The structure and evolution of plankton communities
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.
New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.
What forms of life could have arisen in the ancient conditions of Mars?
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2017-05-01
The first geological era of Mars - Phyllocyanic - began about 4.5 billion years ago and continued 500-700 million years. Then Mars was similar to the ancient Earth with dense atmosphere and water on the surface. That is he planet was once much more suitable for the existence of life. Then appeared simple forms of life on Earth, and we believe, that the same could happen on Mars. But it is likely that if once life appeared on Mars, it did not disappear without a trace. It could move from the surface of the planet to its interior, to be conserved there in relict fossils, and possibly, survived there in some very simple forms, that then covered by powerful soil emissions. Therefore, its traces should search under the ground in those layers of sedimentary rocks that are refers to the first Phyllocyanic geological epoch.
Ancient Mars: wet in many places.
Paige, David A
2005-03-11
New results from the Mars Express Orbiter mission reveal multiple deposits of minerals formed in the presence of liquid water. They reinforce the conclusion that ancient Mars was warmer and wetter than it is today, and increase the number of promising localities to search for evidence of past life.
Ancient Hydrothermal Springs in Arabia Terra, Mars
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2008-01-01
Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.
Kim, Kyung Mo; Caetano-Anollés, Gustavo
2014-01-01
The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent. PMID:25249790
Irvine, W M
1987-01-01
Life--as we know it--is a chemical process, based on water and carbon compounds. Complex organic molecules are made primarily from the biogenic elements--carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur--that formed deep within massive ancient stars. How did these elements travel from their stellar birthplaces across time and space to make up the life-form that is reading these words? In this article, we'll take a look at the chemical processes that set the stage for the origin of life.
Sample Return from Ancient Hydrothermal Springs
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy Z.
2008-01-01
Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].
NASA Astrophysics Data System (ADS)
Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.
2017-12-01
Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal is a refined search tool with straightforward application in the search for early life on Earth and distant life recorded in meteorites, returned samples, and in situ measurements.
ERIC Educational Resources Information Center
Soja, Constance M.
2014-01-01
In a first-year seminar on mass extinctions, a field-based, paleontology-focused exercise promotes active learning about Earth's biodiversity, form and function, and the biomimicry potential of ancient and modern life. Students study Devonian fossils at a local quarry and gain foundational experience in describing anatomy and relating form to…
Meteoritic material on the moon
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.
1974-01-01
Micrometeorites, ancient planetesimal debris from the early intense bombardment, and debris of recent, crater-forming projectiles are discussed and their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distrubuted over the entire lunar surface, but is seen most clearly in mare soils whereas, the ancient component is seen in highland breccias and soils. A few properties of the basin-forming objects are inferred from the trace element data. An attempt is made to reconstruct the bombardment history of the moon from the observation that only basin-forming objects fell on the moon after crustal differentiation. The apparent half-life of basin-forming bodies is close to the calculated value for earth-crossing planetesimals. It is shown that a gap in radiometric ages is expected between the Imbrium and Nectaris impacts, because all 7 basins formed in this interval lie on the farside or east limb.
A causal framework for integrating contemporary and Vedic holism.
Kineman, John J
2017-12-01
Whereas the last Century of science was characterized by epistemological uncertainty; the current Century will likely be characterized by ontological complexity (Gorban and Yablonsky, 2013). Advances in Systems Theory by mathematical biologist Robert Rosen suggest an elegant way forward (Rosen, 2013). "R-theory" (Kineman, 2012) is a synthesis of Rosen's theories explaining complexity and life in terms of a meta-model for 'whole' systems (and their fractions) in terms of "5 th -order holons". Such holons are Rosen "modeling relations" relating system-dependent processes with their formative contexts via closed cycles of four archetypal (Aristotelian) causes. This approach has post-predicted the three most basic taxa of life, plus a quasi-organismic form that may describe proto, component, and ecosystemic life. R-theory thus suggests a fundamentally complex ontology of existence inverting the current view that complexity arises from simple mechanisms. This model of cyclical causality corresponds to the ancient meta-model described in the Vedas and Upanishads of India. Part I of this discussion (Kineman, 2016a) presented a case for associating Vedic philosophy with Harappan civilization, allowing interpretation of ancient concepts of "cosmic order" (Rta) in the Rig Veda, nonduality (advaita), seven-fold beingness (saptanna) and other forms of holism appearing later in the Upanishads. By deciphering the model of wholeness that was applied and tested in ancient times, it is possible to compare, test, and confirm the holon model as a mathematical definition of life, systemic wholeness, and sustainability that may be applied today in modern terms, even as a foundation for holistic science. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mars in the late Noachian: Evolution of a habitable surface environment
NASA Astrophysics Data System (ADS)
Johnson, Sarah Stewart
2008-10-01
This dissertation addresses whether simple life forms might have existed on Mars during the late Noachian epoch, and whether those life forms, or their traces, can be detected today. It begins by analyzing the ancient Martian climate in light of new evidence that sulfur chemistry played a prominent role in the planet's early evolution. It finds that sulfur-induced greenhouse warming could have periodically heated the planet enough to support liquid water, thereby creating warm, wet, clement conditions. Moreover, it finds that those warming pulses, while short-lived over geologic time, may have persisted for hundreds of years. If sulfur helped create environmental conditions capable of hosting life, however, it also created conditions that were adverse to sustaining it. In particular, dissipation of sulfur volatiles cooled the climate, and sulfur rainout contributed to the acidity of Martian surface waters. The dissertation therefore proceeds to analyze the potential for persistence and detection of life in terrestrial environments with Mars-like characteristics. It first investigates the potential for detecting ancient life by searching for lipid biomarkers in sulfur-rich acid salt lakes, concluding that a variety of biomarkers may be more resistant to decay than previously believed. It then analyzes soil samples from permafrost, discovering the oldest independently authenticated viable organisms ever found, and positing low-level metabolic activity and DNA repair as a survival mechanism in ancient cells. Finally, the dissertation uses deep sequencing to examine prokaryotic diversity in a terrestrial Mars-like river characterized by low pH and high concentrations of iron and sulfur, with results considered in light of the implications for life detection approaches incorporating new, in situ "PCR in a chip" technology. The dissertation concludes by proposing future work, including the ultimate goal of developing a life detection instrument for Mars. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NASA Technical Reports Server (NTRS)
Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)
1997-01-01
The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).
Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave
Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.
2009-01-01
Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.
Ancient Rome: The Latin Teacher and Life in the Big City.
ERIC Educational Resources Information Center
Ramage, Edwin S.
This paper attempts to answer the question of what life was really like in ancient Rome, with a view to using this kind of information as cultural background for teaching Latin language and literature. There were many problems associated with daily living in ancient Rome. Writings of some inhabitants of ancient Rome attest to the fact that these…
Morphological biosignatures and the search for life on Mars.
Cady, Sherry L; Farmer, Jack D; Grotzinger, John P; Schopf, J William; Steele, Andrew
2003-01-01
This report provides a rationale for the advances in instrumentation and understanding needed to assess claims of ancient and extraterrestrial life made on the basis of morphological biosignatures. Morphological biosignatures consist of bona fide microbial fossils as well as microbially influenced sedimentary structures. To be recognized as evidence of life, microbial fossils must contain chemical and structural attributes uniquely indicative of microbial cells or cellular or extracellular processes. When combined with various research strategies, high-resolution instruments can reveal such attributes and elucidate how morphological fossils form and become altered, thereby improving the ability to recognize them in the geological record on Earth or other planets. Also, before fossilized microbially influenced sedimentary structures can provide evidence of life, criteria to distinguish their biogenic from non-biogenic attributes must be established. This topic can be advanced by developing process-based models. A database of images and spectroscopic data that distinguish the suite of bona fide morphological biosignatures from their abiotic mimics will avoid detection of false-positives for life. The use of high-resolution imaging and spectroscopic instruments, in conjunction with an improved knowledge base of the attributes that demonstrate life, will maximize our ability to recognize and assess the biogenicity of extraterrestrial and ancient terrestrial life.
Searching for an alternative form of life on Earth
NASA Astrophysics Data System (ADS)
Davies, P. C. W.
2007-09-01
Biologists tacitly assume that all life on Earth descended from a common origin. This assumption is based on biochemical similarities and gene sequencing, which enables organisms to be positioned on a common tree of life. However, most terrestrial organisms are microbes, and it is impossible to deduce their biochemical nature from morphology alone. The vast majority of microbes remain unclassified, leaving open the possibility that some of them might be an alternative form of life, arising either from an independent origin, or representing a hitherto overlooked very ancient branch of the known tree. Thus there may exist an extinct, or even extant, shadow biosphere. I discuss various research proposals for locating and identifying "alien" organisms on Earth, both ecologically separate and ecologically integrated.
Extinct 244Pu in ancient zircons.
Turner, Grenville; Harrison, T Mark; Holland, Greg; Mojzsis, Stephen J; Gilmour, Jamie
2004-10-01
We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.
The Antarctic dry valley lakes: Relevance to Mars
NASA Technical Reports Server (NTRS)
Wharton, R. A., Jr.; Mckay, Christopher P.; Mancinelli, Rocco L.; Clow, G. D.; Simmons, G. M., Jr.
1989-01-01
The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments.
,
1997-01-01
At the close of the 18th century, the haze of fantasy and mysticism that tended to obscure the true nature of the Earth was being swept away. Careful studies by scientists showed that rocks had diverse origins. Some rock layers, containing clearly identifiable fossil remains of fish and other forms of aquatic animal and plant life, originally formed in the ocean. Other layers, consisting of sand grains winnowed clean by the pounding surf, obviously formed as beach deposits that marked the shorelines of ancient seas.
Geologic age: using radioactive decay to determine geologic age
,
1997-01-01
At the close of the 18th century, the haze of fantasy and mysticism that tended to obscure the true nature of the Earth was being swept away. Careful studies by scientists showed that rocks had diverse origins. Some rock layers, containing clearly identifiable fossil remains of fish and other forms of aquatic animal and plant life, originally formed in the ocean. Other layers, consisting of sand grains winnowed clean by the pounding surf, obviously formed as beach deposits that marked the shorelines of ancient seas. Certain layers are in the form of sand bars and gravel banks -- rock debris spread over the land by streams. Some rocks were once lava flows or beds of cinders and ash thrown out of ancient volcanoes; others are portions of large masses of once-molten rock that cooled very slowly far beneath the Earth's surface. Other rocks were so transformed by heat and pressure during the heaving and buckling of the Earth's crust in periods of mountain building that their original features were obliterated.
Martian water: are there extant halobacteria on Mars?
NASA Technical Reports Server (NTRS)
Landis, G. A.
2001-01-01
On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life does not exist on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was more conducive to life.
Trait covariance: the functional warp of plant diversity?
Walker, Anthony P.; McCormack, M. Luke; Messier, Julie; ...
2017-11-07
In 300 BC Ancient Greece, Theophrastus was one of the first to organize the diversity of plant life on Earth into categories of function and use (Theophrastus, 1916). Currently, scientists are still working to simplify the vast array of plant species and forms in order to distill general features of plant function, structure, and strategy.
Trait covariance: the functional warp of plant diversity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; McCormack, M. Luke; Messier, Julie
In 300 BC Ancient Greece, Theophrastus was one of the first to organize the diversity of plant life on Earth into categories of function and use (Theophrastus, 1916). Currently, scientists are still working to simplify the vast array of plant species and forms in order to distill general features of plant function, structure, and strategy.
Colour Perception in Ancient World
NASA Astrophysics Data System (ADS)
Nesterov, D. I.; Fedorova, M. Yu
2017-11-01
How did the human thought form the surrounding color information into the persistent semantic images of a mythological, pseudoscientific and religious nature? The concepts associated with colour perception are suggested. The existence of colour environment does not depend on the human consciousness. The colour culture formation is directly related to the level of the human consciousness development and the possibility to influence the worldview and culture. The colour perception of a person goes through the stages similar to the development of colour vision in a child. Like any development, the colour consciousness has undergone stages of growth and decline, evolution and stagnation. The way of life and difficult conditions for existence made their own adjustments to the development of the human perception of the surrounding world. Wars have been both a powerful engine of progress in all spheres of life and a great destructive force demolishing the already created and preserved heritage. The surrounding world has always been interesting for humans, evoked images and fantasies in the consciousness of ancient people. Unusual and inexplicable natural phenomena spawned numerous legends and myths which was reflected in the ancient art and architecture and, accordingly, in a certain manifestation of colour in the human society. The colour perception of the ancient man, his pragmatic, utilitarian attitude to colour is considered as well as the influence of dependence on external conditions of existence and their reflection in the colour culture of antiquity. “Natural Science” conducts research in the field of the colour nature and their authorial interpretation of the Hellenic period. Several authorial concepts of the ancient world have been considered.
The Contemplative Life and the Teaching of the Humanities
ERIC Educational Resources Information Center
Stock, Brian
2006-01-01
Meditation nowadays plays a part in mind/body medicine and in some branches of educational psychology. In ancient and medieval times, these functions formed a part of the humanities curriculum as it was taught in philosophical schools, monastic communities, and universities. This article claims that it is by returning to a holistic view of the…
NASA Technical Reports Server (NTRS)
Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.
2002-01-01
The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods to search for signs of life in ancient icy formations, which might play a role in the long-term preservation and transportation of microbial life throughout the Universe.
NASA Astrophysics Data System (ADS)
Abyzov, S.; Hoover, R.; Imura, S.; Mitskevich, I.; Naganuma, T.; Poglazova, M.; Ivanov, M.
The ice sheet of the Central Antarctic is considered by world-wide scientific community as a model for elaboration of different methods for search of the life outside of the Earth. This problem became especially significant in connection with discovery the under glacial lake in the vicinity of the Russian Antarctic Station Vostok. This lake, later named "Lake Vostok" is considered by many scientists as an analog ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is great possibility of presence in this lake of relict forms of microorganisms well preserved since Ice Age period. The investigations through out the thickness of the ice sheet above the Lake Vostok shows the presence of microorganisms belonging to well-known different taxonomic groups even in the very ancient horizons close to floor of the glacier. Different methods were used for search of microorganisms which were rarely found in the deep ancient layers of the ice sheet. The method of aseptic sampling from the ice cores and results of control sterile conditions in all stages of conducting of these investigations are described in detail in previous reports. Primary investigations used try usual methods of sowing samples onto the different nutrient media permitted to obtain only a few part of the microorganisms which grow on the media used. The possibility of isolation of obtained organisms for further investigations by using modern methods including DNA-analysis appears to be preferential importance of this method. In the further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence and scanning electron microscopy methods of different modifications, were determined as quantity of microorganisms distributed on its different horizons, as well as the morphological diversity of obtained cells of microorganisms. Experience of many years standing investigations of micro flora in the very ancient strata of the Antarctic ice cover close to the bedrock testified the effectiveness of combination of different methods for search for signs of life in ancient icy formations evidently which may preserve and transport life in the Universe.
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
NASA Astrophysics Data System (ADS)
Michalski, Joseph R.; Dobrea, Eldar Z. Noe; Niles, Paul B.; Cuadros, Javier
2017-07-01
The Eridania region in the southern highlands of Mars once contained a vast inland sea with a volume of water greater than that of all other Martian lakes combined. Here we show that the most ancient materials within Eridania are thick (>400 m), massive (not bedded), mottled deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely formed in a deep water (500-1,500 m) hydrothermal setting. The Eridania basin occurs within some of the most ancient terrain on Mars where striking evidence for remnant magnetism might suggest an early phase of crustal spreading. The relatively well-preserved seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence for life on Earth in potentially similar environments 3.8 billion years ago, and might provide an invaluable window into the environmental conditions of early Earth.
Ancient hydrothermal seafloor deposits in Eridania basin on Mars
Michalski, Joseph R.; Dobrea, Eldar Z. Noe; Niles, Paul B.; Cuadros, Javier
2017-01-01
The Eridania region in the southern highlands of Mars once contained a vast inland sea with a volume of water greater than that of all other Martian lakes combined. Here we show that the most ancient materials within Eridania are thick (>400 m), massive (not bedded), mottled deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely formed in a deep water (500–1,500 m) hydrothermal setting. The Eridania basin occurs within some of the most ancient terrain on Mars where striking evidence for remnant magnetism might suggest an early phase of crustal spreading. The relatively well-preserved seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence for life on Earth in potentially similar environments 3.8 billion years ago, and might provide an invaluable window into the environmental conditions of early Earth. PMID:28691699
Sexual life in Pharaonic Egypt: towards a urological view.
Shokeir, A A; Hussein, M I
2004-10-01
Sex is a basic human need, common to all people at all times. It is evident that the ancient Egyptians were real human beings, not only a people who built massive pyramids and made mummies of their dead. The ancient Egyptians had a rich and varied sexual life, which they found an opportunity to describe in words and pictures. As in the other early primitive civilizations, erotic matters were of prime importance and became an integral part of life. In Pharaonic times, the Egyptians described impotence and recorded several methods to increase the sexual power. In the present paper, we will shed light on some aspects of the sexual life in ancient Egypt that may be interesting to the urologists, including ancient Egyptian concepts of sex and erotic matters, their own way of treatment of impotence and Min, the Egyptian fertility God.
Untangling the origin of viruses and their impact on cellular evolution.
Nasir, Arshan; Sun, Feng-Jie; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2015-04-01
The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution. © 2015 New York Academy of Sciences.
Romans: A Simulation of the History and Culture of Ancient Rome.
ERIC Educational Resources Information Center
Staneart, Chuck; Baral, Wanda
This simulation allows students to learn about and participate in many of the aspects of ancient Roman life that have influenced present institutions and way of life. The phases of the unit include: (1) "Daily Life"; (2) "Forum of Roma"; (3) "Temple of Apollo"; (4) "Pax Romana"; (5) "History/Mystery:…
Pillow lavas volcanic glasses (ancient and recent) and traces of life in them
NASA Astrophysics Data System (ADS)
Astafieva, Marina; Rozanov, Alexei; Eugene, Sharkov; Alexei, Chistyakov; Maria, Bogina
2010-05-01
Pillow lavas volcanic glasses (ancient and recent) and traces of life in them. Astafieva* M.M., Rozanov* A.Yu., Sharkov** E.V., Chistyakov** A.V., Bogina** M.M. * Paleontological Institute of Russian Academy of Sciences, 117997 Profsoyusnaya 123, Moscow, Russia; ** Institute of Geology of Ore deposits, Petrography, Mineralogy, and Geochemistry of Russian Academy of Sciences, 119017 Staromonetny 35, Moscow, Russia; Microbial complexes from volcanogenic rocks both ancient (Early Paleoproterozoic (2.41 GA) basalt pillow-lavas with inclusions of volcanic glass from Karelia) and recent (fresh volcanic glass from pillow-lavas of underwater Middle-Atlantic Ridge were revealed, studied and compared. Our studies confirmed that basaltic glass of the Early Precambrian submarine eruptions was inhabited by microbes in a similar way as it had been done for volcanic glass of modern eruptions. So, well preserved pillow-lavas, that are the main component of Arkhaean and Early Paleoproterozoic greenstone belts, could be the most perspective for searching of traces of ancient life on the Earth. Consequently, it is possible to say, that volcanogenic rocks are not the obstacle for finding traces of life in them. The assumption that volcanic rocks served as habitats for the early microbial life was not unexpected. Some of the most primitive organisms close to the base of the phylogenetic tree are thermophilic microbes. Some data indicates that early life could be restricted to the hydrothermal vents in volcanic settings1. For instance, filamentous bacteria described from the massive sulfide deposits (age ~3.235 Ga) are interpreted as formed under black smoker conditions2, which provide the temperature tolerant for the growth of thermophilic bacteria (about 70oC). It was additionally proposed that life can be present immediately after volcanic eruptions, when the temperature of rock surface decreases below 113oC3,4 and bacteria penetrate the glass-like material of pillow lavas together with seawater. Of interest also is the development of life at the igneous rock-water boundary5,6,7, when microbial colonization spans not only surface but also penetrates deep into the rock. As a result of bacterial-paleontological investigations diverse and numerous remains of microorganisms were found. Studying and comparison of them permitted us to speak about presence of rather diverse fossil microbial complex in basalt pillow-lavas and their glasses both in Early Paleoproterozoic and Recent. This notes that well preserved pillow lavas of the Archaean and Early Paleoproterozoic greenstone belts are promising for the discovery of traces of ancient life on Earth. It is necessary to note that in both complexes filament forms predominate and that presumably eukaryotic forms were met. The study was executed within the framework of the complex program of basic research of the Presidium of the Russian Academy of Sciences "Origin of Biosphere and Evolution of Geo-biological Systems" (subprogram II) and was supported by the Russian Foundation for Basic Research, projects 08-04-00484 and SS-4207.2008.5. REFERENCES 1. Furnes, H., Banerjee, N.R., Muehlenbachs, K, et al., "Early life recorded in Archean pillow lavas", Science, 304, 578-581 (2004). 2. Rasmussen, B., "Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide deposit", Nature, 405, 676-679 (2000). 3. Stetter, K.O., "Hyperthermofiles in the history of life", Phil. Trans. Roy. Soc. B 361, 1837-1843 (2006). 4. Stetter, K.O., Fiala, G., Huber, G., Segerer, A., "Hyperthermofilic microorganisms", FEMS Microbiol. Rev., 75, 117-124 (1990). 5. Fisk, M.R., Storrie-Lombardi, M.C., Josef, J.A., "Aqueous Biotic and Abiotic Alteration of Silicate Rock: Evaluation of Landing Sites on Mars for Their Potential of Revealing Evidence for Life", Proc. SPIE. 6309, 630903-1 - 630903-9 (2006). 6. Astafieva, M.M., Rozanov, A.Yu., Sadovnikov, G.N., Sapova, E.V., "Fossil Bacteria from the Permotriassic Trappean Strata of Siberia", Paleontol. Journ. 43(8), 46-54 (2009). 7. Rozanov, A. Yu., Astafieva, M. M., "The Evolution of the Early Precambrian Geobiological Systems", Paleontol. Journ., 43(8), 61-77 (2009).
[Are there imported components for channels and collaterals?].
Zhu, Bing
2005-10-01
The medical papyri in ancient Egypt written before 1500 B. C, recorded the metu system which could not be explained by modern anatomic location and was difficultly expounded by biological functions. Most of diseases were treated by dredging the metu, regulating the metu, balancing the metu, removing noxious substances from the metu, restoring the normal functions of the metu. The ancient Egyptian held that the metu forms mutual connecting channel network to carry out flowing of energy and information, with the functions of linking up external and internal organs, which is similar to linking functions of meridians-zang- and fu- organs. In the works of Hippocrates, the father of ancient Greece medicine, 2nd century B. C, also described the linking channels "phleps" on human surface. And in other country with an ancient civilization, India, had a similar channel system. About 15th century B. C, Charaka Samitha of ancient India described human "nadis" channel system. The system carried "rasas" (life liquid) connected with the whole body from the navel. Therefore, it can be held that at the embryonic stage of medicine development, the linking tube similar to channel or vessel was described, but it is interested that met and Chinese "mai" (vessel) have similar pronunciation. And mai in China was created after met.
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph D.
2002-02-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degree(s)C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph
2002-01-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)
2001-01-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
Nonmarine stromatolites and the search for early life on Mars
NASA Technical Reports Server (NTRS)
Awramik, S. M.
1991-01-01
The available evidence permits one to conclude that streams flowed and lakes developed on Mars sometime in the remote past. The lessons learned from the Earth's earliest fossil record suggest that stromatolites might have formed on Mars, speculating that: (1) biopoesis occurred on Mars during its earliest history; (2) life evolved and diversified; (3) life inhabited aqueous environments; and (4) sunlight was an important environmental resource. The most likely place to find stromatolites and possibly microbial fossils on Mars would be in ancient lake and stream deposits. If thermal spring deposits can be identified, then they too are sites for biogeological investigations. Other aspects of this study are presented.
Dreams in ancient Greek Medicine.
Laios, K; Moschos, M M; Koukaki, E; Vasilopoulos, E; Karamanou, M; Kontaxaki, M-I; Androutsos, G
2016-01-01
Dreams preoccupied the Greek and Roman world in antiquity, therefore they had a prominent role in social, philosophical, religious, historical and political life of those times. They were considered as omens and prophetic signs of future events in private and public life, and that was particularly accentuated when elements of actions which took place in the plot of dreams were associated directly or indirectly with real events. This is why it was important to use them in divination, and helped the growth of superstition and folklore believes. Medicine as a science and an anthropocentric art, could not ignore the importance of dreams, having in mind their popularity in antiquity. In ancient Greek medicine dreams can be divided into two basic categories. In the first one -which is related to religious medicine-dreams experienced by religionists are classified, when resorted to great religious sanctuaries such as those of Asclepius (Asclepieia) and Amphiaraos (Amfiaraeia). These dreams were the essential element for healing in this form of religious medicine, because after pilgrims underwent purifications they went to sleep in a special dwelling of the sanctuaries called "enkoimeterion" (Greek: the place to sleep) so that the healing god would come to their dreams either to cure them or to suggest treatment. In ancient Greek literature there are many reports of these experiences, but if there may be phenomena of self-suggestion, or they could be characterized as propaganda messages from the priesthood of each sanctuary for advertising purposes. The other category concerns the references about dreams found in ancient Greek medical literature, where one can find the attempts of ancient Greek physicians to interpret these dreams in a rational way as sings either of a corporal disease or of psychological distress. This second category will be the object of our study. Despite the different ways followed by each ancient Greek physician in order to explain dreams, their common intention was to give a rational answer for the creation and content of dreams setting aside any supernatural beliefs. In addition they tried to explain in a scientific way the correlation that could have emerged between the story that took place in dreams and the events that happened in everyday life. Nevertheless, ancient Greek physicians focused especially on nightmares, which were associated with physical problems. For those physicians these nightmares included information about the corporal disease of the patient, which had a reflection in the dream, and they could help them to diagnose the problem in order to restore balance of the body.
Evolution of an ancient protein function involved in organized multicellularity in animals
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-01
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169
ERIC Educational Resources Information Center
Whitelaw, R. Lynn
Among the many contributions made by Ancient Greeks and Romans to contemporary life, are those which influence art, architecture, literature, philosophy, mathematics and science, theater, athletics, religion, and the founding of democracy. The Tampa Museum of Art's classical collection offers a unique opportunity to learn about Ancient Greeks and…
Trevisanato, Siro Igino
2016-08-01
Anaximander's fragments on biology report a theory of evolution, which, unlike the development of other biological systems in the ancient Aegean, is naturalistic and is not based on metaphysics. According to Anaximander, evolution affected all living beings, including humans. The first biological systems formed in an aquatic environment, and were encased in a rugged and robust envelope. Evolution progressed with modifications that enabled the formation of more dynamic biological systems. For instance, after reaching land, the robust armors around aquatic beings dried up, and became brittle, This led to the loss of the armor and the development of more mobile life forms. Anaximander's theory combines observations of animals with speculations, and as such mirrors the more famous theory of evolution by Charles Darwin expressed 24 centuries later. The poor reception received by Anaximander's model in his time, illustrates a zeitgeist that would explain the contemporary lag phase in the development of biology and, as a result, medicine, in the ancient western world.
A Possible Landing Site for the 2020 Mission: Jezero Crater
2015-03-04
This image shows a possible landing site for the 2020 Mission: Jezero Crater, as seen by NASA Mars Reconnaissance Orbiter. It's not only when trying to find a scientifically interesting place to land that the high-resolution images from HiRISE come in handy: it's also to identify potential hazards within a landing ellipse. This is one of the trickier aspects of selecting landing sites on Mars: a place to do good science but also where the risks of landing are low. Jezero Crater is an ancient crater where clay minerals have been detected, and with a delta deposit indicating that water was once flowing into a lake. Since clays form the in presence of water, this crater would be a very good candidate for a lander to explore and build on what we've learned from the Mars Science Laboratory. Could some form of ancient life have existed here and for how long? http://photojournal.jpl.nasa.gov/catalog/PIA19303
An Exobiological Strategy for Mars Exploration
NASA Technical Reports Server (NTRS)
1995-01-01
The idea of searching for evidence of life on Mars may strike some as far-fetched, even fanciful. But there is a compelling logic to such a quest, as well as an equally compelling excitement. Early environments were apparently sufficiently similar on Mars and Earth, and life arose so rapidly on Earth once conditions became clement, that emergence of life on both planets at that time is scarcely less plausible than emergence on only one. Furthermore, although a fossil on Mars might seem at first like a proverbial needle in a haystack, experience on Earth tell us that if we know where to look, finding evidence of ancient life is not particularly difficult, especially when one considers that such evidence can be relatively widely disseminated in the form of chemical or isotopic signatures. The key is to recognize that the search for ancient life on Mars will involve a logically designed sequence of missions, each of which will focus on defining ever more closely where and how biosignatures may be found. Although one can never rule out a chance discovery, this quest should not be approached as one that will yield to a single, expeditious mission. (In fact, the proposed strategy lends itself particularly well to the use of a series of relatively small, inexpensive spacecraft, rather than a single flagship-class mission). The search for life on Mars will take time and commitment, but the reward could be a discovery of inestimable importance, not just to science, but to humanity as a whole.
An exobiological strategy for Mars exploration
NASA Astrophysics Data System (ADS)
1995-04-01
The idea of searching for evidence of life on Mars may strike some as far-fetched, even fanciful. But there is a compelling logic to such a quest, as well as an equally compelling excitement. Early environments were apparently sufficiently similar on Mars and Earth, and life arose so rapidly on Earth once conditions became clement, that emergence of life on both planets at that time is scarcely less plausible than emergence on only one. Furthermore, although a fossil on Mars might seem at first like a proverbial needle in a haystack, experience on Earth tell us that if we know where to look, finding evidence of ancient life is not particularly difficult, especially when one considers that such evidence can be relatively widely disseminated in the form of chemical or isotopic signatures. The key is to recognize that the search for ancient life on Mars will involve a logically designed sequence of missions, each of which will focus on defining ever more closely where and how biosignatures may be found. Although one can never rule out a chance discovery, this quest should not be approached as one that will yield to a single, expeditious mission. (In fact, the proposed strategy lends itself particularly well to the use of a series of relatively small, inexpensive spacecraft, rather than a single flagship-class mission). The search for life on Mars will take time and commitment, but the reward could be a discovery of inestimable importance, not just to science, but to humanity as a whole.
Attitudes Toward Deviant Sex in Ancient Mesopotamia
ERIC Educational Resources Information Center
Bullough, Vern L.
1971-01-01
The article concludes that the whole question of sexual life in ancient Mesopotamia is difficult to reconstruct and fraught with many uncertainties. Nevertheless, it seems certain that the ancient Mesopotamians had fewer prohibitions against sex than our own civilization, and regarded as acceptable many practices which later societies condemned.…
ERIC Educational Resources Information Center
Benoit, Ty
When archaeologists dig up the artifacts of ancient civilizations, they make discoveries and attempt to find out what life was like for ancient people. Students in the classroom explore the civilizations of the ancient world attempting to answer questions about how people lived thousands of years ago. In this activity for grade 6, students, in…
Estimation, modeling, and simulation of patterned growth in extreme environments.
Strader, B; Schubert, K E; Quintana, M; Gomez, E; Curnutt, J; Boston, P
2011-01-01
In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet's modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.
Ancient hydrothermal ecosystems on earth: a new palaeobiological frontier.
Walter, M R
1996-01-01
Thermal springs are common in the oceans and on land. Early in the history of the Earth they would have been even more abundant, because of a higher heat flow. A thermophilic lifestyle has been proposed for the common ancestor of extant life, and hydrothermal ecosystems can be expected to have existed on Earth since life arose. Though there has been a great deal of recent research on this topic by biologists, palaeobiologists have done little to explore ancient high temperature environments. Exploration geologists and miners have long known the importance of hydrothermal systems, as they are sources for much of our gold, silver, copper, lead and zinc. Such systems are particularly abundant in Archaean and Proterozoic successions. Despite the rarity of systematic searches of these by palaeobiologists, already 12 fossiliferous Phanerozoic deposits are known. Five are 'black smoker' type submarine deposits that formed in the deep ocean and preserve a vent fauna like that in the modern oceans; the oldest is Devonian. Three are from shallow marine deposits of Carboniferous age. As well as 'worm tubes', several of these contain morphological or isotopic evidence of microbial life. The oldest well established fossiliferous submarine thermal spring deposit is Cambro-Ordovician; microorganisms of at least three or four types are preserved in this. One example each of Carboniferous and Jurassic sub-lacustrine fossiliferous thermal springs are known. There are two convincing examples of fossiliferous subaerial hydrothermal deposits. Both are Devonian. Several known Proterozoic and Archaean deposits are likely to preserve a substantial palaeobiological record, and all the indications are that there must be numerous deposits suitable for study. Already it is demonstrable that in ancient thermal spring deposits there is a record of microbial communities preserved as stromatolites, microfossils, isotope distribution patterns and hydrocarbon biomarkers.
NASA Technical Reports Server (NTRS)
Pang, Kevin D.; Tsay, Fun-Dow
1988-01-01
Although the Viking Landers failed to find any evidence of life on the surface of Mars, much remains unknown. Study of returned samples can answer some of these questions. The search for organic compounds, the building blocks of life forms based on carbon chemistry, should continue. The question of life on Mars is still an open one, and deserves to be addressed by the study of returned samples. Whether life developed and evolved on Mars or not depends critically on the history of the Martian atmosphere and hydrosphere. The exobiology of Mars is thus inextrically intertwined with the nature of its paleoatmosphere and the ancient state of the planet's regolith, which may still be preserved in the polar caps and underground. Core samples from such sites could answer some of the questions.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.
2012-10-01
Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.
Respiration in a changing environment.
Perry, Steven F; Spinelli Oliveira, Elisabeth
2010-08-31
Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Stonefish toxin defines an ancient branch of the perforin-like superfamily
Ellisdon, Andrew M.; Reboul, Cyril F.; Huynh, Kitmun; Oellig, Christine A.; Winter, Kelly L.; Hodgson, Wayne C.; Seymour, Jamie; Dearden, Peter K.; Tweten, Rodney K.; Whisstock, James C.; McGowan, Sheena
2015-01-01
The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and β), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom. PMID:26627714
Kozma, Chahira
2006-02-15
Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.
Reassessing the Evidence for the Earliest Traces of Life
NASA Technical Reports Server (NTRS)
vanZullen, Mark A.; Lepland, Alve; Arrhenlus, Gustaf
2002-01-01
The isotopic composition of graphite is commonly used as a biomarker in the oldest (>3.5 Gyr ago) highly metamorphosed terrestrial rocks. Earlier studies on isotopic characteristics of graphite occurring in rocks of the approximately 3.8-Gyr-old Isua supracrustal belt (ISB) in southern West Greenland have suggested the presence of a vast microbial ecosystem in the early Archean. This interpretation, however, has to be approached with extreme care. Here we show that graphite occurs abundantly in secondary carbonate veins in the ISB that are formed at depth in the crust by injection of hot fluids reacting with older crustal rocks (metasomatism). During these reactions, graphite forms from the disproportionation of Fe(II)-bearing carbonates at high temperature. These metasomatic rocks, which clearly lack biological relevance, were earlier thought to be of sedimentary origin and their graphite association provided the basis for inferences about early life. The new observations thus call for a reassessment of previously presented evidence for ancient traces of life in the highly metamorphosed Early Archaean rock record.
A pocket guide to explorations of the defensin field.
Selsted, Michael E
2007-01-01
Antimicrobial peptides are among the most ancient effectors of host defense. Intersecting lines of research demonstrate that life forms as diverse as plants, insects, and vertebrates employ antimicrobial peptides to kill or neutralize a wide variety of microbial species. Defensins, of which there are three structural sub-families, constitute a major category of host defense peptides in vertebrates. Presented here is a brief history of the emergence of the defensin field with an emphasis on the role of these peptides in mammalian innate immunity.
A NEW QUANTUM MECHANICAL THEORY OF EVOLUTION OF UNIVERSE AND LIFE
Nigam, M C
1990-01-01
Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal – consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge. PMID:22556513
Pore-forming toxins in Cnidaria.
Podobnik, Marjetka; Anderluh, Gregor
2017-12-01
The ancient phylum of Cnidaria contains many aquatic species with peculiar lifestyle. In order to survive, these organisms have evolved attack and defense mechanisms that are enabled by specialized cells and highly developed venoms. Pore-forming toxins are an important part of their venomous arsenal. Along some other types, the most representative are examples of four protein families that are commonly found in other kingdoms of life: actinoporins, Cry-like proteins, aerolysin-like toxins and MACPF/CDC toxins. Some of the homologues of pore-forming toxins may serve other functions, such as in food digestion, development and response against pathogenic organisms. Due to their interesting physico-chemical properties, the cnidarian pore-forming toxins may also serve as tools in medical research and nanobiotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modi, Tushar; Huihui, Jonathan; Ghosh, Kingshuk; Ozkan, S Banu
2018-06-19
Thioredoxins (THRXs)-small globular proteins that reduce other proteins-are ubiquitous in all forms of life, from Archaea to mammals. Although ancestral thioredoxins share sequential and structural similarity with the modern-day (extant) homologues, they exhibit significantly different functional activity and stability. We investigate this puzzle by comparative studies of their (ancient and modern-day THRXs') native state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for the relative resilience of an amino acid to perturbations in the rest of the protein. Clustering proteins using DFI profiles strongly resemble an alternative classification scheme based on their activity and stability. The DFI profiles of the extant proteins are substantially different around the α3, α4 helices and catalytic regions. Likewise, allosteric coupling of the active site with the rest of the protein is different between ancient and extant THRXs, possibly explaining the decreased catalytic activity at low pH with evolution. At a global level, we note that the population of low-flexibility (called hinges) and high-flexibility sites increases with evolution. The heterogeneity (quantified by the variance) in DFI distribution increases with the decrease in the melting temperature typically associated with the evolution of ancient proteins to their modern-day counterparts.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).
The lost language of the RNA World
Nelson, James W.; Breaker, Ronald R.
2018-01-01
The possibility of an RNA World is based on the notion that life on Earth passed through a primitive phase without proteins, at a time when all genomes and enzymes were composed of ribonucleic acid. Numerous apparent vestiges of this ancient RNA World remain today, including many nucleotide-derived coenzymes, self-processing ribozymes, metabolite-binding riboswitches, and even ribosomes. Intriguingly, many of the most common signaling molecules and second messengers used by modern organisms are also formed from RNA. For example, nucleotide derivatives such as cAMP, ppGpp, and ZTP, as well as the cyclic dinucleotides c-di-GMP and c-di-AMP, are intimately involved in signaling diverse physiological or metabolic changes in bacteria and other organisms. Herein we describe the potential diversity of this ‘lost language’ of the RNA World, and speculate on whether additional components of this ancient communication machinery might remain hidden though still very much relevant to modern cells. PMID:28611182
Low-Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans
NASA Astrophysics Data System (ADS)
Johnson, Jena E.; Muhling, Janet R.; Cosmidis, Julie; Rasmussen, Birger; Templeton, Alexis S.
2018-04-01
Banded iron formations (BIFs) represent chemical precipitation from Earth's early oceans and therefore contain insights into ancient marine biogeochemistry. However, BIFs have undergone multiple episodes of alteration, making it difficult to assess the primary mineral assemblage. Nanoscale mineral inclusions from 2.5 billion year old BIFs and ferruginous cherts provide new evidence that iron silicates were primary minerals deposited from the Neoarchean ocean, contrasting sharply with current models for BIF inception. Here we used multiscale imaging and spectroscopic techniques to characterize the best preserved examples of these inclusions. Our integrated results demonstrate that these early minerals were low-Fe(III) greenalite. We present potential pathways in which low-Fe(III) greenalite could have formed through changes in saturation state and/or iron oxidation and reduction. Future constraints for ancient ocean chemistry and early life's activities should include low-Fe(III) greenalite as a primary mineral in the Neoarchean ocean.
NASA Astrophysics Data System (ADS)
Uhen, Mark D.
2010-05-01
Whales are first found in the fossil record approximately 52.5 million years ago (Mya) during the early Eocene in Indo-Pakistan. Our knowledge of early and middle Eocene whales has increased dramatically during the past three decades to the point where hypotheses of whale origins can be supported with a great deal of evidence from paleontology, anatomy, stratigraphy, and molecular biology. Fossils also provide preserved evidence of behavior and habitats, allowing the reconstruction of the modes of life of these semiaquatic animals during their transition from land to sea. Modern whales originated from ancient whales at or near the Eocene/Oligocene boundary, approximately 33.7 Mya. During the Oligocene, ancient whales coexisted with early baleen whales and early toothed whales. By the end of the Miocene, most modern families had originated, and most archaic forms had gone extinct. Whale diversity peaked in the late middle Miocene and fell thereafter toward the Recent, yielding our depauperate modern whale fauna.
On Some Aspects of Study on Dimensions and Proportions of Church Architecture
NASA Astrophysics Data System (ADS)
Kolobaeva, T. V.
2017-11-01
Architecture forms and arranges the environment required for a comfortable life and human activity. The modern principles of architectural space arrangement and form making are represented by a reliable system of buildings which are used in design. Architects apply these principles and knowledge of space arrangement in regard to the study of special and regulatory literature when performing a particular creative task. This system of accumulated knowledge is perceived in the form of an existing stereotype with no regard for understanding of the form making and experience inherent to the architects and thinkers of previous ages. We make an attempt to restore this connection as the form-making specific regularities known by ancient architects should be taken into account. The paper gives an insight into some aspects of traditional dimensions and proportions of church architecture.
Motion sickness in ancient China: Seasickness and cart-sickness.
Brandt, Thomas; Bauer, Matthias; Benson, Judy; Huppert, Doreen
2016-07-19
To find and analyze descriptions of motion sickness in Chinese historical sources. Databases and dictionaries were searched for various terms for seasickness and travel sickness, which were then entered into databases of full texts allowing selection of relevant passages from about the third to the 19th century ad. Already in 300 ad the Chinese differentiated cart-sickness, particularly experienced by persons from the arid north of China, from a ship-illness experienced by persons from the south, where rivers were important for transportation and travel. In the Middle Ages, a third form of motion sickness was called litter-influence experienced by persons transported in a bed suspended between 2 long poles. The ancient Chinese recognized the particular susceptibility of children to motion sickness. Therapeutic recommendations include drinking the urine of young boys, swallowing white sand-syrup, collecting water drops from a bamboo stick, or hiding some earth from the middle of the kitchen hearth under the hair. The Chinese medical classics distinguished several forms of travel sickness, all of which had their own written characters. The pathophysiologic mechanism was explained by the medicine of correspondences, which was based on malfunctions within the body, its invasion by external pathogens like wind, or the deficit or surfeit of certain bodily substances such as the life force Qi. The concept of motion as the trigger of sickness initially appeared in a chapter on warding off the influence of demons and corpses, e.g., ancient magic and beliefs. © 2016 American Academy of Neurology.
Plant Seeds as Model Vectors for the Transfer of Life Through Space
NASA Astrophysics Data System (ADS)
Tepfer, David; Leach, Sydney
2006-12-01
We consider plant seeds as terrestrial models for a vectored life form that could protect biological information in space. Seeds consist of maternal tissue surrounding and protecting an embryo. Some seeds resist deleterious conditions found in space: ultra low vacuum, extreme temperatures and radiation, including intense UV light. In a receptive environment, seeds could liberate a viable embryo, viable higher cells or a viable free-living organism (an endosymbiont or endophyte). Even if viability is lost, seeds still contain functional macro and small molecules (DNA, RNA, proteins, amino acids, lipids, etc.) that could provide the chemical basis for starting or modifying life. The possible release of endophytes or endosymbionts from a seed-like space traveler suggests that multiple domains of life, defined in DNA sequence phylogenies, could be disseminated simultaneously from Earth. We consider the possibility of exospermia, the outward transfer of life, as well as introspermia, the inward transfer of life-both as a contemporary and ancient events.
Darwin's warm little pond revisited: from molecules to the origin of life.
Follmann, Hartmut; Brownson, Carol
2009-11-01
All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched "a warm little pond with all sorts of... (chemicals, in which) ...a protein was chemically formed." We try to trace the impact of his charming clear-sighted metaphor up to the present time.
Darwin's warm little pond revisited: from molecules to the origin of life
NASA Astrophysics Data System (ADS)
Follmann, Hartmut; Brownson, Carol
2009-11-01
All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched “a warm little pond with all sorts of… (chemicals, in which) …a protein was chemically formed.” We try to trace the impact of his charming clear-sighted metaphor up to the present time.
The Limits of Life in the Deep Subsurface - Implications for the Origin of Life
NASA Astrophysics Data System (ADS)
Baross, John
2013-06-01
There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.
The Suicide Paradigm: Insights from Ancient Hindu Scriptures.
