro; Lari, Martina; Caramelli, David

    2013-01-01

    Bones, teeth and hair are often the only physical evidence of human or animal presence at an archaeological site; they are also the most widely used sources of samples for ancient DNA (aDNA) analysis. Unfortunately, the DNA extracted from ancient samples, already scarce and highly degraded, is widely susceptible to exogenous contaminations that can affect the reliability of aDNA studies. We evaluated the molecular effects of sample handling on five human skeletons freshly excavated from a cemetery dated between the 11 to the 14(th) century. We collected specimens from several skeletal areas (teeth, ribs, femurs and ulnas) from each individual burial. We then divided the samples into two different sets: one labeled as "virgin samples" (i.e. samples that were taken by archaeologists under contamination-controlled conditions and then immediately sent to the laboratory for genetic analyses), and the second called "lab samples"(i.e. samples that were handled without any particular precautions and subject to normal washing, handling and measuring procedures in the osteological lab). Our results show that genetic profiles from "lab samples" are incomplete or ambiguous in the different skeletal areas while a different outcome is observed in the "virgin samples" set. Generally, all specimens from different skeletal areas in the exception of teeth present incongruent results between "lab" and "virgin" samples. Therefore teeth are less prone to contamination than the other skeletal areas we analyzed and may be considered a material of choice for classical aDNA studies. In addition, we showed that bones can also be a good candidate for human aDNA analysis if they come directly from the excavation site and are accompanied by a clear taphonomic history.

  12. Investigating the Global Dispersal of Chickens in Prehistory Using Ancient Mitochondrial DNA Signatures

    PubMed Central

    Storey, Alice A.; Athens, J. Stephen; Bryant, David; Carson, Mike; Emery, Kitty; deFrance, Susan; Higham, Charles; Huynen, Leon; Intoh, Michiko; Jones, Sharyn; Kirch, Patrick V.; Ladefoged, Thegn; McCoy, Patrick; Morales-Muñiz, Arturo; Quiroz, Daniel; Reitz, Elizabeth; Robins, Judith; Walter, Richard; Matisoo-Smith, Elizabeth

    2012-01-01

    Data from morphology, linguistics, history, and archaeology have all been used to trace the dispersal of chickens from Asian domestication centers to their current global distribution. Each provides a unique perspective which can aid in the reconstruction of prehistory. This study expands on previous investigations by adding a temporal component from ancient DNA and, in some cases, direct dating of bones of individual chickens from a variety of sites in Europe, the Pacific, and the Americas. The results from the ancient DNA analyses of forty-eight archaeologically derived chicken bones provide support for archaeological hypotheses about the prehistoric human transport of chickens. Haplogroup E mtDNA signatures have been amplified from directly dated samples originating in Europe at 1000 B.P. and in the Pacific at 3000 B.P. indicating multiple prehistoric dispersals from a single Asian centre. These two dispersal pathways converged in the Americas where chickens were introduced both by Polynesians and later by Europeans. The results of this study also highlight the inappropriate application of the small stretch of D-loop, traditionally amplified for use in phylogenetic studies, to understanding discrete episodes of chicken translocation in the past. The results of this study lead to the proposal of four hypotheses which will require further scrutiny and rigorous future testing. PMID:22848352

  13. Biomolecular identification of ancient Mycobacterium tuberculosis complex DNA in human remains from Britain and continental Europe.

    PubMed

    Müller, Romy; Roberts, Charlotte A; Brown, Terence A

    2014-02-01

    Tuberculosis is known to have afflicted humans throughout history and re-emerged towards the end of the 20th century, to an extent that it was declared a global emergency in 1993. The aim of this study was to apply a rigorous analytical regime to the detection of Mycobacterium tuberculosis complex (MTBC) DNA in 77 bone and tooth samples from 70 individuals from Britain and continental Europe, spanning the 1st-19th centuries AD. We performed the work in dedicated ancient DNA facilities designed to prevent all types of modern contamination, we checked the authenticity of all products obtained by the polymerase chain reaction, and we based our conclusions on up to four replicate experiments for each sample, some carried out in an independent laboratory. We identified 12 samples that, according to our strict criteria, gave definite evidence for the presence of MTBC DNA, and another 22 that we classified as "probable" or "possible." None of the definite samples came from vertebrae displaying lesions associated with TB. Instead, eight were from ribs displaying visceral new bone formation, one was a tooth from a skeleton with rib lesions, one was taken from a skeleton with endocranial lesions, one from an individual with lesions to the sacrum and sacroiliac joint and the last was from an individual with no lesions indicative of TB or possible TB. Our results add to information on the past temporal and geographical distribution of TB and affirm the suitability of ribs for studying ancient TB.

  14. Integrating archaeology and ancient DNA to address invasive species colonization in the Gulf of Alaska.

    PubMed

    West, Catherine; Hofman, Courtney A; Ebbert, Steve; Martin, John; Shirazi, Sabrina; Dunning, Samantha; Maldonado, Jesus E

    2016-11-17

    The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating those mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because of its effect on vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers, however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska challenges this timeline, suggesting that they colonized the islands long ago. This study uses three lines of evidence to address this problem: 1) direct radiocarbon dating of archaeological squirrel remains; 2) evidence of prehistoric human use of squirrels; and 3) ancient DNA analysis of dated squirrel remains. The results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. This challenges the assumption that ground squirrels were a recent, human-mediated introduction and supports the hypothesis that they may have colonized the island via a natural dispersal event or an ancient human translocation. This article is protected by copyright. All rights reserved.

  15. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses.

    PubMed

    Lira, Jaime; Linderholm, Anna; Olaria, Carmen; Brandström Durling, Mikael; Gilbert, M Thomas P; Ellegren, Hans; Willerslev, Eske; Lidén, Kerstin; Arsuaga, Juan Luis; Götherström, Anders

    2010-01-01

    Multiple geographical regions have been proposed for the domestication of Equus caballus. It has been suggested, based on zooarchaeological and genetic analyses that wild horses from the Iberian Peninsula were involved in the process, and the overrepresentation of mitochondrial D1 cluster in modern Iberian horses supports this suggestion. To test this hypothesis, we analysed mitochondrial DNA from 22 ancient Iberian horse remains belonging to the Neolithic, the Bronze Age and the Middle Ages, against previously published sequences. Only the medieval Iberian sequence appeared in the D1 group. Neolithic and Bronze Age sequences grouped in other clusters, one of which (Lusitano group C) is exclusively represented by modern horses of Iberian origin. Moreover, Bronze Age Iberian sequences displayed the lowest nucleotide diversity values when compared with modern horses, ancient wild horses and other ancient domesticates using nonparametric bootstrapping analyses. We conclude that the excessive clustering of Bronze Age horses in the Lusitano group C, the observed nucleotide diversity and the local continuity from wild Neolithic Iberian to modern Iberian horses, could be explained by the use of local wild mares during an early Iberian domestication or restocking event, whereas the D1 group probably was introduced into Iberia in later historical times.

  16. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  17. HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal.

    PubMed

    Kile, Andrew C; Chavez, Diana A; Bacal, Julien; Eldirany, Sherif; Korzhnev, Dmitry M; Bezsonova, Irina; Eichman, Brandt F; Cimprich, Karlene A

    2015-06-18

    Stalled replication forks are a critical problem for the cell because they can lead to complex genome rearrangements that underlie cell death and disease. Processes such as DNA damage tolerance and replication fork reversal protect stalled forks from these events. A central mediator of these DNA damage responses in humans is the Rad5-related DNA translocase, HLTF. Here, we present biochemical and structural evidence that the HIRAN domain, an ancient and conserved domain found in HLTF and other DNA processing proteins, is a modified oligonucleotide/oligosaccharide (OB) fold that binds to 3' ssDNA ends. We demonstrate that the HIRAN domain promotes HLTF-dependent fork reversal in vitro through its interaction with 3' ssDNA ends found at forks. Finally, we show that HLTF restrains replication fork progression in cells in a HIRAN-dependent manner. These findings establish a mechanism of HLTF-mediated fork reversal and provide insight into the requirement for distinct fork remodeling activities in the cell.

  18. Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis.

    PubMed

    Gilbert, M Thomas P; Binladen, Jonas; Miller, Webb; Wiuf, Carsten; Willerslev, Eske; Poinar, Hendrik; Carlson, John E; Leebens-Mack, James H; Schuster, Stephan C

    2007-01-01

    Although ancient DNA (aDNA) miscoding lesions have been studied since the earliest days of the field, their nature remains a source of debate. A variety of conflicting hypotheses exist about which miscoding lesions constitute true aDNA damage as opposed to PCR polymerase amplification error. Furthermore, considerable disagreement and speculation exists on which specific damage events underlie observed miscoding lesions. The root of the problem is that it has previously been difficult to assemble sufficient data to test the hypotheses, and near-impossible to accurately determine the specific strand of origin of observed damage events. With the advent of emulsion-based clonal amplification (emPCR) and the sequencing-by-synthesis technology this has changed. In this paper we demonstrate how data produced on the Roche GS20 genome sequencer can determine miscoding lesion strands of origin, and subsequently be interpreted to enable characterization of the aDNA damage behind the observed phenotypes. Through comparative analyses on 390,965 bp of modern chloroplast and 131,474 bp of ancient woolly mammoth GS20 sequence data we conclusively demonstrate that in this sample at least, a permafrost preserved specimen, Type 2 (cytosine-->thymine/guanine-->adenine) miscoding lesions represent the overwhelming majority of damage-derived miscoding lesions. Additionally, we show that an as yet unidentified guanine-->adenine analogue modification, not the conventionally argued cytosine-->uracil deamination, underpins a significant proportion of Type 2 damage. How widespread these implications are for aDNA will become apparent as future studies analyse data recovered from a wider range of substrates.

  19. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity.

    PubMed

    Boessenkool, Sanne; McGlynn, Gayle; Epp, Laura S; Taylor, David; Pimentel, Manuel; Gizaw, Abel; Nemomissa, Sileshi; Brochmann, Christian; Popp, Magnus

    2014-04-01

    Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited.

  20. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  1. Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations.

    PubMed

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J

    2006-12-20

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.

  2. Establishing the validity of domestication genes using DNA from ancient chickens.

    PubMed

    Girdland Flink, Linus; Allen, Richard; Barnett, Ross; Malmström, Helena; Peters, Joris; Eriksson, Jonas; Andersson, Leif; Dobney, Keith; Larson, Greger

    2014-04-29

    Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (β-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.

  3. Establishing the validity of domestication genes using DNA from ancient chickens

    PubMed Central

    Girdland Flink, Linus; Allen, Richard; Barnett, Ross; Malmström, Helena; Peters, Joris; Eriksson, Jonas; Andersson, Leif; Dobney, Keith

    2014-01-01

    Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (β-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone. PMID:24753608

  4. Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent.

    PubMed

    Chan, Yvonne L; Lacey, Eileen A; Pearson, Oliver P; Hadly, Elizabeth A

    2005-12-22

    Understanding how animal populations have evolved in response to palaeoenvironmental conditions is essential for predicting the impact of future environmental change on current biodiversity. Analyses of ancient DNA provide a unique opportunity to track population responses to prehistoric environments. We explored the effects of palaeoenvironmental change on the colonial tuco-tuco (Ctenomys sociabilis), a highly endemic species of Patagonian rodent that is currently listed as threatened by the IUCN. By combining surveys of modern genetic variation from throughout this species' current geographic range with analyses of DNA samples from fossil material dating back to 10,000 ybp, we demonstrate a striking decline in genetic diversity that is concordant with environmental events in the study region. Our results highlight the importance of non-anthropogenic factors in loss of diversity, including reductions in smaller mammals such as rodents.

  5. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus.

    PubMed

    Weyrich, Laura S; Duchene, Sebastian; Soubrier, Julien; Arriola, Luis; Llamas, Bastien; Breen, James; Morris, Alan G; Alt, Kurt W; Caramelli, David; Dresely, Veit; Farrell, Milly; Farrer, Andrew G; Francken, Michael; Gully, Neville; Haak, Wolfgang; Hardy, Karen; Harvati, Katerina; Held, Petra; Holmes, Edward C; Kaidonis, John; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Semal, Patrick; Soltysiak, Arkadiusz; Townsend, Grant; Usai, Donatella; Wahl, Joachim; Huson, Daniel H; Dobney, Keith; Cooper, Alan

    2017-03-08

    Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.

  6. Prehistoric introduction of domestic pigs onto the Okinawa Islands: ancient mitochondrial DNA evidence.

    PubMed

    Watanobe, Takuma; Ishiguro, Naotaka; Nakano, Masuo; Takamiya, Hiroto; Matsui, Akira; Hongo, Hitomi

    2002-08-01

    Ancient DNAs of Sus scrofa specimens excavated from archaeological sites on the Okinawa islands were examined to clarify the genetic relationships among prehistoric Sus scrofa, modern wild boars and domestic pigs inhabiting the Ryukyu archipelago, the Japanese islands, and the Asian continent. We extracted remain DNA from 161 bone specimens excavated from 12 archaeological sites on the Okinawa islands and successfully amplified mitochondrial DNA control region fragments from 33 of 161 specimens. Pairwise difference between prehistoric and modern S. scrofa nucleotide sequences showed that haplotypes of the East Asian domestic pig lineage were found from archaeological specimens together with Ryukyu wild boars native to the Ryukyu archipelago. Phylogenetic analysis of 14 ancient sequences (11 haplotypes; 574 bp) indicated that S. scrofa specimens from two Yayoi-Heian sites (Kitahara and Ara shellmiddens) and two Recent Times sites (Wakuta Kiln and Kiyuna sites) are grouped with modern East Asian domestic pigs. Sus scrofa specimens from Shimizu shellmidden (Yayoi-Heian Period) were very closely related to modern Sus scrofa riukiuanus but had a unique nucleotide insertion, indicating that the population is genetically distinct from the lineage of modern Ryukyu wild boars. This genetic evidence suggests that domestic pigs from the Asian continent were introduced to the Okinawa islands in the early Yayoi-Heian period (1700-2000 BP), or earlier.

  7. Merging ancient and modern DNA: extinct seabird taxon rediscovered in the North Tasman Sea.

    PubMed

    Steeves, Tammy E; Holdaway, Richard N; Hale, Marie L; McLay, Emma; McAllan, Ian A W; Christian, Margaret; Hauber, Mark E; Bunce, Michael

    2010-02-23

    Ancient DNA has revolutionized the way in which evolutionary biologists research both extinct and extant taxa, from the inference of evolutionary history to the resolution of taxonomy. Here, we present, to our knowledge, the first study to report the rediscovery of an 'extinct' avian taxon, the Tasman booby (Sula tasmani), using classical palaeontological data combined with ancient and modern DNA data. Contrary to earlier work, we show an overlap in size between fossil and modern birds in the North Tasman Sea (classified currently as S. tasmani and Sula dactylatra fullagari, respectively). In addition, we show that Holocene fossil birds have mitochondrial control region sequences that are identical to those found in modern birds. These results indicate that the Tasman booby is not an extinct taxon: S. dactylatra fullagari O'Brien & Davies, 1990 is therefore a junior synonym of Sula tasmani van Tets, Meredith, Fullagar & Davidson, 1988 and all North Tasman Sea boobies should be known as S. d. tasmani. In addition to reporting the rediscovery of an extinct avian taxon, our study highlights the need for researchers to be cognizant of multidisciplinary approaches to understanding taxonomy and past biodiversity.

  8. Toward a new history and geography of human genes informed by ancient DNA

    PubMed Central

    Pickrell, Joseph K.; Reich, David

    2014-01-01

    Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world’s human populations. In light of this, we argue that it is time to critically re-evaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. PMID:25168683

  9. Toward a new history and geography of human genes informed by ancient DNA.

    PubMed

    Pickrell, Joseph K; Reich, David

    2014-09-01

    Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture, and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world's human populations. In light of this we argue that it is time to critically reevaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection.

  10. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites.

    PubMed

    Haak, Wolfgang; Forster, Peter; Bramanti, Barbara; Matsumura, Shuichi; Brandt, Guido; Tänzer, Marc; Villems, Richard; Renfrew, Colin; Gronenborn, Detlef; Alt, Kurt Werner; Burger, Joachim

    2005-11-11

    The ancestry of modern Europeans is a subject of debate among geneticists, archaeologists, and anthropologists. A crucial question is the extent to which Europeans are descended from the first European farmers in the Neolithic Age 7500 years ago or from Paleolithic hunter-gatherers who were present in Europe since 40,000 years ago. Here we present an analysis of ancient DNA from early European farmers. We successfully extracted and sequenced intact stretches of maternally inherited mitochondrial DNA (mtDNA) from 24 out of 57 Neolithic skeletons from various locations in Germany, Austria, and Hungary. We found that 25% of the Neolithic farmers had one characteristic mtDNA type and that this type formerly was widespread among Neolithic farmers in Central Europe. Europeans today have a 150-times lower frequency (0.2%) of this mtDNA type, revealing that these first Neolithic farmers did not have a strong genetic influence on modern European female lineages. Our finding lends weight to a proposed Paleolithic ancestry for modern Europeans.

  11. Ancient DNA Reveals Late Pleistocene Existence of Ostriches in Indian Sub-Continent

    PubMed Central

    Rai, Niraj; Kumar, Giriraj; Pruthi, Parul Aggarwal; Thangaraj, Kumarasamy; Bajpai, Sunil; Pruthi, Vikas

    2017-01-01

    Ancient DNA (aDNA) analysis of extinct ratite species is of considerable interest as it provides important insights into their origin, evolution, paleogeographical distribution and vicariant speciation in congruence with continental drift theory. In this study, DNA hotspots were detected in fossilized eggshell fragments of ratites (dated ≥25000 years B.P. by radiocarbon dating) using confocal laser scanning microscopy (CLSM). DNA was isolated from five eggshell fragments and a 43 base pair (bp) sequence of a 16S rRNA mitochondrial-conserved region was successfully amplified and sequenced from one of the samples. Phylogenetic analysis of the DNA sequence revealed a 92% identity of the fossil eggshells to Struthio camelus and their position basal to other palaeognaths, consistent with the vicariant speciation model. Our study provides the first molecular evidence for the presence of ostriches in India, complementing the continental drift theory of biogeographical movement of ostriches in India, and opening up a new window into the evolutionary history of ratites. PMID:28273082

  12. DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories.

    PubMed

    Witt, Kelsey E; Judd, Kathleen; Kitchen, Andrew; Grier, Colin; Kohler, Timothy A; Ortman, Scott G; Kemp, Brian M; Malhi, Ripan S

    2015-02-01

    As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present.

  13. Is a large-scale DNA-based inventory of ancient life possible?

    PubMed

    Lambert, D M; Baker, A; Huynen, L; Haddrath, O; Hebert, P D N; Millar, C D

    2005-01-01

    A complete DNA-based inventory of the Earth's present biota using large-scale high-throughput DNA sequencing of signature region(s) (DNA barcoding) is an ambitious proposal rivaling the Human Genome Project. We examine whether this approach will also enable us to assess the past diversity of the earth's biota. To test this, we sequenced the 5' terminus of the mitochondrial cytochrome c oxidase I (COI) gene of individuals belonging to a group of extinct ratite birds, the moa of New Zealand. Moa comprised a large number of taxa that radiated in isolation on this oceanic landmass. Using a phylogenetic approach based on a large data set including protein coding and 12S DNA sequences as well as morphology, we now have precise information about the number of moa species that once existed. We show that each of the moa species detected using this extensive data set has a unique COI barcode(s) and that they all show low levels of within-species COI variation. Consequently, we conclude that COI sequences accurately identify the species discovered using the larger data set. Hence, more generally, this study suggests that DNA barcoding might also help us detect other extinct animal species and that a large-scale inventory of ancient life is possible.

  14. Ancient DNA Reveals Late Pleistocene Existence of Ostriches in Indian Sub-Continent.

    PubMed

    Jain, Sonal; Rai, Niraj; Kumar, Giriraj; Pruthi, Parul Aggarwal; Thangaraj, Kumarasamy; Bajpai, Sunil; Pruthi, Vikas

    2017-01-01

    Ancient DNA (aDNA) analysis of extinct ratite species is of considerable interest as it provides important insights into their origin, evolution, paleogeographical distribution and vicariant speciation in congruence with continental drift theory. In this study, DNA hotspots were detected in fossilized eggshell fragments of ratites (dated ≥25000 years B.P. by radiocarbon dating) using confocal laser scanning microscopy (CLSM). DNA was isolated from five eggshell fragments and a 43 base pair (bp) sequence of a 16S rRNA mitochondrial-conserved region was successfully amplified and sequenced from one of the samples. Phylogenetic analysis of the DNA sequence revealed a 92% identity of the fossil eggshells to Struthio camelus and their position basal to other palaeognaths, consistent with the vicariant speciation model. Our study provides the first molecular evidence for the presence of ostriches in India, complementing the continental drift theory of biogeographical movement of ostriches in India, and opening up a new window into the evolutionary history of ratites.

  15. Ancient DNA analysis - An established technique in charting the evolution of tuberculosis and leprosy.

    PubMed

    Donoghue, Helen D; Spigelman, Mark; O'Grady, Justin; Szikossy, Ildikó; Pap, Ildikó; Lee, Oona Y-C; Wu, Houdini H T; Besra, Gurdyal S; Minnikin, David E

    2015-06-01

    Many tuberculosis and leprosy infections are latent or paucibacillary, suggesting a long time-scale for host and pathogen co-existence. Palaeopathology enables recognition of archaeological cases and PCR detects pathogen ancient DNA (aDNA). Mycobacterium tuberculosis and Mycobacterium leprae cell wall lipids are more stable than aDNA and restrict permeability, thereby possibly aiding long-term persistence of pathogen aDNA. Amplification of aDNA, using specific PCR primers designed for short fragments and linked to fluorescent probes, gives good results, especially when designed to target multi-copy loci. Such studies have confirmed tuberculosis and leprosy, including co-infections. Many tuberculosis cases have non-specific or no visible skeletal pathology, consistent with the natural history of this disease. M. tuberculosis and M. leprae are obligate parasites, closely associated with their human host following recent clonal distribution. Therefore genotyping based on single nucleotide polymorphisms (SNPs) can indicate their origins, spread and phylogeny. Knowledge of extant genetic lineages at particular times in past human populations can be obtained from well-preserved specimens where molecular typing is possible, using deletion analysis, microsatellite analysis and whole genome sequencing. Such studies have identified non-bovine tuberculosis from a Pleistocene bison from 17,500 years BP, human tuberculosis from 9000 years ago and leprosy from over 2000 years ago.

  16. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens

    NASA Astrophysics Data System (ADS)

    Murray, Dáithí C.; Pearson, Stuart G.; Fullagar, Richard; Chase, Brian M.; Houston, Jayne; Atchison, Jennifer; White, Nicole E.; Bellgard, Matthew I.; Clarke, Edward; Macphail, Mike; Gilbert, M. Thomas P.; Haile, James; Bunce, Michael

    2012-12-01

    The study of arid palaeoenvironments is often frustrated by the poor or non-existent preservation of plant and animal material, yet these environments are of considerable environmental importance. The analysis of pollen and macrofossils isolated from herbivore middens has been an invaluable source of information regarding past environments and the nature of ecological fluctuations within arid zones. The application of ancient DNA (aDNA) techniques to hot, arid zone middens remains unexplored. This paper attempts to retrieve and characterise aDNA from four Southern Hemisphere fossil middens; three located in hot, arid regions of Australia and one sample from South Africa's Western Cape province. The middens are dated to between 30,490 (±380) and 710 (±70) cal yr BP. The Brockman Ridge midden in this study is potentially the oldest sample from which aDNA has been successfully extracted in Australia. The application of high-throughput sequencing approaches to profile the biotic remains preserved in midden material has not been attempted to date and this study clearly demonstrates the potential of such a methodology. In addition to the taxa previously detected via macrofossil and palynological analyses, aDNA analysis identified unreported plant and animal taxa, some of which are locally extinct or endemic. The survival and preservation of DNA in hot, arid environments is a complex and poorly understood process that is both sporadic and rare, but the survival of DNA through desiccation may be important. Herbivore middens now present an important source of material for DNA metabarcoding studies of hot, arid palaeoenvironments and can potentially be used to analyse middens in these environments throughout Australia, Africa, the Americas and the Middle East.

  17. Ancient DNA from Coral-Hosted Symbiodinium Reveal a Static Mutualism over the Last 172 Years

    PubMed Central

    Baker, David M.; Weigt, Lee; Fogel, Marilyn; Knowlton, Nancy

    2013-01-01

    Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general. PMID:23405111

  18. Ancient substructure in early mtDNA lineages of southern Africa.

    PubMed

    Barbieri, Chiara; Vicente, Mário; Rocha, Jorge; Mpoloka, Sununguko W; Stoneking, Mark; Pakendorf, Brigitte

    2013-02-07

    Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.

  19. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication.

    PubMed

    Kimura, Birgitta; Marshall, Fiona B; Chen, Shanyuan; Rosenbom, Sónia; Moehlman, Patricia D; Tuross, Noreen; Sabin, Richard C; Peters, Joris; Barich, Barbara; Yohannes, Hagos; Kebede, Fanuel; Teclai, Redae; Beja-Pereira, Albano; Mulligan, Connie J

    2011-01-07

    Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.

  20. Early cave art and ancient DNA record the origin of European bison.

    PubMed

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M; Llamas, Bastien; Mitchell, Kieren J; Ho, Simon Y W; Kosintsev, Pavel; Lee, Michael S Y; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E; Doronichev, Vladimir B; Douka, Katerina; Fordham, Damien A; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D; Taylor, Jeremy F; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-10-18

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21-18 kya).

  1. Radiocarbon-dating and ancient DNA reveal rapid replacement of extinct prehistoric penguins

    NASA Astrophysics Data System (ADS)

    Rawlence, Nicolas J.; Perry, George L. W.; Smith, Ian W. G.; Scofield, R. Paul; Tennyson, Alan J. D.; Matisoo-Smith, Elizabeth A.; Boessenkool, Sanne; Austin, Jeremy J.; Waters, Jonathan M.

    2015-03-01

    Prehistoric faunal extinctions dramatically reshaped biological assemblages around the world. However, the timing of such biotic shifts is often obscured by the fragmentary nature and limited temporal resolution of fossil records. We use radiocarbon-dating and ancient-DNA analysis of prehistoric (ca A.D. 1450-1834) Megadyptes penguin specimens to assess the time-frame of biological turnover in coastal New Zealand following human settlement. These data suggest that the final extirpation of the endemic Megadyptes waitaha, and subsequent replacement by the previously sub-Antarctic-limited Megadyptes antipodes, likely occurred within a narrow temporal window (e.g. a century or less). This transition represents one of the most rapid prehistoric faunal turnover events documented, and is likely linked to human demographic and cultural transitions during the 15th Century. Our results suggest that anthropogenic forces can trigger rapid biogeographic shifts.

  2. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  3. Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world.

    PubMed

    Waters, Jonathan M; Grosser, Stefanie

    2016-11-01

    The spread of exotic species represents a major driver of biological change across the planet. While dispersal and colonization are natural biological processes, we suggest that the failure to recognize increasing rates of human-facilitated self-introductions may represent a threat to native lineages. Notably, recent biogeographic analyses have revealed numerous cases of biological range shifts in response to anthropogenic impacts and climate change. In particular, ancient DNA analyses have revealed several cases in which lineages traditionally thought to be long-established "natives" are in fact recent colonizers. Such range expansion events have apparently occurred in response to human-mediated native biodiversity declines and ecosystem change, particularly in recently colonized, isolated ecosystems such as New Zealand. While such events can potentially boost local biodiversity, the spread of exotic lineages may also hasten the decline of indigenous species, so it is essential that conservation managers recognize these rapid biotic shifts.​.

  4. Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.

    PubMed

    Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine

    2008-05-01

    Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).

  5. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing

    PubMed Central

    Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.

    2015-01-01

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331

  6. Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing.

    PubMed

    Teasdale, M D; van Doorn, N L; Fiddyment, S; Webb, C C; O'Connor, T; Hofreiter, M; Collins, M J; Bradley, D G

    2015-01-19

    Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock.

  7. The Effects of Paleoclimatic Events on Mediterranean Trout: Preliminary Evidences from Ancient DNA

    PubMed Central

    Giovannotti, Massimo; Negri, Alessandra; Ruggeri, Paolo; Olivieri, Luigi; Nisi Cerioni, Paola; Lorenzoni, Massimo; Caputo Barucchi, Vincenzo

    2016-01-01

    In this pilot study for the first time, ancient DNA has been extracted from bone remains of Salmo trutta. These samples were from a stratigraphic succession located in a coastal cave of Calabria (southern Italy) inhabited by humans from upper Palaeolithic to historical times. Seven pairs of primers were used to PCR-amplify and sequence from 128 to 410 bp of the mtDNA control region of eleven samples. Three haplotypes were observed: two (ADcs-1 and MEcs-1) already described in rivers from the Italian peninsula; one (ATcs-33) belonging to the southern Atlantic clade of the AT Salmo trutta mtDNA lineage (sensu Bernatchez). The prehistoric occurrence of this latter haplotype in the water courses of the Italian peninsula has been detected for the first time in this study. Finally, we observed a correspondence between frequency of trout remains and variation in haplotype diversity that we related with ecological and demographic changes resulting from a period of rapid cooling known as the Younger Dryas. PMID:27331397

  8. Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins.

    PubMed

    Grosser, Stefanie; Rawlence, Nicolas J; Anderson, Christian N K; Smith, Ian W G; Scofield, R Paul; Waters, Jonathan M

    2016-02-10

    The expansion of humans into previously unoccupied parts of the globe is thought to have driven the decline and extinction of numerous vertebrate species. In New Zealand, human settlement in the late thirteenth century AD led to the rapid demise of a distinctive vertebrate fauna, and also a number of 'turnover' events where extinct lineages were subsequently replaced by closely related taxa. The recent genetic detection of an Australian little penguin (Eudyptula novaehollandiae) in southeastern New Zealand may potentially represent an additional 'cryptic' invasion. Here we use ancient-DNA (aDNA) analysis and radiocarbon dating of pre-human, archaeological and historical Eudyptula remains to reveal that the arrival of E. novaehollandiae in New Zealand probably occurred between AD 1500 and 1900, following the anthropogenic decline of its sister taxon, the endemic Eudyptula minor. This rapid turnover event, revealed by aDNA, suggests that native species decline can be masked by invasive taxa, and highlights the potential for human-mediated biodiversity shifts.

  9. Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins

    PubMed Central

    Rawlence, Nicolas J.; Anderson, Christian N. K.; Smith, Ian W. G.; Scofield, R. Paul; Waters, Jonathan M.

    2016-01-01

    The expansion of humans into previously unoccupied parts of the globe is thought to have driven the decline and extinction of numerous vertebrate species. In New Zealand, human settlement in the late thirteenth century AD led to the rapid demise of a distinctive vertebrate fauna, and also a number of 'turnover' events where extinct lineages were subsequently replaced by closely related taxa. The recent genetic detection of an Australian little penguin (Eudyptula novaehollandiae) in southeastern New Zealand may potentially represent an additional ‘cryptic’ invasion. Here we use ancient-DNA (aDNA) analysis and radiocarbon dating of pre-human, archaeological and historical Eudyptula remains to reveal that the arrival of E. novaehollandiae in New Zealand probably occurred between AD 1500 and 1900, following the anthropogenic decline of its sister taxon, the endemic Eudyptula minor. This rapid turnover event, revealed by aDNA, suggests that native species decline can be masked by invasive taxa, and highlights the potential for human-mediated biodiversity shifts. PMID:26842575

  10. Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum.

