Sample records for anderson impurity model

  1. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: sergei-davydov@mail.ru

    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less

  2. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  3. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  4. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  5. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  6. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    PubMed

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  7. Unbinding slave spins in the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Guerci, Daniele; Fabrizio, Michele

    2017-11-01

    We show that a generic single-orbital Anderson impurity model, lacking, for instance, any kind of particle-hole symmetry, can be exactly mapped without any constraint onto a resonant level model coupled to two Ising variables, which reduce to one if the hybridization is particle-hole symmetric. The mean-field solution of this model is found to be stable to unphysical spontaneous magnetization of the impurity, unlike the saddle-point solution in the standard slave-boson representation. Remarkably, the mean-field estimate of the Wilson ratio approaches the exact value RW=2 in the Kondo regime.

  8. Qualitative breakdown of the noncrossing approximation for the symmetric one-channel Anderson impurity model at all temperatures

    NASA Astrophysics Data System (ADS)

    Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.

    2016-08-01

    The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.

  9. Spectral density method to Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chebrolu, Narasimha Raju, E-mail: narasimharaju.phy@gmail.com; Chatterjee, Ashok

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  10. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE PAGES

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...

    2014-10-31

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  11. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  12. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  13. Spin-polarized density-matrix functional theory of the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Töws, W.; Pastor, G. M.

    2012-12-01

    Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.

  14. Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic structure

    NASA Astrophysics Data System (ADS)

    Mozara, R.; Valentyuk, M.; Krivenko, I.; Şaşıoǧlu, E.; Kolorenč, J.; Lichtenstein, A. I.

    2018-02-01

    Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in different directions. We present a many-body study of the Anderson impurity model representing a Co adatom on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by the constrained random-phase approximation. The most pronounced differences are naturally displayed by the many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results in parallel with the exact diagonalization method.

  15. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  16. Mixed valent metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riseborough, P. S.; Lawrence, Jon M.

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  17. Mixed valent metals

    DOE PAGES

    Riseborough, P. S.; Lawrence, Jon M.

    2016-07-04

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  18. A real-frequency solver for the Anderson impurity model based on bath optimization and cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus

    2018-05-01

    Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.

  19. The thermoelectric properties of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Cai, Jianwei

    Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.

  20. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + {sigma} approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamicmore » conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.« less

  1. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  2. Single-particle dynamics of the Anderson model: a local moment approach

    NASA Astrophysics Data System (ADS)

    Glossop, Matthew T.; Logan, David E.

    2002-07-01

    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.

  3. Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study

    NASA Astrophysics Data System (ADS)

    Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin

    2017-07-01

    We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0 1 , where the phases are separated by first-order quantum phase transitions that are accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both r >0 and r <0 . Throughout the regime of weak-to-moderate impurity-band coupling in which poor man's scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the functional relations between model parameters along these boundaries.

  4. Impurity-directed transport within a finite disordered lattice

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah

    2018-02-01

    We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.

  5. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    NASA Astrophysics Data System (ADS)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  6. Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.

  7. Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.

    The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less

  8. Exact diagonalization library for quantum electron models

    NASA Astrophysics Data System (ADS)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  9. Interleaved numerical renormalization group as an efficient multiband impurity solver

    NASA Astrophysics Data System (ADS)

    Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.

    2016-06-01

    Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.

  10. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  11. Nanomechanical dissipation at a tip-induced Kondo onset

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio

    2017-08-01

    The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.

  12. Effects of correlated hybridization in the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Líbero, Valter; Veiga, Rodrigo

    2013-03-01

    The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

  13. Non-Equilibrium Dynamics with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dong, Qiaoyuan

    This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.

  14. Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less

  15. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-05

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  16. Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.

  17. Single- or multi-flavor Kondo effect in graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal

    2010-06-01

    Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.

  18. Green's function approach to the Kondo effect in nanosized quantum corrals

    NASA Astrophysics Data System (ADS)

    Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.

    2018-04-01

    We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.

  19. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less

  20. Complexity of Quantum Impurity Problems

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Gosset, David

    2017-12-01

    We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

  1. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  2. Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.

    PubMed

    Song, Yang; Dery, Hanan

    2014-07-25

    We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.

  3. Disorder Problem In Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark

    2015-03-01

    Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.

  4. Classical mapping for Hubbard operators: Application to the double-Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Miller, William H.; Levy, Tal J.

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to bemore » accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.« less

  5. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    NASA Astrophysics Data System (ADS)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  6. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  7. Leading temperature dependence of the conductance in Kondo-correlated quantum dots.

    PubMed

    Aligia, A A

    2018-04-18

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  8. Correlation effects in superconducting quantum dot systems

    NASA Astrophysics Data System (ADS)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  9. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In(1-x)Fe(x))2O3.

    PubMed

    Green, R J; Regier, T Z; Leedahl, B; McLeod, J A; Xu, X H; Chang, G S; Kurmaev, E Z; Moewes, A

    2015-10-16

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  10. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1 -xFex )2O3

    NASA Astrophysics Data System (ADS)

    Green, R. J.; Regier, T. Z.; Leedahl, B.; McLeod, J. A.; Xu, X. H.; Chang, G. S.; Kurmaev, E. Z.; Moewes, A.

    2015-10-01

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2 O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  11. Convergence of high order perturbative expansions in open system quantum dynamics.

    PubMed

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-14

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  12. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  13. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  14. Fano-shaped impurity spectral density, electric-field-induced in-gap state, and local magnetic moment of an adatom on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua

    2017-08-01

    Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.

  15. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  16. Quantum quench of Kondo correlations in optical absorption

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Andreas

    2013-03-01

    Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.

  17. Time-dependent i-DFT exchange-correlation potentials with memory: applications to the out-of-equilibrium Anderson model

    NASA Astrophysics Data System (ADS)

    Kurth, Stefan; Stefanucci, Gianluca

    2018-06-01

    We have recently put forward a steady-state density functional theory (i-DFT) to calculate the transport coefficients of quantum junctions. Within i-DFT it is possible to obtain the steady density on and the steady current through an interacting junction using a fictitious noninteracting junction subject to an effective gate and bias potential. In this work we extend i-DFT to the time domain for the single-impurity Anderson model. By a reverse engineering procedure we extract the exchange-correlation (xc) potential and xc bias at temperatures above the Kondo temperature T K. The derivation is based on a generalization of a recent paper by Dittmann et al. [N. Dittmann et al., Phys. Rev. Lett. 120, 157701 (2018)]. Interestingly the time-dependent (TD) i-DFT potentials depend on the system's history only through the first time-derivative of the density. We perform numerical simulations of the early transient current and investigate the role of the history dependence. We also empirically extend the history-dependent TD i-DFT potentials to temperatures below T K. For this purpose we use a recently proposed parametrization of the i-DFT potentials which yields highly accurate results in the steady state.

  18. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  19. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  20. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  1. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  2. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  3. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE PAGES

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...

    2016-12-29

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  4. Topological magnons in a one-dimensional itinerant flatband ferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Fei; Gu, Zhao-Long; Dong, Zhao-Yang; Li, Jian-Xin

    2018-06-01

    Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flatband is considered as the prototype. This model can be viewed as a quarter-filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to π , leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes, which is consistent with the bulk-edge correspondence. The Hubbard interaction-driven transition reveals a new mechanism to realize nontrivial magnon bands.

  5. Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Bonča, Janez; Pruschke, Thomas

    2009-12-01

    Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.

  6. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  7. Effect of impurities of selenium and iron on the Anderson localization of 1T-TaS 2

    NASA Astrophysics Data System (ADS)

    Ōnuki, Y.; Inada, R.; Tanuma, S.

    1980-01-01

    The temperature dependence of electrical resistivities θ( T) of 1T-TaS 2, 1T-TaS 2- xSe x and 1T-Fe xTa 1- xS 2 is found to be θ( T) ∝ exp( T0/ T) 1/n in the temperature range of 4 K to the measured lowest temperature, 0.1 K, showing the variable range hopping of Anderson localized states. The n-value is nearly 3 for selenium doping and nearly 2 for non-doping and iron doping. The positive magnetoresistance, which is sizable only in the temperature range of 2 K to 0.5 K in 1T-TaS 2, is found to be remarkably enhanced by the selenium doping, while the tendency is reversed by the iron doping.

  8. Surface hopping with a manifold of electronic states. III. Transients, broadening, and the Marcus picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    2015-06-21

    In a previous paper [Dou et al., J. Chem. Phys. 142, 084110 (2015)], we have introduced a surface hopping (SH) approach to deal with the Anderson-Holstein model. Here, we address some interesting aspects that have not been discussed previously, including transient phenomena and extensions to arbitrary impurity-bath couplings. In particular, in this paper we show that the SH approach captures phonon coherence beyond the secular approximation, and that SH rates agree with Marcus theory at steady state. Finally, we show that, in cases where the electronic tunneling rate depends on nuclear position, a straightforward use of Marcus theory rates yieldsmore » a useful starting point for capturing level broadening. For a simple such model, we find I-V curves that exhibit negative differential resistance.« less

  9. Quantum theory of an atom in proximity to a superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  10. Theory of resonant x-ray emission spectra in compounds with localized f electrons

    NASA Astrophysics Data System (ADS)

    Kolorenč, Jindřich

    2018-05-01

    I discuss a theoretical description of the resonant x-ray emission spectroscopy (RXES) that is based on the Anderson impurity model. The parameters entering the model are determined from material-specific LDA+DMFT calculations. The theory is applicable across the whole f series, not only in the limits of nearly empty (La, Ce) or nearly full (Yb) valence f shell. Its performance is illustrated on the pressure-enhanced intermediate valency of elemental praseodymium. The obtained results are compared to the usual interpretation of RXES, which assumes that the spectrum is a superposition of several signals, each corresponding to one configuration of the 4f shell. The present theory simplifies to such superposition only if nearly all effects of hybridization of the 4f shell with the surrounding states are neglected. Although the assumption of negligible hybridization sounds reasonable for lanthanides, the explicit calculations show that it substantially distorts the analysis of the RXES data.

  11. Hall effect in Ce/sub 1-x/Y/sub x/Pd/sub 3/ mixed-valence alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fert, A.; Pureur, P.; Hamzic, A.

    Mixed-valence and Kondo lattice systems exhibit large anomalous Hall coefficients with a striking change of sign at low temperature in several systems (CePd/sub 3/, CeCu/sub 6/,..., etc.). We have studied the Hall effect of Ce/sub 1-x/Y/sub x/Pd/sub 3/, in which the substitution of small amounts of Y for Ce prevents the development of coherence at low temperature. We find that the Hall coefficient does not change its sign at low temperature and can be well understood in the one-impurity model of Ramakrishnan, Coleman, and Anderson. We infer that the change of sign observed in CePd/sub 3/ is an effect ofmore » coherence.« less

  12. Gutzwiller renormalization group

    DOE PAGES

    Lanatà, Nicola; Yao, Yong -Xin; Deng, Xiaoyu; ...

    2016-01-06

    We develop a variational scheme called the “Gutzwiller renormalization group” (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method exploits the low-entanglement property of the ground state of local Hamiltonians in combination with the framework of the Gutzwiller wave function and indicates that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. Furthermore, we perform benchmark calculations of the single-band AIM that validate our theory and suggest that the GRG mightmore » enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.« less

  13. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls the superconducting transition temperatures across the cuprate families. In the second, we extend this idea towards first-principles design of cuprates by exploring a new family of copper oxysulfides.

  14. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  15. Log-Multiplicative Association Models as Item Response Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Yu, Hsiu-Ting

    2007-01-01

    Log-multiplicative association (LMA) models, which are special cases of log-linear models, have interpretations in terms of latent continuous variables. Two theoretical derivations of LMA models based on item response theory (IRT) arguments are presented. First, we show that Anderson and colleagues (Anderson & Vermunt, 2000; Anderson & Bockenholt,…

  16. Bell pair creation in current of Kondo-correlated dot

    NASA Astrophysics Data System (ADS)

    Sakano, Rui; Oguri, Akira; Nishikawa, Yunori; Abe, Eisuke

    Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality. This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.

  17. Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Kucab, Krzysztof

    2017-05-01

    Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.

  18. Electron Correlation in Oxygen Vacancy in SrTiO3

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Demkov, Alexander A.

    2014-03-01

    Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.