Agoramoorthy, Govindasamy; Hsu, Minna J
2017-06-01
The world religions in general promote peace and happiness. They strongly discourage all sorts of violence in society including suicide. Religious commitments toward life-saving value are known to prevent suicide attempts since all world religions promote unity, reducing interpersonal hostilities. Therefore, understanding the basics on what religious scriptures narrate on life and death including suicide is essential. This paper highlights the seldom discussed topic on the concept and consequences of suicide portrayed in the ancient Hindu religious scriptures.
[Outline of the history of caesarean section – from ancient times to the end of 17th Century].
Torbé, Andrzej; Ustianowski, Przemysław; Ustianowska, Maria; Celewicz, Zbigniew; Torbé, Dorota
Problems with the childbirth accompanied the human civilization since its beginning. From the ancient times, physicians and other people specializing in healing, tried to help women in this special moment of life. At the base of this exceptional meaning of childbirth for humans lies the fact, that if something is going wrong there are two victims - mother and the child. As a result, many times there had been very dramatic attempts of help in this the most difficult journey which in his life every man is undergoing. In this paper a comprehensive review of literature about the history of caesarean section from ancient times to the end of 17th century was done.
ERIC Educational Resources Information Center
Luce, Ann Campbell
This resource contains a teaching manual, reproducible student workbook, and color teaching poster, which were designed to accompany a 2-part, 34-minute videotape, but may be adapted for independent use. Part 1 of the program, "The Old Kingdom," explains Egyptian beliefs concerning life after death as evidenced in art, architecture and…
Iron microbial mats in modern and phanerozoic environments
NASA Astrophysics Data System (ADS)
Baele, Jean-Marc; Bouvain, Frédéric; De Jong, Jeroen; Matielli, Nadine; Papier, Séverine; Préat, Alain
2008-08-01
The recognition of iron microbial mats in terrestrial environments is of great relevance for the search for extraterrestrial life, especially on mars where significant iron minerals were identified in the subsurface. Most researches focused on very ancient microbial mats (e.g. BIFs) since they formed on Earth at a time where similar conditions are supposed to have prevailed on Mars too. However, environmental proxies are often difficult to use for these deposits on Earth which, in addition, may be heavily transformed due to diagenesis or even metamorphism. Here we present modern and phanerozoic iron microbial mats occurrences illustrating the wide variety of environments in which they form, including many marine settings, ponds, creeks, caves, volcanoes, etc. Contrarily to their Precambrian counterparts, Modern and Phanerozoic deposits are usually less affected by diagenesis and the environmental conditions likely to be better constrained. Therefore, their investigation may help for the search for morphological and geochemical biosignatures (e.g. iron isotopes) in ancient iron microbial occurrences on Earth but also on other Planets. In particular, many of the case studies presented here show that microstromatolithe-like morphologies may be valuable targets for screening potential biosignatures in various rock types.
Ancient and modern women in the "Woman's World".
Hurst, Isobel
2009-01-01
Under the editorship of Oscar Wilde, the "Woman's World" exemplified the popular dissemination of Hellenism through periodical culture. Addressing topics such as marriage, politics, and education in relation to the lives of women in the ancient world, the magazine offered an unfamiliar version of the reception of ancient Greece and Rome in late-Victorian aestheticism, one that was accessible to a wide readership because it was often based on images rather than texts. The classical scholar Jane Ellen Harrison addressed herself to this audience of women readers, discussing the similarities between modern collegiate life and the "woman's world" that enabled Sappho to flourish in ancient Greece. The "Woman's World" thus questions gender stereotypes by juxtaposing ancient and modern women, implicitly endorsing varied models of womanhood.
Ancient Egypt: Personal Perspectives.
ERIC Educational Resources Information Center
Wolinski, Arelene
This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…
The Concept of Cosmic Tree in Armenian and Iranian Cosmologies
NASA Astrophysics Data System (ADS)
Farmanyan, S. V.; Mickaelian, A. M.
2016-09-01
Cosmic Tree or Tree of Life is a common motif in various world theologies, mythologies, and philosophies. In the present study we focus on Armenian and Iranian Cosmic Tree. In ancient Armenia, the Tree of Life (Կենաց Ծառ) is a religious symbol and is drawn on walls of fortresses and carved on the armour of warriors. According to ancient Armenians the center of the Universe is located at the crown of the tree or the column, which is the closest to the sky. We explore the idea of cosmic tree in the riddles, prayers, medieval rituals and miniatures. In the riddles, the tree mostly symbolizes the celestial phenomena (Sun, Stars, and Heavens), different units of time (years, months, weeks, days, and seasons), the people, Jerusalem, the apostles and Jesus Christ. The branches of the tree were equally divided on the right and left sides of the stem, with each branch having one leaf, and one leaf on the apex of the tree. Servants stood on each side of the tree with one of their hands up as if they are taking care of the tree. In pre-Islamic Persian mythology, the Gaokerena world tree is a large, sacred Haoma tree which bears all seeds. Ahriman created a frog to invade the tree and destroy it, aiming at preventing all trees from growing on the Earth. As a reaction, God (Ahura Mazda) created two kar fish staring at the frog to guard the tree. The concept of world tree in Persian Mythology is very closely related to the concept of the Tree of Life. Another related issue in ancient mythology of Iran is the myth of Mashya and Mashyane, two trees who were the ancestors of all living beings. This myth can be considered as a prototype for the creation myth where living beings are created by Gods (who have human forms). We come to the conclusion that in both cultures, no matter of the present different religions, the perception of Cosmic Tree is interconnected to the life on our planet and served as a metaphor for common descent in the evolutionary sense.
Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements
NASA Astrophysics Data System (ADS)
Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.
2017-12-01
The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5]), which can be used to constrain atmospheric loss of N2 and model the evolution of the atmosphere on Mars.
Mental health and sexual activity according to ancient Greek physicians.
Laios, K; Tsoucalas, G; Kontaxaki, Μ-Ι; Karamanou, Μ; Sgantzos, Μ; Androutsos, G
2015-01-01
The ancient Greek physicians have not failed in their studies to indicate the beneficial role of sexual activity in human health. They acknowledged that sex helps to maintain mental balance. Very interesting is their observation that sex may help mental patients to recover. Nevertheless they stressed emphatically that sex is beneficial only when there is a measure in it, so they believed that sexual abstinence or excessive sexual activity affect negatively the mental and physical health of man. Ancient Greek physicians reached this conclusion by empirical observation. They tried to justify the mental imbalance, as the potential physical problems, which probably will be listed today in the psychosomatic manifestations, of people with long-term sexual abstinence or hyperactivity, based on the theory of humors which was the main methodological tool of ancient Greek medicine. Their fundamental idea was that the four humors of the body (blood, phlegm, yellow and black bile) should be in balance. Therefore they believed that the loss and the exchange of bodily fluids during sex help body's humors to maintain their equilibrium which in turn will form the basis for the physical and mental health. Although in ancient medical texts the irrationality presented by people in the aforementioned conditions was not attributed in any of the major mental illnesses recognized in antiquity, as mania, melancholy and phrenitis, our belief is that their behavior is more suited to the characteristics of melancholy, while according to modern medicine it should be classified in the depressive disorders. We have come to this conclusion, because common characteristics of people who either did not have sexual life or was overactive, was sadness, lack of interest and hope, as well as paranoid thinking that can reach up to suicide. Regarding the psychosomatic problems, which could occur in these people, they were determined by the ancient Greek physicians in the following; continuous headaches and heaviness, dilatancy, pain, dysuria and fever. But all these symptoms would disappear when the man gained a measure sexual activity, as was categorically stated by Galen. It is striking that these ideas were maintained over time, starting already from the authors of the Hippocratic Corpus, from which the distinguished work De virginum morbis, refers indeed to women who reached the point of suicide due to the absence sexual life, hanging themselves or falling into wells and eventually passing to the works of Rufus of Ephesus, Soranus of Ephesus and Galen.
Ancient Wisdom, Applied Knowledge for a Sustainable Future
NASA Astrophysics Data System (ADS)
Peterson, K.; Philippe, R. Elde; Dardar, T. M. Elde
2017-12-01
Ancient wisdom informs traditional knowledges that guide Indigenous communities on how to interact with the world. These knowledges and the ancient wisdom have been the life-giving forces that have prevented the complete genocide of Indigenous peoples, and is also the wisdom that is rejuvenating ancient ways that will take the world into a future that embraces the seventh generation philosophy.. Western scientists and agency representatives are learning from the work and wisdom of Native Americans. This presentation will share the ways in which the representatives of two Tribes along the coast of Louisiana have been helping to educate and apply their work with Western scientists.
Fossil Microorganisms in Archaean
NASA Technical Reports Server (NTRS)
Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.
2006-01-01
Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.
Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María
2016-02-01
Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life
Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong
2016-01-01
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216
Ioannidou-Marathiotou, Ioulia; Papamanou, Despoina A; Papadopoulos, Moschos A
2008-01-01
Efforts to define facial esthetics and natural attraction using objective criteria go back in time. Nowadays, the abundance of available information, the evolution in our understanding, the intermeshing of the neurosciences and biology, as well as the potential of digital technology, have provided new elements for the objective definition of esthetics and shaped new perceptions and perspectives. The aim of this paper is to attempt a critical analysis from a clinical orthodontic perspective of the conventional methods assessing facial beauty as well as of the trends and viewpoints that form today's concept of an esthetically ideal face, based on a historical review from ancient times to the 21st century. It appears that the "beauty standards" formulated artificially by the mass media and the internet remain a challenge for the orthodontist, who is called upon to explore the aspirations, motives and expectations of patients in order to be able to contribute in improving their social status and quality of life.
Aqueous Black Colloids of Reticular Nanostructured Gold
NASA Astrophysics Data System (ADS)
Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.
2015-01-01
Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.
Remembering the Ancients: Observations on Technoscience in Capek's "R.U.R."
ERIC Educational Resources Information Center
Cornell, Christine
2011-01-01
The technoscientific consequences of both the human drives for glory on the one hand and a comfortable life on the other potentially threaten human existence. "R.U.R." (Rossum's Universal Robots), a science fiction play by Karel Capek, bridges ancient writers and contemporary technoscientific endeavors, encouraging individuals to consider these…
Discovering the Ancient Temperate Rainforest.
ERIC Educational Resources Information Center
Lindsay, Anne
1997-01-01
Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…
The Polar Regions and the Search for Evidence of Life on Mars
NASA Technical Reports Server (NTRS)
McKay, C. P.
2003-01-01
The search for life on Mars and evidence for past life connects to polar exploration in two important ways. First the polar regions on Mars are sites of possible liquid water today, and hence possible locations for extant life. Secondly, ancient permafrost may preserve evidence of the nature of martian life.
Twins in Ancient Greece: a synopsis.
Malamitsi-Puchner, Ariadne
2016-01-01
This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality.
NASA Astrophysics Data System (ADS)
Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.
2015-12-01
Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.
NASA Astrophysics Data System (ADS)
Parsamian, Elma S.
2007-08-01
The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.
NASA Technical Reports Server (NTRS)
Mhaffy, P. R.
2015-01-01
The Mars Science Laboratory Mission was designed to pave the way for the study of life beyond Earth through a search for a habitable environment in a carefully selected landing site on Mars. Its ongoing exploration of Gale Crater with the Curiosity Rover has provided a rich data set that revealed such an environment in an ancient lakebed [1]. Volatile and isotope measurements of both the atmosphere and solids contribute to our growing understanding of both modern and ancient environments.
Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins
NASA Technical Reports Server (NTRS)
Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A.
2003-01-01
Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.
NASA Astrophysics Data System (ADS)
Papagiannis, M. D.
The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the inevitability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.
NASA Technical Reports Server (NTRS)
Papagiannis, M. D. (Editor)
1985-01-01
The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the ineviability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.
A Review of Ideas Concerning Life Origin
NASA Astrophysics Data System (ADS)
Gindilis, L. M.
2014-10-01
Since the times of Antiquity the and for a long time the idea of self-origination of life was the dominant one. It reappeared again after microorganisms were discovered (XVII century). The possibility of abiogenesis at microbial level was discussed for more than a century. Pateur demonstrated that spontaneous origination of microorganisms in sterile broth was due to those same microorganisms transported by dust particles. Thus proving that every form of life originates from the parental life form. So the question arises: how did the first microorganisms appear on the Earth. There are three possible versions: 1) accidental origination of a viable form; 2) primal organisms were transported to the Earth from outer space; 3) they were formed on the Earth in the process of prebiotic chemical evolution. We discuss the problems of prebiotic evolution from simple monomers up to living cells. An important item of nowadays conceptions of life origination is the hypothesis of the ancient world of RNA as possible precursor of life on Earth. The discovery in carbonaceous chondrites of traces of bacterial life evidences the existence of life in the Solar System even before the formation of the Earth. The idea of life as brought to the Earth out of Cosmos originated under the impression of self-origination hypothesis downfall. It went through several stages (Helmholtz, W. Thompson, XIX century; Arrhenius, early XX century; Hoyle and Wickramasinghe, second half of XX century) and presently evokes constantly growing interest. The panspermia theory does not solve the problem of origination of life, only moves it onto other planets. According to V.A. Mazur, the probability of accidental formation of RNA molecule is negligible not only on the Earth, but in the whole Universe over all the time span of its existence. But it is practically equal to unit in the domain formed at the inflation stage of the evolution of the Universe. A.D.Panov considered panspermia in the Galaxy at the level of prebiotic evolution products. The quantitative model he has brought forward increases life origination probability by many orders of magnitude in comparison with any isolated planet. In this model the life to originates simultaneously on all the planets with proper conditions on the same molecular basis, one and the same genetic code and the same chirality.
Elemental sulfur aerosol-forming mechanism
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Francisco, Joseph S.
2017-01-01
Elemental sulfur aerosols are ubiquitous in the atmospheres of Venus, ancient Earth, and Mars. There is now an evolving body of evidence suggesting that these aerosols have also played a role in the evolution of early life on Earth. However, the exact details of their formation mechanism remain an open question. The present theoretical calculations suggest a chemical mechanism that takes advantage of the interaction between sulfur oxides, SOn (n = 1, 2, 3) and hydrogen sulfide (nH2S), resulting in the efficient formation of a Sn+1 particle. Interestingly, the SOn + nH2S → Sn+1 + nH2O reactions occur via low-energy pathways under water or sulfuric acid catalysis. Once the Sn+1 particles are formed, they may further nucleate to form larger polysulfur aerosols, thus providing a chemical framework for understanding the formation mechanism of S0 aerosols in different environments.
Bringing Ancient History Back To Life: An Interview With Nancy Toff
ERIC Educational Resources Information Center
Curriculum Review, 2005
2005-01-01
Nancy Toff, editorial director of school and young adult publishing at Oxford University Press, is out to revolutionize the teaching of history in middle schools. In this interview, she discusses how two new Oxford series, the nine-book, The World in Ancient Times and the seven-book, The Medieval & Early Modern World, get away from the notion of…
ERIC Educational Resources Information Center
Aijian, J. L.
2017-01-01
Although the deadly vice of acedia is prevalent in contemporary student culture, it is often misunderstood as mere carelessness. This article reconstructs the ancient meaning of acedia, highlighting its outward markers and arguing for a complex account of its internal motivations grounded in the work of John Cassian. These insights are then…
Akanuma, Satoshi
2017-08-06
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage.
Williams, Joseph H
2008-08-12
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< approximately 20 microm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from approximately 80 to 600 microm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants.
Armenian Vahagn God as birth of four Cosmic elements
NASA Astrophysics Data System (ADS)
Harutyunian, H. A.
2014-10-01
The survived two snatches of the mythological history about Vahagn - the Armenian god of the Sun and Fire is analyzed to find fingerprints of ancient cosmology. In the first fragment known as "Birth of Vahagn" all the four primary elements are mentioned as travailing ones which brought the god into life. The second fragment devoted to the ancient conception on the formation of the Milky Way named in Armenian mythology "Straw Thief's Way". The fact that both survived fragments concern the structure of the Universe might be explained easily if the ode glorifying Vahagn was based on the ancient Armenian cosmological views.
Scratching the Surface of Martian Habitability
NASA Technical Reports Server (NTRS)
Conrad, Pamela G.
2014-01-01
Earth and Mars, though formed at the same time from the same materials, look very different today. Early in their histories they evolved through some of the same processes, but at some point their evolutionary paths diverged, sending them in perhaps irrevocably different directions. Knowledge of the factors that contributed to such different outcomes will help to determine how planets become habitable and how common habitable planets may be. The Mars surface environment is harsh today, but in situ measurements of ancient sedimentary rock by Mars Science Laboratory reveal chemical and mineralogical evidence of past conditions that might have been more favorable for life to exist. But chemistry is only part of what is required to make an environment habitable. Physical conditions constrain the chemical reactions that underlie life processes; the chemical and physical characteristics that make planets habitable are thus entangled.
"Nano" Scale Biosignatures and the Search for Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Oehler, D. Z.; Robert, F.; Meibom, A.; Mostefaoui, S.; Selo, M.; Walter, M. R.; Sugitani, K.; Allwood, A.; Mimura, K.; Gibson, E. K.
2008-01-01
A critical step in the search for remnants of potential life forms on other planets lies in our ability to recognize indigenous fragments of ancient microbes preserved in some of Earth's oldest rocks. To this end, we are building a database of nano-scale chemical and morphological characteristics of some of Earth's oldest organic microfossils. We are primarily using the new technology of Nano-Secondary ion mass spectrometry (NanoSIMS) which provides in-situ, nano-scale elemental analysis of trace quantities of organic residues. The initial step was to characterize element composition of well-preserved, organic microfossils from the late Proterozoic (0.8 Ga) Bitter Springs Formation of Australia. Results from that work provide morphologic detail and nitrogen/carbon ratios that appear to reflect the well-established biological origin of these 0.8 Ga fossils.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This Manitoba (Canada) curriculum guide for eighth grade social studies students contains suggested teaching strategies and learning activities in four units covering: (1) life during prehistoric and early historic times; (2) ancient civilizations; (3) life in early modern Europe; and (4) life in the modern world. Each unit includes an overview,…
NASA Technical Reports Server (NTRS)
Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.
2010-01-01
The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.
Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R
2011-09-01
Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. © 2011 Blackwell Publishing Ltd.
The ring of life provides evidence for a genome fusion origin of eukaryotes.
Rivera, Maria C; Lake, James A
2004-09-09
Genomes hold within them the record of the evolution of life on Earth. But genome fusions and horizontal gene transfer seem to have obscured sufficiently the gene sequence record such that it is difficult to reconstruct the phylogenetic tree of life. Here we determine the general outline of the tree using complete genome data from representative prokaryotes and eukaryotes and a new genome analysis method that makes it possible to reconstruct ancient genome fusions and phylogenetic trees. Our analyses indicate that the eukaryotic genome resulted from a fusion of two diverse prokaryotic genomes, and therefore at the deepest levels linking prokaryotes and eukaryotes, the tree of life is actually a ring of life. One fusion partner branches from deep within an ancient photosynthetic clade, and the other is related to the archaeal prokaryotes. The eubacterial organism is either a proteobacterium, or a member of a larger photosynthetic clade that includes the Cyanobacteria and the Proteobacteria.
Self-organized iron-oxide cementation geometry as an indicator of paleo-flows
Wang, Yifeng; Chan, Marjorie A.; Merino, Enrique
2015-06-30
Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolutionmore » and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules.« less
Modernizing the Estonian farmhouse, redefining the family, 1880s-1930s.
L'Heureux, Marie-Alice
2010-01-01
In the nineteenth century, the transition from a Baltic-German-controlled manor-and-serf economy to individually owned farmsteads transformed all aspects of life including the spatial organization and form of farmhouses in the western provinces of Tsarist Russia. Agricultural experts and social reformers discussed how to update the traditional threshing-room dwelling house (rehielamu) into a healthy dwelling for successful farmers and, after the Estonian War of Independence, for new settlers. Using material culture such as contemporary plans, I show that changing household relationships, in addition to economic and technological factors, helped to transform the ancient rehielamu into a modern dwelling.
Metabolic activity of microorganisms in evaporites
NASA Technical Reports Server (NTRS)
Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.
1994-01-01
Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.
Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens
Randow, Felix; MacMicking, John D.; James, Leo C.
2013-01-01
Our prevailing view of vertebrate host defense is strongly shaped by the notion of a specialized set of immune cells as sole guardians of antimicrobial resistance. Yet this view greatly underestimates a capacity for most cell lineages—the majority of which fall outside the traditional province of the immune system—to defend themselves against infection. This ancient and ubiquitous form of host protection is termed cell-autonomous immunity and operates across all three domains of life. Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide variety of microbial pathogens. PMID:23661752
Cellular self-defense: how cell-autonomous immunity protects against pathogens.
Randow, Felix; MacMicking, John D; James, Leo C
2013-05-10
Our prevailing view of vertebrate host defense is strongly shaped by the notion of a specialized set of immune cells as sole guardians of antimicrobial resistance. Yet this view greatly underestimates a capacity for most cell lineages-the majority of which fall outside the traditional province of the immune system-to defend themselves against infection. This ancient and ubiquitous form of host protection is termed cell-autonomous immunity and operates across all three domains of life. Here, we discuss the organizing principles that govern cellular self-defense and how intracellular compartmentalization has shaped its activities to provide effective protection against a wide variety of microbial pathogens.
Ayer y hoy: La mujer en el viejo mundo [Yesterday and Today: Women in the Old World].
ERIC Educational Resources Information Center
Pico, Isabel; And Others
This teaching guide for sixth grade social studies teachers focuses on the roles of women in European history and the roles women play in more contemporary European, American, African, and Asian societies. Study units provided include: (1) "Daily Life in Ancient Greece"; (2) a unit on the equality of the sexes in ancient Egypt; (3) a…
Resurrecting ancestral genes in bacteria to interpret ancient biosignatures
NASA Astrophysics Data System (ADS)
Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John
2017-11-01
Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction. This article is part of the themed issue 'Reconceptualizing the origins of life'.
NASA Technical Reports Server (NTRS)
Lindsay, John F.; McKay, David S.; Allen, Carlton C.
2003-01-01
The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.
Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc
2015-01-01
It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.
Ancient Astronomical Hieroglyphs of the Armenian Highland and their Echo in Architectural Structures
NASA Astrophysics Data System (ADS)
Ter-Gulanyan, Ani
2014-10-01
The credo-spiritual structure formed as a result of astronomical knowledge in the Armenian Highland and recognition of the universe, with its symbolistic signs - which, in our opinion, were expressed in particular by astronomic horoscope hieroglyphs - have had their worship and spiritual speculative feedback both in architecture and in different other arts, especially in symbolic jewelry. A visible link is noticed between the shift of constellations and the civilization development phases. Identification of archeological sources gives the ground to conclude that Armenia has been one of the centers of astronomy. The astronomical signs, having a local origin and having formed ancient astronomical-worship, spiritual-credo structure, have found the feedback of its developments also in other biospheres with respective unique manifestations, in both ancient pagan church architecture and the Christian church architecture, both as a volume form and as a spiritual ideology, with its credosymbolistic signs.
Ulusu, Nuriye Nuray
2015-07-01
Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts… Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This paper is dedicated to these early moments of this remarkable science that touched our lives in the past and will make life a lot more efficient for humanity in the future. There was almost always a delicate, fundamentally essential relationship between mankind and the enzymes. Challenged by a very alien and hostile Nature full of predators, prehistoric men soon discovered the medicinal properties of the plants, through trial and error. In fact, they accidently discovered the enzyme inhibitors and thus, in crude terms, kindled a sparkling area of research. These plant-derivatives that acted as enzyme inhibitors helped prehistoric men in their pursuit of survival and protection from predators; in hunting and fishing… Later in history, while the underlying purposes of survival and increasing the quality of life stayed intact, the ways and means of enzymology experienced a massive transformation, as the 'trial and error' methodology of the ancients is now replaced with rational scientific theories.
Suicidal behaviour in the ancient Greek and Roman world.
Lykouras, L; Poulakou-Rebelakou, E; Tsiamis, C; Ploumpidis, D
2013-12-01
We attempt to present and analyze suicidal behaviour in the ancient Greek and Roman world. Drawing information from ancient Greek and Latin sources (History, Philosophy, Medicine, Literature, Visual Arts) we aim to point out psychological and social aspects of suicidal behaviour in antiquity. The shocking exposition of suicides reveals the zeitgeist of each era and illustrates the prevailing concepts. Social and legal reactions appear ambivalent, as they can oscillate from acceptance and interpretation of the act to punishment. In the history of these attitudes, we can observe continuities and breaches, reserving a special place in cases of mental disease. The delayed emergence of a generally accepted term for the voluntary exit from life (the term suicidium established during the 17th century), is connected to reactions triggered by the act of suicide than to the frequency and the extent of the phenomenon. The social environment of the person, who voluntary ends his life usually dictates the behaviour and historical evidence confirms the phenomenon. Copyright © 2013 Elsevier B.V. All rights reserved.
Where Should Search Traces of Life, Which Could Appear on Mars in the First 300 Million Years
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2017-10-01
In its early years, Mars was like the ancient Earth. If life on Mars today there is, then, certainly, it is microbial. The proof of the presence of liquid water on Mars does not mean that there is life on Mars. But this gives some hope.
Effects of T'ai Chi exercise on fibromyalgia symptoms and health-related quality of life.
Taggart, Helen M; Arslanian, Christine L; Bae, Sejong; Singh, Karan
2003-01-01
Fibromyalgia (FM), one of the most common musculoskeletal disorders, is associated with high levels of impaired health and inadequate or limited symptom relief. The cause of this complex syndrome is unknown, and there is no known cure. Numerous research results indicate that a combination of physical exercise and mind-body therapy is effective in symptom management. T'ai Chi, an ancient Chinese exercise, combines physical exercise with mindbody therapy. To investigate the effects of T'ai Chi exercise on FM symptoms and health-related quality of life. Pilot study, one group pre-to-post posttest design. Participants with FM (n = 39) formed a single group for 6 weeks of 1-hour, twice weekly T'ai Chi exercise classes. FM symptoms and health-related quality of life were measured before and after exercise. Twenty-one participants completed at least 10 of the 12 exercise sessions. Although the dropout rate was higher than expected, measurements on both the Fibromyalgia Impact Questionnaire (FIQ) (Buckhardt, Clark, & Bennett, 1991) and the Short Form-36 (SE-36) (Ware & Sherbourne, 1992) revealed statistically significant improvement in symptom management and health-related quality of life. Knowledge of interventions to enhance health for the patient with musculoskeletal problems is a National Association of Orthopaedic Nurses priority. Tai Chi is potentially beneficial to patients with FM. Further research is needed to support evidence-based practice.
Paleo-oncology: the role of ancient remains in the study of cancer.
Halperin, Edward C
2004-01-01
Paleo-oncology is the study of carcinomas and sarcomas in ancient human populations and their hominid precursors. These populations are informative concerning the possible influences on cancer of morphologic and functional evolution, diet, lifestyle, and other environmental factors. The prevalence of cancer in ancient populations might have differed from that in modern humans, because of substantial differences in tobacco and alcohol use, diet, life expectancy, and the availability of treatment. The available physical data concerning cancer in antiquity includes evidence of its existence in animal fossils and ancient humans and their precursors. The difficulties of paleo-oncologic research include a limited soft tissue record. In evaluating cancer in ancient remains, one must also deal with the problem of pseudopathology: whether an observed tissue change is all antemortem pathologic lesion or a postmortem artifact. Future archeological discoveries and the application of improved diagnostic techniques may enable paleo-oncology to make further contributions to our understanding of cancer.
Daily life of the ancient Maya recorded on murals at Calakmul, Mexico.
Carrasco Vargas, Ramón; López, Verónica A Vázquez; Martin, Simon
2009-11-17
Research into ancient societies frequently faces a major challenge in accessing the lives of those who made up the majority of their populations, since the available evidence so often concerns only the ruling elite. Our excavations at the ancient Maya site of Calakmul, Mexico, have uncovered a "painted pyramid:" a structure decorated with murals depicting scenes of its inhabitants giving, receiving, and consuming diverse foods, as well as displaying and transporting other goods. Many are accompanied by hieroglyphic captions that describe the participants, and include spellings of key subsistence items. Collectively, they offer insights into the social mechanisms by which goods were circulated within major Maya centers.
Schultz, Celia E
2010-01-01
The Roman abhorrence of human sacrifice presented by ancient literary sources stands in contrast to the frequency of rites requiring the death of a human being performed by the Romans during the Republic (509-44 BCE). After examining the ways our sources talk about ritual murder, especially as it was practiced by foreign peoples and subversive or tyrannical elements within Roman society, this discussion turns to the issue of the forms of ritual murder performed by the Romans. Of these various rites, the only one clearly identified by them as human sacrifice, that is, as an offering to the gods of a human life, is the live interment of Gauls and Greeks. Other forms of ritual murder-the burial of unchaste Vestal Virgins and the drowning of hermaphroditic children-were not, in Roman opinion, sacrifice. This distinction made the disposal of Vestal Virgins and hermaphrodites acceptable.
Watchers of the Ancient Skies.
ERIC Educational Resources Information Center
Sherman, Ben
1998-01-01
Describes Lakota belief systems connected with the stars and how those beliefs directed Lakota existence, movements during the year, and ceremonies. Discusses winter camps, associated cultural practices such as storytelling, ancient wisdom, the concept of mirroring (constellations and corresponding land forms on earth), and the Black Hills annual…
Smithsonian Ocean Portal | Find Your Blue
Skip to main content Menu Search form Search Search Find Your Blue Smithsonian National Museum of Vents & Volcanoes Temperature & Chemistry Ice The Ocean Through Time Ancient Seas Fossils Temperature & Chemistry Ice The Ocean Through Time Ancient Seas Fossils Evolution Shifting Baselines
Living well in light of science.
McMahon, Darrin M
2016-11-01
This article discusses some findings of the modern science of happiness in the context of historical understandings of happiness. Comparing teachings of the ancient wisdom traditions to those of modern positive psychology and social science, I argue that there is surprising correspondence between the two. The happy life, both ancients and modern agree, involves training and the development and mastery of particular character traits. © 2016 New York Academy of Sciences.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
2001-01-01
Putative evidence of martian life in ALH84001 can be explained by abiotic and non-martian processes consistent with the meteorite's geological history. Additional information is contained in the original extended abstract.
NASA Curiosity rover hits organic pay dirt on Mars
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-06-01
Since NASA's Curiosity rover landed on Mars in 2012, it has sifted samples of soil and ground-up rock for signs of organic molecules—the complex carbon chains that on Earth form the building blocks of life. Past detections have been so faint that they could be just contamination. Now, samples taken from two different drill sites on an ancient lakebed have yielded complex organic macromolecules that look strikingly similar to kerogen, the goopy fossilized building blocks of oil and gas on Earth. At a few dozen parts per million, the detected levels are 100 times higher than previous finds, but scientists still cannot say whether they have origins in biology or geology. The discovery positions scientists to begin searching for direct evidence of past life on Mars and bolsters the case for returning rock samples from the planet, an effort that begins with the Mars 2020 rover.
Reconstructing Ancient Forms of Life
NASA Technical Reports Server (NTRS)
Benner, Steven A.
1998-01-01
Progress in the past three months has occurred in two areas, reconstruction of ancestral proteins and improved understanding of chemical features that are likely to be universal in generic matter regardless of its genesis. Ancestral ribonucleases have been reconstructed, and an example has been developed that shows how physiological function can be assigned to in vitro behaviors observed in biological systems. Sequence data have been collected to permit the reconstruction of src homology 2 domains that underwent radiative divergence at the time of the radiative divergence of chordates. New studies have been completed that show how genetic matter (or its remnants) might be detected on Mars (or other non-terrean locations.) Last, the first in vitro selection experiments have been completed using a nucleoside library carrying positively charged functionality, illustrating the importance of non-standard nucleotides to those attempting to obtain evidence for an "RNA world" as an early episode of life on earth.
The Martian subsurface as a potential window into the origin of life
NASA Astrophysics Data System (ADS)
Michalski, Joseph R.; Onstott, Tullis C.; Mojzsis, Stephen J.; Mustard, John; Chan, Queenie H. S.; Niles, Paul B.; Johnson, Sarah Stewart
2018-01-01
Few traces of Earth's geologic record are preserved from the time of life's emergence, over 3,800 million years ago. Consequently, what little we understand about abiogenesis — the origin of life on Earth — is based primarily on laboratory experiments and theory. The best geological lens for understanding early Earth might actually come from Mars, a planet with a crust that's overall far more ancient than our own. On Earth, surface sedimentary environments are thought to best preserve evidence of ancient life, but this is mostly because our planet has been dominated by high photosynthetic biomass production at the surface for the last 2,500 million years or more. By the time oxygenic photosynthesis evolved on Earth, Mars had been a hyperarid, frozen desert with a surface bombarded by high-energy solar and cosmic radiation for more than a billion years, and as a result, photosynthetic surface life may never have occurred on Mars. Therefore, one must question whether searching for evidence of life in Martian surface sediments is the best strategy. This Perspective explores the possibility that the abundant hydrothermal environments on Mars might provide more valuable insights into life's origins.
AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campante, T. L.; Davies, G. R.; Chaplin, W. J.
The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less
Freshly excavated fossil bones are best for amplification of ancient DNA.
Pruvost, Mélanie; Schwarz, Reinhard; Correia, Virginia Bessa; Champlot, Sophie; Braguier, Séverine; Morel, Nicolas; Fernandez-Jalvo, Yolanda; Grange, Thierry; Geigl, Eva-Maria
2007-01-16
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a approximately 3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.
Freshly excavated fossil bones are best for amplification of ancient DNA
Pruvost, Mélanie; Schwarz, Reinhard; Correia, Virginia Bessa; Champlot, Sophie; Braguier, Séverine; Morel, Nicolas; Fernandez-Jalvo, Yolanda; Grange, Thierry; Geigl, Eva-Maria
2007-01-01
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a ≈3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms. PMID:17210911
Exploring Mars for Evidence of Habitable Environments and Life
NASA Technical Reports Server (NTRS)
DesMarais, David J.
2014-01-01
The climate of Mars has been more similar to that of Earth than has the climate of any other planet in our Solar System. But Mars still provides a valuable alternative example of how planetary processes and environments can affect the potential presence of life elsewhere. For example, although Mars also differentiated very early into a core, mantle and crust, it then evolved mostly if not completely without plate tectonics and has lost most of its early atmosphere. The Martian crust has been more stable than that of Earth, thus it has probably preserved a more complete record of its earliest history. Orbital observations determined that near-surface water was once pervasive. Orbiters have identified the following diverse aqueous sedimentary deposits: layered phyllosilicates, phyllosilicates in intracrater fans, plains sediments potentially harboring evaporitic minerals, deep phyllosilicates, carbonate-bearing deposits, intracrater clay-sulfate deposits, Meridiani-type layered deposits, valles-type layered deposits, hydrated silica-bearing deposits, and gypsum plains. These features, together with evidence of more vigorous past geologic activity, indicate that early climates were wetter and perhaps also somewhat warmer. The denser atmosphere that was required for liquid water to be stable on the surface also provided more substantial protection from radiation. Whereas ancient climates might have favored habitable environments at least in some localities, clearly much of the Martian surface for most of its history has been markedly less favorable for life. The combination of dry conditions, oxidizing surface environments and typically low rates of sedimentation are not conducive to the preservation of evidence of ancient environments and any biota. Thus a strategy is required whereby candidate sites are first identified and then characterized for their potential to preserve evidence of past habitable environments. Rovers are then sent to explore the most promising candidates. The Mars Exploration Rover (MER) Opportunity revealed that water once flowed to the surface across the vast Meridiani plains, creating saline lakes whose waters were roiled by ancient winds that also sculptured their salt deposits into sand dunes. Opportunity then drove more than 30 km to explore even older deposits on a crater rim. MER Spirit found evidence that thermal waters (heated by volcanism or by impacts?) altered rocks to create sulfate salts, and siliceous sinters. These discoveries indicate that an early hydrological cycle apparently sustained precipitation, streams and lakes. Liquid water participated in rock weathering reactions, such as iron and sulfur oxidation, that created distinctive weathering regimes. Volcanism, impacts, groundwater and ice interacted at least locally. Redox chemical energy from volcanism, hydrothermal activity and weathering of crustal materials would have been available for any life. Thus conditions might have supported life in the past, at least locally. The main objective of the Mars Science Laboratory (MSL) Curiosity rover is to determine the extent to which Gale crater hosted environments capable of supporting microbial life. The rover has already found stream gravels as well as sediments that might have been deposited in an ancient lake. The rover is now traversing to Mt. Sharp, a 5 km-high mound that is located on the crater floor and that exhibits layered sedimentary rocks having diverse minerals (sulfates and clays) that apparently formed in the presence of liquid water. This rock sequence was deposited over an extended time period in diverse potentially habitable watery environments. Curiosity is poised to characterize a a well-preserved rock record of hundreds of millions of years of diverse environments and profound climate change.
From Extrasolar Planets to Exo-Earths
NASA Astrophysics Data System (ADS)
Fischer, Debra
2018-06-01
The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.
Beer and wine in antiquity: beneficial remedy or punishment imposed by the Gods?
Rosso, Ana Maria
2012-01-01
Different types of alcoholic beverages such as wine and beer were used in ancient times for various medicinal purposes. Being the oldest and probably the most widely used drugs, they were known to have some therapeutic value, in addition to the vital part they played in the daily life of people. Ethanol is produced by fermentation of a variety of plants and consumed either in a diluted form or concentrated by distillation to concoct alcoholic beverages. Beer made of fermented barley is an alcoholic drink that was believed to contain a spirit or a god. It is a drink of relatively low alcohol content with supernatural properties. The same was believed for wine. Considered to be divine, these beverages were the long sought elixirs of life and appeared in religious ceremonies, in mythology, and in social meals, such as the Greek symposia. In addition, these alcoholic drinks were considered to be a remedy for practically every disease and, therefore, were a common ingredient in ancient prescriptions. They were used as anaesthetics that dull the pain, as stimulants, as analgesics, as antiseptics to cleanse wounds and relieve pain, as emetics, as digestives, as antidotes for plant poisoning, for bites and stings, and as purifiers. However, we should not overlook the harmful effects of alcohol abuse such as drunkenness, chronic liver disease and, in modern terminology, infirmities that included pancreatitis, cardiomyopathy, peripheral neuropathy, dementia, and central nervous system disorders.
The origin of multicellularity in cyanobacteria
2011-01-01
Background Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms. Results We conducted and compared phylogenetic analyses of 16S rDNA sequences from a large sample of taxa representing the morphological and genetic diversity of cyanobacteria. We reconstructed ancestral character states on 10,000 phylogenetic trees. The results suggest that the majority of extant cyanobacteria descend from multicellular ancestors. Reversals to unicellularity occurred at least 5 times. Multicellularity was established again at least once within a single-celled clade. Comparison to the fossil record supports an early origin of multicellularity, possibly as early as the "Great Oxygenation Event" that occurred 2.45 - 2.22 billion years ago. Conclusions The results indicate that a multicellular morphotype evolved early in the cyanobacterial lineage and was regained at least once after a previous loss. Most of the morphological diversity exhibited in cyanobacteria today —including the majority of single-celled species— arose from ancient multicellular lineages. Multicellularity could have conferred a considerable advantage for exploring new niches and hence facilitated the diversification of new lineages. PMID:21320320
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage
Williams, Joseph H.
2008-01-01
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< ≈20 μm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from ≈80 to 600 μm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants. PMID:18678915
The ancient history of the structure of ribonuclease P and the early origins of Archaea
2010-01-01
Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683
ERIC Educational Resources Information Center
King, Angela G.
2007-01-01
Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…
NASA Astrophysics Data System (ADS)
Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham
2015-08-01
The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with that of their younger counterparts now represents a highly viscous, stable continental keel. This model could account for the large spectrum of ages observed in fertile to moderately depleted peridotites sampled from lithospheric mantle beneath SE Australia, W Antarctica and other locations in Zealandia, as well as the oceanic mantle. Our data confirm the longevity and dispersal of ancient depleted mantle domains in the convecting mantle and their re-appearance beneath young continents.
Daily life of the ancient Maya recorded on murals at Calakmul, Mexico
Carrasco Vargas, Ramón; López, Verónica A. Vázquez; Martin, Simon
2009-01-01
Research into ancient societies frequently faces a major challenge in accessing the lives of those who made up the majority of their populations, since the available evidence so often concerns only the ruling elite. Our excavations at the ancient Maya site of Calakmul, Mexico, have uncovered a “painted pyramid:” a structure decorated with murals depicting scenes of its inhabitants giving, receiving, and consuming diverse foods, as well as displaying and transporting other goods. Many are accompanied by hieroglyphic captions that describe the participants, and include spellings of key subsistence items. Collectively, they offer insights into the social mechanisms by which goods were circulated within major Maya centers. PMID:19901331
Pathogens and host immunity in the ancient human oral cavity
Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico
2014-01-01
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188
Exobiology site priorities for Mars Pathfinder
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; Desmarais, David J.
1994-01-01
The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it undoubtedly left behind a fossil record. Such a fossil record is likely to be more accessible than either subsurface environments that may harbor life, or scattered 'oases' that may be present at the surface. Consequently, the post-Viking approach of Mars exobiology has shifted focus to search for evidence of an ancient martian biosphere. This has led to the emergence of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets and whose core concepts derive from Earth-based Precambrian paleontology, microbial ecology, and sedimentology. Potential targets on Mars for subaqueous spring deposits, sedimentary cements, and evaporites are ancient terminal lake basins where hydrological systems could have endured for some time under arid conditions. Potential targets for the Mars Pathfinder mission include channeled impact craters and areas of deranged drainage associated with outflows in northwest Arabia and Xanthe Terra, where water may have ponded temporarily to form lakes. The major uncertainty of such targets is their comparatively younger age and the potentially short duration of hydrological activity compared to older paleolake basins found in the southern hemisphere. However, it has been suggested that cycles of catastrophic flooding associated with Tharsis volcanism may have sustained a large body of water, Oceanus Borealis, in the northern plains area until quite late in martian history. Although problematic, the shoreline areas of the proposed northern ocean provide potential targets for a Mars Pathfinder mission aimed at exploring for carbonates or other potentially fossiliferous marine deposits. Carbonates and evaporites possess characteristic spectra signatures in the near-infrared and should be detectable using rover-based spectroscopy and other methods for in situ mineralogical analysis.
A case for ancient springs in Arabia Terra, Mars.
Allen, Carlton C; Oehler, Dorothy Z
2008-12-01
Based on new image data from the High Resolution Imaging Science Experiment (HiRISE) on Mars Reconnaissance Orbiter (MRO), a case can be made that several structures in Vernal Crater, Arabia Terra are ancient springs. This interpretation is based on comprehensive geomorphologic analysis coupled with assessment of multiple hypotheses. The structures identified extend across several kilometers and are exceptional in that nothing with their detail and scale has been reported from Mars. The deposits are associated with an extensive fracture system that may have facilitated upward flow of warm fluids. Several additional spring-like features occur in Vernal Crater, and it is possible that these are part of a major province of spring activity. Since springs are environments where life could have evolved on Mars, where that life could have found refuge as the climate became colder and drier, and where signatures of that life may be preserved, Vernal Crater may be a site of major astrobiological importance.
Diversity of Holocene life forms in fossil glacier ice
Willerslev, Eske; Hansen, Anders J.; Christensen, Bent; Steffensen, Jørgen Peder; Arctander, Peter
1999-01-01
Studies of biotic remains of polar ice caps have been limited to morphological identification of plant pollen and spores. By using sensitive molecular techniques, we now demonstrate a much greater range of detectable organisms; from 2000- and 4000-year-old ice-core samples, we obtained and characterized 120 clones that represent at least 57 distinct taxa and reveal a diversity of fungi, plants, algae, and protists. The organisms derive from distant sources as well as from the local arctic environment. Our results suggest that additional taxa may soon be readily identified, providing a plank for future studies of deep ice cores and yielding valuable information about ancient communities and their change over time. PMID:10393940
The ancient lunar crust, Apollo 17 region
NASA Technical Reports Server (NTRS)
James, O. B.
1992-01-01
The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.
Evidence for Microfossils in Ancient Rocks and Meteorites
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Rozanov, A. Y.; Zhmur, S. I.; Gorlenko, V. M.
1998-01-01
The McKay et all. detection of chemical biomarkers and possible microfossils in an ancient meteorite from Mars (ALH84001) stimulated research in several areas of importance to the newly emerging field of Astrobiology. Their report resulted in a search for additional evidence of microfossils in ancient terrestrial rocks and meteorites. These studies of ancient rocks and meteorites were conducted independently (and later collaboratively) in the United States and Russia using the SEM, Environmental Scanning Electron Microscope (ESEM), and Field Emission Scanning Electron Microscope (FESEM). We have encountered in-situ in freshly broken carbonaceous chondrites a large number of complex microstructures that appear to be lithified microbial forms. The meteoritic microstructures have characteristics similar to the lithified remains of filamentous cyanobacteria and bacterial microfossils we have found in ancient phosphorites, ancient graphites and oil shales. Energy Dispersive Spectroscopy (EDS) and Link microprobe analysis shows the possible microfossils have a distribution of chemical elements characteristic of the meteorite rock matrix, although many exhibit a superimposed carbon enhancement. We have concluded that the mineralized bodies encountered embedded in the rock matrix of freshly fractured meteoritic surfaces can not be dismissed as recent surface contaminants. Many of the forms found in-situ in the Murchison, Efremovka, and Orgueil carbonaceous meteorites are strikingly similar to microfossils of coccoid bacteria, cyanobacteria and fungi such as we have found in the Cambrian phosphorites of Khubsugul, Mongolia and high carbon Phanerozoic and Precambrian rocks of the Siberian and Russian Platforms.
