Science.gov

Sample records for ancient versatile scaffold

  1. Elapid venom toxins: multiple recruitments of ancient scaffolds.

    PubMed

    Alape-Girón, A; Persson, B; Cederlund, E; Flores-Díaz, M; Gutiérrez, J M; Thelestam, M; Bergman, T; Jörnvall, H

    1999-01-01

    Nigroxins A and B, two myotoxic phospholipases A2 (PLA2s) from the venom of the American elapid Micrurus nigrocinctus, belong to a new PLA2 subclass. Their primary structures were established and compared with those of PLA2s that have already been studied with respect to myotoxic activity. The combination of amino acid residues Arg15, Ala100, Asn108 and a hydrophobic residue at position 109 is present exclusively in class I PLA2s that display myotoxic activity. These residues cluster within a surface region rich in positive charges and are suggested to play a role in the interaction with the target membrane of the muscle fibers. It is concluded that the myotoxic PLA2s resulted from recruitment of an ancient scaffold. Dendrotoxins and alpha-neurotoxins are similarly derived from other old structures, which are, however, now also present in nontoxic proteins that are widely distributed throughout the animal kingdom. The evolutionary pathways by which elapid PLA2s acquired myotoxicity and dendrotoxins acquired K+-channel blocker activity are traced. They demonstrate how existing scaffolds were adapted stepwise to serve toxic functions by exchange of a few surface-exposed residues.

  2. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields.

  3. Phage as versatile nanoink for printing 3-D cell-laden scaffolds.

    PubMed

    Lee, Doe-Young; Lee, Hyeongjin; Kim, YongBok; Yoo, So Young; Chung, Woo-Jae; Kim, GeunHyung

    2016-01-01

    Bioprinting is an emerging technology for producing tissue-mimetic 3-D structures using cell-containing hydrogels (bioink). Various synthetic and natural hydrogels with key characteristics, including biocompatibility, biodegradability, printability and crosslinkability, have been employed as ink materials in bioprinting. Choosing the right cell-containing "bioink" material is the most essential step for fabricating 3-D constructs with a controlled mechanical and biochemical microenvironment that can lead to successful tissue regeneration and repair. Here, we demonstrate that the genetically engineered M13 phage holds great potential for use as a versatile nanoink for printing 3-D cell-laden matrices. In particular, M13 phages displaying integrin-binding (GRGDS) and calcium-binding (DDYD) domains on their surface were blended with alginate to successfully form Ca(2+)-crosslinked hydrogels. Furthermore, 3-D cell-laden scaffolds with high cell viability were generated after optimizing the printing process. The MC3T3-E1 cells within these scaffolds showed enhanced proliferation and differentiation rates that increased proportionally with the concentration of phages in the 3-D matrices compared with the rates of cells in pure alginate scaffolds. Bioprinting is an emerging technology for producing tissue-mimetic 3-D structures using cell-containing hydrogels called bioink. Choosing the right bioink is essential for fabricating 3-D structures with controlled mechanical and biochemical properties which lead to successful tissue regeneration. Therefore, there is a growing demand for a new bioink material that can be designed from molecular level. Here, we demonstrate that genetically engineered M13 phage holds great potential for use as versatile bioink. The phage-based bioink benefits from its replicability, self-assembling property, and tunable molecular design and enables bioprinted scaffolds to exhibit improved cell viability, proliferation and differentiation. This

  4. Highly active carbonaceous nanofibers: a versatile scaffold for constructing multifunctional free-standing membranes.

    PubMed

    Liang, Hai-Wei; Zhang, Wen-Jun; Ma, Yi-Ni; Cao, Xiang; Guan, Qing-Fang; Xu, Wei-Ping; Yu, Shu-Hong

    2011-10-25

    Translating the unique characteristics of individual nanoscale components into macroscopic materials such as membranes or sheets still remains a challenge, as the engineering of these structures often compromises their intrinsic properties. Here, we demonstrate that the highly active carbonaceous nanofibers (CNFs), which are prepared through a template-directed hydrothermal carbonization process, can be used as a versatile nanoscale scaffold for constructing macroscopic multifunctional membranes. In order to demonstrate the broad applicability of the CNF scaffold, we fabricate a variety of CNF-based composite nanofibers, including CNFs-Fe(3)O(4), CNFs-TiO(2), CNFs-Ag, and CNFs-Au through various chemical routes. Importantly, all of them inherit unique dimensionality (high aspect ratio) and mechanical properties (flexibility) of the original CNF scaffolds and thus can be assembled into macroscopic free-standing membranes through a simple casting process. We also demonstrate the wide application potentials of these multifunctional composite membranes in magnetic actuation, antibiofouling filtration, and continuous-flow catalysis.

  5. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds.

    PubMed

    Oguri, Hiroki

    2016-02-01

    Biosynthetic assembly lines have evolved in nature, adopting divergent processes to produce a vast number of secondary metabolites. Inspired by these biogenetic processes, this account introduces recent investigations by my research group to formulate a synthetic strategy for establishing a biomimetic assembly line. With the aim not only to construct natural product-relevant scaffolds within 5-7 steps, but also to systematically diversify skeletal and stereochemical properties and functional groups, divergent synthetic processes exploiting a versatile manifold have been developed. This approach allows for cost-effective production of skeletally diverse and biologically active natural product analogs inaccessible by other means. Discovery of several lead candidates for a neglected tropical disease is a proof-of-concept of this synthetic approach.

  6. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds.

    PubMed

    Oguri, Hiroki

    2016-04-01

    Biosynthetic assembly lines have evolved in nature, adopting divergent processes to produce a vast number of secondary metabolites. Inspired by these biogenetic processes, this account introduces recent investigations by my research group to formulate a synthetic strategy for establishing a biomimetic assembly line. With the aim not only to construct natural product-relevant scaffolds within 5-7 steps, but also to systematically diversify skeletal and stereochemical properties and functional groups, divergent synthetic processes exploiting a versatile manifold have been developed. This approach allows for cost-effective production of skeletally diverse and biologically active natural product analogs inaccessible by other means. Discovery of several lead candidates for a neglected tropical disease is a proof-of-concept of this synthetic approach.

  7. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor.

    PubMed

    Tocchio, Alessandro; Tamplenizza, Margherita; Martello, Federico; Gerges, Irini; Rossi, Eleonora; Argentiere, Simona; Rodighiero, Simona; Zhao, Weiwei; Milani, Paolo; Lenardi, Cristina

    2015-03-01

    Despite significant progresses were achieved in tissue engineering over the last 20 years, a number of unsolved problems still remain. One of the most relevant issues is the lack of a proper vascularization that is limiting the size of the engineered tissues to smaller than clinically relevant dimensions. Sacrificial molding holds great promise to engineered construct with perfusable vascular architectures, but there is still the need to develop more versatile approaches able to be independent of the nature and dimensions of the construct. In this work we developed a versatile sacrificial molding technique for fabricating bulk, cell-laden and porous scaffolds with embedded vascular fluidic networks. These branched fluidic architectures are created by highly resistant thermoplastic sacrificial templates, made of poly(vinyl alcohol), representing a remarkable progress in manufacturability and scalability. The obtained architecture, when perfused in bioreactor, has shown to prevent the formation of a necrotic core in thick cell-laden constructs and enabled the rapid fabrication of hierarchically branched endothelium. In conclusion we demonstrate a novel strategy towards the engineering of vascularized thick tissues through the integration of the PVA-based microfabrication sacrificial approach and perfusion bioreactors. This approach may be able to scale current engineered tissues to clinically relevant dimensions, opening the way to their widespread clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases

    PubMed Central

    2014-01-01

    Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498

  9. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.

    PubMed

    Pot, Michiel W; Faraj, Kaeuis A; Adawy, Alaa; van Enckevort, Willem J P; van Moerkerk, Herman T B; Vlieg, Elias; Daamen, Willeke F; van Kuppevelt, Toin H

    2015-04-29

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture.

  10. Protected amine labels: a versatile molecular scaffold for multiplexed nominal mass and sub-Da isotopologue quantitative proteomic reagents.

    PubMed

    Ficarro, Scott B; Biagi, Jessica M; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I; Card, Joseph D; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G; Young, Nicolas L; Gray, Nathanael S; Marto, Jarrod A

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.

  11. Class A β-Lactamases as Versatile Scaffolds to Create Hybrid Enzymes: Applications from Basic Research to Medicine

    PubMed Central

    Matagne, André; Galleni, Moreno; Dumoulin, Mireille

    2013-01-01

    Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β-lactamases as versatile scaffolds to design hybrid enzymes (referred to as β-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins. PMID:24066299

  12. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    PubMed

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association.

    PubMed

    Borrel, Guillaume; Adam, Panagiotis S; Gribaldo, Simonetta

    2016-06-13

    Methanogenesis coupled to the Wood-Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time, phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis and the Wood-Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the processes that led to loss of this metabolism in many archaeal lineages. The combination of environmental microbiology, experimental characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of fundamental metabolic pathways.

  14. Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association

    PubMed Central

    Borrel, Guillaume; Adam, Panagiotis S.; Gribaldo, Simonetta

    2016-01-01

    Methanogenesis coupled to the Wood–Ljungdahl pathway is one of the most ancient metabolisms for energy generation and carbon fixation in the Archaea. Recent results are sensibly changing our view on the diversity of methane-cycling capabilities in this Domain of Life. The availability of genomic sequences from uncharted branches of the archaeal tree has highlighted the existence of novel methanogenic lineages phylogenetically distant to previously known ones, such as the Methanomassiliicoccales. At the same time, phylogenomic analyses have suggested a methanogenic ancestor for all Archaea, implying multiple independent losses of this metabolism during archaeal diversification. This prediction has been strengthened by the report of genes involved in methane cycling in members of the Bathyarchaeota (a lineage belonging to the TACK clade), representing the first indication of the presence of methanogenesis outside of the Euryarchaeota. In light of these new data, we discuss how the association between methanogenesis and the Wood–Ljungdahl pathway appears to be much more flexible than previously thought, and might provide information on the processes that led to loss of this metabolism in many archaeal lineages. The combination of environmental microbiology, experimental characterization and phylogenomics opens up exciting avenues of research to unravel the diversity and evolutionary history of fundamental metabolic pathways. PMID:27189979

  15. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  16. 5-(hydroxymethyl)oxazoles: versatile scaffolds for combinatorial solid-phase synthesis of 5-substituted oxazoles.

    PubMed

    Grabowska, U; Rizzo, A; Farnell, K; Quibell, M

    2000-01-01

    A scheme combining the preparation of building blocks in solution followed by solid-phase combinatorial chemistry has been developed to side-chain diversify 5-(hydroxymethyl)oxazole scaffold (1) into aryl ethers, thioethers, sulfones, sulfonamides, and carboxamides. Protected heterocyclic scaffolds 2 were linked to the solid phase and N-terminal derivatized using active ester chemistry, providing chemset 4¿1-4,1-4¿. The free side-chain hydroxyl of 4 was smoothly converted to aryl ethers 6 under Mitsunobu conditions, with a broad range of substituted phenols. Alternatively, quantitative conversion of hydroxyl to bromide followed by displacement with alkyl and aryl thiols gave thioethers 8. Thioethers were optionally oxidized to sulfones 9. Bromide displacement by azide, followed by reduction to amine and acylation with a range of carboxylic acids and sulfonyl chlorides gave carboxamides 11 and sulfonamides 13, respectively. Crude purity at typically >90% was observed for each of the five modifications detailed. A series of 20 compounds, exemplifying each modification, was reprepared, purified, and fully characterized.

  17. αRep A3: A Versatile Artificial Scaffold for Metalloenzyme Design.

    PubMed

    Di Meo, Thibault; Ghattas, Wadih; Herrero, Christian; Velours, Christophe; Minard, Philippe; Mahy, Jean-Pierre; Ricoux, Rémy; Urvoas, Agathe

    2017-07-26

    αRep refers to a new family of artificial proteins based on a thermostable α-helical repeated motif. One of its members, αRep A3, forms a stable homo-dimer with a wide cleft that is able to accommodate metal complexes and thus appears to be suitable for generating new artificial biocatalysts. Based on the crystal structure of αRep A3, two positions (F119 and Y26) were chosen, and independently changed into cysteine residues. A phenanthroline ligand was covalently attached to the unique cysteine residue of each protein variant, and the corresponding biohybrids were purified and characterized. Once mutated and coupled to phenanthroline, the protein remained folded and dimeric. Copper(II) was specifically bound by the two biohybrids with two different binding modes. Furthermore, the holo-biohybrid A3F119NPH was found to be capable of enantioselectively catalyzing Diels-Alder (D-A) cycloadditions with up to 62 % ee. This study validates the choice of the αRep A3 dimer as a protein scaffold and provides a promising new route for the design and production of new enantioselective biohybrids based on entirely artificial proteins obtained from a highly diverse library. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography.

    PubMed

    Panzarasa, Guido; Dübner, Matthias; Soliveri, Guido; Edler, Matthias; Griesser, Thomas

    2017-09-29

    Patterning of functional surfaces is one of the cornerstones of nanotechnology as it allows the fabrication of sensors and lab-on-a-chip devices. Here, the patterning of self-assembled monolayers of branched poly(ethyleneimine) (bPEI) on silica was achieved by means of remote photocatalytic lithography. Moreover, when 2-bromoisobutyryl-modified bPEI was used, the resulting pattern could be amplified by grafting polymer brushes by means of surface-initiated atom transfer radical polymerization. In contrast to previous reports for the patterning of bPEI, the present approach can be conducted in minutes instead of hours, reducing the exposure time to UV radiation and enhancing the overall efficiency. Furthermore, our approach is much more user-friendly, allowing a facile fabrication of patterned initiator-modified surfaces and the use of inexpensive instrumentation such as a low-power UV source and a simple photomask. Considering the versatility of bPEI as a scaffold for the development of biosensors, patterning by means of remote photocatalytic lithography will open new opportunities in a broad field of applications.

  19. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.

    PubMed

    Sun, Hongcheng; Zhang, Xiyu; Miao, Lu; Zhao, Linlu; Luo, Quan; Xu, Jiayun; Liu, Junqiu

    2016-01-26

    Organic nanoparticle induced self-assembly of proteins with periodic nanostructures is a promising and burgeoning strategy to develop functional biomimetic nanomaterials. Cricoid proteins afford monodispersed and well-defined hollow centers, and can be used to multivalently interact with geometrically symmetric nanoparticles to form one-dimensional protein nanoarrays. Herein, we report that core-cross-linked micelles can direct cricoid stable protein one (SP1) to self-assembling nanowires through multiple electrostatic interactions. One micelle can act as an organic nanoparticle to interact with two central concaves of SP1 in an opposite orientation to form a sandwich structure, further controlling the assembly direction to supramolecular protein nanowires. The reported versatile supramolecular scaffolds can be optionally manipulated to develop multifunctional integrated or synergistic biomimetic nanomaterials. Artificial light-harvesting nanowires are further developed to mimic the energy transfer process of photosynthetic bacteria for their structural similarity, by means of labeling donor and acceptor chromophores to SP1 rings and spherical micelles, respectively. The absorbing energy can be transferred within the adjacent donors around the ring and shuttling the collected energy to the nearby acceptor chromophore. The artificial light-harvesting nanowires are designed by mimicking the structural characteristic of natural LH-2 complex, which are meaningful in exploring the photosynthesis process in vitro.

  20. Bioorthogonal Modification of the Major Sheath Protein of Bacteriophage M13: Extending the Versatility of Bionanomaterial Scaffolds.

    PubMed

    Urquhart, Taylor; Daub, Elisabeth; Honek, John Frank

    2016-10-19

    With a mass of ∼1.6 × 10(7) Daltons and composed of approximately 2700 proteins, bacteriophage M13 has been employed as a molecular scaffold in bionanomaterials fabrication. In order to extend the versatility of M13 in this area, residue-specific unnatural amino acid incorporation was employed to successfully display azide functionalities on specific solvent-exposed positions of the pVIII major sheath protein of this bacteriophage. Employing a combination of engineered mutants of the gene coding for the pVIII protein, the methionine (Met) analog, l-azidohomoalanine (Aha), and a suitable Escherichia coli Met auxotroph for phage production, conditions were developed to produce M13 bacteriophage labeled with over 350 active azides (estimated by fluorescent dye labeling utilizing a strain-promoted azide-alkyne cycloaddition) and capable of azide-selective attachment to 5 nm gold nanoparticles as visualized by transmission electron microscopy. The capability of this system to undergo dual labeling utilizing both chemical acylation and bioorthogonal cycloaddition reactions was also verified. The above stratagem should prove particularly advantageous in the preparation of assemblies of larger and more complex molecular architectures based on the M13 building block.

  1. Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography

    NASA Astrophysics Data System (ADS)

    Panzarasa, Guido; Dübner, Matthias; Soliveri, Guido; Edler, Matthias; Griesser, Thomas

    2017-09-01

    Patterning of functional surfaces is one of the cornerstones of nanotechnology as it allows the fabrication of sensors and lab-on-a-chip devices. Here, the patterning of self-assembled monolayers of branched poly(ethyleneimine) (bPEI) on silica was achieved by means of remote photocatalytic lithography. Moreover, when 2-bromoisobutyryl-modified bPEI was used, the resulting pattern could be amplified by grafting polymer brushes by means of surface-initiated atom transfer radical polymerization. In contrast to previous reports for the patterning of bPEI, the present approach can be conducted in minutes instead of hours, reducing the exposure time to UV radiation and enhancing the overall efficiency. Furthermore, our approach is much more user-friendly, allowing a facile fabrication of patterned initiator-modified surfaces and the use of inexpensive instrumentation such as a low-power UV source and a simple photomask. Considering the versatility of bPEI as a scaffold for the development of biosensors, patterning by means of remote photocatalytic lithography will open new opportunities in a broad field of applications.

  2. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks.

    PubMed

    Li, Shuai; Liu, Yuan-Yuan; Liu, Li-Jun; Hu, Qing-Xi

    2016-09-28

    Despite considerable advances in tissue engineering over the past two decades, solutions to some crucial problems remain elusive. Vascularization is one of the most important factors that greatly influence the function of scaffolds. Many research studies have focused on the construction of a vascular-like network with prevascularization structure. Sacrificial materials are widely used to build perfusable vascular-like architectures, but most of these fabricated scaffolds only have a 2D plane-connected network. The fabrication of three-dimensional perfusable branched networks remains an urgent issue. In this work, we developed a novel sacrificial molding technique for fabricating biocompatible scaffolds with a three-dimensional perfusable branched network. Here, 3D-printed poly(vinyl alcohol) (PVA) filament was used as the sacrificial material. The fused PVA was deposited on the surface of a cylinder to create the 3D branched solid network. Gelatin was used to embed the solid network. Then, the PVA mold was dissolved after curing the hydrogel. The obtained architecture shows good perfusability. Cell experiment results indicated that human umbilical vein endothelial cells (HUVECs) successfully attached to the surface of the branched channel and maintained high viability after a few days in culture. In order to prevent deformation of the channel, paraffin was coated on the surface of the printed structure, and hydroxyapatite (HA) was added to gelatin. In conclusion, we demonstrate a novel strategy toward the engineering of prevasculature thick tissues through the integration of the fused PVA filament deposit. This approach has great potential in solving the issue of three-dimensional perfusable branched networks and opens the way to clinical applications.

  3. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship.

    PubMed

    Naim, Mohd Javed; Alam, Md Jahangir; Ahmad, Shujauddin; Nawaz, Farah; Shrivastava, Neelima; Sahu, Meeta; Alam, Ozair

    2017-03-31

    Thiazolidinedione is an important heterocyclic ring system, a pharmacophore and a privileged scaffold in medicinal chemistry; is a derivative of thiazolidine ring which came into existence for its role as antihyperglycemic agent and a specific ligand of PPAR's (Peroxisome proliferator activated receptor). Exhaustive research has led to determination of its vast biological profile with wide range of therapeutic applications. This review covers recent pharmacological advancements of thiazolidinedione moiety along with structure activity relationship so as to provide better correlation among different structures and their receptor interactions.

  4. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.

    PubMed

    Kesti, Matti; Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; D'Este, Matteo; Eglin, David; Zenobi-Wong, Marcy

    2015-01-01

    Layer-by-layer bioprinting is a logical choice for the fabrication of stratified tissues like articular cartilage. Printing of viable organ replacements, however, is dependent on bioinks with appropriate rheological and cytocompatible properties. In cartilage engineering, photocrosslinkable glycosaminoglycan-based hydrogels are chondrogenic, but alone have generally poor printing properties. By blending the thermoresponsive polymer poly(N-isopropylacrylamide) grafted hyaluronan (HA-pNIPAAM) with methacrylated hyaluronan (HAMA), high-resolution scaffolds with good viability were printed. HA-pNIPAAM provided fast gelation and immediate post-printing structural fidelity, while HAMA ensured long-term mechanical stability upon photocrosslinking. The bioink was evaluated for rheological properties, swelling behavior, printability and biocompatibility of encapsulated bovine chondrocytes. Elution of HA-pNIPAAM from the scaffold was necessary to obtain good viability. HA-pNIPAAM can therefore be used to support extrusion of a range of biopolymers which undergo tandem gelation, thereby facilitating the printing of cell-laden, stratified cartilage constructs with zonally varying composition and stiffness. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs.

    PubMed

    Luo, Yongxiang; Akkineni, Ashwini Rahul; Gelinsky, Michael

    2014-03-01

    To review recent literature on three-dimensional (3-D) plotting as a rapid prototyping method for the manufacturing of patient specific biomaterial scaffolds and tissue engineering constructs. Literature review and description of own recent work. In contrast to many other rapid prototyping technologies which can be used only for the processing of distinct materials, 3-D plotting can be utilized for all pasty biomaterials and therefore opens up many new options for the manufacturing of bi- or multiphasic scaffolds or even tissue engineering constructs, containing e. g. living cells. 3-D plotting is a rapid prototyping technology of growing importance which provides flexibility concerning choice of material and allows integration of sensitive biological components.

  6. 7,8-Dichloro-1-oxo-β-carbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes†

    PubMed Central

    2011-01-01

    Development of both potent and selective kinase inhibitors is a challenging task in modern drug discovery. The innate promiscuity of kinase inhibitors largely results from ATP-mimetic binding to the kinase hinge region. We present a novel class of substituted 7,8-dichloro-1-oxo-β-carbolines based on the distinct structural features of the alkaloid bauerine C whose kinase inhibitory activity does not rely on canonical ATP-mimetic hinge interactions. Intriguingly, cocrystal structures revealed an unexpected inverted binding mode and the presence of halogen bonds with kinase backbone residues. The compounds exhibit excellent selectivity over a comprehensive panel of human protein kinases while inhibiting selected kinases such as the oncogenic PIM1 at low nanomolar concentrations. Together, our biochemical and structural data suggest that this scaffold may serve as a valuable template for the design and development of specific inhibitors of various kinases including the PIM family of kinases, CLKs, DAPK3 (ZIPK), BMP2K (BIKE), and others. PMID:22136433

  7. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties

    PubMed Central

    Job, Florian; Settele, Florian; Lorey, Susan; Rundfeldt, Chris; Baumann, Lars; Beck-Sickinger, Annette G.; Haupts, Ulrich; Lilie, Hauke; Bosse-Doenecke, Eva

    2015-01-01

    In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters. PMID:26258013

  8. The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype.

    PubMed

    Falsini, Matteo; Squarcialupi, Lucia; Catarzi, Daniela; Varano, Flavia; Betti, Marco; Dal Ben, Diego; Marucci, Gabriella; Buccioni, Michela; Volpini, Rosaria; De Vita, Teresa; Cavalli, Andrea; Colotta, Vittoria

    2017-07-13

    In this work, we describe the identification of the 1,2,4-triazolo[4,3-a]pyrazin-3-one as a new versatile scaffold for the development of adenosine human (h) receptor antagonists. The new chemotype ensued from a molecular simplification approach applied to our previously reported 1,2,4-triazolo[4,3-a]quinoxalin-1-one series. Hence, a set of novel 8-amino-2-aryl-1,2,4-triazolopyrazin-3-one derivatives, featured by different substituents on the 2-phenyl ring (R) and at position 6 (R6), was synthesized with the main purpose of targeting the hA2A adenosine receptor (AR). Several compounds possessed nanomolar affinity for the hA2A AR (Ki = 2.9-10 nM) and some, very interestingly, also showed high selectivity for the target. One selected potent hA2A AR antagonist (12, R = H, R6 = 4-methoxyphenyl) demonstrated some ability to counteract MPP(+)-induced neurotoxicity in cultured human neuroblastoma SH-SY5Y cells, a widely used in vitro Parkinson's disease model. Docking studies at hAR structures were performed to rationalize the observed affinity data.

  9. ERK Signals: Scaffolding Scaffolds?

    PubMed Central

    Casar, Berta; Crespo, Piero

    2016-01-01

    ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement. PMID:27303664

  10. Ancient Egypt.

    ERIC Educational Resources Information Center

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  11. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  12. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  13. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  14. Ancient genomics.

    PubMed

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  15. Versatile telemonitoring system

    NASA Technical Reports Server (NTRS)

    Fergus, R. W.

    1969-01-01

    Small scale versatile multichannel telemonitoring can be installed economically with considerable expansion capabilities. This system contains a data transmitter, control transmitter, control receiver, display of readout units, a sync generator, and some remote control features.

  16. Ancient quarries

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    Using a unique set of remote sensing techniques, a team of University of Colorado researchers has detected mining pits dug by Montana Indians 10,000 years ago. The team used satellite images, aerial photographs, and ground tests to locate quarries where ancient North Americans obtained chert for making tools. Anthropology doctoral student Thomas Carr, Mort Turner, of the University of Colorado's Institute of Arctic and Alpine Research, and four undergraduate and graduate students developed 12 “spectral classes” characterizing distinct geologic and vegetation types found in the Horse Prairie Valley study area in southwest Montana. Their data included electromagnetic measurements of soil conductivity from a known Indian quarry in the area, where the altered bedrock contains veins of chert, and an adjacent area of disturbed soil. Using special computer software, the team compared characteristics of nearly one million 30-m2 pixels from a 1985 regional Landsat satellite image to those of the 12 spectral classes. Twelve possible ancient mining sites in the 800-square-mile research area were identified. During a later ground survey using GPS satellite receivers, eight of these were confirmed to be ancient Indian quarries.

  17. Thermally Drawn Fibers as Nerve Guidance Scaffolds

    PubMed Central

    Koppes, Ryan A.; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Poorheravi, Negin Abdolrahim; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-01-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246

  18. Thermally drawn fibers as nerve guidance scaffolds.

    PubMed

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.

  19. Limits of Versatility of Versatile Peroxidase

    PubMed Central

    Knop, Doriv; Levinson, Dana; Makovitzki, Arik; Agami, Avi; Lerer, Elad; Mimran, Avishai; Yarden, Oded

    2016-01-01

    ABSTRACT Although Mn2+ is the most abundant substrate of versatile peroxidases (VPs), repression of Pleurotus ostreatus vp1 expression occurred in Mn2+-sufficient medium. This seems to be a biological contradiction. The aim of this study was to explore the mechanism of direct oxidation by VP1 under Mn2+-deficient conditions, as it was found to be the predominant enzyme during fungal growth in the presence of synthetic and natural substrates. The native VP1 was purified and characterized using three substrates, Mn2+, Orange II (OII), and Reactive Black 5 (RB5), each oxidized by a different active site in the enzyme. While the pH optimum for Mn2+ oxidation is 5, the optimum pH for direct oxidation of both dyes was found to be 3. Indeed, effective in vivo decolorization occurred in media without addition of Mn2+ only under acidic conditions. We have determined that Mn2+ inhibits in vitro the direct oxidation of both OII and RB5 while RB5 stabilizes both Mn2+ and OII oxidation. Furthermore, OII was found to inhibit the oxidation of both Mn2+ and RB5. In addition, we could demonstrate that VP1 can cleave OII in two different modes. Under Mn2+-mediated oxidation conditions, VP1 was able to cleave the azo bond only in asymmetric mode, while under the optimum conditions for direct oxidation (absence of Mn2+ at pH 3) both symmetric and asymmetric cleavages occurred. We concluded that the oxidation mechanism of aromatic compounds by VP1 is controlled by Mn2+ and pH levels both in the growth medium and in the reaction mixture. IMPORTANCE VP1 is a member of the ligninolytic heme peroxidase gene family of the white rot fungus Pleurotus ostreatus and plays a fundamental role in biodegradation. This enzyme exhibits a versatile nature, as it can oxidize different substrates under altered environmental conditions. VPs are highly interesting enzymes due to the fact that they contain unique active sites that are responsible for direct oxidation of various aromatic compounds

  20. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  1. Ancient Egypt

    NASA Astrophysics Data System (ADS)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  2. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  3. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain

  4. Ancient Rivers

    NASA Image and Video Library

    2016-01-14

    Early in Martian history, liquid water energetically carved the surface, forming channel systems that look remarkably similar to river valleys and drainage networks on Earth. Exactly how these channels formed -- by rainfall, snowmelt, or seepage from underground springs -- is often debated. The answer has important ramifications about the early Martian climate. Clues about the source of the water may indicate the shape, layout, and scale of the various tributaries in a channel system. Our image shows an example of just such a water-carved channel. The channel pattern, called "dendritic" because of its tree-like branching, begins at the top of the image and runs down over the rim of an ancient impact basin across the basin floor. The soil surface overlying these channels, and indeed the entire landscape, has been changed and reworked over the intervening millions of years, by the combined actions of wind and ice. Over time, the original channels become muted or even erased. Nevertheless, some characteristics of the smallest tributary channels are still visible at scales seen by HiRISE. http://photojournal.jpl.nasa.gov/catalog/PIA20337

  5. Acetoxy Meldrum’s Acid: A Versatile Acyl Anion Equivalent in the Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Kaib, Philip S. J.; Sorum, Mark T.

    2011-01-01

    Acetoxy Meldrum’s acid can serve as a versatile acyl anion equivalent in the Pd-catalyzed asymmetric allylic alkylation. The reaction of this nucleophile with various meso and racemic electrophiles afforded alkylated products in high yields and enantiopurities. These enantioenriched products are versatile intermediates that can be further functionalized using nitrogen– and oxygen–centered nucleophiles, affording versatile scaffolds for the synthesis of nucleoside analogues. These scaffolds were used to complete formal syntheses of the anti-HIV drugs carbovir, abacavir, and the antibiotic aristeromycin. PMID:21615099

  6. Multiscale patterning of a biomimetic scaffold integrated with composite microspheres.

    PubMed

    Minardi, Silvia; Sandri, Monica; Martinez, Jonathan O; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Weiner, Bradley K; Tampieri, Anna; Tasciotti, Ennio

    2014-10-15

    The ideal scaffold for regenerative medicine should concurrently mimic the structure of the original tissue from the nano- up to the macroscale and recapitulate the biochemical composition of the extracellular matrix (ECM) in space and time. In this study, a multiscale approach is followed to selectively integrate different types of nanostructured composite microspheres loaded with reporter proteins, in a multi-compartment collagen scaffold. Through the preservation of the structural cues of the functionalized collagen scaffold at the nano- and microscale, its macroscopic features (pore size, porosity, and swelling) are not altered. Additionally, the spatial confinement of the microspheres allows the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enables the temporal biochemical patterning of the scaffold. The versatile manufacturing of each component of the scaffold results in the ability to customize it to better mimic the architecture and composition of the tissues and biological systems.

  7. Synthesis and derivatisation of a novel spiro[1-benzofuran-2,4'-piperidin]-3-one scaffold.

    PubMed

    Wilson, Rowan A; Chan, Lai; Wood, Robin; Brown, Richard C D

    2005-09-07

    The synthesis of a novel spiro[1-benzofuran-2,4'-piperidin]-3-one scaffold has been achieved in five steps with an overall yield of 47%. The versatility of the spiropiperidine scaffold in the context of library synthesis is exemplified by selective and sequential derivatisation of the amino and aryl bromide functional groups, including the development of multi-step telescope reaction matrices.

  8. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  9. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  10. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  11. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  12. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties.