  19. Numerically Exact Long Time Magnetization Dynamics Near the Nonequilibrium Kondo Regime

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David; Millis, Andrew; Rabani, Eran

    2013-03-01

    The dynamical and steady-state spin response of the nonequilibrium Anderson impurity model to magnetic fields, bias voltages, and temperature is investigated by a numerically exact method which allows access to unprecedentedly long times. The method is based on using real, continuous time bold Monte Carlo techniques--quantum Monte Carlo sampling of diagrammatic corrections to a partial re-summation--in order to compute the kernel of a memory function, which is then used to determine the reduced density matrix. The method owes its effectiveness to the fact that the memory kernel is dominated by relatively short-time properties even when the system's dynamics are long-ranged. We make predictions regarding the non-monotonic temperature dependence of the system at high bias voltage and the oscillatory quench dynamics at high magnetic fields. We also discuss extensions of the method to the computation of transport properties and correlation functions, and its suitability as an impurity solver free from the need for analytical continuation in the context of dynamical mean field theory. This work is supported by the US Department of Energy under grant DE-SC0006613, by NSF-DMR-1006282 and by the US-Israel Binational Science Foundation. GC is grateful to the Yad Hanadiv-Rothschild Foundation for the award of a Rothschild Fellowship.

  20. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    PubMed Central

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal–insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal–insulator transition in terms of bond disproportionation. PMID:27725665

  1. The topological Anderson insulator phase in the Kane-Mele model

    NASA Astrophysics Data System (ADS)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  2. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  3. Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

    NASA Astrophysics Data System (ADS)

    Khedri, A.; Meden, V.; Costi, T. A.

    2017-11-01

    We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.

  4. Electronic structure and magnetic properties of Dy adatom on Ir surface

    NASA Astrophysics Data System (ADS)

    Shick, A. B.; Lichtenstein, A. I.

    2018-05-01

    The electronic structure and magnetism of individual Dy atom adsorbed on the (1 1 1) surface of Ir is investigated using the combination of the density functional theory with the Hubbard-I approximation to the Anderson impurity model (DFT + HIA). The Dy3+ adatom is found magnetic with the magnetic moment of 9.35μB in the external magnetic field. The spin and orbital magnetic moments, and their ratio are evaluated, and compared with the X-ray magnetic circular dichroism data. The positive magnetic anisotropy energy of ≈ 1.3 meV determines the out-of-plane orientation of the Dy adatom magnetic moment. The role of 5d-4f interorbital exchange polarization in modification of the 4f shell energy spectrum is emphasized. We predict the Dy magnetization to drop by the factor of three with switching off the external magnetic field.

  5. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE PAGES

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.; ...

    2016-11-30

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  6. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    PubMed

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  7. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  8. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    USGS Publications Warehouse

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  9. Calculation of Suspended Sediment Transport by Combined Wave-Current Flows.

    DTIC Science & Technology

    1994-11-01

    Anderson, and Silberg (1985) presented a model that had an eddy viscosity and boundary layer thickness that varied in time. The reference concentration was...sediment model. This model, along with that of Fredsoe, Anderson, and Silberg (1985), are the only two models that account for both the sediment and the...ignores any correlation between the periodic components of the velocity and the concentration. Even in the model of Fredsoe, Anderson, and Silberg (1985

  10. Higher-order Fermi-liquid corrections for an Anderson impurity away from half filling : Equilibrium properties

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-01-01

    We study the low-energy behavior of the vertex function of a single Anderson impurity away from half filling for finite magnetic fields, using the Ward identities with careful consideration of the antisymmetry and analytic properties. The asymptotic form of the vertex function Γσσ';σ'σ(i ω ,i ω';i ω',i ω ) is determined up to terms of linear order with respect to the two frequencies ω and ω', as well as the ω2 contribution for antiparallel spins σ'≠σ at ω'=0 . From these results, we also obtain a series of the Fermi-liquid relations beyond those of Yamada-Yosida [Prog. Theor. Phys. 54, 316 (1975), 10.1143/PTP.54.316]. The ω2 real part of the self-energy Σσ(i ω ) is shown to be expressed in terms of the double derivative ∂2Σσ(0 ) /∂ ɛdσ 2 with respect to the impurity energy level ɛdσ, and agrees with the formula obtained recently by Filippone, Moca, von Delft, and Mora (FMvDM) in the Nozières phenomenological Fermi-liquid theory [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. We also calculate the T2 correction of the self-energy and find that the real part can be expressed in terms of the three-body correlation function ∂ χ↑↓/∂ ɛd,-σ , where χ↑↓ is the static susceptibility between antiparallel spins. We also provide an alternative derivation of the asymptotic form of the vertex function. Specifically, we calculate the skeleton diagrams for the vertex function Γσσ ;σ σ(i ω ,0 ;0 ,i ω ) for parallel spins up to order U4 in the Coulomb repulsion U . It directly clarifies the fact that the analytic components of order ω vanish as a result of the cancellation of four related Feynman diagrams, which are related to each other through the antisymmetry operation.

  11. Out of equilibrium transport through an Anderson impurity: probing scaling laws within the equation of motion approach.

    PubMed

    Balseiro, C A; Usaj, G; Sánchez, M J

    2010-10-27

    We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing on the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G(2)(T, V) in order to test several scaling laws. We find that G(2)(T, V)/G(2)(T, 0) is a universal function of both eV/T(K) and T/T(K), T(K) being the Kondo temperature. The effect of an in-plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting Δ, the computed differential conductance peak splitting depends only on Δ/T(K), and for large fields approaches the value of 2Δ. Besides studying the traditional two leads setup, we also consider other configurations that mimic recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as ln(eV/T(K)). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.

  12. Anomalous Anderson localization

    NASA Astrophysics Data System (ADS)

    Deng, Wenji

    2000-04-01

    We propose a generalized Anderson model and study numerically the localization phenomena in one dimension. In our model, not all the sites take on-site random site energy. The on-site energy εn on the nth site is assigned as follows. If n+P-1=0 ( mod P) , where P is a positive integer, εn is assumed to be randomly distributed between - W/2 and W/2. On the other lattice sites, the site energy is fixed, say εn=0.The localization length ξ defined as | t| 2=e -2 L/ ξ, where t is the transmission coefficient, is calculated using the transfer matrix method. It is found that the single-electron states with wave vectors k= π/P, 2 π/P,…,(P-1) π/P are no longer localized as in the standard Anderson model. Compared with the smooth localization length spectrum of the Anderson model, there appear P-1 sharp peaks periodically located at P-1 values of wave vector on the localization length spectrum of the generalized Anderson model with parameter P.

  13. Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise.

    PubMed

    López, Rosa; Sánchez, David

    2003-03-21

    We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.

  14. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    PubMed

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.

  15. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  16. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE PAGES

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; ...

    2016-10-11

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  17. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds

    DOE PAGES

    Butorin, Sergei M.; Kvashnina, Kristina O.; Vegelius, Johan R.; ...

    2016-07-01

    Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the 5f shell directly in the HERFD-XAS spectra of actinides. Using ThO 2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO 2 is not an ionic compound as previously believed. The Th 6d occupancy in the ground statemore » was estimated to be twice that of the Th 5f states. Here, we demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems.« less

  18. Transport properties of coupled quantum dots in the presence of phonons

    NASA Astrophysics Data System (ADS)

    Martins, G.; Al-Hassanieh, K.

    2005-03-01

    Here is presented the numerical study of the effect of Holstein phonons in the transport properties of two coupled quantum dots (QDs) in the Kondo regime. For the QDs we use the Anderson impurity model and each QD is coupled to a different Holstein mode. At T=0, in the absence of phonons, and with 1 electron per dot, the usual splitting of the Kondo resonance is observed.^1 When the QDs are coupled to the phonons, there is a reduction of the effective Coulomb repulsion, which is explained through a canonical transformation. In addition, the conductance at the electron-hole symmetric gate potential is not affected by the phonons. This is caused by the modulation of the coupling factors.^2 The difference between the effects of phonons in lithographic QDs and in molecular conductors is also discussed. 1- C.A. Büsser et al, Phys. Rev. B 62, 9907 (2000). 2- K.A. Al-Hassanieh, C.A. Büsser, G.B. Martins, Adriana Moreo and Elbio Dagotto (preprint)

  19. Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach

    NASA Astrophysics Data System (ADS)

    Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico

    2018-01-01

    We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.

  20. Revealing the electronic ground state of ReNiO3 combining Ni-L3 x-ray absorption and resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Balandesh, Shadi; Strocov, Vladimir N.; Zubko, Pavlo; Sawatzky, George; Triscone, Jean-Marc; Schmitt, Thorsten

    Rare-earth nickelates ReNiO3 attract a lot of interest thanks to their intriguing physical properties like sharp metal to insulator transition, unusual magnetic order and expected superconductivity in nickelate-based heterostructures. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). Taking a NdNiO3 thin film as a representative example, we reveal with x-ray absorption and resonant inelastic x-ray scattering unusual coexistence of bound and continuum excitations, providing strong evidence for abundant O 2p holes in the GS of these materials. Using an Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the O 2p valence band, confirming suggestions that these materials exhibit a negative charge-transfer energy, with O 2p states extending across the Fermi level.

  1. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE PAGES

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    2015-01-01

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  2. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  3. Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Itai, K.; Fazekas, P.

    1996-07-01

    We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.

  4. Localization by bichromatic potentials versus Anderson localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Mathias; Leboeuf, Patricio

    The one-dimensional propagation of waves in a bichromatic potential may be modeled by the Aubry-Andre Hamiltonian. This, in turn, presents a localization transition that has been observed in recent experiments using ultracold atoms or light. It is shown here that, in contrast to the Anderson model, the localization mechanism has a classical origin, namely it is not due to a quantum suppression of a classically allowed transport process, but rather is produced by a trapping by the potential. Explicit comparisons with the Anderson model as well as with experiments are presented.

  5. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-03-01

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  6. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.

    PubMed

    Oguri, Akira; Hewson, A C

    2018-03-23

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  7. Random Matrix Theory and the Anderson Model

    NASA Astrophysics Data System (ADS)

    Bellissard, Jean

    2004-08-01

    This paper is devoted to a discussion of possible strategies to prove rigorously the existence of a metal-insulator Anderson transition for the Anderson model in dimension d≥3. The possible criterions used to define such a transition are presented. It is argued that at low disorder the lowest order in perturbation theory is described by a random matrix model. Various simplified versions for which rigorous results have been obtained in the past are discussed. It includes a free probability approach, the Wegner n-orbital model and a class of models proposed by Disertori, Pinson, and Spencer, Comm. Math. Phys. 232:83-124 (2002). At last a recent work by Magnen, Rivasseau, and the author, Markov Process and Related Fields 9:261-278 (2003) is summarized: it gives a toy modeldescribing the lowest order approximation of Anderson model and it is proved that, for d=2, its density of states is given by the semicircle distribution. A short discussion of its extension to d≥3 follows.

  8. Human Symbol Manipulation within an Integrated Cognitive Architecture

    ERIC Educational Resources Information Center

    Anderson, John R.

    2005-01-01

    This article describes the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture (Anderson et al., 2004; Anderson & Lebiere, 1998) and its detailed application to the learning of algebraic symbol manipulation. The theory is applied to modeling the data from a study by Qin, Anderson, Silk, Stenger, & Carter (2004) in which children…

  9. Feature inference with uncertain categorization: Re-assessing Anderson's rational model.

    PubMed

    Konovalova, Elizaveta; Le Mens, Gaël

    2017-09-18

    A key function of categories is to help predictions about unobserved features of objects. At the same time, humans are often in situations where the categories of the objects they perceive are uncertain. In an influential paper, Anderson (Psychological Review, 98(3), 409-429, 1991) proposed a rational model for feature inferences with uncertain categorization. A crucial feature of this model is the conditional independence assumption-it assumes that the within category feature correlation is zero. In prior research, this model has been found to provide a poor fit to participants' inferences. This evidence is restricted to task environments inconsistent with the conditional independence assumption. Currently available evidence thus provides little information about how this model would fit participants' inferences in a setting with conditional independence. In four experiments based on a novel paradigm and one experiment based on an existing paradigm, we assess the performance of Anderson's model under conditional independence. We find that this model predicts participants' inferences better than competing models. One model assumes that inferences are based on just the most likely category. The second model is insensitive to categories but sensitive to overall feature correlation. The performance of Anderson's model is evidence that inferences were influenced not only by the more likely category but also by the other candidate category. Our findings suggest that a version of Anderson's model which relaxes the conditional independence assumption will likely perform well in environments characterized by within-category feature correlation.