From climate models to planetary habitability: temperature constraints for complex life
NASA Astrophysics Data System (ADS)
Silva, Laura; Vladilo, Giovanni; Schulte, Patricia M.; Murante, Giuseppe; Provenzale, Antonello
2017-07-01
In an effort to derive temperature-based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for the active metabolism and reproduction of multicellular poikilotherms on earth are approximately bracketed by the temperature interval 0°C <= T <= 50°C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures observable in exoplanets. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We therefore propose a habitability index for complex life, h 050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0°C <= T <= 50°C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h 050 as a function of planet insolation, S, and atmospheric columnar mass, N atm, for a few earth-like atmospheric compositions with trace levels of CO2. By displaying h 050 as a function of S and N atm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life habitable zone is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life habitable zone is significantly narrower than the habitable zone of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and N atm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.
Good death and bad death in ancient Israel according to biblical lore.
Spronk, Klaas
2004-03-01
In the view of the ancient Israelites, as expressed in the Hebrew Bible, death is good or at least acceptable (1) after a long life, (2) when a person dies in peace, (3) when there is continuity in the relation with the ancestors and the heirs, and (4) when one will be buried in one's own land. Death is experienced as bad when (1) it is premature, (2) violent, especially when it is shameful (e.g., when a man is killed by a woman), (3) when a person does not have an heir, and (4) when one does not receive a proper burial. It is remarkable that in the literature of ancient Israel common elements like the cult of the dead and the belief in retribution after death, are not explicitly mentioned and therefore do not function as a comfort for death. Also, from a theological point of view emphasis is placed on this life. A positive attitude towards martyrdom is missing. This results in a way of coping with death which has many 'modern' elements or which may help modern people to face death.
Apes are intuitive statisticians.
Rakoczy, Hannes; Clüver, Annette; Saucke, Liane; Stoffregen, Nicole; Gräbener, Alice; Migura, Judith; Call, Josep
2014-04-01
Inductive learning and reasoning, as we use it both in everyday life and in science, is characterized by flexible inferences based on statistical information: inferences from populations to samples and vice versa. Many forms of such statistical reasoning have been found to develop late in human ontogeny, depending on formal education and language, and to be fragile even in adults. New revolutionary research, however, suggests that even preverbal human infants make use of intuitive statistics. Here, we conducted the first investigation of such intuitive statistical reasoning with non-human primates. In a series of 7 experiments, Bonobos, Chimpanzees, Gorillas and Orangutans drew flexible statistical inferences from populations to samples. These inferences, furthermore, were truly based on statistical information regarding the relative frequency distributions in a population, and not on absolute frequencies. Intuitive statistics in its most basic form is thus an evolutionarily more ancient rather than a uniquely human capacity. Copyright © 2014 Elsevier B.V. All rights reserved.
Cosmic Origins Program Annual Technology Report
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Neff, Susan Gale
2015-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.
Program Annual Technology Report: Cosmic Origins Program Office
NASA Technical Reports Server (NTRS)
Pham, Thai; Neff, Susan
2017-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy.
Facchini, F
2000-12-01
The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.
The Beliefs, Myths, and Reality Surrounding the Word Hema (Blood) from Homer to the Present
Meletis, John; Konstantopoulos, Kostas
2010-01-01
All ancient nations hinged their beliefs about hema (blood) on their religious dogmas as related to mythology or the origins of religion. The Hellenes (Greeks) especially have always known hema as the well-known red fluid of the human body. Greek scientific considerations about blood date from Homeric times. The ancient Greeks considered hema as synonymous with life. In Greek myths and historical works, one finds the first references to the uninterrupted vascular circulation of blood, the differences between venous and arterial blood, and the bone marrow as the site of blood production. The Greeks also speculated about mechanisms of blood coagulation and the use of blood transfusion to save life. PMID:21490910
Old Books Bring New Life to the Brick and Mortar Library
2012-08-01
ancient astronomy books, including Copernicus, Kepler, Galileo, and Newton, we have abundant resources. The presentation will highlight the varied...library. One method was to rotate rare book displays each month. As the library holds a fabulous collection of ancient astronomy books, including Copernicus...800 and a ticket to Europe to purchase important astronomy books. It is a sanctuary for some. For me, it is a lonely place and I wanted more people to
The diffusion of ancient medicine in the Renaissance.
Nutton, Vivian
2002-01-01
Ancient Greek medicine was largely transmitted in the Renaissance in the form of Latin translations. Recent scholarship has carefully delineated the sources used, and the printing history of many texts, but, save for anatomy, less has been done to elucidate how their message was received, and how that message itself changed during the sixteenth century.
Drinking habits in ancient India
Somasundaram, Ottilingam; Raghavan, D. Vijaya; Murthy, A. G. Tejus
2016-01-01
Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113
Aberration corrected STEM to study an ancient hair dyeing formula
NASA Astrophysics Data System (ADS)
Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.
2014-05-01
Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.
Selling Internet Service: An Ancient Art Form on a New Canvas.
ERIC Educational Resources Information Center
Maloff, Joel H.
1992-01-01
The Internet, no longer solely the domain of scientists and network engineers, is expanding rapidly to serve a diverse community of business professionals. Those marketing Internet services to these decision makers must practice the ancient art of salesmanship in a complex technological environment. Crucial is knowledge of Internet opportunities,…
Ancient Athenian Democratic Knowledge and Citizenship: Connectivity and Intercultural Implications
ERIC Educational Resources Information Center
Gundara, Jagdish S.
2011-01-01
This paper explores the implications that ancient Athens had for modern representative democracies and the links that can be made to the philosophical principles that form the essence of intercultural education. Such an exploration shows that modern democratic societies have ignored many key aspects of the important legacy left to us by these…
Concept of the Exponential Law Prior to 1900
ERIC Educational Resources Information Center
Curtis, Lorenzo J.
1978-01-01
Presents the historical development of perceptions and applications of the exponential law, tracing it from its ancient origins until the year 1900. Shows that many concepts such as mean life and half life and their relationships to differential equations were known long before their application to nuclear radioactivity. (GA)
NASA Astrophysics Data System (ADS)
Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.
2003-01-01
Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.
Technical Challenges of Drilling on Mars
NASA Technical Reports Server (NTRS)
Briggs, Geoffrey; Gross, Anthony; Condon, Estelle (Technical Monitor)
2002-01-01
In the last year, NASA's Mars science advisory committee (MEPAG: Mars Exploration Payload Advisory Group) has formally recommended that deep drilling be undertaken as a priority investigation to meet astrobiology and geology goals. This proposed new dimension in Mars exploration has come about for several reasons. Firstly, geophysical models of the martian subsurface environment indicate that we may well find liquid water (in the form of brines) under ground-ice at depths of several kilometers near the equator. On Earth we invariably find life forms associated with any environmental niche that supports liquid water. New data from the Mars Global Surveyor have shown that the most recent volcanism on Mars is very young so we cannot rule out contemporary volcanism -- in which case subsurface temperatures consistent with having water in its liquid phase may be found at relatively shallow depths. Secondly, in recent decades we have learned to our surprise that the Earth's subsurface (microbial) biosphere extends to depths of many kilometers and this discovery provides the basis for planning to explore the martian subsurface in search of ancient or even extant microbial life forms. We know (from Viking measurements) that all the biogenic elements (C, H, O, N, P, S) are available on Mars. What we therefore hope to learn is whether or not the evolution of life is inevitable given the necessary ingredients and, by implication, whether the Universe may be teeming with life. The feasibility of drilling deep into the surface of Mars has been the subject of increasing attention within NASA (and more recently among some of its international partners) for several years and this led to a broad-based feasibility study carried out by the Los Alamos National Laboratory and, subsequently, to the development of several hardware prototypes. This paper is intended to provide a general survey of that activity.
Sedentism, social change, warfare, and the bow in the ancient Pueblo Southwest.
Reed, Paul F; Geib, Phil R
2013-01-01
In the ancient American Southwest, use of the bow developed relatively rapidly among Pueblo people by the fifth century AD. This new technology replaced the millennia-old atlatl and dart weaponry system. Roughly 150 years later in the AD 600s, Pueblo socioeconomic organization began to evolve rapidly, as many groups adopted a much more sedentary life. Multiple factors converged to allow this sedentary pattern to emerge, but the role of the bow in this process has not been fully explored. In this paper, we trace the development of the bow and discuss its role as sedentism emerged and social changes occurred in ancient Puebloan society from the fifth through seventh centuries AD. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Faltys, J. P.; Wielicki, M. M.; Sizemore, T. M.
2017-12-01
Due to the discovery and subsequent geochemical analysis of Hadean terrestrial material (e.g. detrital zircon from Jack Hills, Western Australia), a dramatic paradigm shift has occurred in the hypothesized near surface conditions of the first 500 million years of Earth's evolution. From a hellish setting riddled with impactors and not fit for life to a much milder environment that may have been uniquely suitable for the origin of life. Geochemical analyses of these ancient materials have been used to suggest the presence of water at or near the surface as well as the existence of continental crust during the Hadean, both of which have been suggested as necessary for the origin of life. However, the intensity of extraterrestrial bombardment during the Hadean and the effects of such events on the origin of life remains poorly understood. Clearly, as evidenced by Phanerozoic impact events, extraterrestrial impactors have the potential to dramatically effect the environment, particularly the biosphere. Early Earth likely experienced multiple large impact events, as evidenced by the lunar record, however whether those impacts were sufficient to frustrate the origin of life remains an open question. Although multiple lines of evidence, including the inclusion population, suggest the formation of Hadean zircon from Jack Hills as crystallizing in an under-thrust environment from S-type magmas, a recent study has suggested their formation in an impact melt environment analogous to a portion of the Sudbury Igneous Complex at the Sudbury impact structure. To determine between these two formation scenarios we have under-taken an inclusion study of terrestrial impact formed zircon from four of the largest terrestrial impact structures (Sudbury, Canada; Manicouagan, Canada; Vredefort, South Africa; Morokweng, South Africa), to compare to the vast inclusion dataset that exists for Jack Hills zircon. Preliminary data suggests a different inclusion population, from Hadean zircon, associated with impact formed zircon; however, if certain populations of the Jack Hills record appear to share inclusion assemblages with impact formed zircon, this could provide a tool to constrain the frequency and timing of large impactors on early Earth and their possible effects on conditions conducive for the origin of life.
Plato and Play: Taking Education Seriously in Ancient Greece
ERIC Educational Resources Information Center
D'Angour, Armand
2013-01-01
In this article, the author outlines Plato's notions of play in ancient Greek culture and shows how the philosopher's views on play can be best appreciated against the background of shifting meanings and evaluations of play in classical Greece. Play--in various forms such as word play, ritual, and music--proved central to the development of…
Where should one look for traces of life on Venus?
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2018-05-01
Now Venus is not very similar to a suitable place for living. It surface temperature exceeds 730 K, the pressure is 90 atmospheres, the cloud layer consists of sulfur dioxide, and the fog above cloud is a solution of sulfuric acid. But about 3 billion years ago, this planet among the Earth-type planets within the Solar System was perhaps the most suitable place for the existence of some form of life there. Measurements of the ratio of hydrogen isotopes in the atmosphere also showed that the planet once had much more water, and perhaps it was enough even for the oceans. In early years on Venus was similar to the earth's climate, have a satisfactory temperature and oceans of liquid water. That is, under the above conditions with moderate temperature, sufficient heat and liquid water, Venus would be quite suitable for the emergence of certain microorganisms and for the existence of primitive life there, especially in the oceans. One way to check whether the ancient Venus was once covered by the oceans is the study of the tremolite found on Earth. It is necessary to hope to find the tremolite at some depth below the surface of Venus. Also necessary to search for some biosignals in the form of petrified remains, of possibly simple thermophilic microorganisms. We believe that such an experiment can be prepared and technically carried out during the next decades.
Creativity and Critical Thinking in the Globalised University
ERIC Educational Resources Information Center
Clegg, Phil
2008-01-01
This paper outlines the dynamic life of the university in the era of neo-liberal globalisation, and within this context, discusses the nature of "creativity" as a life force or power, similar to the Ancient Greek idea of "Eros". This power is contrasted with functionalist and bureaucratic notions of creativity, and a disjuncture is identified…
Exploring Classical Art at the Museum of Fine Arts, Boston.
ERIC Educational Resources Information Center
Burchenal, Margaret; Foote, Allison
This resource packet is designed to help teachers incorporate the study of ancient Greek and Roman art into junior and senior high school classrooms. The packet consists of four curriculum units based upon aspects of classical life or culture. These units are: "Daily Life; Mythology"; "Images of Power"; and "Echoes of…
Measuring Children and Young People's Wellbeing in the School Context
ERIC Educational Resources Information Center
McLellan, Ros; Steward, Susan
2015-01-01
Although being rooted in the work of ancient Greek philosophers, contemporary research on wellbeing is a relatively new phenomenon. As a term in the literature, wellbeing is often used interchangeably with others, such as happiness, flourishing, enjoying a good life and life satisfaction. Furthermore, the wellbeing of school-aged children is only…
Virtue Ethics, Care Ethics, and "The Good Life of Teaching"
ERIC Educational Resources Information Center
Silverman, Marissa
2012-01-01
In "The Good Life of Teaching: An Ethics of Professional Practice," Chris Higgins (2011) reminds people that "self-interest and altruism, personal freedom and social roles, and practical wisdom and personhood" have been ancient philosophical topics that remain vitally important in the practice of contemporary teaching and learning. One of the most…
The evolution of the land plant life cycle.
Niklas, Karl J; Kutschera, Ulrich
2010-01-01
The extant land plants are unique among the monophyletic clade of photosynthetic eukaryotes, which consists of the green algae (chlorophytes), the charophycean algae (charophytes), numerous groups of unicellular algae (prasinophytes) and the embryophytes, by possessing, firstly, a sexual life cycle characterized by an alternation between a haploid, gametophytic and a diploid, sporophytic multicellular generation; secondly, the formation of egg cells within multicellular structures called archegonia; and, thirdly, the retention of the zygote and diploid sporophyte embryo within the archegonium. We review the developmental, paleobotanical and molecular evidence indicating that: the embryophytes descended from a charophyte-like ancestor; this common ancestor had a life cycle with only a haploid multicellular generation; and the most ancient (c. 410 Myr old) land plants (e.g. Cooksonia, Rhynia and Zosterophyllum) had a dimorphic life cycle (i.e. their haploid and diploid generations were morphologically different). On the basis of these findings, we suggest that the multicellular reproductive structures of extant charophytes and embryophytes are developmentally homologous, and that those of the embryophytes evolved by virtue of the co-option and re-deployment of ancient algal homeodomain gene networks.
The Universe in Armenian Mythological Perceptions
NASA Astrophysics Data System (ADS)
Vardumyan, Gohar
2016-12-01
Ancient Armenians' perceptions and knowledge about the Universe and cosmic phenomena are reflected in pre-Christian mythology. Thousands of years ago, myths were woven on celestial bodies, and, in the form of legends, they have reached the present day. Heathen Armenians, as other developed nations of the Ancient World, knew the five planets of the Solar System seen with the naked eye: Mercury, Venus, Mars, Jupiter, Saturn, each of them embodied in mythology by a god or a goddess. In pantheons formed during III-I millennia B.C. those planets of the starry sky are represented as worshipped, as well as the Sun, the Moon, the Milky Way, Hayk-Orion, Great Bear, Libra and other constellations. The perceptions of ancient Armenians about the Universe, the tangle of mythology and astronomy in their world view are revealed in the cults of gods and goddesses personifying celestial bodies and luminaries.
A molecular portrait of maternal sepsis from Byzantine Troy
Devault, Alison M; Mortimer, Tatum D; Kitchen, Andrew; Kiesewetter, Henrike; Enk, Jacob M; Golding, G Brian; Southon, John; Kuch, Melanie; Duggan, Ana T; Aylward, William; Gardner, Shea N; Allen, Jonathan E; King, Andrew M; Wright, Gerard; Kuroda, Makoto; Kato, Kengo; Briggs, Derek EG; Fornaciari, Gino; Holmes, Edward C; Poinar, Hendrik N; Pepperell, Caitlin S
2017-01-01
Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections. DOI: http://dx.doi.org/10.7554/eLife.20983.001 PMID:28072390
Mars Life? - Microscopic Tubular Structures
NASA Technical Reports Server (NTRS)
1996-01-01
This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller. The fossil-like structures were found in carbonate minerals formed along pre-existing fractures in the meteorite in a fashion similar to the way fossils occur in limestone on Earth, although on a microscopic scale.
From Genomes to Life to the Planet and the Cosmos: In Appreciation of Carl Sagan
NASA Astrophysics Data System (ADS)
Benner, S. A.
2002-12-01
The Earth and life have evolved in tandem; It is impossible to separate the two over most of geologic time. Geological and geochemical processes create and define the conditions necessary for life. In turn, life has shaped geological processes in ways that are understood, and ways that are not yet understood. The reciprocal interaction between the planet and its inhabitants has driven changes in the molecules, metabolisms, and morphologies of terrean organisms. Today, with the emergence of complete genome sequences and tools from molecular biology, we are now better able, more than ever before, to tell stories of how we came to be, on a planet and in a cosmos that has both nourished us and (from time to time) threatened to extinguish us. The stories to be told in this talk combine information from the geological and paleontological records, analysis of genome sequence data, and experiments that resurrect ancient, extinct life forms for study in the laboratory. The talk will emphasize the non-recurring, progressive feature of the dance between Earth and Life. We will show how the emergence of humans was influenced by the environment, and how humans placed their irreversible mark on the genes of organisms that they touched. We will show how the global environmental crisis that began in the Oligocene irreversibly transformed the plant and animal kingdoms. We will proceed back to the Cretaceous, to explore how plants and dinosaurs influenced each other, and the genomes of surviving fungus and flies. From there we will go to the Jurassic, as the first placental mammals reconstructed their reproductive systems in response to the planetary changes. We will ask how cosmic events, from asteroids to supernova, may have influenced life on Earth. We will ask what consequential features of life that we see around us might be unique to Earth, and what features might be found universally in life elsewhere. The talk will also review some of the methodological issues associated with converting just-so stories into experimentally testable hypotheses. We will emphasize the "present day backwards" strategy, where tools developed for the recent past can be tested in a regime where testing is possible, and then applied to more ancient events. We also will show how a natural history approach to the analysis of human biology has practical value, offering approaches to treating human diseases as diverse as obesity and cancer, by understanding these diseases in the context of the history through which they have passed.
Ancient Human Parasites in Ethnic Chinese Populations.
Yeh, Hui-Yuan; Mitchell, Piers D
2016-10-01
Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski . It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range.
Esthetic and prosthetic dentistry as reflected in the Old Testament and other ancient scriptures.
Stern, N
1997-01-01
The great technologic strides of the past have transformed medicine and dentistry from a primitive craft into a modern science. Although the past century has witnessed great advances in the evolution of esthetic dentistry, it is fitting to pay tribute to the ancient practitioners of this craft, who formed a basis for its present progress.
NASA Astrophysics Data System (ADS)
Nagy, Bartholomew
1982-07-01
Recognizable remnants of ancient biochemicals may survive under mild/moderate geological environments. Acyclic isoprenoid hydrocarbons, cyclic hydrocarbons with terpenoid carbon skeletons (e.g. hopanes) and vanadyl and nickel porphyrins have been isolated from organic matter, including petroleum, in Phanerozoic sedimentary rocks. Remnants of lignin have also been found. Usually, carbohydrates do not survive long; they degrade and/or react with other organic substances to form macromolecular matter. Proteins, e.g. apparently those in dinosaur bone collagen, break down relatively rapidly. Life arose during the Precambrian and potential biochemical fossils, e.g. n-alkanes, 2,5-dimethylfuran have been isolated from Precambrian kerogens. Traces of hydrocarbons, NH3, PH3 occur on Jupiter and Saturn. Hydrocarbons, N2 and HCN, the latter a key intermediary in the laboratory abiological syntheses of amino acids and nucleic acid bases, are present on Titan where life could not have evolved. Precursor abiological organic molecules of some complexity may have been synthesized on Titan and the Jovian planets.
Basaltic Volcanism and Ancient Planetary Crusts
NASA Technical Reports Server (NTRS)
Shervais, John W.
1993-01-01
The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.
Evolution of the Earth's Atmosphere.
Rasool, S I
1967-09-22
We living things are a late outgrowth of the metabolism of our Galaxy. The carbon that enters so importantly into our composition was cooked in the remote past in a dying star. From it at lower temperatures nitrogen and oxygen were formed. These, our indispensable elements, were spewed out into space in the exhalations of red giants and such stellar catastrophes as supernovae, there to be mixed with hydrogen, to form eventually the substance of the sun and planets, and ourselves. The waters of ancient seas set the pattern of ions in our blood. The ancient atmospheres molded our metabolism.
NASA Astrophysics Data System (ADS)
Gangidine, A.; Czaja, A. D.; Havig, J. R.
2017-12-01
Positively identifying fossil microorganisms is often a challenge due to poor preservation. Thermal and geological alteration can lead to extreme distortion in ancient microbial fossils to the point that they may be morphologically unrecognizable, making it crucial to have a biosignature that can be used regardless of such conditions to help establish biogenicity. Through analysis of trace element sequestration by silicified microorganisms of various ages, a new biosignature may be developed with the potential to be robust and yield paleobiological information, even in the absence of morphological preservation. Biological materials preserved in modern silica-depositing hot springs from Yellowstone National Park have been shown to contain a higher concentration of certain trace elements relative to the surrounding non-biological material. BIO-SIMS analyses also have shown apparent co-localization of certain trace elements relative to recently silicified microbes (Figure 1). By measuring the abundances, ratios, and spatial distributions of major and trace elements (e.g., Si, C, N, Fe, Mn, Ga, As) in modern and ancient microorganisms, it will be possible to deduce what elements are preferentially concentrated by life, and if this signature is preserved in the rock record during and after the fossilization process. By evaluating trace element abundances and distributions in a suite of hot spring deposit samples of ages ranging from modern (Yellowstone National Park) to 3.5 Ga (Dresser Formation), this biosignature may be calibrated across all timescales. Such a biosignature would provide a strong tool for determining biogenicity by itself, or strengthen any argument for or against biogenicity when used in unison with other detection methods. As hydrothermal silica deposits are thought to be widespread on the Martian surface, the use of this trace element biosignature for the upcoming Mars 2020 mission would allow a robust analysis to aid in the determination of the biogenicity of collected samples. For a mission such as Mars 2020, with a primary mission objective of finding ancient life, the burden of proof for identifying putative life will be unprecedented.
NASA Astrophysics Data System (ADS)
Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.
2008-09-01
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific cellular structures upon embedding in fluid inclusions of halite. It is tempting to speculate that such structures may be responsible for long term survival in ancient geological materials such as salt sediments, including extraterrestrial salt. (1) Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler W., Gerbl F.W., Stan-Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605.
The universe: a cryogenic habitat for microbial life.
Wickramasinghe, Chandra
2004-04-01
Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10(-21)) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual re-cycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970s, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.
The Universe: a Cryogenic Habitat for Microbial Life
NASA Astrophysics Data System (ADS)
Wickramasinghe, Chandra
Panspermia, an ancient idea, posits that microbial life is ubiquitous in the Universe. After several decades of almost irrational rejection, panspermia is at last coming to be regarded as a serious contender for the beginnings of life on our planet. Astronomical data is shown to be consistent with the widespread distribution of complex organic molecules and dust particles that may have a biological provenance. A minuscule (10-21) survival rate of freeze-dried bacteria in space is all that is needed to ensure the continual recycling of cosmic microbial life in the galaxy. Evidence that terrestrial life may have come from elsewhere in the solar system has accumulated over the past decade. Mars is seen by some as a possible source of terrestrial life, but some hundreds of billions of comets that enveloped the entire solar system, are a far more likely primordial reservoir of life. Comets would then have seeded Earth, Mars, and indeed all other habitable planetary bodies in the inner regions of the solar system. The implications of this point of view, which was developed in conjunction with the late Sir Fred Hoyle since the 1970's, are now becoming amenable to direct empirical test by studies of pristine organic material in the stratosphere. The ancient theory of panspermia may be on the verge of vindication, in which case the entire universe would be a grand crucible of cryomicrobiology.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times,'' Formerly Titled ``The Dead Sea Scrolls... the Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice is corrected here to change the exhibition name to ``The Dead Sea...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-18
... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
...; Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...
NASA Astrophysics Data System (ADS)
Brake, Mark
2012-11-01
1. Kosmos: aliens in ancient Greece; 2. The world turned upside down: Copernicanism and the voyages of discovery; 3. In Newton's train: pluralism and the system of the world; 4. Extraterrestrials in the early machine age; 5. After Darwin: the war of the worlds; 6. Einstein's sky: life in the new universe; 7. Ever since SETI: astrobiology in the space age; References; Index.
ERIC Educational Resources Information Center
Ashworth, Dianne
2017-01-01
In contemporary life, young people's identity development is a popular topic for investigation. This includes better understanding their development and their participation in outdoor adventure. From ancient times to modern days, literature conveys the benefits of outdoor adventure on their identity development and more recently there is a growing…
ERIC Educational Resources Information Center
Fossey, Richard; Crow, Gary M.
2011-01-01
In the broad sense, case teaching is an ancient pedagogy. Since time began, teachers have taught other people by drawing on stories from real-life experiences. In a way, then, telling stories taken from real life can be seen as case teaching. Case writing and case teaching in a college or university setting, however, require specific research and…
Microstructures of ancient and modern cast silver–copper alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northover, S.M., E-mail: s.m.northover@open.ac.uk; Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk
The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in themore » form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.« less
Ancient DNA and the tropics: a rodent's tale.
Gutiérrez-García, Tania A; Vázquez-Domínguez, Ella; Arroyo-Cabrales, Joaquín; Kuch, Melanie; Enk, Jacob; King, Christine; Poinar, Hendrik N
2014-06-01
Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene-Pliocene, diversified during the Pleistocene and went extinct in the Holocene. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G
2014-01-01
The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say that there were many reasons to suicide someone in antiquity. Very important factor was to avoid captivity and the consequent overcrowding of indignity, especially for politicians and military leaders. Also intention in these circumstances was to avoid torture and the disgrace of rape. Strong grief is another reason, as in case of death of family members. The erotic disappointment had place in ancient suicides, which concerned both men and women, while there were also suicide for financial reasons. Especially for the elderly, the despair of the anility in conjunction with physical illness and cachexia, were important factors for these people to decide thee suicidal. Finally, the methods of suicide fitted their epoch, but bear resemblance to those of the modern time. Poisoning was very common to both men and women but equally popular in both sexes was also the hanging. It was not unusual to fall from a high in order to reach the death, while stabbing a sword in the body for self killing was widespread in men and soldiers.
NASA Technical Reports Server (NTRS)
Prufert-Bebout, Lee; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Microbial life on Earth is enormously abundant at sediment-water interfaces. The fossil record in fact contains abundant evidence of the preservation of life on such surfaces. It is therefore critical to our interpretation of early Earth history, and potentially to history of life on other planets, to be able to recognize life forms at these interfaces. On Earth this life often occurs as organized structures of microbes and their extracellular exudates known as biofilms. When such biofilms occur in areas receiving sunlight photosynthetic biofilms are the dominant form in natural ecosystems due to selective advantage inherent in their ability to utilize solar energy. Cyanobacteria are the dominant phototrophic microbes in most modern and ancient photosynthetic biofilms, microbial mats and stromatolites. Due to their long (3.5 billion year) evolutionary history, this group has extensively diversified resulting in an enormous array of morphologies and physiological abilities. This enormous diversity and specialization results in very specific selection for a particular cyanobacterium in each available photosynthetic niche. Furthermore these organisms can alter their spatial orientation, cell morphology, pigmentation and associations with heterotrophic organisms in order to fine tune their optimization to a given micro-niche. These adaptations can be detected, and if adequate knowledge of the interaction between environmental conditions and organism response is available, the detectable organism response can be used to infer the environmental conditions causing that response. This presentation will detail two specific examples which illustrate this point, Light and water are essential to photosynthesis in cyanobacteria and these organisms have specific detectable behavioural responses to these parameters. We will present cyanobacterial responses to quantified flow and irradiance to demonstrate the interpretative power of distribution and orientation information. This study presents new results, but many such examples are already found in the literature.
Johns, C
2001-02-01
As nursing and health care practice enter the new Millennium, practitioners are increasingly urged to pay attention to evidenced based practice to justify what they do. Yet the truth is, that within the caring dance, practitioners need to connect with more ancient sources of wisdom. Failure to do so leads to a life out of balance and a failure to dance well and fulfil the fundamental role of being a nurse. The paper draws exclusively on the work of Blackwolf and Gina Jones, as an example of such ancient wisdom to inform and inspire the caring dance.
Only the bad died young in the ancient Middle East.
Arnett, W S
1985-01-01
Biblical writers generally viewed old age as a reward for righteousness and piety. Consequently, they stressed the belief that the elderly were blessed and that they should be venerated. While life expectancy was usually below forty years, there are exceptional cases on record of individuals--men and women--living to advanced old ages. An analysis of these special few cases and a discussion of extra-Biblical texts shows that other ancient Middle Eastern societies held attitudes toward aging and the aged comparable to those expressed in the Hebrew Bible.
Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars
NASA Astrophysics Data System (ADS)
Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.
2018-03-01
The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.
Research of Ancient Architectures in Jin-Fen Area Based on GIS&BIM Technology
NASA Astrophysics Data System (ADS)
Jia, Jing; Zheng, Qiuhong; Gao, Huiying; Sun, Hai
2017-05-01
The number of well-preserved ancient buildings located in Shanxi Province, enjoying the absolute maximum proportion of ancient architectures in China, is about 18418, among which, 9053 buildings have the structural style of wood frame. The value of the application of BIM (Building Information Modeling) and GIS (Geographic Information System) is gradually probed and testified in the corresponding fields of ancient architecture’s spatial distribution information management, routine maintenance and special conservation & restoration, the evaluation and simulation of related disasters, such as earthquake. The research objects are ancient architectures in JIN-FEN area, which were first investigated by Sicheng LIANG and recorded in his work of “Chinese ancient architectures survey report”. The research objects, i.e. the ancient architectures in Jin-Fen area include those in Sicheng LIANG’s investigation, and further adjustments were made through authors’ on-site investigation and literature searching & collection. During this research process, the spatial distributing Geodatabase of research objects is established utilizing GIS. The BIM components library for ancient buildings is formed combining on-site investigation data and precedent classic works, such as “Yingzao Fashi”, a treatise on architectural methods in Song Dynasty, “Yongle Encyclopedia” and “Gongcheng Zuofa Zeli”, case collections of engineering practice, by the Ministry of Construction of Qing Dynasty. A building of Guangsheng temple in Hongtong county is selected as an example to elaborate the BIM model construction process based on the BIM components library for ancient buildings. Based on the foregoing work results of spatial distribution data, attribute data of features, 3D graphic information and parametric building information model, the information management system for ancient architectures in Jin-Fen Area, utilizing GIS&BIM technology, could be constructed to support the further research of seismic disaster analysis and seismic performance simulation.
Organic/Inorganic Complex Pigments: Ancient Colors Maya Blue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polette-Niewold, L.A.; Manciu, F.S.; Torres, B.
2009-06-04
Maya Blue is an ancient blue pigment composed of palygorskite clay and indigo. It was used by the ancient Maya and provides a dramatic background for some of the most impressive murals throughout Mesoamerica. Despite exposure to acids, alkalis, and chemical solvents, the color of the Maya Blue pigment remains unaltered. The chemical interaction between palygorskite and indigo form an organic/inorganic complex with the carbonyl oxygen of the indigo bound to a surface Al{sup 3+} in the Si-O lattice. In addition indigo will undergo an oxidation to dehydroindigo during preparation. The dehydro-indigo molecule forms a similar but stronger complex withmore » the Al{sup 3+}. Thus, Maya Blue varies in color due to the mixed indigo/dehydroindigo complex. The above conclusions are the result of application of multiple techniques (X-ray diffraction, differential thermal analysis/thermal gravimetric analysis, high resolution transmission electron microscopy, scanning electron microscopy, infrared and Raman spectroscopy) to the characterization of the organic/inorganic complex. A picture of the bonding of the organic molecule to the palygorskite surface forming a surface complex is developed and supported by the results of density functional theory calculations. We also report that other organic molecules such as thioindigo form similar organic/inorganic complexes thus, opening an entirely new class of complex materials for future applications.« less
Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate Mars soil.
Crawford, Ronald L; Paszczynski, Andrzej; Allenbach, Lisa
2003-03-06
Martian soil is thought to be enriched with strong oxidants such as peroxides and/or iron in high oxidation states that might destroy biological materials. There is also a high flux of ultraviolet radiation at the surface of Mars. Thus, Mars may be inhospitable to life as we know it on Earth. We examined the hypothesis that if the soil of Mars contains ferrates [Fe(VI)], the strongest of the proposed oxidizing species, and also is exposed to high fluxes of UV radiation, it will be self-sterilizing. Under ambient conditions (25 degrees C, oxygen and water present) K2FeO4 mixed into sand mineralized some reactive organic molecules to CO2, while less reactive compounds were not degraded. Dried endospores of Bacillus subtilis incubated in a Mars surrogate soil comprised of dry silica sand containing 20% by weight K2FeO4 and under conditions similar to those now on Mars (extreme desiccation, cold, and a CO2-dominated atmosphere) were resistant to killing by the ferrate-enriched sand. Similar results were observed with permanganate. Spores in oxidant-enriched sand exposed to high fluxes of UV light were protected from the sporocidal activity of the radiation below about 5 mm depths. Based on our data and previously published descriptions of ancient but dormant life forms on Earth, we suggest that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions. Endospores delivered to Mars on spacecraft would possibly survive and potentially compromise life detection experiments.
Early Life on Earth and the Search for Extraterrestrial Biosignatures
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; House, Christopher
2014-01-01
In the last 2 years, scientists within the ARES Directorate at JSC have applied the technology of Secondary Ion Mass Spectrometry (SIMS) to individual organic structures preserved in Archean (approximately 3 billion years old) sediments on Earth. These organic structures are among the oldest on Earth that may be microfossils - structurally preserved remnants of ancient microbes. The SIMS work was done to determine the microfossils' stable carbon isotopic composition (delta C-13 values). This is the first time that such ancient, potential microfossils have been successfully analyzed for their individual delta C-13 values. The results support the interpretation that these structures are remnants of early life on Earth and that they may represent planktonic organisms that were widely distributed in the Earth's earliest oceans. This study has been accepted for publication in the journal Geology.
Biomarkers as tracers for life on early earth and Mars
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.
1998-01-01
Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.
Ancient impact and aqueous processes at Endeavour Crater, Mars
Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.
2012-01-01
The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.
Problems in turbidite research: A need for COMFAN
Normark, W.R.; Mutti, E.; Bouma, A.H.
1984-01-01
Comparison of modern submarine fans and ancient turbidite sequences is still in its infancy, mainly because of the incompatibility of study approaches. Research on modern fan systems mainly deals with morphologic aspects and surficial sediments, while observations on ancient turbidite formations are mostly directed to vertical sequences. The lack of a common data set also results from different scales of observation. To review the current status of modern and ancient turbidite research, an international group of specialists formed COMFAN (Committee on Fans) and met in September 1982 at the Gulf Research and Development Company research facilities in Pennsylvania. ?? 1984 Springer-Verlag New York Inc.
The Lunar Regolith as a Recorder of Cosmic History
NASA Technical Reports Server (NTRS)
Cooper, Bonnie; McKay, D.; Riofrio, L.
2012-01-01
The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.
The rights of patients as consumers: An ancient view.
Barapatre, Nishant Bhimraj; Joglekar, Vishnu Prabhakar
2016-01-01
As far as the rights of consumers are concerned, the International Organization of Consumer's Union (IOCU) in 1983 has specified about the eight rights of a consumer. The Consumer Protection Act (CPA), 1986 then prescribed six "Rights of Consumers," which are protected under the act. However, these rights can be observed in the ancient Indian texts such as Brihat-trayee , Narad Smruti , and Kautilya Arthashastra ., in the form of rights given to patients. For the purpose of present study, the implemented methodology includes - (1) study of the consumer rights described by IOCU and CPA, (2) detailed review of literature for observance of replication of these consumer rights in the ancient Indian texts and (3) a comparative study of the present consumer rights with the rights of patients observed in ancient Indian texts. This study shows that the substance of consumer rights is not a recent evolution, but the foundation of these rights has been laid well beforehand in the ancient times, which were provided to the patients by medical profession as well as by the rulers. The current scenario of protection of consumer rights is the replication of this ancient practice only.
The rights of patients as consumers: An ancient view
Barapatre, Nishant Bhimraj; Joglekar, Vishnu Prabhakar
2016-01-01
As far as the rights of consumers are concerned, the International Organization of Consumer's Union (IOCU) in 1983 has specified about the eight rights of a consumer. The Consumer Protection Act (CPA), 1986 then prescribed six “Rights of Consumers,” which are protected under the act. However, these rights can be observed in the ancient Indian texts such as Brihat-trayee, Narad Smruti, and Kautilya Arthashastra., in the form of rights given to patients. For the purpose of present study, the implemented methodology includes – (1) study of the consumer rights described by IOCU and CPA, (2) detailed review of literature for observance of replication of these consumer rights in the ancient Indian texts and (3) a comparative study of the present consumer rights with the rights of patients observed in ancient Indian texts. This study shows that the substance of consumer rights is not a recent evolution, but the foundation of these rights has been laid well beforehand in the ancient times, which were provided to the patients by medical profession as well as by the rulers. The current scenario of protection of consumer rights is the replication of this ancient practice only. PMID:29491665
Combining remote sensing image with DEM to identify ancient Minqin Oasis, northwest of China
NASA Astrophysics Data System (ADS)
Xie, Yaowen
2008-10-01
The developing and desertification process of Minqin oasis is representative in the whole arid area of northwest China. Combining Remote Sensing image with Digital Elevation Model (DEM) can produce the three-dimensional image of the research area which can give prominence to the spatial background of historical geography phenomenon's distribution, providing the conditions for extracting and analyzing historical geographical information thoroughly. This research rebuilds the ancient artificial Oasis based on the three-dimensional images produced by the TM digital Remote Sensing image and DEM created using 1:100000 topographic maps. The result indicates that the whole area of the ancient artificial oasis in Minqin Basin over the whole historical period reaches 321km2, in the form of discontinuous sheet, separated on the two banks of ancient Shiyang River and its branches, namely, Xishawo area, west to modern Minqin Basin and Zhongshawo area, in the center of the oasis. Except for a little of the ancient oasis unceasingly used by later people, most of it became desert. The combination of digital Remote Sensing image and DEM can integrate the advantages of both in identifying ancient oasis and improve the interpreting accuracy greatly.
Geodynamic models of the deep structure of the natural disaster regions of the Earth
NASA Astrophysics Data System (ADS)
Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.
2012-04-01
Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.
Valentine, Benjamin; Kamenov, George D.; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John
2015-01-01
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people’s movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape. PMID:25923705
Valentine, Benjamin; Kamenov, George D; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John
2015-01-01
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people's movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.
Exopaleontology and the search for a fossil record on Mars
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; Desmarais, D. J.
1994-01-01
Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice.
Mushroom speleothems: Stromatolites that formed in the absence of phototrophs
NASA Astrophysics Data System (ADS)
Bontognali, Tomaso; D'Angeli, Ilenia; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano; Gonzales, Esteban; DeWaele, Jo
2016-04-01
Unusual speleothems resembling giant mushrooms occur in Santa Catalina Cave, Cuba. Although these mineral buildups are considered a natural heritage, their composition and formation mechanism remain poorly understood. Here we characterize their morphology and mineralogy and present a model for their genesis. We propose that the mushrooms, which are mainly comprised of calcite and aragonite, formed during four different phases within an evolving cave environment. The stipe of the mushroom is an assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts that were subsequently encrusted by cave clouds (mammilaries). More peculiar is the cap of the mushroom, which is morphologically similar to cerebroid stromatolites and thrombolites of microbial origin occurring in marine environments. Scanning electron microscopy investigations of this last unit revealed the presence of fossilized extracellular polymeric substances (EPS) - the constituents of biofilms and microbial mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that the mushroom cap formed through a microbially-influenced mineralization process. The existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence of phototrophs) has interesting implications for the study of fossil microbialites preserved in ancient rocks, which are today considered as one of the earliest evidence for life on Earth.
Humankind's Three Major Language Topics Today and the State of China's Linguistic Life
ERIC Educational Resources Information Center
Yuming, Li
2008-01-01
In the domain of language planning, humankind has since ancient times discussed three main topics: language problems, linguistic resources, and language rights. On the basis of the state of linguistic life in the world and China today, this article expounds on these three major topics and raises issues about China conducting a general survey of…
Dynamic expression of ancient and novel molluscan shell genes during ecological transitions
Jackson, Daniel J; Wörheide, Gert; Degnan, Bernard M
2007-01-01
Background The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis). While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda). Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today. PMID:17845714
Moreno-Letelier, Alejandra; Olmedo-Alvarez, Gabriela; Eguiarte, Luis E.
2012-01-01
Abstract The Cuatro Ciénegas Basin (CCB) has been identified as a center of endemism for many life-forms. Nearly half the bacterial species found in the spring systems have their closest relatives in the ocean. This raises the question of whether the high diversity observed today is the product of an adaptive radiation similar to that of the Galapagos Islands or whether the bacterial groups are “survivors” of an ancient sea, which would be of interest for astrobiology. To help answer this question, we focused on Firmicutes from Cuatro Ciénegas (mainly Bacillus and Exiguobacterium). We reconstructed the phylogenetic relationships of Firmicutes with 28 housekeeping genes and dated the resulting tree using geological events as calibration points. Our results show that marine Bacillus diverged from other Bacillus strains 838 Ma, while Bacillus from Cuatro Ciénegas have divergence dates that range from 770 to 202 Ma. The members of Exiguobacterium from the CCB conform to a much younger group that diverged from the Andes strain 60 Ma and from the one in Yellowstone 183 Ma. Therefore, the diversity of Firmicutes in Cuatro Ciénegas is not the product of a recent radiation but the product of the isolation of lineages from an ancient ocean. Hence, Cuatro Ciénegas is not a Galapagos Archipelago for bacteria but is more like an astrobiological “time machine” in which bacterial lineages survived in an oligotrophic environment that may be very similar to that of the Precambrian. Key Words: Firmicutes—Cuatro Ciénegas—Precambrian—Molecular dating—Western Interior Seaway. Astrobiology 12, 674–684. PMID:22920517
Lions and Tigers and High-Wire Fliers.
ERIC Educational Resources Information Center
Bang-Jensen, Valerie
1987-01-01
A primary/intermediate starter unit which explores circus life and history is presented. Activities range from constructing a circus time line beginning in ancient Rome to research on the treatment of animals by circuses. (MT)
Incubation as a form of psychotherapy in the care of patients in ancient and modern Greece.
Papageorgiou, M G
1975-01-01
Incubation or temple sleep in sanctuaries of Aesculapius, Amphiaraos, Trophonios, etc., for the care of patients was practised even in the older times of ancient Greece and may be viewed as a form of psychotherapy and especially as 'dream-psychotherapy'. In Greek antiquity, as it is known, dreams were considered as a way of communication between gods and men. Survival of the custom of incubation exists even in our times in modern Greece, but are disappearing slowly. An attempt is made to find an explanation, if any, of those miraculous cures in accordance with the scientific thought of today.
NASA Technical Reports Server (NTRS)
Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)
1994-01-01
A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.
On the Natural and Unnatural History of the Voltage-Gated Na(+) Channel.
Moczydlowski, E G
2016-01-01
This review glances at the voltage-gated sodium (Na(+)) channel (NaV) from the skewed perspective of natural history and the history of ideas. Beginning with the earliest natural philosophers, the objective of biological science and physiology was to understand the basis of life and discover its intimate secrets. The idea that the living state of matter differs from inanimate matter by an incorporeal spirit or mystical force was central to vitalism, a doctrine based on ancient beliefs that persisted until the last century. Experimental electrophysiology played a major role in the abandonment of vitalism by elucidating physiochemical mechanisms that explained the electrical excitability of muscle and nerve. Indeed, as a principal biomolecule underlying membrane excitability, the NaV channel may be considered as the physical analog or surrogate for the vital spirit once presumed to animate higher forms of life. NaV also epitomizes the "other secret of life" and functions as a quantal transistor element of biological intelligence. Subplots of this incredible but true story run the gamut from electric fish to electromagnetism, invention of the battery, venomous animals, neurotoxins, channelopathies, arrhythmia, anesthesia, astrobiology, etc. Copyright © 2016 Elsevier Inc. All rights reserved.