    PubMed

    De Silva, R T; Mantilaka, M M M G P G; Goh, K L; Ratnayake, S P; Amaratunga, G A J; de Silva, K M Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  13. Trypanosomes - versatile microswimmers

    NASA Astrophysics Data System (ADS)

    Krüger, Timothy; Engstler, Markus

    2016-11-01

    Evolution has generated a plethora of flagellate microswimmers. They populate all natural waters, from the deep sea to the ponds in our neighbourhood. But flagellates also thrive in the bodies of higher organisms, where they mostly remain undetected, but can also become pathogenic. Trypanosomes comprise a large group of mostly parasitic flagellates that cause many diseases, such as human sleeping sickness or the cattle plague nagana. We consider African trypanosomes as extremely versatile microswimmers, as they have to adapt to very diverse microenvironments. They swim efficiently in the blood of their mammalian hosts, but also in various tissue spaces and even in the human brain. Furthermore, in the transmitting tsetse fly, trypanosomes undergo characteristic morphological changes that are accompanied by amazing transitions between solitary and collective types of motion. In this review, we provide a basic introduction to trypanosome biology and then focus on the complex type of rotational movement that trypanosomes display. We relate their swimming performance to morphological parameters and the respective microenvironment, developing a contemporary view on the physics of trypanosome motility. The genetically programmed successions of life style-dependent motion patterns provide challenges and opportunities for interdisciplinary studies of microswimmers.

  14. Biological Versatility and Earth History

    PubMed Central

    Vermeij, Geerat J.

    1973-01-01

    Examples from various plant and animal groups indicate that there has been a general increase in potential versatility of form, determined by the number and range of independently varying morphogenetic parameters, among taxa appearing at successively younger stages in the fossil record. Taxa or body plans with higher potential versatility have tended to replace less potentially versatile groups in the same or similar adaptive zone through time. Greater potential diversity allows for greater homeostasis, efficiency, and integration of structures and functions, and for an increase in size of the potential adaptive zone. In contrast, chemical versatility has generally decreased within groups from the pre-Cambrian to the Phanerozoic, partly as the result of apparent changes in the chemical environment and partly as the consequence of selection for efficiency and greater metabolic ease of handling of certain materials. PMID:4198660

  15. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  16. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  17. Ancient Astronomy in Armenia

    NASA Astrophysics Data System (ADS)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  18. Ancient Maya Mercury

    NASA Astrophysics Data System (ADS)

    Pendergast, David M.

    1982-08-01

    Discovery of mercury in an ancient Maya offering at Lamanai, Belize, has stimulated examination of possible sources of the material in the Maya area. Two zones of cinnabar and native mercury deposits can be defined in the Maya highlands, and the presence of the native metal suggests that the ancient Maya collected rather than extracted the mercury from ore.

  19. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  20. Ancient Egyptian herbal wines

    PubMed Central

    McGovern, Patrick E.; Mirzoian, Armen; Hall, Gretchen R.

    2009-01-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products—specifically, herbs and tree resins—were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  1. Hierarchical porous polymer scaffolds from block copolymers.

    PubMed

    Sai, Hiroaki; Tan, Kwan Wee; Hur, Kahyun; Asenath-Smith, Emily; Hovden, Robert; Jiang, Yi; Riccio, Mark; Muller, David A; Elser, Veit; Estroff, Lara A; Gruner, Sol M; Wiesner, Ulrich

    2013-08-02

    Hierarchical porous polymer materials are of increasing importance because of their potential application in catalysis, separation technology, or bioengineering. Examples for their synthesis exist, but there is a need for a facile yet versatile conceptual approach to such hierarchical scaffolds and quantitative characterization of their nonperiodic pore systems. Here, we introduce a synthesis method combining well-established concepts of macroscale spinodal decomposition and nanoscale block copolymer self-assembly with porosity formation on both length scales via rinsing with protic solvents. We used scanning electron microscopy, small-angle x-ray scattering, transmission electron tomography, and nanoscale x-ray computed tomography for quantitative pore-structure characterization. The method was demonstrated for AB- and ABC-type block copolymers, and resulting materials were used as scaffolds for calcite crystal growth.

  2. Biomimetic magnetic silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Shelyakova, Tatiana; Declercq, Heidi A; Uhlarz, Marc; Bañobre-López, Manuel; Dubruel, Peter; Cornelissen, Maria; Herrmannsdörfer, Thomas; Rivas, Jose; Padeletti, Giuseppina; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-03-25

    Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 °C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications.

  3. Biomolecule Gradient in Micropatterned Nanofibrous Scaffold for Spatiotemporal Release

    PubMed Central

    Bonani, Walter; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2013-01-01

    Controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing tissue regeneration in vitro and in vivo. Crucial to the regeneration is precise regulation over release direction and kinetics of multiple molecules (small genes, peptides, or larger proteins). To this end, we developed gradient micropatterns of electrospun nanofibers along the scaffold thickness through programming the deposition of heterogeneous nanofibers of poly(ε-caprolactone) (PCL) and poly(D,L-lactide-co-glycolide) acid (PLGA). Confocal images of the scaffolds containing fluorophore-impregnated nanofibers demonstrated close matching of actual and designed gradient fiber patterns; thermal analyses further showed their matching in the composition. Using acid-terminated PLGA (PLGAac) and ester-terminated PLGA (PLGAes) to impregnate molecules in the PCL-PLGA scaffolds, we demonstrated for the first time their differences in nanofiber degeneration and molecular weight change during degradation. PLGAac nanofibers were more stable with gradual and steady increase in the fiber diameter during degradation, resulting in more spatially confined molecule delivery from PCL-PLGA scaffolds. Thus, patterns of PCL-PLGAac nanofibers were used to design versatile controlled delivery scaffolds. To test the hypothesis that molecule-impregnated PLGAac in the gradient-patterned PCL-PLGAac scaffolds can program various modalities of molecule release, model molecules, including small fluorophores and larger proteins, were respectively used for time-lapse release studies. Gradient-patterns were used as building blocks in the scaffolds to program simultaneous release of one or multiple proteins to one side or, respectively, to the opposite sides of scaffolds for up to 50 days. Results showed that the separation efficiency of molecule delivery from all the scaffolds with a thickness of 200 μm achieved >88% for proteins and >82% for small molecules. In addition to versatile

  4. Physicians of ancient India

    PubMed Central

    Saini, Anu

    2016-01-01

    A survey of Indian medical historiography will reveal no dearth of work on the systems of medicine and medical literature of ancient India. However, the people who were responsible for the healing have not received much attention. This article traces the evolution of the physician as a professional in ancient India. This article reviews the secondary literature on healing and medical practice in India, specifically pertaining to the individual medical practitioner, drawing from varied sources. The healers of ancient India hailed from different castes and classes. They were well-respected and enjoyed state patronage. They were held to the highest ethical standards of the day and were bound by a strict code of conduct. They underwent rigorous training in both medicine and surgery. Most physicians were multi-skilled generalists, and expected to be skilled in elocution and debate. They were reasonably well-off financially. The paper also briefly traces the evolution of medicinal ideas in ancient India. PMID:27843823

  5. Reconstructing an Ancient Wonder.

    ERIC Educational Resources Information Center

    Imhof, Christopher J.

    2001-01-01

    Describes a Montessori class project involving the building of a model of the ancient Briton monument, Stonehenge. Illustrates how the flexibility of the Montessori elementary curriculum encourages children to make their own toys and learn from the process. (JPB)

  6. Ancient Egyptian Astronomical Calander

    NASA Astrophysics Data System (ADS)

    Marshall, Patrice; Lodhi, M. A. K.

    2001-03-01

    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  7. Endocrinology in ancient Sparta.

    PubMed

    Tsoulogiannis, Ioannis N; Spandidos, Demetrios A

    2007-01-01

    This article attempts to analyze the crucial link between the plant Agnus castus and human health, particularly hormonal status, with special reference to the needs of the society of ancient Sparta. The ancient Spartans used Agnus both as a cure for infertility and as a remedy to treat battle wounds. These special properties were recognized by the sanctuary of Asclepios Agnita, which was located in Sparta, as well as by medical practitioners in Sparta during the classical, Hellenistic and Roman ages.

  8. Solvent-free Fabrication of Tissue Engineering Scaffolds with Immiscible Polymer Blends

    PubMed Central

    Ma, Liang; Jiang, Wei; Li, Wei

    2014-01-01

    A completely organic solvent-free fabrication method is developed for tissue engineering scaffolds by gas foaming of immiscible polylactic acid (PLA) and sucrose blends, followed by water leaching. PLA scaffolds with above 90% porosity and 25–200 μm pore size were fabricated. The pore size and porosity was controlled with process parameters including extrusion temperature and foaming process parameters. Dynamic mechanical analysis showed that the extrusion temperature could be used to control the scaffold strength. Both unfoamed and foamed scaffolds were used to culture glioblastoma (GBM) cells M059K. The results showed that the cells grew better in the foamed PLA scaffolds. The method presented in the paper is versatile and can be used to fabricate tissue engineering scaffolds without any residual organic solvents. PMID:24764605

  9. Dentistry in ancient mesopotamia.

    PubMed

    Neiburger, E J

    2000-01-01

    Sumer, an empire in ancient Mesopotamia (southern Iraq), is well known as the cradle of our modern civilization and the home of biblical Abraham. An analysis of skeletal remains from cemeteries at the ancient cities of Ur and Kish (circa 2000 B.C.), show a genetically homogeneous, diseased, and short-lived population. These ancient Mesopotamians suffered severe dental attrition (95 percent), periodontal disease (42 percent), and caries (2 percent). Many oral congenital and neoplastic lesions were noted. During this period, the "local dentists" knew only a few modern dental techniques. Skeletal (dental) evidence indicates that the population suffered from chronic malnutrition. Malnutrition was probably caused by famine, which is substantiated in historic cuneiform and biblical writings, geologic strata samples, and analysis of skeletal and forensic dental pathology. These people had modern dentition but relatively poor dental health. The population's lack of malocclusions, caries, and TMJ problems appear to be due to flat plane occlusion.

  10. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. Copyright (c) 2005 Wiley-Liss, Inc.

  11. Ancient Chinese constellations

    NASA Astrophysics Data System (ADS)

    Xu, Junjun

    2011-06-01

    China, a country with a long history and a specific culture, has also a long and specific astronomy. Ancient Chinese astronomers observed the stars, named and distributed them into constellations in a very specific way, which is quite different from the current one. Around the Zodiac, stars are divided into four big regions corresponding with the four orientations, and each is related to a totem, either the Azure Dragon, the Vermilion Bird, the White Tiger or the Murky Warrior. We present a general pattern of the ancient Chinese constellations, including the four totems, their stars and their names.

  12. [Psychiatry in ancient Mexico].

    PubMed

    Calderón Narváez, G

    1992-12-01

    Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described.

  13. Matrices and Scaffolds for DNA Delivery in Tissue Engineering

    PubMed Central

    De Laporte, Laura; Shea, Lonnie D.

    2007-01-01

    Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies. PMID:17512630

  14. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment.

    PubMed

    Mahmoud, Azza A; Salama, Alaa H

    2016-02-15

    Biomaterial scaffolds are versatile tools as drug carrier for treatment of wounds. A series of norfloxacin-loaded scaffolds were synthesized for treatment of wounds by combining collagen with two different types of chitosan using freeze-drying technique. Subsequently, scaffolds were screened in terms of morphology, water absorption and retention capacity, biodegradation, ex-vivo bioadhesive strength, in-vitro drug release biological compatibility, X-ray diffractometry, differential scanning calorimetry as well as in-vivo evaluation. The results indicate that the scaffold mechanical strength is dependent on the type of used chitosan. The prepared scaffolds contained interconnected porous architecture. The scaffolds had high water uptake and retention capacity with extended biodegradation rate. Scaffolds prepared with chitosan HCl showed superior bioadhesive strength compared to those prepared with low molecular weight chitosan. All scaffolds showed almost 100% drug release within 24h. As identified by the terahertz pulsed imaging measurements, there is single scaffold area with the same concentration. After 28 days of wound dressing with selected norfoloxacin-loaded or unloaded collagen/chitosan scaffolds in Albino rats, it was found that the tissue regeneration time was fast compared to non-treated wounds. Furthermore, the drug-loaded scaffolds showed normal structure of an intact epidermal layer as well as the underlying dermis as revealed by histopathological studies. The obtained results suggest that the investigated norfloxacin-loaded collagen/chitosan scaffold is a potential candidate for skin regeneration application.

  15. Cuboid Vesicles Formed by Frame-Guided Assembly on DNA Origami Scaffolds.

    PubMed

    Dong, Yuanchen; Yang, Yuhe Renee; Zhang, Yiyang; Wang, Dianming; Wei, Xixi; Banerjee, Saswata; Liu, Yan; Yang, Zhongqiang; Yan, Hao; Liu, Dongsheng

    2017-02-01

    We describe the use of a frame-guided assembly (FGA) strategy to construct cuboid and dumbbell-shaped hetero-vesicles on DNA origami nanostructure scaffolds. These are achieved by varying the design of the DNA origami scaffolds that direct the distribution of the leading hydrophobic groups (LHG). By careful selection of LHGs, different types of amphiphiles (both polymer and small-molecule surfactants) were guided to form hetero-vesicles, demonstrating the versatility of the FGA strategy and its potential to construct asymmetric and dynamic hetero-vesicle assemblies with complex DNA nano-scaffolds.

  16. [Ancient DNA: principles and methodologies].

    PubMed

    De Angelis, Flavio; Scorrano, Gabriele; Rickards, Olga

    2013-01-01

    Paleogenetics is providing increasing evidence about the biological characteristics of ancient populations. This paper examines the guiding principles and methodologies to the study of ancient DNA with constant references to the state of the art in this fascinating disciplin.

  17. Scaffolding: A Broader View.

    ERIC Educational Resources Information Center

    Reid, D. Kim

    1998-01-01

    This commentary on C. Addison Stone's paper on the scaffolding metaphor for the learning disabilities field identifies issues in the metaphor's use and concludes that effective special education has been inhibited by isolation of interventions from theory and by the way teacher education is structured. Use of the scaffolding metaphor to refocus…

  18. Ancient deforestation revisited.

    PubMed

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work.

  19. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  20. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major…

  1. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  2. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  3. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  4. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  5. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  6. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major…

  7. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  8. [Midwifes in ancient Greece].

    PubMed

    Arata, Luigi

    2009-01-01

    The article deals with the evidence about obstetrics and in particular midwifes in ancient Greece. The substantives which mean "obstetrician" in Greek are quite numerous, but the most attested and common is [see text]. This work examines all the tasks which were connected with this profession (e.g. in the legal field).

  9. Versatile Link PLUS transceiver development

    NASA Astrophysics Data System (ADS)

    Soós, C.; Détraz, S.; Olanterä, L.; Sigaud, C.; Troska, J.; Vasey, F.; Zeiler, M.

    2017-03-01

    The Versatile Link PLUS project targets the phase II upgrades of the ATLAS and CMS experiments. It will develop a radiation resistant optical link, operating at up to 10 Gb/s in the upstream and up to 5 Gb/s in the downstream directions with a smaller footprint and higher channel count than its predecessor. A low-profile package is being developed that allows volume production at reduced costs, but which nevertheless can be configured to suit the individual channel count needs of different detectors. This paper describes the development strategies and summarizes the status of the feasibility demonstration phase of the project.

  10. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds

    PubMed Central

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F.; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P.

    2015-01-01

    DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis. PMID:26348722

  11. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    PubMed

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P

    2015-01-01

    DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  12. Versatile Reed-Solomon decoders

    NASA Astrophysics Data System (ADS)

    Rajableh-Shayan, Yousef

    1990-08-01

    Reed-Solomon (RS) codes have found many applications such as space and mobile communication due to their error correcting capability (ECC) and optimum structure. It is shown that time domain algorithms are the best candidates for designing versatile hardware decoders, but syndrome based algorithms are advantageous for software decoders. The algorithms for decoding RS codes require algebraic operations over Galois fields. Parallel in, parallel out multipliers and inverters in Galois fields are considered and least complex structures for the multiplier are introduced. A new normal basis multiplier is presented, as well as a universal multiplier for multiplying two elements of Galois field 2 to the m (m=4,5,6,7,8). The time domain algorithm based on transform decoder is restructured and two versatile decoder structures are presented. Both are simple and modular, thus suitable for very large scale integration design, and can be used for decoding any primitive RS code defined in a specific Galois field. The ECC of these decoders is configurable. The structure of a universal RS decoder is also presented. The time domain decoding algorithm based on algebraic decoder is modified to reduce the complexity of the universal decoder. The ECC and the size for the Galois field of this decoder are configurable. A method is also introduced for decoding RS codes generated by any generator polynomial.

  13. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide

    PubMed Central

    Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065

  14. Versatile transceiver production and quality assurance

    NASA Astrophysics Data System (ADS)

    Olantera, L.; Detraz, S.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.; Zeiler, M.

    2017-01-01

    The Versatile Link project has developed a radiation-hard optical link for LHC phase 1 detector upgrades. The project has reached its final stage and we have launched in 2016 the production of the Versatile Transceivers and Versatile Twin Transmitters. This paper provides an update of the production status and a detailed description and results of the quality assurance programme, which includes qualification and acceptance testing at CERN and production testing at the manufacturers' premises.

  15. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  16. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  17. Ancient human microbiomes.

    PubMed

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  18. Exact approaches for scaffolding

    PubMed Central

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally, we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the feedback edge set is significantly smaller than the input size. PMID:26451725

  19. Suicide in ancient Greece.

    PubMed

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  20. Biomineralized Recombinant Collagen-Based Scaffold Mimicking Native Bone Enhances Mesenchymal Stem Cell Interaction and Differentiation.

    PubMed

    Ramírez-Rodríguez, Gloria Belén; Montesi, Monica; Panseri, Silvia; Sprio, Simone; Tampieri, Anna; Sandri, Monica

    2017-08-04

    versatile approach to design smart scaffold interface in a 3D model guiding MSC fate.

  1. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  2. Infectious diseases in ancient Egypt.

    PubMed

    Brier, Bob

    2004-03-01

    Techniques for studying infectious disease in the ancient world are discussed. A brief survey of infectious diseases, such as schistosomiasis and malaria, in ancient Egypt is presented, and the physical traces of these diseases are examined. A discussion of the ancient Egyptian physician's response to infectious disease is included. There are two substantial sources of evidence for infectious diseases-physical remains and descriptions in Egyptian medical papyri. This preliminary survey suggests that ancient Egypt was far from the idyllic paradise on the Nile that some historians would like to imagine.

  3. Gnomons in Ancient China

    NASA Astrophysics Data System (ADS)

    Li, Geng

    Gnomon shadow measurement was one of the most fundamental astronomical observations in ancient China. It was crucial for calendar making, which constituted an important aspect of imperial governance. A painted stick discovered from a prehistoric (2300 BC) astronomical site of Taosi (see Chap. 201, "Taosi Observatory", 10.1007/978-1-4614-6141-8_215") is the oldest gnomon known of China. From second century BC onward, gnomon shadow measurements have been essential part of calendrical practice. Various historical measurements are discussed in this chapter.

  4. Tracheostomy in ancient Egypt.

    PubMed

    Blomstedt, Patric

    2014-08-01

    It has often been reported that the ancient Egyptians performed tracheostomies. An analysis of this claim demonstrates it to be founded on only two depictions from the Protodynastic period (thirty-first century bc). These depictions are difficult to reconcile with tracheostomy from an anatomical point of view and can more easily be explained as human sacrifices. Considering that Egyptian surgery included only minor procedures even at its zenith during later dynastic periods, it is difficult to imagine that they would have developed such an advanced procedure at such an early date.

  5. Urology in ancient India

    PubMed Central

    Das, Sakti

    2007-01-01

    The practice of medical and surgical measures in the management of urological ailments prevailed in ancient India from the Vedic era around 3000 BC. Subsequently in the Samhita period, the two stalwarts - Charaka in medicine and Susruta in surgery elevated the art of medicine in India to unprecedented heights. Their elaboration of the etiopathological hypothesis and the medical and surgical treatments of various urological disorders of unparalleled ingenuity still remain valid to some extent in our contemporary understanding. The new generation of accomplished Indian urologists should humbly venerate the legacy of the illustrious pioneers in urology of our motherland. PMID:19675749

  6. The moon's ancient magnetism

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.

    1987-12-01

    While the moon at present has no magnetic field, magnetized areas on its surface called magnetic anomalies do exist. Evidence is presented here that these anomalies are due to an ancient magnetic field. This field was produced by an internal dynamo due to a once molten lunar core of iron. The anomalies fall into three groups which were formed at different times and point in different directions, indicating that the moon underwent reorientation during its early history. It is shown that this reorienation could have been caused by the impact of disintegrated lunar satellites on the lunar surface.

  7. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function.

    PubMed

    Ayres, Chantal E; Jha, B Shekhar; Sell, Scott A; Bowlin, Gary L; Simpson, David G

    2010-01-01

    Engineered scaffolds function to supplement or replace injured, missing, or compromised tissue or organs. The current direction in this research area is to create scaffolds that mimic the structure and function of the native extracellular matrix (ECM). It is believed that the fabrication of a scaffold that has both structural integrity and allows for normal cellular function and interaction will bring scaffolds closer to clinical relevance. Nanotechnology innovations have aided in the development of techniques for the production of nanofiber scaffolds. The three major processing techniques, self-assembly, phase separation, and electrospinning, produce fibers that rival the size of those found in the native ECM. However, the simplicity, versatility, and scalability of electrospinning make it an attractive processing method that can be used to reproduce aspects of the complexity that characterizes the native ECM. Novel electrospinning strategies include alterations of scaffold composition and architecture, along with the addition and encapsulation of cells, pharmaceuticals and growth factors within the scaffold. This article reviews the major nanofiber fabrication technologies as well as delves into recent significant contributions to the conception of a meaningful and practical electrospun scaffold.

  8. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.

    PubMed

    Li, Dawei; Chen, Weiming; Sun, Binbin; Li, Haoxuan; Wu, Tong; Ke, Qinfei; Huang, Chen; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-10-01

    Electrospinning is a versatile and convenient technology to generate nanofibers suitable for tissue engineering. However, the low production rate of traditional needle electrospinning hinders its applications. Needleless electrospinning is a potential strategy to promote the application of electrospun nanofiber in various fields. In this study, disc-electrospinning (one kind of needleless electrospinning) was conducted to produce poly(ε-caprolactone)/gelatin (PCL/GT) scaffolds of different structure, namely the nanoscale structure constructed by nanofiber and multiscale structure consisting of nanofiber and microfiber. It was found that, due to the inhomogeneity of PCL/GT solution, disc-electrospun PCL-GT scaffold presented multiscale structure with larger pores than that of the acid assisted one (PCL-GT-A). Scanning electron microscopy images indicated the PCL-GT scaffold was constructed by nanofibers and microfibers. Mouse fibroblasts and rat bone marrow stromal cells both showed higher proliferation rates on multiscale scaffold than nanoscale scaffolds. It was proposed that the nanofibers bridged between the microfibers enhanced cell adhesion and spreading, while the large pores on the three dimensional (3D) PCL-GT scaffold provide more effective space for cells to proliferate and migrate. However, the uniform nanofibers and densely packed structure in PCL-GT-A scaffold limited the cells on the surface. This study demonstrated the potential of disc-electrospun PCL-GT scaffold containing nanofiber and microfiber for 3D tissue regeneration.

  9. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  10. The Versatile Modiolus Perforator Flap

    PubMed Central

    Gunnarsson, Gudjon Leifur; Thomsen, Jorn Bo

    2016-01-01

    Background: Perforator flaps are well established, and their usefulness as freestyle island flaps is recognized. The whereabouts of vascular perforators and classification of perforator flaps in the face are a debated subject, despite several anatomical studies showing similar consistency. In our experience using freestyle facial perforator flaps, we have located areas where perforators are consistently found. This study is focused on a particular perforator lateral to the angle of the mouth; the modiolus and the versatile modiolus perforator flap. Methods: A cohort case series of 14 modiolus perforator flap reconstructions in 14 patients and a color Doppler ultrasonography localization of the modiolus perforator in 10 volunteers. Results: All 14 flaps were successfully used to reconstruct the defects involved, and the location of the perforator was at the level of the modiolus as predicted. The color Doppler ultrasonography study detected a sizeable perforator at the level of the modiolus lateral to the angle of the mouth within a radius of 1 cm. This confirms the anatomical findings of previous authors and indicates that the modiolus perforator is a consistent anatomical finding, and flaps based on it can be recommended for several indications from the reconstruction of defects in the perioral area, cheek and nose. Conclusions: The modiolus is a well-described anatomical area containing a sizeable perforator that is consistently present and readily visualized using color Doppler ultrasonography. We have used the modiolus perforator flap successfully for several indications, and it is our first choice for perioral reconstruction. PMID:27257591

  11. Epigenetics of Ancient DNA

    PubMed Central

    Zhenilo, S. V.; Sokolov, A.S.; Prokhortchouk, E. B.

    2016-01-01

    Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences. PMID:27795845

  12. Ancient celtic horns

    NASA Astrophysics Data System (ADS)

    Campbell, Murray

    2002-11-01

    There is considerable evidence from iconographic and documentary sources that musical lip-reed instruments were important in the early celtic communities of Scotland and Ireland. In recent years several studies have been undertaken with the aim of gaining a better understanding of the musical nature of these ancient horns, and of their place in the life and culture of the time. A valuable source of tangible evidence is to be found in the archaeological remains deposited across Scotland and the whole of Ireland. A project is now under way, under the auspices of the Kilmartin House Trust and the general direction of John Purser, which has brought together an international team of musicians, craftsmen, archaeologists, musicologists and physicists with the aim of analyzing ancient musical artifacts, reconstructing some of the original instruments, and analyzing the sounds they produce. This paper describes acoustical studies carried out on a number of recent reconstructions of wooden and bronze instruments, and discusses the role of acoustics in this type of investigation. [Work supported by Sciart and EPSRC.

  13. Amorphous blue phase III polymer scaffold as a sub-millisecond switching electro-optical memory device

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy

    2017-02-01

    We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.

  14. Communication Media in Ancient Cultures.

    ERIC Educational Resources Information Center

    Jabusch, David M.

    Interest in early means of communication and in the uses and kinds of media that existed in ancient cultures is starting to grow among communication scholars. Conversation analysis of these cultures is obviously impossible, so that the emphasis must rest with material cultural artifacts. Many ancient cultures used non-verbal codes for dyadic…

  15. The Ancients' Appliance of Science

    ERIC Educational Resources Information Center

    Stephenson, Philip; Sword, Frances

    2004-01-01

    An innovative collaboration between the Fitzwilliam Museum in Cambridge and the University of Cambridge Faculty of Education encourages new questions to be asked of ancient objects. In the museum galleries children work directly from ancient Egyptian objects through activities designed to encourage questioning that unpicks the technologies of the…

  16. Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds

    PubMed Central

    Lalwani, Gaurav; Kwaczala, Andrea Trinward; Kanakia, Shruti; Patel, Sunny C.; Judex, Stefan; Sitharaman, Balaji

    2012-01-01

    We report a simple method to fabricate macroscopic, 3-D, free standing, all-carbon scaffolds (porous structures) using multiwalled carbon nanotubes (MWCNTs) as the starting materials. The scaffolds prepared by radical initiated thermal crosslinking, and annealing of MWCNTs possess macroscale interconnected pores, robust structural integrity, stability, and conductivity. The porosity of the three-dimensional structure can be controlled by varying the amount of radical initiator, thereby allowing the design of porous scaffolds tailored towards specific potential applications. This method also allows the fabrication of 3-D scaffolds using other carbon nanomaterials such as single-walled carbon nanotubes, fullerenes, and graphene indicating that it could be used as a versatile method for 3-D assembly of carbon nanostructures with pi bond networks. PMID:23436939

  17. Platinum(IV) Carboxylate Prodrug Complexes as Versatile Platforms for Targeted Chemotherapy.

    PubMed

    Ong, Jun Xiang; Yap, Siew Qi; Wong, Daniel Yuan Qiang; Chin, Chee Fei; Ang, Wee Han

    2015-01-01

    Kinetically-inert Pt(IV) carboxylate complexes have emerged in recent years as candidates for the development of next-generation platinum anticancer drugs. Being native prodrugs of clinically-important Pt(II) chemotherapeutic agents, the Pt(IV) scaffold can be exploited to incorporate additional functionalities while keeping the Pt(II) pharmacophore intact. This mini-review examines recent work performed to illuminate the mechanism of Pt(IV) prodrug activation and their use as versatile platforms for targeted chemotherapy.

  18. Tamil Merchant in Ancient Mesopotamia

    PubMed Central

    Palanichamy, Malliya gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  19. Tamil merchant in ancient Mesopotamia.

    PubMed

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

  20. Ancient Chinese Sundials

    NASA Astrophysics Data System (ADS)

    Deng, Kehui

    Timekeeping was essential in the agricultural society of ancient China. The use of sundials for timekeeping was associated with the use of the gnomon, which had its origin in remote antiquity. This chapter studies three sundials (guiyi 晷仪) from the Qin and Han dynasties, the shorter shadow plane sundial (duanying ping yi 短影平仪) invented by Yuan Chong in the Sui Dynasty, and the sundial chart (guiyingtu 晷影图) invented by Zeng Minxing in the Southern Song dynasty. This chapter also introduces Guo Shoujing's hemispherical sundial (yang yi 仰仪). A circular stone sundial discovered at the Small Wild Goose Pagoda in Xi'an is also mentioned. It is dated from the Sui and Tang dynasties. A brief survey of sundials from the Qing dynasty shows various types of sundials.

  1. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  2. An Ancient Valley Network

    NASA Image and Video Library

    2017-05-09

    Most of the oldest terrains on Mars have eroded into branching valleys, as seen here in by NASA's Mars Reconnaisance Orbiter, much like many land regions of Earth are eroded by rain and snowmelt runoff. This is the primary evidence for major climate change on Mars billions of years ago. How the climate of Mars could have supported a warmer and wetter environment has been the subject of scientific debates for 40 years. A full-resolution enhanced color closeup reveals details in the bedrock and dunes on the valley floor (upper left). The bedrock of ancient Mars has been hardened and cemented by groundwater. https://photojournal.jpl.nasa.gov/catalog/PIA21630

  3. Characterization of Ancient Tripitaka

    NASA Astrophysics Data System (ADS)

    Gong, Y. X.; Geng, L.; Gong, D. C.

    2015-08-01

    Tripitaka is the world's most comprehensive version of Buddhist sutra. There are limited numbers of Tripitaka currently preserved, most of them present various patterns of degradation. As little is known about the materials and crafts used in Tripitaka, it appeared necessary to identify them, and to further define adapted conservation treatment. In this work, a study concerning the paper source and dyestuff of the Tripitaka from approximate 16th century was carried out using fiber analysis and thin-layer chromatography (TLC). The results proved that the papers were mainly made from hemp or bark of mulberry tree, and indigo was used for colorizing the paper. At the end, we provide with suggestions for protecting and restoring the ancient Tripitaka.

  4. Ancient River revealed

    NASA Astrophysics Data System (ADS)

    Recent flights of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) mission aboard the space shuttle Endeavour discovered a previously unknown branch of an ancient river. The images, released at AGU's Spring Meeting, show the river channel buried under thousands of years worth of windblown sand in a region of North Africa's Sahara Desert near the Kufra Oasis in southeast Libya, centered at 23.3°N latitude, 22.9°E longitude. The image from the flight last October reveals a system of old, now inactive stream valleys, called “paleodrainage systems,” which carried running water northward across the Sahara during periods of wetter climate.

  5. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2009-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  6. Reanimation of Ancient Bacteria

    SciTech Connect

    Vreeland, Russell H.

    2002-01-09

    Recent highly publicized experiments conducted on salt crystals taken from the Permian Salado Formation in Southeastern New Mexico have shown that some ancient crystals contain viable microorganisms trapped within fluid inclusions. Stringent geological and microbiological selection criteria were used to select crystals and conduct all sampling. This talk will focus on how each of these lines of data support the conclusion that such isolated bacteria are as old as the rock in which they are trapped. In this case, the isolated microbes are salt tolerant bacilli that grow best in media containing 8% NaCl, and respond to concentrated brines by forming spores. One of the organisms is phylogenetically related to several bacilli, but does have several unique characteristics. This talk will trace the interdisciplinary data and procedures supporting these discoveries, and describe the various isolated bacteria.