  10. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  11. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene

    2018-02-01

    In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.

  12. Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain

    NASA Astrophysics Data System (ADS)

    Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof

    2017-12-01

    Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.

  13. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  14. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    NASA Astrophysics Data System (ADS)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  15. Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.

  16. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  17. Magnetic properties of Co-doped Nb clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.

  18. Reply to "Comment on `Conductance scaling in Kondo-correlated quantum dots: Role of level asymmetry and charging energy'"

    NASA Astrophysics Data System (ADS)

    Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.

    2014-08-01

    The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.

  19. Spin filtering in a double quantum dot device: Numerical renormalization group study of the internal structure of the Kondo state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.

    2014-03-31

    A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less

  20. Combining Anderson's Model in the Teaching of Art Appreciation for Undergraduate Students

    ERIC Educational Resources Information Center

    Subramaniam, Maithreyi; Basaree, Ruzaika Omar; Hanafi, Jaffri; Putih, Abu Talib

    2016-01-01

    This study utilized 33 students taking creative communication design 3 in the third year of the graphic design and multimedia program, using an Anderson's model in teaching art appreciation. The quantitative research design and procedures were employed in this study. An experimental research using the quasi-experimental design, a single-group…

  1. Anderson localization in sigma models

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Wellnhofer, Jacob

    2018-03-01

    In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.

  2. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  3. Fermi energy 5f spectral weight variation in uranium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varyingmore » degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.« less

  4. Markovian Anderson Model: Bounds for the Rate of Propagation

    NASA Astrophysics Data System (ADS)

    Tcheremchantsev, Serguei

    We consider the Anderson model in with potentials whose values at any site of the lattice are Markovian independent random functions of time. For solutions to the time-dependent Schrödinger equation we show under some conditions that with probability 1 where for d=1,2 and for .

  5. Anomaly in the band centre of the one-dimensional Anderson model

    NASA Astrophysics Data System (ADS)

    Kappus, M.; Wegner, F.

    1981-03-01

    We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.

  6. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  7. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  8. Theory of L -edge spectroscopy of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.

    2017-12-01

    X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.

  9. Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Ganahl, Martin; Evertz, Hans Gerd; Arrigoni, Enrico; von der Linden, Wolfgang

    2013-07-01

    We study the time evolution and steady state of the charge current in a single-impurity Anderson model, using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state current. Among these quenches we identify those favorable for extracting steady-state observables. The period of short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝Δ-1 is the major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is explored by considering a damping term in the time evolution.

  10. Periodic Anderson model with correlated conduction electrons: Variational and exact diagonalization study

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2012-06-01

    We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.

  11. 98. View of IBM digital computer model 7090 magnet core ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. View of IBM digital computer model 7090 magnet core installation. ITT Artic Services, Inc., Official photograph BMEWS Site II, Clear, AK, by unknown photographer, 17 September 1965. BMEWS, clear as negative no. A-6606. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. Scattering and transport statistics at the metal-insulator transition: A numerical study of the power-law banded random-matrix model

    NASA Astrophysics Data System (ADS)

    Méndez-Bermúdez, J. A.; Gopar, Victor A.; Varga, Imre

    2010-09-01

    We study numerically scattering and transport statistical properties of the one-dimensional Anderson model at the metal-insulator transition described by the power-law banded random matrix (PBRM) model at criticality. Within a scattering approach to electronic transport, we concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from localized to delocalized behavior in the average-scattering matrix elements, the conductance probability distribution, the variance of the conductance, and the shot noise power by varying b (the effective bandwidth of the PBRM model) from small (b≪1) to large (b>1) values. We contrast our results with analytic random matrix theory predictions which are expected to be recovered in the limit b→∞ . We also compare our results for the PBRM model with those for the three-dimensional (3D) Anderson model at criticality, finding that the PBRM model with bɛ[0.2,0.4] reproduces well the scattering and transport properties of the 3D Anderson model.

  13. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  14. Transport in 2D Systems in the So-Called Metallic Phase

    NASA Astrophysics Data System (ADS)

    Das Sarma, Sankar

    2001-03-01

    I will discuss electronic transport in 2D semiconductor systems at low temperatures and densities. In particular, I will consider effects of screening,electron-impurity and electron-phonon interactions, and an external parallel magnetic field on the 2D temperature and density dependent conductivity. I will show that a theory [1] recently developed by Euyheon Hwang and myself may qualitatively account for much of the observed temperature, density, and field dependence of the 2D "metallic" conductivity for electrons in Si MOSFETs and n-GaAs heterostructures, and for holes in Si-Ge heterostructures and p-GaAs systems. I will provide a critique, based on the available experimental data and exact numerical simulations [2] of the Anderson-Hubbard-Mott model, of whether the 2D M-I-T phenomenon is likely to be the high temperature behavior of a T=0 quantum phase transition or the low temperature manifestation of a high-temperature semiclassical transition. Work supported by the US-ONR and the US-ARO. [1] S.Das Sarma and E.H.Hwang,PRL83,164(1999);84,5596(2000); Phys. Rev. B61, R7838(2000). [2] R. Kotlyar and S. Das Sarma, cond-mat/0002304.

  15. Singular Valence Fluctuations at a Kondo Destroyed Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Pixley, Jedediah; Kirchner, Stefan; Ingersent, Kevin; Si, Qimiao

    2012-02-01

    Recent experiments on the heavy fermion superconductor beta-YbAlB4 have indicated that this compound satisfies quantum critical scaling [1]. Motivated by the observation of mixed valency in this material [2], we study the Kondo destruction physics in the mixed-valence regime [3] of a particle-hole asymmetric Anderson impurity model with a pseudogapped density of states. In the vicinity of the quantum critical point we determine the finite temperature spin and charge susceptibilities by utilizing a continuous time quantum Monte Carlo method [4] and the numerical renormalization group. We show that this mixed-valence quantum critical point displays a Kondo breakdown effect. Furthermore, we find that both dynamic spin and charge susceptibilities obey frequency over temperature scaling, and that the static charge susceptibility diverges with a universal exponent. Possible implications of our results for beta-YbAlB4 are discussed. [1] Matsumoto et al, Science 331, 316 (2011). [2] Okawaet al, Physical Review Letters 104, 247201 (2010). [3] J. H. Pixley, S. Kirchner, Kevin Ingersent and Q. Si, arXiv:1108.5227v1 (2011). [4] M. Glossop, S. Kirchner, J. H. Pixley and Q. Si, Phys. Rev. Lett. 107, 076404 (2011).

  16. Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro

    2017-03-01

    Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.

  17. 97. View of International Business Machine (IBM) digital computer model ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. View of International Business Machine (IBM) digital computer model 7090 magnetic core installation, international telephone and telegraph (ITT) Artic Services Inc., Official photograph BMEWS site II, Clear, AK, by unknown photographer, 17 September 1965, BMEWS, clear as negative no. A-6604. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. Variational Wavefunction for the Periodic Anderson Model with Onsite Correlation Factors

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori; Onishi, Hiroaki

    2017-01-01

    We propose a variational wavefunction containing parameters to tune the probabilities of all the possible onsite configurations for the periodic Anderson model. We call it the full onsite-correlation wavefunction (FOWF). This is a simple extension of the Gutzwiller wavefunction (GWF), in which one parameter is included to tune the double occupancy of the f electrons at the same site. We compare the energy of the GWF and the FOWF evaluated by the variational Monte Carlo method and that obtained with the density-matrix renormalization group method. We find that the energy is considerably improved in the FOWF. On the other hand, the physical quantities do not change significantly between these two wavefunctions as long as they describe the same phase, such as the paramagnetic phase. From these results, we not only demonstrate the improvement by the FOWF, but we also gain insights on the applicability and limitation of the GWF to the periodic Anderson model.

  19. Anderson localization in Nb/Al superconducting bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, M.; Lacquaniti, V.; Maggi, S.

    2000-01-01

    The authors have measured the temperature dependence of resistivity in relatively thick Nb/Al bilayers fabricated at room temperature, observing the decrease of {rho} for increasing T typical of Anderson localization in disordered systems. The authors report the experimental conditions which determine this behavior and compare it to theoretical models for localization in 3D systems.

  20. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less

  1. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  2. Phonological neighborhood and word frequency effects on the stuttered disfluencies of children who stutter: comments on Anderson (2007).

    PubMed

    Howell, Peter

    2010-10-01

    This letter comments on a study by Anderson (2007) that compared the effects of word frequency, neighborhood density, and phonological neighborhood frequency on part-word repetitions, prolongations, and single-syllable word repetitions produced by children who stutter. Anderson discussed her results with respect to 2 theories about stuttering: the covert repair hypothesis and execution planning (EXPLAN) theory. Her remarks about EXPLAN theory are examined. Anderson considered that EXPLAN does not predict the relationship between word and neighborhood frequency and stuttering for part-word repetitions and prolongations (she considered that EXPLAN predicts that stuttering occurs on simple words for children). The actual predictions that EXPLAN makes are upheld by her results. She also considered that EXPLAN cannot account for why stuttering is affected by the same variables that lead to speech errors, and it is shown that this is incorrect. The effects of word frequency, neighborhood density, and phonological neighborhood frequency on part-word repetitions, prolongations, and single-syllable word repetitions reported by Anderson (2007) are consistent with the predictions of the EXPLAN model.

  3. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

  4. (dis)Ability and Music Education: Paralympian Patrick Anderson and the Experience of Disability in Music

    ERIC Educational Resources Information Center

    Bell, Adam Patrick

    2017-01-01

    What does it mean to experience disability in music? Based on interviews with Patrick Anderson--arguably the greatest wheelchair basketball player of all time--this article presents insights into the complexities of the experience of disability in sports and music. Contrasted with music education's tendency to adhere to a medicalized model of…

  5. A Goal Programming R&D (Research and Development) Project Funding Model of the U.S. Army Strategic Defense Command Using the Analytic Hierarchy Process.

    DTIC Science & Technology

    1987-09-01

    A187 899 A GOAL PROGRANNIN R&D (RESEARCH AND DEVELOPMENT) 1/2 PROJECT FUNDING MODEL 0 (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA S M ANDERSON SEP 87...PROGRAMMING R&D PROJECT FUNDING MODEL OF THE U.S. ARMY STRATEGIC DEFENSE COMMAND USING THE ANALYTIC HIERARCHY PROCESS by Steven M. Anderson September 1987...jACCESSION NO TITI E (Influde Securt ClauAIcatsrn) A Goal Programming R&D Project Funding Model of the U.S. Army Strategic Defense Command Using the

  6. Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.

    2017-10-01

    Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.

  7. Quantum simulation of disordered systems with cold atoms

    NASA Astrophysics Data System (ADS)

    Garreau, Jean-Claude

    2017-01-01

    This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"

  8. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  9. Driving a Superconductor to Insulator Transition with Random Gauge Fields.

    PubMed

    Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M

    2016-11-30

    Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.

  10. University of Texas MD Anderson Cancer Center (UT-MDACC): Systematic Functional Annotation of Somatic Mutations in Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized a functional annotation of mutations and fusions found in human cancers using two cell models, Ba/F3 (murine pro-B suspension cells) and MCF10A (human non-tumorigenic mammary epithelial cells). Read the abstract

  11. University of Texas MD Anderson Cancer Center: Systematic Functional Annotation of Somatic Mutations in Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized a functional annotation of mutations and fusions found in human cancers using two cell models, Ba/F3 (murine pro-B suspension cells) and MCF10A (human non-tumorigenic mammary epithelial cells). Read the abstract

  12. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  13. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  14. Vacancies in epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less

  15. Information scrambling at an impurity quantum critical point

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu

    2017-10-01

    The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.

  16. A model relating radiated power and impurity concentrations during Ne, N and Ar injection in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.

    2000-10-01

    A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.

  17. Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemarie, Gabriel; Delande, Dominique; Chabe, Julien

    Using a cold atomic gas exposed to laser pulses - a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies - we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent {nu}=1.59{+-}0.01, which is found to be equal to the one previously computed for themore » Anderson model.« less

  18. Temperature Dependence of Magnetically Active Charge Excitations in Magnetite across the Verwey Transition

    NASA Astrophysics Data System (ADS)

    Taguchi, M.; Chainani, A.; Ueda, S.; Matsunami, M.; Ishida, Y.; Eguchi, R.; Tsuda, S.; Takata, Y.; Yabashi, M.; Tamasaku, K.; Nishino, Y.; Ishikawa, T.; Daimon, H.; Todo, S.; Tanaka, H.; Oura, M.; Senba, Y.; Ohashi, H.; Shin, S.