Dreams as a source of supernatural agent concepts.
McNamara, Patrick; Bulkeley, Kelly
2015-01-01
We present a theory of the creativity of dreams as well as psychopathology of religious delusions with respect to production of fundamental forms of religious cognition-specifically supernatural agent (SA) cognitions. We suggest that dream cognitions are particularly efficient at producing highly memorable and impactful experiences with SAs because dreams involve three processes that are prerequisites for the generation of god concepts: (1) mental simulations of alternative realities, (2) theory of mind attributions to the extra-natural dream characters and divine beings, and (3) attribution of ultimate value (exemplified by 'good spirit beings'), and dis-value (exemplified by demonic monsters) to the supernatural dream characters. Because prefrontal cortex is deactivated during rapid eye movements (REM) sleep agentic impulses and internally generated ideas are not reliably attributed to Self or dreamer. Instead an exaggerated degree of agency is attributed to these supernatural dream characters who are then embedded in stories in dreams and in myths of waking life which explain their supernatural abilities. These dream-based SAs are salient characters that are processed in sleep-related memory systems according to rules of Lleweelyn's ancient art of memory model and therefore more easily remembered and reflected upon during waking life. When REM sleep intrudes into waking consciousness, as is the case with some forms of schizophrenia, religious delusions are more likely to emerge.
Exceptionally well-preserved Cretaceous microfossils reveal new biomineralization styles.
Wendler, Jens E; Bown, Paul
2013-01-01
Calcareous microplankton shells form the dominant components of ancient and modern pelagic sea-floor carbonates and are widely used in palaeoenvironmental reconstructions. The efficacy of these applications, however, is dependent upon minimal geochemical alteration during diagenesis, but these modifying processes are poorly understood. Here we report on new biomineralization architectures of previously unsuspected complexity in calcareous cell-wall coverings of extinct dinoflagellates (pithonellids) from a Tanzanian microfossil-lagerstätte. These Cretaceous 'calcispheres' have previously been considered biomineralogically unremarkable but our new observations show that the true nature of these tests has been masked by recrystallization. The pristine Tanzanian fossils are formed from fibre-like crystallites and show archeopyles and exquisitely constructed opercula, demonstrating the dinoflagellate affinity of pithonellids, which has long been uncertain. The interwoven fibre-like structures provide strength and flexibility enhancing the protective function of these tests. The low-density wall fabrics may represent specific adaptation for oceanic encystment life cycles, preventing the cells from rapid sinking.
Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia).
Kerr, Alexander M; Baird, Andrew H; Hughes, Terry P
2011-01-07
Sexuality and reproductive mode are two fundamental life-history traits that exhibit largely unexplained macroevolutionary patterns among the major groups of multicellular organisms. For example, the cnidarian class Anthozoa (corals and anemones) is mainly comprised of gonochoric (separate sex) brooders or spawners, while one order, Scleractinia (skeleton-forming corals), appears to be mostly hermaphroditic spawners. Here, using the most complete phylogeny of scleractinians, we reconstruct how evolutionary transitions between sexual systems (gonochorism versus hermaphrodism) and reproductive modes (brooding versus spawning) have generated large-scale taxonomic patterns in these characters. Hermaphrodites have independently evolved in three large, distantly related lineages consisting of mostly reef-building species. Reproductive mode in corals has evolved at twice the rate of sexuality, while the evolution of sexuality has been heavily biased: gonochorism is over 100 times more likely to be lost than gained, and can only be acquired by brooders. This circuitous evolutionary pathway accounts for the prevalence of hermaphroditic spawners among reef-forming scleractinians, despite their ancient gonochoric heritage.
UV-light-driven prebiotic synthesis of iron-sulfur clusters
NASA Astrophysics Data System (ADS)
Bonfio, Claudia; Valer, Luca; Scintilla, Simone; Shah, Sachin; Evans, David J.; Jin, Lin; Szostak, Jack W.; Sasselov, Dimitar D.; Sutherland, John D.; Mansy, Sheref S.
2017-12-01
Iron-sulfur clusters are ancient cofactors that play a fundamental role in metabolism and may have impacted the prebiotic chemistry that led to life. However, it is unclear whether iron-sulfur clusters could have been synthesized on prebiotic Earth. Dissolved iron on early Earth was predominantly in the reduced ferrous state, but ferrous ions alone cannot form polynuclear iron-sulfur clusters. Similarly, free sulfide may not have been readily available. Here we show that UV light drives the synthesis of [2Fe-2S] and [4Fe-4S] clusters through the photooxidation of ferrous ions and the photolysis of organic thiols. Iron-sulfur clusters coordinate to and are stabilized by a wide range of cysteine-containing peptides and the assembly of iron-sulfur cluster-peptide complexes can take place within model protocells in a process that parallels extant pathways. Our experiments suggest that iron-sulfur clusters may have formed easily on early Earth, facilitating the emergence of an iron-sulfur-cluster-dependent metabolism.
Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record
NASA Astrophysics Data System (ADS)
Bailey, Jake V.; Orphan, Victoria J.; Joye, Samantha B.; Corsetti, Frank A.
2009-11-01
Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets.
Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia)
Kerr, Alexander M.; Baird, Andrew H.; Hughes, Terry P.
2011-01-01
Sexuality and reproductive mode are two fundamental life-history traits that exhibit largely unexplained macroevolutionary patterns among the major groups of multicellular organisms. For example, the cnidarian class Anthozoa (corals and anemones) is mainly comprised of gonochoric (separate sex) brooders or spawners, while one order, Scleractinia (skeleton-forming corals), appears to be mostly hermaphroditic spawners. Here, using the most complete phylogeny of scleractinians, we reconstruct how evolutionary transitions between sexual systems (gonochorism versus hermaphrodism) and reproductive modes (brooding versus spawning) have generated large-scale taxonomic patterns in these characters. Hermaphrodites have independently evolved in three large, distantly related lineages consisting of mostly reef-building species. Reproductive mode in corals has evolved at twice the rate of sexuality, while the evolution of sexuality has been heavily biased: gonochorism is over 100 times more likely to be lost than gained, and can only be acquired by brooders. This circuitous evolutionary pathway accounts for the prevalence of hermaphroditic spawners among reef-forming scleractinians, despite their ancient gonochoric heritage. PMID:20659935
ERIC Educational Resources Information Center
Hildebrandt, Herbert W.
The ancient world, as exemplified in the theoretical writings of the Greek and Roman rhetoricians, directly influenced the teaching and practice of dictamen as taught for business, for the church, and for law in the Middle Ages and into the Renaissance. Prescriptions on how to communicate in the ancient world formed the core of preparation for the…
[A review of the principle mythical gods in ancient greek medicine].
Lips Castro, Walter; Urenda Arias, Catalina
2014-12-01
Like their prehistoric ancestors, the people of early civilizations lived related to the supernatural. Facing life-threatening situations, such as illness and death, people of ancient civilizations resorted to divination, prophecy, or the oracle. Regarding the curative activities of the ancient Greek civilization, there was a period in which these processes were exclusively linked to a supernatural perspective of the origin of disease. This stage of development of Greek healing practices corresponds to what might be called pre-Hippocratic Greek medicine. In ancient Greek civilization, myths exerted a strong influence on the concepts of disease and the healing processes. Although the first divine figure of Greek mythology related to medicine was Paeon, healing cults related to Apollo and Asclepius had a higher importance in tradition and Greek mythology. The Apollonian divine healing consisted in the ability to eliminate chaos and keep away evil, while in the Asclepian perspective, the role of healer was linked to specific procedures. Personal and medical skills allowed Asclepius to surpass his father and achieve his final consecration as a god of medicine.
NASA Technical Reports Server (NTRS)
Oehler, Dorothy ZS.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.; Gibson, Everett K.
2007-01-01
Recognition of the earliest morphological or chemical evidence of terrestrial life has proved to be challenging, as organic matter in ancient rocks is commonly fragmentary and difficult to distinguish from abiotically-produced materials (Schopf, 1993; Van Zuilen et al., 2002; Altermann & Kazmierczak, 2003; Cady et al., 2003; Brasier et al., 2002, 2004, 2005; Hofmann, 2004; Skrzypczak et al., 2004, 2005). Yet, the ability to identify remnants of earliest life is critical to our understanding of the timing of life's origin on earth, the nature of earliest terrestrial life, and recognition of potential remnants of microbial life that might occur in extraterrestrial materials. The search for earliest life on Earth now extends to early Archean organic remains; these tend to be very poorly preserved and considerably more difficult to interpret than the delicately permineralized microfossils known from many Proterozoic deposits. Thus, recent efforts have been directed toward finding biosignatures that can help distinguish fragmentary remnants of ancient microbes from either pseudofossils or abiotic organic materials that may have formed hydrothermally or in extraterrestrial processes (House et al., 2000; Boyce et al., 2001; Kudryavtsev et al., 2001; Schopf, 2002; Schopf et al., 2002, 2005a,b; Cady et al., 2003; Garc a-Ruiz et al., 2003; Hofmann, 2004; Brasier et al., 2005; Rushdi and Simoneit, 2005; Skrzypczak et al., 2005). An exciting area of biosignature research involves the developing technology of NanoSIMS. NanoSIMS is secondary ion mass spectrometry (SIMS) for ultrafine feature, elemental and isotopic analysis. Its resolution approaches 0.05 micrometers for element mapping, which is 10-50 times finer than that attainable with conventional SIMS or electron microprobes. Consequently, NanoSIMS has the potential to reveal previously unknown, chemical and structural characteristics of organic matter preserved in geologic materials. Robert et al. (2005) were the first to combine NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity. They showed that the ability to simultaneously map the distribution of organic elements [such as carbon (C), nitrogen (N), and sulfur (S)] and compare those element distributions with optically recognizable, cellularly preserved fossils could provide significant new insights into the origin of organic materials in ancient sediments. This chapter details a recent NanoSIMS study which was designed to acquire new data relevant to establishing critical biosignatures (Oehler et al., 2006a-c). In this study, NanoSIMS was used to characterize element distributions of spheroidal and filamentous microfossils and associated organic laminae in chert from the approx. 0.85 billion year old (Ga) Bitter Springs Formation of Australia. Previous work established preservation of a diverse microbiota in the Bitter Springs Formation (Schopf, 1968; Schopf and Blacic, 1971), and there is no dispute within the scientific community regarding the biogenicity of any of the Bitter Springs structures evaluated in this new study. Thus, the NanoSIMS results described below provide new insight into - and can be used as a guide for assessing - the origin of less well understood organic materials that may occur in early Archean samples and in meteorites or other extraterrestrial samples.
Huang, Shi
2009-01-01
There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth. PMID:18600632
Ancient water and sanitation systems - applicability for the contemporary urban developing world.
Bond, T; Roma, E; Foxon, K M; Templeton, M R; Buckley, C A
2013-01-01
The idea of implementing ancient water and wastewater technologies in the developing world is a persuasive one, since ancient systems had many features which would constitute sustainable and decentralised water and sanitation (WATSAN) provision in contemporary terminology. Latest figures indicate 2.6 billion people do not use improved sanitation and 1.1 billion practise open defecation, thus there is a huge need for sustainable and cost-effective WATSAN facilities, particularly in cities of the developing world. The objective of this study was to discuss and evaluate the applicability of selected ancient WATSAN systems for the contemporary developing world. Selected WATSAN systems in ancient Mesopotamia, the Indus Valley, Egypt, Greece, Rome and the Yucatan peninsula are briefly introduced and then discussed in the context of the developing world. One relevant aspect is that public latrines and baths were not only a part of daily life in ancient Rome but also a focal point for socialising. As such they would appear to represent a model of how to promote use and acceptance of modern community toilets and ablution blocks. Although public or community toilets are not classified as improved sanitation by WHO/UNICEF, this is a debatable premise since examples such as Durban, South Africa, illustrate how community toilets continue to represent a WATSAN solution for urban areas with high population density. Meanwhile, given the need for dry sanitation technologies, toilets based on the production of enriched Terra Preta soil have potential applications in urban and rural agriculture and warrant further investigation.
Characterization of Ancient DNA Supports Long-Term Survival of Haloarchaea
Lowenstein, Tim K.; Timofeeff, Michael N.; Schubert, Brian A.; Lum, J. Koji
2014-01-01
Abstract Bacteria and archaea isolated from crystals of halite 104 to 108 years old suggest long-term survival of halophilic microorganisms, but the results are controversial. Independent verification of the authenticity of reputed living prokaryotes in ancient salt is required because of the high potential for environmental and laboratory contamination. Low success rates of prokaryote cultivation from ancient halite, however, hamper direct replication experiments. In such cases, culture-independent approaches that use the polymerase chain reaction (PCR) and sequencing of 16S ribosomal DNA are a robust alternative. Here, we use amplification, cloning, and sequencing of 16S ribosomal DNA to investigate the authenticity of halophilic archaea cultured from subsurface halite, Death Valley, California, 22,000 to 34,000 years old. We recovered 16S ribosomal DNA sequences that are identical, or nearly so (>99%), to two strains, Natronomonas DV462A and Halorubrum DV427, which were previously isolated from the same halite interval. These results provide the best independent support to date for the long-term survival of halophilic archaea in ancient halite. PCR-based approaches are sensitive to small amounts of DNA and could allow investigation of even older halites, 106 to 108 years old, from which microbial cultures have been reported. Such studies of microbial life in ancient salt are particularly important as we search for microbial signatures in similar deposits on Mars and elsewhere in the Solar System. Key Words: Ancient DNA—Halite—Haloarchaea—Long-term survival. Astrobiology 14, 553–560. PMID:24977469
Mars Exobiology: The Principles Behind The Plan For Exploration
NASA Technical Reports Server (NTRS)
DesMarais, D. J.; DeVincenzi, Donald L.; Carr, M. H.; Clark, B. C.; Farmer, J. D.; Hayes, J. M.; Holland, H.; Kerridge, J. F.; Klein, H. P.; McDonald, G. D.
1995-01-01
The search for evidence of life on Mars is a highly interdisciplinary enterprise which extends beyond the traditional life sciences. Mars conceivably had a pervasive ancient biosphere which may have persisted even to the present, but only in subsurface environments. Understanding the history of Mars' global environment, including its inventory of volatile elements, is a crucial part of the search strategy. Those deposits (minerals, sediments, etc.) which could have and retained a record of earlier biological activity must be identified and examined. While the importance of. seeking another biosphere has not diminished during the years since the Viking mission, the strategy for Mars exploration certainly has been modified by later discoveries. The Viking mission itself demonstrated that the present day surface environment of Mars is hostile to life as we know it. Thus, to search effectively for life on Mars, be it extant or extinct, we now must greatly improve our understanding of Mars the planet. Such an understanding will help us broaden our search beyond the Viking lander sites, both back in time to earlier epochs and elsewhere to other sites and beneath the surface. Exobiology involves much more than simply a search for extant life beyond Earth. It addresses the prospect of long-extinct biospheres and also the chemistry, organic and otherwise, which either led to life or which occurred on rocky planets that remained lifeless. Even a Mars without a biosphere would reveal much about life. How better to understand the origin and impact of a biosphere than to compare Earth with another similar but lifeless planet? Still, several relatively recent discoveries offer encouragement that a Martian biosphere indeed might have existed. The ancient Martian surface was extensively sculptured by volcanism and the activity of liquid water. Such observations invoke impressions of an ancient martian atmosphere and environment that resembled ancient Earth more than present-day Mars. Since Viking, we have learned that our own biosphere began prior to 3.5 billion years ago, during an early period when our solar system apparently was sustaining clement conditions on at least two of its planets. Also, we have found that microorganisms can survive, even flourish, in environments more extreme in temperature and water availability than had been previously recognized. The common ancestor of life on Earth probably was adapted to elevated temperatures, raising the possibility that hydrothermal systems played a central role in sustaining our early biosphere. If a biosphere ever arose on Mars, at least some of its constituents probably dwelled in the subsurface. Even today, conditions on Mars and Earth become more similar with increasing depth beneath their surfaces. For example, under the martian permafrost, the geothermal gradient very likely maintains liquid water in environments which resemble aquifers on Earth. Indigenous bacteria have recently been recovered from deep aquifers on Earth. Liquid groundwater very likely persisted throughout Mars' history. Thus, martian biota, if they ever existed, indeed might have survived in subsurface environments.
Early Life on Earth: the Ancient Fossil Record
NASA Astrophysics Data System (ADS)
Westall, F.
2004-07-01
The evidence for early life and its initial evolution on Earth is lin= ked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50-80=B0C), volcanically and hydrothermally active, a= noxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats = for life were more limited until continent-building processes resulted in= the formation of stable cratons with wide, shallow, continental platforms= in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the exist= ence of organisms fractionating carbon in ~3.8 Ga rocks from the Isua greenst= one belt in Greenland are tenuous. Well-preserved microfossils and micro= bial mats (in the form of tabular and domical stromatolites) occur in 3.5-= 3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Afri= ca) and Pilbara (Australia) greenstone belts. They document life forms that = show a relatively advanced level of evolution. Microfossil morphology inclu= des filamentous, coccoid, rod and vibroid shapes. Colonial microorganism= s formed biofilms and microbial mats at the surfaces of volcaniclastic = and chemical sediments, some of which created (small) macroscopic microbi= alites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the r= ange of those for organisms with anaerobic metabolisms, such as methanogenesi= s, sulphate reduction and photosynthesis. Life was apparently distribute= d widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in t= he early Archaean was restricted owing to the limited amount of energy t= hat could be produced by anaerobic metabolisms. Microfossils resembling o= xygenic photosynthesisers, such as cyanobacteria, probably first occurred in = the later part of the Mid Archaean (~2.9 Ga), concurrent with the tectoni= c development of suitable shallow shelf environments.The development of= an oxygenic metabolism allowed a considerable increase in biomass and in= creased interaction with the geological environment.
NASA Astrophysics Data System (ADS)
iMOST Team; Campbell, K. A.; Farmer, J. D.; Van Kranendonk, M. J.; Fernandez-Remolar, D. C.; Czaja, A. D.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
The iMOST hydrothermal deposits sub-team has identified key samples and investigations required to delineate the character and preservational state of potential biosignatures in ancient hydrothermal deposits.
Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"
NASA Astrophysics Data System (ADS)
Pavlov, A. K.
2017-05-01
We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.
Jeste, Dilip V; Vahia, Ipsit V
2008-01-01
The study of wisdom has recently become a subject of growing scientific interest, although the concept of wisdom is ancient. This article focuses on conceptualization of wisdom in the Bhagavad Gita, arguably the most influential of all ancient Hindu philosophical/religious texts. Our review, using mixed qualitative/quantitative methodology with the help of Textalyser and NVivo software, found the following components to be associated with the concept of wisdom in the Gita: Knowledge of life, Emotional Regulation, Control over Desires, Decisiveness, Love of God, Duty and Work, Self-Contentedness, Compassion/Sacrifice, Insight/Humility, and Yoga (Integration of Personality). A comparison of the conceptualization of wisdom in the Gita with that in modern scientific literature shows several similarities, such as rich knowledge about life, emotional regulation, insight, and a focus on common good (compassion). Apparent differences include an emphasis on control over desires and renunciation of materialistic pleasures. Importantly, the Gita suggests that at least certain components of wisdom can be taught and learned. We believe that the concepts of wisdom in the Gita are relevant to modern psychiatry in helping develop psychotherapeutic interventions that could be more individualistic and more holistic than those commonly practiced today, and they aim at improving personal well-being rather than just psychiatric symptoms.
Comparison of the Conceptualization of Wisdom in Ancient Indian Literature with Modern Views
Jeste, Dilip V.; Vahia, Ipsit V.
2008-01-01
The study of wisdom has recently become a subject of growing scientific interest, although the concept of wisdom is ancient. This article focuses on conceptualization of wisdom in the Bhagavad Gita, arguably the most influential of all ancient Hindu philosophical/religious texts. Our review, using mixed qualitative/quantitative methodology with the help of Textalyser and NVivo software, found the following components to be associated with the concept of wisdom in the Gita: Knowledge of life, Emotional Regulation, Control over Desires, Decisiveness, Love of God, Duty and Work, Self-Contentedness, Compassion/Sacrifice, Insight/Humility, and Yoga (Integration of personality). A comparison of the conceptualization of wisdom in the Gita with that in modern scientific literature shows several similarities, such as rich knowledge about life, emotional regulation, insight, and a focus on common good (compassion). Apparent differences include an emphasis in the Gita on control over desires and renunciation of materialistic pleasures. Importantly, the Gita suggests that at least certain components of wisdom can be taught and learned. We believe that the concepts of wisdom in the Gita are relevant to modern psychiatry in helping develop psychotherapeutic interventions that could be more individualistic and more holistic than those commonly practiced today, and aimed at improving personal well-being rather than just psychiatric symptoms. PMID:18834271
NASA Technical Reports Server (NTRS)
Thompson, Joel B.
1998-01-01
Many modem and ancient carbonate deposits around the world have been recognized as microbial buildups or microbialites. Ancient microbialite structures have been divided into two basic categories based on their internal fabric or texture. They include stromatolites which have a predominantly laminated internal fabric and thrombolites which have an open-porous clotted fabric, that lacks laminae. The origin of these two basic microbial fabrics is still being debated in the literature. Understanding the origin and the various microorganisms involved in forming these modem fabrics is the key to the interpretation of similar fabrics in ancient and possibly Martian rocks. Therefore, detailed studies are needed on the microbiological makeup and origin of the fabrics in modem microbialites. Such studies may serve as analogs for ancient and Martian microbialites in the future. The purpose of this study is to examine the textures and carbon isotopic signatures of the following modem microbialites from the Bahamas: 1) a modem subtidal microbialite from Iguana Cay, Bahamas and 2) a modem microbial mat (stromatolite) from a hypersaline pond on Lee Stocking Island, Bahamas.
Polygonal Ridge Networks on Mars
NASA Astrophysics Data System (ADS)
Kerber, Laura; Dickson, James; Grosfils, Eric; Head, James W.
2016-10-01
Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. While networks formed from mineralized fractures hint at hot, possibly life-sustaining circulating ground waters, networks formed by impact-driven clasting diking, magmatic dikes, gas escape, or lava flows do not have the same astrobiological implications. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes and geographic locations and may be a mixture of clastic dikes, brecciated dikes, and mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these features are concentrated, and can appear in places where they morphologies are absent. Similarly, some of the ridge networks are associated with hydrated mineral detections, but some occur in locations without detections. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller version of the Nili-like ridges, in this case formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data becomes available. Hellas Basin is host to a third type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fourth, previously undocumented, ridge network type. The dark ridges, reaching up to 50 m in height, enclose regular polygons and erode into dark boulders. These ridge networks are interpreted to form as a result of lava flow embayment of deeply fractured Medusae Fossae Formation outcrops.
Ratios of Biogenic Elements for Distinguishing Recent from Fossil Microorganisms
NASA Technical Reports Server (NTRS)
Hoover, Richard B.
2007-01-01
The ability to distinguish possible microfossils from recent biological contaminants is of great importance to Astrobiology. In this paper we discuss the application of the ratios of life critical biogenic elements (C/O; C/N; and C/S) as determined by Energy Dispersive X-ray Spectroscopy (EDS) to this problem. Biogenic element ratios will be provided for a wide variety of living cyanobacteria and other microbial extremophiles, preserved herbarium materials, and ancient biota from the Antarctic Ice Cores and Siberian and Alaskan Permafrost for comparison with megafossils and microfossils in ancient terrestrial rocks and carbonaceous meteorites.
Fossil evidence of Archaean life
Schopf, J. William
2006-01-01
Evidence for the existence of life during the Archaean segment of Earth history (more than 2500 Myr ago) is summarized. Data are presented for 48 Archaean deposits reported to contain biogenic stromatolites, for 14 such units reported to contain 40 morphotypes of putative microfossils, and for 13 especially ancient, 3200–3500 Myr old geologic units for which available organic geochemical data are also summarized. These compilations support the view that life's existence dates from more than or equal to 3500 Myr ago. PMID:16754604
NASA Technical Reports Server (NTRS)
2004-01-01
Some of the topics addressed by the conference paper abstracts included in this document include: martian terrain, terrestrial biological activity and mineral deposits with implications for life on Mars, the martian crust and mantle, weathering and erosion on Mars, evidence for ancient martian environmental and climatic conditions, with implications for the existence of surface and ground water on Mars and the possibility for life, martian valleys, and evidence for water and lava flow on the surface of Mars.
Alkaline Hypersaline Lakes as Analogs for Ancient Microbial Habitats on Mars
NASA Technical Reports Server (NTRS)
McDonald, G. D.; Tsapin, A. I.; Storrie-Lombardi, M. C.; Nealson, K. H.; Brinton, K. L. F.; Sun, H.; Venkateswaren, K.; Tsapin, I.; Melack, J.; Jellison, R.
1999-01-01
As the climate of ancient Mars became colder and drier with time, open bodies of water would have entered a regime in which evaporation exceeded input from precipitation or runoff. This would have resulted in increases in salinity and perhaps pH. The last open water on Mars was most likely found in alkaline hypersaline lakes, and these lakes would have been the last surface aquatic habitats for life on Mars. It follows, then, that the biomarkers most likely to be found in ancient sedimentary basins on Mars are those left by organisms adapted to high salt and high pH environments. We have begun to investigate the nature of biological diversity and adaptation to these environments, and the potential for biomarker preservation in them, using Mono Lake as a terrestrial analog environment. Additional information is contained in the original extended abstract.
Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.
2015-01-01
Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298
Terrorism, Wars, Nuclear Holocaust.
ERIC Educational Resources Information Center
Kende, Istvan
1986-01-01
Presents a brief survey of the political and structural violence which pervades contemporary life. Attempts to demonstrate the ancient dictum that violence breeds more violence. Draws distinctions between different types of political violence and explores the political nature of nuclear deterrence. (JDH)
Assessing the Potential for Ancient Habitable Environments in Gusev Crater, Mars
NASA Astrophysics Data System (ADS)
Des Marais, D. J.; Athena Science Team
2007-12-01
In order to be habitable for microbial life as we know it, an environment must provide nutrient elements, energy and liquid water. We assess the potential for habitable environments in the areas explored by the MER rover Spirit. These areas include the basaltic plains near Columbia Memorial Station, West Spur, Husband Hill, and the inner basin south of Husband Hill. Little aqueous activity apparently occurred in Gusev crater since the basaltic plains were emplaced in Hesperian times, therefore the basaltic plains were highly unlikely to have sustained habitable environments. The Columbia Hills, located ~3 km southeast of the landing site, are older than the surrounding basaltic plains. Aqueous processes have extensively altered bedrock in the Columbia Hills. Ferrous iron in the original, unaltered parent rock of hills materials has typically been oxidized extensively to form ferric oxides, hydroxides, and other ferric minerals. Migrating fluids have removed Ca and other cations, allowing residual Al to become relatively more abundant, and fluids added sulfates and chlorides. In subsurface environments on Earth, microorganisms can obtain key nutrients from the weathering of basalts. Materials examined in the Columbia Hills have comparable or greater abundances of these elements than do MORB. Wishstone rock and Watchtower outcrop have very high contents of phosphorous. Chemoautotrophs ("chemical- feeders" that obtain energy from inorganic chemicals) can thrive in subsurface environments. Mixing oxidized constituents from surface environments with generally more reduced constituents from subsurface rocks and thermal emanations provides energy to sustain microorganisms. Ferrous iron in parent materials in the Columbia Hills has been oxidized to form a variety of ferric minerals. On Earth, microbial processes have been documented to contribute to the production of goethite, hematite and other iron oxides. Observations by Spirit are consistent with the possibility that liquid water, nutrients and sources of chemical energy were simultaneously available to sustain habitable conditions in subsurface Columbia Hills materials at least some time in the distant (Noachian?) past. There is as yet no evidence that these conditions ever existed at the surface. Future research must seek to determine whether ancient migrating fluids in Gusev ever achieved the water activity necessary to sustain life.
Simple mechanisms of early life - simulation model on the origin of semi-cells.
Klein, Adrian; Bock, Martin; Alt, Wolfgang
2017-01-01
The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H 2 S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self-organization under appropriate physico-chemical conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Anatomy in ancient India: a focus on the Susruta Samhita
Loukas, Marios; Lanteri, Alexis; Ferrauiola, Julie; Tubbs, R Shane; Maharaja, Goppi; Shoja, Mohammadali Mohajel; Yadav, Abhishek; Rao, Vishnu Chellapilla
2010-01-01
This review focuses on how the study of anatomy in India has evolved through the centuries. Anatomical knowledge in ancient India was derived principally from animal sacrifice, chance observations of improperly buried human bodies, and examinations of patients made by doctors during treatment. The Vedic philosophies form the basis of the Ayurvedic tradition, which is considered to be one of the oldest known systems of medicine. Two sets of texts form the foundation of Ayurvedic medicine, the Susruta Samhita and the Charaka Samhita. The Susruta Samhita provided important surgical and anatomical information of the understanding of anatomy by Indians in the 6th century BCE. Here we review the anatomical knowledge known to this society. PMID:20887391
Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate mars soil
Crawford, Ronald L; Paszczynski, Andrzej; Allenbach, Lisa
2003-01-01
Background Martian soil is thought to be enriched with strong oxidants such as peroxides and/or iron in high oxidation states that might destroy biological materials. There is also a high flux of ultraviolet radiation at the surface of Mars. Thus, Mars may be inhospitable to life as we know it on Earth. We examined the hypothesis that if the soil of Mars contains ferrates [Fe(VI)], the strongest of the proposed oxidizing species, and also is exposed to high fluxes of UV radiation, it will be self-sterilizing. Results Under ambient conditions (25°C, oxygen and water present) K2FeO4 mixed into sand mineralized some reactive organic molecules to CO2, while less reactive compounds were not degraded. Dried endospores of Bacillus subtilis incubated in a Mars surrogate soil comprised of dry silica sand containing 20% by weight K2FeO4 and under conditions similar to those now on Mars (extreme desiccation, cold, and a CO2-dominated atmosphere) were resistant to killing by the ferrate-enriched sand. Similar results were observed with permanganate. Spores in oxidant-enriched sand exposed to high fluxes of UV light were protected from the sporocidal activity of the radiation below about 5 mm depths. Conclusion Based on our data and previously published descriptions of ancient but dormant life forms on Earth, we suggest that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions. Endospores delivered to Mars on spacecraft would possibly survive and potentially compromise life detection experiments. PMID:12694634
Dhiman, K S; Dhiman, Kamini; Puri, Samita; Ahuja, Deepak
2010-01-01
Ayurveda the science of life, since its origin is serving the mankind throughout in health & disease state of life. Shalakyatantra, one of its specialized branch deals with the science of Ophthalmology, Otorhinolaryngology, Orodental surgery & Head; was contributed and developed by Rajrishi Nimi, the King of Videha, who was a colleague of Atreya, Punarvasu, Dhanwantri, Bharadwaja, Kashyapa etc. The available literature related to this speciality is reproduced from original text of Nimitantra in Uttartantra of Sushruta samhita. So Rajrishi Nimi deserves all the credit and regards for Shalakyatantra and for being the first eye surgeon on this earth. The fact regarding the technique of cataract surgery adopted by ancient surgeons is still a matter of debate. Most of the medical fraternity accepts cataract surgery of ancient surgeons as couching procedure but after going through forth coming pages, the prevailing concept will prove to be a myth. It started with extra capsular extraction through small incision during the period of Sushruta Samhita but later shifted to couching like technique by Acharya Vagbhatta. Secondly, the objective of this literary research paper is to find proper co-relation of the disease cataract to those mentioned in Ancient Ayurvedic classic. Linganasha has been inadvertently taken as cataract but this is neither logical nor in accordance with classics. We find detailed description of cataract's differential diagnosis, indications, contra- indications, pre/intra/post operative procedures and complication in ancient texts of Ayurveda. Not only this, vivid description of treatment of various complications of cataract surgery are also given. Needless to say, no other surgically treatable diseases & its complications except Kaphaja Linganasha are given this much attention.
Ancient Leishmaniasis in a Highland Desert of Northern Chile
Costa, Maria Antonietta; Matheson, Carney; Iachetta, Lucia; Llagostera, Agustín; Appenzeller, Otto
2009-01-01
Background Leishmaniasis is an infectious disease endemic today in many areas of South America. Methodology We discovered morphologic and molecular evidence of ancient infections in 4 female skulls in the archaeological cemetery of Coyo Oriente, in the desert of San Pedro de Atacama, Northern Chile. The boney facial lesions visible in the skulls could have been caused by a number of chronic infections including chronic Leishmaniasis. This diagnosis was confirmed using PCR-sequenced analyses of bone fragments from the skulls of the affected individuals.Leishmaniasis is not normally found in the high-altitude desert of Northern Chile; where the harsh climate does not allow the parasite to complete its life cycle. The presence of Leishmaniasis in ancient skulls from the region implies infection by the protozoan in an endemic area–likely, in our subjects, to have been the lowlands of North-Eastern Argentina or in Southern Bolivia. Conclusions We propose that the presence of the disease in ancient times in the high altitude desert of San Pedro de Atacama is the result of an exogamic system of patrilocal marriages, where women from different cultures followed their husbands to their ancestral homes, allowing immigrant women, infected early in life, to be incorporated in the Atacama desert society before they became disfigured by the disease. The present globalization of goods and services and the extraordinary facile movement of people across borders and continents have lead to a resurgence of infectious diseases and re-emergence of infections such as Leishmaniasis. We show here that such factors were already present millennia ago, shaping demographic trends and the epidemiology of infections just as they do today. PMID:19746163
Terrestrial Permafrost Models of Martian Habitats and Inhabitants
NASA Astrophysics Data System (ADS)
Gilichinsky, D.
2011-12-01
The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of Martian permafrost is still 100 times older. Only one terrestrial environment is close to Mars in age - volcanoes in permafrost areas. The age of volcanic deposits frozen after eruption is much younger than the age of surrounding permafrost. Culture- and culture-independent methods show the presence of viable thermophiles and their genes within pyroclastic frozen material on Deception Island, Antarctica and Kamchatka peninsula. These bacteria and archeae have not been found in permafrost outside the volcanic areas. The only way for thermophiles to get into frozen soil is through deposition during eruption, i.e. the catastrophic geological events transport microbes from the depths to the surface and they survive at subzero temperatures. The past activity of Martian volcanoes periodically burned through the frozen strata and products of eruptions rose from the depths to the surface and froze. Images taken by the Stereo Camera on board the Mars Express discovered volcanoes 2-15Myr old that date back to ages close to permafrost on Earth. Terrestrial communities might serve as a model of inhabitants for these young volcanoes. 3. The only opportunity for free water on Mars is the overcooled water brines, and halo/psychrophilc community of Arctic cryopegs, sandwiched within permafrost, represents a plausible prototype for Martian microbial life.
Carbon dioxide warming of the early Earth
NASA Technical Reports Server (NTRS)
Arrhenius, G.
1997-01-01
Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.
Spectral Signals Indicating Impact Glass on Mars
2015-06-08
Deposits of impact glass have been preserved in Martian craters, including Alga Crater, shown here. Detection of the impact glass by researchers at Brown University, Providence, Rhode Island, is based on data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter. In color coding based on analysis of CRISM spectra, green indicates the presence of glass. (Blues are pyroxene; reds are olivine.) Impact glass forms in the heat of a violent impact that excavates a crater. Impact glass found on Earth can preserve evidence about ancient life. A deposit of impact glass on Mars could be a good place to look for signs of past life on that planet. This view shows Alga Crater's central peak, which is about 3 miles (5 kilometers) wide within the 12-mile (19-kilometer) diameter of this southern-hemisphere crater. The information from CRISM is shown over a terrain model and image, based on observations by the High Resolution Imaging Science Experiment (HiRISE) camera. The vertical dimension is exaggerated by a factor of two. http://photojournal.jpl.nasa.gov/catalog/PIA19673
Carbon dioxide warming of the early Earth.
Arrhenius, G
1997-02-01
Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.
Ghost illness in a north Indian village.
Freed, R S; Freed, S A
1990-01-01
The substantial number of ghost possessions that came to our attention during fieldwork in a North Indian village in 1977-78 led to a thorough study of ghost beliefs as part of a holistic study of village life. Ghosts are not phantoms floating on the periphery of village life, the concern only of children and the credulous. Rather, the study shows that ghosts are linked with basic Hindu beliefs, village lore, ancient curing practices and theories, the diagnosis of illness and treatment of disease, individual stress and anxiety, and family, lineage, and village histories. Ghost possession, a subsidiary and dramatic form of ghost illness, is behavior in which the ghost speaks from its victim who undergoes a range of alternate states. Unpredictable events and heightened personal stress generally precede episodes of ghost possession. Cases of ghost illness and ghost possession include children and adults of both sexes and a range of ages. Our data contradict the village stereotype that only women suffer from ghost possession. Villagers have recourse to both traditional remedies and Western biomedicine to treat ghost illness.
Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.
Powell, J; Maise, G; Paniagua, J
2001-01-01
A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined. c2001 International Astronautical Federation. Published by Elsevier Science Ltd.
Ah, Sweet Mystery of Life, OSIRIS-REx May Find You
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.
2015-01-01
The nature of the origin of life is a topic that has engaged people since ancient times. Where did we come from? What was the first life? How are we related? Are we alone? The study of biologic remains and environments preserved in rocks (fossils) and biochemical pathways and structures found across organisms (molecular fossils) can address these questions. Molecular evidence shows that all life on Earth is related fundamentally, biology shares a genetic language, related molecular machinery, and common chemistry By looking at the details of genetic and protein sequences more detailed relationships can be determined for modern organisms.
Martin Brasier (1947-2014): astrobiologist
NASA Astrophysics Data System (ADS)
McMahon, Sean; Cockell, Charles
2015-10-01
How did life on Earth begin? What does the search for life in the distant past tell us about the search for life on distant planets? How should the most ancient and ambiguous putative biosignatures be critically evaluated? How did the Earth-life system evolve through the dramatic upheavals of the Precambrian-Cambrian boundary? When and why did eukaryotes begin to produce mineralized skeletons? These are among the astrobiological questions to which palaeobiologist Martin Brasier made profound contributions in a career spanning nearly half a century and tragically cut short late last year. Here, we summarize and celebrate Martin's contributions to astrobiology.
Earliest Life on Earth - New Data Call for Revision
NASA Astrophysics Data System (ADS)
van Zuilen, M.; Lepland, A.; Arrhenius, G.
2001-12-01
The highly metamorphosed 3.8 Ga old Isua Supracrustal Belt (ISB) in southern West Greenland contains the most widely studied example of ancient Archaean water-lain sediments that carry traces of ancient life. Carbonate deposits in the ISB were originally interpreted as primary platform deposits in a shallow marine environment. Graphite occurring in relatively high concentrations and associating with apatite in these rocks has been interpreted as a remnant of ancient biogenic matter, pointing to the existence of a vast microbial ecosystem in the early Archaean (1,2) Recent discoveries, however, cast considerable doubt on this scenario. The ISB metacarbonates are now found to be secondary deposits, resulting from extensive metasomatism (3,4). The apatite-associated occurrence of graphite, forming the basis for earlier biogenic interpretation, is entirely restricted to these metasomatic carbonate deposits, while true sediments like BIF's and metacherts contain virtually no graphite. Furthermore, within these metacarbonates graphite appears to be specifically associated with iron carbonate (siderite) and magnetite. Thermal decomposition of siderite; 6 FeCO3 ' 2Fe3O4 + 5CO2 + C, is the process seemingly responsible for the graphite formation (5,6). The cation composition (Fe, Mg, Mn, and Ca) of the carbonate minerals, carbon isotope analysis of carbonates and associated graphite and petrographic analysis of a suite of metacarbonates support the conclusion that multiple pulses of metasomatism affected the ISB, causing the deposition of siderite and subsequent partial degradation to graphite and magnetite. Equilibrium isotope fractionation between siderite and graphite in these rocks indicates a temperature of metasomatism between 500 and 600C, which coincides with other estimates of metamorphic temperature for the ISB. The siderite-graphite-apatite association in the ISB consequently appears to be an entirely abiogenic metasomatic feature, which does not point to traces of an ancient Early Archaean ecosystem. An exception to this general observation is a locality in the western part of the ISB, where isotopically light graphite occurs in sequences of graded beds, seemingly representing cyclic turbidites (7). The absence of siderite and/or magnetite makes it clear that inorganic formation of graphite by siderite dissociation can not be the source of carbon in these metasediments This particular formation is thus likely to contain the only currently verified remnant of Archaean life in the ISB with an age of 3.8 Ga. (1). Mojzsis,S.J, .Arrhenius,G., McKeegan, K.D.,.Harrison, T.M.,.Nutman, A.P & C.R.L.Friend.,1996. Nature 384: 55 (2) Schidlowski, M., Appel, P.W.U., Eichmann, R. & Junge, C.E., 1979. Geochim. Cosmochim. Acta 43: 189-190. (3). Rose, N.M., Rosing, M.T. & Bridgwater, D., 1996. Am. J. Sci. 296: 1004-1044. (4). Rosing, M.T.,Rose, N.M.,Bridgwater, D. & Thomsen, H.S., 1996. Geology 24: 43-46. (5). Perry, E.C. & Ahmad, S.N., 1977. Earth Planet. Sci. Lett. 36: 280-284. (6). Van Zuilen, M., Matthew, K., Marti,K., & Arrhenius,G.,1999. Abstract A173, AGU Fall Meeting, San Francisco, CA, Dec. 1999. (7). Rosing, M.T., 1999. Science 283: 674-676.
Growth of a mat-forming photograph in the presence of UV radiation
NASA Technical Reports Server (NTRS)
Pierson, Beverly K.; Ruff, A. L.
1989-01-01
Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.
Evo-devo and accounting for Darwin's endless forms
Brakefield, Paul M.
2011-01-01
Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space? PMID:21690125
Evo-devo and accounting for Darwin's endless forms.
Brakefield, Paul M
2011-07-27
Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?
NASA Astrophysics Data System (ADS)
Nagel, Alexander; McCarthy, Blythe; Bowe, Stacy
Our knowledge of glass production in ancient Egypt has been well augmented by the publication of recently excavated materials and glass workshops, but also by more recent materials analysis, and experiments of modern glass-makers attempting to reconstruct the production process of thin-walled coreformed glass vessels. From the mounting of a prefabricated core to the final glass product our understanding of this profession has much improved. The small but well preserved glass collection of the Freer Gallery of Art in Washington, D.C. is a valid tool for examining and studying the technology and production of ancient Egyptian core formed glass vessels. Charles Lang Freer (1854-1919) acquired most of the material from Giovanni Dattari in Cairo in 1909. Previously the glass had received only limited discussion, suggesting that most of these vessels were produced in the 18th Dynasty in the 15th and 14th centuries BCE, while others date from the Hellenistic period and later. In an ongoing project we conducted computed radiography in conjunction with qualitative x-ray fluorescence analysis on a selected group of vessels to understand further aspects of the ancient production process. This paper will provide an overview of our recent research and present our data-gathering process and preliminary results. How can the examinations of core formed glass vessels in the Freer Gallery contribute to our understanding of ancient glass production and technology? By focusing on new ways of looking at old assumptions using the Freer Gallery glass collections, we hope to increase understanding of the challenges of the production process of core-vessel technology as represented by these vessels.
A phylogenomic data-driven exploration of viral origins and evolution
Nasir, Arshan; Caetano-Anollés, Gustavo
2015-01-01
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the “viral supergroup” and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts. PMID:26601271
Are the Origins of Precision Medicine Found in the Corpus Hippocraticum?
Konstantinidou, Meropi K; Karaglani, Makrina; Panagopoulou, Maria; Fiska, Aliki; Chatzaki, Ekaterini
2017-12-01
Precision medicine (PM) is currently placed at the center of global attention following decades of research towards the improvement of medical practice. The subject of this study was to examine whether this trend had emerged earlier, in fact if the fundamentals of PM can be traced back to the ancient Greek era. For this reason, we studied the collection of all the Hippocratic texts, called the Corpus Hippocraticum, using original translations, and attempted an interpretation of the ancient authors in the context of the modern concept of PM. The most important points located in the ancient passages were: (1) medicine in not 'absolute', thus its directions cannot be generalized to everybody, (2) each human body/organism is different and responds differently to therapy; therefore, the same treatment cannot be suitable for everybody and (3) the physician should choose the appropriate treatment, depending on the patients' individual characteristics, such as different health status and life style (activities, diet, etc.). Although the ancient 'precision medicine' is different from its modern description, the latter derived from well-established experimental conclusions, it becomes apparent that there is a common conception, aiming to achieve more effective healing by focusing on the individual.