  7. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  8. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  9. L_RNA_scaffolder: scaffolding genomes with transcripts

    PubMed Central

    2013-01-01

    Background Generation of large mate-pair libraries is necessary for de novo genome assembly but the procedure is complex and time-consuming. Furthermore, in some complex genomes, it is hard to increase the N50 length even with large mate-pair libraries, which leads to low transcript coverage. Thus, it is necessary to develop other simple scaffolding approaches, to at least solve the elongation of transcribed fragments. Results We describe L_RNA_scaffolder, a novel genome scaffolding method that uses long transcriptome reads to order, orient and combine genomic fragments into larger sequences. To demonstrate the accuracy of the method, the zebrafish genome was scaffolded. With expanded human transcriptome data, the N50 of human genome was doubled and L_RNA_scaffolder out-performed most scaffolding results by existing scaffolders which employ mate-pair libraries. In these two examples, the transcript coverage was almost complete, especially for long transcripts. We applied L_RNA_scaffolder to the highly polymorphic pearl oyster draft genome and the gene model length significantly increased. Conclusions The simplicity and high-throughput of RNA-seq data makes this approach suitable for genome scaffolding. L_RNA_scaffolder is available at http://www.fishbrowser.org/software/L_RNA_scaffolder. PMID:24010822

  10. Scaffold: Quantum Programming Language

    DTIC Science & Technology

    2012-07-24

    hardware languages (System-C) [14] and existing quantum programming languages ( QCL ) [23]. • Variant of C and Verilog: Scaffold syntax was chosen to be...Quantum Information. Cam- bridge University Press. [23] B. Ömer, “Quantum Programming in QCL ,” January 2000, Master’s Thesis, Technical Uni- versity

  11. Scaffolding Reading Comprehension Skills

    ERIC Educational Resources Information Center

    Salem, Ashraf Atta Mohamed Safein

    2017-01-01

    The current study investigates whether English language teachers use scaffolding strategies for developing their students' reading comprehension skills or just for assessing their comprehension. It also tries to demonstrate whether teachers are aware of these strategies or they use them as a matter of habit. A questionnaire as well as structured…

  12. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.

    PubMed

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-14

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  13. Organocatalytic sequential hetero-Diels-Alder and Friedel-Crafts reaction: constructions of fused heterocycles with scaffold diversity.

    PubMed

    Zhou, Si-Li; Li, Jun-Long; Dong, Lin; Chen, Ying-Chun

    2011-11-04

    A highly enantioselective aza-Diels-Alder and Friedel-Crafts reaction sequence of N-sulfonyl-1-aza-1,3-butadienes and aliphatic aldehydes tethered to an arene motif has been developed, affording the fused chiral piperidine frameworks with a versatile scaffold diversity. A similar strategy has been applied for the construction of complex chiral tetrahydroquinoxaline structures.

  14. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  15. Senenmut: An Ancient Egyptian Astronomer

    NASA Astrophysics Data System (ADS)

    Novakovic, B.

    2008-10-01

    The celestial phenomena have always been a source of wonder and interest to people, even as long ago as the ancient Egyptians. While the ancient Egyptians did not know all the things about astronomy that we do now, they had a good understanding of some celestial phenomena. The achievements in astronomy of ancient Egyptians are relatively well known, but we know very little about the people who made these achievements. The goal of this paper is to bring some light on the life of Senenmut, the chief architect and astronomer during the reign of Queen Hatshepsut.

  16. Ancient Astronomy in Ukraine

    NASA Astrophysics Data System (ADS)

    Artemenko, Tatyana G.; Vavilova, Iryna B.

    2007-08-01

    Astronomical culture and research have long-standing traditions in Ukraine. The first signs of astronomical knowledge were found in archaeological excavations and records. The most ancient find (dated as 15,000 B.C.) is a mammoth tusk with a fretwork image of a table of lunar phases found in the Poltava region. The so-called Trypillya culture (dated 4,000 - 3,000 B.C) had numerous examples of ornaments at the howls, distaffs, wheels and other everyday articles with symbolic images of zodiac constellations, and vessel-calendars indicating the vernal/autumnal equinoxes and the motion of the Sun. Some of such unique exhibits stored at the National Museum of History of Ukraine will be described in details in this paper. For example, the vessel calendar dating by IV century of our era (from village Romashki, Kyiv region). This image was interpreted by B. Rybakov as an agricultural calendar from May to August (time of harvesting). Most of exhibits of Museum were founded by archaeologist Vikenty Khvoyko and presented by him to Museum in 1905. Description and pictures of vessels and cups from Chernyahiv, Trypillya IV century B.C. with the Solar signs and tusk of the mammoth from Kyrilovska parking with notches interpreted as a calendar as well as tree-storied pictures of vessel from Trypillya interpreted as a “vertical cross section of the world” in dynamics will be also given. Another unique historical record relates to the times of the powerful state of the Kievan Rus' (X- XIII centuries), when astronomical observations were conducted mainly in cloisters. For example, the authors of the Lavrentievska chronicle describe the solar eclipses of the years 1064, 1091, and 1115 A.D. and the lunar eclipses of 1161 A.D. At that times some natural cataclysms have been connected with eclipses that, for example, was described in “The Word about Igor's shelf” by Nestor Letopisec. Thus, facts discussed in paper pointed out once more that astronomy is one of the most ancient

  17. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  18. Petrology: Ancient magma sources revealed

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth

    2017-06-01

    The composition of Earth's oldest crust is uncertain. Comparison of the most ancient mineral grains with more recent analogues suggests that formation of the earliest crust was heavily influenced by re-melting of igneous basement rocks.

  19. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  20. Ancient Astronomers Along the Nile.

    ERIC Educational Resources Information Center

    Reed, George

    1986-01-01

    Discussed contributions to the field of astronomy made by ancient Egyptians. Provides examples of how some of the observations made were applied to science. The use of geometry is illustrated by several calculations of celestial alignment. (TW)

  1. Layout of Ancient Maya Cities

    NASA Astrophysics Data System (ADS)

    Aylesworth, Grant R.

    Although there is little doubt that the ancient Maya of Mesoamerica laid their cities out based, in part, on astronomical considerations, the proliferation of "cosmograms" in contemporary scholarly discourse has complicated matters for the acceptance of rigorous archaeoastronomical research.

  2. Versatile protein tagging in cells with split fluorescent protein

    PubMed Central

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Weissman, Jonathan S.; Huang, Bo

    2016-01-01

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications. PMID:26988139

  3. Versatile protein tagging in cells with split fluorescent protein.

    PubMed

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A; Ishikawa, Hiroaki; Leonetti, Manuel D; Marshall, Wallace F; Weissman, Jonathan S; Huang, Bo

    2016-03-18

    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications.

  4. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications.

    PubMed

    Sunasee, Rajesh; Hemraz, Usha D; Ckless, Karina

    2016-09-01

    Cellulose nanocrystals (CNCs) are bio-based nanomaterials typically derived from the acid hydrolysis of the most abundant natural polymer, cellulose. These nanomaterials have garnered significant interest due to their unique properties, such as uniform rod-like shape, high surface area, high strength, liquid crystalline behavior, tailored surface chemistry, biocompatibility, biodegradability, sustainability and non-toxic carbohydrate-based nature. The recent developments in the use of unmodified and modified CNCs as versatile nanoplatforms for emerging biomedical applications such as drug delivery systems, enzyme/protein immobilization scaffolds, bioimaging, biosensing and tissue engineering are highlighted. A brief discussion of the biological and toxicity properties of CNCs is also presented. While a number of recent studies have indicated that CNCs are promising nanomaterials for biomedical applications, there is a substantial amount of work that still remains to be done before realizing the full therapeutic potential of CNCs. Major effort should be focused on detailed in vitro and in vivo studies of modified CNCs constructs in order to better understand the integration of CNCs in the biological systems.

  5. Scaffolding Student Participation in Mathematical Practices

    ERIC Educational Resources Information Center

    Moschkovich, Judit N.

    2015-01-01

    The concept of scaffolding can be used to describe various types of adult guidance, in multiple settings, across different time scales. This article clarifies what we mean by scaffolding, considering several questions specifically for scaffolding in mathematics: What theoretical assumptions are framing scaffolding? What is being scaffolded? At…

  6. Trp-Trp Cross-Linking: A Structure-Reactivity Relationship in the Formation and Design of Hyperstable Peptide β-Hairpin and α-Helix Scaffolds.

    PubMed

    Makwana, Kamlesh M; Mahalakshmi, Radhakrishnan

    2015-05-15

    Using model peptide β-hairpin scaffolds, the facile formation of a remarkably stable covalently cross-linked modification is reported in the tryptophan side chain, which confers hyperstability to the scaffold and displays a unique structure-reactivity relationship. This strategy is also validated to obtain a thermostable α-helix. Such imposition of conformational constraints can have versatile applications in peptide-based drug discovery, and this strategy may improve peptide bioavailability.

  7. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.

    PubMed

    Jung, Jin Woo; Lee, Hyungseok; Hong, Jung Min; Park, Jeong Hun; Shim, Jung Hee; Choi, Tae Hyun; Cho, Dong-Woo

    2015-11-03

    Due to its simplicity and effectiveness, the physical blending of polymers is considered to be a practical strategy for developing a versatile scaffold having desirable mechanical and biochemical properties. In the present work, an indirect three-dimensional (i3D) printing technique was proposed to fabricate a 3D free-form scaffold using a blend of immiscible materials, such as polycaprolactone (PCL) and gelatin. The i3D printing technique includes 3D printing of a mold and a sacrificial molding process. PCL/chloroform and gelatin/water were physically mixed to prepare the blend solution, which was subsequently injected into the cavity of a 3D printed mold. After solvent removal and gelatin cross-linking, the mold was dissolved to obtain a PCL-gelatin (PG) scaffold, with a specific 3D structure. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that PCL masses and gelatin fibers in the PG scaffold homogenously coexisted without chemical bonding. Compression tests confirmed that gelatin incorporation into the PCL enhanced its mechanical flexibility and softness, to the point of being suitable for soft-tissue engineering, as opposed to pure PCL. Human adipose-derived stem cells, cultured on a PG scaffold, exhibited enhanced in vitro chondrogenic differentiation and tissue formation, compared with those on a PCL scaffold. The i3D printing technique can be used to blend a variety of materials, facilitating 3D scaffold fabrication for specific tissue regeneration. Furthermore, this convenient and versatile technique may lead to wider application of 3D printing in tissue engineering.

  8. Bioresorbable Scaffolds for Atheroregression: Understanding of Transient Scaffolding

    PubMed Central

    N. Kharlamov, M.D., Alexander

    2016-01-01

    This review focuses on the clinical and biological features of the bioresorbable scaffolds in interventional cardiology highlighting scientific achievements and challenges of the transient scaffolding with Absorb BVS. Special attention is granted to the vascular biology pathways which, involved in the resorption of scaffold, artery remodeling and mechanisms of Glagovian atheroregression setting the stage for subsequent clinical applications. Twenty five years ago Glagov described the phenomenon of limited external elastic membrane enlargement in response to an increase in plaque burden. We believe this threshold becomes the target for development of strategies that reverse atherosclerosis, and particularly transient scaffolding has a potential to be a tool to ultimately conquer atherosclerosis. PMID:26818488

  9. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    PubMed

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Ancient lakes on Mars?

    NASA Technical Reports Server (NTRS)

    Goldspiel, J. M.; Squyres, S. W.

    1989-01-01

    The valley systems in Mars' ancient cratered terrain provide strong evidence for a warmer and wetter climate very early in planetary history. The valley systems in some instances debouch into closed depressions that could have acted as local ponding basins for the flow. A survey of the Martian equatorial region shows that numerous local depressions at the confluence of valley systems exist. These depressions (approximately 100 km) typically are characterized by many valleys flowing into them and few or none flowing out. If ponding did take place, these basin would have contained lakes for some period during Mars' early warmer epoch. Although the collection basins are numerous, location of ones that have not suffered significant subsequent geologic modification is difficult. Some morphologic features suggest that volcanic lavas may have filled them subsequent to any early fluvial activity. Two detailed maps of valley systems and local ponding basins in USGC 1:2,000,000 subquadrangles were completed and a third is in progress. The completed regions are in Mare Tyrrhenum (MC-22 SW) and Margarifter Sinus (MC-19 SE), and the region in progress is in Iapygia (MC-21 NW). On the maps, the valley systems and interpreted margins of ponding basins are indicated. The depressions are of interest for two reasons. First, the depressions were surely the sites in which the materials eroded from the valleys were deposited. Such sediments could preserve important information about the physical conditions at the time of deposition. Second, the sediments could preserve evidence of water-atmosphere interactions during the early period of the Martian climate. Atmospheric carbon dioxide would dissolve in water, and solid carbonate minerals would tend to precipitate out to form carbonate sedimentary deposits. Formation of carbonates in this manner might account for some of the CO2 lost from the early more dense atmosphere.

  11. Ancient biomolecules in Quaternary palaeoecology

    NASA Astrophysics Data System (ADS)

    Hofreiter, Michael; Collins, Matthew; Stewart, John R.

    2012-02-01

    The last few years have seen an enormous proliferation of ancient biomolecules research, especially in the field of ancient DNA. Ancient DNA studies have been transformed by the advent of next generation sequencing, with the first Pleistocene sample being analysed in 2005, and several complete and draft genomes that have been compiled from ancient DNA to date. At the same time, although less conspicuous, research on ancient proteins has also seen advances, with the time limit for research on ancient biomolecules now extending to over 1 million years. Here we review which effects these developments have on research in Quaternary science. We identify several lines of research that have the potential to profit substantially from these recent developments in ancient biomolecules research. First, the identification of taxa can be made using ancient biomolecules, and in the case of ancient DNA, specimens can even be assigned to specific populations within a species. Second, increasingly large DNA data sets from Pleistocene animals allow the elucidation of ever more precise pictures of the population dynamic processes whereby organisms respond to climate and environmental change. With the accompanying better understanding of process in the Quaternary, past ecologies can also more realistically be interpreted from proxy data sets. The dominant message from this research so far is that the Quaternary saw a great deal more dynamism in populations than had been forecast by conventional palaeoecology. This suggests that reconstructions of past environmental conditions need to be done with caution. Third, ancient DNA can also now be obtained directly from sediments to elucidate the presence of both plant and animal species in an area even in the absence of identifiable fossils, be it macro- or micro-fossils. Finally, the analysis of proteins enables the identification of bone remains to genus and sometimes species level far beyond the survival time of DNA, at least in temperate

  12. Metallic Scaffolds for Bone Regeneration

    PubMed Central

    Alvarez, Kelly; Nakajima, Hideo

    2009-01-01

    Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.

  13. Microwave-enhanced transition metal-catalyzed decoration of 2(1H)-pyrazinone scaffolds.

    PubMed

    Kaval, Nadya; Bisztray, Katalin; Dehaen, Wim; Kappe, C Oliver; Van der Eycken, Erik

    2003-01-01

    The 2(1H)-pyrazinones have been demonstrated to be versatile building blocks for the synthesis of biologically active compounds. Here, an efficient method is described for the decoration of these interesting scaffolds. Microwave-assisted palladium catalyzed reactions allow the easy introduction of different substituents at the C3- and even at the rather unreactive C5-position of the pyrazinones. Stille, Suzuki, Heck, Sonogashira reactions, in addition to reductive dechlorinations, and cyanation reactions are investigated.

  14. Privileged scaffolds in lead generation.

    PubMed

    Zhao, Hongyu; Dietrich, Justin

    2015-07-01

    The term "privileged scaffold" was coined in 1988 and the strategy was to construct high-affinity ligands from core structures that can bind more than one receptor. Since then, the privileged scaffold-based design has evolved from a stand-alone technology to an integral component of various lead generation platforms. In this review, the authors discuss the applications of the privileged scaffold concept in current lead generation. Specifically, the authors cover the role that privileged scaffolds have played in the mass production of compounds to feed high-throughput screening (HTS) and its role in the design of ligands targeting protein-protein interactions, multiple ligands and warhead-based ligands. It is not the intention of the authors to review all privileged scaffolds known to date. Rather, the aim of this review is to highlight the strategic value of the concept of privileged scaffolds in various contemporary lead generation platforms. The privileged scaffolds as described by the original definition proved abundant in the available chemical space. HTS and other screening methods, in addition to greatly enhanced compound collections, make privileged scaffold-based design less relevant in finding high-affinity ligands than originally envisioned. However, the principle of privileged scaffolds has greatly enhanced and empowered current lead generation technologies.

  15. Enzymatic mineralization of silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Declercq, Heidi A; Gheysens, Tom; Dendooven, Jolien; Van Der Voort, Pascal; Cornelissen, Ria; Dubruel, Peter; Kaplan, David L

    2014-07-01

    The present study focuses on the alkaline phosphatase (ALP) mediated formation of apatitic minerals on porous silk fibroin protein (SFP) scaffolds. Porous SFP scaffolds impregnated with different concentrations of ALP are homogeneously mineralized under physiological conditions. The mineral structure is apatite while the structures differ as a function of the ALP concentration. Cellular adhesion, proliferation, and colonization of osteogenic MC3T3 cells improve on the mineralized SFP scaffolds. These findings suggest a simple process to generate mineralized scaffolds that can be used to enhanced bone tissue engineering-related utility.

  16. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering.

    PubMed

    Ribeiro, Charlene Aparecida; Martins, Marcos Vinicius Surmani; Bressiani, Ana Helena; Bressiani, José Carlos; Leyva, Maria Elena; de Queiroz, Alvaro Antonio Alencar

    2017-12-01

    In the last decade, a variety of methods for fabrication of three-dimensional biomimetic scaffolds based on hydrogels have been developed for tissue engineering. However, many methods require the use of catalysts which compromises the biocompatibility of the scaffolds. The electrochemical polymerization (ECP) of acrylic monomers has received an increased attention in recent years due to its versatility in the production of highly biocompatible coatings for the electrodes used in medical devices. The main aim of this work was the use of ECP as scaffold fabrication technique to produce highly porous poly(N-isopropylacrylamide) (PNIPAM)/hydroxyapatite (HAp) composite for bone tissue regeneration. The prepared PNIPAM-HAp porous scaffolds were characterized by SEM, FTIR, water swelling, porosity measurements and X-ray diffraction (XRD) techniques. FTIR indicates that ECP promotes a successful conversion of NIPAM to PNIPAM. The water swelling and porosity were shown to be controlled by the HAp content in PNIPAM-HAp scaffolds. The PNIPAM-HAp scaffolds exhibited no cytotoxicity to MG63 cells, showing that ECP are potentially useful for the production of PNIPAM-HAp scaffolds. To address the osteomyelitis, a significant complication in orthopedic surgeries, PNIPAM-HAp scaffolds were loaded with the antibiotic oxacillin. The oxacillin release and the bacterial killing activity of the released oxacillin from PNIPAM-HAp against S. aureus and P. aeruginosa were demonstrated. These observations demonstrate that ECP are promising technique for the production of non-toxic, biocompatible PNIPAM-HAp scaffolds for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Technology and Versatile Thinking in Mathematics.

    ERIC Educational Resources Information Center

    Tall, David

    Today's technology gives us a great opportunity to complement the subtlety of human thought with the power and accuracy of modern computers. In this presentation I consider fundamental modes of human thinking to see how enactive, visual and symbolic methods can be used in a versatile way with the support of well-designed software. My analysis…

  18. Guinea Pigs: Versatile Animals for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  19. Guinea Pigs: Versatile Animals for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  20. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    PubMed Central

    Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2016-01-01

    Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications. PMID:26977286

  1. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.

    PubMed

    Jin, Gyuhyung; Lee, Slgirim; Kim, Seung-Hyun; Kim, Minhee; Jang, Jae-Hyung

    2014-12-01

    Electrospun fibrous mats have emerged as powerful tissue engineering scaffolds capable of providing highly effective and versatile physical guidance, mimicking the extracellular environment. However, electrospinning typically produces a sheet-like structure, which is a major limitation associated with current electrospinning technologies. To address this challenge, highly porous, volumetric hydrogel-hybrid fibrous scaffolds were fabricated by one Taylor cone-based side-by-side dual electrospinning of poly (ε-caprolactone) (PCL) and poly (vinyl pyrrolidone) (PVP), which possess distinct properties (i.e., hydrophobic and hydrogel properties, respectively). Immersion of the resulting scaffolds in water induced spatial tortuosity of the hydrogel PVP fibers while maintaining their aligned fibrous structures in parallel with the PCL fibers. The resulting conformational changes in the entire bicomponent fibers upon immersion in water led to volumetric expansion of the fibrous scaffolds. The spatial fiber tortuosity significantly increased the pore volumes of electrospun fibrous mats and dramatically promoted cellular infiltration into the scaffold interior both in vitro and in vivo. Harmonizing the flexible PCL fibers with the soft PVP-hydrogel layers produced highly ductile fibrous structures that could mechanically resist cellular contractile forces upon in vivo implantation. This facile dual electrospinning followed by the spatial fiber tortuosity for fabricating three-dimensional hydrogel-hybrid fibrous scaffolds will extend the use of electrospun fibers toward various tissue engineering applications.

  2. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.

    PubMed

    Limbert, Georges; Omar, Rodaina; Krynauw, Hugo; Bezuidenhout, Deon; Franz, Thomas

    2016-01-01

    Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.

  3. A novel wet extrusion technique to fabricate self-assembled microfiber scaffolds for controlled drug delivery.

    PubMed

    Lavin, Danya M; Harrison, Michael W; Tee, Louis Y; Wei, Karen A; Mathiowitz, Edith

    2012-10-01

    We have developed a novel wet extrusion process to fabricate nonwoven self-assembled microfiber scaffolds with uniform diameters less than 5 μm and without any postmanipulation. In this method, a poly(L-lactic acid) solution flows dropwise into a stirring nonsolvent bath, deforming into liquid polymer streams that self-assemble into a nonwoven microfiber scaffold. The ability to tune fiber diameter was achieved by decreasing polymer spin dope concentration and increasing the silicon oil to petroleum ether ratio of the nonsolvent spin bath. To demonstrate the drug delivery capabilities of scaffolds, heparin was encapsulated using a conventional water-in-oil (W/O) emulsion technique and a cryogenic emulsion technique developed in our laboratory. Spin dope preparation was found to significantly effect the release kinetics of self-assembled scaffolds by altering the interconnectivity of pores within the precipitating filaments. After 35 days, scaffolds prepared from W/O emulsions released up to 45% encapsulated heparin, whereas nearly 80% release of heparin was observed from cryogenic emulsion formulations. The versatility of our system, combined with the prolonged release of small molecules and the ability to control the homogeneity of self-assembling scaffolds, could be beneficial for many tissue regeneration and engineering applications.

  4. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  5. Ancient suture zones within continents.

    PubMed

    Moores, E M

    1981-07-03

    Ancient suture belts within continents are deformed regions which contain the remnants of former ocean basins. They form when two continents or island arcs that earlier were separated by an ocean basin converge and collide during plate tectonic activity. These belts provide the only record we have of deep oceanic crust and of ancient sea-floor processes for the first 94 percent of the earth's history, that is, prior to the oldest preserved crust in the oceans. Ten criteria for the recognition and interpretation of these ancient belts are discussed. A comprehensive program for the study of these belts should have great scientific and economic benefit for the United States and would be relatively cheap compared to other large national scientific efforts.

  6. Neonatal medicine in ancient art.

    PubMed

    Yurdakök, Murat

    2010-01-01

    There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau).

  7. Improving ancient DNA genome assembly

    PubMed Central

    Nieselt, Kay

    2017-01-01

    Most reconstruction methods for genomes of ancient origin that are used today require a closely related reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer approach, where multiple assemblies are generated in the first layer, which are then combined in the second layer. We used this two-layer assembly to generate assemblies for two different ancient samples and compared the results to current de novo assembly approaches. We are able to improve the assembly with respect to the length of the contigs and can resolve more repetitive regions. PMID:28392981

  8. Skeletal dysplasia in ancient Egypt.

    PubMed

    Kozma, Chahira

    2008-12-01

    The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society.

  9. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection. PMID:26715754

  10. Keto-Functionalized Polymer Scaffolds As Versatile Precursors to Polymer Side Chain Conjugates.

    PubMed

    Liu, Jingquan; Li, Ronald C; Sand, Gregory J; Bulmus, Volga; Davis, Thomas P; Maynard, Heather D

    2013-01-01

    A new methacrylate monomer with a reactive ketone side-chain, 2-(4-oxo-pentanoate) ethyl methacrylate (PAEMA), was synthesized and subsequently polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization to give a polymer with a narrow molecular weight distribution (PDI = 1.25). The polymer was chain extended with poly(ethylene glycol methyl ether acrylate) (PEGMA) to yield a block copolymer. Aminooxy containing small molecules and oligoethylene glycol were conjugated to the ketone functionality of the side chain in high yields. Cytotoxicity of the oxime-linked tetra(ethylene glycol) polymer to mouse fibroblast cells was investigated; the polymer was found to be non-cytotoxic up to 1 mg/mL. The ease with which this polymer is functionalized, suggests that it may be useful in forming tailored polymeric medicines.

  11. Chelating tris(amidate) ligands: versatile scaffolds for nickel(II).

    PubMed

    Jones, Matthew B; Newell, Brian S; Hoffert, Wesley A; Hardcastle, Kenneth I; Shores, Matthew P; MacBeth, Cora E

    2010-01-14

    The synthesis and characterization of nickel complexes supported by a family of open-chain, tetradentate, tris(amidate) ligands, [N(o-PhNC(O)R)(3)](3-) ([L(R)](3-) where R = (i)Pr, (t)Bu, and Ph) is described. The complexes [Ni(L(iPr))](-), [Ni(L(tBu))](-), and [Ni(L(Ph))(CH(3)CN)](-) have been characterized by solution-state spectroscopic methods and single crystal X-ray diffraction. Each ligand gives rise to a different primary coordination sphere about the nickel centre. These studies indicate that the ligands' acyl substituents can be used to regulate the coordination mode of the amidate donors to nickel and the coordination number of the nickel centres. In addition, the ability of these complexes to bind cyanide has been explored. These experiments demonstrate that only one of these complexes, [Ni(L(iPr))](-), is able to irreversibly bind cyanide and can be used to assemble [Et(4)N](3)[Ni(L(iPr))(mu(2)-CN)Co(L(iPr))], a cyanide bridged, heterobimetallic complex. The synthesis and characterization of the cyanide containing complexes, including magnetic susceptibility studies, are described.

  12. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  13. Scaffolding Experiences in Reading Instruction.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    This paper discusses the importance of scaffolding and other techniques in teaching reading. It details numerous ways to employ scaffolding, such as the following: a teacher may read aloud new passages while students follow along; a teacher may print new words on the chalkboard before students read a passage which uses the words; and teachers may…

  14. An ancient protein-DNA interaction underlying metazoan sex determination.

    PubMed

    Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J

    2015-06-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  15. An ancient protein-DNA interaction underlying metazoan sex determination

    PubMed Central

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-01-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds to a pseudopalindromic target DNA. Here we show that DMRT proteins employ a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to employ multiple DNA binding modes (tetramer, trimer, dimer). ChIP-Exo indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and in male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction that underlies much of metazoan sexual development. PMID:26005864

  16. An ancient protein-DNA interaction underlying metazoan sex determination

    SciTech Connect

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-05-25

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.

  17. An ancient protein-DNA interaction underlying metazoan sex determination

    DOE PAGES

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; ...

    2015-05-25

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less

  18. Night Blindness and Ancient Remedy

    PubMed Central

    Al Binali, H.A. Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  19. Biomaterial Scaffolds for Controlled, Localized Gene Delivery of Regenerative Factors

    PubMed Central

    Gower, Robert Michael; Shea, Lonnie D.

    2013-01-01

    Significance Biomaterials play central roles in tissue regeneration by maintaining a space for tissue growth and facilitating its integration with the host. The regenerative capacity of materials can be enhanced through delivery of factors that promote tissue formation. Gene delivery is a versatile strategy to obtain sustained production of tissue inductive factors. Biomaterial scaffolds capable of gene delivery have been shown to induce transgene expression and tissue growth. Critical Issues The widespread application of biomaterial scaffold systems requires identifying the design principles for the material and vectors that modulate transgene expression temporally and spatially. These technologies and others will ultimately enable spatial and temporal control over expression to recreate the cellular organization and gene expression required for formation of complex tissues. Recent Advances The design parameters for the biomaterials and vectors that modulate the extent and duration of transgene expression and the distribution of transgene-expressing cells within and around the injury are emerging. The cellular interactions with the biomaterial, such as adhesion or migration rate, can influence expression. Furthermore, modulating the interaction between the vector and biomaterial can control vector release while minimizing the exposure to harsh processing conditions. Future Directions Biomaterial scaffolds that deliver genes encoding for regenerative factors may provide a platform for regenerating complex tissues such as skin, blood vessels, and nerves. Biomaterials capable of localized gene delivery can synergistically target multiple cell processes and will have application to the regeneration of many tissues, with great promise for clinical therapies. PMID:24527333

  20. Nanostructured scaffolds for neural applications.

    PubMed

    Seidlits, Stephanie K; Lee, Jae Y; Schmidt, Christine E

    2008-04-01

    This review discusses the design of scaffolds having submicron and nanoscale features for neural-engineering applications. In particular, the goal is to create materials that can interface more intimately with individual neuronal cells, within both living tissues and in culture, by better mimicking the native extracellular environment. Scaffolds with nanoscale features have the potential to improve the specificity and accuracy of materials for a number of neural-engineering applications, ranging from neural probes for Parkinson's patients to guidance scaffolds for axonal regeneration in patients with traumatic nerve injuries. This review will highlight several techniques that are used to create nanostructured scaffolds, such as photolithography to create grooves for neurite guidance, electrospinning of fibrous matrices, self-assembly of 3D scaffolds from designer peptides and fabrication of conductive nanoscale materials. Most importantly, this review focuses on the effects of incorporating nanoscale architectures into these materials on neuronal and glial cell growth and function.

  1. Classification of Scaffold Hopping Approaches

    PubMed Central

    Sun, Hongmao; Tawa, Gregory; Wallqvist, Anders

    2012-01-01

    The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this review, scaffold hopping is classified into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics, and topology-based hopping. The structural diversity of original and final scaffolds with respect to each category will be reviewed. The advantages and limitations of small, medium, and large-step scaffold hopping will also be discussed. Software that is frequently used to facilitate different kinds of scaffold hopping methods will be summarized. PMID:22056715

  2. Bambus 2: scaffolding metagenomes

    PubMed Central

    Koren, Sergey; Treangen, Todd J.; Pop, Mihai

    2011-01-01

    Motivation: Sequencing projects increasingly target samples from non-clonal sources. In particular, metagenomics has enabled scientists to begin to characterize the structure of microbial communities. The software tools developed for assembling and analyzing sequencing data for clonal organisms are, however, unable to adequately process data derived from non-clonal sources. Results: We present a new scaffolder, Bambus 2, to address some of the challenges encountered when analyzing metagenomes. Our approach relies on a combination of a novel method for detecting genomic repeats and algorithms that analyze assembly graphs to identify biologically meaningful genomic variants. We compare our software to current assemblers using simulated and real data. We demonstrate that the repeat detection algorithms have higher sensitivity than current approaches without sacrificing specificity. In metagenomic datasets, the scaffolder avoids false joins between distantly related organisms while obtaining long-range contiguity. Bambus 2 represents a first step toward automated metagenomic assembly. Availability: Bambus 2 is open source and available from http://amos.sf.net. Contact: mpop@umiacs.umd.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21926123

  3. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  4. Retroflex Endings in Ancient Chinese

    ERIC Educational Resources Information Center

    Hashimoto, Mantaro J.