    PubMed

    Kehlmaier, Christian; Barlow, Axel; Hastings, Alexander K; Vamberger, Melita; Paijmans, Johanna L A; Steadman, David W; Albury, Nancy A; Franz, Richard; Hofreiter, Michael; Fritz, Uwe

    2017-01-11

    Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1 000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galápagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact.

  11. Palaeoceanographic changes in Hornsund Fjord (Spitsbergen, Svalbard) over the last millennium: new insights from ancient DNA

    NASA Astrophysics Data System (ADS)

    Pawłowska, Joanna; Zajączkowski, Marek; Łącka, Magdalena; Lejzerowicz, Franck; Esling, Philippe; Pawlowski, Jan

    2016-07-01

    This paper presents a reconstruction of climate-driven environmental changes over the last millennium in Hornsund Fjord (Svalbard), based on sedimentological and micropalaeontological records. Our palaeo-investigation was supported by an analysis of foraminiferal ancient DNA (aDNA), focusing on the non-fossilized monothalamous species. The main climatic fluctuations during the last millennium were the Medieval Warm Period (MWP, AD 1000-1600), the Little Ice Age (LIA, AD 1600-1900) and the modern warming (MW, AD 1900 to present). Our study indicates that the environmental conditions in Hornsund during the MWP and the early LIA (before ˜ AD 1800) were relatively stable. The beginning of the LIA (˜ AD 1600) was poorly evidenced by the micropalaeontological record but was well marked in the aDNA data by an increased proportion of monothalamous foraminifera, especially Bathysiphon sp. The early LIA (˜ 1600 to ˜ AD 1800) was marked by an increase in the abundance of sequences of Hippocrepinella hirudinea and Cedhagenia saltatus. In the late LIA (after ˜ AD 1800), the conditions in the fjord became glacier-proximal and were characterized by increased meltwater outflows, high sedimentation and a high calving rate. This coincided with an increase in the percentages of sequences of Micrometula sp. and Vellaria pellucidus. During the MW, the major glacier fronts retreated rapidly to the inner bays, which limited the iceberg discharge to the fjord's centre and caused a shift in the foraminiferal community that was reflected in both the fossil and aDNA records. The palaeoceanographic changes in the Hornsund fjord over the last millennium were driven mainly by the inflow of shelf-originated water masses and glacial activity. However, the environmental changes were poorly evidenced in the micropalaeontological record, but they were well documented in our aDNA data. We considerably increased the number of potential proxy species by including monothalamous foraminifera in the

  12. Joseon funerary texts tested using ancient DNA analysis of a Korean mummy.

    PubMed

    Oh, Chang Seok; Koh, Bou-Ja; Yoo, Dong Soo; Park, Jun Bum; Min, So Ri; Kim, Yi-Suk; Lee, Sang Sup; Ge, Jianye; Seo, Seung Bum; Shin, Dong Hoon

    2015-06-01

    In Korea, ancient DNA (aDNA) analysis has been applied to investigations into the genetic affiliations of mummies found in Joseon Dynasty tombs (1392-1910 CE), becoming now indispensable tool for researches studying human remains from archaeological sites. In the course of our recent examinations on a Korean mummy of Joseon Dynasty, we discovered many teeth contained in a pouch. And in fact, the historical literature on the topic of Joseon funerals contain general accounts of pouches in which an individual's lost teeth were collected over the course of a lifetime and, after death, placed in the coffin with the body. To test the veracity of the historical texts, the present study undertook aDNA analyses and compared the results between specifically questioned (Q) samples (teeth) and known (K) samples (brain and bone) from the mummy to ensure that they came from the same individual. Although the Q-K comparison of autosomal short tandem repeat results did not show full concordance due to allelic drop-outs in some loci, our statistical calculation indicated that the teeth in the pouch are highly likely those of the mummy. Additionally, Q-K comparison of mitochondrial DNA sequence results showed 100% matches between samples. There results, in short, could not gainsay the conjecture that the teeth samples originated from the person buried in the tomb; and if so, he must have kept his teeth for a long time after their loss. As the application of aDNA analysis to Korean mummy studies develops, there will be other opportunities to test historical documents, particularly those referring to funerary rites.

  13. Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses

    PubMed Central

    2011-01-01

    Background Studies on allele length polymorphism designate several glacial refugia for Norway spruce (Picea abies) in the South Carpathian Mountains, but infer only limited expansion from these refugia after the last glaciation. To better understand the genetic dynamics of a South Carpathian spruce lineage, we compared ancient DNA from 10,700 and 11,000-year-old spruce pollen and macrofossils retrieved from Holocene lake sediment in the Retezat Mountains with DNA extracted from extant material from the same site. We used eight primer pairs that amplified short and variable regions of the spruce cpDNA. In addition, from the same lake sediment we obtained a 15,000-years-long pollen accumulation rate (PAR) record for spruce that helped us to infer changes in population size at this site. Results We obtained successful amplifications for Norway spruce from 17 out of 462 pollen grains tested, while the macrofossil material provided 22 DNA sequences. Two fossil sequences were found to be unique to the ancient material. Population genetic statistics showed higher genetic diversity in the ancient individuals compared to the extant ones. Similarly, statistically significant Ks and Kst values showed a considerable level of differentiation between extant and ancient populations at the same loci. Lateglacial and Holocene PAR values suggested that population size of the ancient population was small, in the range of 1/10 or 1/5 of the extant population. PAR analysis also detected two periods of rapid population growths (from ca. 11,100 and 3900 calibrated years before present (cal yr BP)) and three bottlenecks (around 9180, 7200 and 2200 cal yr BP), likely triggered by climatic change and human impact. Conclusion Our results suggest that the paternal lineages observed today in the Retezat Mountains persisted at this site at least since the early Holocene. Combination of the results from the genetic and the PAR analyses furthermore suggests that the higher level of genetic

  14. Of Amoebae and Men: Extracellular DNA Traps as an Ancient Cell-Intrinsic Defense Mechanism

    PubMed Central

    Zhang, Xuezhi; Soldati, Thierry

    2016-01-01

    Since the discovery of the formation of DNA-based extracellular traps (ETs) by neutrophils as an innate immune defense mechanism (1), hundreds of articles describe the involvement of ETs in physiological and pathological human and animal conditions [reviewed in Ref. (2), and the previous Frontiers Research Topic on NETosis: http://www.frontiersin.org/books/NETosis_At_the_Intersection_of_Cell_Biology_Microbiology_and_Immunology/195]. Interestingly, a few reports reveal that ETs can be formed by immune cells of more ancient organisms, as far back as the common ancestor of vertebrates and invertebrates (3). Recently, we reported that the Sentinel cells of the multicellular slug of the social amoeba Dictyostelium discoideum also produce ETs to trap and kill slug-invading bacteria [see Box 1; and Figure 1 Ref. (4)]. This is a strong evidence that DNA-based cell-intrinsic defense mechanisms emerged much earlier than thought, about 1.3 billion years ago. Amazingly, using extrusion of DNA as a weapon to capture and kill uningestable microbes has its rationale. During the emergence of multicellularity, a primitive innate immune system developed in the form of a dedicated set of specialized phagocytic cells. This professionalization of immunity allowed the evolution of sophisticated defense mechanisms including the sacrifice of a small set of cells by a mechanism related to NETosis. This altruistic behavior likely emerged in steps, starting from the release of “dispensable” mitochondrial DNA by D. discoideum Sentinel cells. Grounded in this realization, one can anticipate that in the near future, many more examples of the invention and fine-tuning of ETs by early metazoan ancestors will be identified. Consequently, it can be expected that this more complete picture of the evolution of ETs will impact our views of the involvement and pathologies linked to ETs in human and animals. PMID:27458458

  15. Ancient bacterial diversity in mid-Cretaceous black shale: DNA records of oceanic euxinic paleoenvironmnets

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; Okada, H.; Horikoshi, K.

    2001-12-01

    A record of the history of the planet Earth is hidden in the subsurface biosphere, like the annual rings of an old tree. From limited evidences retrieved from underground, one can infer the geographical, geological and biological events that occurred throughout Earthś history. Biosphere in oceanic subseafloor and terrestrial subsurface environment has been already recognized as the biggest microbial world. Recent progress in approaching deep biosphere revealed that numerable microbial populations were consistently present in the drilling core samples and aquifers recovered from deep subsurface environment. However, the microbial community structures and the relationship between their habitats and geological events have been poorly proved. Molecular phylogenetic analyses have been becoming powerful tool for investigating the naturally occurring microbial communities. Using a combination of culture independent molecular phylogenetic analyses, we sought to recapture the indigenous microbial community of ancient oceanic habitats recovered from a continental drilled core of black shale deposited 100 million years ago. We recovered the drilled core sample of black shale from the continental margin at Serre des Castets, the southern part of France. The recovered black shale contained one phosphate-accumulated strata, defined as a part of the mid-Cretaceous OAE (Oceanic Anoxic Evnets). Indigenous DNA was extracted from the several axis parts of the core, then bacterial ribosomal RNA genes (rDNA) was amplified by PCR. The molecular approaches such as the terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting analysis, phylotype analysis of rDNA clone libraries and the phylogenetic analysis of representative rDNA sequences revealed that the genetic signals from mid-Cretaceous black shale were almost similar to bacterial habitats at deep-seafloor sediments. Furthermore, a number of rDNA clone within the delta-subclass (sulfur-reducing bacteria) and epsilon

  16. Investigation of ancient DNA from Western Siberia and the Sargat culture.

    PubMed

    Bennett, Casey C; Kaestle, Frederika A

    2010-04-01

    Mitochondrial DNA from 14 archaeological samples at the Ural State University in Yekaterinburg, Russia, was extracted to test the feasibility of ancient DNA work on their collection. These samples come from a number of sites that fall into two groupings. Seven samples are from three sites, dating to the 8th-12th century AD, that belong to a northern group of what are thought to be Ugrians, who lived along the Ural Mountains in northwestern Siberia. The remaining seven samples are from two sites that belong to a southern group representing the Sargat culture, dating between roughly the 5th century BC and the 5th century AD, from southwestern Siberia near the Ural Mountains and the present-day Kazakhstan border. The samples are derived from several burial types, including kurgan burials. They also represent a number of different skeletal elements and a range of observed preservation. The northern sites repeatedly failed to amplify after multiple extraction and amplification attempts, but the samples from the southern sites were successfully extracted and amplified. The sequences obtained from the southern sites support the hypothesis that the Sargat culture was a potential zone of intermixture between native Ugrian and/or Siberian populations and steppe peoples from the south, possibly early Iranian or Indo-Iranian, which has been previously suggested by archaeological analysis.

  17. The genetic impact of Aztec imperialism: ancient mitochondrial DNA evidence from Xaltocan, Mexico.

    PubMed

    Mata-Míguez, Jaime; Overholtzer, Lisa; Rodríguez-Alegría, Enrique; Kemp, Brian M; Bolnick, Deborah A

    2012-12-01

    In AD 1428, the city-states of Tenochtitlan, Texcoco, and Tlacopan formed the Triple Alliance, laying the foundations of the Aztec empire. Although it is well documented that the Aztecs annexed numerous polities in the Basin of Mexico over the following years, the demographic consequences of this expansion remain unclear. At the city-state capital of Xaltocan, 16th century documents suggest that the site's conquest and subsequent incorporation into the Aztec empire led to a replacement of the original Otomí population, whereas archaeological evidence suggests that some of the original population may have remained at the town under Aztec rule. To help address questions about Xaltocan's demographic history during this period, we analyzed ancient DNA from 25 individuals recovered from three houses rebuilt over time and occupied between AD 1240 and 1521. These individuals were divided into two temporal groups that predate and postdate the site's conquest. We determined the mitochondrial DNA haplogroup of each individual and identified haplotypes based on 372 base pair sequences of first hypervariable region. Our results indicate that the residents of these houses before and after the Aztec conquest have distinct haplotypes that are not closely related, and the mitochondrial compositions of the temporal groups are statistically different. Altogether, these results suggest that the matrilines present in the households were replaced following the Aztec conquest. This study therefore indicates that the Aztec expansion may have been associated with significant demographic and genetic changes within Xaltocan.

  18. Myth or relict: Does ancient DNA detect the enigmatic Upland seal?

    PubMed

    Salis, Alexander T; Easton, Luke J; Robertson, Bruce C; Gemmell, Neil; Smith, Ian W G; Weisler, Marshall I; Waters, Jonathan M; Rawlence, Nicolas J

    2016-04-01

    The biological status of the so-called 'Upland seal' has remained contentious ever since historical records described a distinct seal from the uplands of New Zealand's (NZ) remote sub-Antarctic islands. Subsequent genetic surveys of the NZ fur seal (Arctocephalus forsteri) detected two highly-divergent mtDNA clades, hypothesized to represent a post-sealing hybrid swarm between 'mainland' (Australia-NZ; A. forsteri) and sub-Antarctic (putative 'Upland'; A. snaresensis) lineages. We present ancient-DNA analyses of prehistoric mainland NZ and sub-Antarctic fur seals, revealing that both of these genetic lineages were already widely distributed across the region at the time of human arrival. These findings indicate that anthropogenic factors did not contribute to the admixture of these lineages, and cast doubt on the validity of the Upland seal. Human-mediated impacts on Arctocephalus genetic diversity are instead highlighted by a dramatic temporal haplotype frequency-shift due to genetic drift in heavily bottlenecked populations following the cessation of industrial-scale harvesting. These extinction-recolonisation dynamics add to a growing picture of human-mediated change in NZ's coastal and marine ecosystems.

  19. Ancient mitochondrial DNA and morphology elucidate an extinct island radiation of Indian Ocean giant tortoises (Cylindraspis).

    PubMed Central

    Austin, J. J.; Arnold, E. N.

    2001-01-01

    Ancient mitochondrial DNA sequences were used for investigating the evolution of an entire clade of extinct vertebrates, the endemic tortoises (Cylindraspis) of the Mascarene Islands in the Indian Ocean. Mitochondrial DNA corroborates morphological evidence that there were five species of tortoise with the following relationships: Cylindraspis triserrata ((Cylindraspis vosmaeri and Cylindraspis peltastes) (Cylindraspis inepta and Cylindraspis indica)). Phylogeny indicates that the ancestor of the group first colonized Mauritius where speciation produced C. triserrata and the ancestor of the other species including a second sympatric Mauritian form, C. inepta. A propagule derived from this lineage colonized Rodrigues 590 km to the east, where a second within-island speciation took place producing the sympatric C. vosmaeri and C. peltastes. A recent colonization of Réunion 150 km to the southwest produced C. indica. In the virtual absence of predators, the defensive features of the shells of Mascarene tortoises were largely dismantled, apparently in two stages. 'Saddlebacked' shells with high fronts evolved independently on all three islands. This and other features, such as a derived jaw structure and small body size, may be associated with niche differentiation in sympatric species and may represent a striking example of parallel differentiation in a large terrestrial vertebrate. The history of Mascarene tortoises contrasts with that of the Galápagos, where only a single species is present and surviving populations are genetically much more similar. However, they too show some reduction in anti-predator mechanisms and multiple development of populations with saddlebacked shells. PMID:11749704

  20. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths.

    PubMed

    Debruyne, Regis; Chu, Genevieve; King, Christine E; Bos, Kirsti; Kuch, Melanie; Schwarz, Carsten; Szpak, Paul; Gröcke, Darren R; Matheus, Paul; Zazula, Grant; Guthrie, Dale; Froese, Duane; Buigues, Bernard; de Marliave, Christian; Flemming, Clare; Poinar, Debi; Fisher, Daniel; Southon, John; Tikhonov, Alexei N; MacPhee, Ross D E; Poinar, Hendrik N

    2008-09-09

    Although the iconic mammoth of the Late Pleistocene, the woolly mammoth (Mammuthus primigenius), has traditionally been regarded as the end point of a single anagenetically evolving lineage, recent paleontological and molecular studies have shown that successive allopatric speciation events must have occurred within Pleistocene Mammuthus in Asia, with subsequent expansion and hybridization between nominal taxa [1, 2]. However, the role of North American mammoth populations in these events has not been adequately explored from an ancient-DNA standpoint. To undertake this task, we analyzed mtDNA from a large data set consisting of mammoth samples from across Holarctica (n = 160) and representing most of radiocarbon time. Our evidence shows that, during the terminal Pleistocene, haplotypes originating in and characteristic of New World populations replaced or succeeded those endemic to Asia and western Beringia. Also, during the Last Glacial Maximum, mammoth populations do not appear to have suffered an overall decline in diversity, despite differing responses on either side of the Bering land bridge. In summary, the "Out-of-America" hypothesis holds that the dispersal of North American woolly mammoths into other parts of Holarctica created major phylogeographic structuring within Mammuthus primigenius populations, shaping the last phase of their evolutionary history before their demise.

  1. Ancient mitochondrial DNA and morphology elucidate an extinct island radiation of Indian Ocean giant tortoises (Cylindraspis).

    PubMed

    Austin, J J; Arnold, E N

    2001-12-22

    Ancient mitochondrial DNA sequences were used for investigating the evolution of an entire clade of extinct vertebrates, the endemic tortoises (Cylindraspis) of the Mascarene Islands in the Indian Ocean. Mitochondrial DNA corroborates morphological evidence that there were five species of tortoise with the following relationships: Cylindraspis triserrata ((Cylindraspis vosmaeri and Cylindraspis peltastes) (Cylindraspis inepta and Cylindraspis indica)). Phylogeny indicates that the ancestor of the group first colonized Mauritius where speciation produced C. triserrata and the ancestor of the other species including a second sympatric Mauritian form, C. inepta. A propagule derived from this lineage colonized Rodrigues 590 km to the east, where a second within-island speciation took place producing the sympatric C. vosmaeri and C. peltastes. A recent colonization of Réunion 150 km to the southwest produced C. indica. In the virtual absence of predators, the defensive features of the shells of Mascarene tortoises were largely dismantled, apparently in two stages. 'Saddlebacked' shells with high fronts evolved independently on all three islands. This and other features, such as a derived jaw structure and small body size, may be associated with niche differentiation in sympatric species and may represent a striking example of parallel differentiation in a large terrestrial vertebrate. The history of Mascarene tortoises contrasts with that of the Galápagos, where only a single species is present and surviving populations are genetically much more similar. However, they too show some reduction in anti-predator mechanisms and multiple development of populations with saddlebacked shells.

  2. Ancient DNA reveals a migration of the ancient Di-qiang populations into Xinjiang as early as the early Bronze Age.

    PubMed

    Gao, Shi-Zhu; Zhang, Ye; Wei, Dong; Li, Hong-Jie; Zhao, Yong-Bin; Cui, Yin-Qiu; Zhou, Hui

    2015-05-01

    Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age.

  3. Use DNA to learn from the past: how modern and ancient DNA studies may help reveal the past and predict the future distribution of species

    NASA Astrophysics Data System (ADS)

    Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.

    2015-12-01

    Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.

  4. Ancient DNA reveals kinship burial patterns of a pre-Columbian Andean community

    PubMed Central

    2012-01-01

    Background A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves. Results The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y–chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave. Conclusions Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site

  5. Ancient DNA reveals late survival of mammoth and horse in interior Alaska.

    PubMed

    Haile, James; Froese, Duane G; Macphee, Ross D E; Roberts, Richard G; Arnold, Lee J; Reyes, Alberto V; Rasmussen, Morten; Nielsen, Rasmus; Brook, Barry W; Robinson, Simon; Demuro, Martina; Gilbert, M Thomas P; Munch, Kasper; Austin, Jeremy J; Cooper, Alan; Barnes, Ian; Möller, Per; Willerslev, Eske

    2009-12-29

    Causes of late Quaternary extinctions of large mammals ("megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or confined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.

  6. Ancient DNA reveals late survival of mammoth and horse in interior Alaska

    PubMed Central

    Haile, James; Froese, Duane G.; MacPhee, Ross D. E.; Roberts, Richard G.; Arnold, Lee J.; Reyes, Alberto V.; Rasmussen, Morten; Nielsen, Rasmus; Brook, Barry W.; Robinson, Simon; Demuro, Martina; Gilbert, M. Thomas P.; Munch, Kasper; Austin, Jeremy J.; Cooper, Alan; Barnes, Ian; Möller, Per; Willerslev, Eske

    2009-01-01

    Causes of late Quaternary extinctions of large mammals (“megafauna”) continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000–13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or confined to refugia. Here we report an alternative approach to detect ‘ghost ranges’ of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene. PMID:20018740

  7. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  8. Ancient genomics.

    PubMed

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  9. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains

    PubMed Central

    2013-01-01

    Background DNA analysis of ancient skeletal remains is invaluable in evolutionary biology for exploring the history of species, including humans. Contemporary human bones and teeth, however, are relevant in forensic DNA analyses that deal with the identification of perpetrators, missing persons, disaster victims or family relationships. They may also provide useful information towards unravelling controversies that surround famous historical individuals. Retrieving information about a deceased person’s externally visible characteristics can be informative in both types of DNA analyses. Recently, we demonstrated that human eye and hair colour can be reliably predicted from DNA using the HIrisPlex system. Here we test the feasibility of the novel HIrisPlex system at establishing eye and hair colour of deceased individuals from skeletal remains of various post-mortem time ranges and storage conditions. Methods Twenty-one teeth between 1 and approximately 800 years of age and 5 contemporary bones were subjected to DNA extraction using standard organic protocol followed by analysis using the HIrisPlex system. Results Twenty-three out of 26 bone DNA extracts yielded the full 24 SNP HIrisPlex profile, therefore successfully allowing model-based eye and hair colour prediction. HIrisPlex analysis of a tooth from the Polish general Władysław Sikorski (1881 to 1943) revealed blue eye colour and blond hair colour, which was positively verified from reliable documentation. The partial profiles collected in the remaining three cases (two contemporary samples and a 14th century sample) were sufficient for eye colour prediction. Conclusions Overall, we demonstrate that the HIrisPlex system is suitable, sufficiently sensitive and robust to successfully predict eye and hair colour from ancient and contemporary skeletal remains. Our findings, therefore, highlight the HIrisPlex system as a promising tool in future routine forensic casework involving skeletal remains, including

  10. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox

    PubMed Central

    Dalén, Love; Nyström, Veronica; Valdiosera, Cristina; Germonpré, Mietje; Sablin, Mikhail; Turner, Elaine; Angerbjörn, Anders; Arsuaga, Juan Luis; Götherström, Anders

    2007-01-01

    How species respond to an increased availability of habitat, for example at the end of the last glaciation, has been well established. In contrast, little is known about the opposite process, when the amount of habitat decreases. The hypothesis of habitat tracking predicts that species should be able to track both increases and decreases in habitat availability. The alternative hypothesis is that populations outside refugia become extinct during periods of unsuitable climate. To test these hypotheses, we used ancient DNA techniques to examine genetic variation in the arctic fox (Alopex lagopus) through an expansion/contraction cycle. The results show that the arctic fox in midlatitude Europe became extinct at the end of the Pleistocene and did not track the habitat when it shifted to the north. Instead, a high genetic similarity between the extant populations in Scandinavia and Siberia suggests an eastern origin for the Scandinavian population at the end of the last glaciation. These results provide new insights into how species respond to climate change, since they suggest that populations are unable to track decreases in habitat avaliability. This implies that arctic species may be particularly vulnerable to increases in global temperatures. PMID:17420452

  11. Ancient DNA provides new insights into the history of south Siberian Kurgan people.

    PubMed

    Keyser, Christine; Bouakaze, Caroline; Crubézy, Eric; Nikolaev, Valery G; Montagnon, Daniel; Reis, Tatiana; Ludes, Bertrand

    2009-09-01

    To help unravel some of the early Eurasian steppe migration movements, we determined the Y-chromosomal and mitochondrial haplotypes and haplogroups of 26 ancient human specimens from the Krasnoyarsk area dated from between the middle of the second millennium BC. to the fourth century AD. In order to go further in the search of the geographic origin and physical traits of these south Siberian specimens, we also typed phenotype-informative single nucleotide polymorphisms. Our autosomal, Y-chromosomal and mitochondrial DNA analyses reveal that whereas few specimens seem to be related matrilineally or patrilineally, nearly all subjects belong to haplogroup R1a1-M17 which is thought to mark the eastward migration of the early Indo-Europeans. Our results also confirm that at the Bronze and Iron Ages, south Siberia was a region of overwhelmingly predominant European settlement, suggesting an eastward migration of Kurgan people across the Russo-Kazakh steppe. Finally, our data indicate that at the Bronze and Iron Age timeframe, south Siberians were blue (or green)-eyed, fair-skinned and light-haired people and that they might have played a role in the early development of the Tarim Basin civilization. To the best of our knowledge, no equivalent molecular analysis has been undertaken so far.

  12. 'Ancient' DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database.

    PubMed

    Limburg, Petra A; Weider, Lawrence J

    2002-02-07

    Recent work on the diapausing egg banks of zooplankton, such as Daphnia (Crustacea: Anomopoda), indicates that these eggs can remain viable for decades while, theoretically, DNA can remain intact for even longer periods (i.e. centuries or millennia). We isolated diapausing eggs of Daphnia from a 30 m long sediment core taken from a hypereutrophic, northern German lake (Belauer See), with some eggs found in dated core material as old as 4500 years. Using microsatellite markers, we analysed the genetic structure of the resting eggs dated as old as ca. 200 years, and found that, although levels of heterozygosity remained remarkably stable, significant genetic differentiation (Nei's D = 0.36; F(ST) = 0.15) between recent and 'ancient' resting eggs (including allele frequency shifts and private alleles) was detected. These shifts represent either species-level changes in this complex (i.e. species-specific characters of ephippia are not always robust), or intraspecific shifts in genetic variation, or a combination of both. This study demonstrates that the egg banks of aquatic zooplankton can serve as repositories of both genetic (intrapopulational) and ecological (interspecific) information. The use of molecular markers, such as microsatellites, on diapausing egg/seed banks may open new avenues of enquiry related to tracking the long-term genetic (and/or species) shifts that are associated with long-term environmental changes.

  13. Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians.

    PubMed

    Malmström, Helena; Gilbert, M Thomas P; Thomas, Mark G; Brandström, Mikael; Storå, Jan; Molnar, Petra; Andersen, Pernille K; Bendixen, Christian; Holmlund, Gunilla; Götherström, Anders; Willerslev, Eske

    2009-11-03

    The driving force behind the transition from a foraging to a farming lifestyle in prehistoric Europe (Neolithization) has been debated for more than a century [1-3]. Of particular interest is whether population replacement or cultural exchange was responsible [3-5]. Scandinavia holds a unique place in this debate, for it maintained one of the last major hunter-gatherer complexes in Neolithic Europe, the Pitted Ware culture [6]. Intriguingly, these late hunter-gatherers existed in parallel to early farmers for more than a millennium before they vanished some 4,000 years ago [7, 8]. The prolonged coexistence of the two cultures in Scandinavia has been cited as an argument against population replacement between the Mesolithic and the present [7, 8]. Through analysis of DNA extracted from ancient Scandinavian human remains, we show that people of the Pitted Ware culture were not the direct ancestors of modern Scandinavians (including the Saami people of northern Scandinavia) but are more closely related to contemporary populations of the eastern Baltic region. Our findings support hypotheses arising from archaeological analyses that propose a Neolithic or post-Neolithic population replacement in Scandinavia [7]. Furthermore, our data are consistent with the view that the eastern Baltic represents a genetic refugia for some of the European hunter-gatherer populations.

  14. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox.

    PubMed

    Dalén, Love; Nyström, Veronica; Valdiosera, Cristina; Germonpré, Mietje; Sablin, Mikhail; Turner, Elaine; Angerbjörn, Anders; Arsuaga, Juan Luis; Götherström, Anders

    2007-04-17

    How species respond to an increased availability of habitat, for example at the end of the last glaciation, has been well established. In contrast, little is known about the opposite process, when the amount of habitat decreases. The hypothesis of habitat tracking predicts that species should be able to track both increases and decreases in habitat availability. The alternative hypothesis is that populations outside refugia become extinct during periods of unsuitable climate. To test these hypotheses, we used ancient DNA techniques to examine genetic variation in the arctic fox (Alopex lagopus) through an expansion/contraction cycle. The results show that the arctic fox in midlatitude Europe became extinct at the end of the Pleistocene and did not track the habitat when it shifted to the north. Instead, a high genetic similarity between the extant populations in Scandinavia and Siberia suggests an eastern origin for the Scandinavian population at the end of the last glaciation. These results provide new insights into how species respond to climate change, since they suggest that populations are unable to track decreases in habitat avaliability. This implies that arctic species may be particularly vulnerable to increases in global temperatures.

  15. A conditional likelihood is required to estimate the selection coefficient in ancient DNA

    PubMed Central

    Valleriani, Angelo

    2016-01-01

    Time-series of allele frequencies are a useful and unique set of data to determine the strength of natural selection on the background of genetic drift. Technically, the selection coefficient is estimated by means of a likelihood function built under the hypothesis that the available trajectory spans a sufficiently large portion of the fitness landscape. Especially for ancient DNA, however, often only one single such trajectories is available and the coverage of the fitness landscape is very limited. In fact, one single trajectory is more representative of a process conditioned both in the initial and in the final condition than of a process free to visit the available fitness landscape. Based on two models of population genetics, here we show how to build a likelihood function for the selection coefficient that takes the statistical peculiarity of single trajectories into account. We show that this conditional likelihood delivers a precise estimate of the selection coefficient also when allele frequencies are close to fixation whereas the unconditioned likelihood fails. Finally, we discuss the fact that the traditional, unconditioned likelihood always delivers an answer, which is often unfalsifiable and appears reasonable also when it is not correct. PMID:27527811

  16. A conditional likelihood is required to estimate the selection coefficient in ancient DNA

    NASA Astrophysics Data System (ADS)

    Valleriani, Angelo

    2016-08-01

    Time-series of allele frequencies are a useful and unique set of data to determine the strength of natural selection on the background of genetic drift. Technically, the selection coefficient is estimated by means of a likelihood function built under the hypothesis that the available trajectory spans a sufficiently large portion of the fitness landscape. Especially for ancient DNA, however, often only one single such trajectories is available and the coverage of the fitness landscape is very limited. In fact, one single trajectory is more representative of a process conditioned both in the initial and in the final condition than of a process free to visit the available fitness landscape. Based on two models of population genetics, here we show how to build a likelihood function for the selection coefficient that takes the statistical peculiarity of single trajectories into account. We show that this conditional likelihood delivers a precise estimate of the selection coefficient also when allele frequencies are close to fixation whereas the unconditioned likelihood fails. Finally, we discuss the fact that the traditional, unconditioned likelihood always delivers an answer, which is often unfalsifiable and appears reasonable also when it is not correct.