Importance of a martian hematite site for astrobiology
NASA Technical Reports Server (NTRS)
Allen, C. C.; Westall, F.; Schelble, R. T.
2001-01-01
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.
The use of concrete learning objects taken from the history of mathematics in mathematics education
NASA Astrophysics Data System (ADS)
Bütüner, Suphi Önder
2016-11-01
This study aimed to reveal the effects of teaching with concrete learning objects taken from the history of mathematics on student achievement. Being a quasi-experimental study, it was conducted with two grade 8 classes in a secondary school located in Trabzon. The experimental group consisted of 27 students and the control group consisted of 25. Data were collected by using worksheets, an achievement exam and written opinion forms. The data from the achievement exam were analysed by using the Mann-Whitney U-test while the data from written opinion forms were analysed through content analysis. The Mann-Whitney U-test results showed a significant difference between the mean ranks of the experimental and control groups in favour of the former. Findings from the written opinion forms suggested that the students found the activities to be instructive and fun, enjoyed using concrete models in their classes, and learned from discovering the rules. It was also found that students had previously not engaged in similar activities and had only experienced the history of mathematics through the life stories and works of mathematicians and the representation of ancient numbers at the beginning of each unit.
Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars
NASA Astrophysics Data System (ADS)
McMahon, Sean; Parnell, John; Blamey, Nigel J. F.
2016-09-01
The oxidation of molecular hydrogen (H2) is thought to be a major source of metabolic energy for life in the deep subsurface on Earth, and it could likewise support any extant biosphere on Mars, where stable habitable environments are probably limited to the subsurface. Faulting and fracturing may stimulate the supply of H2 from several sources. We report the H2 content of fluids present in terrestrial rocks formed by brittle fracturing on fault planes (pseudotachylites and cataclasites), along with protolith control samples. The fluids are dominated by water and include H2 at abundances sufficient to support hydrogenotrophic microorganisms, with strong H2 enrichments in the pseudotachylites compared to the controls. Weaker and less consistent H2 enrichments are observed in the cataclasites, which represent less intense seismic friction than the pseudotachylites. The enrichments agree quantitatively with previous experimental measurements of frictionally driven H2 formation during rock fracturing. We find that conservative estimates of current martian global seismicity predict episodic H2 generation by Marsquakes in quantities useful to hydrogenotrophs over a range of scales and recurrence times. On both Earth and Mars, secondary release of H2 may also accompany the breakdown of ancient fault rocks, which are particularly abundant in the pervasively fractured martian crust. This study strengthens the case for the astrobiological investigation of ancient martian fracture systems.
[Assumption of medical risks and the problem of medical liability in ancient Roman law].
Váradi, Agnes
2008-11-02
The claim of an individual to assure his health and life, to assume and compensate the damage from diseases and accidents, had already appeared in the system of the ancient Roman law in the form of many singular legal institutions. In lack of a unified archetype of regulation, we have to analyse the damages caused in the health or corporal integrity of different personal groups: we have to mention the legal interpretation of the diseases or injuries suffered by serves, people under manus or patria potestas and free Roman citizens. The fragments from the Digest od Justinian do not only demonstrate concrete legal problems, but they can serve as a starting point for further theoretical analyses. For example: if death is the consequence of a medical failure, does the doctor have any kind of liability? Was after-care part of the healing process according to the Roman law? Examining these questions, we should not forget to talk about the complex liability system of the Roman law, the compensation of the damages caused in a contractual or delictual context and about the lex Aquilia. Although these conclusions have no direct relation with the present legal regulation of risk assumption, we have to see that analysing the examples of the Roman law can be useful for developing our view of a certain theoretical problem, like that of the modern liability concept in medicine as well.
Microbial Habitability and Pleistocene Aridification of the Asian Interior.
Wang, Jiuyi; Lowenstein, Tim K; Fang, Xiaomin
2016-06-01
Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ∼1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System. Halite fluid inclusions-Ancient microbes-Water activity-Qaidam Basin-Pleistocene aridification. Astrobiology 16, 379-388.
Manimekalai: The ancient Buddhist Tamil epic, its relevance to psychiatry
Somasundaram, Ottilingam; Tejus Murthy, A. G.
2016-01-01
This article refers to materials of psychiatric interest found in the Manimekalai written by the 2nd Century CE Buddhist poet Sathanar. From the early description of a wandering psychotic in the streets of Pukar, the ancient maritime capital of the Cholas it is opined that this description fits that of present-day schizophrenia. A drunkard making fun of a Jain monk and a cross-dressed individual are also found in the same streets. Manimekalai's request to the Chola king to convert the prison to a place of piety with Buddhist monks is mentioned. Lord Buddha's teachings on the compassionate way of life are presented. PMID:27385862
Ashwal, Lewis D.; Wiedenbeck, Michael; Torsvik, Trond H.
2017-01-01
A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius based on the recovery of Proterozoic zircons from basaltic beach sands. Here we document the first U–Pb zircon ages recovered directly from 5.7 Ma Mauritian trachytic rocks. We identified concordant Archaean xenocrystic zircons ranging in age between 2.5 and 3.0 Ga within a trachyte plug that crosscuts Older Series plume-related basalts of Mauritius. Our results demonstrate the existence of ancient continental crust beneath Mauritius; based on the entire spectrum of U–Pb ages for old Mauritian zircons, we demonstrate that this ancient crust is of central-east Madagascar affinity, which is presently located ∼700 km west of Mauritius. This makes possible a detailed reconstruction of Mauritius and other Mauritian continental fragments, which once formed part of the ancient nucleus of Madagascar and southern India. PMID:28140395
ERIC Educational Resources Information Center
Gross, Steve; Juefei, Wang
1991-01-01
Nearly half of all Vermont school districts have participated in the China Project since its inception in 1986. During the program's first two years, participants examined Chinese history, politics, economy, geography, philosophy, arts, ancient inventions, foreign policy, social life, women's social status, the Chinese language, and the Beijing…
Drawbacks of the ancient RNA-based life-like system under primitive earth conditions.
Kawamura, Kunio
2012-07-01
Following the discovery of ribozymes, the "RNA world" hypothesis has become the most accepted hypothesis concerning the origin of life and genetic information. However, this hypothesis has several drawbacks. Verification of the hypothesis from different viewpoints led us to proposals from the viewpoint of the hydrothermal origin of life, solubility of RNA and related biopolymers, and the possibility of creating an evolutionary system comparable to the in vitro selection technique for functional RNA molecules based on molecular biology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Exobiology issues and experiments at a Mars base
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.
1986-01-01
Research in Exobiology, the study of the origin, evolution, and distribution of life in the universe, may be a major component of the science activities at a Mars Base. Exobiology activities would include: continuing the search for life on Mars; searching for evidence for ancient life from a warmer Martian past; research into the chemistry of the biogenic elements and their compounds; and other related activities. Mars provides an opportunity in Exobiology, both for immediate study and for long range and possibly large scale experimentation in planetary biology.
NASA Astrophysics Data System (ADS)
Cheng, Lin; Li, Rongwu; Pan, Qiuli; Li, Guoxia; Zhao, Weijuan; Liu, Zhiguo
2009-01-01
The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.
Dreams as a source of supernatural agent concepts
McNamara, Patrick; Bulkeley, Kelly
2015-01-01
We present a theory of the creativity of dreams as well as psychopathology of religious delusions with respect to production of fundamental forms of religious cognition—specifically supernatural agent (SA) cognitions. We suggest that dream cognitions are particularly efficient at producing highly memorable and impactful experiences with SAs because dreams involve three processes that are prerequisites for the generation of god concepts: (1) mental simulations of alternative realities, (2) theory of mind attributions to the extra-natural dream characters and divine beings, and (3) attribution of ultimate value (exemplified by ‘good spirit beings’), and dis-value (exemplified by demonic monsters) to the supernatural dream characters. Because prefrontal cortex is deactivated during rapid eye movements (REM) sleep agentic impulses and internally generated ideas are not reliably attributed to Self or dreamer. Instead an exaggerated degree of agency is attributed to these supernatural dream characters who are then embedded in stories in dreams and in myths of waking life which explain their supernatural abilities. These dream-based SAs are salient characters that are processed in sleep-related memory systems according to rules of Lleweelyn’s ancient art of memory model and therefore more easily remembered and reflected upon during waking life. When REM sleep intrudes into waking consciousness, as is the case with some forms of schizophrenia, religious delusions are more likely to emerge. PMID:25852602
2012-01-01
Background The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a ‘fourth supergroup’ along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere. PMID:22920653
Microbial Extremophiles in Evolutionary Aspect
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.
2007-01-01
The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and" filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.
Life in Meridiani Planum. Mars. (Italian Title: Vita in Meridiani Planum, Marte)
NASA Astrophysics Data System (ADS)
Bianciardi, G.; Rizzo, V.; Cantasano, V.
2015-05-01
We performed a quantitative image analysis to compare microstructures of microbialites with the images photographed by the Rover Opportunity. Terrestrial and Martian textures present a multifractal aspect. Mean values and confidence intervals from the Martian images overlapped perfectly with those from the terrestrial samples (p<0.004). Our work shows the presumptive evidence of microbialites in the Martian outcroppings: the presence of unicellular life widespread on the ancient Mars.
The art of providing resuscitation in Greek mythology.
Siempos, Ilias I; Ntaidou, Theodora K; Samonis, George
2014-12-01
We reviewed Greek mythology to accumulate tales of resuscitation and we explored whether these tales could be viewed as indirect evidence that ancient Greeks considered resuscitation strategies similar to those currently used. Three compendia of Greek mythology: The Routledge Handbook of Greek Mythology, The Greek Myths by Robert Graves, and Greek Mythology by Ioannis Kakridis were used to find potentially relevant narratives. Thirteen myths that may suggest resuscitation (including 1 case of autoresuscitation) were identified. Methods to attempt mythological resuscitation included use of hands (which may correlate with basic life support procedures), a kiss on the mouth (similar to mouth-to-mouth resuscitation), application of burning torches (which might recall contemporary use of external defibrillators), and administration of drugs (a possible analogy to advanced life support procedures). A careful assessment of relevant myths demonstrated that interpretations other than medical might be more credible. Although several narratives of Greek mythology might suggest modern resuscitation techniques, they do not clearly indicate that ancient Greeks presaged scientific methods of resuscitation. Nevertheless, these elegant tales reflect humankind's optimism that a dying human might be restored to life if the appropriate procedures were implemented. Without this optimism, scientific improvement in the field of resuscitation might not have been achieved.
Tracing the dynamic life story of a Bronze Age Female
NASA Astrophysics Data System (ADS)
Margarita Frei, Karin; Mannering, Ulla; Kristiansen, Kristian; Allentoft, Morten E.; Wilson, Andrew S.; Skals, Irene; Tridico, Silvana; Louise Nosch, Marie; Willerslev, Eske; Clarke, Leon; Frei, Robert
2015-05-01
Ancient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility.
Tracing the dynamic life story of a Bronze Age Female
Margarita Frei, Karin; Mannering, Ulla; Kristiansen, Kristian; Allentoft, Morten E.; Wilson, Andrew S.; Skals, Irene; Tridico, Silvana; Louise Nosch, Marie; Willerslev, Eske; Clarke, Leon; Frei, Robert
2015-01-01
Ancient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility. PMID:25994525
Gourier, Didier; Delpoux, Olivier; Binet, Laurent; Vezin, Hervé
2013-10-01
The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.
Humic First Theory: A New Theory on the Origin of Life
NASA Astrophysics Data System (ADS)
Daei, Mohammad Ali; Daei, Manijeh; Daei, Bijan
2017-04-01
In 1953, Miller & Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions [1]. During the recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites which have bombarded the ancient earth repeatedly [2]. So simple organic molecules on early earth could be quite enough to start chemical evolution and steadily, proceeded to the very simple form of life. Many theories have tried to explain how life emerged from non life, but failed, largely due to the lack of a distinct methodology. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. It is unacceptable to fill this great distance, only by accidental reactions in a passive media (primitive soap) even, over a very long time. Obviously, manufacturing of a primitive cell required a natural factory with rather firm and resistant basement, plenty of organic and inorganic raw materials and qualified production line, plus some sources of energy. There were plenty of solar energy and water in the early Earth, but what about the other factors? Availability of essential minerals was not guaranteed at all, in primitive earth which covered with bare, dead rocks. While we are not able today, to multiply any microorganisms in ideal conditions of modern laboratory in the absence of only one of essential nutrients or elements, how can we expect primitive cells appear on early earth conditions without the support of soluble minerals and organic matters? Ideal production line must be active and protective, have catalyzing ability, could provide numerous opportunities for interaction between basic bio molecules (mainly RNA and proteins) and above all, have capability to react with different sources of energy. There are strong evidences that show only some form of stable, rich and active organic matter like modern "humic substances" could perform this great and complicated duty. A mass of warm, wet clay mixed with enough humic substances (HS) in suitable PH, could provide all above requirements, and promote biochemical evolution step by step toward a functional primitive cell. HS are fluorescent compounds and could transform UV radiation to usable light. In addition these protective materials could provide chemical energy plus balanced minerals and organic molecules. While everything in non living world is reducing energy, HS can collect more and more material and energy like a living organism. Fortunately, there are reliable evidences that HS could be accessible on ancient Earth. In fact Ziechman et al [7], in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generated on early Earth conditions by polymerizing simple organic molecules. Our investigations show elemental selection and also chairal selection for life are proportionately tailored to Humic materials. For example nearly all heavy metals make insoluble compounds with HS, hence omitted from life processes. In contrast all essential elements have appropriate affinity and workability with HS. There is reliable evidence that shows HS prefer left amino acids and right sugars. As you see many signs and symptoms are referring to "humic substances" as the mother of life, at least on this planet.
The Development of Vaccination and the Discoveries of Louis Pasteur.
ERIC Educational Resources Information Center
Williams, James
1992-01-01
Describes the development of vaccination and provides a brief biographical sketch of the life and work of Pasteur. Describes historical practices related to vaccination before Pasteur did his work, including variolation as practiced by the ancient Chinese and Jenner's use of smallpox. (PR)
ERIC Educational Resources Information Center
Rebbeck, Barbara
1993-01-01
Ninth graders explored the theme of power and ambition by reading William Shakespeare's play "Julius Caesar," studying daily life in ancient Rome, comparing the play's plot to the attempted overthrow of Soviet leader Mikhail Gorbachev, examining other power struggles, and developing scripts for modern-day "Julius Caesar"…
Bednarczyk, Andrzej
2007-01-01
The aim of the paper is construct an outline of G. L. Buffon's ontology, epistemology and theoretical foundations of biology, using the general ideas recovered from and revealed in the voluminous text of Buffon's Histoire naturelle, which underpinned his biology and the natural science of the Age of Enlightenment, and which Buffon never expounded in a separate work. It was deism that Buffon used as a theoretical assumption that could facilitate explaining of where to look for the origin of the uniformity and order that prevailed in nature, and for the source of the natural laws that were being discovered. It was naturalism, a common cognitive attitude among the natural scientists of the Age of Enlightenment, that Buffon expressed in his view that the created and embodied nature was the only object of cognition within whose bounds the cognizant should remain in the process of cognition, by explaining it through itself. Indeed, Buffon made the notion of nature, which sometimes reveals pantheistic overtones, his main theoretical category. The naturalist Buffon was also a universalist in that he conceived of nature as the infinite universe and entered into it cognitively. He proved his universalist stance by (i) propounding the cosmogonic hypothesis, (ii) formulating the concept of life dispersed throughout the universe, and (iii) viewing the process of Earth's formation as one of the many occurring in the universe, and of life on Earth as one of the many biospheres. Buffon was also a determinist, which can be seen in his belief that the object of nature show stability in their mutability, and unity in their variability, which is the effect of immutable laws which belong to the nature of the world. This determinism showed in Buffon's views in three varieties: causal determinism, co-existential (or morphological) determinism and statistical determinism; he did not accept finalism. Buffon was the author of the principle of the conservation of life, according to which the amount of life in the universe is constant, life is an autonomous quality, and animate matter is as ancient as inanimate matter. This principle forms part of the concept of organic corpuscles, a concept which is not without its internal contradictions. Prominent in this concept, the best known among Buffon's theoretical concepts, is the idea of corpuscularism, and ancient concept, related to that of atomism, which found an application in the biology of the Age of Enlightenment in its qualitative variety. Continualism, an idea opposed to that of corpuscularism, manifested itself in Buffon's philosophy in the form of the concept of the chain of being, which Buffon devised basing on one morphological type which was subject to modification. Connected with this latter, specific way of modelling the structure of nature is the notion of species. Species, discovered by Buffon in nature and viewed as existing in nature in a real way, had a physiological character (in that species were formed by individuals that produced a fertile offspring) and endured in an immutable way (irrespective of the suggestion formulated by historians of biology that species were mutable). As a natural scientist, Buffon was an empiric, or even an empiricist. His attempts at experiments, such as the model experiment in trying to develop the cosmogonic hypothesis, are among the rare exceptions. It was this hypothesis, and the history of the Earth that was intertwined in it, that led Buffon to adopt the concept of geological time and to postulate that irreversible events occurred within it, thus discovering something that was reminiscent of the history of human society. Although Buffon used many very general theoretical notions and hypothetical concepts, this broad view of nature cannot be said-- in spite of the opinions of numerous historians--to have formed a system. It does, however, remain a comprehensive vision of nature, an attempt at an ambitious synthesis in the field of natural science.
NASA Astrophysics Data System (ADS)
Lynch, J. E.; Wallace, M. W.
2011-12-01
Stromatolites and thrombolites are microbially-mediated, sedimentary structures of various size and morphology, found throughout the rock record. Although they do not always contain fossils of microbial cells, ancient stromatolitic structures are considered biogenic in origin and, therefore, evidence of early life. Modern, living stromatolites are found in lacustrine and marine environments and can provide a window in which to observe some of Earth's earliest biological processes. However, secular variation in marine chemistry over geological time means that modern marine settings are not always the best analogues for ancient carbonates. This study describes the occurrence of modern stromatolites in a saline, alkaline maar in Victoria, Australia. Dolomite is a principle carbonate mineral precipitating from this lake, an unusual and poorly understood occurrence in modern environments, but one that was common in the Precambrian. The peculiar lacustrine chemistry in this volcanic region may, therefore, provide a better analogue for Precambrian marine carbonates than modern marine environments. Several types of stromatolites/thrombolites are observed occurring around this maar. Living thrombolites grow just below the shoreline to ~60 cm below the surface of the water. They are nucleating on the cemented surfaces of older lake carbonates, as well as cattle skulls and fence wires that have become submerged. Distinct microbial mats are observed, the uppermost being cyanobacteria, followed by purple sulfur bacteria, and underlain by sulfate reducing bacteria. Older exposed stromatolites are more consolidated and have a more clearly defined laminated and columnar morphology. The thickness ranges from a few to 15 cm and each column is up to a centimeter in diameter. Together these give the surface of the rock a "bubbly" appearance. Along the shore, a sandy-gravel composed of stromatolite remnants has formed, indicating that wind-generated surface waves of substantial strength to break apart stomatolites can form in the lake. The next bench contains mudstone layers with clasts of basalt and olivine from the surrounding volcanic tuff, but lacks stromatolitic features. Visible ostrocod shells are abundant in these layers, perhaps suggesting that microorganisms could not compete with grazers at this time to form mats of sufficient size to form stromatolites. Finally, a bench lying about 1.8 m above the current water level is a carbonate rock containing small cavities (mm to a few cm in size) in which cements have formed. Also present are ooids of ~1-2 cm diameter. The mineralogy of these cements, ooids, and stromatolites will be determined by XRD and SEM. These data will be combined with an assessment of microbial 16S rRNA gene phylogeny in order to interpret the stromatolite morphogenesis of this unique lake. By studying stromatolite morphogenesis and microbial ecology in a modern dolomite-precipitating saline maar, we hope to gain a better understanding of the factors that controlled ancient stromatolite morphogenesis; and to examine the extent to which microorganisms versus the environment drive these processes.
The nose between ethics and aesthetics: Sushruta's legacy.
Sorta-Bilajac, Iva; Muzur, Amir
2007-11-01
The aim of this article is to determine the origin of interest in rhinoplasty in ancient India, as well as to discuss the ethical and aesthetic implications of the nose in human history. Literature review. Articles on history of medical ethics and rhinoplastic surgery were reviewed. Sushruta is considered "the father of plastic surgery," and ancient India a cradle of rhinoplastic method called "the Indian method." Origin of interest in and need for rhinoplasty is deeply rooted in ancient Indian society due to the practice of nose mutilations as a form of public punishment for immoral conduct. The nose, once symbol of morality expressed through physical integrity, today becomes an important factor of human beauty. Rhinoplastic surgery is, both then and now, deeply pervaded with both ethics and aesthetics.
"Cosmomorphistic geometry" in the unconscious geometry of Johannes Kepler
NASA Astrophysics Data System (ADS)
Adam, Adolf
Some mathematical aspects of the Music theory by Johannes Kepler are discussed, paying a special attention to the book "De harmonice mundi". Other scientists interested in Music theory are mentioned throughout the paper: The Pythagorean school, Klaudios Ptolemaios, Leonard Euler, Gottfried Wilhelm Leibniz, Christian von Goldbach, Hermann Ludwig Ferdinand von Helmholz, Karl Friedrich Gauss. The relation with the ancient chinese schools of cosmography has been discussed: From the the Pythagorean to the ancient Chinese schools of cosmography we find arithmo-geometrical applications of numbers which are emblematic, hold meaning or represent the essence of things, the author writes. It was Johannes Kepler who taught us this "transconstructive method" of forming classical and ancient begginings of structuralistic thinking into a system from which deductions can readily be made.
Micro to the Macro Biome Can Biology Affect the Big Picture Through Small Changes?
NASA Technical Reports Server (NTRS)
Morin, Lee
2014-01-01
Life has had a profound impact on the geological history of our planet, which in turn has had a profound impact back on the evolution of life. Life has been able to adapt and spread into every planetary nook and cranny. At this point in history, life is becoming able to engineer itself, with extreme consequences we are only dimly able to foresee. One probable outcome will be the facilitation of the expansion of the range of life to beyond our planetary cradle, an evolutionary step as profound as the ancient transition from sea to land. Current efforts at NASA and aboard the International Space Station will be discussed in this context.
Micro to the Macro Biome: Can Biology Affect the Big Picture Through Small Changes?
NASA Technical Reports Server (NTRS)
Morin, Lee
2014-01-01
Life has had a profound impact on the geological history of our planet, which in turn has had a profound impact back on the evolution of life. Life has been able to adapt and spread into every planetary nook and cranny. At this point in history, life is becoming able to engineer itself, with extreme consequences we are only dimly able to foresee. One probable outcome will be the facilitation of the expansion of the range of life to beyond our planetary cradle, an evolutionary step as profound as the ancient transition from sea to land. Current efforts at NASA and aboard the International Space Station will be discussed in this context.
McKay, Christopher P
2010-04-01
Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one-possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids).
McKay, Christopher P.
2010-01-01
Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one—possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids). PMID:20452949
Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice.
Messner, Christoph B; Driscoll, Paul C; Piedrafita, Gabriel; De Volder, Michael F L; Ralser, Markus
2017-07-11
The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.
Meditation: Process and effects.
Sharma, Hari
2015-01-01
Meditation has become popular in many Western nations, especially the USA. An increasing body of research shows various health benefits associated with meditation and these findings have sparked interest in the field of medicine. The practice of meditation originated in the ancient Vedic times of India and is described in the ancient Vedic texts. Meditation is one of the modalities used in Ayurveda (Science of Life), the comprehensive, natural health care system that originated in the ancient Vedic times of India. The term "meditation" is now loosely used to refer to a large number of diverse techniques. According to Vedic science, the true purpose of meditation is to connect oneself to one's deep inner Self. Techniques which achieve that goal serve the true purpose of meditation. Neurological and physiological correlates of meditation have been investigated previously. This article describes the process of meditation at a more fundamental level and aims to shed light on the deeper underlying mechanism of the beneficial effects associated with meditation. Research on the effects of meditation is summarized.
Discovery of a new family of amphibians from northeast India with ancient links to Africa
Kamei, Rachunliu G.; Mauro, Diego San; Gower, David J.; Van Bocxlaer, Ines; Sherratt, Emma; Thomas, Ashish; Babu, Suresh; Bossuyt, Franky; Wilkinson, Mark; Biju, S. D.
2012-01-01
The limbless, primarily soil-dwelling and tropical caecilian amphibians (Gymnophiona) comprise the least known order of tetrapods. On the basis of unprecedented extensive fieldwork, we report the discovery of a previously overlooked, ancient lineage and radiation of caecilians from threatened habitats in the underexplored states of northeast India. Molecular phylogenetic analyses of mitogenomic and nuclear DNA sequences, and comparative cranial anatomy indicate an unexpected sister-group relationship with the exclusively African family Herpelidae. Relaxed molecular clock analyses indicate that these lineages diverged in the Early Cretaceous, about 140 Ma. The discovery adds a major branch to the amphibian tree of life and sheds light on both the evolution and biogeography of caecilians and the biotic history of northeast India—an area generally interpreted as a gateway between biodiversity hotspots rather than a distinct biogeographic unit with its own ancient endemics. Because of its distinctive morphology, inferred age and phylogenetic relationships, we recognize the newly discovered caecilian radiation as a new family of modern amphibians. PMID:22357266
Meditation: Process and effects
Sharma, Hari
2015-01-01
Meditation has become popular in many Western nations, especially the USA. An increasing body of research shows various health benefits associated with meditation and these findings have sparked interest in the field of medicine. The practice of meditation originated in the ancient Vedic times of India and is described in the ancient Vedic texts. Meditation is one of the modalities used in Ayurveda (Science of Life), the comprehensive, natural health care system that originated in the ancient Vedic times of India. The term “meditation” is now loosely used to refer to a large number of diverse techniques. According to Vedic science, the true purpose of meditation is to connect oneself to one's deep inner Self. Techniques which achieve that goal serve the true purpose of meditation. Neurological and physiological correlates of meditation have been investigated previously. This article describes the process of meditation at a more fundamental level and aims to shed light on the deeper underlying mechanism of the beneficial effects associated with meditation. Research on the effects of meditation is summarized. PMID:27313408
A vocabulary of ancient peptides at the origin of folded proteins
Alva, Vikram; Söding, Johannes; Lupas, Andrei N
2015-01-01
The seemingly limitless diversity of proteins in nature arose from only a few thousand domain prototypes, but the origin of these themselves has remained unclear. We are pursuing the hypothesis that they arose by fusion and accretion from an ancestral set of peptides active as co-factors in RNA-dependent replication and catalysis. Should this be true, contemporary domains may still contain vestiges of such peptides, which could be reconstructed by a comparative approach in the same way in which ancient vocabularies have been reconstructed by the comparative study of modern languages. To test this, we compared domains representative of known folds and identified 40 fragments whose similarity is indicative of common descent, yet which occur in domains currently not thought to be homologous. These fragments are widespread in the most ancient folds and enriched for iron-sulfur- and nucleic acid-binding. We propose that they represent the observable remnants of a primordial RNA-peptide world. DOI: http://dx.doi.org/10.7554/eLife.09410.001 PMID:26653858
Biophysical basis for the geometry of conical stromatolites.
Petroff, Alexander P; Sim, Min Sub; Maslov, Andrey; Krupenin, Mikhail; Rothman, Daniel H; Bosak, Tanja
2010-06-01
Stromatolites may be Earth's oldest macroscopic fossils; however, it remains controversial what, if any, biological processes are recorded in their morphology. Although the biological interpretation of many stromatolite morphologies is confounded by the influence of sedimentation, conical stromatolites form in the absence of sedimentation and are, therefore, considered to be the most robust records of biophysical processes. A qualitative similarity between conical stromatolites and some modern microbial mats suggests a photosynthetic origin for ancient stromatolites. To better understand and interpret ancient fossils, we seek a quantitative relationship between the geometry of conical stromatolites and the biophysical processes that control their growth. We note that all modern conical stromatolites and many that formed in the last 2.8 billion years display a characteristic centimeter-scale spacing between neighboring structures. To understand this prominent-but hitherto uninterpreted-organization, we consider the role of diffusion in mediating competition between stromatolites. Having confirmed this model through laboratory experiments and field observation, we find that organization of a field of stromatolites is set by a diffusive time scale over which individual structures compete for nutrients, thus linking form to physiology. The centimeter-scale spacing between modern and ancient stromatolites corresponds to a rhythmically fluctuating metabolism with a period of approximately 20 hr. The correspondence between the observed spacing and the day length provides quantitative support for the photosynthetic origin of conical stromatolites throughout geologic time.
Venus: A World of Water and Life
NASA Astrophysics Data System (ADS)
Ditkof, J. F.
2012-12-01
Author: John Ditkof Institution: University Wisconsin-Madison Amphiboles that contain the hydroxide ion form only in the presence of water and this fact has become the way for scientists to prove that Venus was once a water world. Though, Tremolite is considered the main mineral to look for, it requires life that is analogous to the ancient life here on Earth for it to form. Dolomite is the main ingredient for the formation of this low grade metamorphic mineral and without it would be very difficult for Tremolite to form, unless there is another process that is unknown to science. Venus is known to have extensive volcanic features (over 1600 confirmed shield volcanoes dot its surface) and with little erosion taking place; a mineral that is associated with volcanism and forms only in the presence of water should be regarded as the main goal. Hornblende can form via volcanism or a metamorphic process but requires water for initial formation. The European Space Agency is currently trying to determine whether or not the continents on Venus' surface are made of granite, as they argue granite requires water for formation. Either way, computer models suggest that any oceans that formed on the surface would have lasted at best 2 billion years, as the surface is estimated to be only 800 million years old, any hornblende that would have formed is more than likely going to be deep underground. To find this mineral, as well as others, it would require a mission that has the ability to drill into the surface, as the easiest place to do this would be on the mountain peaks in the Northern Hemisphere on the Ishtar Terra continent. Through the process of uplift, any remaining hornblende may have been exposed or very near exposed to the surface. Do to the amount of fluorine in the atmosphere and the interaction between this and the lithosphere, the hydroxyl ions may have been replaced with fluorine turning the hornblende into the more stable fluoro-hornblende. To further add to the mystery of Venus is the unusual atmospheric composition. The presence of both sulfur dioxide and hydrogen sulfide demand further research as these gases are not being replenished by any geologic activity. Both of these compounds are found is sufficient quantity in the cloud decks, but are almost nonexistent at the surface, further supporting the idea of a chemical reaction/process in the atmosphere. There are particles that have been detected in the atmosphere that seem to be absorbing UV radiation is also located at these same altitudes. Finding tremolite on Venus would only further excite the possibility that we are not alone in the universe. Could life on Venus be related to life here on Earth? Where in the Solar System did life originate? These are questions that would need serious thought if such an event took place. Finding hornblende on Venus would give further support to several theories, but finding tremolite would change everything.
Park, Joo-Hong
2009-06-01
After conducting comparative research into the process of forming the Theory of Constitution in Ancient Western Medicine and that of Four Trigrams Constitution(Sasang Constitution) in Korean Medicine and contents of two Theories of Constitution in terms of medical history, both theories were found to be formed by an interaction between philosophy and medicine, followed by a combination of the two, on a philosophical basis. The Theory of Constitution in Ancient Western Medicine began with the Theory of Four Elements presented by Empedocles, followed by the Theory of Four Humors presented by Hippocrates and the Theory of Four Temperaments by Galenos, forming and developing the Theory of Constitution. After the Middle Ages, there was no significant advance in the Theory of Constitution by modern times ; however, it developed into the theory of constitution type of Kretschmer and others after the 19th century and into the scientific theory of constitution based on genetics presented by Garrod and others early in the 20th century. The Theory of Four Trigrams Constitution began with the Theory of Constitution in Huangdi Neijing, followed by developments and influences of existing medicine called beginning, restoration, and revival periods and DongeuisoosebowonSaSangChoBonGwon based on the original philosophy of Four Trigrams presented by Lee Je-ma, which is found in GyeokChiGo, DongMuYuGo and so on, ultimately forming and developing into the Theory of Four Trigrams Constitution in Dongeuisoosebowon. Recently, a lot of research is being conducted into making it objective in order to achieve reproducibility in diagnosis and so forth of Four Trigrams Constitution.
Where on Mars Should We Search for Life?
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)
1996-01-01
There is persuasive evidence that liquid water has been a significant geological processes on Mars. In particular, evidence suggests that one of the major epochs of liquid water on Mars was during and after the late heavy bombardment. During this time life originated on Earth and may have originated on Mars as well. Liquid water per se, independent of models for the temperature or atmospheric pressure, motivate the question of life. Promising sites for searching for evidence of life on Mars include dry lake beds, the ancient cratered terrain, and the South Polar permafrost. Life on Earth in environments that are analogous to those that might have provided the final refuge for life on Mars provide clues to where and how to search for evidence of past life.
NASA Technical Reports Server (NTRS)
Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.;
2007-01-01
Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.
Manganese micro-nodules on ancient brick walls.
López-Arce, P; García-Guinea, J; Fierro, J L G
2003-01-20
Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. Copyright 2002 Elsevier Science B.V.
Gullies and Bedrock in Nirgal Vallis
2015-02-11
The gullies in this image are within the valley wall of an ancient channel-Nirgal Vallis-a testament to flowing water in Mars' ancient past. However, the formation of gullies are still the subject of much debate with respect to their formation: "wet" vs. "dry" or even "dry" with the aid of some lubricating fluid. Gullies most commonly form in the steep walls of simple craters. Gullies are common even in cold arctic deserts on Earth (e.g., the Haughton impact structure on Devon Island). This suggests that these provocative features can form on a mostly dry Mars that is only sporadically wet. Regardless, these features bear a remarkable resemblance to flowers, including the blossom, petals, stem, and roots. Can you see it too? http://photojournal.jpl.nasa.gov/catalog/PIA19294
A Geologic Model for Eridania Basin on Ancient Mars
2017-10-06
This diagram illustrates an interpretation for the origin of some deposits in the Eridania basin of southern Mars as resulting from seafloor hydrothermal activity more than 3 billion years ago. The ground level depicted is an exaggerated topography of a transect about 280 miles (450 kilometers) long. Blue portions of the diagram depict water-depth estimates and the possibility of ice covering the ancient sea. Thick, clay-rich deposits (green) formed through hydrothermal alteration of volcanic materials in deep water, by this model. Notations indicate deep-water reactions of iron and magnesium ions with silicates, sulfides and carbonates. Deep-seated structural discontinuities could have facilitated the ascent of magma from a mantle source. Chloride deposits formed from evaporation of seawater at higher elevations in the basin. https://photojournal.jpl.nasa.gov/catalog/PIA22060
Vesicles in Apollo 15 Green Glasses: The Nature of Ancient Lunar Gases
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S. J.; Berger, E. L.; Rahman, Z.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.
2014-01-01
Detailed studies of Apollo 15 green glass and related beads have shown they were formed in gas-rich fire fountains.. As the magmatic fluid became super-saturated in volatile gas, bubbles or vesicles formed within the magma. These exsolved gases became trapped within vesicles as the glasses were ejected from the fire-fountain and subsequently quenched. One of the keys to understanding formation processes on the ancient moon includes determining the composition of volatile species and elements, including metals, dissolved in magmatic gases. Here we report the nature of mineral phases spatially associated with vesicles in a green glass bead from Apollo sample 15411,42. The phases reflect the composition of the cooling/degassing magmatic vapors and fluids present at the time of bead formation approx, 3 Ga ago
Homosexuality according to ancient Greek physicians.
Laios, K; Moschos, M M; Koukaki, E; Kontaxaki, M-I; Androutsos, G
2017-01-01
Homosexuality and pedophilia in ancient Greece greatly concerned many researchers who were mainly interested in highlighting the social aspect of this phenomenon in ancient Greek society. An important source on the subject was the paintings of a man and his lover in attic black and red figured pottery, up to the end of the 5th century BC. Another main source was the information that derived from the texts of ancient Greek literature, especially poetry. Homosexuality was not only referring to relationships between males, but it was also manifested in lesbian love. It is believed that in the Homeric world homosexuality was not favored. In Greek society of the archaic period, the restriction of women at home, the satisfaction of sexual needs with courtesans, the marriage for the purpose of maintaining and managing the property, put women aside, marginalizing them in terms of social life, impeding the cultivation of emotional relationships between sexes. At the same time, in the society of those times, the aristocratic ideal, the constant communication of men during military training and the war, the male nudity in sports and the promotion of beauty and bravery in athletic contests, as well as the gatherings and the entertainment of men at the symposia, created a suitable substrate in which male homosexuality could develop. In this context, pedophile relationships were developed mainly during the archaic period, as recorded on vase paintings, where a mature man developed a special relationship with a teenager of the same social class. The mature man had the role of mentor for the juvenile, he would look after him and cover his living expenses and education cost. In this relationship, exhibiting predominantly the social dimension of an initiation process and introduction to adult life, the erotic homosexual intercourse could find a place to flourish. The above-mentioned relationship could not last forever, given that this would later transform into an emotional connection of friendship and trust. Besides, the constant homosexual relationships and male prostitution were considered to be reprehensible behaviors. Regarding the lesbian love, the main example was Sappho and her poems that praised love between women. Nevertheless, the relationship with the girls in the poems is considered to be similar to that Socrates had with his students, an intense personal relationship which would not involve sexual love and could probably be a platonic love. Ancient Greek physicians used their methodological tools in order to interpret homosexuality as a mental disease, but ancient medical dogmas such as the theory of humors, stereopathology and their variations could not offer an explanation for homosexuality.
Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.
Bristow, Thomas F; Rampe, Elizabeth B; Achilles, Cherie N; Blake, David F; Chipera, Steve J; Craig, Patricia; Crisp, Joy A; Des Marais, David J; Downs, Robert T; Gellert, Ralf; Grotzinger, John P; Gupta, Sanjeev; Hazen, Robert M; Horgan, Briony; Hogancamp, Joanna V; Mangold, Nicolas; Mahaffy, Paul R; McAdam, Amy C; Ming, Doug W; Morookian, John Michael; Morris, Richard V; Morrison, Shaunna M; Treiman, Allan H; Vaniman, David T; Vasavada, Ashwin R; Yen, Albert S
2018-06-01
Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe 3+ -bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted
2002-01-01
Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO2, H2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.
Overballe-Petersen, Søren; Willerslev, Eske
2014-01-01
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. PMID:25143190
'Nature and the Greeks' and 'Science and Humanism'
NASA Astrophysics Data System (ADS)
Schrödinger, Erwin
2014-11-01
Foreword; Part I. Nature and the Greeks: 1. The motives for returning to ancient thought; 2. The competition, reason v. senses; 3. The Pythagoreans; 4. The Ionian enlightenment; 5. The religion of Xenophanes, Heraclitus of Ephesus; 6. The atomists; 7. What are the special features?; Part II. Science and Humanism: 1. The spiritual bearing of science on life; 2. The practical achievements of science tending to obliterate its true import; 3. A radical change in our ideas of matter; 4. Form, not substance, the fundamental concept; 5. The nature of our 'models'; 6. Continuous descriptions and causality; 7. The intricacy of the continuum; 8. The makeshift of wave mechanics; 9. The alleged breakdown of the barrier between subject and object; 10. Atoms or quanta - the counter-spell of old standing, to escape the intricacy of the continuum; 11. Would physical indeterminacy give free will a chance?; 12. The bar to prediction, according to Niels Bohr; Literature.
Overballe-Petersen, Søren; Willerslev, Eske
2014-10-01
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Habenicht, A; Quesada, A; Cerff, R
1997-10-01
A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.
Major water-related episodes on the lowlands of Mars
NASA Astrophysics Data System (ADS)
Fairén, A. G.; Dohm, J. M.; Baker, V. R.
2003-04-01
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems (Dohm et al., 2001), and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to source the magmatic-triggered outburst floods that sculpted the circum-Chryse and NSVs outflow channel systems (Dohm, et al., 2001), entrained boulders, rock, and sediment during passage, and ponded to form sequentially through time various hypothesized oceans, seas, and lakes in the northern plains (Parker et al., 1993; Baker et al., 1991; Scott et al., 1995; Head et al., 1999) and glaciers and rock glaciers and lacustrine environments such as in the southern hemisphere (Baker, 2001). The floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars (Baker et al., 1991), a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains (Parker et al., 1993). Stratigraphy, geomorphology, and topography record at least one great Noachian/early Hesperian northern plains ocean (Fairén and De Pablo, 2002), best portrayed by the martian dichotomy boundary or Contact 1, but in Arabia Terra, where the initial shoreline might have been as far south as Sinus Meridani (Edgett and Parker, 1997), forming an almost equipotential line (total elevation differences are ˜2 km) that we name Contact 0, which is also consistent with the location of the boundary in crustal thickness dichotomy, as deduced from topography and gravity data (Zuber et al., 2000), and with the locus of debouch of almost every valley network in Arabia (Edgett and Parker, 1997; Carr, 2002); a Late Hesperian sea, which would have extended over the deeper areas in the lowlands inset within the boundary of the first great ocean, and so portrayed by Contact 2; and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis (e.g., Anderson et al., 2001) and Elysium (Skinner and Tanaka, 2001) induced Amazonian flooding. Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated (Farmer and Des Marais, 1999). Such Martian environments and related materials and life forms may have been excavated to the surface by catastrophic outflows making targets readily available for sampling and in-deep analyses. References Anderson, R. C. et al.: Primary centers and secondary concentrations of tectonic activity through time in western hemisphere of Mars. J. Geophys. Res. 106, 20 563--20 585, 2001. Baker, V.R., et al.: Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589--594, 1991. Baker, V. R.: Water and the martian landscape. Nature, 412, 228--236, 2001. Carr, M. H.: Elevations of water-worn features on Mars: Implications for circulation of groundwater, J. Geophys. Res., 107, 5131, doi:10.1029/2002JE001845, 2002. Dohm, J.M., et al.: Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 32 943--32 958, 2001. Edgett, K.S. and Parker, T.J.: Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridani. Geophys. Res. Lett., 24, 2897--2900, 1997. Farmer, J.D. and Des Marais, D.J.: Exploring for a record of ancient martian life. J. Geophys. Res., 104, 26 977--26 995, 1999. Fairén, A.G. and de Pablo, M.A.: An evolutionary timescale for the water on Mars. Lunar Planet. Sci. Conf., XXXIII, #1013 (abstract) [CD-ROM], 2002. Head, J.W., et al.: Possible ancient oceans on Mars: Evidence from Mars Orbiter laser altimeter data. Science, 286, 2134--2137, 1999. Parker, T.J., et al.: Coastal geomorphology of the Martian northern plains. J. Geophys. Res., 98, 11 061--11 078, 1993. Scott, D.H., et al.: Map of Mars showing channels and possible paleolake basins. U.S. Geol. Surv. Misc. Invest. Ser. MAP I-2461, 1995. Skinner, J.A. and Tanaka, K.L.: Long-lived hydrovolcanism of Elysium. Eos. Trans. AGU 82(47), Fall Meet. Suppl., Abstract P31B-07, 2001. Zuber, M. T., et al.: Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788--1793, 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padhi, Payodhar; Sahoo, G.; Das, K.
The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and mineralsmore » were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient physicians could get rid of free mercury by milling and proper choice of the ratio of ingredients as is shown in the investigation by X-ray diffraction studies. In the traditional method for synthesis of mercury sulfide, mercury and pure sulfur were taken and milled in a mortar and pastel. During milling process, the white mercury and yellow sulfur yielded to a gray black colored sulfide. Synthesis of red sulfide of mercury required additional steps of heating and subsequent milling. For therapeutically application, the sulfide thus obtained needed detoxification, which was done using organic extracts. In the present investigation, the same method was followed to synthesize the sapphires and the product was characterized using modern methods like XRD, SEM and HRTEM. With increase in milling time the fineness of the powder increases, which increases the efficacy of the medicine, and free mercury, which is not desirable for medicinal application is found to decrease. The powder obtained at the end of 48 hours of milling is found to be of a size finer than l0nm.« less
NASA Astrophysics Data System (ADS)
Padhi, Payodhar; Sahoo, G.; Das, K.; Ghosh, Sudipto; Panigrahi, S. C.