    1973-01-01

    Reconstruction of Ancient Chinese retroflex endings (syllable-final consonants) based on internal phonological evidence in Modern Chinese. Paper read at the December 1972 meeting of the Kukeo Hakhoe (The National Language Association of Korea); research supported by the Social Science Research Council, Committee for Korean Studies. (RS)

  5. The Echoes of Ancient Humans

    ERIC Educational Resources Information Center

    Watzman, Haim

    2006-01-01

    Several artifacts found at the Gesher Benot Ya'aqov, or Daughters of Jacob Bridge, archaeological site in Israel provide a picture of ancient human ancestors that is different from the once accepted by most scholars. The discoveries by Israeli archaeologist Naama Goren-Inbar suggest that humans developed language and other key abilities far…

  6. Drinking habits in ancient India.

    PubMed

    Somasundaram, Ottilingam; Raghavan, D Vijaya; Murthy, A G Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature.

  7. Adult Reading of Ancient Languages.

    ERIC Educational Resources Information Center

    Casler, Frederick H.

    Traditionally, students of ancient languages have been taught to translate rather than read. The four most popular current approaches to language instruction--the grammar-translation method, the direct-reading or inductive approach, the audiolingual method, and the structural approach--all have inherent deficiencies that are magnified when applied…

  8. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  9. Ancient medicine--a review.

    PubMed

    Zuskin, Eugenija; Lipozencić, Jasna; Pucarin-Cvetković, Jasna; Mustajbegović, Jadranka; Schachter, Neil; Mucić-Pucić, Branka; Neralić-Meniga, Inja

    2008-01-01

    Different aspects of medicine and/or healing in several societies are presented. In the ancient times as well as today medicine has been closely related to magic, science and religion. Various ancient societies and cultures had developed different views of medicine. It was believed that a human being has two bodies: a visible body that belongs to the earth and an invisible body of heaven. In the earliest prehistoric days, a different kind of medicine was practiced in countries such as Egypt, Greece, Rome, Mesopotamia, India, Tibet, China, and others. In those countries, "medicine people" practiced medicine from the magic to modern physical practices. Medicine was magical and mythological, and diseases were attributed mostly to the supernatural forces. The foundation of modern medicine can be traced back to ancient Greeks. Tibetan culture, for instance, even today, combines spiritual and practical medicine. Chinese medicine developed as a concept of yin and yang, acupuncture and acupressure, and it has even been used in the modern medicine. During medieval Europe, major universities and medical schools were established. In the ancient time, before hospitals had developed, patients were treated mostly in temples.

  10. Watchers of the Ancient Skies.

    ERIC Educational Resources Information Center

    Sherman, Ben

    1998-01-01

    Describes Lakota belief systems connected with the stars and how those beliefs directed Lakota existence, movements during the year, and ceremonies. Discusses winter camps, associated cultural practices such as storytelling, ancient wisdom, the concept of mirroring (constellations and corresponding land forms on earth), and the Black Hills annual…

  11. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  12. Drinking habits in ancient India

    PubMed Central

    Somasundaram, Ottilingam; Raghavan, D. Vijaya; Murthy, A. G. Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113

  13. The ancient name of rose.

    PubMed

    Dalby, A

    2001-01-01

    The article is a survey of plants foods and drugs that Greeks and Romans thought to be aphrodisiac and to have a specific effect on the male libido. The article is a useful support to study the sexual therapy in ancient world.

  14. Astronomical Deities in Ancient Mesoamerica

    NASA Astrophysics Data System (ADS)

    Milbrath, Susan

    The best known astronomical deities in ancient Mesoamerica are the sun, moon, and Venus. The Milky Way was also deified, and its constellations were visualized as celestial animals or locations. The sun and Venus were male deities, but the moon had both male and female aspects. Some of these concepts survive today in Mesoamerican ethnographic accounts referencing different transformations of the moon.

  15. The Echoes of Ancient Humans

    ERIC Educational Resources Information Center

    Watzman, Haim

    2006-01-01

    Several artifacts found at the Gesher Benot Ya'aqov, or Daughters of Jacob Bridge, archaeological site in Israel provide a picture of ancient human ancestors that is different from the once accepted by most scholars. The discoveries by Israeli archaeologist Naama Goren-Inbar suggest that humans developed language and other key abilities far…

  16. Ancient India: The Asiatic Ethiopians.

    ERIC Educational Resources Information Center

    Scott, Carolyn McPherson

    This curriculum unit was developed by a participant in the 1993 Fulbright-Hays Program "India: Continuity and Change." The unit attempts to place India in the "picture frame" of the ancient world as a part of a whole, not as a separate entity. Reading materials enable students to draw broader general conclusions based on the…

  17. The ancient art of memory.

    PubMed

    Hobson, Allan

    2013-12-01

    Revision of Freud's theory requires a new way of seeking dream meaning. With the idea of elaborative encoding, Sue Llewellyn has provided a method of dream interpretation that takes into account both modern sleep science and the ancient art of memory. Her synthesis is elegant and compelling. But is her hypothesis testable?

  18. Ancient and Modern Coins Unit Plans.

    ERIC Educational Resources Information Center

    United States Mint (Dept. of Treasury), Washington, DC.

    Ancient times comes to life when a student can hold in his/her hand or read about an artifact, such as a coin of the Greek or Roman era. Students are familiar with coins, and this commonality helps them understand the similarities and differences between their lives and times in ancient Greece or Rome. Many symbols on the ancient coins can be…

  19. A versatile scalable PET processing system

    SciTech Connect

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  20. Versatile microfluidic droplets array for bioanalysis.

    PubMed

    Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan

    2015-01-14

    We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods.

  1. The Versatile Link Demo Board (VLDB)

    NASA Astrophysics Data System (ADS)

    Martín Lesma, R.; Alessio, F.; Barbosa, J.; Baron, S.; Caplan, C.; Leitao, P.; Pecoraro, C.; Porret, D.; Wyllie, K.

    2017-02-01

    The Versatile Link Demonstrator Board (VLDB) is the evaluation kit for the radiation-hard Optical Link ecosystem, which provides a 4.8 Gbps data transfer link for communication between front-end (FE) and back-end (BE) of the High Energy Physics experiments. It gathers the Versatile link main radiation-hard custom Application-Specific Integrated Circuits (ASICs) and modules: GBTx, GBT-SCA and VTRx/VTTx plus the FeastMP, a radiation-hard in-house designed DC-DC converter. This board is the first design allowing system-level tests of the Link with a complete interconnection of the constitutive components, allowing data acquisition, control and monitoring of FE devices with the GBT-SCA pair.

  2. Hydroxyapatite-reinforced collagen tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kane, Robert J.

    Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, nondegradability, or a scaffold architecture not conducive to osteointegration. Biomimetic approaches to scaffold design using the two main components of bone tissue, collagen and hydroxyapatite, resulted in scaffolds with superior biological properties but relatively poor mechanical properties and scaffold architecture. It was hypothesized that by optimizing scaffold composition and architecture, HA-collagen bone tissue engineering scaffolds could provide both an excellent biological response along with improved structural properties. The mechanical properties of freeze-dried HA-collagen scaffolds, the most common type of porous HA-collagen material, were first shown to be increased by the addition of HA reinforcements, but scaffold stiffness still fell far short of the desired range. Based on limitations inherent in the freeze-dried process, a new type of leached-porogen scaffold fabrication process was developed. Proof-of-concept scaffolds demonstrated the feasibility of producing leached-porogen HA-collagen materials, and the scaffold architecture was optimized though careful selection of porogen particle size and shape along with an improved crosslinking technique. The final scaffolds exhibited substantially increased compressive modulus compared to previous types HA-collagen scaffolds, while the porosity, pore size, and scaffold permeability were tailored to be suitable for bone tissue ingrowth. An in vitro study demonstrated the capacity of the leached-porogen scaffolds to serve as a substrate for the differentiation of osteoblasts and subsequent production of new bone tissue. The new leached-porogen scaffold HA-collagen scaffolds were

  3. A parallel, portable and versatile treecode

    SciTech Connect

    Warren, M.S.; Salmon, J.K. |

    1994-10-01

    Portability and versatility are important characteristics of a computer program which is meant to be generally useful. We describe how we have developed a parallel N-body treecode to meet these goals. A variety of applications to which the code can be applied are mentioned. Performance of the program is also measured on several machines. A 512 processor Intel Paragon can solve for the forces on 10 million gravitationally interacting particles to 0.5% rms accuracy in 28.6 seconds.

  4. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  5. Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluation

    NASA Astrophysics Data System (ADS)

    Duan, Bin; Wang, Min; Li, Zhao Yang; Chan, Wai Chun; Lu, William W.

    2011-03-01

    The properties of bone tissue engineering scaffolds such as architecture, porosity, mechanical properties and surface properties have significant effects on cellular response and play an important role in bone regeneration. In this study, threedimensional nanocomposite scaffolds consisting of calcium phosphate (Ca-P) nanoparticles and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymer with controlled external and internal architectures were successfully produced via selective laser sintering (SLS), one of the versatile rapid prototyping techniques. The Ca-P/PHBV nanocomposite scaffolds had a porosity of (61.75±1.24)%, compressive strength of (2.16±0.21) MPa and Young's modulus of (26.98±2.29) MPa. The surface modification of scaffolds by gelatin was achieved through physical entrapment. The amount of entrapped gelatin could be controlled by varying the solvent composition and reaction time. The surface modification improved the hydrophilicity of scaffolds but did not significantly affect the surface morphology and mechanical properties. Osteoblast-like cells (SaOS-2) were cultured on scaffolds with and without gelatin surface modification. The majority of SaOS-2 cells were viable and proliferated in both types of scaffolds for up to 14 d in culture, as indicated by MTT assay and live and dead assay. Surface modification significantly increased cell proliferation for surface modified scaffolds, which could be due to the improvement in hydrophilicity of the scaffolds.

  6. Shortcut access to peptidosteroid conjugates: building blocks for solid-phase bile acid scaffold decoration by convergent ligation.

    PubMed

    Verzele, Dieter; Figaroli, Sara; Madder, Annemieke

    2011-12-07

    We present three versatile solid-supported scaffold building blocks based on the (deoxy)cholic acid framework and decorated with handles for further derivatization by modern ligation techniques such as click chemistry, Staudinger ligation or native chemical ligation. Straightforward procedures are presented for the synthesis and analysis of the steroid constructs. These building blocks offer a new, facile and shorter access route to bile acid-peptide conjugates on solid-phase with emphasis on heterodipodal conjugates with defined spatial arrangements. As such, we provide versatile new synthons to the toolbox for bile acid decoration.

  7. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  8. Dreams in ancient Greek Medicine.

    PubMed

    Laios, K; Moschos, M M; Koukaki, E; Vasilopoulos, E; Karamanou, M; Kontaxaki, M-I; Androutsos, G

    2016-01-01

    Dreams preoccupied the Greek and Roman world in antiquity, therefore they had a prominent role in social, philosophical, religious, historical and political life of those times. They were considered as omens and prophetic signs of future events in private and public life, and that was particularly accentuated when elements of actions which took place in the plot of dreams were associated directly or indirectly with real events. This is why it was important to use them in divination, and helped the growth of superstition and folklore believes. Medicine as a science and an anthropocentric art, could not ignore the importance of dreams, having in mind their popularity in antiquity. In ancient Greek medicine dreams can be divided into two basic categories. In the first one -which is related to religious medicine-dreams experienced by religionists are classified, when resorted to great religious sanctuaries such as those of Asclepius (Asclepieia) and Amphiaraos (Amfiaraeia). These dreams were the essential element for healing in this form of religious medicine, because after pilgrims underwent purifications they went to sleep in a special dwelling of the sanctuaries called "enkoimeterion" (Greek: the place to sleep) so that the healing god would come to their dreams either to cure them or to suggest treatment. In ancient Greek literature there are many reports of these experiences, but if there may be phenomena of self-suggestion, or they could be characterized as propaganda messages from the priesthood of each sanctuary for advertising purposes. The other category concerns the references about dreams found in ancient Greek medical literature, where one can find the attempts of ancient Greek physicians to interpret these dreams in a rational way as sings either of a corporal disease or of psychological distress. This second category will be the object of our study. Despite the different ways followed by each ancient Greek physician in order to explain dreams, their

  9. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  10. Ancient DNA extraction from plants.

    PubMed

    Kistler, Logan

    2012-01-01

    A variety of protocols for DNA extraction from archaeological and paleobotanical plant specimens have been proposed. This is not surprising given the range of taxa and tissue types that may be preserved and the variety of conditions in which that preservation may take place. Commercially available DNA extraction kits can be used to recover ancient plant DNA, but modifications to standard approaches are often necessary to improve yield. In this chapter, I describe two protocols for extracting DNA from small amounts of ancient plant tissue. The CTAB protocol, which I recommend for use with single seeds, utilizes an incubation period in extraction buffer and subsequent chloroform extraction followed by DNA purification and suspension. The PTB protocol, which I recommend for use with gourd rind and similar tissues, utilizes an overnight incubation of pulverized tissue in extraction buffer, removal of the tissue by centrifugation, and DNA extraction from the buffer using commercial plant DNA extraction kits.

  11. Molecular analysis of ancient caries.

    PubMed

    Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A; Jiménez-Marín, Andrea R; Malgosa, Assumpció

    2014-09-07

    An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains.

  12. Molecular analysis of ancient caries

    PubMed Central

    Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A.; Jiménez-Marín, Andrea R.; Malgosa, Assumpció

    2014-01-01

    An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains. PMID:25056622

  13. Ancient DNA and human history.

    PubMed

    Slatkin, Montgomery; Racimo, Fernando

    2016-06-07

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history.

  14. Ancient DNA and human history

    PubMed Central

    Slatkin, Montgomery; Racimo, Fernando

    2016-01-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  15. Versatile TPR domains accommodate different modes of target protein recognition and function.

    PubMed

    Allan, Rudi Kenneth; Ratajczak, Thomas

    2011-07-01

    The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.

  16. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  17. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  18. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  19. Psychiatric Thoughts in Ancient India*

    PubMed Central

    Abhyankar, Ravi

    2015-01-01

    A review of the literature regarding psychiatric thoughts in ancient India is attempted. Besides interesting reading, many of the concepts are still relevant and can be used in day-to-day practice especially towards healthy and happy living. Certain concepts are surprisingly contemporary and valid today. They can be used in psychotherapy and counselling and for promoting mental health. However, the description and classification of mental illness is not in tune with modern psychiatry. PMID:25838724

  20. Eclipses and Ancient Greek Philosophers

    NASA Astrophysics Data System (ADS)

    Rovithis-Livaniou, H.; Rovithis, P.

    2007-05-01

    Eclipses had attracted the interest of many ancient Greek philosophers, independently where they lived: on the mainland, or in the Greek colonies. In this short review their opinions are presented together with some predicted or registered solar or lunar eclipses. Moreover, the way of prediction as well as some other observations -like occultations by the Moon- are noted. Other findings -like the spherical shape of the Earth, the dimensions and the distances of the Moon and the Sun- are also mentioned.

  1. Nanoscience of an ancient pigment.

    PubMed

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-06

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times.

  2. Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds.

    PubMed

    Choi, Jonghoon; Kim, Kyobum; Kim, Taeho; Liu, Guanshu; Bar-Shir, Amnon; Hyeon, Taeghwan; McMahon, Michael T; Bulte, Jeff W M; Fisher, John P; Gilad, Assaf A

    2011-12-10

    The potential of poly(propylene fumarate) (PPF) scaffolds as drug carriers was investigated and the kinetics of the drug release quantified using magnetic resonance imaging (MRI) and optical imaging. Three different MR contrast agents were used for coating PPF scaffolds. Initially, iron oxide (IONP) or manganese oxide nanoparticles (MONP) carrying the anti-cancer drug doxorubicin were absorbed or mixed with the scaffold and their release into solution at physiological conditions was measured with MRI and optical imaging. A slow (hours to days) and functional release of the drug molecules into the surrounding solution was observed. In order to examine the release properties of proteins and polypeptides, protamine sulfate, a chemical exchange saturation transfer (CEST) MR contrast agent, was attached to the scaffold. Protamine sulfate showed a steady release rate for the first 24h. Due to its biocompatibility, versatile drug-loading capability and constant release rate, the porous PPF scaffold has potential in various biomedical applications, including MR-guided implantation of drug-dispensing materials, development of drug carrying vehicles, and drug delivery for tumor treatment.

  3. Ice-templated structures for biomedical tissue repair: From physics to final scaffolds

    NASA Astrophysics Data System (ADS)

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-06-01

    Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in a porous structure, which is a negative of the ice. As the final structure of the ice relies on the freezing of the solution, the variables which influence ice nucleation and growth alter the structure of ice-templated scaffolds. Nucleation, the initial step of freezing, can be altered by the type and concentration of solutes within the solution, as well as the set cooling rate before freezing. After nucleation, crystal growth and annealing processes, such as Ostwald ripening, determine the features of the final scaffold. Both crystal growth and annealing are sensitive to many factors including the set freezing temperature and solutes. The porous structures created using ice-templating allow scaffolds to be used for many diverse applications, from microfluidics to biomedical tissue engineering. Within the field of tissue engineering, scaffold structure can influence cellular behavior, and is thus critical for determining the biological stimulus supplied by the scaffold. The research focusing on controlling the ice-templated structure serves as a model for how other ice-templating systems might be tailored, to expand the applications of ice-templated structures to their full potential.

  4. In vivo imaging study of angiogenesis in a channelized porous scaffold.

    PubMed

    Tamplenizza, Margherita; Tocchio, Alessandro; Gerges, Irini; Martello, Federico; Martelli, Cristina; Ottobrini, Luisa; Lucignani, Giovanni; Milani, Paolo; Lenardi, Cristina

    2015-01-01

    The main scientific issue hindering the development of tissue engineering technologies is the lack of proper vascularization. Among the various approaches developed for boosting vascularization, scaffold design has attracted increasing interest over the last few years. The aim of this article is to illustrate a scaffold design strategy for enhancing vascularization based on sacrificial microfabrication of embedded microchannels. This approach was combined with an innovative poly(ether urethane urea) (PEUtU) porous scaffold to provide an alternative graft substitute material for the treatment of tissue defects. Fluorescent and chemiluminescent imaging combined with computed tomography were used to study the behavior of the scaffold composition within living subjects by analyzing angiogenesis and inflammation processes and observing the variation in x-ray absorption, respectively. For this purpose, an IntegriSense 680 probe was used in vivo for the localization and quantification of integrin αvβ3, due to its critical involvement in angiogenesis, and a XenoLight RediJect Inflammation Probe for the study of the decline in inflammation progression during healing. Overall, the collected data suggest the advantages of embedding a synthetic vascular network into a PEUtU porous matrix to enhance in vivo tissue integration, maturation, and regeneration. Moreover, our imaging approach proved to be an efficient and versatile tool for scaffold in vivo testing.

  5. Development of a multipurpose scaffold for the display of peptide loops.

    PubMed

    Rossmann, Maxim; J Greive, Sandra; Moschetti, Tommaso; Dinan, Michael; Hyvönen, Marko

    2017-06-01

    Protein-protein interactions (PPIs) determine a wide range of biological processes and analysis of these dynamic networks is increasingly becoming a mandatory tool for studying protein function. Using the globular ATPase domain of recombinase RadA as a scaffold, we have developed a peptide display system (RAD display), which allows for the presentation of target peptides, protein domains or full-length proteins and their rapid recombinant production in bacteria. The design of the RAD display system includes differently tagged versions of the scaffold, which allows for flexibility in the protein purification method, and chemical coupling for small molecule labeling or surface immobilization. When combined with the significant thermal stability of the RadA protein, these features create a versatile multipurpose scaffold system. Using various orthogonal biophysical techniques, we show that peptides displayed on the scaffold bind to their natural targets in a fashion similar to linear parent peptides. We use the examples of CK2β/CK2α kinase and TPX2/Aurora A kinase protein complexes to demonstrate that the peptide displayed by the RAD scaffold can be used in PPI studies with the same binding efficacy but at lower costs compared with their linear synthetic counterparts. © The Author 2017. Published by Oxford University Press.

  6. Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications.

    PubMed

    Houben, Annemie; Van Hoorick, Jasper; Van Erps, Jürgen; Thienpont, Hugo; Van Vlierberghe, Sandra; Dubruel, Peter

    2017-01-01

    Over the past decades, solid freeform fabrication (SFF) has emerged as the main technology for the production of scaffolds for tissue engineering applications as a result of the architectural versatility. However, certain limitations have also arisen, primarily associated with the available, rather limited range of materials suitable for processing. To overcome these limitations, several research groups have been exploring novel methodologies through which a construct, generated via SFF, is applied as a sacrificial mould for production of the final construct. The technique combines the benefits of SFF techniques in terms of controlled, patient-specific design with a large freedom in material selection associated with conventional scaffold production techniques. Consequently, well-defined 3D scaffolds can be generated in a straightforward manner from previously difficult to print and even "unprintable" materials due to thermomechanical properties that do not match the often strict temperature and pressure requirements for direct rapid prototyping. These include several biomaterials, thermally degradable materials, ceramics and composites. Since it can be combined with conventional pore forming techniques, indirect rapid prototyping (iRP) enables the creation of a hierarchical porosity in the final scaffold with micropores inside the struts. Consequently, scaffolds and implants for applications in both soft and hard tissue regeneration have been reported. In this review, an overview of different iRP strategies and materials are presented from the first reports of the approach at the turn of the century until now.

  7. Orthopedic surgery in ancient Egypt

    PubMed Central

    Blomstedt, Patric

    2014-01-01

    Background — Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. Methods — I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentrating especially on orthopedic surgery. Results — As is well known, both literary sources and the archaeological/osteological material bear witness to treatment of various fractures. The Egyptian painting, often claimed to depict the reduction of a dislocated shoulder according to Kocher’s method, is, however, open to interpretation. Therapeutic amputations are never depicted or mentioned in the literary sources, while the specimens suggested to demonstrate such amputations are not convincing. Interpretation — The ancient Egyptians certainly treated fractures of various kinds, and with varying degrees of success. Concerning the reductions of dislocated joints and therapeutic amputations, there is no clear evidence for the existence of such procedures. It would, however, be surprising if dislocations were not treated, even though they have not left traces in the surviving sources. Concerning amputations, the general level of Egyptian surgery makes it unlikely that limb amputations were done, even if they may possibly have been performed under extraordinary circumstances. PMID:25140982

  8. Dental surgery in ancient Egypt.

    PubMed

    Blomstedt, Patric

    2013-01-01

    Many different surgical procedures have over the years been attributed to the ancient Egyptians. This is also true regarding the field of dental surgery. The existence of dentists in ancient Egypt is documented and several recipes exist concerning dental conditions. However, no indications of dental surgery are found in the medical papyri or in the visual arts. Regarding the osteological material/mummies, the possible indications of dental surgery are few and weak. There is not a single example of a clear tooth extraction, nor of a filling or of an artificial tooth. The suggested examples of evacuation of apical abscesses can be more readily explained as outflow sinuses. Regarding the suggested bridges, these are constituted of one find likely dating to the Old Kingdom, and one possibly, but perhaps more likely, dating to the Ptolemaic era. Both seem to be too weak to have served any possible practical purpose in a living patient, and the most likely explanation would be to consider them as a restoration performed during the mummification process. Thus, while a form of dentistry did certainly exist in ancient Egypt, there is today no evidence of dental surgery.

  9. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  10. Versatile synthesis of the signaling peptide glorin

    PubMed Central

    Barnett, Robert; Raszkowski, Daniel; Winckler, Thomas

    2017-01-01

    We present a versatile synthesis of the eukaryotic signaling peptide glorin as well as glorinamide, a synthetic analog. The ability of these compounds to activate glorin-induced genes in the social amoeba Polysphondylium pallidum was evaluated by quantitative reverse transcription PCR, whereby both compounds showed bioactivity comparable to a glorin standard. This synthetic route will be useful in conducting detailed structure–activity relationship studies as well as in the design of chemical probes to dissect glorin-mediated signaling pathways. PMID:28326133

  11. [Ancient needling method--essence of ZHANG Shi-jie: a famous acupuncturist].

    PubMed

    Ma, Xin-Ping; Jiang, Yan

    2014-07-01

    ZHANG Shi-jie is one of the 500 famous TCM doctors designated by the State Administration of TCM and Beijing Municipal Health Bureau. ZHANG advocates ancient needling method and uses a unique treating method which includes comprehensive analysis of the four examinations and analogy; in his ancient treatment, he usually selects few acupoints and prefers Taixi (KI 3), he insists on stopping needling after the harmonious of qi and needling on alternative days; theoretically, ZHANG is versatile and full of learning, he follows the rule of yin and yang and adjusts his ways to cultivate the health; in his treatment, ZHANG considers the patients in diagnosis and treatment and combines the acupuncture with drugs; in teaching, he is strict and rigorous, on one hand, he is ruthless, but on the other hand, he is patient, demonstrating the sincere shining example of great doctors.

  12. An investigation into the ancient abortion laws: comparing ancient Persia with ancient Greece and Rome.

    PubMed

    Yarmohammadi, Hassan; Zargaran, Arman; Vatanpour, Azadeh; Abedini, Ehsan; Adhami, Siamak

    2013-01-01

    Since the dawn of medicine, medical rights and ethics have always been one of mankind's concerns. In any civilisation, attention paid to medical laws and ethics depends on the progress of human values and the advancement of medical science. The history of various civilisations teaches that each had its own views on medical ethics, but most had something in common. Ancient civilisations such as Greece, Rome, or Assyria did not consider the foetus to be alive and therefore to have human rights. In contrast, ancient Persians valued the foetus as a living person equal to others. Accordingly, they brought laws against abortion, even in cases of sexual abuse. Furthermore, abortion was considered to be a murder and punishments were meted out to the mother, father, and the person performing it.

  13. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.

    PubMed

    Zhao, Chunyan; Tan, Aaron; Pastorin, Giorgia; Ho, Han Kiat

    2013-01-01

    Tissue engineering is a clinically driven field and has emerged as a potential alternative to organ transplantation. The cornerstone of successful tissue engineering rests upon two essential elements: cells and scaffolds. Recently, it was found that stem cells have unique capabilities of self-renewal and multilineage differentiation to serve as a versatile cell source, while nanomaterials have lately emerged as promising candidates in producing scaffolds able to better mimic the nanostructure in natural extracellular matrix and to efficiently replace defective tissues. This article, therefore, reviews the key developments in tissue engineering, where the combination of stem cells and nanomaterial scaffolds has been utilized over the past several years. We consider the high potential, as well as the main issues related to the application of stem cells and nanomaterial scaffolds for a range of tissues including bone, cartilage, nerve, liver, eye etc. Promising in vitro results such as efficient attachment, proliferation and differentiation of stem cells have been compiled in a series of examples involving different nanomaterials. Furthermore, the merits of the marriage of stem cells and nanomaterial scaffolds are also demonstrated in vivo, providing early successes to support subsequent clinical investigations. This progress simultaneously drives mechanistic research into the mechanotransduction process responsible for the observations in order to optimize the process further. Current understanding is chiefly reported to involve the interaction of stem cells and the anchoring nanomaterial scaffolds by activating various signaling pathways. Substrate surface characteristics and scaffold bulk properties are also reported to influence not only short term stem cell adhesion, spreading and proliferation, but also longer term lineage differentiation, functionalization and viability. It is expected that the combination of stem cells and nanomaterials will develop into an

  14. DNA Origami: Scaffolds for Creating Higher Order Structures.

    PubMed

    Hong, Fan; Zhang, Fei; Liu, Yan; Yan, Hao

    2017-06-12

    DNA has become one of the most extensively used molecular building blocks for engineering self-assembling materials. DNA origami is a technique that uses hundreds of short DNA oligonucleotides, called staple strands, to fold a long single-stranded DNA, which is called a scaffold strand, into various designer nanoscale architectures. DNA origami has dramatically improved the complexity and scalability of DNA nanostructures. Due to its high degree of customization and spatial addressability, DNA origami provides a versatile platform with which to engineer nanoscale structures and devices that can sense, compute, and actuate. These capabilities open up opportunities for a broad range of applications in chemistry, biology, physics, material science, and computer science that have often required programmed spatial control of molecules and atoms in three-dimensional (3D) space. This review provides a comprehensive survey of recent developments in DNA origami structure, design, assembly, and directed self-assembly, as well as its broad applications.

  15. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  16. [Electrospinning technology in tissue engineering scaffolds].

    PubMed

    Li, Haoyi; Liu, Yong; He, Xuetao; Ding, Yumei; Yan, Hua; Xie, Pengcheng; Yang, Weimin

    2012-01-01

    Tissue engineering technology provides a new method to repair ill tissue and worn-out organs. In tissue engineering, scaffolds play an important role in supporting cell growth, inducing tissue regeneration, controlling tissue structure and releasing active factor. In the last decade, electrospinning technology developed rapidly and opened vast application fields for scaffolds. In this review, we summarized the technological conditions of electrospinning for scaffolds, the study of electrospun fiber scaffolds applied in tissue cell cultivation, and some new directions of electrospinning technology for scaffolds. We also addressed development directions of electrospinning research for scaffolds.

  17. Neuronal Networks on Nanocellulose Scaffolds.

    PubMed

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  18. A Versatile Ion Injector at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  19. VISYTER: versatile and integrated system for telerehabilitation.

    PubMed

    Parmanto, Bambang; Saptono, Andi; Pramana, Gede; Pulantara, Wayan; Schein, Richard M; Schmeler, Mark R; McCue, Michael P; Brienza, David M

    2010-11-01

    The versatile and integrated system for telerehabilitation (VISYTER) is a software platform for developing various telerehabilitation applications. VISYTER has been designed to take into account the environments and requirements of rehabilitation services. The requirements considered in the platform design include minimal equipment beyond what is available in many rehabilitation settings, minimal maintenance, and ease of setup and operation. In addition, the platform has been designed to be able to adjust to different bandwidths, ranging from the very fast new generation of Internet to residential broadband connections. VISYTER is a secure integrated system that combines high-quality videoconferencing with access to electronic health records and other key tools in telerehabilitation such as stimuli presentation, remote multiple camera control, remote control of the display screen, and an eye contact teleprompter. The software platform is suitable for supporting low-volume services to homes, yet scalable to support high-volume enterprise-wide telehealth services. The VISYTER system has been used to develop a number of telerehabilitation applications, including a remote wheelchair prescription, adult autistic assessments, and international physical therapy teleconsultations. An evaluation of VISYTER for delivering a remote wheelchair prescription was conducted on 48 participants. Results of the evaluation indicate a high level of satisfaction from patients with the use of VISYTER. The versatility and cost-effectiveness of the platform has the potential for a wide range of telerehabilitation applications and potentially may lower the technical and economic barriers of telemedicine adoption.

  20. Versatile asymmetric directional couplers on silicon

    NASA Astrophysics Data System (ADS)

    Dai, Daoxin; Li, Chenlei

    2016-11-01

    The coupling in a directional coupler (DC) has attracted lots of attention as a basic block for photonic integrated circuits. Most of previous work was focused on symmetric DCs consisting of two identical optical waveguides. In this case light power can be transferred from one waveguide to the other one completely when choosing the length L of the coupling region appropriately. Recently, an asymmetric DC (ADC) consisting of non-identical waveguides in the coupling region has been attracting more and more attention because of the versatility for various useful applications. ADCs can be formed by combining two ore more waveguides with different dimensions, shapes as well as bending radii for the core regions. In particular, silicon nanophotonics developed in the recent years provides a very good platform to make ADCs very useful and interesting. In this paper, we give a review for recent progresses of versatile ADCs on silicon, including the following three parts: (1) ADCs for power splitter used in microring resonators and Mach-Zehnder interferometers; (2) ADCs for realizing ultracompact and broadband PBSs; (3) ADCs for realizing mode (de)multiplexers.

  1. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  2. A Versatile Ion Injector at KACST

    SciTech Connect

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90 deg. deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  3. Ficus carica L. (Moraceae): an ancient source of food and health.

    PubMed

    Barolo, Melisa I; Ruiz Mostacero, Nathalie; López, Silvia N

    2014-12-01

    Since early in the man history, common fig was appreciated as food and for its medicinal properties. This review explores some aspects about the importance of Ficus carica L., an amazing and ancient source of medicines and food. Topics regarding chemistry, biological activity, ethno-pharmacological uses, and its nutritional value are discussed, as well as the potential of the species as a source of new and different chemical scaffolds. Very important in the past, appreciated in our time and extremely promising in the future, F. carica represents an interesting example of healthy foods and bioproducts.