  17. An ancient DNA test of a founder effect in Native American ABO blood group frequencies.

    PubMed

    Halverson, Melissa S; Bolnick, Deborah A

    2008-11-01

    Anthropologists have assumed that reduced genetic diversity in extant Native Americans is due to a founder effect that occurred during the initial peopling of the Americas. However, low diversity could also be the result of subsequent historical events, such as the population decline following European contact. In this study, we show that autosomal DNA from ancient Native American skeletal remains can be used to investigate the low level of ABO blood group diversity in the Americas. Extant Native Americans exhibit a high frequency of blood type O, which may reflect a founder effect, genetic drift associated with the historical population decline, or natural selection in response to the smallpox epidemics that occurred following European contact. To help distinguish between these possibilities, we determined the ABO genotypes of 15 precontact individuals from eastern North America. The precontact ABO frequencies were not significantly different from those observed in extant Native Americans from the same region, but they did differ significantly from the ABO frequencies in extant Siberian populations. Studies of other precontact populations are needed to better test the three hypotheses for low ABO blood group diversity in the Americas, but our findings are most consistent with the hypothesis of a founder effect during the initial settlement of this continent.

  18. Ancient DNA Resolves Identity and Phylogeny of New Zealand's Extinct and Living Quail (Coturnix sp.)

    PubMed Central

    Seabrook-Davison, Mark; Huynen, Leon; Lambert, David M.; Brunton, Dianne H.

    2009-01-01

    Background The New Zealand quail, Coturnix novaezealandiae, was widespread throughout New Zealand until its rapid extinction in the 1870's. To date, confusion continues to exist concerning the identity of C. novaezealandiae and its phylogenetic relationship to Coturnix species in neighbouring Australia, two of which, C. ypsilophora and C. pectoralis, were introduced into New Zealand as game birds. The Australian brown quail, C. ypsilophora, was the only species thought to establish with current populations distributed mainly in the northern part of the North Island of New Zealand. Owing to the similarities between C. ypsilophora, C. pectoralis, and C. novaezealandiae, uncertainty has arisen over whether the New Zealand quail is indeed extinct, with suggestions that remnant populations of C. novaezealandiae may have survived on offshore islands. Methodology/Principal Findings Using fresh and historical samples of Coturnix sp. from New Zealand and Australia, DNA analysis of selected mitochondrial regions was carried out to determine phylogenetic relationships and species status. Results show that Coturnix sp. specimens from the New Zealand mainland and offshore island Tiritiri Matangi are not the New Zealand quail but are genetically identical to C. ypsilophora from Australia and can be classified as the same species. Furthermore, cytochrome b and COI barcoding analysis of the New Zealand quail and Australia's C. pectoralis, often confused in museum collections, show that they are indeed separate species that diverged approximately 5 million years ago (mya). Gross morphological analysis of these birds suggests a parallel loss of sustained flight with very little change in other phenotypic characters such as plumage or skeletal structure. Conclusion/Significance Ancient DNA has proved invaluable for the detailed analysis and identification of extinct and morphologically cryptic taxa such as that of quail and can provide insights into the timing of evolutionary changes

  19. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand.

    PubMed

    Wilmshurst, Janet M; Moar, Neville T; Wood, Jamie R; Bellingham, Peter J; Findlater, Amy M; Robinson, James J; Stone, Clive

    2014-02-01

    Islands play a key role globally in the conservation of endemic species. Many island reserves have been highly modified since human colonization, and their restoration and management usually occur without knowledge of their prehuman state. However, conservation paleoecology is increasingly being recognized as a tool that can help to inform both restoration and conservation of island reserves by providing prehuman vegetation baselines. Many of New Zealand's mammal-free offshore islands are foci for biological diversity conservation and, like many islands in the Polynesian region, were deforested following initial human settlement. Therefore, their current restoration, replanting, and management are guided either by historic vegetation descriptions or the occurrence of species on forested islands. We analyzed pollen and ancient DNA in soil cores from an offshore island in northern New Zealand. The result was a 2000-year record of vegetation change that began >1200 years before human settlement and spanned 550 years of human occupation and 180 years of forest succession since human occupation ceased. Between prehuman and contemporary forests there was nearly a complete species turnover including the extirpation of a dominant conifer and a palm tree. The podocarp-dominated forests were replaced by a native but novel angiosperm-dominated forest. There is no modern analog of the prehuman forests on any northern New Zealand island, and those islands that are forested are dominated by angiosperms which are assumed to be climax forests. The pollen and DNA evidence for conifer- and palm-rich forests in the prehuman era challenge this climax forest assumption. Prehuman vegetation records can thus help to inform future restoration of degraded offshore islands by informing the likely rate and direction of successional change; helping to determine whether natural rates of succession are preferable to more costly replanting programs; and providing past species lists if

  20. Investigating kinship of Neolithic post-LBK human remains from Krusza Zamkowa, Poland using ancient DNA.

    PubMed

    Juras, Anna; Chyleński, Maciej; Krenz-Niedbała, Marta; Malmström, Helena; Ehler, Edvard; Pospieszny, Łukasz; Łukasik, Sylwia; Bednarczyk, Józef; Piontek, Janusz; Jakobsson, Mattias; Dabert, Miroslawa

    2017-01-01

    We applied an interdisciplinary approach to investigate kinship patterns and funerary practices during the middle Neolithic. Genetic studies, radiocarbon dating, and taphonomic analyses were used to examine two grave clusters from Krusza Zamkowa, Poland. To reconstruct kinship and determine biological sex, we extracted DNA from bones and teeth, analyzed mitochondrial genomes and nuclear SNPs using the HID-Ion AmpliSeq™ Identity panel generated on Illumina and Ion Torrent platforms, respectively. We further dated the material (AMS (14)C) and to exclude aquatic radiocarbon reservoir effects, measures of carbon and nitrogen stable isotopes for diet reconstruction were used. We found distinct mitochondrial genomes belonging to haplogroups U5b2a1a, K1c and H3d in the first grave cluster, and excluded maternal kin patterns among the three analyzed individuals. In the second grave cluster one individual belonged to K1a4. However, we could not affiliate the second individual to a certain haplogroup due to the fragmented state of the mitochondrial genome. Although the individuals from the second grave cluster differ at position 6643, we believe that more data is needed to fully resolve this issue. We retrieved between 26 and 77 autosomal SNPs from three of the individuals. Based on kinship estimations, taking into account the allelic dropout distribution, we could not exclude first degree kin relation between the two individuals from the second grave cluster. We could, however, exclude a first degree kinship between these two individuals and an individual from the first grave cluster. Presumably, not only biological kinship, but also social relations played an important role in the funerary practice during this time period. We further conclude that the HID-Ion AmpliSeq™ Identity Panel may prove useful for first degree kin relation studies for samples with good DNA preservation, and that mitochondrial genome capture enrichment is a powerful tool for excluding direct

  1. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries.

    PubMed

    Carpenter, Meredith L; Buenrostro, Jason D; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M Thomas P; Willerslev, Eske; Greenleaf, William J; Bustamante, Carlos D

    2013-11-07

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062-147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217-73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.

  2. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  3. Geochemical Analyses of Macrophytes (Potamogeton sp.) and ancient DNA from Lake Karakul, Tajikistan

    NASA Astrophysics Data System (ADS)

    Heinecke, Liv; Epp, Laura S.; Mischke, Steffen; Reschke, Maria; Stoof-Leichsenring, Kathleen; Rajabov, Ilhomjon; Herzschuh, Ulrike

    2016-04-01

    Mountain ecosystems are very sensitive towards changes in moisture and temperature and therefore most likely to be affected by climate change. To be able to get a closer insight into the alpine system of the Pamir Mountains, a 11.25 m long core was retrieved from the eastern basin of Lake Karakul (3,929 m asl), Tajikistan, in 2012. In order to gain insights into changes in the paleo-productivity of Lake Karakul over the last 29 cal kyrs BP, we investigate temporal gradients of elemental content (TOC, TN) and stable isotopes (δ13C, δ15N) of macrophyte remains (Potamogeton sp.) and plant communities obtained from ancient sedimentary DNA along the core. For the geochemical analyses we make use of the ability of submerged macrophytes, such as Potamogeton, to use HCO3- for photosynthesis in times of CO2 shortage and implement our results in a transfer function for paleo-productivity inferences. No data are available from 20 to 7 cal kyrs BP as no macrophyte remains are preserved, indicating unfavourable conditions for plant growth at the coring site or poor preservation conditions during this time. Biogeochemical analyses show significant variations from core base until approx. 20 cal kyrs BP with TOCPotamogeton 25-45 %, TNPotamogeton 0.5 % - 1.5 %, δ13CPotamogeton below -9 ‰ and δ15NPotamogeton of below 3.5 ‰ suggesting a cooler climate and reflecting the last glacial maximum. Sediments in the upper 4.5 m (approx. 6.7 cal kyrs BP) are rich in macrophyte remains. TOCPotamogeton and TNPotamogeton values from this part of the core are higher, and an enrichment of heavier isotopes with δ13CPotamogeton up to -7 ‰ and δ15NPotamogeton up to 6 ‰ indicating a higher productivity within the lake due to more favourable conditions for macrophyte growths on the lake floor. We assume shifts towards a warmer climate and changes in lake level as the dominating causes. Ancient sedimentary DNA was extracted from selected sediment slices and a metabarcoding approach (using

  4. Assessment of Species Diversity and Distribution of an Ancient Diatom Lineage Using a DNA Metabarcoding Approach

    PubMed Central

    Nanjappa, Deepak; Audic, Stephane; Romac, Sarah; Kooistra, Wiebe H. C. F.; Zingone, Adriana

    2014-01-01

    Background Continuous efforts to estimate actual diversity and to trace the species distribution and ranges in the natural environments have gone in equal pace with advancements of the technologies in the study of microbial species diversity from microscopic observations to DNA-based barcoding. DNA metabarcoding based on Next Generation Sequencing (NGS) constitutes the latest advancement in these efforts. Here we use NGS data from different sites to investigate the geographic range of six species of the diatom family Leptocylindraceae and to identify possible new taxa within the family. Methodology/Principal Findings We analysed the V4 and V9 regions of the nuclear-encoded SSU rDNA gene region in the NGS database of the European ERA-Biodiversa project BioMarKs, collected in plankton and sediments at six coastal sites in European coastal waters, as well as environmental sequences from the NCBI database. All species known in the family Leptocylindraceae were detected in both datasets, but the much larger Illumina V9 dataset showed a higher species coverage at the various sites than the 454 V4 dataset. Sequences identical or similar to the references of Leptocylindrus aporus, L. convexus, L. danicus/hargravesii and Tenuicylindrus belgicus were found in the Mediterranean Sea, North Atlantic Ocean and Black Sea as well as at locations outside Europe. Instead, sequences identical or close to that of L. minimus were found in the North Atlantic Ocean and the Black Sea but not in the Mediterranean Sea, while sequences belonging to a yet undescribed taxon were encountered only in Oslo Fjord and Baffin Bay. Conclusions/Significance Identification of Leptocylindraceae species in NGS datasets has expanded our knowledge of the species biogeographic distribution and of the overall diversity of this diatom family. Individual species appear to be widespread, but not all of them are found everywhere. Despite the sequencing depth allowed by NGS and the wide geographic area covered by

  5. Handbook of stable strontium

    SciTech Connect

    Skoryna, S.C.

    1981-01-01

    This book presents information on the following topics: chemistry of strontium; biogeochemistry of strontium; uptake of stable strontium by plants and effects on plant growth; divalent cation-dependent deposits in paramecium; effects of strontium ion on the hydrolysis of ATP; stronium ions and membranes - screening versus binding at charged surfaces; mitochondrial granules in the liver of rats kept on stable strontium supplementation; divalent cations and regulation of cyclic nucleotides in nervous systems; strontium as the substitute for calcium in the excitation-contraction coupling of crayfish muscle fibers; hemodynamic effects of strontium in the dog; some mechanical characteristics of strontium-mediated contractions in heart muscle; effects of calcium, magnesium, and strontium on drug-receptor interactions; strontium and histamine secretion; and effects of strontium in human dental enamel.

  6. Novel DNA Extraction Method Unveiled the Ancient Hot Deep Biosphere Concealed in Terrestrial Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Kouduka, M.; Suko, T.; Okuzawa, K.; Fukuda, A.; Nanba, K.; Yamamoto, M.; Sakata, S.; Ito, K.; Suzuki, Y.

    2009-12-01

    thermophilic bacteria and the transformation of silica minerals in the deep subsurface. As intensive erosion is unlikely around the drilling site, a short period of hydrothermal activities rather than long-term burial at great depth caused high temperature conditions, which might explain the lack of maturity in hydrocarbon. A novel DNA-based approach coupled mineralogical and organic geochemical analyses has the potential to reconstruct ancient biogeochemical processes mediated in the deep subsurface as well as geothermal history. This study was supported by grants from the Nuclear and Industrial Safety Agency (NISA) and Japan Nuclear Energy Safety Organization (JNES).

  7. Ancient DNA analysis of the extinct North American flat-headed peccary (Platygonus compressus).

    PubMed

    Perry, Tahlia; van Loenen, Ayla L; Heiniger, Holly; Lee, Carol; Gongora, Jaime; Cooper, Alan; Mitchell, Kieren J

    2017-03-28

    The geographical range of extant peccaries extends from the southwestern United States through Central America and into northern Argentina. However, from the Miocene until the Pleistocene now-extinct peccary species inhabited the entirety of North America. Relationships among the living and extinct species have long been contentious. Similarly, how and when peccaries moved from North to South America is unclear. The North American flat-headed peccary (Platygonus compressus) became extinct at the end of the Pleistocene and is one of the most abundant subfossil taxa found in North America, yet despite this extensive fossil record its phylogenetic position has not been resolved. This study is the first to present DNA data from the flat-headed peccary and full mitochondrial genome sequences of all the extant peccary species. We performed a molecular phylogenetic analysis to determine the relationships among ancient and extant peccary species. Our results suggested that the flat-headed peccary is sister-taxon to a clade comprising the extant peccary species. Divergence date estimates from our molecular dating analyses suggest that if extant peccary diversification occurred in South America then their common ancestor must have dispersed from North America to South America well before the establishment of the Isthmus of Panama. We also investigated the genetic diversity of the flat-headed peccary by performing a preliminary population study on specimens from Sheriden Cave, Ohio. Flat-headed peccaries from Sheriden Cave appear to be genetically diverse and show no signature of population decline prior to extinction. Including additional extinct Pleistocene peccary species in future phylogenetic analyses will further clarify peccary evolution.

  8. Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones.

    PubMed

    Lacan, Marie; Thèves, Catherine; Amory, Sylvain; Keyser, Christine; Crubézy, Eric; Salles, Jean-Pierre; Ludes, Bertrand; Telmon, Norbert

    2009-03-01

    The aim of this study was to demonstrate the presence of the A189G age-related point mutation on DNA extracted from bone. For this, a peptide nucleic acid (PNA)/DNA sequencing method which can determine an age threshold for the appearance of the mutation was used. Initially, work was done in muscle tissue in order to evaluate the sensitivity of the technique and afterwards in bone samples from the same individuals. This method was also applied to ancient bones from six well-preserved skeletal remains. The mutation was invariably found in muscle, and at a rate of up to 20% in individuals over 60 years old. In modern bones, the mutation was detected in individuals aged 38 years old or more, at a rate of up to 1%, but its occurrence was not systematic (only four out of ten of the individuals over 50 years old carried the heteroplasmy). For ancient bones, the mutation was also found in the oldest individuals according to osteologic markers. The study of this type of age-related mutation and a more complete understanding of its manifestation has potentially useful applications. Combined with traditional age markers, it could improve identification accuracy in forensic cases or in anthropological studies of ancient populations.

  9. Ancient DNA analyses of museum specimens from selected Presbytis (primate: Colobinae) based on partial Cyt b sequences

    NASA Astrophysics Data System (ADS)

    Aifat, N. R.; Yaakop, S.; Md-Zain, B. M.

    2016-11-01

    The IUCN Red List of Threatened Species has categorized Malaysian primates from being data deficient to critically endanger. Thus, ancient DNA analyses hold great potential to understand phylogeny, phylogeography and population history of extinct and extant species. Museum samples are one of the alternatives to provide important sources of biological materials for a large proportion of ancient DNA studies. In this study, a total of six museum skin samples from species Presbytis hosei (4 samples) and Presbytis frontata (2 samples), aged between 43 and 124 years old were extracted to obtain the DNA. Extraction was done by using QIAGEN QIAamp DNA Investigator Kit and the ability of this kit to extract museum skin samples was tested by amplification of partial Cyt b sequence using species-specific designed primer. Two primer pairs were designed specifically for P. hosei and P. frontata, respectively. These primer pairs proved to be efficient in amplifying 200bp of the targeted species in the optimized PCR conditions. The performance of the sequences were tested to determine genetic distance of genus Presbytis in Malaysia. From the analyses, P. hosei is closely related to P. chrysomelas and P. frontata with the value of 0.095 and 0.106, respectively. Cyt b gave a clear data in determining relationships among Bornean species. Thus, with the optimized condition, museum specimens can be used for molecular systematic studies of the Malaysian primates.

  10. Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania.

    PubMed

    Evin, Allowen; Flink, Linus Girdland; Bălăşescu, Adrian; Popovici, Dragomir; Andreescu, Radian; Bailey, Douglas; Mirea, Pavel; Lazăr, Cătălin; Boroneanţ, Adina; Bonsall, Clive; Vidarsdottir, Una Strand; Brehard, Stéphanie; Tresset, Anne; Cucchi, Thomas; Larson, Greger; Dobney, Keith

    2015-01-19

    Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large 'domestic shape' specimens were present from the outset of the Romanian Neolithic (6100-5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory.

  11. DNA content and distribution in ancient feathers and potential to reconstruct the plumage of extinct avian taxa

    PubMed Central

    Rawlence, Nicolas J.; Wood, Jamie R.; Armstrong, Kyle N.; Cooper, Alan

    2009-01-01

    Feathers are known to contain amplifiable DNA at their base (calamus) and have provided an important genetic source from museum specimens. However, feathers in subfossil deposits generally only preserve the upper shaft and feather ‘vane’ which are thought to be unsuitable for DNA analysis. We analyse subfossil moa feathers from Holocene New Zealand rockshelter sites and demonstrate that both ancient DNA and plumage information can be recovered from their upper portion, allowing species identification and a means to reconstruct the appearance of extinct taxa. These ancient DNA sequences indicate that the distal portions of feathers are an untapped resource for studies of museum, palaeontological and modern specimens. We investigate the potential to reconstruct the plumage of pre-historically extinct avian taxa using subfossil remains, rather than assuming morphological uniformity with closely related extant taxa. To test the notion of colour persistence in subfossil feathers, we perform digital comparisons of feathers of the red-crowned parakeet (Cyanoramphus novaezelandiae novaezelandiae) excavated from the same horizons as the moa feathers, with modern samples. The results suggest that the coloration of the moa feathers is authentic, and computer software is used to perform plumage reconstructions of moa based on subfossil remains. PMID:19570784

  12. Histological analysis and ancient DNA amplification of human bone remains found in caius iulius polybius house in pompeii.

    PubMed

    Cipollaro, M; Di Bernado, G; Forte, A; Galano, G; De Masi, L; Galderisi, U; Guarino, F M; Angelini, F; Cascino, A

    1999-09-01

    Thirteen skeletons found in the Caius Iulius Polybius house, which has been the object of intensive study since its discovery in Pompeii 250 years ago, have provided an opportunity to study either bone diagenesis by histological investigation or ancient DNA by polymerase chain reaction analysis. DNA analysis was done by amplifying both X- and Y-chromosomes amelogenin loci and Y-specific alphoid repeat locus. The von Willebrand factor (vWF) microsatellite locus on chromosome 12 was also analyzed for personal identification in two individuals showing alleles with 10/11 and 12/12 TCTA repeats, respectively. Technical problems were the scarcity of DNA content from osteocytes, DNA molecule fragmentation, microbial contamination which change bone structure, contaminating human DNA which results from mishandling, and frequent presence of Taq DNA polymerase inhibiting molecules like polyphenols and heavy metals. The results suggest that the remains contain endogenous human DNA that can be amplified and analyzed. The amplifiability of DNA corresponds to the bone preservation and dynamics of the burial conditions subsequent to the 79 A.D. eruption.

  13. Absence of Ancient DNA in Sub-Fossil Insect Inclusions Preserved in ‘Anthropocene’ Colombian Copal

    PubMed Central

    Penney, David; Wadsworth, Caroline; Fox, Graeme; Kennedy, Sandra L.; Preziosi, Richard F.; Brown, Terence A.

    2013-01-01

    Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in ‘Anthropocene’ Colombian copal, dated to ‘post-Bomb’ and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal. PMID:24039876

  14. Pre-Columbian population dynamics in coastal southern Peru: A diachronic investigation of mtDNA patterns in the Palpa region by ancient DNA analysis.

    PubMed

    Fehren-Schmitz, Lars; Reindel, Markus; Cagigao, Elsa Tomasto; Hummel, Susanne; Herrmann, Bernd

    2010-02-01

    Alternative models have been proposed to explain the formation and decline of the south Peruvian Nasca culture, ranging from migration or invasion to autochthonous development and ecological crisis. To reveal to what extent population dynamic processes accounted for cultural development in the Nasca mainland, or were influenced by them, we analyzed ancient mitochondrial DNA of 218 individuals, originating from chronologically successive archaeological sites in the Palpa region, the Paracas Peninsula, and the Andean highlands in southern Peru. The sampling strategy allowed a diachronic analysis in a time frame from approximately 800 BC to 800 AD. Mitochondrial coding region polymorphisms were successfully analyzed and replicated for 130 individuals and control region sequences (np 16021-16408) for 104 individuals to determine Native American mitochondrial DNA haplogroups and haplotypes. The results were compared with ancient and contemporary Peruvian populations to reveal genetic relations of the archaeological samples. Frequency data and statistics show clear proximity of the Nasca populations to the populations of the preceding Paracas culture from Palpa and the Peninsula, and suggest, along with archaeological data, that the Nasca culture developed autochthonously in the Rio Grande drainage. Furthermore, the influence of changes in socioeconomic complexity in the Palpa area on the genetic diversity of the local population could be observed. In all, a strong genetic affinity between pre-Columbian coastal populations from southern Peru could be determined, together with a significant differentiation from ancient highland and all present-day Peruvian reference populations, best shown in the differential distribution of mitochondrial haplogroups.

  15. Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics

    PubMed Central

    Ottoni, Claudio; Girdland Flink, Linus; Evin, Allowen; Geörg, Christina; De Cupere, Bea; Van Neer, Wim; Bartosiewicz, László; Linderholm, Anna; Barnett, Ross; Peters, Joris; Decorte, Ronny; Waelkens, Marc; Vanderheyden, Nancy; Ricaut, François-Xavier; Çakırlar, Canan; Çevik, Özlem; Hoelzel, A. Rus; Mashkour, Marjan; Mohaseb Karimlu, Azadeh Fatemeh; Sheikhi Seno, Shiva; Daujat, Julie; Brock, Fiona; Pinhasi, Ron; Hongo, Hitomi; Perez-Enciso, Miguel; Rasmussen, Morten; Frantz, Laurent; Megens, Hendrik-Jan; Crooijmans, Richard; Groenen, Martien; Arbuckle, Benjamin; Benecke, Nobert; Strand Vidarsdottir, Una; Burger, Joachim; Cucchi, Thomas; Dobney, Keith; Larson, Greger

    2013-01-01

    Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages. PMID:23180578

  16. Ancient DNA from the Schild site in Illinois: Implications for the Mississippian transition in the Lower Illinois River Valley.

    PubMed

    Reynolds, Austin W; Raff, Jennifer A; Bolnick, Deborah A; Cook, Della C; Kaestle, Frederika A

    2015-03-01

    Archaeologists have long debated whether rapid cultural change in the archaeological record is due to in situ developments, migration of a new group into the region, or the spread of new cultural practices into an area through existing social networks, with the local peoples adopting and adapting practices from elsewhere as they see fit (acculturation). Researchers have suggested each of these explanations for the major cultural transition that occurred at the beginning of the Mississippian period (AD 1050) across eastern North America. In this study, we used ancient DNA to test competing hypotheses of migration and acculturation for the culture change that occurred between the Late Woodland (AD 400-1050) and Mississippian (AD 1050-1500) periods in the Lower Illinois River Valley. We obtained sequences of the first hypervariable segment of the mitochondrial genome (mtDNA) from 39 individuals (17 Late Woodland, 22 Mississippian) interred in the Schild cemetery in western Illinois, and compared these lineages to ancient mtDNA lineages present at other sites in the region. Computer simulations were used to test a null hypothesis of population continuity from Late Woodland to Mississippian times at the Schild site and to investigate the possibility of gene flow from elsewhere in the region. Our results suggest that the Late Woodland to Mississippian cultural transition at Schild was not due to an influx of people from elsewhere. Instead, it is more likely that the transition to Mississippian cultural practices at this site was due to a process of acculturation.

  17. Ancient DNA Reveals Prehistoric Gene-Flow from Siberia in the Complex Human Population History of North East Europe

    PubMed Central

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across

  18. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    PubMed

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across

  19. First systematic CGH-based analyses of ancient DNA samples of malformed fetuses preserved in the Meckel Anatomical Collection in Halle/Saale (Germany).

    PubMed

    Tönnies, H; Gerlach, A; Klunker, R; Schultka, R; Göbbel, L

    2005-03-01

    We present the first data on our comparative genomic hybridization (CGH)-based strategy for the analysis of ancient DNA (aDNA) samples extracted from fetuses preserved in the Meckel Anatomical Collection in Halle, Germany. The collection contains numerous differently fixed ancient samples of fetal malformations collected from the middle of the 18th to the early 19th century. The main objective of this study is to establish a "standard" aDNA extraction and amplification protocol as a prerequisite for successful CGH analyses to detect or exclude chromosomal imbalances possibly causative for the malformations described for the fetuses.

  20. Mitochondrial haplogroup C in ancient mitochondrial DNA from Ukraine extends the presence of East Eurasian genetic lineages in Neolithic Central and Eastern Europe.

    PubMed

    Nikitin, Alexey G; Newton, Jeremy R; Potekhina, Inna D

    2012-09-01

    Recent studies of ancient mitochondrial DNA (mtDNA) lineages have revealed the presence of East Eurasian mtDNA haplogroups in the Central European Neolithic. Here we report the finding of East Eurasian lineages in ancient mtDNA from two Neolithic cemeteries of the North Pontic Region (NPR) in Ukraine. In our study, comprehensive haplotyping information was obtained for 7 out of 18 specimens. Although the majority of identified mtDNA haplogroups belonged to the traditional West Eurasian lineages of H and U, three specimens were determined to belong to the lineages of mtDNA haplogroup C. This find extends the presence of East Eurasian lineages in Neolithic Europe from the Carpathian Mountains to the northern shores of the Black Sea and provides the first genetic account of Neolithic mtDNA lineages from the NPR.

  1. HLTF’s Ancient HIRAN Domain Binds 3′-DNA Ends to Drive Replication Fork Reversal

    PubMed Central

    Kile, Andrew C.; Chavez, Diana A.; Bacal, Julien; Eldirany, Sherif; Korzhnev, Dmitry M.; Bezsonova, Irina; Eichman, Brandt F.; Cimprich, Karlene A.

    2015-01-01

    Summary Stalled replication forks are a critical problem for the cell because they can lead to complex genome rearrangements that underlie cell death and disease. Processes such as DNA damage tolerance and replication fork reversal protect stalled forks from these events. A central mediator of these DNA damage responses in humans is the Rad5-related DNA translocase, HLTF. Here, we present biochemical and structural evidence that the HIRAN domain, an ancient and conserved domain found in HLTF and other DNA processing proteins, is a modified oligonucleotide/oligosaccharide (OB) fold that binds to 3′-ssDNA ends. We demonstrate that the HIRAN domain promotes HLTF-dependent fork reversal in vitro, through its interaction with 3′-ssDNA ends found at forks. Finally, we show that HLTF restrains replication fork progression in cells in a HIRAN-dependent manner. These findings establish a mechanism of HLTF-mediated fork reversal and provide insight into the requirement for distinct fork remodeling activities in the cell. PMID:26051180

  2. Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the "Ancient Asexual" Bdelloid Rotifer Philodina roseola.

    PubMed

    Bininda-Emonds, Olaf R P; Hinz, Claus; Ahlrichs, Wilko H

    2016-09-06

    Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of "ancient asexuals".

  3. Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the “Ancient Asexual” Bdelloid Rotifer Philodina roseola

    PubMed Central

    Bininda-Emonds, Olaf R. P.; Hinz, Claus; Ahlrichs, Wilko H.

    2016-01-01

    Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of “ancient asexuals”. PMID:27608044

  4. Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial.

    PubMed

    Pacioni, Carlo; Hunt, Helen; Allentoft, Morten E; Vaughan, Timothy G; Wayne, Adrian F; Baynes, Alexander; Haouchar, Dalal; Dortch, Joe; Bunce, Michael

    2015-12-01

    The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (n = 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000-4000 years in association with a dramatic population decline. In addition, we obtained near-complete 11-loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of 'new' microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current-day conservation strategies.

  5. Low Mitochondrial DNA Diversity in an Ancient Population from China: Insight into Social Organization at the Fujia Site.

    PubMed

    Dong, Yu; Li, Chunxiang; Luan, Fengshi; Li, Zhenguang; Li, Hongjie; Cui, Yinqiu; Zhou, Hui; Malhi, Ripan S

    2015-01-01

    To gain insight into the social organization of a population associated with the Dawenkou period, we performed ancient DNA analysis of 18 individuals from human remains from the Fujia site in Shandong Province, China. Directly radiocarbon dated to 4800-4500 cal BP, the Fujia site is assumed to be associated with a transitional phase from matrilineal clans to patrilineal monogamous families. Our results reveal a low mitochondrial DNA diversity from the site and population. Combined with Y chromosome data, the pattern observed at the Fujia site is most consistent with a matrilineal community. The patterns also suggest that the bond of marriage was de-emphasized compared with the bonds of descent at Fujia.

  6. Ancient DNA Analyses Reveal Contrasting Phylogeographic Patterns amongst Kiwi (Apteryx spp.) and a Recently Extinct Lineage of Spotted Kiwi

    PubMed Central

    Shepherd, Lara D.; Worthy, Trevor H.; Tennyson, Alan J. D.; Scofield, R. Paul; Ramstad, Kristina M.; Lambert, David M.

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii) formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species) survived on the South Island mainland until more recently than previously thought. PMID:22876319

  7. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp.) and a recently extinct lineage of spotted kiwi.

    PubMed

    Shepherd, Lara D; Worthy, Trevor H; Tennyson, Alan J D; Scofield, R Paul; Ramstad, Kristina M; Lambert, David M

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii) formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species) survived on the South Island mainland until more recently than previously thought.