2008-10-01
The use of metals and minerals in the traditional Indian system of medicine known as aired is very common and is practiced since seventh century B.C. Metals were reduced to calcined powder form for medicinal purpose. For detoxification, a further step of purification of the metals and minerals with different vegetable extracts was practiced. The people of East India were using mercury and its sulfide as medicine. Gradually this secret was leaked to Arabic physicians who used mercury in skin ointment. Subsequently Italian Physicians adopted Arabic prescriptions of mercurial ointments for skin diseases. In the olden days, metals and minerals were impregnated with decoction and juice of vegetables and animal products like milk and fat for purification. These were then reduced to fine particles by milling with a pestle and mortar. It was known by then that the fineness of the powder had a significant influence on the color, texture, and medicinal properties as is cited by Charak. Nagarjun studied in detail the processing of metals and minerals, particularly mercury and the influence of the processing parameters on the medicinal values. Mercury is unique in many aspects. Indian alchemy developed a wide variety a chemical processes for the ostensible transmutation of metals and preparation of elixir of life, in which mercury occupied a prime position .The present investigation attempts to use the traditional methods as prescribed in the ancient texts to prepare mercury sulfide in both red and black form for medicinal use. XRD, SEM and HRTEM investigations of the sulfides obtained shows that the ancient Indians were able to produce nano-sized powders. Possibly this may be taken as the earliest application of the production and use of nano powder. The study proves that even in ancient time the knowledge of nano particle synthesis was prevalent and used to enhance effectiveness of medicines. Further mercury in the free form is not acceptable in medicines. The ancient physicians could get rid of free mercury by milling and proper choice of the ratio of ingredients as is shown in the investigation by X-ray diffraction studies. In the traditional method for synthesis of mercury sulfide, mercury and pure sulfur were taken and milled in a mortar and pastel. During milling process, the white mercury and yellow sulfur yielded to a gray black colored sulfide. Synthesis of red sulfide of mercury required additional steps of heating and subsequent milling. For therapeutically application, the sulfide thus obtained needed detoxification, which was done using organic extracts. In the present investigation, the same method was followed to synthesize the sapphires and the product was characterized using modern methods like XRD, SEM and HRTEM. With increase in milling time the fineness of the powder increases, which increases the efficacy of the medicine, and free mercury, which is not desirable for medicinal application is found to decrease. The powder obtained at the end of 48 hours of milling is found to be of a size finer than l0nm.
ERIC Educational Resources Information Center
Hougendobler, Nancy
Prepared for middle or intermediate grades, this student booklet provides a study of water--the location of major oceans and rivers; the relationship of ancient civilizations to bodies of water; active metals found in sea water; chemical concentrations in water and their effects on marine life; and the concepts of evaporation, transpiration,…
Constructing a Life Philosophy: An Examination of Alternatives. Opposing Viewpoints Series.
ERIC Educational Resources Information Center
Bender, David L., Ed.
Fourteen brief reading selections from philosophical statements of ancient and modern writers are presented with brief introductions, questions, and individual and group exercises. The purpose of the collection is to stimulate students toward philosophical, thought and discussion based on alternatives. Readings are drawn from: 1) Plato's, Parable…
Ozette: A Makah Village in 1491.
ERIC Educational Resources Information Center
Pascua, Maria Parker
1991-01-01
The ancient Makah village of Ozette in northwest Washington, buried for centuries under mud, was exposed by a storm in 1970. Based on excavations and oral tradition, daily life in this village is portrayed, including longhouse construction, clothing, whale and seal hunts, fishing, social structure, slavery, ceremonies, and potlatches. Contains…
Childhood and Citizenship: A Conversation across Modernity
ERIC Educational Resources Information Center
Dunne, Joseph
2006-01-01
This paper analyses the problematic nature of citizenship as a modern achievement faced with the challenge of vindicating ancient ideals in what is increasingly considered to be a "postmodern" world. It offers a parallel analysis of childhood as a characteristically modern construct whose reality in children's life-worlds is threatened…
Reclaiming the Intellectual Life for Posterity
ERIC Educational Resources Information Center
De Botton, Alain
2009-01-01
The contemporary university is an uncomfortable amalgamation of ambitions once held by a variety of educational institutions. It owes debts to the philosophical schools of Ancient Greece and Rome, to the monasteries of the Middle Ages, to the theological colleges of Paris, Padua, and Bologna and to the research laboratories of early modern…
Chemical Alteration by Water, Jezero Crater Delta
2011-11-21
On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins. Spectral data acquired by NASA Mars Reconnaissance Orbiter, indicate chemical alteration by water.
Evolution and regulation of complex life cycles: a brown algal perspective.
Cock, J Mark; Godfroy, Olivier; Macaisne, Nicolas; Peters, Akira F; Coelho, Susana M
2014-02-01
The life cycle of an organism is one of its fundamental features, influencing many aspects of its biology. The brown algae exhibit a diverse range of life cycles indicating that transitions between life cycle types may have been key adaptive events in the evolution of this group. Life cycle mutants, identified in the model organism Ectocarpus, are providing information about how life cycle progression is regulated at the molecular level in brown algae. We explore some of the implications of the phenotypes of the life cycle mutants described to date and draw comparisons with recent insights into life cycle regulation in the green lineage. Given the importance of coordinating growth and development with life cycle progression, we suggest that the co-option of ancient life cycle regulators to control key developmental events may be a common feature in diverse groups of multicellular eukaryotes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rodríguez, Carlos A; Isaza, Carolina; Pachajoa, Harry
2012-07-01
Achondroplasia is the most frequent form of short-limb dwarfism. Affected individuals exhibit short stature caused by rhizomelic shortening of the limbs, characteristic facies with frontal bossing and mid-face hypoplasia, genu varum, and trident hand. Although the etiology of this disease was reported in 1994, evidence of this disease in ancient populations has been found in populations of ancient Egypt (2500 BC) and it has been documented in ancient American populations. To analyze the presence of individuals with achondroplasia in the Mayan state society of Mexico and Guatemala, during the Classical (100- 950 AC ) and Post-Classical (950 - 1519 AC ) periods; likewise, in the hierarchical-chieftain society of Tumaco-la Tolita (300 BC - 600 AC ) from the Colombia-Ecuador Pacific coast, and the Moche state society (100 - 600 AC ) from the northern coast of Peru. Iconographic and clinical-morphological studies of some of the most important artistic representations of individuals of short stature in these three cultures. We present the hypothesis that the individuals with short stature were somehow associated with the political and religious power elite.
Isaza, Carolina; Pachajoa, Harry
2012-01-01
Introduction: Achondroplasia is the most frequent form of short-limb dwarfism. Affected individuals exhibit short stature caused by rhizomelic shortening of the limbs, characteristic facies with frontal bossing and mid-face hypoplasia, genu varum, and trident hand. Although the etiology of this disease was reported in 1994, evidence of this disease in ancient populations has been found in populations of ancient Egypt (2500 BC) and it has been documented in ancient American populations. Objective: To analyze the presence of individuals with achondroplasia in the Mayan state society of Mexico and Guatemala, during the Classical (100- 950 AC ) and Post-Classical (950 - 1519 AC ) periods; likewise, in the hierarchical-chieftain society of Tumaco-la Tolita (300 BC - 600 AC ) from the Colombia-Ecuador Pacific coast, and the Moche state society (100 - 600 AC ) from the northern coast of Peru. Methods: Iconographic and clinical-morphological studies of some of the most important artistic representations of individuals of short stature in these three cultures. Conclusion: We present the hypothesis that the individuals with short stature were somehow associated with the political and religious power elite. PMID:24893194
Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating
NASA Astrophysics Data System (ADS)
Wadsworth, Jeffrey
2016-12-01
In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.
NASA Astrophysics Data System (ADS)
Behnke, M. I.; Mann, P. J.; Schade, J. D.; Spawn, S.; Zimov, N.
2015-12-01
Permafrost soils in northern high latitudes store large quantities of organic carbon that have remained frozen for thousands of years. As global temperatures increase, permafrost deposits have begun to thaw, releasing previously stored ancient carbon to streams and rivers in the form of dissolved organic carbon (DOC). Newly mobilized DOC is then subjected to processing by photooxidation and microbial metabolism. Permafrost-derived DOC is highly bioavailable directly upon release relative to modern DOC derived from plants and surface active layer soils. Our objectives were to assess the interaction of photodegradation and microbial processing, and to quantify any light priming effect on the microbial consumption of both ancient and modern sourced DOC pools. We exposed sterilized mixtures of ancient and modern DOC to ambient sunlight for six days, and then inoculated mixtures (0, 1, 10, 25, 50 & 100% ancient DOC) with microbes from both modern and ancient water sources. After inoculation, samples were incubated in the dark for five days. We measured biological oxygen demand, changes in absorbance, and DOC concentrations to quantify microbial consumption of DOC and identify shifts in DOC composition and biolability. We found evidence of photobleaching during irradiation (decreasing S275-295, increasing slope ratio, and decreasing SUVA254). Once inoculated, mixtures with more ancient DOC showed initially increased microbial respiration compared to mixtures with primarily modern DOC. During the first 24 hours, the light-exposed mixture with 50% ancient DOC showed 47.6% more oxygen consumption than did the dark 50% mixture, while the purely modern DOC showed 11.5% greater oxygen consumption after light exposure. After 5 days, the modern light priming was comparable to the 50% mixture (31.2% compared to 20.5%, respectively). Our results indicate that natural photoexposure of both modern and newly released DOC increases microbial processing rates over non photo-exposed DOC.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.
Fernández, Rosa; Sharma, Prashant P; Tourinho, Ana Lúcia; Giribet, Gonzalo
2017-02-22
Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group. © 2017 The Author(s).
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics
Sharma, Prashant P.; Tourinho, Ana Lúcia
2017-01-01
Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group. PMID:28228511
Ocean Acidification | Smithsonian Ocean Portal
Skip to main content Menu Search form Search Search Find Your Blue Smithsonian National Museum of Vents & Volcanoes Temperature & Chemistry Ice The Ocean Through Time Ancient Seas Fossils CO2 molecules and recombine them with others. When water (H2O) and CO2 mix, they combine to form
78 FR 18789 - Establishment of the San Juan Islands National Monument
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... pinnacles known as the San Juan Islands. These islands form an unmatched landscape of contrasts, where... array of fossils and other evidence of long-vanished species. Ancient bison skeletons (10,000-12,000... boundaries described on the accompanying map, which is attached to and forms a part of this proclamation...
The Expressive Arts in Counseling. ERIC Digest.
ERIC Educational Resources Information Center
Gladding, Samuel T.
Art has played a part in the helping professions since ancient times. In recent times, there has been renewed interest in the use of the arts in counseling, especially art forms that are considered "expressive." Counselors can help their clients develop their potential through concrete and abstract verbal and nonverbal art forms. To do…
The Fable and the Fabulous: The Use of Traditional Forms in Children's Literature.
ERIC Educational Resources Information Center
Hedges, Ned Samuel
Although literature written especially for children has been a development of the past two centuries, most lasting works of children's literature derive their narrative patterns and structures of meaning from ancient and traditional literary forms and conventions, such as fable, myth, epic, and romance. This study provides an interpretive analysis…
NASA Technical Reports Server (NTRS)
Brown, I. I.; Bryant, D. A.; Thomas,-Keprta, K. L.; Tringe, S. G.; Sarkisova, S. A.; Galindo, C., Jr.; Malley, K.; Sosa, O.; Garrison, D. H.; McKay, David S.
2010-01-01
Verifying the links between genomie features in living organisms and their mineralization/demineralization activity will help to reveal traces of life on Earth and beyond. Among contemporary environments, iron-depositing hot springs (IDHS) may represent one of the most appropriate natural models for insights into ancient life since organisms may have originated on Earth and possibly Mars in association with hydrothennal activity and high [Fe(2+)]. Siderophilic or "iron-loving" cyanobacteria (CB) inhabiting IDHS may have genomic features and properties similar to those of ancient organisms because abundant Fe(2+) in IDHS has a strong potential to increase the magnitude of oxidative stress. That is why specific and/or additional proteins involved in Fe mineralization by siderophilic CB are expected. Inorganic polyphosphates (PPi) are known to increase the viability of prokaryotes Linder heavy metal concentrations and UV stress conditions. PPi have also been proposed as biosignatures. Ancient CB could have also been stressed by occasional migrations from the Fe(2+) rich Ocean to the basaltic land which was almost devoid of dissolved Fe(2+). Thus, the study of the adaptation reactions of siderophilic CB to fluctuation of dissolved Fe level may shed light on the paleophysiology of ancient oxygenic prokaryotes. Moreover, bioweathered Fe, Al, P, Cu, Ti and rare earth elements can be thought of as candidate organomarkers that document the effects of or ganic molecules in weathered rocks. However, the molecular mechanisms of the maintenance of Fe homeostasis in siderophilic CB, the role of PPi for this process and bioweathering activities are poorly understood. Here we present preliminary results describing a new mechanism of Fe mineralization in siderophilic CB, the effect of Fe on the generation of PPi bodies in siderophilic CB, their bioweathering activity and preliminary analysis of the diversity of proteins involved in the prevention of oxidative stress in phototrophs inhabiting IDHS.
Two-way feedback between biology and deep Earth processes
NASA Astrophysics Data System (ADS)
Sleep, N. H.; Pope, E.; Bird, D.
2012-12-01
The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth's surface and interior cooled following the moon-forming impact. The oceans passed through conditions favored by thermophile organisms before becoming clement. Ocean pH was ~6 and bars of CO2 existed in the atmosphere. Subduction removed the CO2 into the mantle before the time of rock record. Serpentinite likely existed in land, tidal, and marine environments as it does today. Seafloor spreading and arc volcanism likely drove hydrothermal circulation. The late heavy bombardment occurred after ca. 4.1 Ga; low heat flow environments and hence habitable subsurface refugia existed. It is conceivable that one or a few ocean-boiling impacts left thermophile survivors in their wake. Overall, the molecular biology of extant life likely conserves features that relate to its earliest abodes.
SEM morphological studies of carbonates and the search for ancient life on Mars
NASA Astrophysics Data System (ADS)
D'Elia, M.; Blanco, A.; Galiano, A.; Orofino, V.; Fonti, S.; Mancarella, F.; Guido, A.; Russo, F.; Mastandrea, A.
2017-04-01
Next space missions will investigate the possibility of extinct or extant life on Mars. Studying the infrared spectral modifications, induced by thermal processing on different carbonate samples (recent shells and fossils of different ages), we developed a method able to discriminate biogenic carbonates from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed to among the oldest traces of biological activity known on Earth. These results are of valuable importance since such carbonates are linked to primitive living organisms that can be considered as good analogues for putative Martian life forms. Considering that the microstructures of biogenic carbonate are different from those of abiogenic origin, we investigated the micromorphology of shells, skeletal grains and microbialites at different scale with a scanning electron microscope. The results show that this line of research may provide an alternative and complementary approach to other techniques developed in the past by our group to distinguish biotic from abiotic carbonates. In this paper, we present some results that can be of valuable interest since they demonstrate the utility for a database of images concerning the structures and textures of relevant carbonate minerals. Such data may be useful for the analysis of Martian samples, coming from sample return missions or investigated by future in situ explorations, aimed to characterize the near-subsurface of Mars in search for past or present life.
A Field Trip to the Archaean in Search of Darwin's Warm Little Pond.
Damer, Bruce
2016-05-25
Charles Darwin's original intuition that life began in a "warm little pond" has for the last three decades been eclipsed by a focus on marine hydrothermal vents as a venue for abiogenesis. However, thermodynamic barriers to polymerization of key molecular building blocks and the difficulty of forming stable membranous compartments in seawater suggest that Darwin's original insight should be reconsidered. I will introduce the terrestrial origin of life hypothesis, which combines field observations and laboratory results to provide a novel and testable model in which life begins as protocells assembling in inland fresh water hydrothermal fields. Hydrothermal fields are associated with volcanic landmasses resembling Hawaii and Iceland today and could plausibly have existed on similar land masses rising out of Earth's first oceans. I will report on a field trip to the living and ancient stromatolite fossil localities of Western Australia, which provided key insights into how life may have emerged in Archaean, fluctuating fresh water hydrothermal pools, geological evidence for which has recently been discovered. Laboratory experimentation and fieldwork are providing mounting evidence that such sites have properties that are conducive to polymerization reactions and generation of membrane-bounded protocells. I will build on the previously developed coupled phases scenario, unifying the chemical and geological frameworks and proposing that a hydrogel of stable, communally supported protocells will emerge as a candidate Woese progenote, the distant common ancestor of microbial communities so abundant in the earliest fossil record.
The Integration Method of Ceramic Arts in the Product Design
NASA Astrophysics Data System (ADS)
Shuxin, Wang
2018-03-01
As one of the four ancient civilization countries, the firing technology of ceramic invented by China has made a great contribution to the progress and development of human society. In modern life, even the development of technology still needs the ceramics, there are large number of artists who take the ceramics as carrier active in the field of contemporary art. The ceramics can be seen everywhere in our daily life, this paper mainly discusses the integration means of ceramic art in the product design.
Ohry, Avi; Gitay, Yehoshua
2008-04-01
The beginning of Rhetorics can be found in ancient Greece (Corax, Gorgias, Aristo). The science of the proper use of language in order to explain or convince, was very popular until the 17th century. Rhetorics had influenced all levels of intellectual European life, including medical teaching. and practice (Cabanis). Currently, rhetorics have become popular again in: the media, politics, academic and social life and medicine. Medical and allied health professions students, should learn how to speak correctly, how to implement ethical and behavioral essentials (Osler, Asher).
Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.
Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne
2014-09-23
Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.
Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars.
McMahon, Sean; Parnell, John; Blamey, Nigel J F
2016-09-01
The oxidation of molecular hydrogen (H2) is thought to be a major source of metabolic energy for life in the deep subsurface on Earth, and it could likewise support any extant biosphere on Mars, where stable habitable environments are probably limited to the subsurface. Faulting and fracturing may stimulate the supply of H2 from several sources. We report the H2 content of fluids present in terrestrial rocks formed by brittle fracturing on fault planes (pseudotachylites and cataclasites), along with protolith control samples. The fluids are dominated by water and include H2 at abundances sufficient to support hydrogenotrophic microorganisms, with strong H2 enrichments in the pseudotachylites compared to the controls. Weaker and less consistent H2 enrichments are observed in the cataclasites, which represent less intense seismic friction than the pseudotachylites. The enrichments agree quantitatively with previous experimental measurements of frictionally driven H2 formation during rock fracturing. We find that conservative estimates of current martian global seismicity predict episodic H2 generation by Marsquakes in quantities useful to hydrogenotrophs over a range of scales and recurrence times. On both Earth and Mars, secondary release of H2 may also accompany the breakdown of ancient fault rocks, which are particularly abundant in the pervasively fractured martian crust. This study strengthens the case for the astrobiological investigation of ancient martian fracture systems. Deep biosphere-Faults-Fault rocks-Seismic activity-Hydrogen-Mars. Astrobiology 16, 690-702.
Field, Katie J; Pressel, Silvia
2018-04-26
Contents I. II. III. IV. V. VI. VII. VIII. References SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
The Rhynie Chert, Scotland, and the Search for Life on Mars
NASA Astrophysics Data System (ADS)
Preston, Louisa J.; Genge, Matthew J.
2010-06-01
Knowledge of ancient terrestrial hydrothermal systems-how they preserve biological information and how this information can be detected-is important in unraveling the history of life on Earth and, perhaps, that of extinct life on Mars. The Rhynie Chert in Scotland was originally deposited as siliceous sinter from Early Devonian hot springs and contains exceptionally well-preserved fossils of some of the earliest plants and animals to colonize the land. The aim of this study was to identify biomolecules within the samples through Fourier transform infrared (FTIR) spectroscopy and aid current techniques in identification of ancient hot spring deposits and their biological components on Mars. Floral and faunal fossils within the Rhynie Chert are commonly known; but new, FTIR spectroscopic analyses of these fossils has allowed for identification of biomolecules such as aliphatic hydrocarbons and OH molecules that are potentially derived from the fossilized biota and their environment. Gas chromatograph-mass spectrometer (GCMS) data were used to identify n-alkanes; however, this alone cannot be related to the samples' biota. Silicified microfossils are more resistant to weathering or dissolution, which renders them more readily preservable over time. This is of particular interest in astropaleontological research, considering the similarities in the early evolution of Mars and Earth.
The Rhynie Chert, Scotland, and the search for life on Mars.
Preston, Louisa J; Genge, Matthew J
2010-06-01
Knowledge of ancient terrestrial hydrothermal systems-how they preserve biological information and how this information can be detected-is important in unraveling the history of life on Earth and, perhaps, that of extinct life on Mars. The Rhynie Chert in Scotland was originally deposited as siliceous sinter from Early Devonian hot springs and contains exceptionally well-preserved fossils of some of the earliest plants and animals to colonize the land. The aim of this study was to identify biomolecules within the samples through Fourier transform infrared (FTIR) spectroscopy and aid current techniques in identification of ancient hot spring deposits and their biological components on Mars. Floral and faunal fossils within the Rhynie Chert are commonly known; but new, FTIR spectroscopic analyses of these fossils has allowed for identification of biomolecules such as aliphatic hydrocarbons and OH molecules that are potentially derived from the fossilized biota and their environment. Gas chromatograph-mass spectrometer (GCMS) data were used to identify n-alkanes; however, this alone cannot be related to the samples' biota. Silicified microfossils are more resistant to weathering or dissolution, which renders them more readily preservable over time. This is of particular interest in astropaleontological research, considering the similarities in the early evolution of Mars and Earth.
Cangkrama, Michael; Darido, Charbel; Georgy, Smitha R; Partridge, Darren; Auden, Alana; Srivastava, Seema; Wilanowski, Tomasz; Jane, Stephen M
2016-07-01
The skin barrier is critical for mammalian survival in the terrestrial environment, affording protection against fluid loss, microbes, toxins, and UV exposure. Many genes indispensable for barrier formation in the embryo have been identified, but loss of these genes in adult mice does not induce barrier regression. We describe a complex regulatory network centered on two ancient gene families, the grainyhead-like (Grhl) transcription factors and the protein cross-linking enzymes (tissue transglutaminases [Tgms]), which are essential for skin permeability barrier maintenance in adult mice. Embryonic deletion of Grhl3 induces loss of Tgm1 expression, which disrupts the cornified envelope, thus preventing permeability barrier formation leading to neonatal death. However, gene deletion of Grhl3 in adult mice does not disrupt the preformed barrier, with cornified envelope integrity maintained by Grhl1 and Tgm5, which are up-regulated in response to postnatal loss of Grhl3. Concomitant deletion of both Grhl factors in adult mice induced loss of Tgm1 and Tgm5 expression, perturbation of the cornified envelope, and complete permeability barrier regression that was incompatible with life. These findings define the molecular safeguards for barrier function that accompany the transition from intrauterine to terrestrial life. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Extraterrestrial Life: Life on Mars - Then and Now
NASA Technical Reports Server (NTRS)
Arrhenius, Gustaf; Mojzsis, Stephen
1996-01-01
The recent claim to have identified possible signs of ancient life on Mars has been widely publicized and discussed. The authors conceded that none of the half-dozen pieces of evidence adduced in their paper individually provided strong support for extraterrestrial life, though they argued that the pieces added up to a case worth considering. Most - perhaps all - of the observed phenomena have counterparts in the inorganic world, so even the combination does not make a compelling case that there was ever life on Mars. Nevertheless, the importance of the problem has justified bringing the results to general attention. The paper has focussed interest on the origin and possible ubiquity of life, and on how we can design techniques capable of giving a more definitive answer to the question of whether there is, or has ever been, life elsewhere in the Universe.
Molecular Ecological and Stable Isotopic Studies of Nitrogen Fixation in Modern Microbial Mats
NASA Technical Reports Server (NTRS)
Bebout, B. M.; Crumbliss, L. L.; DesMarais, D. J.; Hogan, M. E.; Omoregie, E.; Turk, K. A.; Zehr, J. P.
2003-01-01
Nitrogen is usually the element limiting biological productivity in the marine environment. Microbial mats, laminated microbial communities analogous to some of the oldest forms of life on Earth, are often the sites of high rates of N fixation (the energetically expensive conversion of atmospheric dinitrogen into a biologically useful form). The N fixing enzyme nitrogenase is generally considered to be of ancient origin, and is widely distributed throughout the Bacterial and Archaeal domains of life, indicating an important role for this process over evolutionary time. The stable isotopic signature of N fixation is purportedly recognizable in organic matter (ancient kerogens as well as present-day microbial mats) as a delta (15)N(sub organic) near zero. We studied two microbial mats exhibiting different rates of N fixation in order to better understand the impact of N fixation on the delta (15)N (sub organic) of the mats, as well as what organisms are important in this process. Mats dominated by the cyanobacterium Microcoleus chthonoplastes grow in permanently submerged hypersaline salterns, and exhibit low rates of N fixation, whereas mats dominated by the cyanobacterium Lyngbya spp grow in an intertidal area, and exhibit rates of N fixation an order of magnitude higher. To examine successional stages in mat growth, both developing and established mats at each location were sampled. PCR and RT-PCR based approaches were used to identify, respectively, the organisms containing nifH (one of the genes that encode nitrogenase) as well as those expressing nifH in these mats. Both mats exhibited a distinct diel cycle of N fixation, with highest rates occurring at night. The delta (15)N(sub organic) of the subtidal Microcoleus mats is near zero whereas the delta (15)N(sub organic) is slightly more positive (+ 2-3%), in the intertidal Lyngbya mats, an interesting difference in view of the fact that overall rates of activity in the intertidal mats are much higher that those in the submerged hypersaline mats. Developing mats in both the subtidal and intertidal locations had delta (15)N(sub organic) values very near those of the established mats. Further work is necessary in order to determine the importance of other transformations of nitrogen on the delta (15)N(sub organic) signature of the mats.
Larval body patterning and apical organs are conserved in animal evolution
2014-01-01
Background Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data. Results To compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla. Conclusions The similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae. PMID:24476105
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; Chang, Sherwood (Technical Monitor)
1997-01-01
Terrestrial life appears to have arisen very quickly during late accretion, sometime between approximately 3.5 and 4.2 Ga. During this same time, liquid water appears to have been abundant at the surface of Mars and it is quite plausable that life originated there as well. We now believe that the last common ancestor of terrestrial life was a sulfur-metabolizing microbe that lived at high temperatures. Rooting of the RNA tree in thermophily probably reflects high temperature "bottle-necking" of the biosphere by giant impacts during late accretion, sometime after life had originated. If high temperature bottle-necking is a general property of early biosphere development, Martian life may have also developed in close association with hydrothermal systems. Several independent lines of evidence suggest that hydrothermal processes have played an important role during the geological history of Mars. Because hydrothermal deposits on Earth are known to capture and retain abundant microbial fossil information, they are considered prime targets in the search for an ancient Martian biosphere. An important step in planning for future landed missions to Mars is the selection of priority targets for high resolution orbital mapping. Geotectonic terranes on Mars that provide a present focus for ongoing site selection studies include channels located along the margins of impact crater melt sheets, or on the slopes of ancient Martian volcanoes, chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice, and the floors of calderas and rifted basins. Orbital missions in 1996, 1998 and 2001 will provide opportunities for high resolution geological mapping at key sites in such terranes, as a basis for selecting targets for future landed missions for exopaleontology.
Ancient landscapes: Their nature and significance for the question of inheritance
NASA Technical Reports Server (NTRS)
Twidale, C. R.
1985-01-01
It is widely believed that much of the world's scenery is youthful. Thornbury's assertion that little of the world's scenery is older than Tertiary and that most of it is no older than Pleistocene dies hard. Yet there is ample evidence, long recognized, that very ancient forms and surfaces (here the term surface is used in the sense of a planation surface, surface d'aplanissement or Einebnungsflache) are an integral part of the contemporary landscape, and that such features are not restricted to the low latitude regions, though they are well preserved there. Many of them were formed in environments very different from that in which they now occur and are thus inherited. Paleosurfaces of many age ranges have been recognized. They can conveniently be considered as of three types: exhumed, epigene and etch.
The Effects of Historical Earthquakes on Cyzicus Ancient City
NASA Astrophysics Data System (ADS)
Adatepe, F.; Demirel, S.; Vardar, D.
2012-04-01
Cyzicus is one of the most important ancient settlement of Mysia region on Marmara coasts in Turkey. It's located on Belkis Tombolo which connects Kapıdağ (Arktonnesos) Peninsula to the shore. It was established by the King Cyzicus Kyzikos in B.C. 749 as a Miletos colony during the colonization movements of Ions. The main reason to determine the establishment place of Cyzicus was; a strong defense system formed by the natural conditions and the walls surrounding the city. In addition, from the documents, 3 natural harbor (one of them inner harbor) and one artificial canal in the ancient city has been designated. Because of these features, the ancient city had been developed by maritime trade and fisheries. And also, city's economy had grown due to its fertile soil. Works in marble that came from Marmara Island, were being effective in the artistic activities in the city. Due to the capital city of East Roman Empire was being Constantine (AD 324), the chance of Cyzicus was affected badly. Since its location on the south branch of the North Anatolian Fault zone in the Marmara Sea, ancient city was being ruined by a series of earthquakes. There were fifteen (15) destructive earthquakes occurred between AD 29 - 1887. For example the region had become a swamp because of AD 740 earthquake. At that time, despite metropolitan center pass through to Erdek, the city was not fully abandoned. In the end, the earthquake of 1064 had completely demolished Cyzicus. At the present day, this ancient city has come to the point to be lost in swamps, brushes and shrubs.
The breath of life: an essay on the earliest history of respiration: part ii.
Gandevia, B
1970-06-01
It is to ancient Greek civilization that we must look for the first groping steps towards a naturalistic concept of respiration, although we shall not, of course, expect to find one which is consistent with modern views. Nearly a millennium before Christ, Homer wrote of the gods as more less predictable and very human beings, deserving more of admiration and emulation than worship; they took a fairly commonsense view of man's earthly pursuits, and left him a measure of control over his own destiny. From this relatively disrespectful state-by comparison with primitive or Old Testament views-it is but a stage to a rationalistic view of the universe, that is, to science, and this step was taken about three centuries later (6th century B.C.) by Thales, Anaximander and Anaximenes. We cannot pause to consider their views in detail, nor can we digress, as strictly we should, to consider the emerging relationship between philosophy and science. Suffice it to say that these first philosopher-scientists sought to explain the universe and life in rational terms, basing their rationalizations-we might say extrapolations-on certain specific observations of natural phenomena. The latter were concerned, in the main, with the interrelationships of basic substances (ultimately regarded as the four elements) such as fire, earth, air and water. Water, for example, could be condensed to form earth, or rarefied to form mist and vapour. Copyright © 1970 Australian Physiotherapy Association. Published by . All rights reserved.
NASA Astrophysics Data System (ADS)
Sakakibara, M.; Sugawara, H.; Tsuji, T.; Ikehara, M.
2014-05-01
The past two decades have seen the reporting of microbial fossils within ancient oceanic basalts that could be identical to microbes within modern basalts. Here, we present new petrographic, mineralogical, and stable isotopic data for metabasalts containing filamentous structures in a Jurassic accretionary complex within the northern Chichibu Belt of the Yanadani area of central Shikoku, Japan. Mineralized filaments within these rocks are present in interstitial domains filled with calcite, pumpellyite, or quartz, and consist of iron oxide, phengite, and pumpellyite. δ13CPDB values for filament-bearing calcite within these metabasalts vary from -2.49‰ to 0.67‰. A biogenic origin for these filamentous structures is indicated by (1) the geological context of the Yanadani metabasalt, (2) the morphology of the filaments, (3) the carbon isotope composition of carbonates that host the filaments, and (4) the timing of formation of these filaments relative to the timing of low-grade metamorphism in a subduction zone. The putative microorganisms that formed these filaments thrived between eruption (Late Paleozoic) and accretion (Early Jurassic) of the basalt. The data presented here indicate that cryptoendolithic life was present within water-filled vesicles in pre-Jurassic intraplate basalts. The mineralogy of the filaments reflects the low-grade metamorphic recrystallization of authigenic microbial clays similar to those formed by the encrustation of prokaryotes in modern iron-rich environments. These findings suggest that a previously unusual niche for life is present within intraplate volcanic rocks in accretionary complexes.
Rajasekharan, S.; Raju, G.S.
1982-01-01
Prameha (Diabetes) which has been a global problem is well described in the ancient Indian classics life the Vedas and the Ayurvedic works which ensued the Vedic period. In the present work, the authors have tried to focus the narrations on pramehas in Vedic literature with special reference to the “Kauchika Soothra” of Atharva Veda. A new hypothesis comparing the actions of pittatejas which is set free by the pitta dharakala with the actions of the hormones like insulin and glucagon is also discussed. The aetiopathogenesis of pramehas as described by the Ayurvedic authors with a glance to the therapeutic measures is also included in the study PMID:22556947
Searching for neurological diseases in the Julio-Claudian dynasty of the Roman Empire.
Camargo, Carlos Henrique Ferreira; Teive, Hélio Afonso Ghizoni
2018-01-01
The gens Julia was one of the oldest families in ancient Rome, whose members reached the highest positions of power. They made history because Julius Caesar, perpetual dictator, great-uncle of the first emperor, Augustus, passed his name on to the Julio-Claudian dynasty with the emperors Tiberius, Caligula, Claudius and Nero. Descriptions of the diseases of these emperors and some of his family members may indicate diagnoses such as epilepsy, dystonia, dementia, encephalitis, neurosyphilis, peripheral neuropathies, dyslexia, migraine and sleep disorders. In the historical context of ancient Rome, the possibility of infectious diseases related to the libertine way of life is quite large. However, there is a possibility that some of these diseases occurred from genetic transmission.
Nasim, Muhammad Jawad; Bin Asad, Muhammad Hassham Hassan; Durr-e-Sabih; Ikram, Raja Muhammad; Hussain, Muhammad Sikandar; Khan, Muhammad Tajammal; Ahamad, Ghafoor; Karim, Sabiha; Khan, Shujaat Ali; Murtaza, Ghulam
2014-01-01
Human civilization is facing the problem of kidney stones since ancient ages. Although mortality rate is not so high, yet it affects the victim's quality of life. The patient suffers from intense pain and many other symptoms modifying his life style and affecting his socioeconomic status. Many drugs and invasive methods have also been developed for the treatment, but these are highly costly and unaffordable for poor people and the rate of reoccurrence is also high. The use of medicinal plants is both affordable and effective in this respect. In this article, 35 medicinal plants of Pakistan origin and their crucial information have been enumerated in alphabetical order of plant's scientific name, family, place (distribution), part used, local name, habit, major constituents and references. It can also be seen that all parts are used for the treatment of kidney stones. Leaves represent 28% contribution, whole plants and seeds 12%, fruits and roots 11% contribution in this respect. Flowers contribute 8% in the treatment of kidney stone while branches, bark, bushes, buds, milk and shoots contribute only 3% in the removal of kidney stones. Habits of plants were also taken under consideration. It was noticed that herbs are the most useful life form in this regard which contributed 63% for the removal of kidney stone. Shrubs contributed 20%, trees 11% while bushes and weeds contributed 3% for the removal of kidney stones.
Rapid dental development in a Middle Paleolithic Belgian Neanderthal.
Smith, Tanya M; Toussaint, Michel; Reid, Donald J; Olejniczak, Anthony J; Hublin, Jean-Jacques
2007-12-18
The evolution of life history (pace of growth and reproduction) was crucial to ancient hominin adaptations. The study of dental development facilitates assessment of growth and development in fossil hominins with greater precision than other skeletal analyses. During tooth formation, biological rhythms manifest in enamel and dentine, creating a permanent record of growth rate and duration. Quantification of these internal and external incremental features yields developmental benchmarks, including ages at crown completion, tooth eruption, and root completion. Molar eruption is correlated with other aspects of life history. Recent evidence for developmental differences between modern humans and Neanderthals remains ambiguous. By measuring tooth formation in the entire dentition of a juvenile Neanderthal from Scladina, Belgium, we show that most teeth formed over a shorter time than in modern humans and that dental initiation and eruption were relatively advanced. By registering manifestations of stress across the dentition, we are able to present a precise chronology of Neanderthal dental development that differs from modern humans. At 8 years of age at death, this juvenile displays a degree of development comparable with modern human children who are several years older. We suggest that age at death in juvenile Neanderthals should not be assessed by comparison with modern human standards, particularly those derived from populations of European origin. Moreover, evidence from the Scladina juvenile and other similarly aged hominins suggests that a prolonged childhood and slow life history are unique to Homo sapiens.
NASA Astrophysics Data System (ADS)
Debus, A.
In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.
ERIC Educational Resources Information Center
Sartorius, Tara Cady
2011-01-01
When artists are inspired to travel in Europe to study art and history of the Western world, Italy is a good place to start. With its ancient architecture, rich cultural heritage, and superb works of art, Italy has been the quintessential center of Western art history for centuries. It was the good fortune of Alabama-based artist and teacher…
Archaeology for Kids: Uncovering the Mysteries of Our Past--25 Activities.
ERIC Educational Resources Information Center
Panchyk, Richard
This book provides 25 activities giving children hands-on archeological experience, teaches how archaeologists work, and shows what they have discovered from digging up prehistoric bones between the time when dinosaurs roamed the earth to the uncovering of modern artifacts at a contemporary office building. Ancient civilizations come to life as…
Burning of forest materials under late Paleozoic high atmospheric oxygen levels
Richard A., Jr. Wildman; Leo J. Hickey; Matthew B. Dickinson; Robert A. Berner; Jennifer M. Robinson; Michael Dietrich; Robert H. Essenhigh; Craig B. Wildman
2004-01-01
Theoretical models suggest that atmospheric oxygen reached concentrations as high as 35% O2 during the past 550 m.y. Previous burning experiments using strips of paper have challenged this idea, concluding that ancient wildfires would have decimated plant life if O2 significantly exceeded its present level of 21%. New...
Linking Literature and Art to the Social Studies Curriculum.
ERIC Educational Resources Information Center
Frezza, Yiota
1982-01-01
Describes a unit in which elementary students experience life in ancient Egypt by role playing different positions in society. Students research their role, prepare a paper doll dressed in the clothing of their role, analyze an opera, and paint a window in the stylized method used on Egyptian tomb paintings. (RM)
Storytelling as Therapy: The Motives of a Counselor
ERIC Educational Resources Information Center
Land, Ken
2007-01-01
Storytelling is considered an ancient cultural practice whereby storytellers bring events to life through some combination of words, sounds, and images. Stories are typically used to teach, such as in an educational or religious setting, and to entertain. Children often grow up hearing stories about their family history from their parents and…
Cloth Crafts of India: Cotton and Silk, Trade and History.
ERIC Educational Resources Information Center
Mueller, Peggy; Turkovich, Marilyn
This resource suggests that to study India without experiencing the life of the people as represented through their folk craft traditions would be a hollow venture. History and geography are conveyed in the symbols and figures that decorate Indian crafts. Basic beliefs, ancient symbols, and religious traditions are conveyed in recurring visual…
Microbial survival strategies in ancient permafrost: insights from metagenomics
Mackelprang, Rachel; Burkert, Alexander; Haw, Monica; Mahendrarajah, Tara; Conaway, Christopher H.; Douglas, Thomas A.; Waldrop, Mark P.
2017-01-01
In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.
Microbial survival strategies in ancient permafrost: insights from metagenomics.
Mackelprang, Rachel; Burkert, Alexander; Haw, Monica; Mahendrarajah, Tara; Conaway, Christopher H; Douglas, Thomas A; Waldrop, Mark P
2017-10-01
In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.
Microbial survival strategies in ancient permafrost: insights from metagenomics
Mackelprang, Rachel; Burkert, Alexander; Haw, Monica; Mahendrarajah, Tara; Conaway, Christopher H; Douglas, Thomas A; Waldrop, Mark P
2017-01-01
In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials. PMID:28696425
The mongoose, the pheasant, the pox, and the retrovirus.
Etienne, Lucie; Emerman, Michael
2013-01-01
Paleovirology is the study of ancient viruses. The existence of a paleovirus can sometimes be detected by virtue of its accidental insertion into the germline of different animal species, which allows one to date when the virus actually existed. However, the ancient and the modern often connect, as modern viruses have unexpected origins that can be traced to ancient infections. The genomes of two species of mongooses and an egg-laying mammal called an echidna show that a virus currently present in poultry, the reticuloendotheliosis virus (REV), is actually of ancient exotic mammalian origin. REV apparently spread to poultry through a circuitous route involving the isolation of malaria parasites from a pheasant from Borneo housed at the Bronx Zoo that was contaminated with REV. Repeated passage of this virus in poultry adapted the virus to its new host. At some point, the virus got inserted into another virus, called fowlpox virus, which has spread back into the wild. Although REV may still exist somewhere in a mammalian host, its modern form links an 8 million-year-old infection of the ancestor of a mongoose to a virus that now is circulating in wild birds through malaria studies in the mid-20(th) century. These lessons of ancient and modern viruses have implications for modern human pandemics from viral reservoirs and for human interventions that may come with unintended consequences.
Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars
NASA Technical Reports Server (NTRS)
Michalski, Joseph. R.; Bleacher, Jacob E.
2014-01-01
Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.
Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.
Michalski, Joseph R; Bleacher, Jacob E
2013-10-03
Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.
Evolution of an ancient protein function involved in organized multicellularity in animals.
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-07
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
NASA Astrophysics Data System (ADS)
Hoover, Richard B.
2014-09-01
It is well established that carbonaceous meteorites contain water, carbon, biogenic elements and a host of organic chemicals and biomolecules. Several independent lines of evidence indicate that the parent bodies of the CI1 and CM2 carbonaceous meteorites are most probably the C-type asteroids or cometary nuclei. Several of the protein amino acids detected in the meteorites exhibit chirality and have an excess of the L-enantiomer -- such as in the amino acids present in the proteins of all known life forms on Earth. Isotopic studies have established that the amino acids and nucleobases in the CI1 and CM2 carbonaceous meteorites are both indigenous and extraterrestrial. Optical and Scanning Electron Microscopy studies carried out by researchers during the past half century have revealed the presence of complex biogenic microstructures embedded in the rock-matrix of many of carbonaceous meteorites similar to extinct life-forms known as acritarchs and hystrichospheres. Carbonaceous meteorites also contain a wide variety of large filaments that exhibit the complex morphologies and correct size ranges of known genera and species of photosynthetic microorganisms such as cyanobacteria and diatoms. However, EDAX investigations have shown that these carbon-rich filaments typically have nitrogen content below the level of detection (<0.5% atomic) of the instrument. EDAX studies of living and dead terrestrial biological materials have shown that nitrogen can be detected in ancient mummies and tissue, hair and teeth of Pleistocene Mammoths. Hence, the absence of detectable nitrogen in the filaments provides direct evidence that they do not represent recent biological contaminants that invaded these meteorite stones after they were observed to fall to Earth. The spectral and fluorescence properties of pigments found in several species of terrestrial cyanobacteria which are similar to some microfossils found in carbonaceous meteorites may provide valuable clues to help search for evidence for biomolecules and life on the icy moons of Jupiter and Saturn, asteroids and comets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A
2011-01-01
Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less
NASA Technical Reports Server (NTRS)
McKay, David S.; Brown, I. I.; Tringe, S. G.; Thomas-Keprta, K. E.; Bryant, D. A.; Sarkisova, S. S.; Malley, K.; Sosa, O.; Klatt, C. G.; McKay, D. S.
2010-01-01
Interrelationships between life and the planetary system could have simultaneously left landmarks in genomes of microbes and physicochemical signatures in the lithosphere. Verifying the links between genomic features in living organisms and the mineralized signatures generated by these organisms will help to reveal traces of life on Earth and beyond. Among contemporary environments, iron-depositing hot springs (IDHS) may represent one of the most appropriate natural models [1] for insights into ancient life since organisms may have originated on Earth and probably Mars in association with hydrothermal activity [2,3]. IDHS also seem to be appropriate models for studying certain biogeochemical processes that could have taken place in the late Archean and,-or early Paleoproterozoic eras [4, 5]. It has been suggested that inorganic polyphosphate (PPi), in chains of tens to hundreds of phosphate residues linked by high-energy bonds, is environmentally ubiquitous and abundant [6]. Cyanobacteria (CB) react to increased heavy metal concentrations and UV by enhanced generation of PPi bodies (PPB) [7], which are believed to be signatures of life [8]. However, the role of PPi in oxygenic prokaryotes for the suppression of oxidative stress induced by high Fe is poorly studied. Here we present preliminary results of a new mechanism of Fe mineralization in oxygenic prokaryotes, the effect of Fe on the generation of PPi bodies in CB, as well as preliminary analysis of the diversity and phylogeny of proteins involved in the prevention of oxidative stress in phototrophs inhabiting IDHS.