    2015-12-01

    We study the electronic structure of bulk single crystals and epitaxial films of Fe3 O4 . Fe 2 p core level spectra show clear differences between hard x-ray (HAX) and soft x-ray photoemission spectroscopy (PES). The bulk-sensitive spectra exhibit temperature (T ) dependence across the Verwey transition, which is missing in the surface-sensitive spectra. By using an extended impurity Anderson full-multiplet model—and in contrast to an earlier peak assignment—we show that the two distinct Fe species (A and B site) and the charge modulation at the B site are responsible for the newly found double peaks in the main peak above TV and its T -dependent evolution. The Fe 2 p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the contributions from magnetically distinct A and B sites. Valence band HAXPES shows a finite density of states at EF for the polaronic half metal with a remnant order above TV and a clear gap formation below TV. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B -site electronic states, consistent with resistivity and optical spectra.

  19. Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio

    2012-02-01

    Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).

  20. A Computational Study of Transverse Combustion Instability Mechanisms

    DTIC Science & Technology

    2014-07-01

    April 2001. 7. Selle, L ., Benoit , L ., Poinsot, T., Nicoud, F., Krebs, W., “Joint use of compressible large-eddy simulation and Helmholtz solvers for...Mechanisms Kevin J. Shipley1, William E. Anderson2 Purdue University, West Lafayette, IN, 47906 Matthew E. Harvazinski3, and Venkateswaran Sankaran4...Lafayette, IN, August 2010. 9. Xia, G., Harvazinski, M., Anderson, W., Merkle, C. L ., “Investigation of Modeling and Physical Parameters on Instability

  1. Decoherence-induced conductivity in the one-dimensional Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegmann, Thomas; Wolf, Dietrich E.; Ujsághy, Orsolya

    We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determinedmore » by the second-order generalized Lyapunov exponent (GLE) [4].« less

  2. Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f-noise model

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre

    2016-05-01

    We calculate the joint min-max distribution and the Edwards-Anderson's order parameter for the circular model of 1/f-noise. Both quantities, as well as generalisations, are obtained exactly by combining the freezing-duality conjecture and Jack-polynomial techniques. Numerical checks come with significantly improved control of finite-size effects in the glassy phase, and the results convincingly validate the freezing-duality conjecture. Application to diffusive dynamics is discussed. We also provide a formula for the pre-factor ratio of the joint/marginal Carpentier-Le Doussal tail for minimum/maximum which applies to any logarithmic random energy model.

  3. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  4. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    NASA Astrophysics Data System (ADS)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  5. Tight-Binding Description of Impurity States in Semiconductors

    ERIC Educational Resources Information Center

    Dominguez-Adame, F.

    2012-01-01

    Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…

  6. Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.

    2018-06-01

    The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N  >  3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.

  7. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  8. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  9. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  10. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  11. University of Texas MD Anderson Cancer Center: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  12. Early Initial Antibiotics and Debridement Independently Reduce Infection in an Open Fracture Model

    DTIC Science & Technology

    2012-01-01

    infection in those Gustilo-Anderson grade III fractures whose surgery was delayed until return to the US, compared with those who underwent early...LEAP) included a prospective observational study of 315 patients with Gustilo-Anderson grade III open fractures of the tibia, foot and ankle and, in...6. Ashford RU, Mehta JA, Cripps R. Delayed presentation is no barrier to satisfactory outcome in the management of open tibial fractures . Injury

  13. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  14. One- and two-channel Kondo model with logarithmic Van Hove singularity: A numerical renormalization group solution

    NASA Astrophysics Data System (ADS)

    Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.

    2018-02-01

    Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.

  15. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    NASA Astrophysics Data System (ADS)

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2009-10-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  16. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    NASA Astrophysics Data System (ADS)

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2010-02-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  17. Finite-time scaling at the Anderson transition for vibrations in solids

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Skipetrov, S. E.

    2017-11-01

    A model in which a three-dimensional elastic medium is represented by a network of identical masses connected by springs of random strengths and allowed to vibrate only along a selected axis of the reference frame exhibits an Anderson localization transition. To study this transition, we assume that the dynamical matrix of the network is given by a product of a sparse random matrix with real, independent, Gaussian-distributed nonzero entries and its transpose. A finite-time scaling analysis of the system's response to an initial excitation allows us to estimate the critical parameters of the localization transition. The critical exponent is found to be ν =1.57 ±0.02 , in agreement with previous studies of the Anderson transition belonging to the three-dimensional orthogonal universality class.

  18. The electronic and optical properties of quantum nano-structures

    NASA Astrophysics Data System (ADS)

    Ham, Heon

    In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.

  19. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopar, Víctor A.

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less

  20. University of Texas MD Anderson Cancer Center (UT-MDACC): Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  1. The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schall, Constance A.

    1998-01-01

    Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.

  2. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  3. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2015-09-01

    We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.

  4. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  5. On the radiative effects of light-absorbing impurities on snowpack evolution

    NASA Astrophysics Data System (ADS)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  6. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  7. Impurity Induced Phase Competition and Supersolidity

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  8. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Alex; Kelley, C. T.; Slattery, Stuart R

    ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, withoutmore » significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.« less

  9. Density-Functional Theory description of transport in the single-electron transistor

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; Oliveira, Luiz N.

    The Kondo effect governs the low-temperature transport properties of the single electron transistor (SET), a quantum dot bridging two electron gases. In the weak coupling limit, for odd dot occupation, the gate-potential profile of the conductance approaches a step, known as the Kondo plateau. The plateau and other SET properties being well understood on the basis of the Anderson model, more realistic (i. e., DFT) descriptions of the device are now desired. This poses a challenge, since the SET is strongly correlated. DFT computations that reproduce the conductance plateau have been reported, e. g., by, which rely on the exact functional provided by the Bethe-Ansatz solution for the Anderson model. Here, sticking to DFT tradition, we employ a functional derived from a homogeneous system: the parametrization of the Lieb-Wu solution for the Hubbard model due to. Our computations reproduce the plateau and yield other results in accurate agreement with the exact diagonalization of the Anderson Hamiltonian. The prospects for extensions to realistic descriptions of two-dimensional nanostructured devices will be discussed. Luiz N. Oliveira thanks CNPq (312658/2013-3) and Krissia Zawadzki thanks CNPq (140703/2014-4) for financial support.

  10. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  11. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  12. Effect of Hilbert space truncation on Anderson localization

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Bhatt, R. N.

    2018-05-01

    The 1D Anderson model possesses a completely localized spectrum of eigenstates for all values of the disorder. We consider the effect of projecting the Hamiltonian to a truncated Hilbert space, destroying time-reversal symmetry. We analyze the ensuing eigenstates using different measures such as inverse participation ratio and sample-averaged moments of the position operator. In addition, we examine amplitude fluctuations in detail to detect the possibility of multifractal behavior (characteristic of mobility edges) that may arise as a result of the truncation procedure.

  13. Impurity effects in crystal growth from solutions: Steady states, transients and step bunch motion

    NASA Astrophysics Data System (ADS)

    Ranganathan, Madhav; Weeks, John D.

    2014-05-01

    We analyze a recently formulated model in which adsorbed impurities impede the motion of steps in crystals grown from solutions, while moving steps can remove or deactivate adjacent impurities. In this model, the chemical potential change of an atom on incorporation/desorption to/from a step is calculated for different step configurations and used in the dynamical simulation of step motion. The crucial difference between solution growth and vapor growth is related to the dependence of the driving force for growth of the main component on the size of the terrace in front of the step. This model has features resembling experiments in solution growth, which yields a dead zone with essentially no growth at low supersaturation and the motion of large coherent step bunches at larger supersaturation. The transient behavior shows a regime wherein steps bunch together and move coherently as the bunch size increases. The behavior at large line tension is reminiscent of the kink-poisoning mechanism of impurities observed in calcite growth. Our model unifies different impurity models and gives a picture of nonequilibrium dynamics that includes both steady states and time dependent behavior and shows similarities with models of disordered systems and the pinning/depinning transition.

  14. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  15. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  16. Anderson acceleration and application to the three-temperature energy equations

    NASA Astrophysics Data System (ADS)

    An, Hengbin; Jia, Xiaowei; Walker, Homer F.

    2017-10-01

    The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.

  17. Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile

    2012-02-01

    We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  18. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  19. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  20. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  1. Integrals of motion for one-dimensional Anderson localized systems

    DOE PAGES

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; ...

    2016-03-02

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less

  2. Integrals of motion for one-dimensional Anderson localized systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less

  3. Integrals of motion for one-dimensional Anderson localized systems

    NASA Astrophysics Data System (ADS)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.

  4. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  5. Topological Anderson insulator phase in a Dirac-semimetal thin film

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Dong-Hui; Zhou, Bin

    2017-06-01

    The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three-dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that the quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either a normal insulator or quantum spin Hall insulator, depending on the thin-film thickness. We present the study of disorder effects in a thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from a normal band insulator to a topological Anderson insulator in a Dirac-semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3Bi shows that in the topological Anderson insulator phase, a quantized conductance plateau occurs in the bulk gap of the band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on the Born approximation fits the numerical data.

  6. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.

  7. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH<5. It became weaker with increasing supersaturation. It also became weaker as the pH was increased and at pH>5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  8. A taxonomic monograph of the leaf-litter inhabiting weevil genus Plumolepilius new genus (Coleoptera: Curculionidae: Molytinae: Conotrachelini) from Mexico, Guatemala, and El Salvador.

    PubMed

    Barrios-Izás, Manuel A; Anderson, Robert S; Morrone, Juan J

    2016-09-14

    We describe the Mesoamerican leaf litter weevil genus Plumolepilius Barrios-Izás & Anderson, new genus (Coleoptera: Curculionidae: Molytinae: Conotrachelini) (type species P. trifiniensis Barrios-Izás & Anderson, new species), species of which inhabit mountain ecosystems from the state of Chiapas in southeastern Mexico to northern Panama. In this paper we describe nine new species from Mexico, Guatemala, and El Salvador: P. trifiniensis Barrios-Izás & Anderson, new species (El Salvador and Guatemala); P. branstetteri Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. longinoi Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. cortezi Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. canoi Barrios-Izás & Anderson, new species (Guatemala); P. schusteri Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. daryi Barrios-Izás & Anderson, new species (Guatemala); P. yolnabajensis Barrios-Izás & Anderson, new species (Guatemala); and P. macalajauensis Barrios-Izás & Anderson, new species (Guatemala).        The genus and the species are named and described, information on their geographical distributions is given and images of the habitus of both sexes and the aedeagus are presented. A key to the species of Plumolepilius based on males is included.        The monophyly of Plumolepilius was confirmed by a parsimony analysis of external and male aedeagus morphology and the genus is best characterized by the presence of plumose scales lining the prosternal channel. Phylogenetic analysis supports that Lepilius Champion 1905 is the sister genus of Plumolepilius.

  9. Effects of magnetic and nonmagnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor: Application to CePt3Si

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Tamaddonpour, M.

    2013-10-01

    The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.

  10. Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-Andre models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biddle, J.; Priour, D. J. Jr.; Wang, B.

    We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations of the famous Aubry-Andre and noninteracting Anderson models. For the case with deterministic disordered potential induced by a secondary incommensurate lattice (i.e., the Aubry-Andre model), we identify a class of self-dual models, for which the boundary between localized and extended eigenstates are determined analytically by employing a generalized Aubry-Andre transformation. We also numerically investigate the localization properties of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We findmore » that even for these nondual models, the numerically obtained mobility edges can be well approximated by the analytically obtained condition for localization transition in the self-dual models, as long as the decay of the hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in the localization length about the energy band center compared to the Anderson model. Furthermore, our results demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems enabling non-nearest-neighbor hopping.« less

  11. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  12. Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2018-05-01

    We clarify the two-channel Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons by employing a numerical renormalization group method. From the numerical analysis for the case with two local f electrons, corresponding to Pr3+ or U4+ ion, we confirm that a residual entropy of 0.5 log 2 , a characteristic of two-channel Kondo phenomena, appears for the local Γ3 non-Kramers doublet state. For further understanding on the Γ3 state, the effective model is constructed on the basis of a j-j coupling scheme. Then, we rediscover the two-channel s-d model concerning quadrupole degrees of freedom. Finally, we briefly introduce our recent result on the two-channel Kondo effect for the case with three local f electrons.