  8. The recovery of ancient DNA from Dasypus bellus provides new possibilities for investigating late Pleistocene mammal response to climate change

    NASA Astrophysics Data System (ADS)

    Letts, Brandon; Shapiro, Beth

    2010-05-01

    Dasypus bellus, the 'beautiful armadillo,' is well known as a casualty of the Pleistocene megafaunal mass extinction event. Appearing in the fossil record about 2.5 Mya, D. bellus was widespread throughout the mid to southern United States and Mexico until it went extinct by about 10 kya. It was replaced by D. novemcinctus, the nine-banded armadillo, which is morphologically identical but smaller. The exact taxonomic status of D. bellus and its phylogenetic relationship with D. novemcinctus has been a subject of debate. In particular, it remains unresolved whether D. bellus was more closely related to North American than South American D. novemcinctus. To address this, we extracted and sequenced fragments of ancient mitochondrial DNA from surprisingly well-preserved remains of D. bellus recovered from Mefford Cave in Florida. Our results reveal a surprisingly close relationship between the extinct D. bellus and North American D. novemcinctus. Although southern climates have been considered inhospitable for the preservation of ancient DNA, thousands of bones per individual and the propensity of the armadillo to seek out shelter in caves makes preservation more likely than for other organisms. The armadillo may therefore make an excellent proxy organism for investigating the influence of climate change on animal populations south of the cold permafrost regions.

  9. Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage

    PubMed Central

    Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G.; de-la-Rua, Concepcion

    2015-01-01

    The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations. PMID:26053041

  10. Ancient DNA from South-East Europe Reveals Different Events during Early and Middle Neolithic Influencing the European Genetic Heritage.

    PubMed

    Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G; de-la-Rua, Concepcion

    2015-01-01

    The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.

  11. Mitochondrial DNA and Y-chromosomal diversity in ancient populations of domestic sheep (Ovis aries) in Finland: comparison with contemporary sheep breeds

    PubMed Central

    2013-01-01

    Background Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5’-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. Results A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Conclusions Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic

  12. Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon-date and calibration error into Bayesian phylogenetic analyses of ancient DNA.

    PubMed

    Molak, Martyna; Suchard, Marc A; Ho, Simon Y W; Beilman, David W; Shapiro, Beth

    2015-01-01

    Studies of DNA from ancient samples provide a valuable opportunity to gain insight into past evolutionary and demographic processes. Bayesian phylogenetic methods can estimate evolutionary rates and timescales from ancient DNA sequences, with the ages of the samples acting as calibrations for the molecular clock. Sample ages are often estimated using radiocarbon dating, but the associated measurement error is rarely taken into account. In addition, the total uncertainty quantified by converting radiocarbon dates to calendar dates is typically ignored. Here, we present a tool for incorporating both of these sources of uncertainty into Bayesian phylogenetic analyses of ancient DNA. This empirical calibrated radiocarbon sampler (ECRS) integrates the age uncertainty for each ancient sequence over the calibrated probability density function estimated for its radiocarbon date and associated error. We use the ECRS to analyse three ancient DNA data sets. Accounting for radiocarbon-dating and calibration error appeared to have little impact on estimates of evolutionary rates and related parameters for these data sets. However, analyses of other data sets, particularly those with few or only very old radiocarbon dates, might be more sensitive to using artificially precise sample ages and should benefit from use of the ECRS.

  13. All that is gold does not glitter? Age, taxonomy, and ancient plant DNA quality

    PubMed Central

    Choi, JinHee; Lee, HyeJi

    2015-01-01

    More than 600 herbarium samples from four distantly related groups of flowering plants were used for DNA extraction and subsequent measurements of DNA purity and concentration. We did not find any significant relation between DNA purity and the age of the sample. However, DNA yields were different between plant groups studied. We believe that there there should be no reservations about “old” samples if the goal is to extract more DNA of better purity. We argue that the older herbarium samples are the mine for the future DNA studies, and have the value not less than the “fresh” specimens. PMID:26244108

  14. Genetic history of Southeast Asian populations as revealed by ancient and modern human mitochondrial DNA analysis.

    PubMed

    Lertrit, Patcharee; Poolsuwan, Samerchai; Thosarat, Rachanie; Sanpachudayan, Thitima; Boonyarit, Hathaichanoke; Chinpaisal, Chatchai; Suktitipat, Bhoom

    2008-12-01

    The 360 base-pair fragment in HVS-1 of the mitochondrial genome were determined from ancient human remains excavated at Noen U-loke and Ban Lum-Khao, two Bronze and Iron Age archaeological sites in Northeastern Thailand, radio-carbon dated to circa 3,500-1,500 years BP and 3,200-2,400 years BP, respectively. These two neighboring populations were parts of early agricultural communities prevailing in northeastern Thailand from the fourth millennium BP onwards. The nucleotide sequences of these ancient samples were compared with the sequences of modern samples from various ethnic populations of East and Southeast Asia, encompassing four major linguistic affiliations (Altaic, Sino-Tibetan, Tai-Kadai, and Austroasiatic), to investigate the genetic relationships and history among them. The two ancient samples were most closely related to each other, and next most closely related to the Chao-Bon, an Austroasiatic-speaking group living near the archaeological sites, suggesting that the genetic continuum may have persisted since prehistoric times in situ among the native, perhaps Austroasiatic-speaking population. Tai-Kadai groups formed close affinities among themselves, with a tendency to be more closely related to other Southeast Asian populations than to populations from further north. The Tai-Kadai groups were relatively distant from all groups that have presumably been in Southeast Asia for longer-that is, the two ancient groups and the Austroasiatic-speaking groups, with the exception of the Khmer group. This finding is compatible with the known history of the Thais: their late arrival in Southeast Asia from southern China after the 10th-11th century AD, followed by a period of subjugation under the Khmers.

  15. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    PubMed Central

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  16. Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies.

    PubMed

    Higgins, Denice; Rohrlach, Adam B; Kaidonis, John; Townsend, Grant; Austin, Jeremy J

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Furthermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  17. Ancient DNA microsatellite analyses of the extinct New Zealand giant moa (Dinornis robustus) identify relatives within a single fossil site

    PubMed Central

    Allentoft, M E; Heller, R; Holdaway, R N; Bunce, M

    2015-01-01

    By analysing ancient DNA (aDNA) from 74 14C-dated individuals of the extinct South Island giant moa (Dinornis robustus) of New Zealand, we identified four dyads of closely related adult females. Although our total sample included bones from four fossil deposits located within a 10 km radius, these eight individuals had all been excavated from the same locality. Indications of kinship were based on high pairwise genetic relatedness (rXY) in six microsatellite markers genotyped from aDNA, coupled with overlapping radiocarbon ages. The observed rXY values in the four dyads exceeded a conservative cutoff value for potential relatives obtained from simulated data. In three of the four dyads, the kinship was further supported by observing shared and rare mitochondrial haplotypes. Simulations demonstrated that the proportion of observed dyads above the cutoff value was at least 20 times higher than expected in a randomly mating population with temporal sampling, also when introducing population structure in the simulations. We conclude that the results must reflect social structure in the moa population and we discuss the implications for future aDNA research. PMID:26039408

  18. Ancient DNA microsatellite analyses of the extinct New Zealand giant moa (Dinornis robustus) identify relatives within a single fossil site.

    PubMed

    Allentoft, M E; Heller, R; Holdaway, R N; Bunce, M

    2015-12-01

    By analysing ancient DNA (aDNA) from 74 (14)C-dated individuals of the extinct South Island giant moa (Dinornis robustus) of New Zealand, we identified four dyads of closely related adult females. Although our total sample included bones from four fossil deposits located within a 10 km radius, these eight individuals had all been excavated from the same locality. Indications of kinship were based on high pairwise genetic relatedness (rXY) in six microsatellite markers genotyped from aDNA, coupled with overlapping radiocarbon ages. The observed rXY values in the four dyads exceeded a conservative cutoff value for potential relatives obtained from simulated data. In three of the four dyads, the kinship was further supported by observing shared and rare mitochondrial haplotypes. Simulations demonstrated that the proportion of observed dyads above the cutoff value was at least 20 times higher than expected in a randomly mating population with temporal sampling, also when introducing population structure in the simulations. We conclude that the results must reflect social structure in the moa population and we discuss the implications for future aDNA research.

  19. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.

    2016-01-01

    Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.

  20. Genotyping of Capreolus pygargus Fossil DNA from Denisova Cave Reveals Phylogenetic Relationships between Ancient and Modern Populations

    PubMed Central

    Vorobieva, Nadezhda V.; Sherbakov, Dmitry Y.; Druzhkova, Anna S.; Stanyon, Roscoe; Tsybankov, Alexander A.; Vasil'ev, Sergey K.; Shunkov, Mikhail V.; Trifonov, Vladimir A.; Graphodatsky, Alexander S.

    2011-01-01

    Background The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved. Methodology/Principal Findings We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples. Conclusion/Significance Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer

  1. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA

    PubMed Central

    Parducci, Laura; Väliranta, Minna; Salonen, J. Sakari; Ronkainen, Tiina; Matetovici, Irina; Fontana, Sonia L.; Eskola, Tiina; Sarala, Pertti; Suyama, Yoshihisa

    2015-01-01

    We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora. PMID:25487333

  2. Ancient DNA Analysis of the Oldest Canid Species from the Siberian Arctic and Genetic Contribution to the Domestic Dog

    PubMed Central

    Lee, Esther J.; Merriwether, D. Andrew; Kasparov, Alexei K.; Nikolskiy, Pavel A.; Sotnikova, Marina V.; Pavlova, Elena Yu; Pitulko, Vladimir V.

    2015-01-01

    Modern Arctic Siberia provides a wealth of resources for archaeological, geological, and paleontological research to investigate the population dynamics of faunal communities from the Pleistocene, particularly as the faunal material coming from permafrost has proven suitable for genetic studies. In order to examine the history of the Canid species in the Siberian Arctic, we carried out genetic analysis of fourteen canid remains from various sites, including the well-documented Upper Paleolithic Yana RHS and Early Holocene Zhokhov Island sites. Estimated age of samples range from as recent as 1,700 years before present (YBP) to at least 360,000 YBP for the remains of the extinct wolf, Canis cf. variabilis. In order to examine the genetic affinities of ancient Siberian canids species to the domestic dog and modern wolves, we obtained mitochondrial DNA control region sequences and compared them to published ancient and modern canid sequences. The older canid specimens illustrate affinities with pre-domestic dog/wolf lineages while others appear in the major phylogenetic clades of domestic dogs. Our results suggest a European origin of domestic dog may not be conclusive and illustrates an emerging complexity of genetic contribution of regional wolf breeds to the modern Canis gene pool. PMID:26018528

  3. Structure, distribution, and expression of an ancient murine endogenous retroviruslike DNA family.

    PubMed Central

    Obata, M M; Khan, A S

    1988-01-01

    An endogenous retroviruslike DNA, B-26, was cloned from a BALB/c mouse embryo gene library by using a generalized murine leukemia virus DNA probe. Southern blot hybridization and nucleotide sequence analyses indicated that B-26 DNA might be a novel member of the GLN DNA family (A. Itin and E. Keshet, J. Virol. 59:301-307, 1986) which contains murine leukemia virus-related pol and env sequences. Northern analysis indicated that B-26-related RNAs of 8.4 and 3.0 kilobases were transcribed in thymus, spleen, brain, and liver tissues of 6-week-old BALB/c mice. Images PMID:3172346

  4. Ancient DNA Assessment of Tiger Salamander Population in Yellowstone National Park

    PubMed Central

    McMenamin, Sarah K.; Hadly, Elizabeth A.

    2012-01-01

    Recent data indicates that blotched tiger salamanders (Ambystoma tigrinum melanostictum) in northern regions of Yellowstone National Park are declining due to climate-related habitat changes. In this study, we used ancient and modern mitochondrial haplotype diversity to model the effective size of this amphibian population through recent geological time and to assess past responses to climatic changes in the region. Using subfossils collected from a cave in northern Yellowstone, we analyzed >700 base pairs of mitochondrial sequence from 16 samples ranging in age from 100 to 3300 years old and found that all shared an identical haplotype. Although mitochondrial diversity was extremely low within the living population, we still were able to detect geographic subdivision within the local area. Using serial coalescent modelling with Bayesian priors from both modern and ancient genetic data we simulated a range of probable population sizes and mutation rates through time. Our simulations suggest that regional mitochondrial diversity has remained relatively constant even through climatic fluctuations of recent millennia. PMID:22427878

  5. Ancient DNA assessment of tiger salamander population in Yellowstone National Park.

    PubMed

    McMenamin, Sarah K; Hadly, Elizabeth A

    2012-01-01

    Recent data indicates that blotched tiger salamanders (Ambystoma tigrinum melanostictum) in northern regions of Yellowstone National Park are declining due to climate-related habitat changes. In this study, we used ancient and modern mitochondrial haplotype diversity to model the effective size of this amphibian population through recent geological time and to assess past responses to climatic changes in the region. Using subfossils collected from a cave in northern Yellowstone, we analyzed >700 base pairs of mitochondrial sequence from 16 samples ranging in age from 100 to 3300 years old and found that all shared an identical haplotype. Although mitochondrial diversity was extremely low within the living population, we still were able to detect geographic subdivision within the local area. Using serial coalescent modelling with Bayesian priors from both modern and ancient genetic data we simulated a range of probable population sizes and mutation rates through time. Our simulations suggest that regional mitochondrial diversity has remained relatively constant even through climatic fluctuations of recent millennia.

  6. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family.

    PubMed

    Preston, G M; Agre, P

    1991-12-15

    CHIP28 is a 28-kDa integral membrane protein with similarities to membrane channels and is found in erythrocytes and renal tubules. A cDNA for CHIP28 was isolated from human fetal liver cDNA template by a three-step polymerase chain reaction (PCR) cloning strategy, starting with degenerate oligonucleotide primers corresponding to the N-terminal amino acid sequence determined from purified CHIP28 protein. Using the third-step PCR product as a probe, we isolated a recombinant from a human bone marrow cDNA library. The combined sequence of the PCR products and bone marrow cDNA contains 38 base pairs of 5' untranslated nucleotide sequence, an 807-bp open reading frame, and approximately 2 kilobases of 3' untranslated sequence containing a polyadenylation signal. This corresponds to the 3.1-kilobase transcript identified by RNA blot-hybridization analysis. Authenticity of the deduced amino acid sequence of the CHIP28 protein C terminus was confirmed by expression and immunoblotting. Analysis of the deduced amino acid sequence suggests that CHIP28 protein contains six bilayer-spanning domains, two exofacial potential N-glycosylation sites, and intracellular N and C termini. Search of the DNA sequence data base revealed a strong homology with the major intrinsic protein of bovine lens, which is the prototype of an ancient but recently recognized family of membrane channels. These proteins are believed to form channels permeable to water and possibly other small molecules. CHIP28 shares homology with all known members of this channel family, and it is speculated that CHIP28 has a similar function.

  7. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell.

    PubMed

    Grealy, Alicia; Phillips, Matthew; Miller, Gifford; Gilbert, M Thomas P; Rouillard, Jean-Marie; Lambert, David; Bunce, Michael; Haile, James

    2017-04-01

    Palaeognaths, the sister group of all other living birds (neognaths), were once considered to be vicariant relics from the breakup of the Gondwanan supercontinent. However, recent molecular studies instead argue for dispersal of volant ancestors across marine barriers. Resolving this debate hinges upon accurately reconstructing their evolutionary relationships and dating their divergences, which often relies on phylogenetic information from extinct relatives and nuclear genomes. Mitogenomes from the extinct elephant birds of Madagascar have helped inform the palaeognath phylogeny; however, nuclear information has remained unavailable. Here, we use ancient DNA (aDNA) extracted from fossil eggshell, together with target enrichment and next-generation sequencing techniques, to reconstruct an additional new mitogenome from Aepyornis sp. with 33.5X coverage. We also recover the first elephant bird nuclear aDNA, represented by 12,500bp of exonic information. While we confirm that elephant birds are sister taxa to the kiwi, our data suggests that, like neognaths, palaeognaths underwent an explosive radiation between 69 and 52Ma-well after the break-up of Gondwana, and more rapidly than previously estimated from mitochondrial data alone. These results further support the idea that ratites primarily diversified immediately following the Cretaceous-Palaeogene mass extinction and convergently evolved flightlessness. Our study reinforces the importance of including information from the nuclear genome of extinct taxa for recovering deep evolutionary relationships. Furthermore, with approximately 3% endogenous aDNA retrieved, avian eggshell can be a valuable substrate for recovering high quality aDNA. We suggest that elephant bird whole genome recovery is ultimately achievable, and will provide future insights into the evolution these birds.

  8. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia.

    PubMed

    Drancourt, M; Aboudharam, G; Signoli, M; Dutour, O; Raoult, D

    1998-10-13

    Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague ("plague teeth") and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human beta-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase beta-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.

  9. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity.

    PubMed

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W

    2013-10-11

    The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.

  10. Ancient DNA reveals key stages in the formation of Central European mitochondrial genetic diversity

    PubMed Central

    Brandt, Guido; Haak, Wolfgang; Adler, Christina J.; Roth, Christina; Szécsényi-Nagy, Anna; Karimnia, Sarah; Möller-Rieker, Sabine; Meller, Harald; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; Nicklisch, Nicole; Pickrell, Joseph K.; Sirocko, Frank; Reich, David; Cooper, Alan; Alt, Kurt W.

    2014-01-01

    The processes which shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42kyrs ago and the immigration of Neolithic farmers into Europe ~8kyrs ago appear to have played important roles, but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5,500–1,550 cal BC). We use this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity. PMID:24115443

  11. An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile.

    PubMed

    Hekkala, Evon; Shirley, Matthew H; Amato, George; Austin, James D; Charter, Suellen; Thorbjarnarson, John; Vliet, Kent A; Houck, Marlys L; Desalle, Rob; Blum, Michael J

    2011-10-01

    The Nile crocodile (Crocodylus niloticus) is an ancient icon of both cultural and scientific interest. The species is emblematic of the great civilizations of the Nile River valley and serves as a model for international wildlife conservation. Despite its familiarity, a centuries-long dispute over the taxonomic status of the Nile crocodile remains unresolved. This dispute not only confounds our understanding of the origins and biogeography of the 'true crocodiles' of the crown genus Crocodylus, but also complicates conservation and management of this commercially valuable species. We have taken a total evidence approach involving phylogenetic analysis of mitochondrial and nuclear markers, as well as karyotype analysis of chromosome number and structure, to assess the monophyletic status of the Nile crocodile. Samples were collected from throughout Africa, covering all major bioregions. We also utilized specimens from museum collections, including mummified crocodiles from the ancient Egyptian temples at Thebes and the Grottes de Samoun, to reconstruct the genetic profiles of extirpated populations. Our analyses reveal a cryptic evolutionary lineage within the Nile crocodile that elucidates the biogeographic history of the genus and clarifies long-standing arguments over the species' taxonomic identity and conservation status. An examination of crocodile mummy haplotypes indicates that the cryptic lineage corresponds to an earlier description of C. suchus and suggests that both African Crocodylus lineages historically inhabited the Nile River. Recent survey efforts indicate that C. suchus is declining or extirpated throughout much of its distribution. Without proper recognition of this cryptic species, current sustainable use-based management policies for the Nile crocodile may do more harm than good.

  12. Mitochondrial DNA Reveals the Trace of the Ancient Settlers of a Violently Devastated Late Bronze and Iron Ages Village

    PubMed Central

    Núñez, Carolina; Baeta, Miriam; Cardoso, Sergio; Palencia-Madrid, Leire; García-Romero, Noemí; Llanos, Armando; M. de Pancorbo, Marian

    2016-01-01

    La Hoya (Alava, Basque Country) was one of the most important villages of the Late Bronze and Iron Ages of the north of the Iberian Peninsula, until it was violently devastated around the 4th century and abandoned in the 3rd century B.C. Archaeological evidences suggest that descendants from La Hoya placed their new settlement in a nearby hill, which gave rise to the current village of Laguardia. In this study, we have traced the genetic imprints of the extinct inhabitants of La Hoya through the analysis of maternal lineages. In particular, we have analyzed the mitochondrial DNA (mtDNA) control region of 41 human remains recovered from the archaeological site for comparison with a sample of 51 individuals from the geographically close present-day population of Laguardia, as well as 56 individuals of the general population of the province of Alava, where the archaeological site and Laguardia village are located. MtDNA haplotypes were successfully obtained in 25 out of 41 ancient samples, and 14 different haplotypes were identified. The major mtDNA subhaplogroups observed in La Hoya were H1, H3, J1 and U5, which show a distinctive frequency pattern in the autochthonous populations of the north of the Iberian Peninsula. Approximate Bayesian Computation analysis was performed to test the most likely model for the local demographic history. The results did not sustain a genealogical continuity between Laguardia and La Hoya at the haplotype level, although factors such as sampling effects, recent admixture events, and genetic bottlenecks need to be considered. Likewise, the highly similar subhaplogroup composition detected between La Hoya and Laguardia and Alava populations do not allow us to reject a maternal genetic continuity in the human groups of the area since at least the Iron Age to present times. Broader analyses, based on a larger collection of samples and genetic markers, would be required to study fine-scale population events in these human groups. PMID

  13. Mitochondrial DNA Reveals the Trace of the Ancient Settlers of a Violently Devastated Late Bronze and Iron Ages Village.

    PubMed

    Núñez, Carolina; Baeta, Miriam; Cardoso, Sergio; Palencia-Madrid, Leire; García-Romero, Noemí; Llanos, Armando; M de Pancorbo, Marian

    2016-01-01

    La Hoya (Alava, Basque Country) was one of the most important villages of the Late Bronze and Iron Ages of the north of the Iberian Peninsula, until it was violently devastated around the 4th century and abandoned in the 3rd century B.C. Archaeological evidences suggest that descendants from La Hoya placed their new settlement in a nearby hill, which gave rise to the current village of Laguardia. In this study, we have traced the genetic imprints of the extinct inhabitants of La Hoya through the analysis of maternal lineages. In particular, we have analyzed the mitochondrial DNA (mtDNA) control region of 41 human remains recovered from the archaeological site for comparison with a sample of 51 individuals from the geographically close present-day population of Laguardia, as well as 56 individuals of the general population of the province of Alava, where the archaeological site and Laguardia village are located. MtDNA haplotypes were successfully obtained in 25 out of 41 ancient samples, and 14 different haplotypes were identified. The major mtDNA subhaplogroups observed in La Hoya were H1, H3, J1 and U5, which show a distinctive frequency pattern in the autochthonous populations of the north of the Iberian Peninsula. Approximate Bayesian Computation analysis was performed to test the most likely model for the local demographic history. The results did not sustain a genealogical continuity between Laguardia and La Hoya at the haplotype level, although factors such as sampling effects, recent admixture events, and genetic bottlenecks need to be considered. Likewise, the highly similar subhaplogroup composition detected between La Hoya and Laguardia and Alava populations do not allow us to reject a maternal genetic continuity in the human groups of the area since at least the Iron Age to present times. Broader analyses, based on a larger collection of samples and genetic markers, would be required to study fine-scale population events in these human groups.

  14. Towards the onset of fruit tree growing north of the Alps: ancient DNA from waterlogged apple (Malus sp.) seed fragments.

    PubMed

    Schlumbaum, Angela; van Glabeke, Sabine; Roldan-Ruiz, Isabel

    2012-01-20

    Wild apples (Malus sp.) have been a major food source in the northern Alpine region since prehistory and their use is well understood. The onset of deliberate fruit tree growing in the area is, however, less clear. It is generally assumed that horticulture was practised in Roman times, but it might be even earlier. In the archaeological record seed testa and pericarp remains are particularly frequent at sites with waterlogged preservation such as lakeshore settlements or wells, pits and ditches, but the distinction between wild and domestic plants is not morphologically possible. With waterlogged remains being one main source of information about past fruit cultivation, we have tested the feasibility of analysing ancient DNA from waterlogged preserved bulk samples of testa fragments. We studied apple seeds from three Neolithic and three Roman sites with waterlogged preservation in the Alpine foreland. Chloroplast markers failed in all samples, but nuclear ITS1 (internal transcribed spacer region 1) of the ribosomal DNA was successfully typed in two Roman samples from the site Oedenburg/Biesheim-Kunheim (Haut-Rhin, F). The retrieved ITS1 sequences are identical to each other and are shared with wild Malus sylvestris and Malus sieversii, and with domestic apple cultivars, supporting the potential of using waterlogged remains for identifying the genetic status of apple diachronically.

  15. Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar

    NASA Astrophysics Data System (ADS)

    Malenica, Nenad; Šimon, Silvio; Besendorfer, Višnja; Maletić, Edi; Karoglan Kontić, Jasminka; Pejić, Ivan

    2011-09-01

    Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.

  16. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process.

    PubMed

    Tiengwe, Calvin; Marques, Catarina A; McCulloch, Richard

    2014-01-01

    Nuclear DNA replication is, arguably, the central cellular process in eukaryotes, because it drives propagation of life and intersects with many other genome reactions. Perhaps surprisingly, our understanding of nuclear DNA replication in kinetoplastids was limited until a clutch of studies emerged recently, revealing new insight into both the machinery and genome-wide coordination of the reaction. Here, we discuss how these studies suggest that the earliest acting components of the kinetoplastid nuclear DNA replication machinery - the factors that demarcate sites of the replication initiation, termed origins - are diverged from model eukaryotes. In addition, we discuss how origin usage and replication dynamics relate to the highly unusual organisation of transcription in the genome of Trypanosoma brucei.

  17. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.

    PubMed

    Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A; Burger, Richard L; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R Spencer; Politis, Gustavo; Santoro, Calogero M; Standen, Vivien G; Smith, Colin; Reich, David; Ho, Simon Y W; Cooper, Alan; Haak, Wolfgang

    2016-04-01

    The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.

  18. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas

    PubMed Central

    Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M.; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A.; Burger, Richard L.; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R. Spencer; Politis, Gustavo; Santoro, Calogero M.; Standen, Vivien G.; Smith, Colin; Reich, David; Ho, Simon Y. W.; Cooper, Alan; Haak, Wolfgang

    2016-01-01

    The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages. PMID:27051878

  19. DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences

    PubMed Central

    Musilli, S.; Nicolas, N.; El Ali, Z.; Orellana-Moreno, P.; Grand, C.; Tack, K.; Kerdine-Römer, S.; Bertho, J. M.

    2017-01-01

    90Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL−1 of 90Sr. Results indicated that a 30-minute exposure to 90Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90Sr exposure. PMID:28134299

  20. Highly skewed sex ratios and biased fossil deposition of moa: ancient DNA provides new insight on New Zealand's extinct megafauna

    NASA Astrophysics Data System (ADS)

    Allentoft, Morten E.; Bunce, Michael; Scofield, R. Paul; Hale, Marie L.; Holdaway, Richard N.

    2010-03-01

    Ancient DNA was isolated from the bones of 267 individuals of the extinct New Zealand moa (Aves: Dinornithiformes) from two late Holocene deposits [Pyramid Valley (PV) and Bell Hill Vineyard (BHV)] located 5.7 km apart in North Canterbury, South Island. The two sites' combined fossil record cover the last 3000 years of pre-human New Zealand and mitochondrial DNA confirmed that four species ( Dinornis robustus, Euryapteryx curtus, Emeus crassus, and Pachyornis elephantopus) were sympatric in the region. However, the relative species compositions in the two deposits differed significantly with D. robustus and E. crassus being most abundant at PV while E. curtus outnumbered the other three moa taxa combined at BHV. A subsample of 227 individuals had sufficient nuclear DNA preservation to warrant the use of molecular sexing techniques, and the analyses uncovered a remarkable excess of females in both deposits with an overall male to female ratio of 1:5.1. Among juveniles of E. curtus, the only species which was represented by a substantial fraction of juveniles, the sex ratio was not skewed (10 ♂, 10 ♀), suggesting that the observed imbalance arose as a result of differential mortality during maturation. Surprisingly, sex ratios proved significantly different between sites with a 1:2.2 ratio at BHV ( n = 90) and 1:14.2 at PV ( n = 137). Given the mobility of large ratites, and the proximity of the two fossil assemblages in space and time, these differences in taxonomic and gender composition indicate that moa biology and the local environment have affected the fossil representation dramatically and several possible explanations are offered. Apart from adding to our understanding of moa biology, these discoveries reinforce the need for caution when basing interpretation of the fossil record on material from a single site.

  1. Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing.

    PubMed

    Grunenwald, A; Keyser, C; Sautereau, A M; Crubézy, E; Ludes, B; Drouet, C

    2014-07-01

    The extraction of DNA from skeletal remains is a major step in archeological or forensic contexts. However, diagenesis of mineralized tissues often compromises this task although bones and teeth may represent preservation niches allowing DNA to persist over a wide timescale. This exceptional persistence is not only explained on the basis of complex organo-mineral interactions through DNA adsorption on apatite crystals composing the mineral part of bones and teeth but is also linked to environmental factors such as low temperatures and/or a dry environment. The preservation of the apatite phase itself, as an adsorption substrate, is another crucial factor susceptible to significantly impact the retrieval of DNA. With the view to bring physicochemical evidence of the preservation or alteration of diagenetic biominerals, we developed here an analytical approach on various skeletal specimens (ranging from ancient archeological samples to recent forensic specimens), allowing us to highlight several diagenetic indices so as to better apprehend the complexity of bone diagenesis. Based on complementary techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), calcium and phosphate titrations, SEM-EDX, and gravimetry), we have identified specific indices that allow differentiating 11 biological samples, primarily according to the crystallinity and maturation state of the apatite phase. A good correlation was found between FTIR results from the analysis of the v3(PO4) and v4(PO4) vibrational domains and XRD-based crystallinity features. A maximal amount of information has been sought from this analytical approach, by way of optimized posttreatment of the data (spectral subtraction and enhancement of curve-fitting parameters). The good overall agreement found between all techniques leads to a rather complete picture of the diagenetic changes undergone by these 11 skeletal specimens. Although the heterogeneity and scarcity of the studied samples did not allow us

  2. Early population differentiation in extinct aborigines from Tierra del Fuego-Patagonia: ancient mtDNA sequences and Y-chromosome STR characterization.

    PubMed

    García-Bour, Jaume; Pérez-Pérez, Alejandro; Alvarez, Sara; Fernández, Eva; López-Parra, Ana María; Arroyo-Pardo, Eduardo; Turbón, Daniel

    2004-04-01

    Ancient mtDNA was successfully recovered from 24 skeletal samples of a total of 60 ancient individuals from Patagonia-Tierra del Fuego, dated to 100-400 years BP, for which consistent amplifications and two-strand sequences were obtained. Y-chromosome STRs (DYS434, DYS437, DYS439, DYS393, DYS391, DYS390, DYS19, DYS389I, DYS389II, and DYS388) and the biallelic system DYS199 were also amplified, Y-STR alleles could be characterized in nine cases, with an average of 4.1 loci per sample correctly typed. In two samples of the same ethnic group (Aonikenk), an identical and complete eight-loci haplotype was recovered. The DYS199 biallelic system was used as a control of contamination by modern DNA and, along with DYS19, as a marker of American origin. The analysis of both mtDNA and Y-STRs revealed DNA from Amerindian ancestry. The observed polymorphisms are consistent with the hypothesis that the ancient Fuegians are close to populations from south-central Chile and Argentina, but their high nucleotide diversity and the frequency of single lineages strongly support early genetic differentiation of the Fuegians through combined processes of population bottleneck, isolation, and/or migration, followed by strong genetic drift. This suggests an early genetic diversification of the Fuegians right after their arrival at the southernmost extreme of South America.

  3. mtDNA haplogroup X: An ancient link between Europe/Western Asia and North America?