Mass Flux in the Ancient Earth-Moon System and Benign Implications for the Origin of Life on Earth
NASA Technical Reports Server (NTRS)
Ryder, Graham
2002-01-01
The origin of life on Earth is commonly considered to have been negatively affected by intense impacting in the Hadean, with the potential for the repeated evaporation and sterilization of any ocean. The impact flux is based on scaling from the lunar crater density record, but that record has no tie to any absolute age determination for any identified stratigraphic unit older than approx. 3.9 Ga (Nectaris basin). The flux can be described in terms of mass accretion, and various independent means can be used to estimate the mass flux in different intervals. The critical interval is that between the end of essential crustal formation (approx. 4.4 Ga) and the oldest mare times (approx. 3.8 Ga). The masses of the basin-forming projectiles during Nectarian and early Imbrian times, when the last 15 of the approx.45 identified impact basins formed, can be reasonably estimated as minima. These in sum provide a minimum of 2 x 10(exp 21)g for the mass flux to the Moon during those times. If the interval was 80 million years (Nectaris 3.90 Ga, Orientale 3.82 Ga), then the flux was approx. 2 x 10(exp 13) g/yr over this period. This is higher by more than an order of magnitude than a flux curve that declines continuously and uniformly from lunar accretion to the rate inferred for the older mare plains. This rate cannot be extrapolated back increasingly into pre-Nectarian times, because the Moon would have added masses far in excess of itself in post-crust-formation time. Thus this episode was a distinct and cataclysmic set of events. There are approx. 30 pre-Nectarian basins, and they were probably part of the same cataclysm (starting at approx. 4.0 Ga?) because the crust is fairly intact, the meteoritic contamination of the pre-Nectarian crust is very low, impact melt rocks older than 3.92 Ga are virtually unknown, and ancient volcanic and plutonic rocks have survived this interval. The accretionary flux from approx. 4.4 to approx. 4.0 Ga was comparatively benign. When scaled to Earth, even the late cataclysm does not produce oceane vaporating, globally sterilizing events. The rooted concept that such events took place is based on the extrapolation of a nonexistent lunar record to the Hadean. The Earth from approx. 4.4 to approx. 3.8 Ga was comparatively peaceful, and the impacting itself could have been thermally and hydrothermally beneficial. The origin of life could have taken place at any time between 4.4 and 3.85 Ga, given the current impact constraints, and there is no justification for the claim that life originated (or re-originated) as late as 3.85 Ga in response to the end of hostile impact conditions.
"Lekta" and Inner Form as Loci of Sense in Metaphysics of Language
ERIC Educational Resources Information Center
Lyanda-Geller, Olga V.
2012-01-01
This project seeks to answer the question whether it is possible to locate sense in language. I suggest that two theories seemingly unrelated to each other, one belonging to Ancient thought, and the other to modern Continental philosophy, give positive answer to the question. I focus on the concepts of "lekton" and "inner form"…
NASA Astrophysics Data System (ADS)
Ballentine, Christopher; Warr, Oliver; Sutcliffe, Chelsea; McDermott, Jill; Fellowes, Jonathan; Holland, Greg; Mabry, Jennifer; Sherwood Lollar, Barbara
2016-04-01
With a few exceptions the mobility of water, oil and gas, provides for an ephemeral view of subsurface fluids relative to geological or planetary timescales. Aquifers supplying water for drinking and irrigation have mean residence ages from hundreds to tens of thousands of years; Hydrothermal systems can be active for hundreds of thousands to millions of years forming key mineral reserves; Sedimentary basin formation expels fluids during compaction and generates oil and gas on times scales of millions to hundreds of millions of years. Within these exemplar systems biological activity can play a crucial role by mediating system oxidation state: releasing arsenic into shallow groundwaters; precipitating ore bodies; generating methane; and biodegrading oil. It is becoming increasingly apparent that fluids resident in fractures and porespace in the crystalline basement underlying many of these systems can have a mean residence time that ranges from tens to hundreds of millions of years [1,2] to billions of years [3,4]. These fluids are highly saline and trace element rich; they are abundant in nitrogen, hydrogen, methane and helium and can contain microbes that have uniquely adapted to these isolated environments [5]. We are actively expanding discovery of sites with fluids exhibiting extreme age and have recently shown that these systems contribute to half of the terrestrial hydrogen production; a key component in biosphere energy and carbon cycles [6]. Tectonic or thermal release of these fluids can result in helium deposits; possible ore body generation and the inoculation of near-surface systems with microbial biota protected in the deep surface; the controls and rate of fluid release to shallow systems can fundamentally change the nature of some shallow systems. These deep ancient fluids represent a little tapped scientific resource for understanding how life survives and evolves in such isolation, how life is transported and communicates in extremis together and contains geochemical signals from the ancient atmosphere [4,7]. A cornucopia of science awaits. [1] Lippmann-Pipke et al. (2003) Geochim. Cosmochim. Acta 57, 5087-5097. [2] Bottomley et al. (2002) Geology 30: 587-590. [3] Lippmann-Pipke et al., (2011) Chem Geol. 283, 287-296. [4] Holland et al. (2013) Nature 497, 357-360. [5] Lin et al. (2006) Science 314, 479-482. [6] Sherwood Lollar et al. (2014) Nature 516, 379-382. [6] Pujol et al. (2011) Earth. Planet. Sc. Lett. 308, 298-306.
Implementation of Augmented Reality Technology in Sangiran Museum with Vuforia
NASA Astrophysics Data System (ADS)
Purnomo, F. A.; Santosa, P. I.; Hartanto, R.; Pratisto, E. H.; Purbayu, A.
2018-03-01
Archaeological object is an evidence of life on ancient relics which has a lifespan of millions years ago. The discovery of this ancient object by the Museum Sangiran then is preserved and protected from potential damage. This research will develop Augmented Reality application for the museum that display a virtual information from ancient object on display. The content includes information as text, audio, and animation of 3D model as a representation of the ancient object. This study emphasizes the 3D Markerless recognition process by using Vuforia Augmented Reality (AR) system so that visitor can access the exhibition objects through different viewpoints. Based on the test result, by registering image target with 25o angle interval, 3D markerless keypoint feature can be detected with different viewpoint. The device must meet minimal specifications of Dual Core 1.2 GHz processor, GPU Power VR SG5X, 8 MP auto focus camera and 1 GB of memory to run the application. The average success of the AR application detects object in museum exhibition to 3D Markerless with a single view by 40%, Markerless multiview by 86% (for angle 0° - 180°) and 100% (for angle 0° - 360°). Application detection distance is between 23 cm and up to 540 cm with the response time to detect 3D Markerless has 12 seconds in average.
Ancient Genomics and the Peopling of the Southwest Pacific
Skoglund, Pontus; Posth, Cosimo; Sirak, Kendra; Spriggs, Matthew; Valentin, Frederique; Bedford, Stuart; Clark, Geoffrey; Reepmeyer, Christian; Petchey, Fiona; Fernandes, Daniel; Fu, Qiaomei; Harney, Eadaoin; Lipson, Mark; Mallick, Swapan; Novak, Mario; Rohland, Nadin; Stewardson, Kristin; Abdullah, Syafiq; Cox, Murray P.; Friedlaender, Françoise R.; Friedlaender, Jonathan S.; Kivisild, Toomas; Koki, George; Kusuma, Pradiptajati; Merriwether, D. Andrew; Ricaut, Francois-X.; Wee, Joseph T. S.; Patterson, Nick; Krause, Johannes; Pinhasi, Ron; Reich, David
2017-01-01
The appearance of people associated with the Lapita culture in the South Pacific ~3,000 years ago1 marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long established Papuans of the New Guinea region is unclear. We report genome-wide ancient DNA data from four individuals from Vanuatu (~3100-2700 years before present) and Tonga (~2700-2300 years before present), and co-analyze them with 778 present-day East Asians and Oceanians. Today, indigenous peoples of the South Pacific harbor a mixture of ancestry from Papuans and a population of East Asian origin that does not exist in unmixed form today, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five percent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, prior to the further expansion into Remote Oceania2–5. However, our finding that the ancient individuals had little to no Papuan ancestry implies later human population movements that spread Papuan ancestry through the South Pacific after the islands’ first peopling. PMID:27698418
Exploring the Cloud Icy Early Mars Hypothesis Through Geochemistry and Mineralogy
NASA Technical Reports Server (NTRS)
Niles, P. B.; Michalski, J. R.
2015-01-01
While ancient fluvial channels have long been considered strong evidence for early surface water on Mars, many aspects of the fluvial morphology and occurrence suggest that they formed in relatively water limited conditions (com-pared to Earth) and that climatic excursions allowing for surface water might have been short-lived. Updated results mapping valley networks at higher resolution have changed this paradigm, showing that channels are much more abundant and wide-spread, and of higher order than was previously recognized, suggesting that Mars had a dense enough atmosphere and warm enough climate to allow channel formation up to 3.6-3.8 Ga. This revised view of the ancient martian climate might be broadly consistent with a climate history of Mars devised from infrared remote sensing of surface minerals, suggesting that widespread clay minerals formed in the Noachian, giving way to a sulfur-dominated surface weathering system by approx. 3.7 Ga.
Direct detection of projectile relics from the end of the lunar basin-forming epoch.
Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A
2012-06-15
The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.
Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra
2008-12-01
The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.
Kankpeyeng, Benjamin W; Nkumbaan, Samuel N; Insoll, Timothy
2011-08-01
The ancient cultural tradition in the middle belt region of northern Ghana, with its stone circle and house mounds, contains varied material culture. The unique contextual arrangements of the material culture within the stone circle mounds and the diverse ceramic art forms, as well as their ethnographic analogues in West Africa, indicate the mounds' association with past shrines that have multiple functions, including curative purposes. The archaeology of the mounds and ethnographic associations related to past indigenous medical practices is reviewed and discussed. This paper will also consider how some of the figurines through which the Koma tradition has achieved 'fame' possibly functioned as physical representations of disease, perhaps underpinned by intentions of transference from afflicted to image. The notions of protection and healing are also examined with reference to the resorted and disarticulated human remains sometimes recovered from the sites.
Recent Results From the Opportunity Rover's Exploration of Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Mittlefehldt, D. W.
2014-01-01
The Mars Exploration Rover Opportunity is beginning its 11th year of exploration and as of sol 3535 (1/3/14 UTC) has traversed 38,729 m (based on wheel turns) across the plains of Meridiani and the rim of the approx. 22 km wide Noachian Endeavour Crater. Opportunity has investigated ancient sulfate-rich sand-stones (Burns formation) that dominate the plains and formed in ancient playa and dune environments, characterized impact breccias (Shoemaker formation) and their aqueous alteration on Endeavour's Cape York rim segment, and investigated extensive aqueous alteration of rocks on Cape York's Matijevic Hill that stratigraphically underlie Shoemaker formation and predate the Endeavour-forming event. In this abstract results from Opportunity's recent exploration of Endeavour's rim are covered, focusing on comparing what was found on Matijevic Hill with observations acquired on Murray Ridge, where Opportunity will spend its sixth winter at Cook Haven.
Uncovering the Mysteries of Mars Habitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger; Lanza, Nina; Clegg, Sam
Los Alamos scientists are uncovering clues about the habitability of ancient Mars using the ChemCam instrument that sits atop NASA’s Mars Curiosity rover. ChemCam has discovered 25 different elements on Mars—including manganese and boron—providing important information about conditions that could potentially have supported life on the Red Planet. Los Alamos is now developing a new instrument called SuperCam that will ride aboard the Mars 2020 rover and provide greater detail about the mineralogy and the presence of compounds related to the possibility of life on the surface of Mars.
The Translatable Element in Literature: Critical Theory and Classroom Practice.
ERIC Educational Resources Information Center
Slate, Joseph Evans
If the best criticism of art is another work of art, studying the act of translation (the movement of ideas from one area or method of expression to another, such as between languages, between ancient and modern, between literature and life) can be of value to the English teacher. Bad translations, as exemplified in the condensation and…
ERIC Educational Resources Information Center
Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.
2011-01-01
The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…
ERIC Educational Resources Information Center
Petersen, Keith
Celebrations of shared personal, religious, occupational, and historic events are worldwide and ancient phenomena. In the United States, most people participate, as either major or minor actors or members of the audience, in private events marking the human cycle and life experiences, from birth and birthdays to weddings and anniversaries to death…
Transgenderism: Facts and fictions
O, Somasundaram
2009-01-01
The nosology associated with transgender phenomena is undergoing rapid revisions. This phenomenon is mentioned in ancient cultures and the allusions to it are variously described in the Indian literatures. The trials and tribulations of the isolated segment of the human population are surmised from two autobiographical accounts of writers. The measures to improve the life of the transgender population are suggested. PMID:19742192
Nathan P. Havill; Shigehiko Shiyake; Ashley Lamb Galloway; Robert G. Foottit; Guoyue Yu; Annie Paradis; Joseph Elkinton; Michael E. Montgomery; Masakazu Sano; Adalgisa Caccone
2016-01-01
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host...
NASA Technical Reports Server (NTRS)
Wang, Alian; Haskin, Larry A.; Kuebler, Karla E.; Jolliff, Bradley L.; Walsh, Maud M.
2001-01-01
The detection of reduced carbon in martian rocks and soils is important in the search for evidence of life. A Raman spectroscopic study of South Africa chert reveals that 50 ppm carbon or less can be determined by this technique. Additional information is contained in the original extended abstract.
Bringing the "Republic" to Life: Teaching Plato's "Republic" to First-Year Students
ERIC Educational Resources Information Center
Brooks, Thom
2008-01-01
I have taught Plato's "Republic" for several years although seminars on this text can be difficult and pose certain challenges, most especially with first year students new to university: the ancient Greeks seem a long way from the technocratic society we live in today. More importantly, the complexity of our relationship to each other…
Parrhesia as a Principle of Democratic Pedagogy
ERIC Educational Resources Information Center
Burch, Kerry
2009-01-01
This essay explores the ways in which the ancient Greek concept of parrhesia, defined as "frank speech and telling the truth as one sees it," can help facilitate the development of both intellectual courage and democracy as a way of life. It theorizes dimensions of parrhesia for the purpose of better educating a civic self-image rooted…
Confucius Say: Naming as Social Code in Ancient China.
ERIC Educational Resources Information Center
Hagemann, Julie Ann
Confucius (551-479 B.C.) believed in the power of language to regulate society. Concerned about civil war and the moral and social decay of his time, he advocated a peaceful society with a mild and moderate form of law and order and with an emphasis on the well-being of individuals through compassion, kindness, and justice. This form of law…
Understanding the application of Raman spectroscopy to the detection of traces of life.
Marshall, Craig P; Edwards, Howell G M; Jehlicka, Jan
2010-03-01
Investigating carbonaceous microstructures and material in Earth's oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. Therefore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material. To place Raman spectroscopy as a technique to delineate a biological origin for samples in context, we will discuss what is currently accepted as a spectral signature for life; review Raman spectroscopy of carbonaceous material; and provide a historical overview of Raman spectroscopy applied to Archean carbonaceous materials, interpretations of the origin of the ancient carbonaceous material, and a future way forward for Raman spectroscopy.
Redox stratification of an ancient lake in Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurowitz, Joel A.; Grotzinger, John P.; Fischer, Woodward W.
In 2012, NASA’s Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition frommore » colder to warmer climate conditions is preserved in the stratigraphy. Lastly, a late phase of geochemical modification by saline fluids is recognized.« less
Redox stratification of an ancient lake in Gale crater, Mars
Hurowitz, Joel A.; Grotzinger, John P.; Fischer, Woodward W.; ...
2017-06-02
In 2012, NASA’s Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition frommore » colder to warmer climate conditions is preserved in the stratigraphy. Lastly, a late phase of geochemical modification by saline fluids is recognized.« less
NASA Astrophysics Data System (ADS)
Biswas, S. K.; Mallik, D. C. V.; Vishveshwara, C. V.
2008-07-01
1. Astronomy in ancient and medieval China Joseph Needham; 2. Indian astronomy: an historical perspective B. V. Subbarayappa; 3. Making of astronomy in ancient India Debiprasad Chattopadhyaya; 4. The impact of astronomy on the development of western science Jean-Claude Pecker; 5. Man and the Universe Hubert Reeves; 6. Understanding the Universe - challenges and directions in modern observational astronomy Harlan Smith, Jr: 7. Frontiers in cosmology Fred Hoyle; 8. Did the Universe originate in a big bang? Jayant Narlikar; 9. The dark matter problem Bernard Carr; 10. Geometry and the Universe C. V. Vishveshwara; 11. The origin and evolution of life Cyril Ponnamperuma; 12. The anthropic principle: self selection as an adjunct to natural selection Brandon Carter; 13. Astrology and science: an examination of the evidence Ivan Kelly, Roger Culver and Peter Loptson; 14. Astronomy and science fiction Allen Janis.
Pitaya (Stenocereus spp. , cactaceae): An ancient and modern fruit crop of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimienta-Barrios, E.; Nobel, P.S
Pitayas from various species were an important edible fruit in semiarid lands of tropical and subtropical Mexico in ancient times. Recently, farmers have been cultivating plants selected from the wild, such as Stenocereus queretaroensis in the Sayula Basin of Jalisco. These cacti can flower and produce fruit before the onset of the summer rainy period. Their fruits have an attractively colored pulp (often dark red) with digestible seeds and without the nasty glochids found on cactus pears. The sugar content is 10 to 11%. The shelf life is only a few days, as the fruits tend to dehisce longitudinally. Pitayasmore » bring a competitive price in local markets, resulting in a substantial financial return with relatively low inputs of water, fertilizer, and pesticides.« less
[Palaeopathology in Roman Imperial age].
Minozzi, Simona; Catalano, Paola; Di Giannantonio, Stefania; Fornaciari, Gino
2013-01-01
The increasing attention of archaeological and anthropological research towards palaepathological studies has allowed to focus the examination of many skeletal samples on this aspect and to evaluate the presence of many diseases afflicting ancient populations. This paper describes the most interesting diseases observed in skeletal samples from some necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades, and dating back to the Imperial Age. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.
Exobiology and the search for biological signatures on Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.; Schwartz, Deborah E.
1988-01-01
In preparation for a Mars Rover/Sample return mission, the mission goals and objectives must be identified. One of the most important objectives must address exobiology and the question of the possibility of the origin and evolution of life on Mars. In particular, key signatures or bio-markers of a possible extinct Martian biota must be defined. To that end geographic locations (sites) that are likely to contain traces of past life must also be identified. Sites and experiments are being defined in support of a Mars rover sample return mission. In addition, analyses based on computer models of abiotic processes of CO2 loss from Mars suggest that the CO2 from the atmosphere may have precipitated as carbonates and be buried within the Martian regolith. The carbon cycle of perennially frozen lakes in the dry valley of Antarctica are currently being investigated. These lakes were purported to be a model system for the ancient Martian lakes. By understanding the dynamic balance between the abiotic vs. biotic cycling of carbon within this system, information is gathered which will enable the interpretation of data obtained by a Mars rover with respect to possible carbonate deposits and the processing of carbon by biological systems. These ancient carbonate deposits, and other sedimentary units would contain traces of biological signatures that would hold the key to understanding the origin and evolution of life on Mars, as well as Earth.
Initiation of translation in bacteria by a structured eukaryotic IRES RNA.
Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S
2015-03-05
The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.
A Perspective on the Importance of Reproductive Mode in Astrobiology
NASA Astrophysics Data System (ADS)
Van Doninck, Karine; Schön, Isa; Martens, Koen
2003-12-01
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.
Discovering the Ancient Maya from Space
NASA Technical Reports Server (NTRS)
Sever, T. L.
2008-01-01
The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.
Discovering the Ancient Maya From Space
NASA Technical Reports Server (NTRS)
Sever, T. L.
2007-01-01
The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.
Dudas, F.O.; Harlan, S.S.
1999-01-01
Recent models for the Cenozoic tectonic evolution of the western margin of North America propose that delamination of ancient lithosphere accompanied asthenospheric upwelling, magmatism, and uplift subsequent to Laramide deformation. On the basis of the age of an alkaline dike in south-central Montana, thermometry of mantle xenoliths from the dike, and Sr, Nd, and Pb isotopic compositions of the dike and a xenocryst, we show that refractory lithosphere, derived from ancient, depleted mantle, remained in place under the Wyoming Craton as late as 42 Ma. The Haymond School Dike, a camptonite, yields a 40Ar/39Ar plateau date of 41.97 ?? 0.19 Ma (2??). Paleomagnetic data are consistent with this date and indicate intrusion during chron C19r. The dike has Sr, Nd, and Pb isotopic compositions similar to those of other Eocene alkaline rocks from central Montana. A clinopyroxene megacryst from the dike has ??42 = 17, and 87Sr/86Sr = 0.70288, indicating that it derives from ancient, depleted mantle isotopically distinct from the source of the host camptonite. Thermometry of xenoliths from the dike shows pyroxene populations that formed at 880?? and 1200??C. Combining thermometry with previous estimates of the regional Eocene geotherm inferred from xenoliths in kimberlites, and with the Al-in-orthopyroxene barometer, we infer that lithospheric mantle remained intact to depths of 110-150 km as late as 42 Ma. Eocene magmatism was not accompanied by complete removal of ancient lithosphere.
Cell survival in a simulated Mars environment
NASA Astrophysics Data System (ADS)
Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David
2016-07-01
The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens were introduced on the first day (less than 1 hour). All Samples were mixed into Mars regolith simulant for this test. Biological samples consisting of Cyanobacteria: Anabena sp., Chroococcidiopsis CCMEE171, Plectonema boryanum; Eubacteria: Bacillus subtilis, Pseudomonas aeruginosa, and Eukaryota: Chlorella ellipsoidia were maintained in the simulator under the above-described conditions. The exposed specimens were tested for intracellular esterase activity (fluorescein diacetate (FDA) hydrolysis), chlorophyll content (where appropriate) and reproductive survival (colony formation on nutrient plates). These tests all yielded low-level positive results indicating some survival in all cases. Three control populations of each species were simultaneously exposed to -80 C dark storage, +4 C dark storage, and +25 C diurnal cycles in the same Mars regolith simulant (Orbital Technologies, Madison, WI). The survival hierarchy based on intracellular esterase assay, in decreasing order of survival was Anabena > Chroococcidiopsis > Pseudomonas > Bacillus subtilis > Chlorella > Plectonema, and the range of survival based on this test was 8% - 50%. The survival hierarchy based on post-exposure colony growth was Plectonema > Chroococcidiopsis = Chlorella > Anabena, and Pseudomonas exhibited higher survival than Bacillus subtilis. These results indicate a need for longer-term high-fidelity planetary simulation studies of a wider variety of microbial species including extremophiles, such as psychrophilic strains like Psychrobacter spp., Planococcus halocryophilus, Rhodococcus sp. and the yeast Rhodotorula sp. that could be found in human environments. This research was supported by NASA NIAC Phase I Grant "Mars Ecopoiesis Testbed" NNX14AM97G.
The ferroan-anorthositic suite and the extent of primordial lunar melting
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Kallemeyn, Gregory W.
1992-01-01
The Apollo highlands rock collection includes more than 100 'pristine' fragments that survived the intense meteoritic bombardment of the ancient lunar crust with unmixed, endogenously igneous compositions. The geochemical anomaly manifested by the 'ferroan-anorthositic suite' (FAS) appears to reflect a geochemical, and probably also a genetic, bimodality among the ancient lunar cumulates. Early models that purported to account for this bimodality as a product of a single magma have been discredited. The model of the present paper implies that the Mg-suite rocks formed by a comparatively normal variety of basaltic fractional crystallization (FC) shortly after the era of magma ocean (MO) crystallization and FAS genesis.
NASA Astrophysics Data System (ADS)
Langouët, Loïc; Daire, Marie-Yvane
2009-12-01
The present-day maritime landscape of Western France forms the geographical framework for a recent research project dedicated to the archaeological study of ancient fish-traps, combining regional-scale and site-scale investigations. Based on the compilation and exploitation of a large unpublished dataset including more than 550 sites, a preliminary synthetic study allows us to present some examples of synchronic and thematic approaches, and propose a morphological classification of the weirs. These encouraging first results open up new perspectives on fish-trap chronology closely linked to wider studies on Holocene sea-level changes.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Berelson, W.; Pepe-Ranney, C. P.; Mata, S. A.; Spear, J. R.
2016-12-01
Stromatolites have been defined multiple ways, but the presence of lamination is common to all definitions. Despite this commonality, the origin of the lamination in many ancient stromatolites remains vague. Lamination styles vary, but sub-mm light-dark couplets are common in many ancient stromatolites. Here, we investigate an actively forming incipient stromatolite from Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park, to better understand the formation of light-dark couplets similar to many ancient stromatolites in texture and structure. In the OPP stromatolites, a dense network of layer-parallel bundles of cyanobacterial filaments (a dark layer) is followed by an open network of layer-perpendicular or random filaments (a light layer) that reflect a diurnal cycle in the leading edge of the microbial mat that coats the stromatolite's surface. Silica crust encases the cyanobacterial filaments maintaining the integrity of the lamination. Bubbles formed via oxygenic photosynthesis are commonly trapped within the light layers, indicating that lithification occurs rapidly before the bubbles can collapse. The filamentous, non-heterocystous stromatoite-building cyanobacterium from OPP is most closely related to a stromatolite-building cyanobacterium from a hot spring in Japan. Once built, "tenants" from multiple microbial phyla move into the structure, mixing and mingling to produce a complicated integrated biogeochemical signal that may be difficult to untangle in ancient examples. While the cyanobacterial response to the diurnal cycle has been previously implicated in the formation of light-dark couplets, the OPP example highlights the importance of early lithification in maintaining the fabric. Thus, the presence of light-dark couplets and bubble structures may indicate very early lithification and therefore a certain degree of mineral saturation in the ancient ocean or other aquatic system, and that bubble structures, if present, may be evidence for oxygenic photosynthesis. Other lamination hypotheses suggest that lithification is driven by sulfate reduction within a stratified microbial mat—a possibility in some stromatolites, but the lithification engine must move deeper in the mat where the formation of fine light-dark couplets becomes more problematic.
A global analysis of adaptive evolution of operons in cyanobacteria.
Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P
2013-02-01
Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.
The dental calculus metabolome in modern and historic samples.
Velsko, Irina M; Overmyer, Katherine A; Speller, Camilla; Klaus, Lauren; Collins, Matthew J; Loe, Louise; Frantz, Laurent A F; Sankaranarayanan, Krithivasan; Lewis, Cecil M; Martinez, Juan Bautista Rodriguez; Chaves, Eros; Coon, Joshua J; Larson, Greger; Warinner, Christina
2017-01-01
Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.
Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci.
Charles, Lauren; Carbone, Ignazio; Davies, Keith G; Bird, David; Burke, Mark; Kerry, Brian R; Opperman, Charles H
2005-08-01
Pasteuria penetrans is a gram-positive, endospore-forming eubacterium that apparently is a member of the Bacillus-Clostridium clade. It is an obligate parasite of root knot nematodes (Meloidogyne spp.) and preferentially grows on the developing ovaries, inhibiting reproduction. Root knot nematodes are devastating root pests of economically important crop plants and are difficult to control. Consequently, P. penetrans has long been recognized as a potential biocontrol agent for root knot nematodes, but the fastidious life cycle and the obligate nature of parasitism have inhibited progress on mass culture and deployment. We are currently sequencing the genome of the Pasteuria bacterium and have performed amino acid level analyses of 33 bacterial species (including P. penetrans) using concatenation of 40 housekeeping genes, with and without insertions/deletions (indels) removed, and using each gene individually. By application of maximum-likelihood, maximum-parsimony, and Bayesian methods to the resulting data sets, P. penetrans was found to cluster tightly, with a high level of confidence, in the Bacillus class of the gram-positive, low-G+C-content eubacteria. Strikingly, our analyses identified P. penetrans as ancestral to Bacillus spp. Additionally, all analyses revealed that P. penetrans is surprisingly more closely related to the saprophytic extremophile Bacillus haladurans and Bacillus subtilis than to the pathogenic species Bacillus anthracis and Bacillus cereus. Collectively, these findings strongly imply that P. penetrans is an ancient member of the Bacillus group. We suggest that P. penetrans may have evolved from an ancient symbiotic bacterial associate of nematodes, possibly as the root knot nematode evolved to be a highly specialized parasite of plants.
Mars exploration: bridging our past and future (Invited)
NASA Astrophysics Data System (ADS)
Bibring, J.
2009-12-01
If life ever arose beyond the Earth, it is likely to have occurred on Mars: this was the belief long before any diagnostic measurements could be made. When the Viking, then Voyager missions were launched, pioneering the scientific search for extraterrestrial life, the “Plurality of Worlds” remained the dominating mindset: the possibility that the Earth is not unique and that life is generic was embraced. The lack of evidence for habitable conditions on Mars, and then Titan, dramatically changed our view. More generally, decades of space exploration have consolidated a dialectical contrast between the large commonality in the origin of the planets and the huge diversity of their present conditions. What drives planetary evolution? Mars plays a unique role in deciphering the involved processes. It has undergone many stages of planetary evolution, and has preserved a record of even the most ancient ones. The ongoing space mission, in which NASA and ESA have joined their skills and expertises, are providing a fundamentally new insight into the History of Mars and specifically into the role water has played through time. In particular, if life ever started, we now know where to search for its evidence. We’ve moved beyond just image interpretation into the realm where specific hydrated minerals such as phyllosilicates - the fingerprints of habitability - can be definitively detected, located and their context characterized. We will present recent results from Mars, and scientific clues paving the quest for ancient perennial water and potential bio-relics. We will discuss reasons why global conditions might have caused the evolutionary pathways of Mars and Earth to diverge.
NASA Astrophysics Data System (ADS)
Barone, Z.; Nuccio, G.
2017-05-01
The archaeological site of Ancient Noto is all that remains of one of the most interesting and important cities in the Est part of Sicily. Architecture and political life made Noto a point of reference for the island, expecially in XVI and XVII century, before it was destroyed by a devastating earthquake in 1963. A general project of safeguard, together with archaeological excavations, could hand a great amount of information, archaeological finds, pieces of architecture, that are useful to understand the site, known as a "Sicilian Pompei". Our intervention has the aim to describe the importance of EFIAN (Experimental Fruition Ingenious Ancient Noto). The project is carried out as a collaboration between Palermo University, Catania University, SIQUILLIYA s.r.l. and Service & Advice s.r.l.. The project answers to the need of improving the valorisation of the site, according to the principles of Italian Code for Cultural Heritage and Landscape. EFIAN's purpose is that of improving public's sensibilisation, to open lines of research and restauration of monuments. The working method is based on the strong relationship established between History, Architectonic Relief, Restauration, and Study of ancient technics of construction linked to the territory. The research is supported by new generation technologies. Datas are used to build digital reconstructions of ruins in the shape of virtual anastylosis and digital reconstruction of whole buildings. Four different sites have been studied during the project development.
Evolutionary history and metabolic insights of ancient mammalian uricases
Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.
2014-01-01
Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457
Ancient shoreline reconstruction at a Maritime Maya Port in Yucatan, Mexico
NASA Astrophysics Data System (ADS)
Jaijel, Roy; Goodman, Beverly; Glover, Jeffrey; Rissolo, Dominique; Beddows, Patricia; Carter, Alice; Smith, Derek; Ben Avraham, Zvi
2017-04-01
Throughout history, worldwide, a major part of the human experience has been to adapt to changing landscapes, and environments. These adaptations can take many forms, sometimes as innovation, manipulation of the conditions, behavioral or technological changes; and in some cases the decision to abandon the area. The northeastern Yucatan peninsula, home of the Maritime maya port site Vista-Alegre, shows signs of such human changes, though little is known about the corresponding landscape and environment. Vista Alegre is located on the meeting point of the Caribbean Sea and the Gulf of Mexico, at the north-eastern tip of the Yucatan peninsula, in the back of the Holbox lagoon. The site was inhabited from the 9th century B.C until the mid 16th century A.D., with an apparent two century abandonment phase from the mid 7th to 9th century A.D. A multidisciplinary effort ("Costa Escondida project") has been investigating the life of past Mayan inhabitants and the broader connections of the site to the Maritime Maya trade network. One of the questions that has arisen is what were the mutual influences between the inhabitants to their surrounding environment. In order to answer that question the site's shoreline geomorphology and climate history is being reconstructed for the past 2-3000 years. The reconstruction is based on multiproxy analysis of marine sediment cores and surface samples, combined with archaeological data. The study presented focuses on the shoreline shifts at the site, revealing the complexity, and significant affect of sea level rise on the marine environment of Vista Alegre. This study contributes to our understanding of the site's possible functions, the environmental challenges the local inhabits contended with, and the identification of ancient harboring locations. The results show five depositional phases over the past 2-3000 years. The ancient shoreline maps show a general trend of sea level rise, though with varying rates over time that relates well to relative sea-level curves published for the region. By looking at the reconstructed ancient shoreline maps, we emphasis the need of site-specific shoreline reconstruction rather than relying solely on moving the sea level up or down relative to the modern bathymetry and topography. Continued analysis of results from the research, and future research activities, may make it possible to recognize hurricane proxies in the sediment, locate underwater manmade seafaring artifacts and facilities, determine the range of economic opportunities for past inhabitants and quantify the availability of potable water sources.
Emergence and evolution of an interaction between intrinsically disordered proteins
Hultqvist, Greta; Åberg, Emma; Camilloni, Carlo; Sundell, Gustav N; Andersson, Eva; Dogan, Jakob; Chi, Celestine N; Vendruscolo, Michele; Jemth, Per
2017-01-01
Protein-protein interactions involving intrinsically disordered proteins are important for cellular function and common in all organisms. However, it is not clear how such interactions emerge and evolve on a molecular level. We performed phylogenetic reconstruction, resurrection and biophysical characterization of two interacting disordered protein domains, CID and NCBD. CID appeared after the divergence of protostomes and deuterostomes 450–600 million years ago, while NCBD was present in the protostome/deuterostome ancestor. The most ancient CID/NCBD formed a relatively weak complex (Kd∼5 µM). At the time of the first vertebrate-specific whole genome duplication, the affinity had increased (Kd∼200 nM) and was maintained in further speciation. Experiments together with molecular modeling using NMR chemical shifts suggest that new interactions involving intrinsically disordered proteins may evolve via a low-affinity complex which is optimized by modulating direct interactions as well as dynamics, while tolerating several potentially disruptive mutations. DOI: http://dx.doi.org/10.7554/eLife.16059.001 PMID:28398197
Searching for an Acidic Aquifer in the Rio Tinto Basin: First Geobiology Results of MARTE Project
NASA Technical Reports Server (NTRS)
Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Stoker, C.
2004-01-01
Among the conceivable modern habitats to be explored for searching life on Mars are those potentially developed underground. Subsurface habitats are currently environments that, under certain physicochemical circumstances, have high thermal and hydrochemical stability [1, 2]. In planets like Mars lacking an atmospheric shield, such systems are obviously protected against radiation, which strongly alters the structure of biological macromolecules. Low porosity but fractured aquifers currently emplaced inside ancient volcano/sedimentary and hydrothermal systems act as excellent habitats [3] due to its thermal and geochemical properties. In these aquifers the temperature is controlled by a thermal balance between conduction and advection processes, which are driven by the rock composition, geological structure, water turnover of aquifers and heat generation from geothermal processes or chemical reactions [4]. Moreover, microbial communities based on chemolithotrophy can obtain energy by the oxidation of metallic ores that are currently associated to these environments. Such a community core may sustain a trophic web composed of non-autotrophic forms like heterotrophic bacteria, fungi and protozoa.
Role of Tai Chi in the treatment of rheumatologic diseases.
Wang, Chenchen
2012-12-01
Rheumatologic diseases (e.g., fibromyalgia, osteoarthritis, and rheumatoid arthritis) consist of a complex interplay between biologic and psychological aspects, resulting in therapeutically challenging chronic conditions to control. Encouraging evidence suggests that Tai Chi, a multi-component Chinese mind-body exercise, has multiple benefits for patients with a variety of chronic disorders, particularly those with musculoskeletal conditions. Thus, Tai Chi may modulate complex factors and improve health outcomes in patients with chronic rheumatologic conditions. As a form of physical exercise, Tai Chi enhances cardiovascular fitness, muscular strength, balance, and physical function. It also appears to be associated with reduced stress, anxiety, and depression, as well as improved quality of life. Thus, Tai Chi can be safely recommended to patients with fibromyalgia, osteoarthritis, and rheumatoid arthritis as a complementary and alternative medical approach to improve patient well-being. This review highlights the current body of knowledge about the role of this ancient Chinese mind-body medicine as an effective treatment of rheumatologic diseases to better inform clinical decision-making for our patients.
Cobain, S L; Hodgson, D M; Peakall, J; Wignall, P B; Cobain, M R D
2018-01-10
Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.
Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars
Chipera, Steve J.; Hazen, Robert M.; Horgan, Briony; Hogancamp, Joanna V.; Mangold, Nicolas; Morookian, John Michael; Morris, Richard V.; Vaniman, David T.; Yen, Albert S.
2018-01-01
Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5–billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate. PMID:29881776
The Gut of Geographically Disparate Ciona intestinalis Harbors a Core Microbiota
Dishaw, Larry J.; Flores-Torres, Jaime; Lax, Simon; ...
2014-04-02
It is now widely understood that all animals engage in complex interactions with bacteria (or microbes) throughout their various life stages. This ancient exchange can involve cooperation and has resulted in a wide range of evolved host-microbial interdependencies, including those observed in the gut. Ciona intestinalis, a filter-feeding basal chordate and classic developmental model that can be experimentally manipulated, is being employed to help define these relationships. Ciona larvae are first exposed internally to microbes upon the initiation of feeding in metamorphosed individuals; however, whether or not these microbes subsequently colonize the gut and whether or not Ciona forms relationshipsmore » with specific bacteria in the gut remains unknown. Here in this report, we show that the Ciona gut not only is colonized by a complex community of bacteria, but also that samples from three geographically isolated populations reveal striking similarity in abundant operational taxonomic units (OTUs) consistent with the selection of a core community by the gut ecosystem.« less
Ups and downs in planetary science
Shoemaker, Carolyn S.
1999-01-01
The field of planetary science as it developed during the lifetimes of Gene and Carolyn Shoemaker has sustained a period of exciting growth. Surveying the skies for planet-crossing asteroids and comets and studying the results of their impact upon the planets, especially the Earth, was for Gene and Carolyn an intense and satisfying quest for knowledge. It all started when Gene envisioned man going to the Moon, especially himself. After that, one thing led to another: the study of nuclear craters and a comparison with Meteor Crater, Arizona; the Apollo project and a succession of unmanned space missions to the inner and outer planets; an awareness of cratering throughout our solar system; the search for near-Earth asteroids and comets; a study of ancient craters in Australia; and the impact of Shoemaker-Levy 9 on Jupiter. The new paradigm of impact cratering as a cause for mass extinction and the opening of space for the development of new life forms have been causes to champion.
Origin of a folded repeat protein from an intrinsically disordered ancestor
Zhu, Hongbo; Sepulveda, Edgardo; Hartmann, Marcus D; Kogenaru, Manjunatha; Ursinus, Astrid; Sulz, Eva; Albrecht, Reinhard; Coles, Murray; Martin, Jörg; Lupas, Andrei N
2016-01-01
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2–5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin. DOI: http://dx.doi.org/10.7554/eLife.16761.001 PMID:27623012
Abandonment of terminally ill patients in the Byzantine era. An ancient tradition?
Lascaratos, J; Poulakou-Rebelakou, E; Marketos, S
1999-06-01
Our research on the texts of the Byzantine historians and chroniclers revealed an apparently curious phenomenon, namely, the abandonment of terminally ill emperors by their physicians when the latter realised that they could not offer any further treatment. This attitude tallies with the mentality of the ancient Greek physicians, who even in Hippocratic times thought the treatment and care of the terminally ill to be a challenge to nature and hubris to the gods. Nevertheless, it is a very curious attitude in the light of the concepts of the Christian Byzantine physicians who, according to the doctrines of the Christian religion, should have been imbued with the spirit of philanthropy and love for their fellowmen. The meticulous analysis of three examples of abandonment of Byzantine emperors, and especially that of Alexius I Comnenus, by their physicians reveals that this custom, following ancient pagan ethics, in those times took on a ritualised form without any significant or real content.
Abandonment of terminally ill patients in the Byzantine era. An ancient tradition?
Lascaratos, J; Poulakou-Rebelakou, E; Marketos, S
1999-01-01
Our research on the texts of the Byzantine historians and chroniclers revealed an apparently curious phenomenon, namely, the abandonment of terminally ill emperors by their physicians when the latter realised that they could not offer any further treatment. This attitude tallies with the mentality of the ancient Greek physicians, who even in Hippocratic times thought the treatment and care of the terminally ill to be a challenge to nature and hubris to the gods. Nevertheless, it is a very curious attitude in the light of the concepts of the Christian Byzantine physicians who, according to the doctrines of the Christian religion, should have been imbued with the spirit of philanthropy and love for their fellowmen. The meticulous analysis of three examples of abandonment of Byzantine emperors, and especially that of Alexius I Comnenus, by their physicians reveals that this custom, following ancient pagan ethics, in those times took on a ritualised form without any significant or real content. PMID:10390682
Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias
2013-09-24
Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.
Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias
2013-01-01
Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490
Claritas rise, Mars: Pre-Tharsis magmatism?
Dohm, J.M.; Anderson, R.C.; Williams, J.-P.; Ruiz, J.; McGuire, P.C.; Buczkowski, D.L.; Wang, R.; Scharenbroich, L.; Hare, T.M.; Connerney, J.E.P.; Baker, V.R.; Wheelock, S.J.; Ferris, J.C.; Miyamoto, H.
2009-01-01
Claritas rise is a prominent ancient (Noachian) center of tectonism identified through investigation of comprehensive paleotectonic information of the western hemisphere of Mars. This center is interpreted to be the result of magmatic-driven activity, including uplift and associated tectonism, as well as possible hydrothermal activity. Coupled with its ancient stratigraphy, high density of impact craters, and complex structure, a possible magnetic signature may indicate that it formed during an ancient period of Mars' evolution, such as when the dynamo was in operation. As Tharsis lacks magnetic signatures, Claritas rise may pre-date the development of Tharsis or mark incipient development, since some of the crustal materials underlying Tharsis and older parts of the magmatic complex, respectively, could have been highly resurfaced, destroying any remanent magnetism. Here, we detail the significant characteristics of the Claritas rise, and present a case for why it should be targeted by the Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Express spacecrafts, as well as be considered as a prime target for future tier-scalable robotic reconnaissance. ?? 2009 Elsevier B.V.
Ethno-pharmaceutical Formulations in Kurdish Ethno-medicine.
Tahvilian, Reza; Shahriari, Soheyla; Faramarzi, Akbar; Komasi, Ayoob
2014-01-01
Kermanshah is a city in west of Iran with a specific customs and cultures between the people who are living here. According to historical documents these cultures are very ancient and belong to more than one thousand years. The climate condition in this place forces people to find the solution of their problems using the plants and natural facilities. Therefore traditional healers were so active in Kermanshah. From 8000 of plant species in Iran more than 1200 species has grown in Kermanshah. The ancient customs, cultures, traditional medicine and formulations generally used by rural populations was transfer from ancient to modern people. Documentation of these traditional methods was studied in this research in order to compare and certified the traditional medicine with modern methods and find new dosage forms of drug with botanical source. It was established that about 50 plant species and 8 types of diseases were distinguished and cured by these people. It is also concluding that utilization of these plants approximately the same as application of plants in recent publications.
Ethno-pharmaceutical Formulations in Kurdish Ethno-medicine
Tahvilian, Reza; Shahriari, Soheyla; Faramarzi, Akbar; Komasi, Ayoob
2014-01-01
Kermanshah is a city in west of Iran with a specific customs and cultures between the people who are living here. According to historical documents these cultures are very ancient and belong to more than one thousand years. The climate condition in this place forces people to find the solution of their problems using the plants and natural facilities. Therefore traditional healers were so active in Kermanshah. From 8000 of plant species in Iran more than 1200 species has grown in Kermanshah. The ancient customs, cultures, traditional medicine and formulations generally used by rural populations was transfer from ancient to modern people. Documentation of these traditional methods was studied in this research in order to compare and certified the traditional medicine with modern methods and find new dosage forms of drug with botanical source. It was established that about 50 plant species and 8 types of diseases were distinguished and cured by these people. It is also concluding that utilization of these plants approximately the same as application of plants in recent publications. PMID:25276205
Kim, Jae-Hwan; Oh, Ju-Hyung; Song, Ji-Hoon; Jeon, Jin-Tae; Han, Sang-Hyun; Jung, Yong-Hwan; Oh, Moon-You
2005-12-31
Ancient cattle bones were excavated from archaeological sites in Jeju, Korea. We used molecular genetic techniques to identify the species and establish its relationship to extant cattle breeds. Ancient DNA was extracted from four sources: a humerus (Gonae site, A.D. 700-800), two fragments of radius, and a tooth (Kwakji site, A.D. 0-900). The mitochondrial DNA (mtDNA) D-loop regions were cloned, sequenced, and compared with previously reported sequences of various cattle breeds (9 Asian, 8 European, and 3 African). The results revealed that these bones were of the breed, Bos taurus, and a phylogenetic tree indicated that the four cattle bones formed a monophyletic group with Jeju native black cattle. However, the patterns of sequence variation and reports from archaeological sites suggest that a few wild cattle, with a different maternal lineage, may have existed on Jeju Island. Our results will contribute to further studies of the origin of Jeju native cattle and the possible existence of local wild cattle.
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements
Dolja, Valerian V.
2014-01-01
SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, S.M.