  13. Identification of PARMA Models and Their Application to the Modeling of River flows

    NASA Astrophysics Data System (ADS)

    Tesfaye, Y. G.; Meerschaert, M. M.; Anderson, P. L.

    2004-05-01

    The generation of synthetic river flow samples that can reproduce the essential statistical features of historical river flows is essential to the planning, design and operation of water resource systems. Most river flow series are periodically stationary; that is, their mean and covariance functions are periodic with respect to time. We employ a periodic ARMA (PARMA) model. The innovation algorithm can be used to obtain parameter estimates for PARMA models with finite fourth moment as well as infinite fourth moment but finite variance. Anderson and Meerschaert (2003) provide a method for model identification when the time series has finite fourth moment. This article, an extension of the previous work by Anderson and Meerschaert, demonstrates the effectiveness of the technique using simulated data. An application to monthly flow data for the Frazier River in British Columbia is also included to illustrate the use of these methods.

  14. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  15. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  16. Time-dependent reflection at the localization transition

    NASA Astrophysics Data System (ADS)

    Skipetrov, Sergey E.; Sinha, Aritra

    2018-03-01

    A short quasimonochromatic wave packet incident on a semi-infinite disordered medium gives rise to a reflected wave. The intensity of the latter decays as a power law, 1 /tα , in the long-time limit. Using the one-dimensional Aubry-André model, we show that in the vicinity of the critical point of Anderson localization transition, the decay slows down, and the power-law exponent α becomes smaller than both α =2 found in the Anderson localization regime and α =3 /2 expected for a one-dimensional random walk of classical particles.

  17. Collective Kondo effect in the Anderson-Hubbard lattice

    NASA Astrophysics Data System (ADS)

    Fazekas, P.; Itai, K.

    1997-02-01

    The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.

  18. Study of the Effects of Impurities on the Properties of Silicon Materials and Performance of Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1979-01-01

    Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.

  19. Dynamical Localization for Unitary Anderson Models

    NASA Astrophysics Data System (ADS)

    Hamza, Eman; Joye, Alain; Stolz, Günter

    2009-11-01

    This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes.

  20. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less

  1. Study of the initial transient in the one-dimensional analytical models of impurity segregation during melt crystallization in the presence of convection

    NASA Astrophysics Data System (ADS)

    Voloshin, A. E.

    2013-11-01

    The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.

  2. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  3. Global modelling of plasma-wall interaction in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-04-01

    The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.

  4. On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations

    NASA Astrophysics Data System (ADS)

    Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.

    2016-11-01

    The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.

  5. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

    NASA Astrophysics Data System (ADS)

    Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel

    2017-11-01

    Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the snowpack except for extreme deposition events which are greatly underestimated. For this particular season, the simulated melt-out date advances by 6 to 9 days due to the presence of light-absorbing impurities. The model makes it possible to apportion the relative importance of direct and indirect impacts of light-absorbing impurities on energy absorption in snow. For the snow season considered, the direct impact in the visible part of the solar spectrum accounts for 85 % of the total impact, while the indirect impact related to accelerated snow metamorphism decreasing near-surface specific surface area and thus decreasing near-infrared albedo accounts for 15 % of the total impact. Our model results demonstrate that these relative proportions vary with time during the season, with potentially significant impacts for snowmelt and avalanche prediction.

  6. Implementation of a physically-based scheme representing light-absorbing impurities deposition, evolution and radiative impacts in the SURFEX/Crocus model

    NASA Astrophysics Data System (ADS)

    Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.

    2017-12-01

    Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.

  7. Stability of Weyl metals under impurity scattering

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.

    2013-04-01

    We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight-binding versions of the continuum models recently discussed by [Burkov, Hook, and Balents, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.235126 84, 235126 (2011)], describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected and that a scalar impurity will induce an intragap resonance over a wide range of scattering strength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength.

  8. A MATHEMATICAL MODEL FOR THE ANDROGENIC REGULATION OF THE PROSTATE IN INTACT AND CASTRATE ADULT MALE RATS

    EPA Science Inventory

    An abstract that provides understanding for a mathematical model by Barton and Anderson, for the dynamics of androgenic synthesis, transport, metabolism, and regulation of the rodent ventral prostate.

  9. Analytical model for out-of-field dose in photon craniospinal irradiation

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Jalbout, Wassim; Howell, Rebecca M.; Khater, Nabil; Geara, Fady; Homann, Kenneth; Newhauser, Wayne D.

    2013-11-01

    The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. In two separate evaluations of the model, we measured absorbed dose for a 6 MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics—the University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)—using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy Gy-1 and 1.67 cGy Gy-1 in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Dose algorithms in TPSs systematically underestimated the actual out-of-field dose. Therefore, it is important to use an improved model based on measurements when estimating out-of-field dose. The model proposed in this study performed well for this purpose in two clinics and may be applicable in other clinics with similar treatment field configurations.

  10. Modeling of non-stationary local response on impurity penetration in plasma

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Koltunov, M.

    2012-04-01

    In fusion devices, strongly localized intensive sources of impurities may arise unexpectedly, e.g., if the wall is excessively demolished by hot plasma particles, or can be created deliberately through impurity seeding. The spreading of impurities from such sources both along and perpendicular to the magnetic field is affected by coulomb collisions with background particles, ionization, acceleration by electric field, etc. Simultaneously, the plasma itself can be significantly disturbed by these interactions. To describe self-consistently the impurity spreading process and the plasma response, three-dimensional fluid equations for the particle, parallel momentum, and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solutions in principal details: the maximum densities of impurity ions of different charges, the dimensions both along and across the magnetic field of the shells occupied by these particles, the characteristic temperatures of all plasma components, and the densities of the main ions and electrons in different shells. The results of modeling for penetration of lithium singly charged particles in tokamak edge plasma are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures, implying an outstanding role of coulomb collisions between main and impurity ions, is proposed.

  11. Impurity effects in highly frustrated diamond-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon

    2011-08-01

    We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  12. Universal Knight shift anomaly in the periodic Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Curro, N. J.; Scalettar, R. T.

    Here, we report a Determinant Quantum Monte Carlo investigation which quantifies the behavior of the susceptibility and the entropy in the framework of the periodic Anderson model (PAM), focussing on the evolution with different degree of conduction electron (c) -local moment (f) hybridization. These results capture the behavior observed in several experiments, including the universal behavior of the NMR Knight shift anomaly below the crossover temperature, T*. We find that T* is a measure of the onset of c-f correlations and grows with increasing hybridization. Our results suggest that the NMR Knight shift and spin-lattice relaxation rate measurements in non-Fermimore » liquid materials are strongly influenced by temperature-dependent hybridization processes. Furthermore, our results provide a microscopic basis for the phenomenological two-fluid model of Kondo lattice behavior, and its evolution with pressure and temperature.« less

  13. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  14. Visualization and Rule Validation in Human-Behavior Representation

    ERIC Educational Resources Information Center

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  15. Ferromagnetic ordering in Mn-doped quantum wells GaAs-AlGaAs resulting from the virtual Anderson transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.

    We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.

  16. Donor impurity incorporation during layer growth of Zn II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Barlow, D. A.

    2017-12-01

    The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.

  17. Dominant source of disorder in graphene: charged impurities or ripples?

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Uppstu, Andreas; Harju, Ari

    2017-06-01

    Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration less than about 10 ppm) at room and higher temperatures. Our finding is valuable to theoretical modelling of transport properties of not only graphene, but also other two-dimensional materials, as the thermal ripples are universal.

  18. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  19. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  20. Reply. [to the comment by Anderson et al. (1993)

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.; Ferek, Ronald G.; Hobbs, Peter V.

    1994-01-01

    While Hegg et al. (1993) accepts the criticism of Anderson et al. (1994) in principle, this involves the adoption of an aerosol composition model and the model that they propose to reconcile these observations with the assertion of Charlson et al. (1992) does not agree with many observations, particularly those made over the North Atlantic Ocean. Although the use of a gain factor (i.e. the partial derivative of aerosol mass with respect to the sulfate ion), proposed by Anderson et al., may be valid for particular cases where a proposed composition model really reflects the actual aerosol composition, this procedure is considered questionable in general. The use of sulfate as a tracer for nonsulfate aerosol mass is questionable, because in the present authors' data set, sulfate averaged only about 26% of the dry aerosol mass. The ammonium mass associated with sulfate mass is not analogous to that betwen the oxygen mass and sulfur mass in the sulfate ion. Strong chemical bonds are present between sulfur and oxygen in sulfate, whereas ammonium and sulfate in haze droplets are ions in solution that may or may not be associated with one another. Thus, there is no reason to assume that sulfate will act as a reliable tracer of ammonium mass. Hegg et al. expresses the view that their approach used for estimating sulfate light scattering efficiency is appropriate for the current level of understanding of atmospheric aerosols.

  1. Universal scaling for the quantum Ising chain with a classical impurity

    NASA Astrophysics Data System (ADS)

    Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco

    2017-10-01

    We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .

  2. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  3. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  4. Stability of Weyl metals under imuurity scattering

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.

    2013-03-01

    We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight binding versions of the continuum models recently discussed by Burkov, Hook, and Balents, describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the impurity scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected, and that a scalar impurity will induce an intragap resonance over a wide range of scattering stength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength. This work is supported in part by the NSF through grant DMR-1007028. Work at LANL was supported by US DoE.

  5. Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).

  6. Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.

    PubMed

    Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M

    2015-10-16

    We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.

  7. Hydrodynamic model for conductivity in graphene.

    PubMed

    Mendoza, M; Herrmann, H J; Succi, S

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.

  8. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  9. Interplay between strong correlation and adsorption distances: Co on Cu(001)

    NASA Astrophysics Data System (ADS)

    Bahlke, Marc Philipp; Karolak, Michael; Herrmann, Carmen

    2018-01-01

    Adsorbed transition metal atoms can have partially filled d or f shells due to strong on-site Coulomb interaction. Capturing all effects originating from electron correlation in such strongly correlated systems is a challenge for electronic structure methods. It requires a sufficiently accurate description of the atomistic structure (in particular bond distances and angles), which is usually obtained from first-principles Kohn-Sham density functional theory (DFT), which due to the approximate nature of the exchange-correlation functional may provide an unreliable description of strongly correlated systems. To elucidate the consequences of this popular procedure, we apply a combination of DFT with the Anderson impurity model (AIM), as well as DFT + U for a calculation of the potential energy surface along the Co/Cu(001) adsorption coordinate, and compare the results with those obtained from DFT. The adsorption minimum is shifted towards larger distances by applying DFT+AIM, or the much cheaper DFT +U method, compared to the corresponding spin-polarized DFT results, by a magnitude comparable to variations between different approximate exchange-correlation functionals (0.08 to 0.12 Å). This shift originates from an increasing correlation energy at larger adsorption distances, which can be traced back to the Co 3 dx y and 3 dz2 orbitals being more correlated as the adsorption distance is increased. We can show that such considerations are important, as they may strongly affect electronic properties such as the Kondo temperature.

  10. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  11. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  12. Theory of electron transfer and molecular state in DNA

    NASA Astrophysics Data System (ADS)

    Endres, Robert Gunter

    2002-09-01

    In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have embarked on a theoretical effort to ascertain what conditions might induce such remarkable behavior. We use a combination of an ab initio density functional theory method and a parameterized Huckel-Slater-Koster model. Our focus here is to examine whether any likely DNA structures or environments can yield reduced activation gaps to conduction or enhanced electronic overlaps. In particular, we study a hypothetical stretched ribbon structure, A-, and B-form DNA, and the effects of counterions and humidity. Unlike solids, DNA and other molecules are considered soft condensed matter. Hence, we study the influence of vibrations upon the electronic structure of DNA. We calculate parameters for charge transfer rates between adjacent bases. We find good agreement between our estimated rates and recent experimental data assuming that torsional vibrations limit the charge transfer most significantly.

  13. Influence of kondo effect on the specific heat jump of anisotropic superconductors

    NASA Astrophysics Data System (ADS)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.

  14. Kate Anderson | NREL

    Science.gov Websites

    private entities with techno-economic modeling and analysis, field assessments, design, and implementation Force. Research Interests Energy optimization Techno-economic modeling Value of resiliency Solar+storage -Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical

  15. Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite

    NASA Astrophysics Data System (ADS)

    Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.