  4. 1,2-HOIQO — A Highly Versatile 1,2-HOPO Analog

    PubMed Central

    Seitz, Michael; Pluth, Michael D.; Raymond, Kenneth N.

    2011-01-01

    A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single crystal X-ray analysis of the cerium species. The solid state structure in the monoclinic space group P21/c (C36H34CeN7O11, a=12.341(2)Å, b=26.649(4)Å, c=10.621(2)Å, α=γ=90°, β=96.753(3)°, V=3468.6(9)Å3, Z=4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyisocoumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogs. PMID:17279805

  5. 1,2-HOIQO--a highly versatile 1,2-HOPO analogue.

    PubMed

    Seitz, Michael; Pluth, Michael D; Raymond, Kenneth N

    2007-01-22

    A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single-crystal X-ray analysis of the cerium species. The solid-state structure in the monoclinic space group P2(1)/c (C(36)H(34)CeN(7)O(11), a = 12.341(2) A, b = 26.649(4) A, c = 10.621(2) A, alpha = gamma = 90 degrees, beta = 96.753(3) degrees, V = 3468.6(9) A3, Z = 4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyisocoumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogues.

  6. 1,2-HOIQO--A highly versatile 1,2-HOPO analog

    SciTech Connect

    Seitz, Michael; Pluth, Michael D.; Raymond, Kenneth N.

    2006-08-07

    A cyclic, bidentate hydroxamic acid binding unit based on an isoquinoline scaffold has been utilized for the synthesis of a hexadentate tripodal ligand based on the TREN backbone. This prototype for a new class of multidentate chelators forms mononuclear iron(III) complexes and one-dimensional coordination polymers with lanthanide(III) cations. The latter has been determined by single crystal X-ray analysis of the cerium species. The solid state structure in the monoclinic space group P2{sub 1}/c (C{sub 36}H{sub 34}CeN{sub 7}O{sub 11}, a = 12.341(2){angstrom}, b = 26.649(4){angstrom}, c = 10.621(2){angstrom}, {alpha} = {gamma} = 90{sup o}, {beta} = 96.753(3){sup o}, V = 3468.6(9) {angstrom}{sup 3}, Z = 4) exhibits a trigonal-dodecahedral environment around the cerium cation. The proof of concept for the versatility of the new scaffold has been shown by the modification of the crucial precursor 3-carboxyiso-coumarin through electrophilic aromatic substitutions to yield the corresponding chlorosulfonated and nitrated analogs.

  7. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Timothy Lyons, Professor of Biogeochemistry, UC Riverside, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  8. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Shawn Domagal-Goldman, Research Space Scientist, NASA Goddard Space Flight Center, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  9. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Christopher House, Professor of Geosciences, Pennsylvania State University, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  10. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Phoebe Cohen, Professor of Geosciences, Williams College, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  11. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Dawn Sumner, Professor of Geology, UC Davis, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  12. [Urinary schistosomiasis in ancient Egypt].

    PubMed

    Ziskind, Bernard

    2009-12-01

    First described by Theodor Bilharz in 1851, Schistosoma haematobium, the worm responsible for urinary schistosomiasis, was a major health problem along the Nile Valley until the present days. Haematuria, the main symptom of this parasitic disease, was known and treated in Egyptian medical papyri since 1550 B.C. A relationship between haematuria and the god Seth was envisaged. Sir Marc Armand Ruffer, pioneer of paleopathology, found (1910) calcified Schistosoma eggs in Egyptian mummies of the xxth dynasty, establishing that bilharzia plagued ancient Egypt people. The ELISA method demonstrated the Schistosoma circulating anodic antigen in 45% of mummies studied.

  13. Ancient Chinese Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.

  14. Scaffolds based bone tissue engineering: the role of chitosan.

    PubMed

    Costa-Pinto, Ana Rita; Reis, Rui L; Neves, Nuno M

    2011-10-01

    As life expectancy increases, malfunction or loss of tissue caused by injury or disease leads to reduced quality of life in many patients at significant socioeconomic cost. Even though major progress has been made in the field of bone tissue engineering, present therapies, such as bone grafts, still have limitations. Current research on biodegradable polymers is emerging, combining these structures with osteogenic cells, as an alternative to autologous bone grafts. Different types of biodegradable materials have been proposed for the preparation of three-dimensional porous scaffolds for bone tissue engineering. Among them, natural polymers are one of the most attractive options, mainly due to their similarities with extracellular matrix, chemical versatility, good biological performance, and inherent cellular interactions. In this review, special attention is given to chitosan as a biomaterial for bone tissue engineering applications. An extensive literature survey was performed on the preparation of chitosan scaffolds and their in vitro biological performance as well as their potential to facilitate in vivo bone regeneration. The present review also aims to offer the reader a general overview of all components needed to engineer new bone tissue. It gives a brief background on bone biology, followed by an explanation of all components in bone tissue engineering, as well as describing different tissue engineering strategies. Moreover, also discussed are the typical models used to evaluate in vitro functionality of a tissue-engineered construct and in vivo models to assess the potential to regenerate bone tissue are discussed.

  15. The effect of heparinized decellularized scaffolds on angiogenic capability.

    PubMed

    Wu, Qiong; Li, Yi; Wang, Yujia; Li, Li; Jiang, Xin; Tang, Jing; Yang, Hao; Zhang, Jie; Bao, Ji; Bu, Hong

    2016-12-01

    The immobilization of heparin, a new and versatile approach to the surface modification of decellularized tissues, has the potential to greatly improve the hemocompatibility of engineered tissue constructs derived from decellularized organs. We report on porcine decellularized liver scaffolds (DLSs) heparinized by the end-point attachment (EPA) technique. The heparinized DLSs (HEP-DLSs) have the ability to bind and slowly release heparin-binding growth factors. We hypothesized that DLS-immobilized heparin acts as an antithrombotic coating reagent and binds vascular endothelial growth factor (VEGF) to induce angiogenesis in the DLSs. Human umbilical vein endothelial cells (HUVECs) seeded on HEP-VEGF-DLSs attached and remained bioactive. Using the chicken chorioallantoic membrane (CAM) assay, we found that the HEP-VEGF-DLSs induced a significant and rapid enhancement of angiogenesis compared with native DLSs. Scaffolds were implanted in the greater omentum of rats and evaluated after 7, 14, 21, and 28 days. There were significant increases in the numbers of blood vessels in the HEP-VEGF-DLSs compared with native DLSs at all time-points. The modified method introduced in this article could overcome obstacles faced by conventional matrices that lack the ability to induce rapid and sufficient vascularization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3021-3030, 2016.

  16. Biologic scaffold for CNS repair.

    PubMed

    Meng, Fanwei; Modo, Michel; Badylak, Stephen F

    2014-05-01

    Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.

  17. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  18. Decellularized scaffolds in regenerative medicine

    PubMed Central

    Yu, Yaling; Alkhawaji, Ali; Ding, Yuqiang; Mei, Jin

    2016-01-01

    Allogeneic organ transplantation remains the ultimate solution for end-stage organ failure. Yet, the clinical application is limited by the shortage of donor organs and the need for lifelong immunosuppression, highlighting the importance of developing effective therapeutic strategies. In the field of regenerative medicine, various regenerative technologies have lately been developed using various biomaterials to address these limitations. Decellularized scaffolds, derived mainly from various non-autologous organs, have been proved a regenerative capability in vivo and in vitro and become an emerging treatment approach. However, this regenerative capability varies between scaffolds as a result of the diversity of anatomical structure and cellular composition of organs used for decellularization. Herein, recent advances in scaffolds based on organ regeneration in vivo and in vitro are highlighted along with aspects where further investigations and analyses are needed. PMID:27486772

  19. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications.

  20. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles.

    PubMed

    Marchegiani, G; Imperatori, P; Mari, A; Pilloni, L; Chiolerio, A; Allia, P; Tiberto, P; Suber, L

    2012-07-01

    Hydrophilic magnetite nanoparticles in the size range 30-10nm are easily and rapidly prepared under ultrasonic irradiation of Fe(OH)(2) in di- and tri-ethylene glycol/water solution with volume ratio varying between 7:3 and 3:7. Structural (XRD) and morphological (SEM) characterization reveal good crystalline and homogeneous particles whereas, when solvothermally prepared, the particles are inhomogeneous and aggregated. The sonochemically prepared particles are versatile, i.e. well suited to covalently bind molecules because of the free glycol hydroxylic groups on their surface or exchange the diethylene or triethylene glycol ligand. They can be easily transferred in hydrophobic solvents too. Room-temperature magnetic hysteresis properties measured by means of Vibrating Sample Magnetometer (VSM) display a nearly superparamagnetic character. The sonochemical preparation is easily scalable to meet industrial demand. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Versatile organic transistors by solution processing.

    PubMed

    Ward, Jeremy W; Lamport, Zachary A; Jurchescu, Oana D

    2015-04-27

    A selection of the latest developments in organic electronic materials and organic field-effect transistor (OFET) devices is reviewed here with an emphasis on the synthetic and manufacturing versatility, ease of processing, and low cost offered by solution processability. At the heart of these benefits is the nature of the weak van der Waals intermolecular interactions inherent to organic compounds. This allows processability with a relatively small amount of energy investment. Material solubility, in particular, creates unique pathways for film fabrication and the design of new device architectures, while presenting new manufacturing challenges to explore. In this review we provide a chronological presentation of the important developments in the solution-deposited organic small-molecule semiconductor, dielectric, and electrode materials used in OFETs, making specific note of current benchmarks. Organic device architectures and fabrication methods that are characterized by reduced complexity and ease of implementation are discussed.

  2. Functional versatility supports coral reef biodiversity.

    PubMed

    Bellwood, D R; Wainwright, P C; Fulton, C J; Hoey, A S

    2006-01-07

    We explore the role of specialization in supporting species coexistence in high-diversity ecosystems. Using a novel ordination-based method to quantify specialist and generalist feeding structures and diets we examined the relationship between morphology and diet in 120 wrasses and parrotfishes from the Great Barrier Reef. We find that wrasses, despite their morphological diversity, exhibit weak links between morphology and diet and that specialist morphologies do not necessarily equate to specialized diets. The dominant pattern shows extensive overlap in morphology (functional morphospace occupation) among trophic groups; fish with a given morphology may have a number of feeding modes. Such trophic versatility may lay the foundation for both the origins and maintenance of high biodiversity on coral reefs.

  3. Versatile UHV compatible Knudsen type effusion cell

    SciTech Connect

    Shukla, A.K.; Banik, S.; Dhaka, R.S.; Biswas, C.; Barman, S.R.; Haak, H.

    2004-11-01

    A versatile Knudsen type effusion cell has been fabricated for growing nanostructures and epitaxial layers of metals and semiconductors. The cell provides excellent vacuum compatibility (10{sup -10} mbar range during operation), efficient water cooling, uniform heating, and moderate input power consumption (100 W at 1000 deg. C). The thermal properties of the cell have been determined. The performance of the cell has been assessed by x-ray photoemission spectroscopy (XPS) for Mn adlayer growth on Al(111). We find that this Knudsen cell has a stable deposition rate of 0.17 monolayer per minute at 550 deg. C. From the XPS spectra, we show that the Mn adlayers are completely clean, i.e., devoid of any surface contamination.

  4. PRALINE: a versatile multiple sequence alignment toolkit.

    PubMed

    Bawono, Punto; Heringa, Jaap

    2014-01-01

    Profile ALIgNmEnt (PRALINE) is a versatile multiple sequence alignment toolkit. In its main alignment protocol, PRALINE follows the global progressive alignment algorithm. It provides various alignment optimization strategies to address the different situations that call for protein multiple sequence alignment: global profile preprocessing, homology-extended alignment, secondary structure-guided alignment, and transmembrane aware alignment. A number of combinations of these strategies are enabled as well. PRALINE is accessible via the online server http://www.ibi.vu.nl/programs/PRALINEwww/. The server facilitates extensive visualization possibilities aiding the interpretation of alignments generated, which can be written out in pdf format for publication purposes. PRALINE also allows the sequences in the alignment to be represented in a dendrogram to show their mutual relationships according to the alignment. The chapter ends with a discussion of various issues occurring in multiple sequence alignment.

  5. Functional versatility supports coral reef biodiversity

    PubMed Central

    Bellwood, D.R; Wainwright, P.C; Fulton, C.J; Hoey, A.S

    2005-01-01

    We explore the role of specialization in supporting species coexistence in high-diversity ecosystems. Using a novel ordination-based method to quantify specialist and generalist feeding structures and diets we examined the relationship between morphology and diet in 120 wrasses and parrotfishes from the Great Barrier Reef. We find that wrasses, despite their morphological diversity, exhibit weak links between morphology and diet and that specialist morphologies do not necessarily equate to specialized diets. The dominant pattern shows extensive overlap in morphology (functional morphospace occupation) among trophic groups; fish with a given morphology may have a number of feeding modes. Such trophic versatility may lay the foundation for both the origins and maintenance of high biodiversity on coral reefs. PMID:16519241

  6. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  7. A new versatile peroxidase from Pleurotus.

    PubMed

    Ruiz-Dueñas, F J; Camarero, S; Pérez-Boada, M; Martínez, M J; Martínez, A T

    2001-05-01

    Lignin peroxidase (LiP) and manganese peroxidase (MnP) have been investigated in Phanerochaete chrysosporium. A third ligninolytic peroxidase has been described in Pleurotus and Bjerkandera. Two of these versatile peroxidases (VPs) have been cloned, sequenced and characterized. They have high affinity for Mn(2+), hydroquinones and dyes, and also oxidize veratryl alcohol, dimethoxybenzene and lignin dimers. The deduced sequences show higher identity with Ph. chrysosporium LiP than MnP, but the molecular models obtained include a Mn(2+)-binding site. Concerning aromatic substrate oxidation, Pl. eryngii VP shows a putative long-range electron transfer pathway from an exposed trytophan to haem. Mutagenesis and chemical modification of this tryptophan and the acidic residues forming the Mn(2+)-binding site confirmed their role in catalysis. The existence of several substrate oxidation sites is supported further by biochemical evidence. Residue conservation in other fungal peroxidases is discussed.

  8. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    PubMed Central

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  9. [Biological evolution and ancient DNA].

    PubMed

    Debruyne, Régis; Barriel, Véronique

    2006-05-01

    Twenty years after the advent of ancient DNA studies, this discipline seems to have reached the maturity formerly lacking to the fulfilment of its objectives. In its early development paleogenetics, as it is now acknowledged, had to cope with very limited data due to the technical limitations of molecular biology. It led to phylogenetic assumptions often limited in their scope and sometimes non-focused or even spurious results that cast the reluctance of the scientific community. This time seems now over and huge amounts of sequences have become available which overcome the former limitations and bridge the gap between paleogenetics, genomics and population biology. The recent studies over the charismatic woolly mammoth (independent sequencing of the whole mitochondrial genome and of millions of base pairs of the nuclear genome) exemplify the growing accuracy of ancient DNA studies thanks to new molecular approaches. From the earliest publications up to now, the number of mammoth nucleotides was multiplied by 100,000. Likewise, populational approaches of ice-age taxa provide new historical scenarios about the diversification and extinction of the Pleistocene megafauna on the one hand, and about the processes of domestication of animal and vegetal species by Man on the other. They also shed light on the differential structure of molecular diversity between short-term populational research (below 2 My) and long-term (over 2 My) phylogenetic approaches. All those results confirm the growing importance of paleogenetics among the evolutionary biology disciplines.

  10. [Ancient history of Indian pharmacy].

    PubMed

    Okuda, Jun; Natsume, Yohko

    2010-01-01

    The study of the ancient history of Indian medicine has recently been revived due to the publication of polyglot translations. However, little is known of ancient Indian pharmacy. Archaeological evidence suggests the Indus people lived a settled life approximately in 2500 B.C. Their cities were enjoying the cleanest and most hygienic daily life with elaborate civic sanitation systems. The whole conception shows a remarkable concern for health. Then, the early Aryans invaded India about 1500 B.C. and the Vedic age started. The Rgveda texts contain the hymns for Soma and those for herbs. The term Ayurveda (i.e., science of life) is found in some old versions of both Ramāyana and Mahābhārata and in the Atharvaveda. Suśruta had the credit of making a breakthrough in the field of surgery. The Ayurveda, a work on internal medicine, gives the following transmission of sages: Brahmā-->Daksa-->Prajāpati-->Aśivinau-->Indra-->Caraka. On the other hand, the Suśruta-samhitā, which deals mainly with surgical medicine, explains it as follows; Indra-->Dhanvantari-->Suśruta Both Caraka and Suśruta were medical doctors as well as pharmacists, so they studied more than 1000 herbs thoroughly. The Ayurveda had been used by his devotees for medical purposes. It eventually spread over Asia with the advanced evolution of Buddhism.

  11. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…

  12. Bioresorbable vascular scaffold restenosis: intravascular imaging evaluation.

    PubMed

    Fabris, Enrico; Kilic, Ismail Dogu; Caiazzo, Gianluca; Serdoz, Roberta; Foin, Nicolas; Sinagra, Gianfranco; Di Mario, Carlo

    2015-11-21

    The mechanism of restenosis in bioresorbable vascular scaffold (BVS) may be different from that of metallic stents and it is still poorly investigated. Intravascular imaging techniques are useful tools for corroborating or excluding possible mechanisms of intra-scaffold restenosis. In these novel devices intravascular imaging should be systematically used for a better comprehension of the in-scaffold restenosis mechanism.

  13. Scaffolding in Technology-Enhanced Learning Environments

    ERIC Educational Resources Information Center

    Sharma, Priya; Hannafin, Michael J.

    2007-01-01

    Scaffolding has proven an especially interesting and promising area for supporting teaching and learning practices. Particular interest has emerged in scaffolding student learning in technology-enhanced environments. In this paper, we discuss how scaffolding is implemented in technology-enhanced environments, provide an overview of scaffolding…

  14. Designing Online Scaffolds for Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan

    2013-01-01

    The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…

  15. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) The minimum platform width for any work level shall not be less than 20 inches for mobile scaffolds... occupied. This paragraph does not apply to vertical movements of mobile scaffolds that are designed to move... proper repair. (f) Manually propelled mobile ladder stands and scaffolds shall conform to the...

  16. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The minimum platform width for any work level shall not be less than 20 inches for mobile scaffolds... occupied. This paragraph does not apply to vertical movements of mobile scaffolds that are designed to move... proper repair. (f) Manually propelled mobile ladder stands and scaffolds shall conform to the...

  17. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) The minimum platform width for any work level shall not be less than 20 inches for mobile scaffolds... occupied. This paragraph does not apply to vertical movements of mobile scaffolds that are designed to move... proper repair. (f) Manually propelled mobile ladder stands and scaffolds shall conform to the...

  18. Locust bean gum: a versatile biopolymer.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J

    2013-05-15

    Biopolymers or natural polymers are an attractive class of biodegradable polymers since they are derived from natural sources, easily available, relatively cheap and can be modified by suitable reagent. Locust bean gum is one of them that have a wide potentiality in drug formulations due to its extensive application as food additive and its recognized lack of toxicity. It can be tailored to suit its demands of applicants in both the pharmaceutical and biomedical areas. Locust bean gum has a wide application either in the field of novel drug delivery system as rate controlling excipients or in tissue engineering as scaffold formation. Through keen references of reported literature on locust bean gum, in this review, we have described critical aspects of locust bean gum, its manufacturing process, physicochemical properties and applications in various drug delivery systems.

  19. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scaffolds used as masons' or stonesetters' scaffolds. Such scaffolds are covered by paragraph (q) of this... scaffolds, and masons' multi-point adjustable suspension scaffolds. (1) When two or more scaffolds are used...

  20. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug.

  1. Giant ancient schwannoma of the pelvis.

    PubMed

    Hide, I G; Baudouin, C J; Murray, S A; Malcolm, A J

    2000-09-01

    A 43-year-old man with a large ancient schwannoma of the pelvis, presenting with varicose veins, is reported. Ancient schwannoma (neurilemmoma) is a benign tumour of nerve sheath origin characterised histologically by features of severe degeneration and which rarely can grow to a large size. Malignant transformation, though reported, is extremely rare.

  2. Attitudes Toward Deviant Sex in Ancient Mesopotamia

    ERIC Educational Resources Information Center

    Bullough, Vern L.

    1971-01-01

    The article concludes that the whole question of sexual life in ancient Mesopotamia is difficult to reconstruct and fraught with many uncertainties. Nevertheless, it seems certain that the ancient Mesopotamians had fewer prohibitions against sex than our own civilization, and regarded as acceptable many practices which later societies condemned.…

  3. Women--Sex Objects in Ancient Egypt.

    ERIC Educational Resources Information Center

    Mutimer, Brian T. P.

    Although it has been said that the women in Ancient Egypt enjoyed a reasonable state of social and professional equality with men, this paper presents an alternate theory--that women were second-class citizens whose physical prowess was secondary to their role as sex objects. It appears that men and women in Ancient Egypt often participated in the…

  4. Computed tomography of an ancient Egyptian cat.

    PubMed

    Falke, T H; Zweypfenning-Snijders, M C; Zweypfenning, R C; James, A E

    1987-01-01

    The use of CT in the documentation of ancient Egyptian mummified human remains has previously been described in this and other journals. We recently applied this technique to a collection of ancient Egyptian mummified fauna and sarcophagi. We selected an example to illustrate that CT is also uniquely suitable for the study of such specimens in a noninvasive way.

  5. Contemporary Greek Presentations of Ancient Greek Theatre.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    Confronted with the problems imposed by the stage presentation and interpretation of ancient Greek theatre to contemporary audiences, scholars have developed four major approaches to the presentation of Greek drama over the past 70 years. The first approach, referred to as modificationist or realist, claims that communicating ancient Greek drama…

  6. Magnetite biomineralization and ancient life on Mars.

    PubMed

    Frankel, R B; Buseck, P R

    2000-04-01

    Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.

  7. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  8. Harnessing Supramolecular and Peptidic Self-Assembly for the Construction of Reinforced Polymeric Tissue Scaffolds.

    PubMed

    Thompson, Chase B; Korley, LaShanda T J

    2017-05-17

    The repair and regeneration of the body's tissue using polymeric materials remains a main focus of biomaterials research. While hydrogels and elastomers have shown biocompatibility and high extensibility, they lack the required toughness to host proliferating cells. As the need for robust polymeric scaffolds grows, new technologies must emerge to meet the stringent physical and biological needs of proliferating cells. To this end, the utilization of self-assembling motifs allows for the construction of versatile networks in which cells can grow. In this review, we discuss emerging techniques that harness the assembling capabilities of synthetic supramolecular and natural peptide motifs to construct mechanically robust elastomers and hydrogel scaffolds. In particular, we focus on how the design and structure impact their mechanical properties and interaction with the cellular environment.

  9. Challenges in the characterization of plasma-processed three-dimensional polymeric scaffolds for biomedical applications.

    PubMed

    Fisher, Ellen R

    2013-10-09

    Low-temperature plasmas offer a versatile method for delivering tailored functionality to a range of materials. Despite the vast array of choices offered by plasma processing techniques, there remain a significant number of hurdles that must be overcome to allow this methodology to realize its full potential in the area of biocompatible materials. Challenges include issues associated with analytical characterization, material structure, plasma processing, and uniform composition following treatment. Specific examples and solutions are presented utilizing results from analyses of three-dimensional (3D) poly(ε-caprolactone) scaffolds treated with different plasma surface modification strategies that illustrate these challenges well. Notably, many of these strategies result in 3D scaffolds that are extremely hydrophilic and that enhance human Saos-2 osteoblast cell growth and proliferation, which are promising results for applications including tissue engineering and advanced biomedical devices.

  10. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering.

    PubMed

    Maude, Steven; Ingham, Eileen; Aggeli, Amalia

    2013-05-01

    Tissue engineered therapies are emerging as solutions to several of the medical challenges facing aging societies. To this end, a fundamental research goal is the development of novel biocompatible materials and scaffolds. Self-assembling peptides are materials that have undergone rapid development in the last two decades and they hold promise in meeting some of these challenges. Using amino acids as building blocks enables a great versatility to be incorporated into the structures that peptides form, their physical properties and their interactions with biological systems. This review discusses several classes of short self-assembling sequences, explaining the principles that drive their self-assembly into structures with nanoscale ordering, and highlighting in vitro and in vivo studies that demonstrate the potential of these materials as novel soft tissue engineering scaffolds.

  11. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility.

    PubMed

    Spano, F; Quarta, A; Martelli, C; Ottobrini, L; Rossi, R M; Gigli, G; Blasi, L

    2016-04-28

    Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post-implantation.

  12. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

    PubMed Central

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-01-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling. PMID:26858826

  13. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    PubMed Central

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  14. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    SciTech Connect

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  15. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers.

    PubMed

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-06-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(ε-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  16. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery.

    PubMed

    Cutiongco, Marie Francene A; Choo, Royden K T; Shen, Nathaniel J X; Chua, Bryan M X; Sju, Ervi; Choo, Amanda W L; Le Visage, Catherine; Yim, Evelyn K F

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.

  17. Phthalazin-1(2H)-one as a remarkable scaffold in drug discovery.

    PubMed

    Vila, Noemí; Besada, Pedro; Costas, Tamara; Costas-Lago, M Carmen; Terán, Carmen

    2015-06-05

    Phthalazinones are an important kind of nitrogen atom containing heterocyclic compounds due to their synthetic and pharmacological versatility. This fused heterocycle system represents a common structural feature for many bioactive compounds showing a variety of pharmacological activities such as anticancer, anti-diabetic, anti-asthmatic, antihistaminic, antihypertensive, antithrombotic, anti-inflammatory, analgesic, antidepressant or antimicrobial agents, which makes it an attractive scaffold for the design and development of new drugs. This review summarizes detailed and updated information, described in recent non-patent literature, about the most relevant pharmacological properties of phthalazinone derivatives, highlighting the application of this potent pharmacophore in drug discovery.

  18. Coaching Conversations: Enacting Instructional Scaffolding

    ERIC Educational Resources Information Center

    Gibson, Sharan A.

    2011-01-01

    This study analyzed coaching conversations and interviews of four coach/teacher partnerships for specific ways in which kindergarten and first-grade teachers, and coaches, conceptualized instructional scaffolding for guided reading. Interview transcripts were coded for coaches' and teachers' specific hypotheses/ ideas regarding instructional…

  19. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  20. Strategic Scaffolding for Scientific Inquiry

    ERIC Educational Resources Information Center

    Shelton, Angela; Natarajan, Uma; Willard, Catherine; Kane, Tera; Ketelhut, Diane Jass; Schifter, Catherine

    2013-01-01

    Though many national and international science organizations stress the importance of integrating scientific inquiry into classroom instruction, this is often difficult for teachers. Moreover, assessing and scaffolding inquiry skills for students can be even more of a challenge. This paper investigated the student performances in an inquiry-based,…

  1. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  2. Strategic Scaffolding for Scientific Inquiry

    ERIC Educational Resources Information Center

    Shelton, Angela; Natarajan, Uma; Willard, Catherine; Kane, Tera; Ketelhut, Diane Jass; Schifter, Catherine

    2013-01-01

    Though many national and international science organizations stress the importance of integrating scientific inquiry into classroom instruction, this is often difficult for teachers. Moreover, assessing and scaffolding inquiry skills for students can be even more of a challenge. This paper investigated the student performances in an inquiry-based,…

  3. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    PubMed

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  4. Hydrogel-laden paper scaffold system for origami-based tissue engineering

    PubMed Central

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S.

    2015-01-01

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca2+. This procedure ensures the formation of alginate hydrogel on the paper due to Ca2+ diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  5. 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells.

    PubMed

    Steffens, Daniela; Rezende, Rodrigo Alvarenga; Santi, Bruna; Pereira, Frederico David Alencar de Sena; Inforçatti Neto, Paulo; da Silva, Jorge Vicente Lopes; Pranke, Patricia

    2016-04-06

    Tissue engineering is a field which is currently under a great deal of investigation for the development and/or restoration of tissue and organs, through the combination of cell therapy with biomaterials. Rapid prototyping or additive manufacturing is a versatile technology which makes possible the fabrication of three dimensional (3D) structures from a wide range of materials with complex geometry and accuracy, such as scaffolds. The aim of this study has been to investigate the interaction between mesenchymal stem cells with poly (ε-caprolactone) (PCL) biomaterials used for obtaining scaffolds through additive manufacturing. Scanning electron microscopy, confocal microscopy and biological assays were performed to analyse the successful interaction between the cells and the biomaterials. As a result, the number of viable cells attached to the scaffolds was lower when compared to the control group; however, it was possible to observe cells in the scaffolds since day 1 of analysis, with regions of confluence after 21 days of seeding. To conclude, these biomaterials are interesting if used as medical artifacts, principally in tissue with prolonged regeneration time and which requires 3D supports with good mechanical properties.

  6. Detecting hybridization using ancient DNA.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2016-06-01

    It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history. © 2016 John Wiley & Sons Ltd.

  7. Topochemical investigation of ancient manuscripts.

    PubMed

    Wagner, B; Bulska, E; Hulanicki, A; Heck, M; Ortner, H M

    2001-04-01

    Various modern instrumental techniques for surface analysis were applied for the non-destructive physicochemical examination of works of art. As samples, pieces of ancient manuscripts endangered by iron-gall ink corrosion were used. Surface characterisation of the morphology of the cellulose fibres within corroded and non-corroded parts of the manuscript performed by scanning electron microscopy (SEM) showed seriously damaged cellulose fibres in the written parts. The elemental composition of selected parts of the manuscript was determined by energy dispersive X-ray fluorescence analysis (EDX). A more detailed study of the paper surface was then performed by electron probe microanalysis (EPMA). This technique yields the morphological characteristics of the surface as well as element distribution maps over the written area of the investigated manuscript.

  8. Sacred psychiatry in ancient Greece

    PubMed Central

    2014-01-01

    From the ancient times, there are three basic approaches for the interpretation of the different psychic phenomena: the organic, the psychological, and the sacred approach. The sacred approach forms the primordial foundation for any psychopathological development, innate to the prelogical human mind. Until the second millennium B.C., the Great Mother ruled the Universe and shamans cured the different mental disorders. But, around 1500 B.C., the predominance of the Hellenic civilization over the Pelasgic brought great changes in the theological and psychopathological fields. The Hellenes eliminated the cult of the Great Mother and worshiped Dias, a male deity, the father of gods and humans. With the Father's help and divinatory powers, the warrior-hero made diagnoses and found the right therapies for mental illness; in this way, sacerdotal psychiatry was born. PMID:24725988

  9. Dichotomy - a forgotten ancient principle.

    PubMed

    Surján, György

    2008-01-01

    Dichotomy is an ancient principle of categorisation, where a class is divided into two jointly exhaustive and mutually disjoint categories. The principle as a general requirement was abandoned during the middle. The recent inquiry shows that studying this principle is still worthwhile and in some cases it can be used as a quality assessment tool. The paper presents algorithms that can transform any kind of categorial structures into dichotomy. The resulting representation sometimes can make apparent the problematic parts of the source. Problems often result from stating Is_a relations without differentiating criteria. A simple experiment of dichotomous transformation of the high level categories of the first chapter of ICD was carried out. The problem of "other" and "not elsewhere classified" categories is discussed. we should not strive to build dichotomous structures but sometimes a dichotomous transformation of an existing structure can be helpful to detect critical parts of a system of categories.

  10. [Notes on ancient Islamic medicine].

    PubMed

    de Micheli-Serra, Alfredo

    2002-01-01

    Arab medicine arose as a consequence of the assimilation and breeding of Hellenistic medicine, particularly of Galenic medicine. It reached its high point between the X and XII centuries and, after the XIII century, lost all creative capabilities. Nevertheless, it achieved the status of being an incentive for European medieval medicine. Some aspects of the medical teaching and publications of the most distinguished Moslem physicians, such as Rhazes (865-932), Avicenna (980-1037), and Averroës (1126-1198) are described. The main characteristics of Moslem medical institutions such as guilds, hospitals, and organizations of professional practice also are discussed. Although Arab medicine essentially constituted a transmission vehicle of master ideas of ancient medical thought, this medicine awoke the interest and initiative of the medieval physicians of western Europe, for example, those at the medical school of Salerno.