    PubMed Central

    Brown, M D; Hosseini, S H; Torroni, A; Bandelt, H J; Allen, J C; Schurr, T G; Scozzari, R; Cruciani, F; Wallace, D C

    1998-01-01

    On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry. PMID:9837837

  4. First ancient DNA sequences from the Late Pleistocene red deer (Cervus elaphus) in the Crimea, Ukraine

    NASA Astrophysics Data System (ADS)

    Stanković, Ana; Nadachowski, Adam; Doan, Karolina; Stefaniak, Krzysztof; Baca, Mateusz; Socha, Paweł; Wegleński, Piotr; Ridush, Bogdan

    2010-05-01

    The Late Pleistocene has been a period of significant population and species turnover and extinctions among the large mammal fauna. Massive climatic and environmental changes during Pleistocene significantly influenced the distribution and also genetic diversity of plants and animals. The model of glacial refugia and habitat contraction to southern peninsulas in Europe as areas for the survival of temperate animal species during unfavourable Pleistocene glaciations is at present widely accepted. However, both molecular data and the fossil record indicate the presence of northern and perhaps north-eastern refugia in Europe. In recent years, much new palaeontological data have been obtained in the Crimean Peninsula, Ukraine, following extensive investigations. The red deer (Cervus elaphus) samples for aDNA studies were collected in Emine-Bair-Khosar Cave, situated on the north edge of Lower Plateau of the Chatyrdag Massif (Crimean Mountains). The cave is a vertical shaft, which functioned as a huge mega-trap over a long period of time (probably most of the Pleistocene). The bone assemblages provided about 5000 bones belonging to more than 40 species. The C. elaphus bones were collected from three different stratigraphical levels, radiocarbon dated by accelerator mass spectrometry (AMS) method. The bone fragments of four specimens of red deer were used for the DNA isolation and analysis. The mtDNA (Cytochome b) was successfully isolated from three bone fragments and the cytochrome b sequences were amplified by multiplex PCR. The sequences obtained so far allowed for the reconstruction of only preliminary phylogenetic trees. A fragment of metatarsus from level dated to ca. 48,500±2,000 years BP, yielded a sequence of 513 bp, allowing to locate the specimen on the phylogenetic tree within modern C. elaphus specimens from southern and middle Europe. The second bone fragment, a fragment of mandible, collected from level dated approximately to ca. 33,500±400 years BP

  5. Ancient DNA suggests the leading role played by men in the Neolithic dissemination

    PubMed Central

    Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Tarrús, Josep; Bosch, Angel; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand

    2011-01-01

    The impact of the Neolithic dispersal on the western European populations is subject to continuing debate. To trace and date genetic lineages potentially brought during this transition and so understand the origin of the gene pool of current populations, we studied DNA extracted from human remains excavated in a Spanish funeral cave dating from the beginning of the fifth millennium B.C. Thanks to a “multimarkers” approach based on the analysis of mitochondrial and nuclear DNA (autosomes and Y-chromosome), we obtained information on the early Neolithic funeral practices and on the biogeographical origin of the inhumed individuals. No close kinship was detected. Maternal haplogroups found are consistent with pre-Neolithic settlement, whereas the Y-chromosomal analyses permitted confirmation of the existence in Spain approximately 7,000 y ago of two haplogroups previously associated with the Neolithic transition: G2a and E1b1b1a1b. These results are highly consistent with those previously found in Neolithic individuals from French Late Neolithic individuals, indicating a surprising temporal genetic homogeneity in these groups. The high frequency of G2a in Neolithic samples in western Europe could suggest, furthermore, that the role of men during Neolithic dispersal could be greater than currently estimated. PMID:22042855

  6. Ancient DNA suggests the leading role played by men in the Neolithic dissemination.

    PubMed

    Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Tarrús, Josep; Bosch, Angel; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand

    2011-11-08

    The impact of the Neolithic dispersal on the western European populations is subject to continuing debate. To trace and date genetic lineages potentially brought during this transition and so understand the origin of the gene pool of current populations, we studied DNA extracted from human remains excavated in a Spanish funeral cave dating from the beginning of the fifth millennium B.C. Thanks to a "multimarkers" approach based on the analysis of mitochondrial and nuclear DNA (autosomes and Y-chromosome), we obtained information on the early Neolithic funeral practices and on the biogeographical origin of the inhumed individuals. No close kinship was detected. Maternal haplogroups found are consistent with pre-Neolithic settlement, whereas the Y-chromosomal analyses permitted confirmation of the existence in Spain approximately 7,000 y ago of two haplogroups previously associated with the Neolithic transition: G2a and E1b1b1a1b. These results are highly consistent with those previously found in Neolithic individuals from French Late Neolithic individuals, indicating a surprising temporal genetic homogeneity in these groups. The high frequency of G2a in Neolithic samples in western Europe could suggest, furthermore, that the role of men during Neolithic dispersal could be greater than currently estimated.

  7. Mineral resource of the month: Strontium

    USGS Publications Warehouse

    Ober, Joyce A.

    2014-01-01

    Strontium occurs commonly in nature, ranking as the 15th most abundant chemical element on Earth. Only two minerals contain sufficient strontium, however, to be used commercially to produce strontium compounds: Strontianite (strontium carbonate) has a higher strontium content, but celestite (strontium sulfate) is by far the most abundant strontium mineral.

  8. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics.

    PubMed

    Campos, Paula F; Willerslev, Eske; Sher, Andrei; Orlando, Ludovic; Axelsson, Erik; Tikhonov, Alexei; Aaris-Sørensen, Kim; Greenwood, Alex D; Kahlke, Ralf-Dietrich; Kosintsev, Pavel; Krakhmalnaya, Tatiana; Kuznetsova, Tatyana; Lemey, Philippe; MacPhee, Ross; Norris, Christopher A; Shepherd, Kieran; Suchard, Marc A; Zazula, Grant D; Shapiro, Beth; Gilbert, M Thomas P

    2010-03-23

    The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at approximately 45,000 radiocarbon years before present ((14)C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 (14)C YBP, recontracted at ca. 18,000 (14)C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.

  9. Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change.

    PubMed

    Buckley, T R; Simon, C; Chambers, G K

    2001-07-01

    New Zealand's isolation, its well-studied rapidly changing landscape, and its many examples of rampant speciation make it an excellent location for studying the process of genetic differentiation. Using 1520 base pairs of mitochondrial DNA from the cytochrome oxidase subunit I, ATPase subunits 6 and 8 and tRNA(Asp) genes, we detected two well-differentiated, parapatrically distributed clades within the widespread New Zealand cicada species Maoricicada campbelli that may prove to represent two species. The situation that we uncovered is unusual in that an ancient lineage with low genetic diversity is surrounded on three sides by two recently diverged lineages. Using a relaxed molecular clock model coupled with Bayesian statistics, we dated the earliest divergence within M. campbelli at 2.3 +/- 0.55 million years. Our data suggest that geological and climatological events of the late Pliocene divided a once-widespread species into northern and southern components and that near the middle of the Pleistocene the northern lineage began moving south eventually reaching the southern clade. The southern clade seems to have moved northward to only a limited extent. We discovered five potential zones of secondary contact through mountain passes that will be examined in future work. We predict that, as in North American periodical cicadas, contact between these highly differentiated lineages will exist but will not involve gene flow.

  10. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania

    PubMed Central

    Larson, Greger; Cucchi, Thomas; Fujita, Masakatsu; Matisoo-Smith, Elizabeth; Robins, Judith; Anderson, Atholl; Rolett, Barry; Spriggs, Matthew; Dolman, Gaynor; Kim, Tae-Hun; Thuy, Nguyen Thi Dieu; Randi, Ettore; Doherty, Moira; Due, Rokus Awe; Bollt, Robert; Djubiantono, Tony; Griffin, Bion; Intoh, Michiko; Keane, Emile; Kirch, Patrick; Li, Kuang-Ti; Morwood, Michael; Pedriña, Lolita M.; Piper, Philip J.; Rabett, Ryan J.; Shooter, Peter; Van den Bergh, Gert; West, Eric; Wickler, Stephen; Yuan, Jing; Cooper, Alan; Dobney, Keith

    2007-01-01

    Human settlement of Oceania marked the culmination of a global colonization process that began when humans first left Africa at least 90,000 years ago. The precise origins and dispersal routes of the Austronesian peoples and the associated Lapita culture remain contentious, and numerous disparate models of dispersal (based primarily on linguistic, genetic, and archeological data) have been proposed. Here, through the use of mtDNA from 781 modern and ancient Sus specimens, we provide evidence for an early human-mediated translocation of the Sulawesi warty pig (Sus celebensis) to Flores and Timor and two later separate human-mediated dispersals of domestic pig (Sus scrofa) through Island Southeast Asia into Oceania. Of the later dispersal routes, one is unequivocally associated with the Neolithic (Lapita) and later Polynesian migrations and links modern and archeological Javan, Sumatran, Wallacean, and Oceanic pigs with mainland Southeast Asian S. scrofa. Archeological and genetic evidence shows these pigs were certainly introduced to islands east of the Wallace Line, including New Guinea, and that so-called “wild” pigs within this region are most likely feral descendants of domestic pigs introduced by early agriculturalists. The other later pig dispersal links mainland East Asian pigs to western Micronesia, Taiwan, and the Philippines. These results provide important data with which to test current models for human dispersal in the region. PMID:17360400

  11. Ancient DNA Analysis Reveals High Frequency of European Lactase Persistence Allele (T-13910) in Medieval Central Europe

    PubMed Central

    Akgül, Gülfirde; Della Casa, Philippe; Rühli, Frank; Warinner, Christina

    2014-01-01

    Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies. These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71–80%, our results suggest that genetic lactase persistence likely reached modern levels before the historic population declines associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in this region. This new evidence sheds light on the dynamic evolutionary

  12. Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in medieval central europe.

    PubMed

    Krüttli, Annina; Bouwman, Abigail; Akgül, Gülfirde; Della Casa, Philippe; Rühli, Frank; Warinner, Christina

    2014-01-01

    Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies. These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71-80%, our results suggest that genetic lactase persistence likely reached modern levels before the historic population declines associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in this region. This new evidence sheds light on the dynamic evolutionary

  13. Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication

    PubMed Central

    Speller, Camilla F.; Kemp, Brian M.; Wyatt, Scott D.; Monroe, Cara; Lipe, William D.; Arndt, Ursula M.; Yang, Dongya Y.

    2010-01-01

    Although the cultural and nutritive importance of the turkey (Meleagris gallopavo) to precontact Native Americans and contemporary people worldwide is clear, little is known about the domestication of this bird compared to other domesticates. Mitochondrial DNA analysis of 149 turkey bones and 29 coprolites from 38 archaeological sites (200 BC–AD 1800) reveals a unique domesticated breed in the precontact Southwestern United States. Phylogeographic analyses indicate that this domestic breed originated from outside the region, but rules out the South Mexican domestic turkey (Meleagris gallopavo gallopavo) as a progenitor. A strong genetic bottleneck within the Southwest turkeys also reflects intensive human selection and breeding. This study points to at least two occurrences of turkey domestication in precontact North America and illuminates the intensity and sophistication of New World animal breeding practices. PMID:20133614

  14. Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balearic mammal

    PubMed Central

    Lalueza-Fox, Carles; Castresana, Jose; Sampietro, Lourdes; Marquès-Bonet, Tomàs; Alcover, Josep Antoni; Bertranpetit, Jaume

    2005-01-01

    Background Myotragus balearicus was an endemic bovid from the Balearic Islands (Western Mediterranean) that became extinct around 6,000-4,000 years ago. The Myotragus evolutionary lineage became isolated in the islands most probably at the end of the Messinian crisis, when the desiccation of the Mediterranean ended, in a geological date established at 5.35 Mya. Thus, the sequences of Myotragus could be very valuable for calibrating the mammalian mitochondrial DNA clock and, in particular, the tree of the Caprinae subfamily, to which Myotragus belongs. Results We have retrieved the complete mitochondrial cytochrome b gene (1,143 base pairs), plus fragments of the mitochondrial 12S gene and the nuclear 28S rDNA multi-copy gene from a well preserved Myotragus subfossil bone. The best resolved phylogenetic trees, obtained with the cytochrome b gene, placed Myotragus in a position basal to the Ovis group. Using the calibration provided by the isolation of Balearic Islands, we calculated that the initial radiation of caprines can be dated at 6.2 ± 0.4 Mya. In addition, alpine and southern chamois, considered until recently the same species, split around 1.6 ± 0.3 Mya, indicating that the two chamois species have been separated much longer than previously thought. Conclusion Since there are almost no extant endemic mammals in Mediterranean islands, the sequence of the extinct Balearic endemic Myotragus has been crucial for allowing us to use the Messinian crisis calibration point for dating the caprines phylogenetic tree. PMID:16332256

  15. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture

    PubMed Central

    Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604

  16. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture.

    PubMed

    Bilgic, Hatice; Hakki, Erdogan E; Pandey, Anamika; Khan, Mohd Kamran; Akkaya, Mahinur S

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961-65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey.

  17. Effect of X-ray irradiation on ancient DNA in sub-fossil bones – Guidelines for safe X-ray imaging

    PubMed Central

    Immel, Alexander; Le Cabec, Adeline; Bonazzi, Marion; Herbig, Alexander; Temming, Heiko; Schuenemann, Verena J.; Bos, Kirsten I.; Langbein, Frauke; Harvati, Katerina; Bridault, Anne; Pion, Gilbert; Julien, Marie-Anne; Krotova, Oleksandra; Conard, Nicholas J.; Münzel, Susanne C.; Drucker, Dorothée G.; Viola, Bence; Hublin, Jean-Jacques; Tafforeau, Paul; Krause, Johannes

    2016-01-01

    Sub-fossilised remains may still contain highly degraded ancient DNA (aDNA) useful for palaeogenetic investigations. Whether X-ray computed [micro-] tomography ([μ]CT) imaging of these fossils may further damage aDNA remains debated. Although the effect of X-ray on DNA in living organisms is well documented, its impact on aDNA molecules is unexplored. Here we investigate the effects of synchrotron X-ray irradiation on aDNA from Pleistocene bones. A clear correlation appears between decreasing aDNA quantities and accumulating X-ray dose-levels above 2000 Gray (Gy). We further find that strong X-ray irradiation reduces the amount of nucleotide misincorporations at the aDNA molecule ends. No representative effect can be detected for doses below 200 Gy. Dosimetry shows that conventional μCT usually does not reach the risky dose level, while classical synchrotron imaging can degrade aDNA significantly. Optimised synchrotron protocols and simple rules introduced here are sufficient to ensure that fossils can be scanned without impairing future aDNA studies. PMID:27615365

  18. Where are the Caribs? Ancient DNA from ceramic period human remains in the Lesser Antilles

    PubMed Central

    Mendisco, F.; Pemonge, M. H.; Leblay, E.; Romon, T.; Richard, G.; Courtaud, P.; Deguilloux, M. F.

    2015-01-01

    The identity and history of the indigenous groups who occupied the Lesser Antilles during the ceramic periods remain highly controversial. Although recent archaeological evidence has challenged hypotheses concerning the organization of human groups in this region, more biological data are needed to fully inform the discussion. Our study provides, to our knowledge, the first palaeogenetic data for Late Ceramic groups of the Guadeloupe archipelago, yielding crucial information concerning the identities of these groups. Despite the generally poor DNA preservation in the tested remains, we were able to retrieve Hypervariable Region 1 sequences from 11 individuals and mitochondrial single-nucleotide polymorphisms from 13 individuals. These novel data provide interesting preliminary results in favour of a common origin for all Saladoid Caribbean communities, i.e. the first ceramic groups of the region, as well as for a local continuity between the Saladoid and post-Saladoid groups. A combination of the genetic data obtained and several pieces of cultural evidence allows us to propose that two different groups inhabited the Guadeloupe archipelago during the Late Ceramic period, with the possible occupation of the La Désirade and Marie-Galante islands by groups affiliated with the Taíno communities. The working hypotheses proposed here appear consistent with recent archaeological evidence. PMID:25487339

  19. Ancient DNA Suggests Dwarf and ‘Giant’ Emu Are Conspecific

    PubMed Central

    Heupink, Tim H.; Huynen, Leon; Lambert, David M.

    2011-01-01

    Background The King Island Emu (Dromaius ater) of Australia is one of several extinct emu taxa whose taxonomic relationship to the modern Emu (D. novaehollandiae) is unclear. King Island Emu were mainly distinguished by their much smaller size and a reported darker colour compared to modern Emu. Methodology and Results We investigated the evolutionary relationships between the King Island and modern Emu by the recovery of both nuclear and mitochondrial DNA sequences from sub-fossil remains. The complete mitochondrial control (1,094 bp) and cytochrome c oxidase subunit I (COI) region (1,544 bp), as well as a region of the melanocortin 1 receptor gene (57 bp) were sequenced using a multiplex PCR approach. The results show that haplotypes for King Island Emu fall within the diversity of modern Emu. Conclusions These data show the close relationship of these emu when compared to other congeneric bird species and indicate that the King Island and modern Emu share a recent common ancestor. King Island emu possibly underwent insular dwarfism as a result of phenotypic plasticity. The close relationship between the King Island and the modern Emu suggests it is most appropriate that the former should be considered a subspecies of the latter. Although both taxa show a close genetic relationship they differ drastically in size. This study also suggests that rates of morphological and neutral molecular evolution are decoupled. PMID:21494561

  20. Where are the Caribs? Ancient DNA from ceramic period human remains in the Lesser Antilles.

    PubMed

    Mendisco, F; Pemonge, M H; Leblay, E; Romon, T; Richard, G; Courtaud, P; Deguilloux, M F

    2015-01-19

    The identity and history of the indigenous groups who occupied the Lesser Antilles during the ceramic periods remain highly controversial. Although recent archaeological evidence has challenged hypotheses concerning the organization of human groups in this region, more biological data are needed to fully inform the discussion. Our study provides, to our knowledge, the first palaeogenetic data for Late Ceramic groups of the Guadeloupe archipelago, yielding crucial information concerning the identities of these groups. Despite the generally poor DNA preservation in the tested remains, we were able to retrieve Hypervariable Region 1 sequences from 11 individuals and mitochondrial single-nucleotide polymorphisms from 13 individuals. These novel data provide interesting preliminary results in favour of a common origin for all Saladoid Caribbean communities, i.e. the first ceramic groups of the region, as well as for a local continuity between the Saladoid and post-Saladoid groups. A combination of the genetic data obtained and several pieces of cultural evidence allows us to propose that two different groups inhabited the Guadeloupe archipelago during the Late Ceramic period, with the possible occupation of the La Désirade and Marie-Galante islands by groups affiliated with the Taíno communities. The working hypotheses proposed here appear consistent with recent archaeological evidence.

  1. A critical evaluation of how ancient DNA bulk bone metabarcoding complements traditional morphological analysis of fossil assemblages

    NASA Astrophysics Data System (ADS)

    Grealy, Alicia C.; McDowell, Matthew C.; Scofield, Paul; Murray, Dáithí C.; Fusco, Diana A.; Haile, James; Prideaux, Gavin J.; Bunce, Michael

    2015-11-01

    When pooled for extraction as a bulk sample, the DNA within morphologically unidentifiable fossil bones can, using next-generation sequencing, yield valuable taxonomic data. This method has been proposed as a means to rapidly and cost-effectively assess general ancient DNA preservation at a site, and to investigate temporal and spatial changes in biodiversity; however, several caveats have yet to be considered. We critically evaluated the bulk bone metabarcoding (BBM) method in terms of its: (i) repeatability, by quantifying sampling and technical variance through a nested experimental design containing sub-samples and replicates at several stages; (ii) accuracy, by comparing morphological and molecular family-level identifications; and (iii) overall utility, by applying the approach to two independent Holocene fossil deposits, Bat Cave (Kangaroo Island, Australia) and Finsch's Folly (Canterbury, New Zealand). For both sites, bone and bone powder sub-sampling were found to contribute significantly to variance in molecularly identified family assemblage, while the contribution of library preparation and sequencing was almost negligible. Nevertheless, total variance was small. Sampling over 80% fewer bones than was required to morphologically identify the taxonomic assemblages, we found that the families identified molecularly are a subset of the families identified morphologically and, for the most part, represent the most abundant families in the fossil record. In addition, we detected a range of extinct, extant and endangered taxa, including some that are rare in the fossil record. Given the relatively low sampling effort of the BBM approach compared with morphological approaches, these results suggest that BBM is largely consistent, accurate, sensitive, and therefore widely applicable. Furthermore, we assessed the overall benefits and caveats of the method, and suggest a workflow for palaeontologists, archaeologists, and geneticists that will help mitigate these

  2. Assessment of the extirpated Maritimes walrus using morphological and ancient DNA analysis.

    PubMed

    McLeod, Brenna A; Frasier, Timothy R; Lucas, Zoe

    2014-01-01

    Species biogeography is a result of complex events and factors associated with climate change, ecological interactions, anthropogenic impacts, physical geography, and evolution. To understand the contemporary biogeography of a species, it is necessary to understand its history. Specimens from areas of localized extinction are important, as extirpation of species from these areas may represent the loss of unique adaptations and a distinctive evolutionary trajectory. The walrus (Odobenus rosmarus) has a discontinuous circumpolar distribution in the arctic and subarctic that once included the southeastern Canadian Maritimes region. However, exploitation of the Maritimes population during the 16th-18th centuries led to extirpation, and the species has not inhabited areas south of 55°N for ∼250 years. We examined genetic and morphological characteristics of specimens from the Maritimes, Atlantic (O. r. rosmarus) and Pacific (O. r. divergens) populations to test the hypothesis that the first group was distinctive. Analysis of Atlantic and Maritimes specimens indicated that most skull and mandibular measurements were significantly different between the Maritimes and Atlantic groups and discriminant analysis of principal components confirmed them as distinctive groups, with complete isolation of skull features. The Maritimes walrus appear to have been larger animals, with larger and more robust tusks, skulls and mandibles. The mtDNA control region haplotypes identified in Maritimes specimens were unique to the region and a greater average number of nucleotide differences were found between the regions (Atlantic and Maritimes) than within either group. Levels of diversity (h and π) were lower in the Maritimes, consistent with other studies of species at range margins. Our data suggest that the Maritimes walrus was a morphologically and genetically distinctive group that was on a different evolutionary path from other walrus found in the north Atlantic.

  3. Ancient DNA analysis of 8000 B.C. near eastern farmers supports an early neolithic pioneer maritime colonization of Mainland Europe through Cyprus and the Aegean Islands.

    PubMed

    Fernández, Eva; Pérez-Pérez, Alejandro; Gamba, Cristina; Prats, Eva; Cuesta, Pedro; Anfruns, Josep; Molist, Miquel; Arroyo-Pardo, Eduardo; Turbón, Daniel

    2014-06-01

    The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja'de El Mughara dating between 8,700-6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and Crete

  4. Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands

    PubMed Central

    Fernández, Eva; Pérez-Pérez, Alejandro; Gamba, Cristina; Prats, Eva; Cuesta, Pedro; Anfruns, Josep; Molist, Miquel; Arroyo-Pardo, Eduardo; Turbón, Daniel

    2014-01-01

    The genetic impact associated to the Neolithic spread in Europe has been widely debated over the last 20 years. Within this context, ancient DNA studies have provided a more reliable picture by directly analyzing the protagonist populations at different regions in Europe. However, the lack of available data from the original Near Eastern farmers has limited the achieved conclusions, preventing the formulation of continental models of Neolithic expansion. Here we address this issue by presenting mitochondrial DNA data of the original Near-Eastern Neolithic communities with the aim of providing the adequate background for the interpretation of Neolithic genetic data from European samples. Sixty-three skeletons from the Pre Pottery Neolithic B (PPNB) sites of Tell Halula, Tell Ramad and Dja'de El Mughara dating between 8,700–6,600 cal. B.C. were analyzed, and 15 validated mitochondrial DNA profiles were recovered. In order to estimate the demographic contribution of the first farmers to both Central European and Western Mediterranean Neolithic cultures, haplotype and haplogroup diversities in the PPNB sample were compared using phylogeographic and population genetic analyses to available ancient DNA data from human remains belonging to the Linearbandkeramik-Alföldi Vonaldiszes Kerámia and Cardial/Epicardial cultures. We also searched for possible signatures of the original Neolithic expansion over the modern Near Eastern and South European genetic pools, and tried to infer possible routes of expansion by comparing the obtained results to a database of 60 modern populations from both regions. Comparisons performed among the 3 ancient datasets allowed us to identify K and N-derived mitochondrial DNA haplogroups as potential markers of the Neolithic expansion, whose genetic signature would have reached both the Iberian coasts and the Central European plain. Moreover, the observed genetic affinities between the PPNB samples and the modern populations of Cyprus and

  5. Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: the complex case of red deer (Cervus elaphus) in Ireland

    NASA Astrophysics Data System (ADS)

    Carden, Ruth F.; McDevitt, Allan D.; Zachos, Frank E.; Woodman, Peter C.; O'Toole, Peter; Rose, Hugh; Monaghan, Nigel T.; Campana, Michael G.; Bradley, Daniel G.; Edwards, Ceiridwen J.

    2012-05-01

    The problem of how and when the island of Ireland attained its contemporary fauna has remained a key question in understanding Quaternary faunal assemblages. We assessed the complex history and origins of the red deer (Cervus elaphus) in Ireland using a multi-disciplinary approach. Mitochondrial sequences of contemporary and ancient red deer (dating from c 30,000 to 1700 cal. yr BP) were compared to decipher possible source populations of red deer in Ireland, in addition to craniometric analyses of skulls from candidate regions to distinguish between different colonization scenarios. Radiocarbon dating was undertaken on all bone fragments that were previously undated. Finally, a comprehensive review of the scientific literature, unpublished reports and other sources of data were also searched for red deer remains within Irish palaeontological and archaeological contexts. Despite being present in Ireland prior to the Last Glacial Maximum (LGM), there is a notable scarcity of red deer from the Younger Dryas stadial period until the Neolithic. The presence of red deer in Irish archaeological sites then occurs more frequently relative to other species. One population in the southwest of Ireland (Co. Kerry) shared haplotypes with the ancient Irish specimens and molecular dating and craniometric analysis suggests its persistence in Ireland since the Neolithic period. The synthesis of the results from this multi-disciplinary study all indicate that red deer were introduced by humans during the Irish Neolithic period and that one of these populations persists today. In conjunction with recent results from other species, Neolithic people from Ireland's nearest landmass, Britain, played a vital role in establishing its contemporary fauna and flora.

  6. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Hildegard Zimmermann, Heike; Raschke, Elena; Saskia Epp, Laura; Rosmarie Stoof-Leichsenring, Kathleen; Schwamborn, Georg; Schirrmeister, Lutz; Overduin, Pier Paul; Herzschuh, Ulrike

    2017-02-01

    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.

  7. Ancient DNA reveals genetic stability despite demographic decline: 3,000 years of population history in the endemic Hawaiian petrel.

    PubMed

    Welch, Andreanna J; Wiley, Anne E; James, Helen F; Ostrom, Peggy H; Stafford, Thomas W; Fleischer, Robert C

    2012-12-01

    In the Hawaiian Islands, human colonization, which began approximately 1,200 to 800 years ago, marks the beginning of a period in which nearly 75% of the endemic avifauna became extinct and the population size and range of many additional species declined. It remains unclear why some species persisted whereas others did not. The endemic Hawaiian petrel (Pterodroma sandwichensis) has escaped extinction, but colonies on two islands have been extirpated and populations on remaining islands have contracted. We obtained mitochondrial DNA sequences from 100 subfossil bones, 28 museum specimens, and 289 modern samples to investigate patterns of gene flow and temporal changes in the genetic diversity of this endangered species over the last 3,000 years, as Polynesians and then Europeans colonized the Hawaiian Islands. Genetic differentiation was found to be high between both modern and ancient petrel populations. However, gene flow was substantial between the extirpated colonies on Oahu and Molokai and modern birds from the island of Lanai. No significant reductions in genetic diversity occurred over this period, despite fears in the mid-1900s that this species may have been extinct. Simulations show that even a decline to a stable effective population size of 100 individuals would result in the loss of only 5% of the expected heterozygosity. Simulations also show that high levels of genetic diversity may be retained due to the long generation time of this species. Such decoupling between population size and genetic diversity in long-lived species can have important conservation implications. It appears that a pattern of dispersal from declining colonies, in addition to long generation time, may have allowed the Hawaiian petrel to escape a severe genetic bottleneck, and the associated extinction vortex, and persist despite a large population decline after human colonization.

  8. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the collared lemming Dicrostonyx torquatus.

    NASA Astrophysics Data System (ADS)

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-05-01

    Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographic distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum (LGM) had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with cold and dry climate. Using three dimensional network reconstruction and model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference we show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Blling/Allerd) warming phase at 14.5 kyrs BP. Our results show that previous climate warming events had a strong influence on collard lemming populations. A similar population reduction due to predicted future climate change would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic.

  9. DNA analysis of a 30,000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels

    PubMed Central

    Faerman, Marina; Bar-Gal, Gila Kahila; Boaretto, Elisabetta; Boeskorov, Gennady G.; Dokuchaev, Nikolai E.; Ermakov, Oleg A.; Golenishchev, Fedor N.; Gubin, Stanislav V.; Mintz, Eugenia; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergei V.; Zanina, Oksana G.; Formozov, Nikolai A.

    2017-01-01

    In contrast to the abundant fossil record of arctic ground squirrels, Urocitellus parryii, from eastern Beringia, only a limited number of fossils is known from its western part. In 1946, unnamed GULAG prisoners discovered a nest with three mummified carcasses of arctic ground squirrels in the permafrost sediments of the El’ga river, Yakutia, Russia, that were later attributed to a new species, Citellus (Urocitellus) glacialis Vinogr. To verify this assignment and to explore phylogenetic relationships between ancient and present-day arctic ground squirrels, we performed 14C dating and ancient DNA analyses of one of the El’ga mummies and four contemporaneous fossils from Duvanny Yar, northeastern Yakutia. Phylogenetic reconstructions, based on complete cytochrome b gene sequences of five Late Pleistocene arctic ground squirrels and those of modern U. parryii from 21 locations across western Beringia, provided no support for earlier proposals that ancient arctic ground squirrels from Siberia constitute a distinct species. In fact, we observed genetic continuity of the glacialis mitochondrial DNA lineage in modern U. parryii of the Kamchatka peninsula. When viewed in a broader geographic perspective, our findings provide new insights into the genetic history of U. parryii in Late Pleistocene Beringia. PMID:28205612

  10. Strontium-89 Chloride

    MedlinePlus

    ... ever had bone marrow disease, blood disorders, or kidney disease.you should know that strontium-89 chloride may interfere with the normal menstrual cycle (period) in women and may stop sperm production ...