    2000-01-01

    Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.

  16. Transport Simulations of DIII-D Discharges with Impurity Injection

    NASA Astrophysics Data System (ADS)

    Mandrekas, J.; Stacey, W. M.; Murakami, M.

    2001-10-01

    Several recent DIII-D discharges with external impurity injection into L-mode plasmas are analyzed with a coupled main plasma and multi-charge state 1frac 12-D impurity transport code. These discharges exhibit various degrees of confinement improvement, which has been attributed to the synergistic effects of impurity induced enhancement of the E×B shearing rate and reduction of the drift wave turbulence growth rate (M. Murakami, et. al., Nucl. Fusion 41) (2001) 317.. Impurity transport is described by empirical and neoclassical transport models. Both the standard neoclassical theory as well as an enhanced theory which takes into account the effects of external momentum input and radial momentum transport (W.M. Stacey, Phys. Plasmas 8) (2001) 158. have been considered.

  17. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  18. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self-energy and local correlation functions. Solution method: Quantum impurity models require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms for which we present implementations here meet this challenge. Continuous-time quantum impurity methods are based on partition function expansions of quantum impurity models that are stochastically sampled to all orders using diagrammatic quantum Monte Carlo techniques. For a review of quantum impurity models and their applications and of continuous-time quantum Monte Carlo methods for impurity models we refer the reader to [2]. Additional comments: Use of dmft requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. Running time: 60 s-8 h per iteration.

  19. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  20. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.

    2014-09-01

    In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.

  1. Ein statistisches Modell zum Einfluß der thermischen Bewegung auf NMR-Festkörperspektren

    NASA Astrophysics Data System (ADS)

    Ploss, W.; Freude, D.; Pfeifer, H.; Schmiedel, H.

    Es wird ein statistisches Modell zum Einfluß der thermischen Bewegung auf die NMR-Linienform vorgestellt, das die Verschmälerung von Festkörper-Spektren bei wachsender Temperatur beschreibt. Das Modell geht von der Annahme aus, daß nach einer Ortsveränderung eines Kerns infolge thermischer Bewegung jede beliebige Kernresonanzfrequenz mit der durch das Festkörperspektrum vorgegebenen Wahrscheinlichkeit angenommen werden kann. Am Beispiel der Festkörper-Gaußlinie wird der Unterschied zu dem bekannten Modell von ANDERSON und WEISS verdeutlicht.Translated AbstractA Statistical Model for the Influence of Thermal Motion on N. M. R. Spectra in SolidsA theory is proposed which allows to describe the narrowing of n. m. r.-line width in the presence of thermal motions of the spins. The model is based on the assumption, that the local resonance frequency of a given spin immediately after the jump is distributed according to the n. m. r.-line shape of the rigid lattice. The difference to the well-known ANDERSON-WEISS-model of spectral narrowing is demonstrated for a gaussian line shape.

  2. Hydrodynamic Model for Conductivity in Graphene

    PubMed Central

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277

  3. A memorial colloquium honoring Herbert L. Anderson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, D.E.

    This paper is the result of a colloquium honoring Herbert Anderson. The paper contains memorial statements to the late Mr. Anderson and reports on; chemical analysis of the 1988 Soviet mission to Mars, Mammalian cell genetic regulation and the nature of cancer, and clean atmosphere and nuclear reactors. (JEF)

  4. Award for Distinguished Scientific Early Career Contributions to Psychology: Adam K. Anderson

    ERIC Educational Resources Information Center

    American Psychologist, 2009

    2009-01-01

    Adam K. Anderson, recipient of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for his outstanding contribution to understanding the representation of emotion and its influence on cognition. By combining psychological and neuroscience techniques with rigorous and creative experimental designs, Anderson has…

  5. Some comments on Anderson and Pospahala's correction of bias in line transect sampling

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Chain, B.R.

    1980-01-01

    ANDERSON and POSPAHALA (1970) investigated the estimation of wildlife population size using the belt or line transect sampling method and devised a correction for bias, thus leading to an estimator with interesting characteristics. This work was given a uniform mathematical framework in BURNHAM and ANDERSON (1976). In this paper we show that the ANDERSON-POSPAHALA estimator is optimal in the sense of being the (unique) best linear unbiased estimator within the class of estimators which are linear combinations of cell frequencies, provided certain assumptions are met.

  6. Two-photon Anderson localization in a disordered quadratic waveguide array

    NASA Astrophysics Data System (ADS)

    Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.

    2016-05-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.

  7. Anderson localization of light near boundaries of disordered photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovic, Dragana M.; Texas A and M University at Qatar, P. O. Box 23874, Doha; Kivshar, Yuri S.

    We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.

  8. Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.

    PubMed

    Bayat, Abolfazl

    2017-01-20

    The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.

  9. Mobile spin impurity in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duncan, C. W.; Bellotti, F. F.; Öhberg, P.; Zinner, N. T.; Valiente, M.

    2017-07-01

    We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.

  10. Modeling Statistics of Fish Patchiness and Predicting Associated Influence on Statistics of Acoustic Echoes

    DTIC Science & Technology

    2012-09-30

    data collected by Paramo and Gerlotto. The data were consistent with the Anderson model in that both the data and model had a mode in the...10.1098/rsfs.2012.0027 [published, refereed] Bhatia, S., T.K. Stanton, J. Paramo , and F. Gerlotto (submitted), “Modeling statistics of fish school

  11. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    EPA Science Inventory

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  12. A Re-Examination of the Community of Inquiry Framework: Social Network and Content Analysis

    ERIC Educational Resources Information Center

    Shea, Peter; Hayes, Suzanne; Vickers, Jason; Gozza-Cohen, Mary; Uzuner, Sedef; Mehta, Ruchi; Valchova, Anna; Rangan, Prahalad

    2010-01-01

    This study provides a simultaneous examination of all components of the Community of Inquiry (CoI) framework (Garrison, Anderson & Archer, 2000; Anderson, Rourke, Garrison & Archer, 2001; and Rourke, Garrison, Anderson & Archer, 1999) and seeks to extend previous work into the nature, development, and relationships between the constructs of…

  13. Semiconducting behavior of substitutionally doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek

    2018-02-01

    In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.

  14. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Niravkumar D.; Mukherjee, Anamitra; Kaushal, Nitin

    Here, we employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling T α for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic changemore » with U and V of the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.« less

  15. Quantum criticality and first-order transitions in the extended periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  16. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  17. Light focusing in the Anderson regime.

    PubMed

    Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio

    2014-07-29

    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.

  18. Effect of accelerated crucible rotation on the segregation of impurities in vertical Bridgman growth of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Bellmann, M. P.; Meese, E. A.; Arnberg, L.

    2011-03-01

    We have performed axisymmetric, transient simulations of the vertical Bridgman growth of mc-silicon to study the effect of the accelerated crucible rotation technique (ACRT) on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. The sinusoidal ACRT rotation cycle considered here suppresses mixing in the melt near the center, resulting in diffusion-limited mass transport. Therefore the radial impurity segregation is increased towards the center. The effect of increased radial segregation is intensified for low values of the Ekman time scale.

  19. Neoclassical poloidal and toroidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-08-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less

  20. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  1. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  2. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  3. Exact edge, bulk, and bound states of finite topological systems

    NASA Astrophysics Data System (ADS)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2018-05-01

    Finite topologically nontrivial systems are characterized, among many other unique properties, by the presence of bound states at their physical edges. These topological edge modes can be distinguished from usual Shockley waves energetically, as their energies remain finite and in gap even when the boundaries of the system represent an effectively infinite and sharp energetic barrier. Theoretically, the existence of topological edge modes can be shown by means of the bulk-edge correspondence and topological invariants. On a clean one-dimensional lattice and reducible two-dimensional models, in either the commensurate or semi-infinite case, the edge modes can be essentially obtained analytically, as shown previously [Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993), 10.1103/PhysRevLett.71.3697; D. Hügel and B. Paredes, Phys. Rev. A 89, 023619 (2014), 10.1103/PhysRevA.89.023619]. In this work, we put forward a method for obtaining the spectrum and wave functions of topological edge modes for arbitrary finite lattices, including the incommensurate case. A small number of parameters are easily determined numerically, with the form of the eigenstates remaining fully analytical. We also obtain the bulk modes in the finite system analytically and their associated eigenenergies, which lie within the infinite-size limit continuum. Our method is general and can be easily applied to obtain the properties of nontopological models and/or extended to include impurities. As an example, we consider a relevant case of an impurity located next to one edge of a one-dimensional system, equivalent to a softened boundary in a separable two-dimensional model. We show that a localized impurity can have a drastic effect on the original topological edge modes of the system. Using the periodic Harper and Hofstadter models to illustrate our method, we find that, on increasing the impurity strength, edge states can enter or exit the continuum, and a trivial Shockley state bound to the impurity may appear. The fate of the topological edge modes in the presence of impurities can be addressed by quenching the impurity strength. We find that at certain critical impurity strengths, the transition probability for a particle initially prepared in an edge mode to decay into the bulk exhibits discontinuities that mark the entry and exit points of edge modes from and into the bulk spectrum.

  4. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also, pressure increases caused by the impurities and the partitioning between CO2 and other non-condensable gases were explored. In addition, the possibility of using these contaminants as a tracer were examined.

  5. Deposition on disordered substrates with precursor layer diffusion

    NASA Astrophysics Data System (ADS)

    Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.

    1998-09-01

    Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.

  6. Dynamics of Fermionic Impurity in One Dimension

    NASA Astrophysics Data System (ADS)

    Guan, Huijie; Andrei, Natan

    2014-03-01

    We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.

  7. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less

  8. Model United Nations and Deep Learning: Theoretical and Professional Learning

    ERIC Educational Resources Information Center

    Engel, Susan; Pallas, Josh; Lambert, Sarah

    2017-01-01

    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  9. Reducing the Knowledge Tracing Space

    ERIC Educational Resources Information Center

    Ritter, Steven; Harris, Thomas K.; Nixon, Tristan; Dickison, Daniel; Murray, R. Charles; Towle, Brendon

    2009-01-01

    In Cognitive Tutors, student skill is represented by estimates of student knowledge on various knowledge components. The estimate for each knowledge component is based on a four-parameter model developed by Corbett and Anderson [Nb]. In this paper, we investigate the nature of the parameter space defined by these four parameters by modeling data…

  10. Techtalk: An Online Framework for Developmental Literacy

    ERIC Educational Resources Information Center

    Burgess, Melissa; Caverly, David C.

    2010-01-01

    In a previous Techtalk column, Peterson and Caverly (2005) introduced the Community of Inquiry (CoI) model (Garrison, Anderson, & Archer, 2001) as a guide for online learning. The CoI model has maintained longevity and applicability to a variety of both synchronous and asynchronous technologies (Ice, Curtis, Phillips, & Wells, 2007). In this…

  11. Schemas in Problem Solving: An Integrated Model of Learning, Memory, and Instruction

    DTIC Science & Technology

    1992-01-01

    article: "Hybrid Computation in Cognitive Science: Neural Networks and Symbols" (J. A. Anderson, 1990). And, Marvin Minsky echoes the sentiment in his...distributed processing: A handbook of models, programs, and exercises. Cambridge, MA: The MIT Press. Minsky , M. (1991). Logical versus analogical or symbolic

  12. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  13. Human Cognition and Performance.

    DTIC Science & Technology

    1985-05-01

    implications. In D. LaBerge & S. J. Samuels (Eds.), Basic processes in reading: Perception and comprehesion. Hillsdale, NJ: Eribaum. Anderson, J. A...Also pub- lished individually as follows: Some observations on mental models, in D. Gentner and A. Stevens (Eds.), Mental models, Hillsdale, NJ: Erlbaum...A. Stevens (Eds.), Mental Models. Hillsdale, NJ: Erlbaunm. Norman, D.A. (1983). Theories and models in cognitive psychology. In E. Douclkin (Ed

  14. Dynamical Localization for Discrete and Continuous Random Schrödinger Operators

    NASA Astrophysics Data System (ADS)

    Germinet, F.; De Bièvre, S.

    We show for a large class of random Schrödinger operators Ho on and on that dynamical localization holds, i.e. that, with probability one, for a suitable energy interval I and for q a positive real, Here ψ is a function of sufficiently rapid decrease, and PI(Ho) is the spectral projector of Ho corresponding to the interval I. The result is obtained through the control of the decay of the eigenfunctions of Ho and covers, in the discrete case, the Anderson tight-binding model with Bernoulli potential (dimension ν = 1) or singular potential (ν > 1), and in the continuous case Anderson as well as random Landau Hamiltonians.