  11. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  12. Ancient aqueous sedimentation on Mars

    SciTech Connect

    Goldspiel, J.M.; Squyres, S.W. )

    1991-02-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters. 48 refs.

  13. Detecting hybridization using ancient DNA

    PubMed Central

    Schaefer, Nathan K.; Shapiro, Beth; Green, Richard E.

    2016-01-01

    It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genome-wide sequence data, and discuss how these innovations have revised our understanding of human evolutionary history. PMID:26826668

  14. Ancient aqueous sedimentation on Mars

    NASA Astrophysics Data System (ADS)

    Goldspiel, J. M.; Squyres, S. W.

    1991-02-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters.

  15. Sacred psychiatry in ancient Greece.

    PubMed

    Tzeferakos, Georgios; Douzenis, Athanasios

    2014-04-12

    From the ancient times, there are three basic approaches for the interpretation of the different psychic phenomena: the organic, the psychological, and the sacred approach. The sacred approach forms the primordial foundation for any psychopathological development, innate to the prelogical human mind. Until the second millennium B.C., the Great Mother ruled the Universe and shamans cured the different mental disorders. But, around 1500 B.C., the predominance of the Hellenic civilization over the Pelasgic brought great changes in the theological and psychopathological fields. The Hellenes eliminated the cult of the Great Mother and worshiped Dias, a male deity, the father of gods and humans. With the Father's help and divinatory powers, the warrior-hero made diagnoses and found the right therapies for mental illness; in this way, sacerdotal psychiatry was born.

  16. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility

    NASA Astrophysics Data System (ADS)

    Spano, F.; Quarta, A.; Martelli, C.; Ottobrini, L.; Rossi, R. M.; Gigli, G.; Blasi, L.

    2016-04-01

    Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post-implantation.Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post

  17. Regulated Non-Viral Gene Delivery from Coaxial Electrospun Fiber Mesh Scaffolds

    PubMed Central

    Saraf, Anita; Baggett, L. Scott; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2009-01-01

    In an effort to add to the versatility of three-dimensional scaffolds for tissue engineering applications, recent experimental designs are incorporating biological molecules such as plasmids and proteins within the scaffold structure. Such scaffolds act as reservoirs for the biological molecules of interest while regulating their release over various durations of time. Here, we describe the use of coaxial electrospinning as a means for the fabrication of fiber mesh scaffolds and the encapsulation and subsequent release of a non-viral gene delivery vector over a period of up to 60 days. Various fiber mesh scaffolds containing plasmid DNA (pDNA) within the core and the non-viral gene delivery vector poly(ethylenimine)-hyaluronic acid (PEI-HA) within the sheath of coaxial fibers were fabricated based on a fractional factorial design that investigated the effects of four processing parameters at two levels. Poly(ε-caprolactone) sheath polymer concentration, poly(ethylene glycol) core polymer molecular weight and concentration, and the concentration of pDNA were investigated for their effects on average fiber diameter, release kinetics of PEI-HA, and transfection efficiency. It was determined that increasing the values of each of the investigated parameters caused an increase in the average diameter of the fibers. The release kinetics of PEI-HA from the fibers were affected by the loading concentration of pDNA (with PEI-HA concentration adjusted accordingly to maintain a constant nitrogen to phosphorous (N:P) ratio within the complexes). Two-dimensional cell culture experiments with model fibroblast-like cells demonstrated that complexes of pDNA with PEI-HA released from fiber mesh scaffolds could successfully transfect cells and induce expression of enhanced green fluorescent protein (EGFP). Peak EGFP expression varied with the investigated processing parameters, and the average transfection observed was a function of poly(ethylene glycol) (core) molecular weight and

  18. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds.

    PubMed

    Saraf, Anita; Baggett, L Scott; Raphael, Robert M; Kasper, F Kurtis; Mikos, Antonios G

    2010-04-02

    In an effort to add to the versatility of three-dimensional scaffolds for tissue engineering applications, recent experimental designs are incorporating biological molecules such as plasmids and proteins within the scaffold structure. Such scaffolds act as reservoirs for the biological molecules of interest while regulating their release over various durations of time. Here, we describe the use of coaxial electrospinning as a means for the fabrication of fiber mesh scaffolds and the encapsulation and subsequent release of a non-viral gene delivery vector over a period of up to 60 days. Various fiber mesh scaffolds containing plasmid DNA (pDNA) within the core and the non-viral gene delivery vector poly(ethylenimine)-hyaluronic acid (PEI-HA) within the sheath of coaxial fibers were fabricated based on a fractional factorial design that investigated the effects of four processing parameters at two levels. Poly(epsilon-caprolactone) sheath polymer concentration, poly(ethylene glycol) core polymer molecular weight and concentration, and the concentration of pDNA were investigated for their effects on average fiber diameter, release kinetics of PEI-HA, and transfection efficiency. It was determined that increasing the values of each of the investigated parameters caused an increase in the average diameter of the fibers. The release kinetics of PEI-HA from the fibers were affected by the loading concentration of pDNA (with PEI-HA concentration adjusted accordingly to maintain a constant nitrogen to phosphorous (N:P) ratio within the complexes). Two-dimensional cell culture experiments with model fibroblast-like cells demonstrated that complexes of pDNA with PEI-HA released from fiber mesh scaffolds could successfully transfect cells and induce expression of enhanced green fluorescent protein (EGFP). Peak EGFP expression varied with the investigated processing parameters, and the average transfection observed was a function of poly(ethylene glycol) (core) molecular weight

  19. HIV thrives in ancient traditions.

    PubMed

    Shreedhar, J

    1995-01-01

    Participation in ancient traditions is facilitating the current spread of HIV through India. For most of the year, Koovagam is a typical Indian village. Each April on the night of the full moon, however, the Chittirai-Pournami festival is held in Koovagam, a celebration in homage to Aravan during which up to 2000 pilgrims from across the country engage in thousands of acts of unprotected sexual intercourse. Aravan is a man depicted in a Hindu tale who asked to experience sexual bliss before being sacrificed to the gods. To fulfill this last wish, the god Krishna is said to have assumed the form of a beautiful woman and had sexual intercourse with Aravan. Many of the festival participants are hijras, eunuchs and transsexuals who sell sex for a living. Hijras may be accompanied by men who serve as their sex partners and bodyguards. Surveys suggest that one-third of the 10,000 hijras in New Delhi may be infected with HIV. Other participants are known as dangas, men who are either married or single and appear to lead strictly heterosexual lives throughout the year except during the Chittirai-Pournami festival when they dress as women and sell sex to other men attending the festival. The panthis comprise another group of participants and tend to be either single or married men who attend the festival to have sex with the hijras and dangas for fees up to ten rupees, approximately US$0.50, per sexual encounter. Prostitution within the devadasi sect and the sale of young, virgin girls in the state of Andhra Pradesh to the highest male bidders are other examples of how ancient traditions are facilitating the current spread of HIV in India.

  20. GPR prospection in ancient Ephesos

    NASA Astrophysics Data System (ADS)

    Hruska, Jiri; Fuchs, Gerald

    1999-03-01

    Urban area of ancient Ephesos (present Turkey) is too large to be fully excavated, so geophysical prospection and mapping can help with the investigation. Georadar is one of the most effective tools for it. Two different tasks solved by georadar are presented. The first problem was the interconnection between the city and the temple of Artemis. By historical records, it was made by two sacred procession roads, which had character of Graeco-Roman stoa, i.e., a roofed road. Only small parts of these roads were discovered in ruins or excavated. Some hundreds of metres from total length of a few kilometres became known, but the questions above were not solved. Then, the area was prospected by georadar. Series of GPR lines were scanned gradually from the last known points and evaluated right on the spot. As a result, a plan of georadar indications could be drawn. These indications created two lines tracing unknown parts of both roads joining together and then continuing till the entry of the temple. The results were confirmed by two boreholes. The second task was mapping of Hellenistic level of Tetragonos agora. At present, it is under the Roman level, and is visible only in some excavation pits. About a half the square was covered by detailed georadar survey. Numerous anomalies indicated presence of underground objects. Compared with the results of excavations, they were interpreted as ancient remains in several levels. Then plans of these indications were compiled for separated levels. Hellenistic buildings remains were mapped, forming an older agora, smaller and slightly different by its shape from the Roman building plan. Besides it, uncovered parts of Roman ruins were detected, as well as some remains of Classic and Archaic settlement levels. Some traces of even older human presence were found under them. Georadar results will serve as a guideline for future excavations.

  1. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data.

    PubMed

    Varin, Thibault; Schuffenhauer, Ansgar; Ertl, Peter; Renner, Steffen

    2011-07-25

    Identification of meaningful chemical patterns in the increasing amounts of high-throughput-generated bioactivity data available today is an increasingly important challenge for successful drug discovery. Herein, we present the scaffold network as a novel approach for mapping and navigation of chemical and biological space. A scaffold network represents the chemical space of a library of molecules consisting of all molecular scaffolds and smaller "parent" scaffolds generated therefrom by the pruning of rings, effectively leading to a network of common scaffold substructure relationships. This algorithm provides an extension of the scaffold tree algorithm that, instead of a network, generates a tree relationship between a heuristically rule-based selected subset of parent scaffolds. The approach was evaluated for the identification of statistically significantly active scaffolds from primary screening data for which the scaffold tree approach has already been shown to be successful. Because of the exhaustive enumeration of smaller scaffolds and the full enumeration of relationships between them, about twice as many statistically significantly active scaffolds were identified compared to the scaffold-tree-based approach. We suggest visualizing scaffold networks as islands of active scaffolds.

  2. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.

    PubMed

    Gao, Li; Li, Cuidi; Chen, Fangping; Liu, Changsheng

    2015-06-24

    A novel elastomeric material, poly(1,8-octanediol-co-citrate) (POC), has demonstrated tremendous versatility because of its advantageous toughness, tunable degradation properties, and efficient drug release capability. In this study, POC was used to improve the mechanical performance of β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). (3D) β-TCP/POC composite scaffolds were fabricated by a 3D printing technique based on the freeform fabrication system with micro-droplet jetting (FFS-MDJ). The physiochemical properties, compressive modulus, drug release behavior, and cell response of β-TCP/POC composite scaffolds were systematically investigated. The results showed that β-TCP/POC scaffolds had uniform macropores of 300-400 μm, porosity of approximately 45%, biodegradability in phosphate-buffered saline, and high compressive modulus of 50-75 MPa. With the incorporation of POC into β-TCP, the toughness of the composite scaffolds was improved significantly. Moreover, β-TCP/POC scaffolds exhibited sustained drug (ibuprofen (IBU)) release capability. Additionally, β-TCP/POC scaffolds facilitated C2C12 cell attachment and proliferation. It was indicated that the 3D-printed porous β-TCP/POC scaffolds with high compressive modulus and good drug delivery performance might be a promising candidate for bone defect repair.

  3. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  4. The Versatile Type VI Secretion System

    PubMed Central

    Alteri, Christopher J.; Mobley, Harry L.T.

    2016-01-01

    Summary Bacterial Type VI Secretion Systems (T6SS) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the ten years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. The field is beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this Chapter, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria. PMID:27227310

  5. On the Versatility of von Willebrand Factor

    PubMed Central

    Rauch, Antoine; Wohner, Nikolett; Christophe, Olivier D.; Denis, Cécile V.; Susen, Sophie; Lenting, Peter J.

    2013-01-01

    Von Willebrand factor (VWF) is a large multimeric protein, the function of which has been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). Moreover, increased plasma concentrations of VWF have been linked to an increased risk for thrombotic complications. In the previous decades, many studies have contributed to our understanding of how VWF is connected to the haemostatic system, particularly with regard to structure-function relationships. Interactive sites for important ligands of VWF (such as factor VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, and mutagenesis studies have confirmed the physiological relevance of the interactions between VWF and these ligands. However, we have also become aware that VWF has a more versatile character than previously thought, given its potential role in various non-hemostatic processes, like intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a summary of our knowledge on VWF structure-function relationships is provided in the context of the “classical” haemostatic task of VWF and in perspective of pathological processes beyond haemostasis. PMID:23936617

  6. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.

  7. Versatile fire barrier systems for telephone cable

    NASA Astrophysics Data System (ADS)

    Keith, R. H.; Dahms, D. G.; Licht, R. R.

    Fire barriers prevent smoke and fire spread along and between cables, through walls and floors, and protect critical conductors and equipment from heat. New flexible intrumescent materials expand up to 10 times when heated, are versatile and easy to install in sealing fire rated floor and wall penetrations. Telephone cables have large insulator/metal ratios and may have slack or oval jacketing, making older limited expansion materials ineffective. Strict design for specific cables and cable densities is obsoleted; reactive foaming chemicals are not needed for an effective seal. Fire expanding hydrated silicate particles are incorporated in a neoprene matrix yielding environmental protection for tough, flexible board, sheet, tape, caulk, putty, and foam rubber products. Penetration kits from these materials have been underwriter tested. Their UL ratings are compared with rubber blocks, foaming resins, and compressed washer devices. Traditional telecraft skills and tools install and adapt the new material to many cable types. Ease, simplicity, speed, and sureness of installation entry, and reentry/reseal are related to the fire hazard window of cable, fiber, or coax additions.

  8. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  9. Versatile nanocomposites in phosphoproteomics: a review.

    PubMed

    Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Hussain, Dilshad; Saeed, Adeela; Musharraf, Syed Ghulam; Huck, Christian W; Bonn, Günther K

    2012-10-17

    Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment.

  10. Development of versatile multiaperture negative ion sources

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Serianni, G.; Antoni, V.; Bigi, M.; De Muri, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Cazzador, M.; Degli Agostini, F.; Franchin, L.; Kulevoy, T.; Laterza, B.; Mimo, A.; Minarello, A.; Petrenko, S.; Ravarotto, D.; Rossetto, F.; Sattin, M.; Zaniol, B.; Zucchetti, S.

    2015-04-01

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at -60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  11. Multiplexed microimmunoassays on a digital versatile disk.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis A; Arnandis-Chover, Tania; Puchades, Rosa; Maquieira, Angel

    2009-07-15

    Multiplexed microimmunoassays for five critical compounds were developed using a digital versatile disk (DVD) as an analytical support and detecting technology. To this end, coating conjugates were adsorbed on the polycarbonate face of the disk; a pool of specific antibodies, gold labeled secondary antibodies, and silver amplification were addressed for developing the assays. The detection principle is based on the capture of attenuated analog signals with the disk drive that were proportional to optical density of the immunoreaction product. The multiplexed assay achieved detection limits (IC10) of 0.06, 0.25, 0.37, 0.16, and 0.10 microg/L, sensitivities of (IC50) 0.54, 1.54, 2.62, 2.02, and 5.9 microg/L, and dynamic ranges of 2 orders of magnitude for atrazine, chlorpyrifos, metolachlor, sulfathiazole, and tetracycline, respectively. The features of the methodology were verified by analyzing natural waters and compared with reference chromatographic methods, showing its potential for high-throughput multiplexed screening applications. Analytes of different chemical nature (pesticides and antibiotics) were directly quantified without sample treatment or preconcentration in a total time of 30 min with similar sensitivity and selectivity to the ELISA plate format using the same immunoreagents. The multianalyte capabilities of immunoassaying methods developed with digital disk and drive demonstrated the competitiveness to quantify targets that require different sample treatment and instrumentation by chromatographic methods.

  12. Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes.

    PubMed

    Zhao, Zhengtuo; Luan, Lan; Wei, Xiaoling; Zhu, Hanlin; Li, Xue; Lin, Shengqing; Siegel, Jennifer J; Chitwood, Raymond A; Xie, Chong

    2017-08-09

    Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.

  13. Projective Peridynamics for Modeling Versatile Elastoplastic Materials.

    PubMed

    He, Xiaowei; Wang, Huamin; Wu, Enhua

    2017-09-22

    Unified simulation of versatile elastoplastic materials and different dimensions offers many advantages in animation production, contact handling, and hardware acceleration. The unstructured particle representation is particularly suitable for this task, thanks to its simplicity. However, previous meshless techniques either need too much computational cost for addressing stability issues, or lack physical meanings and fail to generate interesting deformation behaviors, such as the Poisson effect. In this paper, we study the development of an elastoplastic model under the state-based peridynamics framework, which uses integrals rather than partial derivatives in its formulation. To model elasticity, we propose a unique constitutive model and an efficient iterative simulator solved in a projective dynamics way. To handle plastic behaviors, we incorporate our simulator with the Drucker-Prager yield criterion and a reference position update scheme, both of which are implemented under peridynamics. Finally, we show how to strengthen the simulator by position-based constraints and spatially varying stiffness models, to achieve incompressibility, particle redistribution, cohesion, and friction effects in viscoelastic and granular flows. Our experiments demonstrate that our unified, meshless simulator is flexible, efficient, robust, and friendly with parallel computing.

  14. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams.

  15. Form follows function -- the versatile fungal cytoskeleton.

    PubMed

    Lichius, Alexander; Berepiki, Adokiye; Read, Nick D

    2011-06-01

    The cytoskeleton plays a major role in the regulation of fungal cell morphogenesis. The fungal cytoskeleton is comprised of three polymers: F-actin, microtubules and septins. Due to the successful application of the newly developed Lifeact probe for live-cell imaging of F-actin it is now possible, in combination with existing microtubule markers and fluorescently labelled septins, to monitor real-time dynamics of the entire fungal cytoskeleton, and reassess the many and integrated roles of F-actin, microtubules and septins throughout fungal growth and development. Evidence is accumulating that functional properties of higher-order structures derived from actin and septin filaments interacting with microtubules are employed in different ways in different cell types. This may reflect marked differences in cytoskeletal architecture that are found, for example, in unicellular yeasts, spore germlings and mature fungal hyphae. In this review we address key aspects of the versatile fungal cytoskeleton, highlight recently gained insights into important roles of F-actin in filamentous fungi, and raise some key questions that are likely to be solved in the coming years based on the new experimental tools that have recently become available. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  17. Versatile mobile lidar system for environmental monitoring.

    PubMed

    Weibring, Petter; Edner, Hans; Svanberg, Sune

    2003-06-20

    A mobile lidar (light detection and ranging) system for environmental monitoring is described. The optical and electronic systems are housed in a truck with a retractable rooftop transmission and receiving mirror, connected to a 40-cm-diameter vertically looking telescope. Two injection-seeded Nd:YAG lasers are employed in connection with an optical parametric oscillator-optical parametric amplification transmitter, allowing deep-UV to mid-IR wavelengths to be generated. Fast switching that employs piezoelectric drivers allows multiwavelength differential absorption lidar for simultaneous measurements of several spectrally overlapping atmospheric species. The system can also be used in an imaging multispectral laser-induced fluorescence mode on solid targets. Advanced LabVIEW computer control and multivariate data processing render the system versatile for a multitude of measuring tasks. We illustrate the monitoring of industrial atmospheric mercury and hydrocarbon emissions, volcanic sulfur dioxide plume mapping, fluorescence lidar probing of seawater, and multispectral fluorescence imaging of the facades of a historical monument.

  18. Type IV Pilin Proteins: Versatile Molecular Modules

    PubMed Central

    Giltner, Carmen L.; Nguyen, Ylan

    2012-01-01

    Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

  19. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  20. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-12-01

    Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base.

  1. [Ancient Greek in modern language of medicine].

    PubMed

    Marković, Vera

    2007-01-01

    In order to standardize language of medicine, it is essential to have a good command of ancient Greek and Latin. We cannot deny a huge impact of ancient Greek medicine on medical terminology. Compounds of Greek origin related to terms for organs, illnesses, inflammations, surgical procedures etc. have been listed as examples. They contain Greek prefixes and suffixes transcribed into Latin and they have been analysed. It may be concluded that the modern language of medicine basically represents the ancient Greek language transcribed into Latin.

  2. gargammel: a sequence simulator for ancient DNA.

    PubMed

    Renaud, Gabriel; Hanghøj, Kristian; Willerslev, Eske; Orlando, Ludovic

    2016-10-29

    Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico, we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets.

  3. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  4. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array

    PubMed Central

    Devault, Alison M.; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M.; Enk, Jacob M.; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N.; Dhody, Anna N.; Poinar, Hendrik N.

    2014-01-01

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis (“Black Death” plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time. PMID:24603850

  5. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-03-06

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.

  6. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering.

    PubMed

    Nadeem, Danish; Smith, Carol-Anne; Dalby, Matthew J; Meek, R M Dominic; Lin, Sien; Li, Gang; Su, Bo

    2015-01-06

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration.

  7. Synthesis and application of a bromomethyl substituted scaffold to be used for efficient optimization of anti-virulence activity

    PubMed Central

    Chorell, Erik; Bengtsson, Christoffer; Banchelin, Thomas Sainte-Luce; Das, Pralay; Uvell, Hanna; Sinha, Arun K.; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik

    2013-01-01

    Pilicides are a class of compounds that attenuate virulence in Gram negative bacteria by blocking the chaperone/usher pathway in Escherichia coli. It has also been shown that compounds derived from the peptidomimetic scaffold that the pilicides are based on can prevent both Aβ aggregation and curli formation. To facilitate optimizations towards the different targets, a new synthetic platform has been developed that enables fast and simple introduction of various substituents in position C-7 on the peptidomimetic scaffold. Importantly, this strategy also enables introduction of previously unattainable heteroatoms in this position. Pivotal to the synthetic strategy is the synthesis of a C-7 bromomethyl substituted derivative of the ring-fused dihydrothiazolo 2-pyridone pilicide scaffold. From this versatile and reactive intermediate various heteroatom-linked substituents could be introduced on the scaffold including amines, ethers, amides and sulfonamides. In addition, carbon-carbon bonds could be introduced to the sp3-hybridized bromomethyl substituted scaffold by Suzuki–Miyaura cross couplings. Evaluation of the 24 C-7 substituted compounds in whole-bacterial assays provided important structure–activity data and resulted in the identification of a number of new pilicides with activity as good or better than those developed previously. PMID:21316127

  8. Induction of cell migration in vitro by an electrospun PDGF-BB/PLGA/PEG-PLA nanofibrous scaffold.

    PubMed

    Zhao, Xia; Hadjiargyrou, Michael

    2011-12-01

    Electrospinning is a versatile technique used to fabricate potential tissue engineering scaffolds with a structure similar to the native extracellular matrix (ECM). In this study, Platelet-Derived Growth Factor (PDGF)-BB with BSA as a carrier protein was incorporated into an electrospun PLGA/PEG-PLA composite scaffold for induction of cell migration, an early process necessary for tissue regeneration and wound healing. Incorporating PDGF-BB into the fibers did not change the overall morphology of the scaffold, with the exception of a slight increase (approximately 12%) in the number of fibers with diameters ranging from 1-100 nm. Following a strong burst of release during the initial 24 hours, approximately 20% of the total incorporated PDGF-BB was released from the scaffold over 5 days, as determined by ELISA. The presence of the released PDGF-BB was also confirmed via SDS-PAGE. Using an in vitro agarose-cell migration assay with MC3T3 pre-osteoblastic cells, the preserved bioactivity of the released PDGF-BB was demonstrated via its ability to stimulate robust cell migration, equivalent to that of pure unincorporated (control) PDGF-BB. Overall, this study demonstrates that it is feasible to incorporate and deliver bioactive PDGF-BB via an electrospun scaffold for potential tissue repair applications, especially as a potent inducer of cell migration.

  9. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  10. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    SciTech Connect

    Bustard, Chad; Zweibel, Ellen G.; D’Onghia, Elena

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  11. The neural crest: a versatile organ system.

    PubMed

    Zhang, Dongcheng; Ighaniyan, Samiramis; Stathopoulos, Lefteris; Rollo, Benjamin; Landman, Kerry; Hutson, John; Newgreen, Donald

    2014-09-01

    The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy. © 2014 Wiley Periodicals, Inc.

  12. Metadata Authoring with Versatility and Extensibility

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Olsen, Lola

    2004-01-01

    NASA's Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 13,800 data set descriptions in Directory Interchange Format (DIF) and 700 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information and direct links to the data, thus allowing researchers to discover data pertaining to a geographic location of interest, then quickly acquire those data. The GCMD strives to be the preferred data locator for world-wide directory-level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are attracting widespread usage; however, a need for tools that are portable, customizable and versatile still exists. With tool usage directly influencing metadata population, it has become apparent that new tools are needed to fill these voids. As a result, the GCMD has released a new authoring tool allowing for both web-based and stand-alone authoring of descriptions. Furthermore, this tool incorporates the ability to plug-and-play the metadata format of choice, offering users options of DIF, SERF, FGDC, ISO or any other defined standard. Allowing data holders to work with their preferred format, as well as an option of a stand-alone application or web-based environment, docBUlLDER will assist the scientific community in efficiently creating quality data and services metadata.

  13. Laser solidification of injectable scaffolds

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Bagratashvili, V. N.; Borschenko, I. A.; Khlebtsov, B. N.; Khlebtsov, N. G.; Minaeva, S. A.; Popov, V. K.; Popova, A. V.

    2012-09-01

    A novel laser sintering approach of polymer powder and surgical suture material within the cavities has been developed to fabricate biodegradable intra-cavity scaffolds. In the frameworks of such sintering approach, laser radiation is absorbed by the surface of the sintered materials only and cannot damage the surrounding tissue. Our experiments demonstrate the feasibility of fabricated solid intra-cavity polymer structures with a minimally invasive endoscopic technique. This novel approach looks very promising for engineering of spinal discs tissues.

  14. Scaffold Diversity of Fungal Metabolites

    PubMed Central

    González-Medina, Mariana; Owen, John R.; El-Elimat, Tamam; Pearce, Cedric J.; Oberlies, Nicholas H.; Figueroa, Mario; Medina-Franco, José L.

    2017-01-01

    Many drug discovery projects rely on commercial compounds to discover active leads. However, current commercial libraries, with mostly synthetic compounds, access a small fraction of the possible chemical diversity. Natural products, in contrast, possess a vast structural diversity and have proven to be an outstanding source of new drugs. Several chemoinformatic analyses of natural products have demonstrated their diversity and structural complexity. However, to our knowledge, the scaffold content and structural diversity of fungal secondary metabolites have never been studied. Herein, the scaffold diversity of 223 fungal metabolites was measured and compared to the diversity of approved drugs and commercial libraries for HTS containing natural, synthetic, and semi-synthetic compounds. In addition, the global diversity of the fungal isolates was assessed and compared to other reference data sets using Consensus Diversity Plots, a chemoinformatic tool recently developed. It was concluded that fungal secondary metabolites are cyclic systems with few ramifications and more diverse than the commercial libraries with natural products and semi-synthetic compounds. The fungal metabolites data set was one of the most structurally diverse, containing a large proportion of different and unique scaffolds not found in the other compound data sets including ChEMBL. Therefore, fungal metabolites offer a rich source of molecules suited for identifying diverse candidates for drug discovery. PMID:28420994

  15. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  16. Scaffold Diversity of Fungal Metabolites.

    PubMed

    González-Medina, Mariana; Owen, John R; El-Elimat, Tamam; Pearce, Cedric J; Oberlies, Nicholas H; Figueroa, Mario; Medina-Franco, José L

    2017-01-01

    Many drug discovery projects rely on commercial compounds to discover active leads. However, current commercial libraries, with mostly synthetic compounds, access a small fraction of the possible chemical diversity. Natural products, in contrast, possess a vast structural diversity and have proven to be an outstanding source of new drugs. Several chemoinformatic analyses of natural products have demonstrated their diversity and structural complexity. However, to our knowledge, the scaffold content and structural diversity of fungal secondary metabolites have never been studied. Herein, the scaffold diversity of 223 fungal metabolites was measured and compared to the diversity of approved drugs and commercial libraries for HTS containing natural, synthetic, and semi-synthetic compounds. In addition, the global diversity of the fungal isolates was assessed and compared to other reference data sets using Consensus Diversity Plots, a chemoinformatic tool recently developed. It was concluded that fungal secondary metabolites are cyclic systems with few ramifications and more diverse than the commercial libraries with natural products and semi-synthetic compounds. The fungal metabolites data set was one of the most structurally diverse, containing a large proportion of different and unique scaffolds not found in the other compound data sets including ChEMBL. Therefore, fungal metabolites offer a rich source of molecules suited for identifying diverse candidates for drug discovery.

  17. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  18. Vascular medicine and surgery in ancient Egypt.

    PubMed

    Barr, Justin

    2014-07-01

    Lauded alike by ancient civilizations and modern society, pharaonic Egyptian medicine remains an object of fascination today. This article discusses its surprisingly sophisticated understanding of a cardiovascular system. The term "cardiovascular system," however, carries assumptions and meanings to a modern audience, especially readers of this journal, which simply do not apply when considering ancient conceptions of the heart and vessels. For lack of better language, this article will use "cardiovascular" and similar terms while recognizing the anachronistic inaccuracy. After briefly summarizing ancient Egyptian medicine generally, it will review the anatomy, pathology, and treatment of the vasculature. The practice of mummification in ancient Egypt provides a unique opportunity for paleopathology, and the conclusion will explore evidence of arterial disease from a modern scientific perspective.

  19. Outline of an Ancient Sea on Titan

    NASA Image and Video Library

    2012-10-16

    This image from NASA Cassini spacecraft shows an ancient southern sea that used to sprawl out near the south pole of Saturn moon Titan. Within this basin is the largest present-day lake in Titan southern hemisphere, Ontario Lacus.

  20. Ganymede - Ancient Impact Craters in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    Ancient impact craters shown in this image of Jupiter moon Ganymede taken by NASA Galileo spacecraft testify to the great age of the terrain, dating back several billion years. http://photojournal.jpl.nasa.gov/catalog/PIA00279

  1. Ancient Dry Spells Offer Clues About Drought

    NASA Image and Video Library

    New research indicates that the ancient Mesoamerican civilizations of the Mayans and Aztecs amplified droughts in the Yucatán and southern Mexico by clearing rainforests to make room for pastures ...

  2. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  3. Ancient history of congenital adrenal hyperplasia.

    PubMed

    New, Maria I

    2011-01-01

    Although there are many erudite reports on the history of endocrinology and endocrine disorders, the history of congenital adrenal hyperplasia has not been published. I have tried to review ancient as well as modern history of CAH.

  4. Archaeology: High tech from Ancient Greece

    NASA Astrophysics Data System (ADS)

    Charette, François

    2006-11-01

    The Antikythera Mechanism, salvaged 100 years ago from an ancient shipwreck, was long known to be some sort of mechanical calendar. But modern analysis is only now revealing just how sophisticated it was.

  5. Dental health and disease in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-04-25

    In ancient Egypt the exceptionally dry climate together with the unique burial customs has resulted in the survival of large numbers of well-preserved skeletal and mummified remains. Examinations of these remains together with an analysis of the surviving documentary, archaeological and ethnographic evidence has enabled a detailed picture of the dental health of these ancient people to be revealed, perhaps more so than for any other civilisation in antiquity. In this, the first of two articles, the dental pathological conditions that afflicted the ancient Egyptians is considered. The commonest finding is that of tooth wear, which was often so excessive that it resulted in pulpal exposure. Multiple abscesses were frequently seen, but caries was not a significant problem. Overall the findings indicate that the various pathological conditions and non-pathological abnormalities of teeth evident in dentitions in the twenty-first century were also manifest in ancient Egypt, although the incidences of these conditions varies considerably between the civilisations.

  6. VRIKSHAYURVEDA (Arboreal Medicine in Ancient India)

    PubMed Central

    Ramachanran, C.K.

    1984-01-01

    This paper discusses the special branch of the Ancient Indian science on plant life as depicted by Vrikshayurveda, and the obvious relevance of the insights these provide to enrich our knowledge and practice in this field PMID:22557461

  7. Ancient wolf lineages in India.

    PubMed Central

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-01-01

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402

  8. Ancient Admixture in Human History

    PubMed Central

    Patterson, Nick; Moorjani, Priya; Luo, Yontao; Mallick, Swapan; Rohland, Nadin; Zhan, Yiping; Genschoreck, Teri; Webster, Teresa; Reich, David

    2012-01-01

    Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean “Iceman.” PMID:22960212

  9. Rethinking the Ancient Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  10. Ancient Technology in Contemporary Surgery

    PubMed Central

    Buck, Bruce A.