A brief geobiological history of the Hawaiian Islands is presented. Climatology, physiography, and environmental degradation are discussed. Soil types and associations, land use patterns and ratings, and vegetation ecology are covered. The fauna discussed include: ancient and recent vertebrate life, land mollusca, marine fauma, and insect fauna. (MHR)
Learning from Seneca: A Stoic Perspective on the Art of Living and Education
ERIC Educational Resources Information Center
Groenendijk, Leendert F.; de Ruyter, Doret J.
2009-01-01
There is an increasing interest in publications about the sources of meaning in life; books about the art of living are immensely popular. This article discusses whether one of the ancient predecessors of current "art of living" theories, the Stoa and more particularly Seneca, can be of interest to educators today. Seneca's explicit writings on…
ERIC Educational Resources Information Center
Miller, Karl
2014-01-01
In this reflective piece, Karl Miller looks down the lens at an ancient world, once his own. He does so with the help of a memoir, "Rebecca's Vest," which he published much later, in the mid-1990s: a mid-term report in which he describes how he became a reader and about what he read. With the end of the term approaching, he offers a…
[Akhenaton--pharaoh and heretic].
Albretsen, C S; Albretsen, C
1999-03-20
Akhenaten has been called the first individualist in history. As the eldest son of the pharaoh Amenhotep III and queen Tiy he grew up between a weak and sick father and an ambitious and intelligent mother at a time when Egypt was at the peak of its power. At court they led a life in luxury; however, the pharaoh went out hunting while his wife was ruling the strongest empire of the ancient world. The gifted young pharaoh to be was a philosopher with great interests in the arts. He took over his parents' scepticism against the powerful priesthood. Later, as Akhenaten, he created a monotheistic religion with a good-natured God symbolized by the disc of the life-giving sun. He appointed himself high priest, thus dethroning the numerous priests serving the many animal-shaped gods of ancient Egypt. His introduction of one single deity might, from a psychoanalytic point of view, be interpreted as an extension of his needs for a warm mother. The physiognomy of Akhenaten was peculiar; statues of him convey the impression of a man with acromegaly. His reluctance in defending the borders of his country was perhaps also a result of an endocrine development, making him lethargic.
Imaging of Vanadium in Microfossils: A New Potential Biosignature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.
Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less
Imaging of Vanadium in Microfossils: A New Potential Biosignature
Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; ...
2017-11-01
Being able to distinguish unambiguously the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from non-biological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This too, is important for the search for life on Mars; either by in situ analyses via rovers, or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biologicalmore » origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature, that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagensis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. Here, we propose that taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenecity of putative microfossil-like structures.« less
A model for genesis of transcription systems.
Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H
2016-01-01
Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.
Giant subtidal stromatolites forming in normal salinity waters
Dill, R.F.; Shinn, E.A.; Jones, A.T.; Kelly, K.; Steinen, R.P.
1986-01-01
We report here the discovery of giant lithified subtidal columnar stromatolites (>2 m high) growing in 7-8 m of clear oceanic water in current-swept channels between the Exuma Islands on the eastern Bahama Bank. They grow by trapping ooid and pelletal carbonate sand and synsedimentary precipitation of carbonate cement within a field of giant megaripples. The discovery is important to geologists and biologists because similar organo-sedimentary structures built by a combination of cementation and the trapping of sediment by microbes were the dominant fossil types during the Precambrian. Stromatolites are thought to have been responsible for the production of free oxygen and thus the evolution of animal life1,2. Until the discovery of small lithified subtidal columnar stromatolites in the Bahamas3, the only subtidal marine examples known to be living while undergoing lithification were in the hypersaline waters of Hamelin Pool at Shark Bay, Western Australia4-7. Shark Bay stromatolites range from intertidal to the shallow subtidal with the larger columns reaching 1 m in height. The Shark Bay stromatolites have strongly influenced geological interpretation; by analogy, many ancient stromatolites have been considered to have grown in intertidal and/or hypersaline conditions8, although hypersalinity was not a necessity for growth during the Precambrian because grazing metazoan life had not then evolved. ?? 1986 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Oehler, Dorothy Z.; Cady, Sherry L.
2014-08-01
The past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.
Imaging of Vanadium in Microfossils: A New Potential Biosignature
NASA Astrophysics Data System (ADS)
Marshall, Craig P.; Marshall, Alison Olcott; Aitken, Jade B.; Lai, Barry; Vogt, Stefan; Breuer, Pierre; Steemans, Philippe; Lay, Peter A.
2017-11-01
The inability to unambiguously distinguish the biogenicity of microfossil-like structures in the ancient rock record is a fundamental predicament facing Archean paleobiologists and astrobiologists. Therefore, novel methods for discriminating biological from nonbiological chemistries of microfossil-like structures are of the utmost importance in the search for evidence of early life on Earth. This, too, is important for the search for life on Mars by in situ analyses via rovers or sample return missions for future analysis here on Earth. Here, we report the application of synchrotron X-ray fluorescence imaging of vanadium, within thermally altered organic-walled microfossils of bona fide biological origin. From our data, we demonstrate that vanadium is present within microfossils of undisputable biological origin. It is well known in the organic geochemistry literature that elements such as vanadium are enriched and contained within crude oils, asphalts, and black shales that have been formed by diagenesis of biological organic material. It has been demonstrated that the origin of vanadium is due to the diagenetic alteration of precursor chlorophyll and heme porphyrin pigment compounds from living organisms. We propose that, taken together, microfossil-like morphology, carbonaceous composition, and the presence of vanadium could be used in tandem as a biosignature to ascertain the biogenicity of putative microfossil-like structures.
The Gulliver mission: Sample return from Deimos
NASA Astrophysics Data System (ADS)
Britt, D.
The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.
Microbial Diversity Analysis of the Bacterial and Archaeal Population in Present Day Stromatolites
NASA Technical Reports Server (NTRS)
Ortega, Maya C.
2011-01-01
Stromatolites are layered sedimentary structures resulting from microbial mat communities that remove carbon dioxide from their environment and biomineralize it as calcium carbonate. Although prevalent in the fossil record, stromatolites are rare in the modem world and are only found in a few locations including Highbome Cay in the Bahamas. The stromatolites found at this shallow marine site are analogs to ancient microbial mat ecosystems abundant in the Precambrian period on ancient Earth. To understand how stromatolites form and develop, it is important to identify what microorganisms are present in these mats, and how these microbes contribute to geological structure. These results will provide insight into the molecular and geochemical processes of microbial communities that prevailed on ancient Earth. Since stromatolites are formed by lithifying microbial mats that are able to mineralize calcium carbonate, understanding the biological mechanisms involved may lead to the development of carbon sequestration technologies that will be applicable in human spaceflight, as well as improve our understanding of global climate and its sustainability. The objective of my project was to analyze the archaeal and bacterial dIversity in stromatolites from Highborn Cay in the Bahamas. The first step in studying the molecular processes that the microorganisms carry out is to ascertain the microbial complexity within the mats, which includes identifying and estimating the numbers of different microbes that comprise these mats.
Bioenergetic and Geobiological Possibilities of Methanotrophy on Mars
NASA Astrophysics Data System (ADS)
Marlow, J. J.; LaRowe, D.; Ehlmann, B. L.; Amend, J.; Orphan, V. J.
2014-12-01
During its ancient past, Mars exhibited dynamic conditions that facilitated water-rock reactions, bringing unequilibrated chemical constituents into contact with each other. Such interactions have prompted speculation regarding the energetic output of redox reactions. The sulfate-driven anaerobic oxidation of methane (AOM) is one redox reaction that has not been carefully investigated in an ancient martian context, and yet, with recent reports of methane and sulfate-bearing minerals on Mars, it may be one of the more observationally constrained options for a putative metabolism. In this work, we evaluate the Gibbs energies of the AOM metabolism under a range of atmospheric compositions using seven putative martian groundwater compositions. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was developed to incorporate the advection and diffusion of nutrients, reaction rates, and the feedback between growing organisms' nutrient consumption and downstream concentrations. The extent of crustal volume under exergonic conditions is set primarily by localized reactant concentration, while relative changes within the exergonic zone are driven primarily by product accumulation. In order for AOM to have been an energetically viable metabolism on ancient Mars, co-located reactants would have been necessary. At NE Syrtis Major, serpentinization of the olivine-bearing unit may have produced hydrogen, which could generate methane in the abiotic reduction of CO2. In the overlying jarosite-bearing layer, sulfate and incoming methane provide the reactants for AOM. An alternative scenario for martian AOM involves methane production by subsurface hydrothermal alteration of basaltic crust, and acid sulfate conditions are produced from fluids derived near the surface. Sulfate-bearing waters are formed by aerosol deposition and subsequent dissolution of oxidized sulfur species by water. Finally, continuing work on constraining martian reaction transport models from a microbiological perspective will be discussed. Understanding which parameters can be refined based on orbital or rover observations will aid in producing site-specific models that will help inform the search for signs of past or present life beneath the martian surface.
NASA Astrophysics Data System (ADS)
Macintosh Wilson, Alistair
1996-01-01
A conversation between Euclid and the ghost of Socrates. . . the paths of the moon and the sun charted by the stone-builders of ancient Europe. . .the Greek ideal of the golden mean by which they measured beauty. . . Combining historical fact with a retelling of ancient myths and legends, this lively and engaging book describes the historical, religious and geographical background that gave rise to mathematics in ancient Egypt, Babylon, China, Greece, India, and the Arab world. Each chapter contains a case study where mathematics is applied to the problems of the era, including the area of triangles and volume of the Egyptian pyramids; the Babylonian sexagesimal number system and our present measure of space and time which grew out of it; the use of the abacus and remainder theory in China; the invention of trigonometry by Arab mathematicians; and the solution of quadratic equations by completing the square developed in India. These insightful commentaries will give mathematicians and general historians a better understanding of why and how mathematics arose from the problems of everyday life, while the author's easy, accessible writing style will open fascinating chapters in the history of mathematics to a wide audience of general readers.
Child and Ancient Man: How to Define Their Commonalities and Differences.
Oesterdiekhoff, Georg W
2016-09-01
Developmental psychology is not only a psychology of development from childhood to old age but a psychology of human development in world history. Eighty years of cross-cultural empirical research findings indicate that the adolescent stage of formal operations evolved late in history and is not a universal development of adult humans across cultures and history. Correspondingly, preoperational or concrete operational stages describe adult psychological stages in past or premodern cultures, as Jean Piaget and some of his followers have mentioned. Developmental psychology is likewise a historical or anthropological psychology capable of describing humans in premodern cultures. The article develops a general anthropological or psychological theory answering the many questions that arise from the correspondences between (modern) children and ancient adults. On this psychological basis, the new structural genetic theory program is capable of explaining, better than previous approaches, the history of humankind from prehistory through ancient to modern societies, the history of economy, society, culture, religion, philosophy, sciences, morals, and everyday life. The accomplishment of this task was once demanded of some classical founders of psychology, sociology, history, and ethnology but was largely avoided by the postwar generations of authors for political and ideological reasons.
NASA Astrophysics Data System (ADS)
Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.; Ashraf, M. A. M.; Hazreek, Z. A. M.
2018-04-01
Sungai Batu at lembah bujang has become an interest spot for archeologist since it was discover as earliest entrepot in history of Malaysia. It is believe that there was a large lost river near the ancient jetty remain. Ground resistivity method was implement with large coverage area to locate the ancient river direction. Eleven ground resistivity survey line was carry out using SAS4000 equipment and wenner-schlumberger array was applied for measurement. Ground resistivity method was used to detect the alluvial deposit made by the ancient river deposition. The ground resistivity data were produce in 2D image and presented in 3D contour map for various selected depth by using Rockwork 15 and Surfer 8 software to visualize the alluvial deposits area. The results from the survey has found the appearance of sedimentation formation due to low resistivity value (0 – 330 ohm.m) was found near the existing river. However, the width of alluvial deposition was 1400 m which too wide for river width unless it was a deposition happen form age to age by movement of river meander. It’s conclude that the river was still at the same direction and its direction was change due to sediment dumping factor waking it shifting to the east.
Sundanese ancient manuscripts search engine using probability approach
NASA Astrophysics Data System (ADS)
Suryani, Mira; Hadi, Setiawan; Paulus, Erick; Nurma Yulita, Intan; Supriatna, Asep K.
2017-10-01
Today, Information and Communication Technology (ICT) has become a regular thing for every aspect of live include cultural and heritage aspect. Sundanese ancient manuscripts as Sundanese heritage are in damage condition and also the information that containing on it. So in order to preserve the information in Sundanese ancient manuscripts and make them easier to search, a search engine has been developed. The search engine must has good computing ability. In order to get the best computation in developed search engine, three types of probabilistic approaches: Bayesian Networks Model, Divergence from Randomness with PL2 distribution, and DFR-PL2F as derivative form DFR-PL2 have been compared in this study. The three probabilistic approaches supported by index of documents and three different weighting methods: term occurrence, term frequency, and TF-IDF. The experiment involved 12 Sundanese ancient manuscripts. From 12 manuscripts there are 474 distinct terms. The developed search engine tested by 50 random queries for three types of query. The experiment results showed that for the single query and multiple query, the best searching performance given by the combination of PL2F approach and TF-IDF weighting method. The performance has been evaluated using average time responds with value about 0.08 second and Mean Average Precision (MAP) about 0.33.
Zhang, Hai-ming; Liang, Feng-xia
2015-01-01
Over the past decades, Chinese herbal medicines (CHM) have been extensively and intensively studied through from both clinical and experimental perspectives and CHM have been proved to be effective in the treatment of diabetes mellitus (DM). This study, by searching ancient records and modern research papers, reviewed CHM in terms of their clinical application and principal mechanism in the treatment of DM. We summarized the use of CHM mentioned in 54 famous ancient materia medica monographs and searched papers on the hypoglycemic effect of several representative CHM. Main mechanisms and limitations of CHM and further research direction for DM were discussed. On the basis of the study, we were led to conclude that TCM, as a main form of complementary and alternative medicine (CAM), was well recorded in ancient literatures and has less adverse effects as shown by modern studies. The mechanisms of CHM treatment of DM are complex, multilink, and multitarget, so we should find main hypoglycemic mechanism through doing research on CHM monomer active constituents. Many CHM monomer constituents possess noteworthy hypoglycemic effects. Therefore, developing a novel natural product for DM and its complications is of much significance. It is strongly significant to pay close attention to CHM for treatment of DM and its complications. PMID:25815039
Rapid dental development in a Middle Paleolithic Belgian Neanderthal
Smith, Tanya M.; Toussaint, Michel; Reid, Donald J.; Olejniczak, Anthony J.; Hublin, Jean-Jacques
2007-01-01
The evolution of life history (pace of growth and reproduction) was crucial to ancient hominin adaptations. The study of dental development facilitates assessment of growth and development in fossil hominins with greater precision than other skeletal analyses. During tooth formation, biological rhythms manifest in enamel and dentine, creating a permanent record of growth rate and duration. Quantification of these internal and external incremental features yields developmental benchmarks, including ages at crown completion, tooth eruption, and root completion. Molar eruption is correlated with other aspects of life history. Recent evidence for developmental differences between modern humans and Neanderthals remains ambiguous. By measuring tooth formation in the entire dentition of a juvenile Neanderthal from Scladina, Belgium, we show that most teeth formed over a shorter time than in modern humans and that dental initiation and eruption were relatively advanced. By registering manifestations of stress across the dentition, we are able to present a precise chronology of Neanderthal dental development that differs from modern humans. At 8 years of age at death, this juvenile displays a degree of development comparable with modern human children who are several years older. We suggest that age at death in juvenile Neanderthals should not be assessed by comparison with modern human standards, particularly those derived from populations of European origin. Moreover, evidence from the Scladina juvenile and other similarly aged hominins suggests that a prolonged childhood and slow life history are unique to Homo sapiens. PMID:18077342
2018-01-23
Ladon Basin was a large impact structure that was filled in by the deposits from Ladon Valles, a major ancient river on Mars as seen in this image from NASA's Mars Reconnaissance Orbiter (MRO). These wet sediments were altered into minerals such as various clay minerals. Clays imply chemistry that may have been favorable for life on ancient Mars, if anything lived there, so this could be a good spot for future exploration by rovers and perhaps return of samples to Earth. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.1 centimeters (20.5 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22183
Palaeopathology of human remains from the Roman Imperial Age.
Minozzi, Simona; Catalano, Paola; Caldarini, Carla; Fornaciari, Gino
2012-01-01
The increasing attention of archaeological and anthropological research towards palaeopathological studies has allowed to focus the examination of many skeletal samples on this aspect and to evaluate the presence of many diseases afflicting ancient populations. This paper describes the most interesting diseases observed in skeletal samples from five necropolises found in urban and suburban areas of Rome during archaeological excavations in the last decades, and dating back to the Imperial Age. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumors, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, palaeopathology allowed highlighting the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population. Copyright © 2012 S. Karger AG, Basel.
Redox stratification of an ancient lake in Gale crater, Mars.
Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C
2017-06-02
In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.
[PALEOPATHOLOGY OF HUMAN REMAINS].
Minozzi, Simona; Fornaciari, Gino
2015-01-01
Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.
End-Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty-First Century?
NASA Astrophysics Data System (ADS)
Payne, Jonathan L.; Clapham, Matthew E.
2012-05-01
The greatest loss of biodiversity in the history of animal life occurred at the end of the Permian Period (˜252 million years ago). This biotic catastrophe coincided with an interval of widespread ocean anoxia and the eruption of one of Earth's largest continental flood basalt provinces, the Siberian Traps. Volatile release from basaltic magma and sedimentary strata during emplacement of the Siberian Traps can account for most end-Permian paleontological and geochemical observations. Climate change and, perhaps, destruction of the ozone layer can explain extinctions on land, whereas changes in ocean oxygen levels, CO2, pH, and temperature can account for extinction selectivity across marine animals. These emerging insights from geology, geochemistry, and paleobiology suggest that the end-Permian extinction may serve as an important ancient analog for twenty-first century oceans.
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; Chang, Sherwood (Technical Monitor)
1997-01-01
During the next decade, robotic field science will play an essential role in advancing our understanding of Martian history. Specifically, capable rovers are needed to survey a broad range of Martian rock types for in situ chemistry and mineralogy as a basis for interpreting globally-distributed data obtained from orbit. The relationship between orbital and landed science will be fundamental in selecting a landing site for future missions aimed at probing the ancient rock record for evidence of: (1) past life or prebiotic chemistry; (2) the climate and volatile history of Mars; and (3) candidate materials for in situ resource utilization.
Evidence for Ancient Life in Mars Meteorites: Lessons Learned
NASA Technical Reports Server (NTRS)
McKay, D. S.
1998-01-01
The lines of evidence we first proposed as supporting a hypothesis of early life on Mars are discussed by Treiman, who presents pros and cons of our hypothesis in the light of subsequent research by many groups. Our assessment of the current status of the many controversies over our hypothesis is given in reports by Gibson et al. Rather than repeat or elaborate on that information, I prefer to take an overview and present what I think are some of the "lessons learned" by our team in particular, and by the science community in general.
Shaw, D M
2009-09-01
This paper re-evaluates euthanasia and assisted suicide from the perspective of eudaimonia, the ancient Greek conception of happiness across one's whole life. It is argued that one cannot be said to have fully flourished or had a truly happy life if one's death is preceded by a period of unbearable pain or suffering that one cannot avoid without assistance in ending one's life. While death is to be accepted as part of life, it should not be left to nature to dictate the way we die, and it is fundamentally unjust to grant people liberal latitude in how they live their lives while granting them little control over the conclusion of their life narratives. Three objections to this position are considered and rejected; the paper also offers an explanation of why we think killing can be a benefit. Ultimately, euthanasia may be necessary in some cases in order to achieve eudaimonia.
On the possibility of life on early Mars
NASA Technical Reports Server (NTRS)
Oberbeck, V. R.; Fogleman, G.
1990-01-01
Prebiotic reactants, liquid water, and temperatures low enough for organic compounds to be stable are requirements for the origination of life as we know it. Prebiotic reactants and sufficiently low temperatures were present on Mars before liquid water vanished. Early in this time period, however, large planetesimal impacts may have periodically sterilized Mars, pyrolyzed organic compounds, and interrupted chemical origination of life. However, the calculated time interval between such impacts on Mars was larger just before liquid water vanished 3.8 Gyr (billion years) ago than it was on earth just before life originated. Therefore, there should have been sufficient time for life to originate on Mars. Ideal sites to search for microfossils are in the heavily cratered terrain of Upper Noachian age. Craters and channels in this terrain may have been the sites of ancient lakes and streams that could have provided habitats for the first microorganisms.
Craniofacial morphology in ancient and modern Greeks through 4,000 years.
Papagrigorakis, Manolis J; Kousoulis, Antonis A; Synodinos, Philippos N
2014-01-01
Multiple 20th century studies have speculated on the anthropological similarities of the modern inhabitants of Greece with their ancient predecessors. The present investigation attempts to add to this knowledge by comparing the craniofacial configuration of 141 ancient (dating around 2,000-500 BC) and 240 modern Greek skulls (the largest material among relevant national studies). Skulls were grouped in age at death, sex, era and geographical categories; lateral cephalograms were taken and 53 variables were measured and correlated statistically. The craniofacial measurements and measurements of the basic quadrilateral and cranial polygon were compared in various groups using basic statistical methods, one-way ANOVA and assessment of the correlation matrices. Most of the measurements for both sexes combined followed an akin pattern in ancient and modern Greek skulls. Moreover, sketching and comparing the outline of the skull and upper face, we observed a clock-wise movement. The present study confirms that the morphological pattern of Greek skulls, as it changed during thousands of years, kept some characteristics unchanged, with others undergoing logical modifications. The analysis of our results allows us to believe that the influence upon the craniofacial complex of the various known factors, including genetic or environmental alterations, is apt to alter its form to adapt to new conditions. Even though 4,000 years seems too narrow a span to provoke evolutionary insights using conventional geometric morphometrics, the full presentation of our results makes up a useful atlas of solid data. Interpreted with caution, the craniofacial morphology in modern and ancient Greeks indicates elements of ethnic group continuation within the unavoidable multicultural mixtures.
Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars
Dohm, J.M.; Barlow, N.G.; Anderson, R.C.; Williams, J.-P.; Miyamoto, H.; Ferris, J.C.; Strom, R.G.; Taylor, G.J.; Fairen, A.G.; Baker, V.R.; Boynton, W.V.; Keller, J.M.; Kerry, K.; Janes, D.; Rodriguez, J.A.P.; Hare, T.M.
2007-01-01
A circular albedo feature in the Arabia Terra province was first hypothesized as an ancient impact basin using Viking-era information. To test this unpublished hypothesis, we have analyzed the Viking era-information together with layers of new data derived from the Mars Global Surveyor (MGS) and Mars Odyssey (MO) missions. Our analysis indicates that Arabia Terra is an ancient geologic province of Mars with many distinct characteristics, including predominantly Noachian materials, a unique part of the highland-lowland boundary, a prominent paleotectonic history, the largest region of fretted terrain on the planet, outflow channels with no obvious origins, extensive exposures of eroded layered sedimentary deposits, and notable structural, albedo, thermal inertia, gravity, magnetic, and elemental signatures. The province also is marked by special impact crater morphologies, which suggest a persistent volatile-rich substrate. No one characteristic provides definitive answers to the dominant event(s) that shaped this unique province. Collectively the characteristics reported here support the following hypothesized sequence of events in Arabia Terra: (1) an enormous basin, possibly of impact origin, formed early in martian history when the magnetic dynamo was active and the lithosphere was relatively thin, (2) sediments and other materials were deposited in the basin during high erosion rates while maintaining isostatic equilibrium, (3) sediments became water enriched during the Noachian Period, and (4) basin materials were uplifted in response to the growth of the Tharsis Bulge, resulting in differential erosion exposing ancient stratigraphic sequences. Parts of the ancient basin remain water-enriched to the present day. ?? 2007 Elsevier Inc. All rights reserved.
Stability and instability on Maya Lowlands tropical hillslope soils
NASA Astrophysics Data System (ADS)
Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila
2018-03-01
Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We found high (Ca + Mg) / (Al + Fe + Mn) values on slopes with several lines of evidence that suggest relative youth, soils possibly formed since Maya abandonment. Carbon isotopes (δ13C) also provide some evidence of past vegetation change on slopes. We found strong evidence for maize or other alien C4 species in an ancient terrace soil and additional evidence in buried footslopes but only evidence for C3 species (like tropical trees) on the backslopes and other crest-shoulders. The fact that steep slopes preserved no evidence of C4 species inputs may mean that the ancient Maya maintained forests here. Alternatively, ancient Maya land uses eroded slopes, with the δ13C signatures detected today being the result of more recent soil development under forest over the last millennium. Additional evidence that these soils are recent in age includes elevated (Ca + Mg) / (Al + Fe + Mn) values, skeletal soil profiles, and low soil magnetic susceptibility. Besides the evidence for truncating backslopes and aggrading footslopes, the ancient Maya built agricultural terraces that accumulated soils and altered drainage. All these ancient Maya slope alterations would have influenced modern tree distributions, because many tree species in the modern forest show strong preferences for different soil types and topographic situations that the ancient Maya changed.
Timing of oceans on Mars from shoreline deformation.
Citron, Robert I; Manga, Michael; Hemingway, Douglas J
2018-03-29
Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines' deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines' deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.
NASA Astrophysics Data System (ADS)
Bakhsh, Rami A.
2015-12-01
Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial phase with clinopyroxene.
Nanometre-scale crystals formed in the presence of natural organic matter .
NASA Astrophysics Data System (ADS)
Frisia, Silvia; Borsato, Andrea; Zhang, Huiming; Meister, Patrick; Della Porta, Giovanna; Marjo, Chris; Cheong, Soshan; Hartland, Adam; Gattolin, Giovanni; Ischia, Gloria; Anderson, Ebony; Rich, Anne
2017-04-01
Nanocrystals have been observed to form micrite in several environments where natural organic matter (NOM) is present in dissolved, colloidal and particulate form, in both modern and ancient continental and marine sediments. In ancient (Triassic) marine deposits, we found perfectly preserved nanocrystal aggregates entombed by NOM, which appears to be associated with clay particulate. These nanocrystal, which have been preserved through million of years, bear similarities with nanocrystal observed in diverse, freshwater, modern settings. In modern and Holocene continental environments, micrite is of interest because of its association with archives of past climate, such as stalagmites. Nanocrystal aggregates forming micrite have been observed in association with microbial structures in tufa, thermal spring pisoids and in cave speleothems. We carried out "instant precipitation" experiments in several caves from New Zealand, Australia and and Italy, cut in both limestones and dolomites, with a focus on finding a relationship between NOM and micrite precipitation. Transmission Electron Microscope (TEM) investigations of the experimental precipitates suggest that nanocrystals nucleated already after 30 minutes on NOM colloids (as confirmed by EDS spectra) possibly originated in the soil zone. Some samples were left to "mature" for 24 hours: aggregates began to show some preferred orientation and a few single crystals on micrometer scale were also observed, which do not seem to be associated with NOM. Our preliminary results suggest that NOM, such as soil-derived humid and fulvic acids, aids nanocrystal aggregate nucleation and growth. The cave experiments seem to indicate that it is not necessary to have microbial mats, or EPS to favor formation of micrite. Our experiments did not capture the occurrence of amorphous precursors, but the amorphous phase may have been gone undetected as NOM is amorphous. Our findings have potential implications for the interpretation of ancient deposits consisting of micrite, where this fabric is not associated with clear microbial structures.
Archaeogeophysical Studies in Ancient Tios, Zonguldak-Caycuma-Filyos, Turkey
NASA Astrophysics Data System (ADS)
Ahmet Yuksel, Fethi; Hoskan, Nihan; Sumer Atasoy, Yusuf
2010-05-01
Ancient Tios is located in the Filyos township of the Caycuma District of Zonguldak on the western Black Sea region, Turkey. The ancient city was probably founded by Milesians in the 7th cent. B.C. The region was inhabited through the centuries by Persians, Romans, Genoese and all the way to the Ottoman times. About the archaeological history of the city , we have relatively limited knowledge both in ancient records and in contemporary archaeological research. In the Roman period coastal defensive walls, acquaduct, theatre, defensive tower and the port with its breakwater are the only visible remains of the city. The acropolis of the ancient city is located immediately to the east of the present Filyos township on a hill. The original architectural form of the defensive wall located in the acropolis will be revealed after research to its foundation completed. A partially destroyed stone building is another remaining ruin in the acropolis .The Roman period theatre of Tios is located in the north of the road leading into Filyos. Built on a sloping land, local stones were used in its construction. Mostly ruined its original stones have been used later in other buildings. Only a few of the arches of the aquaduct, located to the north of the theatre, are still standing. There are the remains of another structure which could have been a defensive tower located in 200 meters to the west of the theatre. GPR measurements display the exact location of any sub-surface structures. To the west of the acropolis and within the ancient port, there are the under water remains of a breakwater. The local sandstones, quarries were studied archaeogeologically as they provided the main building materials. Since there has been no archaeological research done on the site until the 2006 season, archaeogeopysical data are reveal additional information about ancient Tios. Surface survey and georadar, magnetic and geoelectric studies have been done and after that, excavations were started. Trenches were opened in potentially promising locations since 2006. Wall remains and pottery sherds were revealed providing better evidence for the dating of the foundation of the city. Key words: Tios, Archaeogeophysic, GPR, Geoelectric, Magnetic.
Nicholson, Wayne L
2003-12-01
Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 degrees C) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles. but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.
NASA Astrophysics Data System (ADS)
Nicholson, Wayne L.
2003-12-01
Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 °) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles, but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.
A brief history of plastic surgery in Iran.
Kalantar-Hormozi, Abdoljalil
2013-03-01
Although the exact time of performing plastic surgery is not addressed in the medical and historical literature, it can be supposed that these surgical procedures have a long and fascinating history. Recent excavations provided many documents regarding the application of medical instruments, surgical and even reconstructive procedures during the pre-historic and ancient periods. Actually, there is no historical definite time-zone separating general and cosmetic operations in the pre-modern time; however, historically there have been many surgeons who tried to perform reconstructive procedures during their usual medical practice. This article presents a brief look at the history of plastic surgery form the ancient to the contemporary era, with a special focus on Iran.
NASA Technical Reports Server (NTRS)
1993-01-01
Nicholas Clapp, a filmmaker and archeology enthusiast, had accumulated extensive information concerning Ubar, the fabled lost city of ancient Arabia. When he was unable to identify its exact location, however, he turned to the Jet Propulsion Laboratory (JPL) for assistance in applying orbital remote sensing techniques. JPL scientists searched NASA's shuttle imaging radar, as well as Landsat and SPOT images and discovered ancient caravan tracks. This enabled them to prepare a map of the trails, which converged at a place known as Ash Shisr. An expedition was formed, which found structures and artifacts from a city that predates previous area civilization by a thousand years. Although it will take time to validate the city as Ubar, the discovery is a monumental archeological triumph.
Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases
NASA Astrophysics Data System (ADS)
Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.
2018-02-01
We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all groundwaters reported in the literature to date, these younger residence times compared to Kidd Creek Mine are consistent with significant fracturing created by the impact event, facilitating more hydrogeologic connection and mixing of fluids in the basin. In all samples from both Kidd Creek Mine and Sudbury, a 124-128Xe excess is identified over modern air values. This is attributed to an early atmospheric xenon component, previously identified at Kidd Creek Mine but which has to date not been observed in fluids with a residence time as recent as 0.2-0.6 Ga. The temporal and spatial sampling at Kidd Creek Mine is also used to verify our proposed conceptual model which provides key constraints regarding distribution, volumes and residence times of fracture fluids on the smaller, regional, scale.
The Figured Poem: Towards a Definition of Genre.
ERIC Educational Resources Information Center
Ernst, Ulrich
1986-01-01
Presents a poetological analysis of the genre of pattern poetry that distinguishes among various forms of picture text composition and classifies the various sorts of carmina figurata typologically while dealing with the question of continuity of figured poems in ancient, medieval, and modern times. (FL)
Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome
2012-01-01
Background Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. Results We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. Conclusions We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus. PMID:22333192
Blood in ancient Jewish culture.
Kottek, Samuel S
2005-01-01
The article analyzes the Jewish attitude towards blood, conceived both as the vehicle of life, and as a polluting product of feminine bodies. The author analyzes numerous Biblical sources concerning the 'unapproachable' blood of menstruation, the role of blood in the generation of the fetus, the blood as source of illness, the practice of bloodletting, and finally the idea that male menstruation exists as a peculiarity of the Jews.
Evidence for life in a martian meteorite?
McSween, H Y
1997-07-01
The controversial hypothesis that the ALH84001 meteorite contains relics of ancient martian life has spurred new findings, but the question has not yet been resolved. Organic matter probably results, at least in part, from terrestrial contamination by Antarctic ice meltwater. The origin of nanophase magnetites and sulfides, suggested, on the basis of their sizes and morphologies, to be biogenic remains contested, as does the formation temperature of the carbonates that contain all of the cited evidence for life. The reported nonfossils may be magnetite whiskers and platelets, probably grown from a vapor. New observations, such as the possible presence of biofilms and shock metamorphic effects in the carbonates, have not yet been evaluated. Regardless of the ultimate conclusion, this controversy continues to help define strategies and sharpen tools that will be required for a Mars exploration program focused on the search for life.
Grosch, Eugene G; McLoughlin, Nicola; Lanari, Pierre; Erambert, Muriel; Vidal, Olivier
2014-03-01
Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.
Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway
2015-01-01
Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801
[Inequalities regarding death in the past].
Blum, A; Houdaille, J
1989-01-01
Was mortality differentiated socio-economically in past centuries, as it is nowadays? The issue has been hotly debated. Certain demographers admitted that, periods of famine excepted, the death risk was evenly distributed among the ancient populations, regardless of wealth, instruction or social status. On the other hand, the research project currently carried out at the French National Institute of Demographic Studies is evidencing wide mortality social differentials in the 19th century. In Paris, male life expectancy at the age of 40 reached 29.7 years for the nobility and bourgeoisie, but decreased to 25.6 years among merchants and 23.7 years among workers and day-labourers. Generally speaking, regional differentials were less pronounced than socioeconomic differentials. Mortality decline was found among the elites: life expectancy at 40 of the Knights of the Holy Spirit, for instance, increased to 30.8 years in the 18th century, from 27.8 years in the 16th century. The same life expectancy today (at 40 years of age) reaches 35.7 years among French professionals. The main problem with this kind of research is how to identify and collect relevant information. The researchers make use here of marriage registers from the past century. These registers recorded not only particulars of the married couple but also those of their parents (occupation, age, and date of death, if any). This information allows the calculation of mortality rates (and life expectancy) of ancient birth cohorts in various occupational groups. The primary condition is that the registers have been well kept and soundly stored until now. This is the case in certain city halls: the 4th arrondissement of Paris (1860-1863), Ivry-sur-Seine (1817-1823)... etc...
Lopez, Philippe; Halary, Sébastien; Bapteste, Eric
2015-10-26
Microbial genetic diversity is often investigated via the comparison of relatively similar 16S molecules through multiple alignments between reference sequences and novel environmental samples using phylogenetic trees, direct BLAST matches, or phylotypes counts. However, are we missing novel lineages in the microbial dark universe by relying on standard phylogenetic and BLAST methods? If so, how can we probe that universe using alternative approaches? We performed a novel type of multi-marker analysis of genetic diversity exploiting the topology of inclusive sequence similarity networks. Our protocol identified 86 ancient gene families, well distributed and rarely transferred across the 3 domains of life, and retrieved their environmental homologs among 10 million predicted ORFs from human gut samples and other metagenomic projects. Numerous highly divergent environmental homologs were observed in gut samples, although the most divergent genes were over-represented in non-gut environments. In our networks, most divergent environmental genes grouped exclusively with uncultured relatives, in maximal cliques. Sequences within these groups were under strong purifying selection and presented a range of genetic variation comparable to that of a prokaryotic domain. Many genes families included environmental homologs that were highly divergent from cultured homologs: in 79 gene families (including 18 ribosomal proteins), Bacteria and Archaea were less divergent than some groups of environmental sequences were to any cultured or viral homologs. Moreover, some groups of environmental homologs branched very deeply in phylogenetic trees of life, when they were not too divergent to be aligned. These results underline how limited our understanding of the most diverse elements of the microbial world remains, and encourage a deeper exploration of natural communities and their genetic resources, hinting at the possibility that still unknown yet major divisions of life have yet to be discovered.
Stable Isotope Ratios as a Biomarker on Mars
NASA Astrophysics Data System (ADS)
van Zuilen, Mark
2008-03-01
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237-244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189-214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.
The Cryptochrome/Photolyase Family in aquatic organisms.
Oliveri, Paola; Fortunato, Antonio E; Petrone, Libero; Ishikawa-Fujiwara, Tomoko; Kobayashi, Yuri; Todo, Takeshi; Antonova, Olga; Arboleda, Enrique; Zantke, Juliane; Tessmar-Raible, Kristin; Falciatore, Angela
2014-04-01
The Cryptochrome/Photolyase Family (CPF) represents an ancient group of widely distributed UV-A/blue-light sensitive proteins sharing common structures and chromophores. During the course of evolution, different CPFs acquired distinct functions in DNA repair, light perception and circadian clock regulation. Previous phylogenetic analyses of the CPF have allowed reconstruction of the evolution and distribution of the different CPF super-classes in the tree of life. However, so far only limited information is available from the CPF orthologs in aquatic organisms that evolved in environments harboring great diversity of life forms and showing peculiar light distribution and rhythms. To gain new insights into the evolutionary and functional relationships within the CPF family, we performed a detailed study of CPF members from marine (diatoms, sea urchin and annelid) and freshwater organisms (teleost) that populate diverse habitats and exhibit different life strategies. In particular, we first extended the CPF family phylogeny by including genes from aquatic organisms representative of several branches of the tree of life. Our analysis identifies four major super-classes of CPF proteins and importantly singles out the presence of a plant-like CRY in diatoms and in metazoans. Moreover, we show a dynamic evolution of Cpf genes in eukaryotes with various events of gene duplication coupled to functional diversification and gene loss, which have shaped the complex array of Cpf genes in extant aquatic organisms. Second, we uncover clear rhythmic diurnal expression patterns and light-dependent regulation for the majority of the analyzed Cpf genes in our reference species. Our analyses reconstruct the molecular evolution of the CPF family in eukaryotes and provide a solid foundation for a systematic characterization of novel light activated proteins in aquatic environments. Copyright © 2014. Published by Elsevier B.V.
The rams horn in western history
NASA Astrophysics Data System (ADS)
Lubman, David
2003-10-01
The shofar or rams horn-one of the most ancient of surviving aerophones-may have originated with early Neolithic herders. The shofar is mentioned frequently and importantly in the Hebrew bible and in later biblical and post-biblical literature. Despite its long history, contemporary ritual uses, and profound symbolic significance to western religion, no documentation of shofar acoustical properties was found. Since ancient times, shepherds of many cultures have fashioned sound instruments from the horns of herd animals for practical and musical uses. Shepherd horns of other cultures exhibit an evolution of form and technology (e.g., the inclusion of finger holes). The shofar is unique in having retained its primitive form. It is suggested that after centuries of practical use, the shofar became emblematic of the shepherd culture. Ritual use then developed, which froze its form. A modern ritual rams horn played by an experienced blower was examined. This rather short horn was determined to have a source strength of 92 dB (A) at 1 m, a fundamental frequency near 420 Hz, and maximum power output between 1.2 and 1.8 kHz. Sample sounds and detection range estimates are provided.
Ancient Venom Systems: A Review on Cnidaria Toxins
Jouiaei, Mahdokht; Yanagihara, Angel A.; Madio, Bruno; Nevalainen, Timo J.; Alewood, Paul F.; Fry, Bryan G.
2015-01-01
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or “venom” that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design. PMID:26094698
Ancient Venom Systems: A Review on Cnidaria Toxins.
Jouiaei, Mahdokht; Yanagihara, Angel A; Madio, Bruno; Nevalainen, Timo J; Alewood, Paul F; Fry, Bryan G
2015-06-18
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.
The Geologic Time Spiral - A Path to the Past
Graham, Joseph; Newman, William; Stacy, John
2008-01-01
The Earth is very old - 4.5 billion years or more according to scientific estimates. Most of the evidence for an ancient Earth is contained in the rocks that form the Earth's crust. The rock layers themselves - like pages in a long and complicated history - record the events of the past, and buried within them are the remains of life - the plants and animals that evolved from organic structures that existed 3 billion years ago. Also contained in rocks once molten are radioactive elements whose isotopes provide Earth with an atomic clock. Within these rocks, 'parent' isotopes decay at a predictable rate to form 'daughter' isotopes. By determining the relative amounts of parent and daughter isotopes, the age of these rocks can be calculated. Thus, the scientific evidence from rock layers, from fossils, and from the ages of rocks as measured by atomic clocks attests to a very old Earth. See USGS Fact Sheet 2007-3015 at http://pubs.usgs.gov/fs/2007/3015/ for ages of geologic time periods. Ages in the spiral have been rounded from the age estimates in the Fact Sheet. B.Y., billion years; M.Y., million years. For more information, see the booklet on Geologic Time at http://pubs.usgs.gov/gip/geotime/. The Geologic Time Spiral poster is available for purchase from the USGS Store.
ERIC Educational Resources Information Center
Donahue, Nannette Wargo
2008-01-01
Since ancient times, the supernatural has captivated storytellers and their audiences. Some of the earliest surviving literary forms--myths and folktales--feature such preternatural beings as gods, ghosts, fairies, witches, or vampires living among humans. Today, this fascination exists in the current boom in urban fantasy, a genre defined by John…
Microanalysis of vitrous char and associated polymers: reference and ancient assemblages
NASA Astrophysics Data System (ADS)
Allue, E.; Bonnamy, S.; Courty, M. M.; Gispert I Guirado, F.
2012-12-01
Formation of vitrous char that occur in ancient charcoal assemblages have remained unsolved. Laboratory experiments refuted vitrification to resulting from high temperature charring of green or resinous wood. This puzzling problem has been refreshed by showing the association to the charcoal and vitrous char of plastics that were originally supposed to only be produced by petroleum industry. Extraction of similar polymers within geological glassy products from cosmic airbursts has suggested impact processes to possibly forming the carbonaceous polymorphs. The pulverisation at the ground in the Angles village (French Eastern Pyrenees) following the 2011 August 2nd high altitude meteor explosion of exotic debris with vitrous char and polymers, just alike the puzzling ones of the geological and archaeological records, has provided potential reference materials. We present here their microanalysis by Environmental SEM with EDS, Raman micro-spectrometry and FTIR, XRD, TEM, ICP-MS and isotope analyses. The characterization helps elucidating how the carbonaceous polymorphs formed by transient heating and transient high pressure of atmospheric aerosols. Under TEM the vesicular, dense, vitrous char show high structural organization with a dense pattern of nano-sized graphitized domains, metals and mineral inclusions. The coupled Raman-ESEM has allowed identifying a complex pattern at micro scales of ordered "D" peak at 1320-1350 cm-1 and the graphitic, ordered peak at 1576-1590 cm-1, in association to amorphous and poorly graphitic ordered carbon. The later occurs within plant cells that have been extracted from the dense vitrous char by performing controlled combustion under nitrogen up to 1000°C. In contrast, the brittle, vesicular vitrous char and the polymers encountered at the rear of the pulverised airburst debris reveal to be formed of agglutinated micro spherules of amorphous carbon with rare crystallized carbon nano-domains and scattered mineral inclusions. They completely vaporised at 300°C under stepped-heating without leaving extractable residues. The link established between the structure of these exceptional carbon polymorphs and their forming processes provide diagnostic keys for interpreting vitrous carbon in ancient charcoal assemblage. The hardest ones offer reliable impact markers with their distinctive nanostructure produced by the transient high pressure and heating of carbonaceous aerosols by cosmic airbursts. In contrast, the weakly graphitised ones with distinctive plant structures would possibly express moderate effects of the airburst shock wave on vegetation at the ground. Thus micro-structural characterization of charcoal in archaeological assemblages would help tracing possible exploitation of blasted wood forest and related fossil fuel produced by ancient cosmic airbursts.
Editorial overview: Molecular and genetic bases of disease: the double life of DNA.
McMurray, Cynthia T; Vijg, Jan
2014-06-01
This issue of Current Opinions focuses on the dual role of DNA in life and death. In ancient Roman religion and myth, Janus is the god who looks both to the past and to the future. He guides the beginnings of life, its progression from one condition to another, and he foresees distant events. The analogy to DNA could not be stronger. Closely interacting with the environment, our basic genetics provides the origin of life, guides the quality of health with age, predicts disease, and ultimately foresees our end. A shared and deep interest with the origin of life has long prompted our desire to define aging, and, ultimately, to understand whether it can be reversed. In this special issue, the authors collectively review concepts of normative aging, DNA instability, DNA repair, the genetic contribution of age and diet to disease, and how the basic molecular transactions of DNA guide both the transitions to life as well as the transitions to death. Published by Elsevier Ltd.