  15. Multifractal analysis with the probability density function at the three-dimensional anderson transition.

    PubMed

    Rodriguez, Alberto; Vasquez, Louella J; Römer, Rudolf A

    2009-03-13

    The probability density function (PDF) for critical wave function amplitudes is studied in the three-dimensional Anderson model. We present a formal expression between the PDF and the multifractal spectrum f(alpha) in which the role of finite-size corrections is properly analyzed. We show the non-Gaussian nature and the existence of a symmetry relation in the PDF. From the PDF, we extract information about f(alpha) at criticality such as the presence of negative fractal dimensions and the possible existence of termination points. A PDF-based multifractal analysis is shown to be a valid alternative to the standard approach based on the scaling of inverse participation ratios.

  16. View of Anderson working with SAME Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-09-08

    ISS015-E-27411 (8 Sept. 2007) --- NASA astronaut Clay Anderson, Expedition 15 flight engineer, works on the Smoke and Aerosol Measurement Experiment (SAME) hardware located in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. SAME will measure the smoke properties, or particle size distribution, of typical particles that are produced from different materials that can be found onboard station and other spacecrafts. SAME aims to test the performance of ionization smoke detectors and evaluate the performance of the photoelectric smoke detectors. The data will be used to develop a model that can predict smoke droplet growth that will be used to evaluate future smoke detection devices.

  17. View of Anderson setting up SAME Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-09-01

    ISS015-E-26252 (1 Sept. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, works on the Smoke and Aerosol Measurement Experiment (SAME) hardware setup located in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. SAME will measure the smoke properties, or particle size distribution, of typical particles that are produced from different materials that can be found onboard station and other spacecrafts. SAME aims to test the performance of ionization smoke detectors and evaluate the performance of the photoelectric smoke detectors. The data will be used to develop a model that can predict smoke droplet growth that will be used to evaluate future smoke detection devices.

  18. View of Anderson working with SAME Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-09-08

    ISS015-E-27425 (8 Sept. 2007) --- NASA astronaut Clay Anderson, Expedition 15 flight engineer, works on the Smoke and Aerosol Measurement Experiment (SAME) hardware located in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. SAME will measure the smoke properties, or particle size distribution, of typical particles that are produced from different materials that can be found onboard station and other spacecrafts. SAME aims to test the performance of ionization smoke detectors and evaluate the performance of the photoelectric smoke detectors. The data will be used to develop a model that can predict smoke droplet growth that will be used to evaluate future smoke detection devices.

  19. Modeling Statistics of Fish Patchiness and Predicting Associated Influence on Statistics of Acoustic Echoes

    DTIC Science & Technology

    2013-09-30

    published 3-D multi-beam data. The Niwa and Anderson models were compared with 3-D multi-beam data collected by Paramo and Gerlotto. The data were...submitted, refereed] Bhatia, S., T.K. Stanton, J. Paramo , and F. Gerlotto (under revision), “Modeling statistics of fish school dimensions using 3-D

  20. Modeling Statistics of Fish Patchiness and Predicting Associated Influence on Statistics of Acoustic Echoes

    DTIC Science & Technology

    2013-09-30

    data. The Niwa and Anderson models were compared with 3-D multi-beam data collected by Paramo and Gerlotto. The data were consistent with the...Bhatia, S., T.K. Stanton, J. Paramo , and F. Gerlotto (under revision), “Modeling statistics of fish school dimensions using 3-D data from a

  1. High-Performance Solid-State and Fiber Lasers Controlled by Volume Bragg Gratings

    DTIC Science & Technology

    2013-09-01

    Glebov: Proc. SPIE 8237 (2012) 823705. 12) I. Divliansky, D. Ott, B. Anderson, G. Venus, and L. Glebov: To be published in Opt. Express. 13) A. Jain...B. Anderson, D. Drachenberg, V. Rotar, G. Venus, and L. Glebov: Proc. SPIE 8237 (2012) 823705. 47) B. Anderson, S. Kaim, G. B. Venus, J. Lumeau, V

  2. Liquidus slopes of impurities in ITS-90 fixed points from the mercury point to the copper point in the low concentration limit

    NASA Astrophysics Data System (ADS)

    Pearce, Jonathan V.; Gisby, John A.; Steur, Peter P. M.

    2016-08-01

    A knowledge of the effect of impurities at the level of parts per million on the freezing temperature of very pure metals is essential for realisation of ITS-90 fixed points. New information has become available for use with the thermodynamic modelling software MTDATA, permitting calculation of liquidus slopes, in the low concentration limit, of a wider range of binary alloy systems than was previously possible. In total, calculated values for 536 binary systems are given. In addition, new experimental determinations of phase diagrams, in the low impurity concentration limit, have recently appeared. All available data have been combined to provide a comprehensive set of liquidus slopes for impurities in ITS-90 metal fixed points. In total, liquidus slopes for 838 systems are tabulated for the fixed points Hg, Ga, In, Sn, Zn, Al, Ag, Au, and Cu. It is shown that the value of the liquidus slope as a function of impurity element atomic number can be approximated using a simple formula, and good qualitative agreement with the existing data is observed for the fixed points Al, Ag, Au and Cu, but curiously the formula is not applicable to the fixed points Hg, Ga, In, Sn, and Zn. Some discussion is made concerning the influence of oxygen on the liquidus slopes, and some calculations using MTDATA are discussed. The BIPM’s consultative committee for thermometry has long recognised that the sum of individual estimates method is the ideal approach for assessing uncertainties due to impurities, but the community has been largely powerless to use the model due to lack of data. Here, not only is data provided, but a simple model is given to enable known thermophysical data to be used directly to estimate impurity effects for a large fraction of the ITS-90 fixed points.

  3. KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

    NASA Image and Video Library

    2003-10-28

    KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

  4. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  5. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  6. Log-rise of the resistivity in the holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  7. Low-energy Model for Strongly Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Liu, Shiu

    We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter. Previous theoretical T-matrix and quantum Monte Carlo (QMC) studies, which include only the dilution effect of impurities, show a large discrepancy with experimental neutron scattering and nuclear quadrupole resonance (NQR) data in the doping dependence of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including zinc orbitals in the three-band Hubbard model and by including impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared to the Mg-doped case and thus gives a strong support to our theory. Different site-diluting dopants with different electron configurations affect the magnetism of the whole system differently. We argue that the available impurity orbitals are crucial in deriving theoretical models for the site-diluted systems and the proposed impurity-induced frustrations should be important in other strongly correlated oxides and charge-transfer insulators.

  8. Numerical simulation of impurity transport in Lake Baikal during the summer period

    NASA Astrophysics Data System (ADS)

    Tsydenov, Bair O.

    2017-11-01

    The distributions of impurities obtained as a result of numerical modeling on the Srednyaya arm (Selenga River mouth)- Cape Golyi cross-section of Lake Baikal, Siberia, Russia, are presented. The data on the air temperature, relative humidity, atmospheric pressure, humidity, and cloudiness from the Babushkin meteorological station from 01.06.2016 to 30.06.2016 are used as the weather condition in the mathematical model. The results of simulation have shown that the impurities dissolved in water reach the bottom of the Selenga shallow basin of Lake Baikal. As the heat accumulation increases and the river waters warm up, the maximum concentrations of suspended substances tend to remain in the upper layers of the lake.

  9. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  10. Anomalies in the 1D Anderson model: Beyond the band-centre and band-edge cases

    NASA Astrophysics Data System (ADS)

    Tessieri, L.; Izrailev, F. M.

    2018-03-01

    We consider the one-dimensional Anderson model with weak disorder. Using the Hamiltonian map approach, we analyse the validity of the random-phase approximation for resonant values of the energy, E = 2 cos(πr) , with r a rational number. We expand the invariant measure of the phase variable in powers of the disorder strength and we show that, contrary to what happens at the centre and at the edges of the band, for all other resonant energies the leading term of the invariant measure is uniform. When higher-order terms are taken into account, a modulation of the invariant measure appears for all resonant values of the energy. This implies that, when the localisation length is computed within the second-order approximation in the disorder strength, the Thouless formula is valid everywhere except at the band centre and at the band edges.

  11. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  12. Microscopic Approach to Magnetism and Superconductivity of f-Electron Systems with Filled Skutterudite Structure

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2005-04-01

    In order to gain a deep insight into f-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. First we examine the local f-electron state in detail in comparison with the results of LS and j-j coupling schemes. For each case of n=1--13, where n is the number of f electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of f electron. In particular, for the f 2-electron system corresponding to the Pr-based filled skutterudite, it is found that magnetic fluctuations significantly remain at low temperatures, even when the ground state is Γ1 singlet, if Γ_4(2) triplet is the excited state with small excitation energy. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the j-j coupling scheme by using the NRG method. It is clearly observed that the magnetic properties are quite similar to those of the original Anderson model. Then, we construct an orbital degenerate Hubbard model based on the j-j coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of n=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged. We envision a scenario that unconventional superconductivity induced by magnetic fluctuations may occur in the f 2-electron system with Γ1 ground state such as Pr-based filled skutterudite compounds.

  13. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394

  14. Efficient design and verification of diagnostics for impurity transport experiments.

    PubMed

    Chilenski, M A; Greenwald, M J; Marzouk, Y M; Rice, J E; White, A E

    2018-01-01

    Recent attempts to measure impurity transport in Alcator C-Mod using an x-ray imaging crystal spectrometer and laser blow-off impurity injector have failed to yield unique reconstructions of the transport coefficient profiles. This paper presents a fast, linearized model which was constructed to estimate diagnostic requirements for impurity transport experiments. The analysis shows that the spectroscopic diagnostics on Alcator C-Mod should be capable of inferring simple profiles of impurity diffusion D Z and convection V Z accurate to better than ±10% uncertainty, suggesting that the failure to infer unique D Z and V Z from experimental data is attributable to an inadequate analysis procedure rather than the result of insufficient diagnostics. Furthermore, the analysis reveals that even a modest spatial resolution can overcome a low time resolution. This approach can be adapted to design and verify diagnostics for transport experiments on any magnetic confinement device.

  15. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    NASA Astrophysics Data System (ADS)

    E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi

    2016-07-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.

  16. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    PubMed

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  17. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    NASA Astrophysics Data System (ADS)

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  18. Hole Transport in the Upper Hubbard Band in Ge:Cu under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Walukiewicz, W.; Dubon, O. D.; Silvestri, H. H.; Haller, E. E.

    1998-03-01

    We have reported recently on a uniaxial stress induced transformation of the ground state of Cu triple acceptors in Ge from highly localized 1s^3 to the much more extended 1s^22s^1 configuration (O.D. Dubon et. al., Phys Rev Lett. 78, 3519, (1997)). We find that the transformation leads to a gigantic enhancement of the low temperature conductivity. The conductivity is due to hole transport in the upper Hubbard band formed by overcharged 1s^22s^2 states. We have calculated hole mobilities in this band assuming that the states in the upper Hubbard band can be treated in the optical approximation as normal extended states with a well-defined effective mass. We find that for Cu concentrations below 10^15 cm-3 the experimentally observed mobilities approach 10^6 cm^2/Vs. These very high mobilities can be explained by hole scattering from ionized and neutral impurity centers. At higher Cu concentrations we observe an onset of Anderson localization that manifests itself in a thermally activated low temperature mobility. This work was supported by US DOE under Contract No. DE-AC03-76SF00098.

  19. Nonequilibrium self-energies, Ng approach, and heat current of a nanodevice for small bias voltage and temperature

    NASA Astrophysics Data System (ADS)

    Aligia, A. A.

    2014-03-01

    Using nonequilibrium renormalized perturbation theory to second order in the renormalized Coulomb repulsion, we calculate the lesser Σ< and and greater Σ> self-energies of the impurity Anderson model, which describes the current through a quantum dot, in the general asymmetric case. While in general a numerical integration is required to evaluate the perturbative result, we derive an analytical approximation for small frequency ω, bias voltage V, and temperature T, which is exact to total second order in these quantities. The approximation is valid when the corresponding energies ℏω, eV, and kBT are small compared to kBTK, where TK is the Kondo temperature. The result of the numerical integration is compared with the analytical one and with Ng approximation, in which Σ< and Σ> are assumed proportional to the retarded self-energy Σr times an average Fermi function. While it fails at T =0 for ℏ |ω|≲eV, we find that the Ng approximation is excellent for kBT>eV/2 and improves for asymmetric coupling to the leads. Even at T =0, the effect of the Ng approximation on the total occupation at the dot is very small. The dependence on ω and V are discussed in comparison with a Ward identity that is fulfilled by the three approaches. We also calculate the heat currents between the dot and any of the leads at finite bias voltage. One of the heat currents changes sign with the applied bias voltage at finite temperature.