    1982-01-01

    Archaeologists have shown that ancient man developed the ability to produce cutting blades of an extreme degree of sharpness from volcanic glass. The finest of these prismatic blades were produced in Mesoamerica about 2,500 years ago. The technique of production of these blades was rediscovered 12 years ago by Dr. Don Crabtree, who suggested possible uses for the blades in modern surgery. Blades produced by Dr. Crabtree have been used in experimental microsurgery with excellent results. Animal experiments have shown the tensile strength of obsidian produced wounds to be equal to or greater than that of wounds produced by steel scalpels after 14 days of healing. We have been able to demonstrate neither flaking of glass blades into the wounds nor any foreign body reaction in healed wounds. Skin incisions in human patients have likewise healed well without complications. The prismatic glass blade is infinitely sharper than a honed steel edge, and these blades can be produced in a wide variety of shapes and sizes. It is therefore suggested that this type of blade may find an appropriate use in special areas of modern surgery. ImagesFigure 1.Figure 2.Figure 3. PMID:7046256

  11. Ancient technology in contemporary surgery.

    PubMed

    Buck, B A

    1982-03-01

    Archaeologists have shown that ancient man developed the ability to produce cutting blades of an extreme degree of sharpness from volcanic glass. The finest of these prismatic blades were produced in Mesoamerica about 2,500 years ago. The technique of production of these blades was rediscovered 12 years ago by Dr. Don Crabtree, who suggested possible uses for the blades in modern surgery. Blades produced by Dr. Crabtree have been used in experimental microsurgery with excellent results. Animal experiments have shown the tensile strength of obsidian produced wounds to be equal to or greater than that of wounds produced by steel scalpels after 14 days of healing. We have been able to demonstrate neither flaking of glass blades into the wounds nor any foreign body reaction in healed wounds. Skin incisions in human patients have likewise healed well without complications. The prismatic glass blade is infinitely sharper than a honed steel edge, and these blades can be produced in a wide variety of shapes and sizes. It is therefore suggested that this type of blade may find an appropriate use in special areas of modern surgery.

  12. Recognizing characters of ancient manuscripts

    NASA Astrophysics Data System (ADS)

    Diem, Markus; Sablatnig, Robert

    2010-02-01

    Considering printed Latin text, the main issues of Optical Character Recognition (OCR) systems are solved. However, for degraded handwritten document images, basic preprocessing steps such as binarization, gain poor results with state-of-the-art methods. In this paper ancient Slavonic manuscripts from the 11th century are investigated. In order to minimize the consequences of false character segmentation, a binarization-free approach based on local descriptors is proposed. Additionally local information allows the recognition of partially visible or washed out characters. The proposed algorithm consists of two steps: character classification and character localization. Initially Scale Invariant Feature Transform (SIFT) features are extracted which are subsequently classified using Support Vector Machines (SVM). Afterwards, the interest points are clustered according to their spatial information. Thereby, characters are localized and finally recognized based on a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background clutter (e.g. stains, tears) and faded out characters.

  13. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.

  14. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  15. Ancient origin of mast cells

    PubMed Central

    Wong, G. William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K.; Satoh, Nori; Stevens, Richard L.

    2014-01-01

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin•serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500 million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  16. Ancient history of flatfish research

    NASA Astrophysics Data System (ADS)

    Berghahn, Rüdiger; Bennema, Floris Pieter

    2013-01-01

    Owing to both their special appearance and behavior flatfish have attracted the special attention of people since ages. The first records of humans having been in touch with flatfish date back to the Stone Age about 15,000 years B.C. Detailed descriptions were already given in the classical antiquity and were taken up 1400 years later in the Renaissance by the first ichthyologists, encyclopédists, and also by practical men. This was more than 200 years before a number of common flatfish species were given their scientific names by Linnaeus in 1758. Besides morphology, remarkable and sometimes amusing naturalistic observations and figures are bequeathed. Ancient history of flatfish research is still a wide and open array. Examples are presented how the yield of information and interpretation from these times increases with interdisciplinary cooperation including archeologists, zoologists, ichthyologists, historians, art historians, fisheries and fishery biologist. The timeline of this contribution ends with the start of modern fishery research at the end of the 19th century in the course of the rapidly increasing exploitation of fish stocks.

  17. Cell-scaffold interaction within engineered tissue.

    PubMed

    Chen, Haiping; Liu, Yuanyuan; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin-chitosan (Gel-Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell-matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Functionalized scaffolds to enhance tissue regeneration

    PubMed Central

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X.

    2015-01-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nanocomposites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed. PMID:25844177

  19. Functionalized scaffolds to enhance tissue regeneration.

    PubMed

    Guo, Baolin; Lei, Bo; Li, Peng; Ma, Peter X

    2015-03-01

    Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nano-composites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed.

  20. Alternative medicine in ancient and medieval history.

    PubMed

    Prioreschi, P

    2000-10-01

    The author, in an attempt to clarify whether the rise of alternative medicine is a phenomenon characteristic of our time or whether it existed in the past as well, has identified at least three alternative medicines, which developed in ancient Rome, ancient India and in the medieval Islamic world. The circumstances leading to the development of alternative medicine in the past and in our time are discussed and compared. Copyright 2000 Harcourt Publishers Ltd.

  1. Surgical history of ancient China: Part 2.

    PubMed

    Fu, Louis

    2010-03-01

    In this second part of ancient Chinese surgical history, the practice of bone setting in China began around 3000 years ago. Throughout this period, significant progress was made, some highlights of which are cited. These methods, comparable with Western orthopaedic technique, are still being practised today. In conclusion, the possible reasons for the lack of advancement in operative surgery are discussed, within context of the cultural, social and religious background of ancient China.

  2. A versatile hardware platform for brain computer interfaces.

    PubMed

    Garcia, Pablo A; Haberman, Marcelo; Spinelli, Enrique M

    2010-01-01

    This article presents the development of a versatile hardware platform for brain computer interfaces (BCI). The aim of this work is to produce a small, autonomous and configurable BCI platform adaptable to the user's needs.

  3. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility.

    PubMed

    Kim, J S; Cha, S S; Kim, H J; Kim, T J; Ha, N C; Oh, S T; Cho, H S; Cho, M J; Kim, M J; Lee, H S; Kim, J W; Choi, K Y; Park, K H; Oh, B H

    1999-09-10

    Amylases catalyze the hydrolysis of starch material and play central roles in carbohydrate metabolism. Compared with many different amylases that are able to hydrolyze only alpha-D-(1,4)-glycosidic bonds, maltogenic amylases exhibit catalytic versatility: hydrolysis of alpha-D-(1,4)- and alpha-D-(1,6)-glycosidic bonds and transglycosylation of oligosaccharides to C3-, C4-, or C6-hydroxyl groups of various acceptor mono- or disaccharides. It has been speculated that the catalytic property of the enzymes is linked to the additional approximately 130 residues at the N terminus that are absent in other typical alpha-amylases. The crystal structure of a maltogenic amylase from a Thermus strain was determined at 2.8 A. The structure, an analytical centrifugation, and a size exclusion column chromatography proved that the enzyme is a dimer in solution. The N-terminal segment of the enzyme folds into a distinct domain and comprises the enzyme active site together with the central (alpha/beta)(8) barrel of the adjacent subunit. The active site is a narrow and deep cleft suitable for binding cyclodextrins, which are the preferred substrates to other starch materials. At the bottom of the active site cleft, an extra space, absent in the other typical alpha-amylases, is present whose size is comparable with that of a disaccharide. The space is most likely to host an acceptor molecule for the transglycosylation and to allow binding of a branched oligosaccharide for hydrolysis of alpha-D-(1,4)-glycosidic or alpha-D-(1,6)-glycosidic bond. The (alpha/beta)(8) barrel of the enzyme is the preserved scaffold in all the known amylases. The structure represents a novel example of how an enzyme acquires a different substrate profile and a catalytic versatility from a common active site and represents a framework for explaining the catalytic activities of transglycosylation and hydrolysis of alpha-D-(1,6)-glycosidic bond.

  4. Transnasal excerebration surgery in ancient Egypt.

    PubMed

    Fanous, Andrew A; Couldwell, William T

    2012-04-01

    Ancient Egyptians were pioneers in many fields, including medicine and surgery. Our modern knowledge of anatomy, pathology, and surgical techniques stems from discoveries and observations made by Egyptian physicians and embalmers. In the realm of neurosurgery, ancient Egyptians were the first to elucidate cerebral and cranial anatomy, the first to describe evidence for the role of the spinal cord in the transmission of information from the brain to the extremities, and the first to invent surgical techniques such as trepanning and stitching. In addition, the transnasal approach to skull base and intracranial structures was first devised by Egyptian embalmers to excerebrate the cranial vault during mummification. In this historical vignette, the authors examine paleoradiological and other evidence from ancient Egyptian skulls and mummies of all periods, from the Old Kingdom to Greco-Roman Egypt, to shed light on the development of transnasal surgery in this ancient civilization. The authors confirm earlier observations concerning the laterality of this technique, suggesting that ancient Egyptian excerebration techniques penetrated the skull base mostly on the left side. They also suggest that the original technique used to access the skull base in ancient Egypt was a transethmoidal one, which later evolved to follow a transsphenoidal route similar to the one used today to gain access to pituitary lesions.

  5. Stratified Scaffolds for Osteochondral Tissue Engineering.

    PubMed

    Nooeaid, Patcharakamon; Schulze-Tanzil, Gundula; Boccaccini, Aldo R

    2015-01-01

    Stratified scaffolds are promising devices finding application in the field of osteochondral tissue engineering. In this scaffold type, different biomaterials are chosen to fulfill specific features required to mimic the complex osteochondral tissue interface, including cartilage, interlayer tissue, and subchondral bone. Here, the biomaterials and fabrication methods currently used to manufacture stratified multilayered scaffolds as well as cell seeding techniques for their characterization are presented.

  6. Electrospinning of photocrosslinked and degradable fibrous scaffolds.

    PubMed

    Tan, Andrea R; Ifkovits, Jamie L; Baker, Brendon M; Brey, Darren M; Mauck, Robert L; Burdick, Jason A

    2008-12-15

    Electrospun fibrous scaffolds are being developed for the engineering of numerous tissues. Advantages of electrospun scaffolds include the similarity in fiber diameter to elements of the native extracellular matrix and the ability to align fibers within the scaffold to control and direct cellular interactions and matrix deposition. To further expand the range of properties available in fibrous scaffolds, we developed a process to electrospin photocrosslinkable macromers from a library of multifunctional poly(beta-amino ester)s. In this study, we utilized one macromer (A6) from this library for initial examination of fibrous scaffold formation. A carrier polymer [poly(ethylene oxide) (PEO)] was used for fiber formation because of limitations in electrospinning A6 alone. Various ratios of A6 and PEO were successfully electrospun and influenced the scaffold fiber diameter and appearance. When electrospun with a photoinitiator and exposed to light, the macromers crosslinked rapidly to high double bond conversions and fibrous scaffolds displayed higher elastic moduli compared to uncrosslinked scaffolds. When these fibers were deposited onto a rotating mandrel and crosslinked, organized fibrous scaffolds were obtained, which possessed higher moduli (approximately 4-fold) in the fiber direction than perpendicular to the fiber direction, as well as higher moduli (approximately 12-fold) than that of nonaligned crosslinked scaffolds. With exposure to water, a significant mass loss and a decrease in mechanical properties were observed, correlating to a rapid initial loss of PEO which reached an equilibrium after 7 days. Overall, these results present a process that allows for formation of fibrous scaffolds from a wide variety of possible photocrosslinkable macromers, increasing the diversity and range of properties achievable in fibrous scaffolds for tissue regeneration.

  7. Integrating novel technologies to fabricate smart scaffolds.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2008-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix functioning as a scaffold. After isolation and eventual in vitro expansion, cells are seeded on the 3D scaffolds and implanted directly or at a later stage in the patient's body. 3D scaffolds need to satisfy a number of requirements: (i) biocompatibility, (ii) biodegradability and/or bioresorbability, (iii) suitable mechanical properties, (iv) adequate physicochemical properties to direct cell-material interactions matching the tissue to be replaced and (v) ease in regaining the original shape of the damaged tissue and the integration with the surrounding environment. Still, it appears to be a challenge to satisfy all the aforementioned requisites with the biomaterials and the scaffold fabrication technologies nowadays available. 3D scaffolds can be fabricated with various techniques, among which rapid prototyping and electrospinning seem to be the most promising. Rapid prototyping technologies allow manufacturing scaffolds with a controlled, completely accessible pore network--determinant for nutrient supply and diffusion--in a CAD/CAM fashion. Electrospinning (ESP) allows mimicking the extracellular matrix (ECM) environment of the cells and can provide fibrous scaffolds with instructive surface properties to direct cell faith into the proper lineage. Yet, these fabrication methods have some disadvantages if considered alone. This review aims at summarizing conventional and novel scaffold fabrication techniques and the biomaterials used for tissue engineering and drug-delivery applications. A new trend seems to emerge in the field of scaffold design where different scaffolds fabrication technologies and different biomaterials are combined to provide cells with mechanical, physicochemical and biological cues at the macro-, micro- and nano-scale. If merged together, these integrated technologies may lead to the generation

  8. Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine.

    PubMed

    Barachini, Serena; Danti, Serena; Pacini, Simone; D'Alessandro, Delfo; Carnicelli, Vittoria; Trombi, Luisa; Moscato, Stefania; Mannari, Claudio; Cei, Silvia; Petrini, Mario

    2014-12-01

    In recent years, human dental pulp stromal cells (DPSCs) have received growing attention due to their characteristics in common with other mesenchymal stem cells, in addition to the ease with which they can be harvested. In this study, we demonstrated that the isolation of DPSCs from third molar teeth of healthy individuals allowed the recovery of dental mesenchymal stem cells that showed self-renewal and multipotent differentiation capability. DPSCs resulted positive for CD73, CD90, CD105, STRO-1, negative for CD34, CD45, CD14 and were able to differentiate into osteogenic and chondrogenic cells. We also assayed the angiogenic potential of DPSCs, their capillary tube-like formation was assessed using an in vitro angiogenesis assay and the uptake of acetylated low-density lipoprotein was measured as a marker of endothelial function. Based on these results, DPSCs were capable of differentiating into cells with phenotypic and functional features of endothelial cells. Furthermore, this study investigated the growth and differentiation of human DPSCs under a variety of bioengineering platforms, such as low frequency ultrasounds, tissue engineering and nanomaterials. DPSCs showed an enhanced chondrogenic differentiation under ultrasound application. Moreover, DPSCs were tested on different scaffolds, poly(vinyl alcohol)/gelatin (PVA/G) sponges and human plasma clots. We showed that both PVA/G and human plasma clot are suitable scaffolds for adhesion, growth and differentiation of DPSCs toward osteoblastic lineages. Finally, we evaluated the interactions of DPSCs with a novel class of nanomaterials, namely boron nitride nanotubes (BNNTs). From our investigation, DPSCs have appeared as a highly versatile cellular tool to be employed in regenerative medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lewis Acid Assisted Diels-Alder Reaction with Regio- and Stereoselectivity: Anti-1,4-Adducts with Rigid Scaffolds and Their Application in Explosives Sensing.

    PubMed

    Chen, Qi; Chen, Hao; Meng, Xiao; Ma, Yuguo

    2015-10-16

    Unusual anti-1,4-adducts of anthracene derivatives and anti-adducts of inert arenes with rigid scaffolds have been obtained via AlCl3-assisted Diels-Alder reaction in good to excellent yields under mild conditions. Further derivation of 1,4-adducts gave π-conjugated polymers which could act as sensors of explosive species. This highly efficient synthesis method provides versatile approaches to solid-state emissive π-conjugated polymers.

  10. Cell–scaffold interaction within engineered tissue

    SciTech Connect

    Chen, Haiping; Liu, Yuanyuan Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  11. Materials science: Versatile gel assembly on a chip

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shoji

    2017-01-01

    Materials called hydrogels have potential applications as scaffolds for tissue engineering, but methods are needed to assemble them into complex structures that mimic those found in nature. Just such a method has now been reported.

  12. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  13. Burns treatment in ancient times.

    PubMed

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques.

  14. Design of 2D chitosan scaffolds via electrochemical structuring

    PubMed Central

    Altomare, Lina; Guglielmo, Elena; Varoni, Elena Maria; Bertoldi, Serena; Cochis, Andrea; Rimondini, Lia; De Nardo, Luigi

    2014-01-01

    Chitosan (CS) is a versatile biopolymer whose morphological and chemico-physical properties can be designed for a variety of biomedical applications. Taking advantage of its electrolytic nature, cathodic polarization allows CS deposition on electrically conductive substrates, resulting in thin porous structures with tunable morphology. Here we propose an easy method to obtain CS membranes with highly oriented micro-channels for tissue engineering applications, relying on simple control of process parameters and cathodic substrate geometry.   Cathodic deposition was performed on two different aluminum grids in galvanostatic conditions at 6.25 mA cm−2 from CS solution [1g L−1] in acetic acid (pH 3.5). Self-standing thin scaffolds were cross linked either with genipin or epichlorohydrin, weighted, and observed by optical and electron microscopy. Swelling properties at pH 5 and pH 7.4 have been also investigated and tensile tests performed on swollen samples at room temperature. Finally, direct and indirect assays have been performed to evaluate the cytotoxicity at 24 and 72 h. Thin scaffolds with two different oriented porosities (1000µm and 500µm) have been successfully fabricated by electrochemical techniques. Both cross-linking agents did not affected the mechanical properties and cytocompatibility of the resulting structures. Depending on the pH, these structures show interesting swelling properties that can be exploited for drug delivery systems. Moreover, thanks to the possibility of controlling the porosity and the micro-channel orientation, they should be used for the regeneration of tissues requiring a preferential cells orientation, e.g., cardiac patches or ligament regeneration. PMID:25093705

  15. Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

    PubMed Central

    2017-01-01

    Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting. PMID:28462989

  16. Scaffolds for oriented and close-packed immobilization of immunoglobulins.

    PubMed

    Iijima, Masumi; Kuroda, Shun'ichi

    2017-03-15

    Immunosensing is a widely used technique that detects the interactions between antibodies and antigens such as biochemical markers, pathogens, allergens, and tumor-associated antigens. Since target antigens are often of high molecular mass and their binding affinities are sometimes weak, the spatial arrangement of immunoglobulin Gs (IgGs) on immunosensing probes should be optimized by presenting them in as close-packed a manner as possible and reducing steric hindrance around the antigen-binding Fv regions. Both clustering and oriented immobilization of IgGs on immunosensing probes are thus important for enhancing the sensitivity and antigen-binding capacity of probes. Intact IgGs, IgG-derived fragments, or IgG-compatible fragments have previously been clustered onto solid phases with a variety of scaffold chemistries (e.g., crosslinkers, polymers, self-assembled monolayers, protein A/G, avidin, DNA) to improve immunosensing probes, none of these strategies has yet accomplished both clustering and oriented immobilization of IgGs. Recently, we developed an ~30-nm bio-nanocapsule (ZZ-BNC), consisting of transmembrane ZZ-L protein deploying a tandem form of the IgG Fc-binding Z domain derived from Staphylococcus aureus protein A on its outer surface that functioned as a scaffold for the clustering and oriented immobilization of IgGs and Fc-fused biosensing molecules. In this review, we present an overview of conventional techniques for IgG immobilization and describe the molecular basis of the ZZ-BNC-based technology, discussing the potential and versatility of this technology not only in immunosensors but also in other types of biosensors.

  17. New interpretation of the ancient constellations

    NASA Astrophysics Data System (ADS)

    Dementev, M. S.

    New method of study of the ancient constellations and mythes is discussed. It is based on the comparison of two maps - the sky and the Earth. The Stellar map is built in an equatorial system of coordinates, the geografic map - in the Mercator's projection and of the same scale. The former map is put on the laster one. The constellation of Pleiades (seven daughter of Atlant) is placed on the meridian of Atlant (Western coast of Africa). If the Stellar map is constructed for a epoch J-3000 (3000 years up to B.C.) then we could found the following. The constellations Andromeda (the daughter of the Ethiopian tsar), Cetus, Perseus and Cassiopeia (mother of Andromeda) are projected on the centre, south and west of Ancient Ethiopia and Mediterranean Sea, respectively. That is all the constellations fall to the places, where events described in mythes occured. A constellation Cepheus (Arabian name is "Burning") covers the Caucasus. Possibly, before a epoch J-1000 this group of stars was connected with Prometheus. It is known Prometheus was chained to the Caucasian rock because of stealing of a fire. Ancient Chineses divided the sky in other way. They called "The Heavenly Town" the area of sky consisting of stars in Herculis, Aquilae and Ophiuchi. Parts of the mentioned constellation were called as a provinces in Ancient China. If the Heavenly Town locate near the Ancient China then the Greek constellations (Andromeda, Perseus and Cetus) will appear over Africa. Three important conclusions follow from this: (i) the geography of the Earth is reflected on the sky; (ii) the ancient astronomers were investigating a connection between the sky and Earth; (iii) the ancient peoples exchanged by the information about a construction of the world.

  18. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  19. Ancient Greek with Thrasymachus: A Web Site for Learning Ancient Greek.

    ERIC Educational Resources Information Center

    Barker, Alison

    2001-01-01

    Discusses a project that was begun as an attempt by two teachers of Ancient Greek to provide supplementary materials to accompany "Thrasymachus," a first-year textbook for learning ancient Greek. Provides a brief history and description of the project, the format of each chapter, a chronology for completion of materials for each chapter in the…

  20. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.

    PubMed

    Ahadian, Samad; Davenport Huyer, Locke; Estili, Mehdi; Yee, Bess; Smith, Nathaniel; Xu, Zhensong; Sun, Yu; Radisic, Milica

    2017-04-01

    Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration

  1. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    PubMed

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  2. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.

    PubMed

    Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja

    2017-01-01

    Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

  3. Parylene scaffold for cartilage lesion.

    PubMed

    Franciozi, Carlos Eduardo da Silveira; Vangsness, Carleton Thomas; Tibone, James Eugene; Martinez, Juan Carlos; Rodger, Damien; Chou, Tzu-Chieh; Tai, Yu-Chong; Brant, Rodrigo; Wu, Ling; Abdalla, Rene Jorge; Han, Bo; Evseenko, Denis; Humayun, Mark

    2017-06-01

    Evaluate parylene scaffold feasibility in cartilage lesion treatment, introducing a novel paradigm combining a reparative and superficial reconstructive procedure. Fifteen rabbits were used. All animals had both knees operated and the same osteochondral lesion model was created bilaterally. The parylene scaffold was implanted in the right knee, and the left knee of the same animal was used as control. The animals were euthanized at different time points after surgery: four animals at three weeks, three animals at six weeks, four animals at nine weeks, and four animals at 12 weeks. Specimens were analyzed by International Cartilage Repair Society (ICRS) macroscopic evaluation, modified Pineda histologic evaluation of cartilage repair, and collagen II immunostaining. Parylene knees were compared to its matched contra-lateral control knees of the same animal using the Wilcoxon matched-pairs signed rank. ICRS mean ± SD values for parylene versus control, three, six, nine and twelve weeks, respectively: 7.83 ± 1.85 versus 4.42 ± 1.08, p = 0.0005; 10.17 ± 1.17 versus 6.83 ± 1.17, p = 0.03; 10.89 ± 0.60 versus 7.33 ± 2.18, p = 0.007; 10.67 ± 0.78 versus 7.83 ± 3.40, p = 0.03. Modified Pineda mean ± SD values for parylene versus control, six, nine and twelve weeks, respectively: 3.37 ± 0.87 versus 6.94 ± 1.7, p < 0.0001; 5.73 ± 2.05 versus 6.41 ± 1.7, p = 0.007; 3.06 ± 1.61 versus 6.52 ± 1.51, p < 0.0001. No inflammation was seen. Parylene implanted knees demonstrated higher collagen II expression via immunostaining in comparison to the control knees. Parylene scaffolds are a feasible option for cartilage lesion treatment and the combination of a reparative to a superficial reconstructive procedure using parylene scaffolds led to better results than the reparative procedure alone.

  4. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  5. Characterizing avulsion stratigraphy in ancient alluvial deposits

    NASA Astrophysics Data System (ADS)

    Jones, H. L.; Hajek, E. A.

    2007-11-01

    Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically

  6. The Ancient Martian Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2014-01-01

    Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than

  7. Evidence for Ancient Mesoamerican Earthquakes

    NASA Astrophysics Data System (ADS)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  8. A Conceptualisation of Whole-Class Scaffolding

    ERIC Educational Resources Information Center

    Smit, Jantien; van Eerde, Henriëtte A. A.; Bakker, Arthur

    2013-01-01

    The concept of scaffolding refers to temporary and adaptive support, originally in dyadic adult-child interaction. It has become widely used, also in whole-class settings, but often in loose ways. The aim of this paper is to theoretically and empirically ground a conceptualisation of whole-class scaffolding so that it remains close to the origin…

  9. Lithographically defined 3-dimensional graphene scaffolds

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Xiao, Xiaoyin; Polsky, Ronen

    2015-09-01

    Interferometrically defined 3D photoresist scaffolds are formed through a series of three successive two-beam interference exposures, a post exposure bake and development. Heating the resist scaffold in a reducing atmosphere to > 1000 °C, results in the conversion of the resist structure into a carbon scaffold through pyrolysis, resulting in a 3D sp3- bonded glassy carbon scaffold which maintains the same in-plane morphology as the resist despite significant shrinkage. The carbon scaffolds are readily modified using a variety of deposition methods such as electrochemical, sputtering and CVD/ALD. Remarkably, sputtering metal into scaffolds with ~ 5 unit cells tall results in conformal coating of the scaffold with the metal. When the metal is a transition metal such as nickel, the scaffold can be re-annealed, during which time the carbon diffuses through the nickel, emerging on the exterior of the nickel as sp2-bonded carbon, termed 3D graphene. This paper details the fabrication, characterization and some potential applications for these structures.

  10. A Conceptualisation of Whole-Class Scaffolding

    ERIC Educational Resources Information Center

    Smit, Jantien; van Eerde, Henriëtte A. A.; Bakker, Arthur

    2013-01-01

    The concept of scaffolding refers to temporary and adaptive support, originally in dyadic adult-child interaction. It has become widely used, also in whole-class settings, but often in loose ways. The aim of this paper is to theoretically and empirically ground a conceptualisation of whole-class scaffolding so that it remains close to the origin…

  11. Information Scaffolding: Application to Technical Animation

    ERIC Educational Resources Information Center

    Newman, Catherine Claire

    2010-01-01

    Information Scaffolding is a user-centered approach to information design; a method devised to aid "everyday" authors in information composition. Information Scaffolding places a premium on audience-centered documents by emphasizing the information needs and motivations of a multimedia document's intended audience. The aim of this…

  12. Metacognitive Scaffolding in an Innovative Learning Arrangement

    ERIC Educational Resources Information Center

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  13. Information Scaffolding: Application to Technical Animation

    ERIC Educational Resources Information Center

    Newman, Catherine Claire

    2010-01-01

    Information Scaffolding is a user-centered approach to information design; a method devised to aid "everyday" authors in information composition. Information Scaffolding places a premium on audience-centered documents by emphasizing the information needs and motivations of a multimedia document's intended audience. The aim of this…

  14. Scaffolding Mathematical Modelling with a Solution Plan

    ERIC Educational Resources Information Center

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  15. Teaching Writing: A Multilayered Participatory Scaffolding Practice

    ERIC Educational Resources Information Center

    Dix, Stephanie

    2016-01-01

    This article adds to the research on teachers' writing pedagogy. It reviews and challenges the research literature on scaffolding as an instructional practice and presents a more inclusive framework for analysis. As student participation and voice were absent from much of the literature, a participatory scaffolding framework was developed to…

  16. Teaching Writing: A Multilayered Participatory Scaffolding Practice

    ERIC Educational Resources Information Center

    Dix, Stephanie

    2016-01-01

    This article adds to the research on teachers' writing pedagogy. It reviews and challenges the research literature on scaffolding as an instructional practice and presents a more inclusive framework for analysis. As student participation and voice were absent from much of the literature, a participatory scaffolding framework was developed to…

  17. Composite scaffolds for cartilage tissue engineering.

    PubMed

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  18. Scaffolding Mathematical Modelling with a Solution Plan

    ERIC Educational Resources Information Center

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  19. Bioactive nanofibrous scaffolds for regenerative endodontics.

    PubMed

    Bottino, M C; Kamocki, K; Yassen, G H; Platt, J A; Vail, M M; Ehrlich, Y; Spolnik, K J; Gregory, R L

    2013-11-01

    Here we report the synthesis, materials characterization, antimicrobial capacity, and cytocompatibility of novel antibiotic-containing scaffolds. Metronidazole (MET) or Ciprofloxacin/(CIP) was mixed with a polydioxanone (PDS)polymer solution at 5 and 25 wt% and processed into fibers. PDS fibers served as a control. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and high-performance liquid chromatography (HPLC) were used to assess fiber morphology, chemical structure, mechanical properties, and drug release, respectively. Antimicrobial properties were evaluated against those of Porphyromonas gingivalis/Pg and Enterococcus faecalis/Ef. Cytotoxicity was assessed in human dental pulp stem cells (hDPSCs). Statistics were performed, and significance was set at the 5% level. SEM imaging revealed a submicron fiber diameter. FTIR confirmed antibiotic incorporation. The tensile values of hydrated 25 wt% CIP scaffold were significantly lower than those of all other groups. Analysis of HPLC data confirmed gradual, sustained drug release from the scaffolds over 48 hrs. CIP-containing scaffolds significantly (p < .00001) inhibited biofilm growth of both bacteria. Conversely, MET-containing scaffolds inhibited only Pg growth. Agar diffusion confirmed the antimicrobial properties against specific bacteria for the antibiotic-containing scaffolds. Only the 25 wt% CIP-containing scaffolds were cytotoxic. Collectively, this study suggests that polymer-based antibiotic-containing electrospun scaffolds could function as a biologically safe antimicrobial drug delivery system for regenerative endodontics.

  20. Composite Scaffolds for Cartilage Tissue Engineering

    PubMed Central

    Moutos, Franklin T.; Guilak, Farshid

    2009-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines, and DNA fragments) with a biomaterial scaffold that function as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity, or viscoelasticity. While single-phase, homogenous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds. PMID:18836249

  1. Scaffolding Adolescents' Comprehension of Short Stories.

    ERIC Educational Resources Information Center

    Fournier, David N. E.; Graves, Michael F.

    2002-01-01

    Describes an approach to assisting seventh-grade students' comprehension of individual texts with a Scaffolded Reading Experience (SRE). Includes an outline of the scaffolded reading experience. Describes a classroom study of the effect of using SREs. Finds SREs can increase students' comprehension of short stories. (SG)

  2. Scaffolding Children's Informal Expository Discourse Skills.

    ERIC Educational Resources Information Center

    Burns-Hoffman, Rebecca

    The term "scaffolding" refers to adult behaviors that support and guide children's participation in activities, including speech events, enabling the children to extend the range of what they are able to do without assistance. A study examined how scaffolding behavior in support of expository discourse differed among preschool teachers in…

  3. Identification of ancient remains through genomic sequencing

    PubMed Central

    Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

    2008-01-01

    Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

  4. Design, Degradation Mechanism and Long-Term Cytotoxicity of Poly(L-lactide) and Poly(Lactide-co-ϵ-Caprolactone) Terpolymer Film and Air-Spun Nanofiber Scaffold.

    PubMed

    Sabbatier, Gad; Larrañaga, Aitor; Guay-Bégin, Andrée-Anne; Fernandez, Jorge; Diéval, Florence; Durand, Bernard; Sarasua, Jose-Ramon; Laroche, Gaétan

    2015-10-01

    Degradable nanofiber scaffold is known to provide a suitable, versatile and temporary structure for tissue regeneration. However, synthetic nanofiber scaffold must be properly designed to display appropriate tissue response during the degradation process. In this context, this publication focuses on the design of a finely-tuned poly(lactide-co-ϵ-caprolactone) terpolymer (PLCL) that may be appropriate for vascular biomaterials applications and its comparison with well-known semi-crystalline poly(l-lactide) (PLLA). The degradation mechanism of polymer film and nanofiber scaffold and endothelial cells behavior cultured with degradation products is elucidated. The results highlights benefits of using PLCL terpolymer as vascular biomaterial compared to PLLA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering.