  11. The utility of ancient human DNA for improving allele age estimates, with implications for demographic models and tests of natural selection

    PubMed Central

    Sams, Aaron J.; Hawks, John; Keinan, Alon

    2015-01-01

    The age of polymorphic alleles in humans is often estimated from population genetic patterns in extant human populations, such as allele frequencies, linkage disequilibrium, and rate of mutations. Ancient DNA can improve the accuracy of such estimates, as well as facilitate testing the validity of demographic models underlying many population genetic methods. Specifically, the presence of an allele in a genome derived from an ancient sample testifies that the allele is at least as old as that sample. In this study, we consider a common method for estimating allele age based on allele frequency as applied to variants from the US National Institutes of Health (NIH) Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project. We view these estimates in the context of the presence or absence of each allele in the genomes of the 5300 year old Tyrolean Iceman, Ötzi, and of the 50,000 year old Altai Neandertal. Our results illuminate the accuracy of these estimates and their sensitivity to demographic events that were not included in the model underlying age estimation. Specifically, allele presence in the Iceman genome provides a good fit of allele age estimates to the expectation based on the age of that specimen. The equivalent based on the Neandertal genome leads to a poorer fit. This is likely due in part to the older age of the Neandertal and the older time of the split between modern humans and Neandertals, but also due to gene flow from Neandertals to modern humans not being considered in the underlying demographic model. Thus, the incorporation of ancient DNA can improve allele age estimation, demographic modeling, and tests of natural selection. Our results also point to the importance of considering a more diverse set of ancient samples for understanding the geographic and temporal range of individual alleles. PMID:25467111

  12. Ancient DNA Reveals That the Genetic Structure of the Northern Han Chinese Was Shaped Prior to 3,000 Years Ago

    PubMed Central

    Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511

  13. Recovery of strontium activity from a strontium-82/rubidium-82 generator

    DOEpatents

    Taylor, Wayne A.; Phillips, Dennis R.; Sosnowski, Kenneth M.

    1999-10-12

    Strontium-82 is recovered from spent strontium-82/rubidium-82 generators to provide a source of strontium-82 for additional strontium-82/rubidium-82 generators. The process involves stripping of the strontium-82 from used strontium-82/rubidium-82 generators followed by purification of the strontium-82 material to remove additional metal contaminants to desired levels.

  14. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability.

    PubMed

    Jørgensen, Tina; Haile, James; Möller, Per; Andreev, Andrei; Boessenkool, Sanne; Rasmussen, Morten; Kienast, Frank; Coissac, Eric; Taberlet, Pierre; Brochmann, Christian; Bigelow, Nancy H; Andersen, Kenneth; Orlando, Ludovic; Gilbert, M Thomas P; Willerslev, Eske

    2012-04-01

    Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.

  15. The globalization of naval provisioning: ancient DNA and stable isotope analyses of stored cod from the wreck of the Mary Rose, AD 1545

    PubMed Central

    Hutchinson, William F.; Culling, Mark; Orton, David C.; Hänfling, Bernd; Lawson Handley, Lori; Hamilton-Dyer, Sheila; O'Connell, Tamsin C.; Richards, Michael P.; Barrett, James H.

    2015-01-01

    A comparison of ancient DNA (single-nucleotide polymorphisms) and carbon and nitrogen stable isotope evidence suggests that stored cod provisions recovered from the wreck of the Tudor warship Mary Rose, which sank in the Solent, southern England, in 1545, had been caught in northern and transatlantic waters such as the northern North Sea and the fishing grounds of Iceland and Newfoundland. This discovery, underpinned by control data from archaeological samples of cod bones from potential source regions, illuminates the role of naval provisioning in the early development of extensive sea fisheries, with their long-term economic and ecological impacts. PMID:26473047

  16. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    NASA Astrophysics Data System (ADS)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  17. Mitochondrial DNA Diversity of Modern, Ancient and Wild Sheep (Ovis gmelinii anatolica) from Turkey: New Insights on the Evolutionary History of Sheep

    PubMed Central

    Pişkin, Evangelia; Engin, Atilla; Özer, Füsun; Yüncü, Eren; Doğan, Şükrü Anıl; Togan, İnci

    2013-01-01

    In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE). PMID:24349158

  18. Mitochondrial DNA diversity of modern, ancient and wild sheep(Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep.

    PubMed

    Demirci, Sevgin; Koban Baştanlar, Evren; Dağtaş, Nihan Dilşad; Pişkin, Evangelia; Engin, Atilla; Ozer, Füsun; Yüncü, Eren; Doğan, Sükrü Anıl; Togan, Inci

    2013-01-01

    In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (n = 628), modern wild (Ovis gmelinii anatolica) (n = 30) and ancient domestic sheep from Oylum Höyük in Kilis (n = 33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (n = 22) and another haplotype (n = 8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (n = 11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).

  19. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate.

    PubMed

    Wohl, Gregory R; Chettle, David R; Pejović-Milić, Ana; Druchok, Cheryl; Webber, Colin E; Adachi, Jonathan D; Beattie, Karen A

    2013-01-01

    Strontium ranelate is an approved pharmacotherapy for osteoporosis in Europe and Australia, but not in Canada or the United States. Strontium citrate, an alternative strontium salt, however, is available for purchase over-the-counter as a nutritional supplement. The effects of strontium citrate on bone are largely unknown. The study's objectives were 1) to quantify bone strontium accumulation in female Sprague Dawley rats administered strontium citrate (N=7) and compare these levels to rats administered strontium ranelate (N=6) and vehicle (N=6) over 8 weeks, and 2) to verify an in vivo X-ray fluorescence spectroscopy (XRF) system for measurement of bone strontium in the rat. Daily doses of strontium citrate and strontium ranelate were determined with the intention to achieve equivalent amounts of elemental strontium. However, post-hoc analyses of each strontium compound conducted using energy dispersive spectrometry microanalysis revealed a higher elemental strontium concentration in strontium citrate than strontium ranelate. Bone strontium levels were measured at baseline and 8 weeks follow-up using a unique in vivo XRF technique previously used in humans. XRF measurements were validated against ex vivo measurements of bone strontium using inductively coupled plasma mass spectrometry. Weight gain in rats in all three groups was equivalent over the study duration. A two-way ANOVA was conducted to compare bone strontium levels amongst the three groups. Bone strontium levels in rats administered strontium citrate were significantly greater (p<0.05) than rats administered strontium ranelate and vehicle. ANCOVA analyses were performed with Sr dose as a covariate to account for differences in strontium dosing. The ANCOVA revealed differences in bone strontium levels between the strontium groups were not significant, but that bone strontium levels were still very significantly greater than vehicle.

  20. Tamil merchant in ancient Mesopotamia.

    PubMed

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  1. Ancient Egypt.

    ERIC Educational Resources Information Center

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  2. Ancient DNA Analysis Suggests Negligible Impact of the Wari Empire Expansion in Peru’s Central Coast during the Middle Horizon

    PubMed Central

    Barreto Romero, María Inés; Flores Espinoza, Isabel; Cooper, Alan; Fehren-Schmitz, Lars

    2016-01-01

    The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650–1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region’s demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500–700 AD), Wari (Middle Horizon, 800–1000 AD) and Ychsma (Late Intermediate Period, 1000–1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast. PMID:27248693

  3. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: insights from ancient DNA and stable isotopes.

    PubMed

    Alter, S Elizabeth; Newsome, Seth D; Palumbi, Stephen R

    2012-01-01

    Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ~5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region) and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size.

  4. MtDNA Haplogroup A10 Lineages in Bronze Age Samples Suggest That Ancient Autochthonous Human Groups Contributed to the Specificity of the Indigenous West Siberian Population

    PubMed Central

    Pilipenko, Aleksandr S.; Trapezov, Rostislav O.; Zhuravlev, Anton A.; Molodin, Vyacheslav I.; Romaschenko, Aida G.

    2015-01-01

    Background The craniometric specificity of the indigenous West Siberian human populations cannot be completely explained by the genetic interactions of the western and eastern Eurasian groups recorded in the archaeology of the area from the beginning of the 2nd millennium BC. Anthropologists have proposed another probable explanation: contribution to the genetic structure of West Siberian indigenous populations by ancient human groups, which separated from western and eastern Eurasian populations before the final formation of their phenotypic and genetic features and evolved independently in the region over a long period of time. This hypothesis remains untested. From the genetic point of view, it could be confirmed by the presence in the gene pool of indigenous populations of autochthonous components that evolved in the region over long time periods. The detection of such components, particularly in the mtDNA gene pool, is crucial for further clarification of early regional genetic history. Results and Conclusion We present the results of analysis of mtDNA samples (n = 10) belonging to the A10 haplogroup, from Bronze Age populations of West Siberian forest-steppe (V—I millennium BC), that were identified in a screening study of a large diachronic sample (n = 96). A10 lineages, which are very rare in modern Eurasian populations, were found in all the Bronze Age groups under study. Data on the A10 lineages’ phylogeny and phylogeography in ancient West Siberian and modern Eurasian populations suggest that A10 haplogroup underwent a long-term evolution in West Siberia or arose there autochthonously; thus, the presence of A10 lineages indicates the possible contribution of early autochthonous human groups to the genetic specificity of modern populations, in addition to contributions of later interactions of western and eastern Eurasian populations. PMID:25950581

  5. Ancient DNA analyses of early archaeological sites in New Zealand reveal extreme exploitation of moa (Aves: Dinornithiformes) at all life stages

    NASA Astrophysics Data System (ADS)

    Oskam, Charlotte L.; Allentoft, Morten E.; Walter, Richard; Scofield, R. Paul; Haile, James; Holdaway, Richard N.; Bunce, Michael; Jacomb, Chris

    2012-10-01

    The human colonisation of New Zealand in the late thirteenth century AD led to catastrophic impacts on the local biota and is among the most compelling examples of human over-exploitation of native fauna, including megafauna. Nearly half of the species in New Zealand' s pre-human avifauna are now extinct, including all nine species of large, flightless moa (Aves: Dinornithiformes). The abundance of moa in early archaeological sites demonstrates the significance of these megaherbivores in the diet of the first New Zealanders. Combining moa assemblage data, based on DNA identification of eggshell and bone, with morphological identification of bone (literature and museum catalogued specimens), we present the most comprehensive audit of moa to date from several significant 13th-15th century AD archaeological deposits across the east coast of the South Island. Mitochondrial DNA (mtDNA) was amplified from 251 of 323 (78%) eggshell fragments and 22 of 27 (88%) bone samples, and the analyses revealed the presence of four moa species: Anomalopteryx didiformis; Dinornis robustus; Emeus crassus and Euryapteryx curtus. The mtDNA, along with polymorphic microsatellite markers, enabled an estimate of the minimum number of individual eggs consumed at each site. Remarkably, in one deposit over 50 individual eggs were identified - a number that likely represents a considerable proportion of the total reproductive output of moa in the area and emphasises that human predation of all life stages of moa was intense. Molecular sexing was conducted on bones (n = 11). Contrary to previous ancient DNA studies from natural sites that consistently report an excess of female moa, we observed an excess of males (2.7:1), suggestive that males were preferential targets. This could be related to different behaviour between the two highly size-dimorphic sexes in moa. Lastly, we investigated the moa species from recovered skeletal and eggshell remains from seven Wairau Bar burials, and identified

  6. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and...

  7. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and...

  8. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and...

  9. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and...

  10. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and...

  11. Identification of Photosynthetic Plankton Communities Using Sedimentary Ancient DNA and Their Response to late-Holocene Climate Change on the Tibetan Plateau

    PubMed Central

    Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J. L.; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang

    2014-01-01

    Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake. PMID:25323386

  12. Ancient mtDNA Analysis of Early 16th Century Caribbean Cattle Provides Insight into Founding Populations of New World Creole Cattle Breeds

    PubMed Central

    Speller, Camilla F.; Burley, David V.; Woodward, Robyn P.; Yang, Dongya Y.

    2013-01-01

    The Columbian Exchange resulted in a widespread movement of humans, plants and animals between the Old and New Worlds. The late 15th to early 16th century transfer of cattle from the Iberian Peninsula and Canary Islands to the Caribbean laid the foundation for the development of American creole cattle (Bos taurus) breeds. Genetic analyses of modern cattle from the Americas reveal a mixed ancestry of European, African and Indian origins. Recent debate in the genetic literature centers on the ‘African’ haplogroup T1 and its subhaplogroups, alternatively tying their origins to the initial Spanish herds, and/or from subsequent movements of taurine cattle through the African slave trade. We examine this problem through ancient DNA analysis of early 16th century cattle bone from Sevilla la Nueva, the first Spanish colony in Jamaica. In spite of poor DNA preservation, both T3 and T1 haplogroups were identified in the cattle remains, confirming the presence of T1 in the earliest Spanish herds. The absence, however, of “African-derived American” haplotypes (AA/T1c1a1) in the Sevilla la Nueva sample, leaves open the origins of this sub-haplogroup in contemporary Caribbean cattle. PMID:23894505

  13. Identification of photosynthetic plankton communities using sedimentary ancient DNA and their response to late-Holocene climate change on the Tibetan Plateau.

    PubMed

    Hou, Weiguo; Dong, Hailiang; Li, Gaoyuan; Yang, Jian; Coolen, Marco J L; Liu, Xingqi; Wang, Shang; Jiang, Hongchen; Wu, Xia; Xiao, Haiyi; Lian, Bin; Wan, Yunyang

    2014-10-17

    Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not make and leave microscopically diagnostic features in the sedimentary record. Here we established a taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA (sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes in light intensity were all responsible for the observed temporal changes in the abundance of two dominant phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae). Collectively our data show that global and regional climatic events exhibited a strong influence on the paleoecology of phototrophic plankton in Kusai Lake.

  14. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses

    PubMed Central

    2008-01-01

    Background Ectocarpus siliculosus virus-1 (EsV-1) is a lysogenic dsDNA virus belonging to the super family of nucleocytoplasmic large DNA viruses (NCLDV) that infect Ectocarpus siliculosus, a marine filamentous brown alga. Previous studies indicated that the viral genome is integrated into the host DNA. In order to find the integration sites of the viral genome, a genomic library from EsV-1-infected algae was screened using labelled EsV-1 DNA. Several fragments were isolated and some of them were sequenced and analyzed in detail. Results Analysis revealed that the algal genome is split by a copy of viral sequences that have a high identity to EsV-1 DNA sequences. These fragments are interspersed with DNA repeats, pseudogenes and genes coding for products involved in DNA replication, integration and transposition. Some of these gene products are not encoded by EsV-1 but are present in the genome of other members of the NCLDV family. Further analysis suggests that the Ectocarpus algal genome contains traces of the integration of a large dsDNA viral genome; this genome could be the ancestor of the extant NCLDV genomes. Furthermore, several lines of evidence indicate that the EsV-1 genome might have originated in these viral DNA pieces, implying the existence of a complex integration and recombination system. A protein similar to a new class of tyrosine recombinases might be a key enzyme of this system. Conclusion Our results support the hypothesis that some dsDNA viruses are monophyletic and evolved principally through genome reduction. Moreover, we hypothesize that phaeoviruses have probably developed an original replication system. PMID:18405387

  15. Interferometry with Strontium Ions

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  16. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia.

    PubMed

    Jeffery, Nicholas W; Yampolsky, Lev; Gregory, T Ryan

    2017-04-01

    Lake Baikal in Russia is a large, ancient lake that has been the site of a major radiation of amphipod crustaceans. Nearly 400 named species are known in this single lake, and it is thought that many more await description. The size and depth of Lake Baikal, in particular, may have contributed to the radiation of endemic amphipods by providing a large number of microhabitats for species to invade and subsequently experience reproductive isolation. Here we investigate the possibility that large-scale genomic changes have also accompanied diversification in these crustaceans. Specifically, we report genome size estimates for 36 species of Baikal amphipods, and examine the relationship between genome size, body size, and the maximum depths at which the amphipods are found in the lake. Genome sizes ranged nearly 8-fold in this sample of amphipod species, from 2.15 to 16.63 pg, and there were significant, positive, phylogenetically corrected relationships between genome size, body size, maximum depth, and diversification rate among these species. Our results suggest that major genomic changes, including transposable element proliferation, have accompanied speciation that was driven by selection for differences in body size and habitat preference in Lake Baikal amphipods.

  17. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  18. Thermoelectricity in strontium titanate

    NASA Astrophysics Data System (ADS)

    Scullin, Matthew Leo

    This dissertation treats the synthesis, experimental characterization, thermoelectric properties, potential applications of, and theoretical basis for strontium titanate thermoelectric materials. It is found that doubly-doped strontium titanate, Sr1-xLaxTiO3-d is an efficient n-type thermoelectric material, yielding a dimensionless thermoelectric figure of merit zT higher than other oxides and among the highest of any thermoelectric material in general. The improvement in thermoelectric efficiency of this material over other oxides is attributed in large part to the oxygen vacancy, which increases the electronic effective mass m* and in turn thermopower, increases electrical conductivity through donating electrons, and decreases lattice thermal conductivity. Through proper selection of La and oxygen vacancy doping, m* can be tuned in the material in the range of 2-20 me and thermal conductivity reduced by over a factor of three compared to stoichiometric SrTiO3. The potential applications of thin-film thermoelectrics in energy conversion are explored. In addition, the remarkable oxygen reduction of SrTiO3 single-crystal substrates is reported as resulting from pulsed laser deposition growth of oxide thin-films on their surfaces.

  19. Fatty acid and DNA analyses of Permian bacteria isolated from ancient salt crystals reveal differences with their modern relatives.

    PubMed

    Vreeland, Russell H; Rosenzweig, William D; Lowenstein, Tim; Satterfield, Cindy; Ventosa, Antonio

    2006-02-01

    The isolation of living microorganisms from primary 250-million-year-old (MYA) salt crystals has been questioned by several researchers. The most intense discussion has arisen from questions about the texture and age of the crystals used, the ability of organisms to survive 250 million years when exposed to environmental factors such as radiation and the close similarity between 16S rRNA sequences in the Permian and modern microbes. The data in this manuscript are not meant to provide support for the antiquity of the isolated bacterial strains. Rather, the data presents several comparisons between the Permian microbes and other isolates to which they appear related. The analyses include whole cell fatty acid profiling, DNA-DNA hybridizations, ribotyping, and random amplified polymorphic DNA amplification (RAPD). These data show that the Permian strains, studied here, differ significantly from their more modern relatives. These differences are accumulating in both phenotypic and molecular areas of the cells. At the fatty acid level the differences are approaching but have not reached separate species status. At the molecular level the variation appears to be distributed across the genome and within the gene regions flanking the highly conserved 16S rRNA itself. The data show that these bacteria are not identical and help to rule out questions of contamination by putatively modern strains.

  20. Strontium-90 fluoride data sheet

    SciTech Connect

    Fullam, H.T.

    1981-06-01

    This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977.

  1. Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding.

    PubMed

    Jørgensen, Tina; Kjaer, Kurt H; Haile, James; Rasmussen, Morten; Boessenkool, Sanne; Andersen, Kenneth; Coissac, Eric; Taberlet, Pierre; Brochmann, Christian; Orlando, Ludovic; Gilbert, M Thomas P; Willerslev, Eske

    2012-04-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from earlier vegetation surveys on the nunataks (in 1878, 1967 and 2009). In 1967, a much higher biodiversity was detected than from any other of the studied periods. While this may be related to differences in sampling efforts for the oldest period, it is not the case when comparing the 1967 and 2009 levels where the botanical survey was exhaustive. As no animals and humans are found on the nunataks, this change in diversity over a period of just 42 years must relate to environmental changes probably being climate-driven. This suggests that even the flora of fairly small and isolated ice-free areas reacts quickly to a changing climate.

  2. Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis

    PubMed Central

    2014-01-01

    Background Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations. Results We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East. Conclusions We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions. PMID:24690312

  3. A dataset of fishes in and around Inle Lake, an ancient lake of Myanmar, with DNA barcoding, photo images and CT/3D models

    PubMed Central

    Kano, Yuichi; Musikasinthorn, Prachya; Iwata, Akihisa; Tun, Sein; Yun, LKC; Win, Seint Seint; Matsui, Shoko; Tabata, Ryoichi; Yamasaki, Takeshi

    2016-01-01

    Abstract Background Inle (Inlay) Lake, an ancient lake of Southeast Asia, is located at the eastern part of Myanmar, surrounded by the Shan Mountains. Detailed information on fish fauna in and around the lake has long been unknown, although its outstanding endemism was reported a century ago. New information Based on the fish specimens collected from markets, rivers, swamps, ponds and ditches around Inle Lake as well as from the lake itself from 2014 to 2016, we recorded a total of 948 occurrence data (2120 individuals), belonging to 10 orders, 19 families, 39 genera and 49 species. Amongst them, 13 species of 12 genera are endemic or nearly endemic to the lake system and 17 species of 16 genera are suggested as non-native. The data are all accessible from the document “A dataset of Inle Lake fish fauna and its distribution (http://ipt.pensoft.net/resource.do?r=inle_fish_2014-16)”, as well as DNA barcoding data (mitochondrial COI) for all species being available from the DDBJ/EMBL/GenBank (Accession numbers: LC189568–LC190411). Live photographs of almost all the individuals and CT/3D model data of several specimens are also available at the graphical fish biodiversity database (http://ffish.asia/INLE2016; http://ffish.asia/INLE2016-3D). The information can benefit the clarification, public concern and conservation of the fish biodiversity in the region. PMID:27932926

  4. Ancient DNA reveals selection acting on genes associated with hypoxia response in pre-Columbian Peruvian Highlanders in the last 8500 years

    PubMed Central

    Fehren-Schmitz, Lars; Georges, Lea

    2016-01-01

    Archaeological evidence shows that humans began living in the high altitude Andes approximately 12,000 years ago. Andean highlanders are known to have developed the most complex societies of pre-Columbian South America despite challenges to their health and reproductive success resulting from chronic exposure to hypoxia. While the physiological adaptations to this environmental stressor are well studied in contemporary Andean highlanders, the molecular evolutionary processes associated with such adaptations remain unclear. We aim to better understand how humans managed to demographically establish in this harsh environment by addressing a central question: did exposure to hypoxia drive adaptation via natural selection within Andean populations or did an existing phenotype –characterized by reduced susceptibility to hypoxic stress–enable human settlement of the Andes? We genotyped three variable loci within the NOS3 and EGLN1 genes previously associated with adaptation to high altitude in 150 ancient human DNA samples from Peruvian high altitude and coastal low altitude sites in a time frame between ~8500–560 BP. We compare the data of 109 successful samples to forward simulations of genetic drift with natural selection and find that selection, rather than drift, explains the gradual frequency changes observed in the highland populations for two of the three SNPs. PMID:26996763

  5. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds.

    PubMed

    Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R

    2017-04-01

    Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum.

  6. Genetic characteristics and migration history of a bronze culture population in the West Liao-River valley revealed by ancient DNA.

    PubMed

    Li, Hongjie; Zhao, Xin; Zhao, Yongbin; Li, Chunxiang; Si, Dayong; Zhou, Hui; Cui, Yinqiu

    2011-12-01

    In order to study the genetic characteristics of the Lower Xiajiadian culture (LXC) population, a main bronze culture branch in northern China dated 4500-3500 years ago, two uniparentally inherited markers, mitochondrial DNA and Y-chromosome single-nucleotide polymorphisms (Y-SNPs), were analyzed on 14 human remains excavated from the Dadianzi site. The 14 sequences, which contained 13 haplotypes, were assigned to 9 haplogroups, and Y-SNP typing of 5 male individuals assigned them to haplogroups N (M231) and O3 (M122). The results indicate that the LXC population mainly included people carrying haplogroups from northern Asia who had lived in this region since the Neolithic period, as well as genetic evidence of immigration from the Central Plain. Later in the Bronze Age, part of the population migrated to the south away from a cooler climate, which ultimately influenced the gene pool in the Central Plain. Thus, climate change is an important factor, which drove the population migration during the Bronze Age in northern China. Based on these results, the local genetic continuity did not seem to be affected by outward migration, although more data are needed especially from other ancient populations to determine the influence of return migration on genetic continuity.

  7. Reconstruction of a historical genealogy by means of STR analysis and Y-haplotyping of ancient DNA.

    PubMed

    Gerstenberger, J; Hummel, S; Schultes, T; Häck, B; Herrmann, B

    1999-01-01

    Archaeological excavations in St Margaretha's church at Reichersdorf, Germany, in 1993 led to the discovery of eight skeletons, so far assumed to be of the Earls of Königsfeld, who used the church as a family sepulchre over a period of seven generations from 1546 to 1749. DNA-based sex testing and analysis of autosomal short tandem repeat systems (STR) was carried out to confirm the assumption of kinship. Since five of the individuals were determined as males, analysis of Y-specific STRs seemed feasible. A comparison of Y-haplotypes revealed that one individual could not be linked to the Königsfeld patrilineage, an observation supported by autosomal STR evidence. Two individuals typed as females posed an identification problem, since supposedly only male members of the family were buried in St Margaretha's. Nevertheless, these individuals could tentatively be identified as members of the House of Königsfeld through genetic fingerprinting.

  8. Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process

    PubMed Central

    Malmström, Helena; Linderholm, Anna; Skoglund, Pontus; Storå, Jan; Sjödin, Per; Gilbert, M. Thomas P.; Holmlund, Gunilla; Willerslev, Eske; Jakobsson, Mattias; Lidén, Kerstin; Götherström, Anders

    2015-01-01

    The European Neolithization process started around 12 000 years ago in the Near East. The introduction of agriculture spread north and west throughout Europe and a key question has been if this was brought about by migrating individuals, by an exchange of ideas or a by a mixture of these. The earliest farming evidence in Scandinavia is found within the Funnel Beaker Culture complex (Trichterbecherkultur, TRB) which represents the northernmost extension of Neolithic farmers in Europe. The TRB coexisted for almost a millennium with hunter–gatherers of the Pitted Ware Cultural complex (PWC). If migration was a substantial part of the Neolithization, even the northerly TRB community would display a closer genetic affinity to other farmer populations than to hunter–gatherer populations. We deep-sequenced the mitochondrial hypervariable region 1 from seven farmers (six TRB and one Battle Axe complex, BAC) and 13 hunter–gatherers (PWC) and authenticated the sequences using postmortem DNA damage patterns. A comparison with 124 previously published sequences from prehistoric Europe shows that the TRB individuals share a close affinity to Central European farmer populations, and that they are distinct from hunter–gatherer groups, including the geographically close and partially contemporary PWC that show a close affinity to the European Mesolithic hunter–gatherers. PMID:25487325

  9. On the origin of Iberomaurusians: new data based on ancient mitochondrial DNA and phylogenetic analysis of Afalou and Taforalt populations.

    PubMed

    Kefi, Rym; Hechmi, Meriem; Naouali, Chokri; Jmel, Haifa; Hsouna, Sana; Bouzaid, Eric; Abdelhak, Sonia; Beraud-Colomb, Eliane; Stevanovitch, Alain

    2016-12-30

    The Western North African population was characterized by the presence of Iberomaurusian civilization at the Epiplaeolithic period (around 20,000 years before present (YBP) to 10,000 YBP). The origin of this population is still not clear: they may come from Europe, Near East, sub-Saharan Africa or they could have evolved in situ in North Africa. With the aim to contribute to a better knowledge of the settlement of North Africa we analysed the mitochondrial DNA extracted from Iberomaurusian skeletons exhumed from the archaeological site of Afalou (AFA) (15,000-11,000 YBP) in Algeria and from the archaeological site of Taforalt (TAF) (23,000-10,800 YBP) in Morocco. Then, we carried out a phylogenetic analysis relating these Iberomaurusians to 61 current Mediterranean populations. The genetic structure of TAF and AFA specimens contains only North African and Eurasian maternal lineages. These finding demonstrate the presence of these haplotypes in North Africa from at least 20,000 YBP. The very low contribution of a Sub-Saharan African haplotype in the Iberomaurusian samples is confirmed. We also highlighted the existence of genetic flows between Southern and Northern coast of the Mediterranean.

  10. Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process.

    PubMed

    Malmström, Helena; Linderholm, Anna; Skoglund, Pontus; Storå, Jan; Sjödin, Per; Gilbert, M Thomas P; Holmlund, Gunilla; Willerslev, Eske; Jakobsson, Mattias; Lidén, Kerstin; Götherström, Anders

    2015-01-19

    The European Neolithization process started around 12 000 years ago in the Near East. The introduction of agriculture spread north and west throughout Europe and a key question has been if this was brought about by migrating individuals, by an exchange of ideas or a by a mixture of these. The earliest farming evidence in Scandinavia is found within the Funnel Beaker Culture complex (Trichterbecherkultur, TRB) which represents the northernmost extension of Neolithic farmers in Europe. The TRB coexisted for almost a millennium with hunter-gatherers of the Pitted Ware Cultural complex (PWC). If migration was a substantial part of the Neolithization, even the northerly TRB community would display a closer genetic affinity to other farmer populations than to hunter-gatherer populations. We deep-sequenced the mitochondrial hypervariable region 1 from seven farmers (six TRB and one Battle Axe complex, BAC) and 13 hunter-gatherers (PWC) and authenticated the sequences using postmortem DNA damage patterns. A comparison with 124 previously published sequences from prehistoric Europe shows that the TRB individuals share a close affinity to Central European farmer populations, and that they are distinct from hunter-gatherer groups, including the geographically close and partially contemporary PWC that show a close affinity to the European Mesolithic hunter-gatherers.

  11. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a...

  12. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a...

  13. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a...

  14. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a...

  15. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a...

  16. The use of strontium-87/strontium-86 ratios to measure atmospheric transport in forested watersheds

    SciTech Connect

    Graustein, W.C.; Armstrong, R.L.

    1983-01-21

    Strontium-87/strontium-86 ratios indicate the sources of strontium in samples of natural waters, vegetation, and soil material taken from watersheds in the Sangre de Cristo Mountains of New Mexico. More than 75 percent of the strontium in the vegetation is ultimately derived from atmospheric transport and less than 25 percent from the weathering of the underlying rock. Much of the airborne strontium enters the watersheds by impacting on coniferous foliage, but deciduous foliage apparently traps little, if any, strontium-bearing aerosol. The strontium and presumably other nutrients are continuously recycled in a nearly closed system consisting of upper soil horizons, forest litter, and the standing crop of vegetation.

  17. The Use of Strontium-87/Strontium-86 Ratios to Measure Atmospheric Transport into Forested Watersheds

    NASA Astrophysics Data System (ADS)

    Graustein, William C.; Armstrong, Richard L.

    1983-01-01

    Strontium-87/strontium-86 ratios indicate the sources of strontium in samples of natural waters, vegetation, and soil material taken from watersheds in the Sangre de Cristo Mountains of New Mexico. More than 75 percent of the strontium in the vegetation is ultimately derived from atmospheric transport and less than 25 percent from the weathering of the underlying rock. Much of the airborne strontium enters the watersheds by impacting on coniferous foliage, but deciduous foliage apparently traps little, if any, strontium-bearing aerosol. The strontium and presumably other nutrients are continuously recycled in a nearly closed system consisting of upper soil horizons, forest litter, and the standing crop of vegetation.

  18. Effects of oral supplementation with stable strontium

    PubMed Central

    Skoryna, Stanley C.

    1981-01-01

    The biologic effects of stable strontium, a naturally occurring trace element in the diet and the body, have been little investigated. This paper discusses the effects of oral supplementation with stable strontium in laboratory studies and clinical investigations. The extent of intestinal absorption of various doses of orally administered strontium was estimated by determining serum and tissue levels with atomic absorption spectrophotometry. The central observation is that increased oral intake produces a direct increase in serum levels and intracellular uptake of strontium. The results of these studies, as well as those of other investigators, demonstrate that a moderate dosage of stable strontium does not adversely affect the level of calcium either in the serum or in soft tissues. In studies of patients receiving 1 to 1.5 g/d of strontium gluconate, a sustained increase in the serum level of strontium produced a 100-fold increase in the strontium:calcium ratio. In rats, studies indicate that an increase in intracellular strontium content following supplementation may exert a protective effect on mitochondrial structure, probably by means of a stabilizing effect of strontium on membranes. The strontium:calcium ratio in animals receiving a standard diet is higher in the cell than in the extracellular fluid; this may be of physiologic significance. An increase in density that corresponded to the deposition of stable strontium was observed in areas of bone lesions due to metastatic cancer in patients receiving stable strontium supplementation. This suggests the possibility of using strontium to mineralize osteophenic areas and to relieve bone pain. Also, because of reports of an inverse relation between the incidence of dental caries and a high strontium content in drinking water, the use of natural water containing relatively high levels of stable strontium should be considered. In each of these instances it is important to maintain a normal dietary intake of

  19. Multiwavelength Strontium Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  20. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  1. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  2. Ancient Egypt

    NASA Astrophysics Data System (ADS)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  3. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  4. Identification of ancient remains through genomic sequencing

    PubMed Central

    Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

    2008-01-01

    Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

  5. Strontium: Part II. Chemistry, Biological Aspects and Applications.

    ERIC Educational Resources Information Center

    Britton, G. C.; Johnson, C. H.

    1987-01-01

    Reviews basic information on the Chemistry of strontium and its compounds. Explains biological aspects of strontium and its pharmaceutical applications. Highlights industrial application of strontium and its components. (ML)

  6. Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate.

    PubMed

    Oliveira, Josianne P; Querido, William; Caldas, Rogério J; Campos, Andrea P C; Abraçado, Leida G; Farina, Marcos

    2012-09-01

    The aim of this study was to evaluate the strontium incorporation into specific bones and teeth of rats treated with strontium ranelate. The relative strontium levels [Sr/(Ca + Sr) ratio] were obtained by synchrotron radiation micro X-ray fluorescence. The incisor teeth were further examined by energy dispersive X-ray spectroscopy (EDS) in a scanning electron microscope. The isolated mineral phase was investigated by EDS in a transmission electron microscope and X-ray diffraction. The strontium content was markedly increased in animals treated with strontium ranelate, with different incorporation levels found among specific bones, regions within the same bone and teeth. The highest strontium levels were observed in the iliac crest, mandible and calvaria, while the lowest were observed in the femoral diaphysis, lumbar vertebrae, rib and alveolar bone. The strontium content was higher in the femoral neck than in the diaphysis. The strontium levels also varied within the alveolar bone. High levels of strontium were found in the incisor tooth, with values similar to those in the iliac crest. Strontium was observed in both enamel and dentin. The strontium content of the molar tooth was negligible. Strontium was incorporated into the mineral substance, with up to one strontium replacing one out of 10 calcium ions within the apatite crystal lattice. The mineral from treated animals presented increased lattice parameters, which might be associated to their bone strontium contents. In conclusion, the incorporation of strontium occurred in different levels into distinct bones, regions within the same bone and teeth of rats treated with strontium ranelate.

  7. Resurrecting ancient animal genomes: the extinct moa and more.

    PubMed

    Huynen, Leon; Millar, Craig D; Lambert, David M

    2012-08-01

    Recently two developments have had a major impact on the field of ancient DNA (aDNA). First, new advances in DNA sequencing, in combination with improved capture/enrichment methods, have resulted in the recovery of orders of magnitude more DNA sequence data from ancient animals. Second, there has been an increase in the range of tissue types employed in aDNA. Hair in particular has proven to be very successful as a source of DNA because of its low levels of contamination and high level of ancient endogenous DNA. These developments have resulted in significant advances in our understanding of recently extinct animals: namely their evolutionary relationships, physiology, and even behaviour. Hair has been used to recover the first complete ancient nuclear genome, that of the extinct woolly mammoth, which then facilitated the expression and functional analysis of haemoglobins. Finally, we speculate on the consequences of these developments for the possibility of recreating extinct animals.

  8. PREPARATION OF TE SYNTHETIC STRONTIUM ISOMORPH OF COLEMANITE AND OTHER RELATED STRONTIUM BORATE HYDRATES,

    DTIC Science & Technology

    strontium iodate, (2) miscellaneous conversion reactions in borax and boric acid solution, (3) reactions of ammonium pentaborate and strontium...This compound is the strontium isomorph of cole manite (2CaO.3B2O3.5H2O). The following series of reactions were investigated: (1) reactions of borax and

  9. Strontium Content and Variable Strontium-Chlorinity Relationship of Sargasso Sea Water.

    PubMed

    Mackenzie, F T

    1964-10-23

    Sargasso Sea water has a variable strontium-chlorinity relationship. This observation is contrary to the view that strontium in the ocean is in constant proportion to chlorinity. It is suggested that the increase in strontium concentration at 500 to 800 meters in Sargasso Sea water results from interaction between organic aggregates and the water.

  10. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-12-08

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.

  11. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  12. Combined transuranic-strontium extraction process

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.

    1991-12-31

    The transuranic (TRU) elements neptunium, plutonium and amercium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N.N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU`s to gather with strontium, uranium and technetium. The TRU`s and the strontium can then be selectively stripped from the extractant for disposal.

  13. Separation of strontium from fecal matter

    DOEpatents

    Kester, Dianne K.

    1995-01-01

    A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  14. Separation of strontium from fecal matter

    DOEpatents

    Kester, D.K.

    1995-01-03

    A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

  15. METHOD OF REMOVING STRONTIUM IONS

    DOEpatents

    Rhodes, D.W.; McHenry, J.R.; Ames, L.L. Jr.

    1962-05-01

    A method is given for removing trace amounts of Sr/sup 90/ from solutions. Phosphate ion is added to the solution and it is then brought into contact with a solid salt such as calcium carbonate which will react methathetically with the phosphate ion to form a salt such as calcium phosphate. During this reaction, strontium will be absorbed to a high degree within the newly formed lattice. (AEC)

  16. Strontium mineralization of shark vertebrae.

    PubMed

    Raoult, Vincent; Peddemors, Victor M; Zahra, David; Howell, Nicholas; Howard, Daryl L; de Jonge, Martin D; Williamson, Jane E

    2016-07-18

    Determining the age of sharks using vertebral banding is a vital component of management, but the causes of banding are not fully understood. Traditional shark ageing is based on fish otolith ageing methods where growth bands are assumed to result from varied seasonal calcification rates. Here we investigate these assumptions by mapping elemental distribution within the growth bands of vertebrae from six species of sharks representing four different taxonomic orders using scanning x-ray fluorescence microscopy. Traditional visual growth bands, determined with light microscopy, were more closely correlated to strontium than calcium in all species tested. Elemental distributions suggest that vertebral strontium bands may be related to environmental variations in salinity. These results highlight the requirement for a better understanding of shark movements, and their influence on vertebral development, if confidence in age estimates is to be improved. Analysis of shark vertebrae using similar strontium-focused elemental techniques, once validated for a given species, may allow more successful estimations of age on individuals with few or no visible vertebral bands.

  17. Strontium mineralization of shark vertebrae

    PubMed Central

    Raoult, Vincent; Peddemors, Victor M.; Zahra, David; Howell, Nicholas; Howard, Daryl L.; de Jonge, Martin D.; Williamson, Jane E.

    2016-01-01

    Determining the age of sharks using vertebral banding is a vital component of management, but the causes of banding are not fully understood. Traditional shark ageing is based on fish otolith ageing methods where growth bands are assumed to result from varied seasonal calcification rates. Here we investigate these assumptions by mapping elemental distribution within the growth bands of vertebrae from six species of sharks representing four different taxonomic orders using scanning x-ray fluorescence microscopy. Traditional visual growth bands, determined with light microscopy, were more closely correlated to strontium than calcium in all species tested. Elemental distributions suggest that vertebral strontium bands may be related to environmental variations in salinity. These results highlight the requirement for a better understanding of shark movements, and their influence on vertebral development, if confidence in age estimates is to be improved. Analysis of shark vertebrae using similar strontium-focused elemental techniques, once validated for a given species, may allow more successful estimations of age on individuals with few or no visible vertebral bands. PMID:27424768

  18. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  19. Imbalance in the oceanic strontium budget

    NASA Astrophysics Data System (ADS)

    Davis, Amy C.; Bickle, Mike J.; Teagle, Damon A. H.

    2003-06-01

    Palmer and Edmond [Earth Planet. Sci. Lett. 92 (1989) 11-26] indicated that thermally plausible oceanic hydrothermal inputs of strontium to the oceans are not sufficient to balance the riverine input. It has recently been suggested that off-axis low-temperature hydrothermal circulation may reconcile this discrepancy [e.g. Butterfield et al., Geochim. Cosmochim. Acta 65 (2001) 4141-4153]. Strontium isotope alteration profiles are compiled for sampled in situ ocean and ophiolite crust to calculate a sustainable cumulative hydrothermal flux to the oceanic strontium budget. High-temperature circulation contributes ˜1.8×10 9 mol yr -1 of basaltic strontium to the oceans. Enhanced hydrothermal systems in arc-related spreading environments (10% of the crust) may increase this to ˜2.3×10 9 mol yr -1. It is shown that low-temperature flow cannot supply the remaining flux required to reconcile the oceanic strontium budget (˜8.7×10 9 mol yr -1) because this would require 100% exchange of seawater strontium for basaltic strontium over an 820 m section of MORB-like crust. Currently sampled in situ ocean crust is not altered to this extent. The isotopic alteration intensity of 120 Myr crust sampled in DSDP Holes 417D and 418A indicates that off-axis low-temperature flow may contribute up to ˜8×10 8 mol yr -1 of basaltic strontium (9% of that required). The ocean crust can sustain a total basaltic strontium flux of ˜3.1±0.8×10 9 mol yr -1 ( 87Sr/ 86Sr ˜0.7025) to the oceans. This is consistent with hydrothermal flux estimates, but remains less than a third of the flux required to balance the oceanic strontium budget. The ocean crust cannot support a higher hydrothermal contribution unless the average ocean crust is significantly more altered than current observation.

  20. Identification of DNA-PK in the arthropods. Evidence for the ancient ancestry of vertebrate non-homologous end-joining.

    PubMed

    Doré, Andrew S; Drake, Adam C B; Brewerton, Suzanne C; Blundell, Tom L

    2004-01-05

    Cellular life depends upon the preservation and transmission of genetic material. Double stranded DNA breaks (DSBs) cause catastrophic gene loss in cell division and must be promptly and accurately repaired. In eukaryotes DSBs may be repaired by either non-homologous end-joining (NHEJ), single strand annealing or homologous recombination (HR). Vertebrate NHEJ has been shown to depend upon the DNA-dependent protein kinase (DNA-PK) consisting of the phosphatidylinositol 3 (PI 3)-kinase like (PIKK) catalytic sub-unit (DNA-PKcs) and the DNA targeting factor Ku. Our analysis of recently completed genomes found several novel PIKKs in Anopheles gambiae and Drosophila melanogaster including a novel mosquito DNA-PKcs orthologue, the first non-vertebrate DNA-PKcs described to date. We also detected a DNA-PKcs fragment in the high quality EST set of Apis mellifera ligustica (honey bee) suggesting that DNA-PK is a far older and more important eukaryotic complex than previously thought.

  1. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene.

    PubMed

    Campos, Paula F; Kristensen, Tommy; Orlando, Ludovic; Sher, Andrei; Kholodova, Marina V; Götherström, Anders; Hofreiter, Michael; Drucker, Dorothée G; Kosintsev, Pavel; Tikhonov, Alexei; Baryshnikov, Gennady F; Willerslev, Eske; Gilbert, M Thomas P

    2010-11-01

    Prior to the Holocene, the range of the saiga antelope (Saiga tatarica) spanned from France to the Northwest Territories of Canada. Although its distribution subsequently contracted to the steppes of Central Asia, historical records indicate that it remained extremely abundant until the end of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species' genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two well-supported, and clearly distinct, clades of saiga. The first, spanning a time range from >49,500 (14) C ybp to the present, comprises all the modern specimens and ancient samples from the Northern Urals, Middle Urals and Northeast Yakutia. The second clade is exclusive to the Northern Urals and includes samples dating from between 40,400 to 10,250 (14) C ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate Bayesian Computation analyses show the observed data is more compatible with a drastic population size reduction (c. 66-77%) following either a demographic bottleneck in the course of the Holocene or late Pleistocene, or a geographic fragmentation (followed by local extinction of one subpopulation) at the Holocene/Pleistocene transition.

  2. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  3. A 150-year record of ancient DNA, lipid biomarkers and hydrogen isotopes, tracing the microbial-planktonic community succession controlled by (hydro)climatic variability in a tropical lake

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk; Yamoah, Kweku; Callac, Nolwenn; Fru, Ernest Chi; Chabangborn, Akkaneewut; Rattray, Jayne; Wohlfarth, Barbara

    2016-04-01

    We investigated the decadal variations in phytoplankton communities, and their response to environmental and climatic conditions, from a ˜150 year long sedimentary archive of Lake Nong Thale Prong (NTP), southern Thailand. We applied a combination of analyses: lipid biomarkers, compound-specific hydrogen isotopes, bulk carbon and nitrogen concentrations and isotopes, environmental SEM, and fossil DNA using qPCR targeted to specific taxa. Past hydrological conditions were reconstructed using the hydrogen isotopic composition of leaf wax n-alkanes. Temperatures were reconstructed using the tetraether-based MBT/CBT index, measured using a new and efficient reverse-phase HPLC-MS method. The climatological data compared well with meteorological data from the last decades. Reconstructed drier and warmer conditions from ˜1857-1916 Common Era (CE) coincided with oligotrophic lake water conditions and dominance of the green algae Botryococcus braunii - evidenced by a combination of both fossil DNA and the occurrence of characteristic botryococcene lipids. A change to higher silica (Si) input ˜1916 CE was related to increased rainfall and lower temperatures concurring with an abrupt takeover by diatom blooms lasting for 50 years - as evidenced by ancient DNA, characteristic highly branched isoprenoid lipids, and SEM. From the 1970s onwards, more eutrophic conditions prevailed, and these were likely caused by increased levels of anthropogenic phosphate (P), aided by stronger lake stratification caused by dryer and warmer conditions. The eutrophic conditions led to increased primary productivity in the lake, consisting again of a Botryococcus sp., although this time not producing botryococcene lipids. Moreover, Cyanobacteria became dominant - again evidenced by ancient DNA and the characteristic C19 alkane. Throughout the record, stratification and primary production could be linked to the intensity of methane cycling, by targeting and quantifying the mcrA gene that is used

  4. Factors affecting strontium absorption in drownings.

    PubMed

    Azparren, J E; Perucha, E; Martínez, P; Muñoz, R; Vallejo, G

    2007-05-24

    This study examines the effects of age, gender, a cold water medium versus warm water medium, and salinity on strontium levels determined in left ventricular blood in drownings. Significant differences in the amount of strontium absorbed into the bloodstream (p<0.001) were detected between individuals who drowned in fresh water versus those drowning in seawater, and between those drowning in cold water versus warm water (p=0.030). However, no significant differences were noted in the strontium concentrations of left ventricular blood according to gender or age.

  5. Genome-wide patterns of selection in 230 ancient Eurasians.

    PubMed

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R; Llamas, Bastien; Dryomov, Stanislav; Pickrell, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vyacheslav; Guerra, Manuel A Rojo; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2015-12-24

    Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

  6. [The Dynamics of the Composition of mtDNA Haplotypes of the Ancient Population of the Altai Mountains from the Early Bronze Age (3rd Millennium BC) to the Iron Age (2nd-1st Centuries BC)].

    PubMed

    Gubina, M A; Kulikov, I V; Babenko, V N; Chikisheva, T A; Romaschenko, A G; Voevoda, M I; Molodin, V I

    2016-01-01

    The mtDNA polymorphism in representatives of various archaeological cultures of the Developed Bronze Age, Early Scythian, and Hunnish-Sarmatian periods was analyzed (N = 34). It detected the dominance of Western-Eurasian haplotypes (70.6%) in mtDNA samples from the representatives of the ancient population of the Early Bronze Age--Iron Age on the territory of Altai Mountains. Since the 8th to the 7th centuries BC, a sharp increase was revealed in the Eastern-Eurasian haplogroups A, D, C, andZ (43.75%) as compared to previous cultures (16.7%). The presence of haplotype 223-242-290-319 of haplogroup A8 in Dolgans, Itelmens, Evens, Koryaks, and Yakuts indicates the possible long-term presence of its carriers in areas inhabited by these populations. The prevalence of Western-Eurasian haplotypes is observed not only in the Altai Mountains but also in Central Asia (Kazakhstan) and the South of the Krasnoyarsk Krai. All of the three studied samples from the Western-Eurasian haplogroups were revealed to contain U, H, T, and HV. The ubiquitous presence of haplotypes of haplogroup H and some haplogroups of cluster U (U5al, U4, U2e, and K) in the vast territory from the Yenisei River basin to the Atlantic Ocean may indicate the direction of human settlement, which most likely occurred in the Paleolithic Period from Central Asia.

  7. Preparation of the Superconductor Substrate: Strontium Titanate

    DTIC Science & Technology

    1988-09-01

    single crystals of strontium titanate is derived from the original method developed by Verneuil . 16 The general procedure for the growth of single... crystals growth are reported. The growth direction was determined to be 5 degrees away from the [2111 direction. ICP-emission spectroscopy irdicates... Growth of Strontium Titanate Crystals 5 2.4 Preparation of Substrates 8 3. RESULTS AND CONCLUSIONS 8 REFERENCES 13 Illustrations 1. Schematic Diagram

  8. Cesium and strontium ion specific exchangers

    SciTech Connect

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  9. Mineral resource of the month: strontium

    USGS Publications Warehouse

    Ober, Joyce A.

    2008-01-01

    Last month as Americans sat transfixed watching fireworks on July 4, they were probably unaware that strontium was responsible for the beautiful reds in the display. Strontium, a soft silver-white or yellowish metallic element that turns yellow when exposed to air (and red when it burns), is prized for its brilliant red flame. Because it reacts with air and water, the metal is only present naturally in compounds, such as celestite and strontianite.

  10. Separation of strontium from fecal matter

    SciTech Connect

    Kester, D.K.

    1994-12-31

    The present invention relates to a method of separating strontium, and, more particularly, to a method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. Radioactive strontium is a radionuclide which represents a hazard to man because of its long half-life and, if ingested, its tendency to be retained in the human body. In the event that radionuclides such as strontium or various actinides are ingested, it is desirable to monitor the discharge or release of these radionuclides from the human body through analysis of fecal matter. In laboratories and other facilities where potential for radionuclide contamination exists, fecal analysis for strontium is routinely conducted for individuals who are terminating from their position or are suspected of having been contaminated with radionuclides. Methods for separating and analyzing radioactive actinides from a biomass sample are well known and have been extensively developed for the US Department of Energy. These methods, described in the Department`s internal procedure, USDOE, RESL/ID, A-16, 1981, as well as in US Patent 5,190,881, involve the use of an iron phosphate precipitation step to separate actinides from a solution, or supernate. However, there are no established procedures for the separation of strontium from a biomass sample wherein an iron phosphate precipitation step is involved.

  11. Ancient DNA of the Extinct Lava Shearwater (Puffinus olsoni) from the Canary Islands Reveals Incipient Differentiation within the P. puffinus Complex

    PubMed Central

    Ramirez, Oscar; Illera, Juan Carlos; Rando, Juan Carlos; Gonzalez-Solis, Jacob; Alcover, Josep Antoni; Lalueza-Fox, Carles

    2010-01-01

    Background The loss of species during the Holocene was, dramatically more important on islands than on continents. Seabirds from islands are very vulnerable to human-induced alterations such as habitat destruction, hunting and exotic predators. For example, in the genus Puffinus (family Procellariidae) the extinction of at least five species has been recorded during the Holocene, two of them coming from the Canary Islands. Methodology/Principal Findings We used bones of the two extinct Canary shearwaters (P. olsoni and P. holeae) to obtain genetic data, for use in providing insights into the differentiation process within the genus Puffinus. Although mitochondrial DNA (mtDNA) cytochrome b sequences were successfully retrieved from four Holocene specimens of the extinct Lava shearwater (P. olsoni) from Fuerteventura (Canary Islands), the P. holeae specimens yielded no DNA. Only one haplotype was detected in P. olsoni, suggesting a low genetic diversity within this species. Conclusions The phylogenetic analyses based on the DNA data reveal that: (i) the “Puffinus puffinus complex”, an assemblage of species defined using osteological characteristics (P. puffinus, P. olsoni, P. mauretanicus, P. yelkouan and probably P. holeae), shows unresolved phylogenetic relationships; (ii) despite the differences in body size and proportions, P. olsoni and the extant P. puffinus are sister species. Several hypotheses can be considered to explain the incipient differentiation between P. olsoni and P. puffinus. PMID:21209838

  12. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes)

    PubMed Central

    Amorim, Karlla Danielle Jorge; Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Soares, Rodrigo Xavier; de Souza, Allyson Santos; da Costa, Gideão Wagner Werneck Felix; Molina, Wagner Franco

    2016-01-01

    Abstract Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae. PMID:28123678

  13. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  14. Ancient Astronomy in Armenia

    NASA Astrophysics Data System (ADS)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  15. Ancient Maya Mercury

    NASA Astrophysics Data System (ADS)

    Pendergast, David M.

    1982-08-01

    Discovery of mercury in an ancient Maya offering at Lamanai, Belize, has stimulated examination of possible sources of the material in the Maya area. Two zones of cinnabar and native mercury deposits can be defined in the Maya highlands, and the presence of the native metal suggests that the ancient Maya collected rather than extracted the mercury from ore.

  16. Ancient DNA Analysis of Mid-Holocene Individuals from the Northwest Coast of North America Reveals Different Evolutionary Paths for Mitogenomes

    PubMed Central

    Cui, Yinqiu; Lindo, John; Hughes, Cris E.; Johnson, Jesse W.; Hernandez, Alvaro G.; Kemp, Brian M.; Ma, Jian; Cunningham, Ryan; Petzelt, Barbara; Mitchell, Joycellyn; Archer, David; Cybulski, Jerome S.; Malhi, Ripan S.

    2013-01-01

    To gain a better understanding of North American population history, complete mitochondrial genomes (mitogenomes) were generated from four ancient and three living individuals of the northern Northwest Coast of North America, specifically the north coast of British Columbia, Canada, current home to the indigenous Tsimshian, Haida, and Nisga’a. The mitogenomes of all individuals were previously unknown and assigned to new sub-haplogroup designations D4h3a7, A2ag and A2ah. The analysis of mitogenomes allows for more detailed analyses of presumed ancestor–descendant relationships than sequencing only the HVSI region of the mitochondrial genome, a more traditional approach in local population studies. The results of this study provide contrasting examples of the evolution of Native American mitogenomes. Those belonging to sub-haplogroups A2ag and A2ah exhibit temporal continuity in this region for 5000 years up until the present day. Of possible associative significance is that archaeologically identified house structures in this region maintain similar characteristics for this same period of time, demonstrating cultural continuity in residence patterns. The individual dated to 6000 years before present (BP) exhibited a mitogenome belonging to sub-haplogroup D4h3a. This sub-haplogroup was earlier identified in the same general area at 10300 years BP on Prince of Wales Island, Alaska, and may have gone extinct, as it has not been observed in any living individuals of the Northwest Coast. The presented case studies demonstrate the different evolutionary paths of mitogenomes over time on the Northwest Coast. PMID:23843972

  17. Ancient DNA from Hunter-Gatherer and Farmer Groups from Northern Spain Supports a Random Dispersion Model for the Neolithic Expansion into Europe

    PubMed Central

    Hervella, Montserrat; Izagirre, Neskuts; Alonso, Santos; Fregel, Rosa; Alonso, Antonio; Cabrera, Vicente M.; de la Rúa, Concepción

    2012-01-01

    Background/Principal Findings The phenomenon of Neolithisation refers to the transition of prehistoric populations from a hunter-gatherer to an agro-pastoralist lifestyle. Traditionally, the spread of an agro-pastoralist economy into Europe has been framed within a dichotomy based either on an acculturation phenomenon or on a demic diffusion. However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. In the present study, we have analyzed the mitochondrial DNA diversity in hunter-gatherers and first farmers from Northern Spain, in relation to the debate surrounding the phenomenon of Neolithisation in Europe. Methodology/Significance Analysis of mitochondrial DNA was carried out on 54 individuals from Upper Paleolithic and Early Neolithic, which were recovered from nine archaeological sites from Northern Spain (Basque Country, Navarre and Cantabria). In addition, to take all necessary precautions to avoid contamination, different authentication criteria were applied in this study, including: DNA quantification, cloning, duplication (51% of the samples) and replication of the results (43% of the samples) by two independent laboratories. Statistical and multivariate analyses of the mitochondrial variability suggest that the genetic influence of Neolithisation did not spread uniformly throughout Europe, producing heterogeneous genetic consequences in different geographical regions, rejecting the traditional models that explain the Neolithisation in Europe. Conclusion The differences detected in the mitochondrial DNA lineages of Neolithic groups studied so far (including these ones of this study) suggest different genetic impact of Neolithic in Central Europe, Mediterranean Europe and the Cantabrian fringe. The genetic data obtained in this study provide support for a random dispersion model for Neolithic farmers. This random dispersion had a different impact on the various

  18. Human evolution: a tale from ancient genomes.

    PubMed

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic

    2017-02-05

    The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  19. Persistant photoconductivity of strontium titanate

    NASA Astrophysics Data System (ADS)

    Poole, Violet Mary

    Strontium titanate (SrTiO3) is a transparent conducting oxide with a range of interesting properties, including a large, temperature-dependent dielectric constant and superconductivity at low temperatures. It has a wide indirect band gap of 3.2 eV at room temperature. Annealing in a reducing atmosphere with additional strontium oxide (SrO) powder at 1200°C results in the creation of native defects. These annealed samples show persistent photoconductivity (PPC) at room temperature, when exposed to light of energy 2.9 eV or greater. The three or more order of magnitude change in resistance persists long after the light is turned off. This effect is attributed to an electron being excited from an acceptor defect, with a large barrier for recapture, to the conduction band. This work investigates many of the changes that occur and factors that affect PPC. The right amount of SrO powder is crucial to the formation of PPC. The presence of some oxygen vacancies is also necessary for PPC; however, too many will mute the dramatic change in resistivity. Peaks at 430 nm and 520 nm appear in the visible region of the spectrum. The peak at 430 nm is due to iron, while the peak at 520 nm has not been identified. The infrared region of the spectrum also shows changes. First, the intensity of the transmitted signal drops significantly after light exposure, due to free carrier absorption. Additionally, a hydrogen line at 3500 cm-1 and satellites are often observed in as-received samples. The satellites disappear during annealing and return during PPC. The hydrogen lines have the same thermal kinetics as the 520 nm peak. Hydrogen lines at 3355 and 3384 cm-1, if present, will prevent PPC. An exposed chip can be erased (i.e. returned to its pre-light exposed state) by using a heat treatment. Erasing and polishing an annealed chip prior to light exposure can result in weakly p-type behavior with high mobility holes ( > 100 cm2/Vs). This is an order of magnitude higher than those

  20. Ancient population genomics and the study of evolution

    PubMed Central

    Parks, M.; Subramanian, S.; Baroni, C.; Salvatore, M. C.; Zhang, G.; Millar, C. D.; Lambert, D. M.

    2015-01-01

    Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution. PMID:25487332

  1. Ancient Egyptian herbal wines

    PubMed Central

    McGovern, Patrick E.; Mirzoian, Armen; Hall, Gretchen R.

    2009-01-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products—specifically, herbs and tree resins—were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  2. Strontium Removal: Full-Scale Ohio Demonstrations | Science ...

    EPA Pesticide Factsheets

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange softening on strontium removal. To inform the public on strontium removal techniques

  3. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  4. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  5. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  6. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  7. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  8. Specific activity and isotope abundances of strontium in purified strontium-82

    SciTech Connect

    Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.

    2015-11-12

    A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25–0.52 TBq mg-1. Method B was used to determine the isotope abundances by weight% of the purified Sr-82, and the abundances were: Sr-82 (10–20.7%), Sr-83 (0–0.05%), Sr-84 (35–48.5%), Sr-85 (16–25%), Sr-86 (12.5–23%), Sr-87 (0%), and Sr-88 (0–10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines.

  9. Ancient Egyptian Astronomical Calander

    NASA Astrophysics Data System (ADS)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  10. Reconstructing an Ancient Wonder.

    ERIC Educational Resources Information Center

    Imhof, Christopher J.

    2001-01-01

    Describes a Montessori class project involving the building of a model of the ancient Briton monument, Stonehenge. Illustrates how the flexibility of the Montessori elementary curriculum encourages children to make their own toys and learn from the process. (JPB)

  11. Physicians of ancient India

    PubMed Central

    Saini, Anu

    2016-01-01

    A survey of Indian medical historiography will reveal no dearth of work on the systems of medicine and medical literature of ancient India. However, the people who were responsible for the healing have not received much attention. This article traces the evolution of the physician as a professional in ancient India. This article reviews the secondary literature on healing and medical practice in India, specifically pertaining to the individual medical practitioner, drawing from varied sources. The healers of ancient India hailed from different castes and classes. They were well-respected and enjoyed state patronage. They were held to the highest ethical standards of the day and were bound by a strict code of conduct. They underwent rigorous training in both medicine and surgery. Most physicians were multi-skilled generalists, and expected to be skilled in elocution and debate. They were reasonably well-off financially. The paper also briefly traces the evolution of medicinal ideas in ancient India. PMID:27843823

  12. An mtDNA analysis in ancient Basque populations: implications for haplogroup V as a marker for a major paleolithic expansion from southwestern europe.

    PubMed Central

    Izagirre, N; de la Rúa, C

    1999-01-01

    mtDNA sequence variation was studied in 121 dental samples from four Basque prehistoric sites, by high-resolution RFLP analysis. The results of this study are corroborated by (1) parallel analysis of 92 bone samples, (2) the use of controls during extraction and amplification, and (3) typing by both positive and negative restriction of the linked sites that characterize each haplogroup. The absence of haplogroup V in the prehistoric samples analyzed conflicts with the hypothesis proposed by Torroni et al., in which haplogroup V is considered as an mtDNA marker for a major Paleolithic population expansion from southwestern Europe, occurring approximately 10,000-15,000 years before the present (YBP). Our samples from the Basque Country provide a valuable tool for checking the previous hypothesis, which is based on genetic data from present-day populations. In light of the available data, the most realistic scenario to explain the origin and distribution of haplogroup V suggests that the mutation defining that haplogroup (4577 NlaIII) appeared at a time when the effective population size was small enough to allow genetic drift to act-and that such drift is responsible for the heterogeneity observed in Basques, with regard to the frequency of haplogroup V (0%-20%). This is compatible with the attributed date for the origin of that mutation (10,000-15, 000 YBP), because during the postglacial period (the Mesolithic, approximately 11,000 YBP) there was a major demographic change in the Basque Country, which minimized the effect of genetic drift. This interpretation does not rely on migratory movements to explain the distribution of haplogroup V in present-day Indo-European populations. PMID:10364533

  13. mtDNA diversity in Chukchi and Siberian Eskimos: implications for the genetic history of Ancient Beringia and the peopling of the New World.