  6. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    NASA Astrophysics Data System (ADS)

    van der Velde, Jasper H. M.; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H.; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with `self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.

  7. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

    PubMed Central

    van der Velde, Jasper H. M.; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H.; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-01

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with ‘self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer–dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard. PMID:26751640

  8. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization.

    PubMed

    van der Velde, Jasper H M; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben

    2016-01-11

    Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.

  9. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    PubMed

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  10. Conducting scaffolds for liver tissue engineering.

    PubMed

    Rad, Armin Tahmasbi; Ali, Naushad; Kotturi, Hari Shankar R; Yazdimamaghani, Mostafa; Smay, Jim; Vashaee, Daryoosh; Tayebi, Lobat

    2014-11-01

    It is known that there is a correlation between a cell membrane potential and the proliferation of the cell. The high proliferation capacity of liver cells can also be attributed to its specific cell membrane potential as liver cell is recognized as one of the most depolarized of all differentiated cells. We hypothesized that this phenomenon can be emphasized by growing liver cells in conducting scaffolds that can increase the electrical communication among the cells. In this article, using tissue engineering techniques, we grew hepatocyte cells in scaffolds with various compositions. It was found that the scaffolds containing conducting polymer of poly (3,4-ethylenedioxythiophene) (PEDOT) provide the best condition for attachment and proliferation of the cells. More specifically, the blend of hyaluronan, PEDOT, and collagen (I) as dopants in gelatin-chitosan-based scaffold presented the best cell/scaffold interactions for regeneration of liver cells.

  11. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.

  12. Classification of scaffold-hopping approaches.

    PubMed

    Sun, Hongmao; Tawa, Gregory; Wallqvist, Anders

    2012-04-01

    The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this article we classify scaffold hopping into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics and topology-based hopping. We review the structural diversity of original and final scaffolds with respect to each category. We discuss the advantages and limitations of small, medium and large-step scaffold hopping. Finally, we summarize software that is frequently used to facilitate different kinds of scaffold-hopping methods.

  13. Nanofibrous scaffolds for dental and craniofacial applications.

    PubMed

    Gupte, M J; Ma, P X

    2012-03-01

    Tissue-engineering solutions often harness biomimetic materials to support cells for functional tissue regeneration. Three-dimensional scaffolds can create a multi-scale environment capable of facilitating cell adhesion, proliferation, and differentiation. One such multi-scale scaffold incorporates nanofibrous features to mimic the extracellular matrix along with a porous network for the regeneration of a variety of tissues. This review will discuss nanofibrous scaffold synthesis/fabrication, biological effects of nanofibers, their tissue- engineering applications in bone, cartilage, enamel, dentin, and periodontium, patient-specific scaffolds, and incorporated growth factor delivery systems. Nanofibrous scaffolds cannot only further the field of craniofacial regeneration but also advance technology for tissue-engineered replacements in many physiological systems.

  14. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    PubMed Central

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  15. Silk scaffolds for musculoskeletal tissue engineering

    PubMed Central

    Yao, Danyu

    2015-01-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  16. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  17. Neurobioactive peptide amphiphile nanofiber scaffolds for spinal cord repair

    NASA Astrophysics Data System (ADS)

    Niece, Krista Lynne

    . Chapter 5 describes model PAs optimized for mixed fiber visualization. A biotin-tagged positively charged PA is mixed with a negatively charged PA and incubated with avidin-functionalized gold nanoparticles. Transmission electron microscopy (TEM) reveals mixed-fiber networks composed of alternating single-PA regions, which could be more bioactive than the IPN scaffolds. Overall, these PA materials are versatile and show promise for SCI repair. Future work could involve addition of more epitopes and further investigation of the self-assembly mechanism.

  18. PIXE ANALYSIS ON AN ANCIENT SCROLL SAMPLE

    SciTech Connect

    Shutthanandan, V.; Thevuthasan, Suntharampillai; Iuliano, Edward M.; Seales, William B.

    2008-12-01

    For years, scientists have developed several new techniques to read texts of Herculaneum scrolls without destroying them. Recently, the use of a custom built high-resolution CT scanner was proposed to scan and then virtually unroll the scrolls for reading. Identification of any unique chemical signatures in the ancient ink would allow better calibration of the CT scanner to improve the chances of resolving the ink from the burned papyrus background. To support this effort, we carried out one pilot study to see whether the composition of the ink can be obtained from an ancient scroll sample using PIXE technique. PIXE data were collected and analyzed in two different regions of the ancient scroll sample (ink and blank regions). This preliminary work shows that elemental distributions from the ink used in this scroll mainly contained Al, Fe and Ti as well as minor trace amounts of Cr, Cu and Zn.

  19. The ancient lunar crust, Apollo 17 region

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1992-01-01

    The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.

  20. Twins in Ancient Greece: a synopsis.

    PubMed

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality.

  1. Prehistoric polymers: rubber processing in ancient mesoamerica

    PubMed

    Hosler; Burkett; Tarkanian

    1999-06-18

    Ancient Mesoamerican peoples harvested latex from Castilla elastica, processed it using liquid extracted from Ipomoea alba (a species of morning glory vine), and fashioned rubber balls, hollow rubber figurines, and other rubber artifacts from the resulting material. Chemical and mechanical analyses of the latex and of the processed rubber indicate that the enhanced elastic behavior of the rubber relative to the unprocessed latex is due to purification of the polymer component and to an increase in the strength and number of interchain interactions that are induced by organic compounds present in I. alba. These ancient peoples' control over the properties of latex and processed rubber gave rise to the Mesoamerican ball game, a central ritual element in all ancient Mesoamerican societies.

  2. Ancient and Modern Hydrology: The Common Ground

    NASA Astrophysics Data System (ADS)

    Dagan, G.

    2005-12-01

    The archeological site of Tzipori (near Nazareth) in Israel contains a beautiful ancient mosaic that depicts the Nile in an allegoric manner. One of the striking details is a Nilometer, a graded pillar that was used in order to measure the Nile level. These data were used by ancient hydrologists in order to predict the Nile regime during the coming season. In turn, these assessments provided the Pharaoh administration with the basis for taxation of the peasant population. These historical findings render Hydrology as one of the oldest technical professions. Furthermore, a few features of ancient hydrology characterize the modern one also: it is a quantitative discipline, it has an applied nature, it makes prediction under uncertainty and it is intertwined with economical and social considerations. The presentation is focused on these analogies and mainly with the need to cope with uncertainty, with emphasis on the novel and distinctive features of stochastic modeling of subsurface flow and transport.

  3. Faunal histories from Holocene ancient DNA.

    PubMed

    de Bruyn, Mark; Hoelzel, A Rus; Carvalho, Gary R; Hofreiter, Michael

    2011-08-01

    Recent studies using ancient DNA have been instrumental in advancing understanding of the impact of Holocene climate change on biodiversity. Ancient DNA has been used to track demography, migration and diversity, and is providing new insights into the long-term dynamics of species and population distributions. The Holocene is key to understanding how the past has impacted on the present, as it bridges the gap between contemporary phylogeographic studies and those with inference on Pleistocene patterns, based on ancient DNA studies. Here, we examine the major patterns of Holocene faunal population dynamics and connectivity; highlighting the dynamic nature of species and population responses to Holocene climatic change, thereby providing an 'analogue' for understanding potential impacts of future change.

  4. Ancient Greek psychotherapy for contemporary nurses.

    PubMed

    Kourkouta, Lambrini

    2002-08-01

    Ancient Greek physicians as well as philosophers were fully cognizant of a human being's psychological function and used their particular art to influence individual or social behavior in accordance with their pursuit. This art or technique favorably compares with several of the methods currently called supportive psychotherapy. This psychotherapy was the first form of care for people with mental health problems. Nurses who base their practice on ancient Greek psychotherapy see the patient as a whole, a person who creates meaning in life. Applying the philosophical principles of ancient Greeks helps nurses understand the behavior of people with mental health problems and recognize and facilitate adaptive satisfaction of these psychological needs. In addition, psychiatric nurses are able to help distressed individuals understand their fears and anxieties, so they are freed from the causes of their symptoms that led them to seek therapy in the first place. Consequently, this understanding can make psychiatric nurses' work a living experience and add meaning to their work.

  5. The practice of dentistry in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-05-09

    This paper addresses the questions of whether a dental profession existed in ancient Egypt and if it did then considers whether these practitioners were operative dental surgeons as we know them today or whether they were pharmacists. Evidence from hieroglyphic inscriptions, from the dentitions of the surviving mummified and skeletal remains, and from ancient documents and artefacts are examined. The conclusion would suggest that operative dental treatment if it did exist at all was extremely limited. The dental treatment that appears to have been provided was mainly restricted to pharmaceutical preparations that were either applied to the gingival and mucosal tissues or used as mouthwashes, and these at best may only have provided some short term relief. It seems apparent that many ancient Egyptians suffered from widespread and painful dental disease, which the available treatments can have done relatively little to alleviate.

  6. Did the ancient egyptians discover Algol?

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  7. Palaeoparasitology - Human Parasites in Ancient Material.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases.

  8. Pectus excavatum in mummies from ancient Egypt.

    PubMed

    Kwiecinski, Jakub

    2016-12-01

    Pectus excavatum is one of the common congenital anomalies, yet there seems to be a suspicious absence of any cases or descriptions of this deformity from antiquity. This could represent a real change in disease prevalence but is more likely just due to an inadequate reporting in medico-historical literature. The current study reviews reports of computed tomography (CT) scans of 217 ancient Egyptian mummies, revealing 3 presumed cases of this deformity. Therefore, pectus excavatum was in fact present already in ancient times, with prevalence roughly similar to the modern one.

  9. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon

    PubMed Central

    Robb, Calum T.; Dyrynda, Elisabeth A.; Gray, Robert D.; Rossi, Adriano G.; Smith, Valerie J.

    2014-01-01

    Controlled release of chromatin from the nuclei of inflammatory cells is a process that entraps and kills microorganisms in the extracellular environment. Now termed ETosis, it is important for innate immunity in vertebrates. Paradoxically, however, in mammals, it can also contribute to certain pathologies. Here we show that ETosis occurs in several invertebrate species, including, remarkably, an acoelomate. Our findings reveal that the phenomenon is primordial and predates the evolution of the coelom. In invertebrates, the released chromatin participates in defence not only by ensnaring microorganisms and externalizing antibacterial histones together with other haemocyte-derived defence factors, but crucially, also provides the scaffold on which intact haemocytes assemble during encapsulation; a response that sequesters and kills potential pathogens infecting the body cavity. This insight into the early origin of ETosis identifies it as a very ancient process that helps explain some of its detrimental effects in mammals. PMID:25115909

  12. Versatility of the Curcumin Scaffold: Discovery of Potent and Balanced Dual BACE-1 and GSK-3β Inhibitors.

    PubMed

    Di Martino, Rita Maria Concetta; De Simone, Angela; Andrisano, Vincenza; Bisignano, Paola; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Fato, Romana; Bergamini, Christian; Perez, Daniel I; Martinez, Ana; Bottegoni, Giovanni; Cavalli, Andrea; Belluti, Federica

    2016-01-28

    The multitarget approach has gained increasing acceptance as a useful tool to address complex and multifactorial maladies such as Alzheimer's disease (AD). The concurrent inhibition of the validated AD targets β-secretase (BACE-1) and glycogen synthase kinase-3β (GSK-3β) by attacking both β-amyloid and tau protein cascades has been identified as a promising AD therapeutic strategy. In our study, curcumin was identified as a lead compound for the simultaneous inhibition of both targets; therefore, synthetic efforts were dedicated to obtaining a small library of novel curcumin-based analogues, and a number of potent and balanced dual-target inhibitors were obtained. In particular, 2, 6, and 7 emerged as promising drug candidates endowed with neuroprotective potential and brain permeability. Notably, for some new compounds the symmetrical diketo and the β-keto-enol tautomeric forms were purposely isolated and tested in vitro, allowing us to gain insight into the key requirements for BACE-1 and GSK-3β inhibition.

  13. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery.

    PubMed

    Lu, Yuan; Chan, Wei; Ko, Benjamin Y; VanLang, Christopher C; Swartz, James R

    2015-10-06

    Virus-like particles (VLPs) have been extensively explored as nanoparticle vehicles for many applications in biotechnology (e.g., vaccines, drug delivery, imaging agents, biocatalysts). However, amino acid sequence plasticity relative to subunit expression and nanoparticle assembly has not been explored. Whereas the hepatitis B core protein (HBc) VLP appears to be the most promising model for fundamental and applied studies; particle instability, antigen fusion limitations, and intrinsic immunogenicity have limited its development. Here, we apply Escherichia coli-based cell-free protein synthesis (CFPS) to rapidly produce and screen HBc protein variants that still self-assemble into VLPs. To improve nanoparticle stability, artificial covalent disulfide bridges were introduced throughout the VLP. Negative charges on the HBc VLP surface were then reduced to improve surface conjugation. However, removal of surface negative charges caused low subunit solubility and poor VLP assembly. Solubility and assembly as well as surface conjugation were greatly improved by transplanting a rare spike region onto the common shell structure. The newly stabilized and extensively modified HBc VLP had almost no immunogenicity in mice, demonstrating great promise for medical applications. This study introduces a general paradigm for functional improvement of complex protein assemblies such as VLPs. This is the first study, to our knowledge, to systematically explore the sequence plasticity of viral capsids as an approach to defining structure function relationships for viral capsid proteins. Our observations on the unexpected importance of the HBc spike tip charged state may also suggest new mechanistic routes toward viral therapeutics that block capsid assembly.

  14. Scaffold Translation: Barriers Between Concept and Clinic

    PubMed Central

    Murphy, William L.

    2011-01-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613

  15. Biomimetic nanofibrous scaffolds for bone tissue engineering

    PubMed Central

    Holzwarth, Jeremy M.; Ma, Peter X.

    2011-01-01

    Bone tissue engineering is a highly interdisciplinary field that seeks to tackle the most challenging bone-related clinical issues. The major components of bone tissue engineering are the scaffold, cells, and growth factors. This review will focus on the scaffold and recent advancements in developing scaffolds that can mimic the natural extracellular matrix of bone. Specifically, these novel scaffolds mirror the nanofibrous collagen network that comprises the majority of the non-mineral portion of bone matrix. Using two main fabrication techniques, electrospinning and thermally-induced phase separation, and incorporating bone-like minerals, such as hydroxyapatite, composite nanofibrous scaffolds can improve cell adhesion, stem cell differentiation, and tissue formation. This review will cover the two main processing techniques and how they are being applied to fabricate scaffolds for bone tissue engineering. It will then cover how these scaffolds can enhance the osteogenic capabilities of a variety of cell types and survey the ability of the constructs to support the growth of clinically relevant bone tissue. PMID:21944829

  16. Multilayer scaffolds in orthopaedic tissue engineering.

    PubMed

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  17. Fabrication of combinatorial polymer scaffold libraries.

    PubMed

    Simon, Carl G; Stephens, Jean S; Dorsey, Shauna M; Becker, Matthew L

    2007-07-01

    We have designed a novel combinatorial research platform to help accelerate tissue engineering research. Combinatorial methods combine many samples into a single specimen to enable accelerated experimentation and discovery. The platform for fabricating combinatorial polymer scaffold libraries can be used to rapidly identify scaffold formulations that maximize tissue formation. Many approaches for screening cell-biomaterial interactions utilize a two-dimensional format such as a film or surface to present test substrates to cells. However, cells in vivo exist in a three-dimensional milieu of extracellular matrix and cells in vitro behave more naturally when cultured in a three-dimensional environment than when cultured on a two-dimensional surface. Thus, we have designed a method for fabricating combinatorial biomaterial libraries where the materials are presented to cells in the form of three-dimensional, porous, salt-leached, polymer scaffolds. Many scaffold variations and compositions can be screened in a single experiment so that optimal scaffold formulations for tissue formation can be rapidly identified. In summary, we have developed a platform technology for fabricating combinatorial polymer scaffold libraries that can be used to screen cell response to materials in a three-dimensional, scaffold format.

  18. Inverse Opal Scaffolds and Their Biomedical Applications.

    PubMed

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Scaffolds in vascular regeneration: current status

    PubMed Central

    Thottappillil, Neelima; Nair, Prabha D

    2015-01-01

    An ideal vascular substitute, especially in <6 mm diameter applications, is a major clinical essentiality in blood vessel replacement surgery. Blood vessels are structurally complex and functionally dynamic tissue, with minimal regeneration potential. These have composite extracellular matrix (ECM) and arrangement. The interplay between ECM components and tissue specific cells gives blood vessels their specialized functional attributes. The core of vascular tissue engineering and regeneration relies on the challenges in creating vascular conduits that match native vessels and adequately regenerate in vivo. Out of numerous vascular regeneration concerns, the relevance of ECM emphasizes much attention toward appropriate choice of scaffold material and further scaffold development strategies. The review is intended to be focused on the various approaches of scaffold materials currently in use in vascular regeneration and current state of the art. Scaffold of choice in vascular tissue engineering ranges from natural to synthetic, decellularized, and even scaffold free approach. The applicability of tubular scaffold for in vivo vascular regeneration is under active investigation. A patent conduit with an ample endothelial luminal layer that can regenerate in vivo remains an unanswered query in the field of small diameter vascular tissue engineering. Besides, scaffolds developed for vascular regeneration, should aim at providing functional substitutes for use in a regenerative approach from the laboratory bench to patient bedside. PMID:25632236

  20. Fabrication of combinatorial polymer scaffold libraries

    NASA Astrophysics Data System (ADS)

    Simon, Carl G.; Stephens, Jean S.; Dorsey, Shauna M.; Becker, Matthew L.

    2007-07-01

    We have designed a novel combinatorial research platform to help accelerate tissue engineering research. Combinatorial methods combine many samples into a single specimen to enable accelerated experimentation and discovery. The platform for fabricating combinatorial polymer scaffold libraries can be used to rapidly identify scaffold formulations that maximize tissue formation. Many approaches for screening cell-biomaterial interactions utilize a two-dimensional format such as a film or surface to present test substrates to cells. However, cells in vivo exist in a three-dimensional milieu of extracellular matrix and cells in vitro behave more naturally when cultured in a three-dimensional environment than when cultured on a two-dimensional surface. Thus, we have designed a method for fabricating combinatorial biomaterial libraries where the materials are presented to cells in the form of three-dimensional, porous, salt-leached, polymer scaffolds. Many scaffold variations and compositions can be screened in a single experiment so that optimal scaffold formulations for tissue formation can be rapidly identified. In summary, we have developed a platform technology for fabricating combinatorial polymer scaffold libraries that can be used to screen cell response to materials in a three-dimensional, scaffold format.

  1. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?

    PubMed

    Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri

    2012-01-01

    Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.

  2. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    ERIC Educational Resources Information Center

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  3. Scaffolding for Argumentation in Hypothetical and Theoretical Biology Concepts

    ERIC Educational Resources Information Center

    Weng, Wan-Yun; Lin, Yu-Ren; She, Hsiao-Ching

    2017-01-01

    The present study investigated the effects of online argumentation scaffolding on students' argumentation involving hypothetical and theoretical biological concepts. Two types of scaffolding were developed in order to improve student argumentation: continuous scaffolding and withdraw scaffolding. A quasi-experimental design was used with four…

  4. 30 CFR 56.11027 - Scaffolds and working platforms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Scaffolds and working platforms. 56.11027... § 56.11027 Scaffolds and working platforms. Scaffolds and working platforms shall be of substantial... and the scaffolds and working platforms shall not be overloaded. Working platforms shall be provided...

  5. 30 CFR 56.11027 - Scaffolds and working platforms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Scaffolds and working platforms. 56.11027... § 56.11027 Scaffolds and working platforms. Scaffolds and working platforms shall be of substantial... and the scaffolds and working platforms shall not be overloaded. Working platforms shall be provided...

  6. 30 CFR 56.11027 - Scaffolds and working platforms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Scaffolds and working platforms. 56.11027... § 56.11027 Scaffolds and working platforms. Scaffolds and working platforms shall be of substantial... and the scaffolds and working platforms shall not be overloaded. Working platforms shall be provided...

  7. 30 CFR 56.11027 - Scaffolds and working platforms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Scaffolds and working platforms. 56.11027... § 56.11027 Scaffolds and working platforms. Scaffolds and working platforms shall be of substantial... and the scaffolds and working platforms shall not be overloaded. Working platforms shall be provided...

  8. 30 CFR 56.11027 - Scaffolds and working platforms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Scaffolds and working platforms. 56.11027... § 56.11027 Scaffolds and working platforms. Scaffolds and working platforms shall be of substantial... and the scaffolds and working platforms shall not be overloaded. Working platforms shall be provided...

  9. Electrospinning of Bioinspired Polymer Scaffolds.

    PubMed

    Araujo, Jose V; Carvalho, Pedro P; Best, Serena M

    2015-01-01

    Electrospinning is a technique used in the production of polymer nanofibre meshes. The use of biodegradable and biocompatible polymers to produce nanofibres that closely mimic the extracellular matrix (ECM) of different tissues has opened a wide range of possibilities for the application of electrospinning in Tissue Engineering. It is believed that nano-features (such as voids and surface cues) present in nanofibre mesh scaffolds, combined with the chemical composition of the fibres, can stimulate cell attachment, growth and differentiation. Despite the widespread use of electrospun nanofibres in tissue engineering, the present chapter will focus on the advances made in the utilisation of these materials in bone, cartilage and tooth related applications. Several aspects will be taken into consideration, namely the choice of polymers, the surface modification of the nanofibres in order to achieve mineralisation, and also the biological application of such materials.

  10. Cell penetration to nanofibrous scaffolds

    PubMed Central

    Rampichová, Michala; Buzgo, Matej; Chvojka, Jiří; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Cell infiltration is a critical parameter for the successful development of 3D matrices for tissue engineering. Application of electrospun nanofibers in tissue engineering has recently attracted much attention. Notwithstanding several of their advantages, small pore size and small thickness of the electrospun layer limit their application for development of 3D scaffolds. Several methods for the pore size and/or electrospun layer thickness increase have been recently developed. Nevertheless, tissue engineering still needs emerging of either novel nanofiber-enriched composites or new techniques for 3D nanofiber fabrication. Forcespinning® seems to be a promising alternative. The potential of the Forcespinning® method is illustrated in preliminary experiment with mesenchymal stem cells. PMID:24429388

  11. Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Kelley, David H.; Milone, Eugene F.

    Exploring Ancient Skies uses modern science to examine ancient astronomy throughout the World, that is, to use the methods of archaeology and insights of modern astronomy explore how astronomy was practiced before the invention of the telescope. It thus reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World, particularly Mesoamerica, putting the ancient astronomical materials into their archaeological and cultural contexts.

  12. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    PubMed

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  13. Defining Astrology in Ancient and Classical History

    NASA Astrophysics Data System (ADS)

    Campion, Nicholas

    2015-05-01

    Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.

  14. Myths and Gods of Ancient Mexico.

    ERIC Educational Resources Information Center

    Rascon, Vincent P.

    Intended to help Americans of Mexican descent understand their rich cultural heritage, this portfolio contains 12 full-color drawings of the myths and gods of the Olmecs and Toltecs of Ancient Mexico. These original drawings are by Vincent P. Rascon. Information captions in English and Spanish are given for each drawing which is printed on heavy…

  15. Ancient Pyramids Help Students Learn Math Concepts

    ERIC Educational Resources Information Center

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  16. The Study of Women in Ancient Society.

    ERIC Educational Resources Information Center

    Moscovich, M. James

    1982-01-01

    Presents ideas for teaching about the roles of women in ancient Greek and Roman societies for undergraduate history and sociology classes. The discussion covers the roots of misogyny in Western culture, parallels between mythologies and sociocultural patterns, and the legal status of women in antiquity. (AM)

  17. Technologies Old and New: Teaching Ancient Navigation.

    ERIC Educational Resources Information Center

    Spalding, Simon

    1995-01-01

    One educator presents maritime history to students using technologies available to ancient seafarers. Techniques include dead reckoning, the sandglass, the magnetic compass, celestial navigation, and various navigation techniques of precontact Polynesia that depended upon oral transmission of knowledge. The paper notes differences between…

  18. Ancient whole grain gluten-free flatbreads

    USDA-ARS?s Scientific Manuscript database

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  19. Preserving ancient artifacts for the next millennia

    Treesearch

    Samuel L. Zelinka

    2014-01-01

    When wood is kept dry, it can remain intact for millennia, as evidenced by numerous artifacts from ancient Egypt (1). However, when wood interacts with water, numerous problems arise that can cause the wood to become permanently damaged or destroyed completely. Wood exhibits swelling on moisture uptake and shrinkage on drying, and these cyclical moisture changes lead...

  20. Ancient Pyramids Help Students Learn Math Concepts

    ERIC Educational Resources Information Center

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  1. Ancient Human Parasites in Ethnic Chinese Populations.

    PubMed

    Yeh, Hui-Yuan; Mitchell, Piers D

    2016-10-01

    Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski. It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range.

  2. Geoscience: Fossil raindrops and ancient air

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Renne, Paul R.

    2012-04-01

    An analysis of fossil imprints of ancient raindrops suggests that the density of the atmosphere 2.7 billion years ago was much the same as that today. This result casts fresh light on a long-standing palaeoclimate paradox. See Letter p.359

  3. Estimated Water Depths in Ancient Martian Sea

    NASA Image and Video Library

    2017-10-06

    The Eridania basin of southern Mars is believed to have held a sea about 3.7 billion years ago, with seafloor deposits likely resulting from underwater hydrothermal activity. This graphic shows estimated depths of water in that ancient sea. A recent estimate of the total water volume of the ancient Eridania sea is about 50,000 cubic miles (210,000 cubic kilometers), about nine times the total volume of North America's Great Lakes. The map covers an area about 530 miles (850 kilometers) wide. This graphic was included in a 2017 report "Ancient hydrothermal seafloor deposits in Eridania basin on Mars" in Nature Communications. A reference bar indicating color coding of depth, from red, at right, showing depth of about 300 feet (100 meters) to black showing depth more than 10 times that depth. This graphic was included in a 2017 report "Ancient hydrothermal seafloor deposits in Eridania basin on Mars" in Nature Communications. https://photojournal.jpl.nasa.gov/catalog/PIA22059

  4. Precursors of Vocational Psychology in Ancient Civilizations.

    ERIC Educational Resources Information Center

    Dumont, Frank; Carson, Andrew D.

    1995-01-01

    Examines philosophical theories produced by two ancient civilizations (Eastern Mediterranean and Chinese) for applications to an applied psychology of work. Includes analysis of Egyptians, Semites, and Greeks, with a special emphasis on Plato. Suggests that many basic elements of vocational psychology were present during the first millennium B.C.…

  5. Tapping Ancient Roots: Plaited Paper Baskets

    ERIC Educational Resources Information Center

    Patrick, Jane

    2011-01-01

    With ancient roots, basket making has been practiced since the earliest civilizations, and according to textile experts, probably pre-dates pottery. This is partly conjecture since few baskets remain. It is through evidence found in clay impressions that the earliest baskets reveal themselves. Basically, basketry construction is like flat weaving.…

  6. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  7. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  8. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  9. Ancient DNA analysis of dental calculus.

    PubMed

    Weyrich, Laura S; Dobney, Keith; Cooper, Alan

    2015-02-01

    Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Communication Arts in the Ancient World.

    ERIC Educational Resources Information Center

    Havelock, Eric A., Ed.; Hershbell, Jackson P., Ed.

    Intended for both classicists and nonclassicists, this volume explores the beginnings of literacy in ancient Greece and Rome and examines the effects of written communication on these cultures. The nine articles, written by classical scholars and educators in the field of communication, discuss the following: the superiority of the alphabet over…

  11. The Challenges of Qualitatively Coding Ancient Texts

    ERIC Educational Resources Information Center

    Slingerland, Edward; Chudek, Maciej

    2012-01-01

    We respond to several important and valid concerns about our study ("The Prevalence of Folk Dualism in Early China," "Cognitive Science" 35: 997-1007) by Klein and Klein, defending our interpretation of our data. We also argue that, despite the undeniable challenges involved in qualitatively coding texts from ancient cultures,…

  12. Unlocking the Mysteries of Ancient Egypt.

    ERIC Educational Resources Information Center

    Riechers, Maggie

    1995-01-01

    Describes the work of Egyptologist William Murnane who is recording the ritual scenes and inscriptions of a great columned hall from the days of the pharaohs. The 134 columns, covered with divine imagery and hieroglyphic inscriptions represent an unpublished religious text. Briefly discusses ancient Egyptian culture. Includes several photographs…

  13. The ancient history of Halley's comet.

    NASA Astrophysics Data System (ADS)

    Stephenson, F. R.

    Contents: The accuracy of orbital parameters. The apparition in 12 B.C. Chinese references to comets around 87 and 164 B.C. Cometary records from ancient China. Late Babylonian cometary records. The apparition of 87 B.C. The apparition of 164 B.C. The apparition of 240 B.C. Conclusion.

  14. Women of Ancient Greece: Participating in Sport?

    ERIC Educational Resources Information Center

    Mills, Brett D.

    Based on evidence obtained from Greek literature and artifacts, this paper examines the extent to which women in ancient Greece participated in physical activity, sports, and games. Homer's "Odyssey" describes women playing ball and driving chariots; vases dating back to 700-675 B.C. portray women driving light chariots in a procession;…

  15. Ancient Israel in Western Civ Textbooks

    ERIC Educational Resources Information Center

    Cargill, Jack

    2001-01-01

    The author frequently teaches introductory courses in what was once generally called "Western Civilization" and has often been called upon to referee all or parts of the manuscripts of new editions of "Western Civ" textbooks. Through his own reading, he has become aware that much current scholarship on ancient Israel and Judah…

  16. Ancient science in a digital age.

    PubMed

    Lehoux, Daryn

    2013-03-01

    Technology is rapidly changing our understanding of ancient science. New methods of visualization are bringing to light important texts we could not previously read; changes in online publishing are allowing unprecedented access to difficult-to-find materials; and online mapping tools are offering new pictures of lost spaces, connectivities, and physical objects.

  17. Archaeology Informs Our Understanding of Ancient Texts.

    ERIC Educational Resources Information Center

    Mull, Kenneth V.

    1990-01-01

    Recognizes the importance and utility of archaeology for understanding ancient texts and revealing how they illuminate biblical meaning and history. Presents guidelines showing classroom teachers how to incorporate archaeological knowledge into their lessons. Describes current Middle Eastern excavation sites, using Jerusalem as a case study.…

  18. Perry: american renaissance of an ancient beverage

    USDA-ARS?s Scientific Manuscript database

    Burgeoning world interest in cider and perry (pear cider, which is an alcoholic beverage) has created a strong demand for unique perry pear (Pyrus L.) cultivars. The history of perry dates to the ancient Romans. This beverage has been very popular through the centuries in Europe. The U.S. Department...

  19. Modern Views of Ancient Solar Observatories

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Cornucopia, G. B.

    2004-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. The event emphasizes the study of the Sun and its effects on the Earth and the rest of the Solar System. Sun-Earth Day 2004 will emphasize the June 8th Transit of Venus as a theme. For 2005 the highlight will be the study of the Sun by ancient cultures and how that relates to contemporary solar knowledge. There are many examples of ancient solar observatories around the world, but some of the best are found in National Parks. SECEF has been working with Chaco Culture National Historical Park in New Mexico to do a webcast showing knowledge about the Sun by the Chacoan people that is evident in the park. The Sun Dagger and other pictographs as well as Chaco building alignments indicate the influence of the Sun in the lives of this people. The cooperative planning for this event by NASA and the National Park Service (NPS) will be discussed. Other events emphasizing ancient observatories in other locations are also planned for the future. The partnership between SECEF and NPS is not limited to ancient observatories, however. The influence of the Sun on our daily lives is an appropriate topic for many parks and the possibilities for solar exhibits, daytime astronomy sessions, scientist lectures, etc. will be discussed as well.

  20. Ancient Human Parasites in Ethnic Chinese Populations

    PubMed Central

    Yeh, Hui-Yuan; Mitchell, Piers D.

    2016-01-01

    Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski. It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range. PMID:27853113