    PubMed Central

    Starikovskaya, Y B; Sukernik, R I; Schurr, T G; Kogelnik, A M; Wallace, D C

    1998-01-01

    The mtDNAs of 145 individuals representing the aboriginal populations of Chukotka-the Chukchi and Siberian Eskimos-were subjected to RFLP analysis and control-region sequencing. This analysis showed that the core of the genetic makeup of the Chukchi and Siberian Eskimos consisted of three (A, C, and D) of the four primary mtDNA haplotype groups (haplogroups) (A-D) observed in Native Americans, with haplogroup A being the most prevalent in both Chukotkan populations. Two unique haplotypes belonging to haplogroup G (formerly called "other" mtDNAs) were also observed in a few Chukchi, and these have apparently been acquired through gene flow from adjacent Kamchatka, where haplogroup G is prevalent in the Koryak and Itel'men. In addition, a 16111C-->T transition appears to delineate an "American" enclave of haplogroup A mtDNAs in northeastern Siberia, whereas the 16192C-->T transition demarcates a "northern Pacific Rim" cluster within this haplogroup. Furthermore, the sequence-divergence estimates for haplogroups A, C, and D of Siberian and Native American populations indicate that the earliest inhabitants of Beringia possessed a limited number of founding mtDNA haplotypes and that the first humans expanded into the New World approximately 34,000 years before present (YBP). Subsequent migration 16,000-13,000 YBP apparently brought a restricted number of haplogroup B haplotypes to the Americas. For millennia, Beringia may have been the repository of the respective founding sequences that selectively penetrated into northern North America from western Alaska. PMID:9792876

  14. An mtDNA analysis in ancient Basque populations: implications for haplogroup V as a marker for a major paleolithic expansion from southwestern europe.

    PubMed

    Izagirre, N; de la Rúa, C

    1999-07-01

    mtDNA sequence variation was studied in 121 dental samples from four Basque prehistoric sites, by high-resolution RFLP analysis. The results of this study are corroborated by (1) parallel analysis of 92 bone samples, (2) the use of controls during extraction and amplification, and (3) typing by both positive and negative restriction of the linked sites that characterize each haplogroup. The absence of haplogroup V in the prehistoric samples analyzed conflicts with the hypothesis proposed by Torroni et al., in which haplogroup V is considered as an mtDNA marker for a major Paleolithic population expansion from southwestern Europe, occurring approximately 10,000-15,000 years before the present (YBP). Our samples from the Basque Country provide a valuable tool for checking the previous hypothesis, which is based on genetic data from present-day populations. In light of the available data, the most realistic scenario to explain the origin and distribution of haplogroup V suggests that the mutation defining that haplogroup (4577 NlaIII) appeared at a time when the effective population size was small enough to allow genetic drift to act-and that such drift is responsible for the heterogeneity observed in Basques, with regard to the frequency of haplogroup V (0%-20%). This is compatible with the attributed date for the origin of that mutation (10,000-15, 000 YBP), because during the postglacial period (the Mesolithic, approximately 11,000 YBP) there was a major demographic change in the Basque Country, which minimized the effect of genetic drift. This interpretation does not rely on migratory movements to explain the distribution of haplogroup V in present-day Indo-European populations.

  15. Enhanced magnetic trap loading for atomic strontium

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Reschovsky, B. J.; Pisenti, N. C.; Campbell, G. K.

    2015-10-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a magneto-optical trap. This is achieved by adding a depumping laser tuned to the P31→S31 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65% for the bosonic isotopes and up to 30% for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  16. Endocrinology in ancient Sparta.

    PubMed

    Tsoulogiannis, Ioannis N; Spandidos, Demetrios A

    2007-01-01

    This article attempts to analyze the crucial link between the plant Agnus castus and human health, particularly hormonal status, with special reference to the needs of the society of ancient Sparta. The ancient Spartans used Agnus both as a cure for infertility and as a remedy to treat battle wounds. These special properties were recognized by the sanctuary of Asclepios Agnita, which was located in Sparta, as well as by medical practitioners in Sparta during the classical, Hellenistic and Roman ages.

  17. Thermodynamic restrictions on mechanosynthesis of strontium titanate

    SciTech Connect

    Monteiro, J.F.; Ferreira, A.A.L.; Antunes, I.; Fagg, D.P.; Frade, J.R.

    2012-01-15

    Chemical potential phase stability diagrams were calculated from relevant thermodynamic properties and used to predict the thermodynamic driving force under prospective conditions of room temperature mechanosynthesis. One analysed the dependence of chemical potential diagrams on temperature and partial pressure of evolving gases such as oxygen or carbon dioxide, as expected on using strontium peroxide or strontium carbonate as precursor reactants for the alkali earth component. Thermodynamic calculations were also obtained for changes in titania precursor reactants, including thermodynamic predictions for reactivity of strontium carbonate with amorphous titania. Experimental evidence showed that strontium titanate can be obtained by mechanosynthesis of strontium carbonate+anatase mixtures, due to previous amorphization under high energy milling. Ability to perform mechanosynthesis with less energetic milling depends on the suitable choice of alternative precursor reactants, which meet the thermodynamic requirements without previous amorphization; this was demonstrated by mechanosynthesis from anatase+strontium peroxide mixtures. - Graphical abstract: X-Ray diffractograms of the starting TiO{sub 2} (anatase)+SrCO{sub 3} mixture and after mechanical activation at 650 rpm, for 1, 2, and 7 h. Different symbols are used to identify reflections ascribed to anatase (diamonds), SrCO{sub 3} (squares) and SrTiO{sub 3} (triangles). Highlights: Black-Right-Pointing-Pointer Prediction of thermodynamic driving force for room temperature mechanosynthesis. Black-Right-Pointing-Pointer Dependence of chemical potential diagrams on temperature and partial pressure. Black-Right-Pointing-Pointer Thermodynamic calculations for changes in titania precursor. Black-Right-Pointing-Pointer Experimental support for thermodynamic predictions.

  18. Morphology Tuning of Strontium Tungstate Nanoparticles

    SciTech Connect

    Joseph, S.; George, T.; George, K. C.; Sunny, A. T.; Mathew, S.

    2007-08-22

    Strontium tungstate nanocrystals in two different morphologies are successfully synthesized by controlled precipitation in aqueous and in poly vinyl alcohol (PVA) medium. Structural characterizations are carried out by XRD and SEM. The average particle size calculated for the SrWO4 prepared in the two different solvents ranges 20-24 nm. The SEM pictures show that the surface morphologies of the SrWO4 nanoparticles in aqueous medium resemble mushroom and the SrWO4 nanoparticles in PVA medium resemble cauliflower. Investigations on the room temperature luminescent properties of the strontium tungstate nanoparticles prepared in aqueous and PVA medium shows strong emissions around 425 nm.

  19. First principles investigation of substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek

    This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19, is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the 'density functional theory' a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-x AlxO19 with x=0.5 and x=1.0 were investigated. It was found that at the annealing temperature the non-magnetic Al +3 ions preferentially replace Fe+3 ions from the 12 k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-xGaxO19 and SrFe12-xInxO19 with x=0.5 and x=1.0 were investigated. In the case of SrFe12-xGaxO19, the sites where Ga+3 ions prefer to enter are: 12 k, 2a, and 4f1. For SrFe12-xInxO19, In+3 ions most likely to occupy the 12k, 4f1 , and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-xGaxO 19, and decreased for SrFe12-xInxO19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-xMxO 19

  20. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  1. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    NASA Astrophysics Data System (ADS)

    Brennan, Sean R.; Torgersen, Christian E.; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K.; Schindler, Daniel E.

    2016-05-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called "isoscapes," form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  2. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    USGS Publications Warehouse

    Brennan, Sean R.; Torgersen, Christian; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K; Schindler, Daniel E.

    2016-01-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called “isoscapes,” form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  3. Source of Lake Vostok Cations Constrained with Strontium Isotopes

    NASA Astrophysics Data System (ADS)

    Lyons, William; Welch, Kathleen; Priscu, John; Tranter, Martyn; Royston-Bishop, George

    2016-08-01

    Lake Vostok is the largest sub-glacial lake in Antarctica. The primary source of our current knowledge regarding the geochemistry and biology of the lake comes from the analysis of refrozen lake water associated with ice core drilling. Several sources of dissolved ions and particulate matter to the lake have been proposed, including materials from the melted glacier ice, the weathering of underlying geological materials, hydrothermal activity and underlying, ancient evaporitic deposits. A sample of Lake Vostok Type 1 accretion ice has been analyzed for its 87Sr/86Sr signature as well as its major cation and anion and Sr concentrations. The strontium isotope ratio of 0.71655 and the Ca/Sr ratio in the sample strongly indicate that the major source of the Sr is from aluminosilicate minerals from the continental crust. These data imply that at least a portion of the other cations in the Type 1 ice also are derived from continental crustal materials and not hydrothermal activity, the melted glacier ice, or evaporitic sources.

  4. The Complete Mitochondrial DNA Sequence of the Bichir (Polypterus Ornatipinnis), a Basal Ray-Finned Fish: Ancient Establishment of the Consensus Vertebrate Gene Order

    PubMed Central

    Noack, K.; Zardoya, R.; Meyer, A.

    1996-01-01

    The evolutionary position of bichirs is disputed, and they have been variously aligned with ray-finned fish (Actinopterygii) or lobe-finned fish (Sarcopterygii), which also include tetrapods. Alternatively, they have been placed into their own group, the Brachiopterygii. The phylogenetic position of bichirs as possibly the most primitive living bony fish (Osteichthyes) made knowledge about their mitochondrial genome of considerable evolutionary interest. We determined the complete nucleotide sequence (16,624 bp) of the mitochondrial genome of a bichir, Polypterus ornatipinnis. Its genome contains 13 protein-coding genes, 22 tRNAs, two rRNAs and one major noncoding region. The genome's structure and organization show that this is the most basal vertebrate that conforms to the consensus vertebrate mtDNA gene order. Bichir mitochondrial protein-coding and ribosomal RNA genes have greater sequence similarity to ray-finned fish than to either lamprey or lungfish. Phylogenetic analyses suggest the bichir's placement as the most basal living member of the ray-finned fish and rule out its classification as a lobe-finned fish. Hence, its lobe-fins are probably not a shared-derived trait with those of lobe-finned fish (Sarcopterygii). PMID:8913758

  5. Controls over the strontium isotope composition of river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Granges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) typical drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the flood plains that constitute the largest areas of many large rivers. The strontium concentration and isotope compositions of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone end member generally lies within the Phanerozoic seawater range, which buffers the [sup 87]Sr/[sup 86]Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transport-limited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Flood plains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some flood plains can reduce the riverine flux of dissolved strontium to the oceans.

  6. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  7. Cesium and Strontium Separation Technologies Literature Review

    SciTech Connect

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  8. Ancient wolf lineages in India.

    PubMed Central

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-01-01

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402

  9. Strontium Isotopes and Magma Dynamics

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ellis, B. S.; Ramos, F. C.

    2010-12-01

    Over the past decade, it has become clear that volcanic rocks commonly exhibit internal heterogeneity in radiogenic isotopes. In particular, strontium isotopic disequilibrium between co-exisitng phenocrysts, between phenocrysts and matrix, and isotopic zoning within single crystals has been demonstrated in basalts, andesites, dacites, rhyolites and alkaline magmas; in some cases, the range in 87Sr/86Sr among different components in the same rock may equal or exceed the bulk-rock range seen in the entire formation, volcanic center, or province. High-temperature “Snake River type” rhyolites appear to be an exception. Despite the occurrence of Snake River Plain rhyolites in a region of isotopically highly variable crust and mantle, and significant differences from rhyolite unit to rhyolite unit, internally they are near-homogeneous in 87Sr/86Sr. Little or no zoning is found within feldspar phenocrysts, and feldspars within a single unit are tightly grouped. Some units show minor contrasts between phenocrysts and matrix. High temperature rhyolitic magmas possess a unique combination of temperature and melt viscosity. Although they are typically 200°C hotter than common rhyolites, the effect on visocity is offset by lower water contents (~2 wt%), hence their melt viscosities are in the same range as common, water-rich, cool rhyolites (105 - 106 Pa s). Yet magmatic temperatures are in the same range as basaltic andesites and andesites, consequently cation diffusion rates in feldspar are 2 - 3 orders of magnitude greater than in common rhyolites. We hypothesize that this combination of characteristics promotes Sr isotopic homogeneity: high melt viscosities tend to inhibit crystal transfer and mixing of isotopically distinct components on timescales shorter than those required for diffusive homogenization of Sr between phenocrysts and matrix (100 - 1000 years). This is not the case for most magmas, in which either crystal transfer is rapid (<< 100 years) due to low

  10. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  11. [Psychiatry in ancient Mexico].

    PubMed

    Calderón Narváez, G

    1992-12-01

    Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described.

  12. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  13. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  14. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  15. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  16. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  17. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major…

  18. Ancient deforestation revisited.

    PubMed

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.

  19. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  20. [Midwifes in ancient Greece].

    PubMed

    Arata, Luigi

    2009-01-01

    The article deals with the evidence about obstetrics and in particular midwifes in ancient Greece. The substantives which mean "obstetrician" in Greek are quite numerous, but the most attested and common is [see text]. This work examines all the tasks which were connected with this profession (e.g. in the legal field).

  1. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  2. Strontium biokinetic model for mouse-like rodent.

    PubMed

    Malinovsky, Georgy; Yarmoshenko, Ilia; Zhukovsky, Michael; Starichenko, Vera; Modorov, Makar

    2013-04-01

    Model describing the biokinetics of strontium for murine rodent is suggested. The model represents modification of the ICRP model for reference human with reduced number of compartments: Blood, Gastrointestinal tract, Soft tissues, Skeleton, Urinary bladder. To estimate transfer rates of the model the published experimental data on strontium retention in body of laboratory and wild mice were analyzed. A set of eleven transfer rates suggested for the strontium biokinetic model for murine rodent satisfactorily describes both the laboratory experiments (relative standard error of 9.5%) and data on radiostrontium content available for wild animals. Application of the model allows estimation of strontium distribution by organs and tissues both in the cases of acute and chronic exposure with assessment of strontium activity in organs with time since beginning of exposure. The developed strontium biokinetic model will be used for internal dose assessment for murine rodents inhabiting East-Ural Radioactive Trace, where (90)Sr intake is a significant source of contemporary internal exposure.

  3. Strontium metabolism in the rebuilding of skeletal tissue

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The relationship between calcium and strontium in bone metabolism is described. Whole body comparisons in the form of balance studies, plasma kinetics, and biochemical bone differences are briefly reviewed. The value of strontium as a qualitative calcium mimetic is established. A procedure of strontium deposition in the bones is presented as a means to study postflight bone rebuilding and to locate areas of inflight demineralization.

  4. Quantum Simulation and Quantum Sensing with Ultracold Strontium

    DTIC Science & Technology

    2015-09-18

    AFRL-AFOSR-VA-TR-2015-0346 Quantum Simulation and Quantum Sensing with Ultracold Strontium David Weld UNIVERSITY OF CALIFORNIA SANTA BARBARA Final...June 2012 - June 2015 Quantum Simulation and Quantum Sensing with Ultracold Strontium FA9550-12-1-0305 Weld, David M. University of California, Santa...Arlington VA 22203 Approved for public release. We have built an ultra-high vacuum experimental apparatus for trapping and cooling of strontium , demonstrated

  5. Phase Stability of the Lanthanum Strontium Manganites

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Pederson, Larry

    1996-03-01

    Phase diagram and thermodynamic data of the La-Sr-Mn-O system has been studied. The ABO3 -type perovskite of this system is presently the preferred cathode material for application in solid oxide fuel cells. And the phase stability of the lanthanum strontium manganites at elevated temperature is vital to fuel cell operation. Measuring the electromotive force through solid galvanic cell (-) Air,Pt|SrF_2,SrO||CaF_2||La_1-xSr_xMnO_3,SrF_2|Pt,Air (+) and the like enable us to derive the strontium oxide activity and other thermodynamic parameters such as Gibbs free energy of reaction, etc, which help us to understand the materials in using.

  6. Fractionation of strontium isotopes in cation-exchange chromatography

    SciTech Connect

    Oi, Takao; Ogino, Hideki; Kakihana, Hidetake ); Hosoe, Morikazu )

    1992-04-01

    Strontium isotope fractionation has been observed in cation-exchange chromatography of strontium salts. The heavier isotopes have been found enriched at the front parts of displacement-type chromatograms, which means that the heavier isotopes are preferentially fractionated into the solution phase. The average values of the single-stage separation factor (S) minus one per unit mass difference between isotopes have been 1.0 {times} 10{sup {minus}6} for the strontium chloride system, 2.9 {times} 10{sup {minus}6} for the strontium acetate system, and 3.1 {times} 10{sup {minus}6} for the strontium lactate system at 25C. No evidence of the odd-even anomalous isotope effects has been observed. The isotopic reduced partition function ratios (RPFRs) of the strontium species involved in the present study have been estimated; the RPFRs of the complex species have been found to be larger than that of simple hydrated strontium lactate and strontium acetate systems are larger than that of the strontium chloride system.

  7. Removal of Strontium from Drinking Water by Conventional ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.

  8. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  9. Ancient DNA evidence of Iberian lynx palaeoendemism

    NASA Astrophysics Data System (ADS)

    Rodríguez-Varela, Ricardo; Tagliacozzo, Antonio; Ureña, Irene; García, Nuria; Crégut-Bonnoure, Evelyne; Mannino, Marcello A.; Arsuaga, Juan Luis; Valdiosera, Cristina

    2015-03-01

    The Iberian lynx, endemic to the Iberian Peninsula, is the most threatened carnivore in Europe and the most endangered felid in the world. Widely distributed throughout Iberia during the Pleistocene and Holocene it is now confined to two small populations in southern Spain. Lynx species differentiation, based solely on morphological analysis from skeletal traits, is a difficult task and can potentially lead to misidentification. In order to verify whether Iberian lynx had a wider geographical distribution in the past, we successfully sequenced 152 base pairs (bp) of the cytochrome b gene and 183 bp of the mitochondrial control region in 20 Late Pleistocene and Holocene fossil remains of Lynx sp. from southern Europe. Our results confirm the presence of Iberian lynx outside the Iberian Peninsula demonstrating that this is a palaeoendemic species that had a wider distribution range in southern Europe during the Holocene and the Late Pleistocene. In addition, we documented the presence of both Palaearctic extant lynx species in the Arene Candide (north Italy) site during the Last Glacial Maximum.

  10. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  11. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  12. Ancient human microbiomes.

    PubMed

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  13. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology.

    PubMed

    Rivera-Perez, Jessica I; Santiago-Rodriguez, Tasha M; Toranzos, Gary A

    2016-08-01

    Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.

  14. Deep Sequencing of RNA from Ancient Maize Kernels

    PubMed Central

    Rasmussen, Morten; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Alquezar-Planas, David E.; Penfield, Steven; Brown, Terence A.; Vielle-Calzada, Jean-Philippe; Montiel, Rafael; Jørgensen, Tina; Odegaard, Nancy; Jacobs, Michael; Arriaza, Bernardo; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Willerslev, Eske; Gilbert, M. Thomas P.

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited – perhaps due to dogma associated with the fragility of RNA. We hypothesize that seeds offer a plausible refuge for long-term RNA survival, due to the fundamental role of RNA during seed germination. Using RNA-Seq on cDNA synthesized from nucleic acid extracts, we validate this hypothesis through demonstration of partial transcriptomal recovery from two sources of ancient maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication. PMID:23326310

  15. Effect of strontium ions substitution on gene delivery related properties of calcium phosphate nanoparticles.

    PubMed

    Hanifi, A; Fathi, M H; Mir Mohammad Sadeghi, H

    2010-09-01

    Gene therapy has been considered a strategy for delivery of therapeutic nucleic acids to a specific site. Calcium phosphates are one gene delivery vector group of interest. However, low transfection efficiency has limited the use of calcium phosphate in gene delivery applications. Present work aims at studying the fabrication of strontium substituted calcium phosphate nanoparticles with improved gene delivery related properties. Strontium substituted calcium phosphate was prepared using a simple sol gel method. X-ray diffraction analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, specific surface area analysis, zeta potential measurement and ion release evaluation were used to characterize the samples. This characterization showed strontium and carbonate co-substituted calcium phosphate which resulted in nano size particles with low crystallinity, high specific surface area, positive surface charge, and a high dissolution rate. These improved properties could increase the DNA concentration on the vector as well as the endosomal escape of the complex that leads to higher transfection efficiency of this novel gene delivery vector.

  16. Suicide in ancient Greece.

    PubMed

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  17. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    EPA Science Inventory

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  18. Age and gender specific biokinetic model for strontium in humans.

    PubMed

    Shagina, N B; Tolstykh, E I; Degteva, M O; Anspaugh, L R; Napier, B A

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on (90)Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0-80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes.

  19. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  20. The effects of strontium on skeletal development in zebrafish embryo.

    PubMed

    Pasqualetti, Sara; Banfi, Giuseppe; Mariotti, Massimo

    2013-10-01

    The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis. Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.

  1. Age and gender specific biokinetic model for strontium in humans

    SciTech Connect

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.

  2. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead...

  3. 40 CFR 721.10598 - Lead strontium titanium zirconium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead...

  4. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  5. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  6. Ancient hyaenas highlight the old problem of estimating evolutionary rates.

    PubMed

    Shapiro, Beth; Ho, Simon Y W

    2014-02-01

    Phylogenetic analyses of ancient DNA data can provide a timeline for evolutionary change even in the absence of fossils. The power to infer the evolutionary rate is, however, highly dependent on the number and age of samples, the information content of the sequence data and the demographic history of the sampled population. In this issue of Molecular Ecology, Sheng et al. (2014) analysed mitochondrial DNA sequences isolated from a combination of ancient and present-day hyaenas, including three Pleistocene samples from China. Using an evolutionary rate inferred from the ages of the ancient sequences, they recalibrated the timing of hyaena diversification and suggest a much more recent evolutionary history than was believed previously. Their results highlight the importance of accurately estimating the evolutionary rate when inferring timescales of geographical and evolutionary diversification.

  7. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro.

    PubMed

    Bao, Xingfu; Liu, Xianjun; Zhang, Yi; Cui, Yue; Yao, Jindan; Hu, Min

    2014-01-01

    Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  8. Calcium versus strontium handling by the heart muscle.

    PubMed

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  9. Measurement of Strontium Monoxide in Methane-Air Flames.

    PubMed

    Wimberly, Bobby J; Hornkohl, James O; Parigger, Christian G

    2017-02-01

    The spectroscopy of alkaline earth metal compounds is stimulated by the use of these compounds in practical areas ranging from technology to medicine. Applications in the field of pyrotechnics were the motivation for a series of flame emission spectroscopy experiments with strontium-containing compounds. Specifically, strontium monoxide (SrO) was studied as a candidate radiator for the diagnosis of methane-air flames. Strontium monoxide emissions have been observed in flames with temperatures in the range 1200 K to 1600 K for two compounds: strontium hydroxide and strontium chloride. Comparisons are made of the measured SrO spectra to simulated spectra in the near-infrared region of 700 nm to 900 nm.

  10. Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes

    NASA Astrophysics Data System (ADS)

    Mao, Xianglei; Bol'shakov, Alexander A.; Choi, Inhee; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman; Russo, Richard E.

    2011-11-01

    The experimental details are reported of Laser Ablation Molecular Isotopic Spectrometry (LAMIS) and its application for performing optical isotopic analysis of solid strontium-containing samples in ambient atmospheric air at normal pressure. The LAMIS detection method is described for strontium isotopes from samples of various chemical and isotopic compositions. The results demonstrate spectrally resolved measurements of the three individual 86Sr, 87Sr, and 88Sr isotopes that are quantified using multivariate calibration of spectra. The observed isotopic shifts are consistent with those calculated theoretically. The measured spectra of diatomic oxide and halides of strontium generated in laser ablation plasmas demonstrate the isotopic resolution and capability of LAMIS. In particular, emission spectra of SrO and SrF molecular radicals provided clean and well resolved spectral signatures for the naturally occurring strontium isotopes. A possibility is discussed of using LAMIS of strontium isotopes for radiogenic age determination.

  11. Infectious diseases in ancient Egypt.

    PubMed

    Brier, Bob

    2004-03-01

    Techniques for studying infectious disease in the ancient world are discussed. A brief survey of infectious diseases, such as schistosomiasis and malaria, in ancient Egypt is presented, and the physical traces of these diseases are examined. A discussion of the ancient Egyptian physician's response to infectious disease is included. There are two substantial sources of evidence for infectious diseases-physical remains and descriptions in Egyptian medical papyri. This preliminary survey suggests that ancient Egypt was far from the idyllic paradise on the Nile that some historians would like to imagine.

  12. Gnomons in Ancient China

    NASA Astrophysics Data System (ADS)

    Li, Geng

    Gnomon shadow measurement was one of the most fundamental astronomical observations in ancient China. It was crucial for calendar making, which constituted an important aspect of imperial governance. A painted stick discovered from a prehistoric (2300 BC) astronomical site of Taosi (see Chap. 201, "Taosi Observatory", 10.1007/978-1-4614-6141-8_215") is the oldest gnomon known of China. From second century BC onward, gnomon shadow measurements have been essential part of calendrical practice. Various historical measurements are discussed in this chapter.

  13. Tracheostomy in ancient Egypt.

    PubMed

    Blomstedt, Patric

    2014-08-01

    It has often been reported that the ancient Egyptians performed tracheostomies. An analysis of this claim demonstrates it to be founded on only two depictions from the Protodynastic period (thirty-first century bc). These depictions are difficult to reconcile with tracheostomy from an anatomical point of view and can more easily be explained as human sacrifices. Considering that Egyptian surgery included only minor procedures even at its zenith during later dynastic periods, it is difficult to imagine that they would have developed such an advanced procedure at such an early date.

  14. Urology in ancient India

    PubMed Central

    Das, Sakti

    2007-01-01

    The practice of medical and surgical measures in the management of urological ailments prevailed in ancient India from the Vedic era around 3000 BC. Subsequently in the Samhita period, the two stalwarts - Charaka in medicine and Susruta in surgery elevated the art of medicine in India to unprecedented heights. Their elaboration of the etiopathological hypothesis and the medical and surgical treatments of various urological disorders of unparalleled ingenuity still remain valid to some extent in our contemporary understanding. The new generation of accomplished Indian urologists should humbly venerate the legacy of the illustrious pioneers in urology of our motherland. PMID:19675749

  15. Ancient origin of mast cells

    PubMed Central

    Wong, G. William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K.; Satoh, Nori; Stevens, Richard L.

    2014-01-01

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin•serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500 million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  16. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  17. Strontium-90 and promethium-147 recovery

    SciTech Connect

    Hoisington, J.E.; McDonell, W.R.

    1982-08-30

    Strontium-90 and promethium-147 are fission product radionuclides with potential for use as heat source materials in high reliability, non-interruptible power supplies. Interest has recently been expressed in their utilization for Department of Defense (DOD) applications. This memorandum summarizes the current inventories, the annual production rates, and the possible recovery of Sr-90 and Pm-147 from nuclear materials production operations at Hanford and Savannah River. Recovery of these isotopes from LWR spend fuel utilizing the Barnwell Nuclear Fuels Plant (BNFP) is also considered. Unit recovery costs at each site are provided.

  18. Efficient cooling and trapping of strontium atoms.

    PubMed

    Courtillot, I; Quessada, A; Kovacich, R P; Zondy, J J; Landragin, A; Clairon, A; Lemonde, P

    2003-03-15

    We report the capture of cold strontium atoms in a magneto-optical trap (MOT) at a rate of 4 x 10(10) atoms/s. The MOT is loaded from an atomic beam decelerated by a Zeeman slower operating with a focused laser beam. The 461-nm laser, used for both cooling and trapping, was generated by sum-frequency mixing in a KTP crystal with diode lasers at 813 nm and a Nd:YAG laser at 1064 nm. As much as 115 mW of blue light was obtained.

  19. Crystalline silicotitanates for cesium/strontium removal

    SciTech Connect

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  20. Investigation of strontium accumulation on ovariectomized Sprague-Dawley rat tibia by micro-PIXE

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, Y.; Jin, W.; Zheng, Y.; Rong, C.; Lyu, H.; Shen, H.

    2014-08-01

    Strontium ranelate is a newly developed drug effective in osteoporosis treatment by depressing bone resorption and maintaining bone formation. Strontium accumulation and distribution are determined in bones of rat after strontium ranelate administration by using micro-PIXE. The investigated rats are divided into four groups: (A) control, (B) ovariectomized, (C) ovariectomized followed with strontium chloride, (D) ovariectomized followed with strontium ranelate. It was found that strontium ranelate would result in increasing trabecular volume and decreasing bone resorption to treat osteoporosis. There are similar contours of calcium and strontium in two-dimensional images, while the strontium is not evenly distributed in the bone. It supports the conclusion that strontium has an affinity for bone and it is capable of replacing calcium atoms as a part of the strontium mechanism in the osteoporosis treatment. The results related to biochemistry are also discussed.

  1. Ancient celtic horns

    NASA Astrophysics Data System (ADS)

    Campbell, Murray

    2002-11-01

    There is considerable evidence from iconographic and documentary sources that musical lip-reed instruments were important in the early celtic communities of Scotland and Ireland. In recent years several studies have been undertaken with the aim of gaining a better understanding of the musical nature of these ancient horns, and of their place in the life and culture of the time. A valuable source of tangible evidence is to be found in the archaeological remains deposited across Scotland and the whole of Ireland. A project is now under way, under the auspices of the Kilmartin House Trust and the general direction of John Purser, which has brought together an international team of musicians, craftsmen, archaeologists, musicologists and physicists with the aim of analyzing ancient musical artifacts, reconstructing some of the original instruments, and analyzing the sounds they produce. This paper describes acoustical studies carried out on a number of recent reconstructions of wooden and bronze instruments, and discusses the role of acoustics in this type of investigation. [Work supported by Sciart and EPSRC.

  2. Comparison of ancient and modern Clonorchis sinensis based on ITS1 and ITS2 sequences.

    PubMed

    Liu, Wen-Qi; Liu, Juan; Zhang, Jun-Hua; Long, Xiao-Chun; Lei, Jia-Hui; Li, Yong-Long

    2007-02-01

    In 1975, an ancient corpse buried in 167 BC was found at Jiangling County, Hubei Province of China. The eggs of Clonorchis sinensis found in the gall bladder of the corpse were preserved well. In the present paper, we extracted the genomic DNA from the ancient eggs and modern eggs, respectively, and the internal transcribed spacer 1 and 2 (ITS1 and ITS2) at ribosomal RNA genes were studied. The results show that ITS2 sequences from the ancient sample were identical with those from modern samples, but in ITS1 differences in 15 nucleotide positions were found between the ancient and modern samples. The results demonstrated that it is possible to extract and sequence DNA from ancient parasite eggs. The ITS1 sequence obtained differed from all modern ones available to date. This might indicate sequence divergence through time, or might reflect a sequence polymorphism that may eventually be found also in modern samples.