  20. Estimate of the Coulomb correlation energy in CeAg2Ge2 from inverse photoemission and high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Arya, A.; Bendounan, Azzedine; Maniraj, M.; Thamizhavel, A.; Vobornik, I.; Dhar, S. K.; Deb, S. K.

    2014-08-01

    The occupied and the unoccupied electronic structure of CeAg2Ge2 single crystal has been studied using high resolution photoemission and inverse photoemission spectroscopy, respectively. High resolution photoemission reveals the clear signature of Ce 4f states in the occupied electronic structure which was not observed clearly in our earlier studies. The Coulomb correlation energy in this system has been determined experimentally from the position of the 4f states above and below the Fermi level. Theoretically, the correlation energy has been determined by using the first principles density functional calculations within the generalized gradient approximations taking into account the strong intra-atomic (on-site) interaction Hubbard Ueff term. The calculated valence band shows minor changes in the spectral shape with increasing Ueff due to the fact that the density of Ce 4f state is narrow in the occupied part and is hybridized with the Ce 5d, Ag 4d and Ge 4p states. On the other hand, substantial changes are observed in the spectral shape of the calculated conduction band with increasing Ueff since the density of Ce 4f state is very large in the unoccupied part, compared to other states. The estimated value of correlation energy for CeAg2Ge2 from the experiment and the theory is ≈ 4.2 eV. The resonant photoemission data are analyzed in the framework of the single-impurity Anderson model which further confirms the presence of the Coulomb correlation energy and small hybridization in this system.

  1. An Optimal Program Initiative Selection Model for USMC Program Objective Memorandum Planning

    DTIC Science & Technology

    1993-03-01

    Programming, Master’s Thesis, Naval Postgraduate School, Monterey, CA, September, 1992. 7. Anderson, S.M., Captain, USA, A Goal Programming R&D Project Funding ... Model of the U.S. Army Strategic Defense Command Using the Analytic Hierarchy Process, Master’s Thesis, Naval Postgraduate School, Monterey, CA

  2. Local nature of impurity induced spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg

    Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.

  3. The specific diffusion behaviour in paper and migration modelling from recycled board into dry foodstuffs.

    PubMed

    Hauder, J; Benz, H; Rüter, M; Piringer, O-G

    2013-01-01

    Recycled board plays an important role in food packaging, but the great variety of organic impurities must be considered as potential food contaminants. The diffusion behaviour of the impurities is significantly different from that in plastic materials. The two-layer concept for paper and board introduced recently is now treated in more detail. In the rate-determining surface region the diffusion coefficients of the n-alkanes in the homologous series with 15-35 carbon atoms decrease proportionally as their vapour pressures. This leads to a different equation of the diffusion coefficients in comparison with that for the core layer. Different polarities of the migrants have additional influences on the diffusion due to their interactions with the fibre matrix. A new analytical method for the quantification of aromatic impurities has previously been developed. Based on this method and on the described diffusion behaviour, a migration model for specific and global mass transfer of impurities from recycled board into dry food and food simulants is given.

  4. Summary of data acquisition and field operations: Terra Resources, Anderson Canyon No. 3-17, Lincoln County, Wyoming; Terra Resources, North Anderson Canyon No. 40-16, Sweetwater County, Wyoming. Topical report, August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    A summary is presented of open-hole data collected on two cooperative wells for the GRI Tight Gas Sands Program. The overall objective of gathering well data in the Frontier Formation is to identify and evaluate technological problems in formation evaluation and hydraulic fracturing. Open-hole data acquisition is emphasized for the Anderson Canyon No. 3-17, a full cooperative well (i.e., coring, logging, cased-hole stress testing, fracture monitoring). Data collected on the North Anderson Canyon No. 40-16, a partial cooperative well (i.e., logging only), is described in an appendix.

  5. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Antoni; Prous, Josep; Mora, Oscar

    As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry℠, a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90%more » was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84 ± 1% sensitivity, 81 ± 1% specificity, 83 ± 1% concordance and 79 ± 1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity. - Highlights: • A new in silico QSAR model to predict Ames mutagenicity is described. • The model is extensively validated with chemicals from the FDA and the public domain. • Validation tests show desirable high sensitivity and high negative predictivity. • The model predicted 14 reportedly difficult to predict drug impurities with accuracy. • The model is suitable to support risk evaluation of potentially mutagenic compounds.« less

  6. HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING

    EPA Science Inventory

    A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...

  7. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.

    2015-07-01

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional `Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  8. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors

    PubMed Central

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.

    2015-01-01

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional ‘Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities. PMID:26139568

  9. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    PubMed

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  10. Patriot Games: Yes, Indeed, the British Are Coming! But M. T. Anderson's Revolutionary War Novel Is Unlike Anything You've Ever Read

    ERIC Educational Resources Information Center

    Horning, Kathleen

    2006-01-01

    This article presents an interview with 38-year-old writer Matthew Tobin Anderson. In the interview, Anderson talks about his experiences, passion for writing, teenage interests, and his relation to the distinguished writer Mark Twain. He also states the importance of liberty and what it takes to be a patriot and a loyalist. Furthermore, Matthew…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Xiaoming; Chen Shu; Wang Yupeng

    The superfluid-to-Anderson-insulator transition of a strongly repulsive Bose gas is studied in a one-dimensional incommensurate optical lattice. In the hard-core limit, the Bose-Fermi mapping allows us to deal with the system using the exact numerical method. Based on the Aubry-Andre model, we exploit the phase transition of the hard-core boson system from the superfluid phase with all single-particle states extended to the Bose-glass phase with all the single-particle states being Anderson localized as the strength of the incommensurate potential increases relative to the hopping amplitude. We evaluate the superfluid fraction, one-particle density matrices, momentum distributions, the natural orbitals, and theirmore » occupations. All of these quantities show that there exists a superfluid-to-insulator phase transition in the system.« less

  12. Chaos-assisted tunneling in the presence of Anderson localization.

    PubMed

    Doggen, Elmer V H; Georgeot, Bertrand; Lemarié, Gabriel

    2017-10-01

    Tunneling between two classically disconnected regular regions can be strongly affected by the presence of a chaotic sea in between. This phenomenon, known as chaos-assisted tunneling, gives rise to large fluctuations of the tunneling rate. Here we study chaos-assisted tunneling in the presence of Anderson localization effects in the chaotic sea. Our results show that the standard tunneling rate distribution is strongly modified by localization, going from the Cauchy distribution in the ergodic regime to a log-normal distribution in the strongly localized case, for both a deterministic and a disordered model. We develop a single-parameter scaling description which accurately describes the numerical data. Several possible experimental implementations using cold atoms, photonic lattices, or microwave billiards are discussed.

  13. Topology versus Anderson localization: Nonperturbative solutions in one dimension

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex

    2015-02-01

    We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g ,χ ) representing localization and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z2 classes we uncover a hidden supersymmetry, present at the quantum critical point.

  14. First-principles theory of doping in layered oxide electrode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.

  15. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.

    PubMed

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert

    2013-06-14

    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  16. Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors

    NASA Astrophysics Data System (ADS)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew

    We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.

  17. Mineral Physics and Mantle Evolution

    NASA Astrophysics Data System (ADS)

    Liebermann, R. C.; Bass, J. D.; Weidner, D. J.

    2003-12-01

    Don Anderson has been a steadfast patron and constructive critic of mineral physics for more than 40 years. Although he has never actually done an experiment himself [except for perhaps some early work on ice when he was working in Greenland], he has nurtured and supported two generations of experimental mineral physicists throughout the U.S. His role and influence have been especially evident in studies of the elasticity and anelasticity of minerals and the use of such data for interpretation of seismic models of the Earth's mantle. In the 1960s, such acoustic experiments required specimens of centimeter dimensions and could achieve elevated conditions of less than 1 Gigapascal in pressure and a few hundred degrees of Celsius temperature. Today, one can perform such experiments on specimens only a fraction of a milimeter in size and reach pressures of tens of GPa and temperatures in excess of two thousand degrees C. In addition, Anderson's contributions to organized scientific endeavors have extended far beyond his founding role in IRIS to include advising on the establishment of the new Consortium for Materials Properties Research in Earth Sciences [COMPRES]. We ilustrate his remarkable contributions to mineral physics with examples of our own research, some of it done in collaboration with Anderson.

  18. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics.

    PubMed

    Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G

    2010-01-15

    In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.

  19. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349] and Anderson et al. [Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302]. In light of these inconsistencies, interbasin flow is the only readily apparent explanation for the large spring discharges at Furnace Creek and, in our view, is the likely explanation for most large volume, low elevation springs in the Great Basin. An understanding of hydrogeologic processes that control the rate and direction of ground-water flow in eastern and central Nevada is necessary component of regional water-resource planning and management of alluvial and bedrock aquifers.

  20. Red light for Anderson localization

    NASA Astrophysics Data System (ADS)

    Skipetrov, S. E.; Page, J. H.

    2016-02-01

    During the last 30 years, the search for Anderson localization of light in three-dimensional (3D) disordered samples yielded a number of experimental observations that were first considered successful, then disputed by opponents, and later refuted by their authors. This includes recent results for light in TiO2 powders that Sperling et al now show to be due to fluorescence and not to Anderson localization (2016 New J. Phys. 18 013039). The difficulty of observing Anderson localization of light in 3D may be due to a number of factors: insufficient optical contrast between the components of the disordered material, near-field effects, etc. The way to overcome these difficulties may consist in using partially ordered materials, complex structured scatterers, or clouds of cold atoms in magnetic fields.

  1. Rib fracture - aftercare

    MedlinePlus

    ... Alternative Names Broken rib - aftercare References Browner BD, Jupiter JB, Krettek C, Anderson PA. Scapula and rib fractures. In: Browner BD, Jupiter JB, Krettek C, Anderson PA, eds. Skeletal Trauma: ...

  2. Quantum impurity models for magnetic adsorbates on superconductor surfaces

    NASA Astrophysics Data System (ADS)

    Žitko, Rok

    2018-05-01

    Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.

  3. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    PubMed

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  4. Manpower Impact Assessment Model (MIAM). An Analytic Model for Assessing the Effect of Supply Policy Changes on Manpower Requirements at Retail Supply Activities

    DTIC Science & Technology

    1984-09-01

    to Management Science (Third Edition). St. Paul: West Publishing Co., 1982. 2. Bennett, John L. (Editor). Building Decision Support Systems. Reading...Starts 700 DCCs 5000 Units Inventoried 50000 103 * * Bibliography /, 1. Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. An Introduction

  5. Establishing a Community of Inquiry through Hybrid Courses in Clinical Social Work Education

    ERIC Educational Resources Information Center

    Ferrera, Maria; Ostrander, Noam; Crabtree-Nelson, Sonya

    2013-01-01

    Utilizing the conceptual framework of Garrison, Anderson, and Archer for critical inquiry, this paper outlines the importance of the community of inquiry (COI) model and how it may inform online social work education. Integrating the COI model, we discuss how online learning in the classroom with a hybrid approach has been used to facilitate…

  6. Initial Conditions in the Averaging Cognitive Model

    ERIC Educational Resources Information Center

    Noventa, S.; Massidda, D.; Vidotto, G.

    2010-01-01

    The initial state parameters s[subscript 0] and w[subscript 0] are intricate issues of the averaging cognitive models in Information Integration Theory. Usually they are defined as a measure of prior information (Anderson, 1981; 1982) but there are no general rules to deal with them. In fact, there is no agreement as to their treatment except in…

  7. Development and Implementation of a Scramjet Cycle Analysis Code with a Finite-Rate-Chemistry Combustion Model for Use on a Personal Computer

    DTIC Science & Technology

    1993-12-01

    2 3 9 V List of Fi-ures Figure 1 - Functional...Block Diagram of a Scramjet ........................................ 9 Figure 2 - ’Corrected’ Specific Impulse of Hydrogen-Oxygen Rocket ............. 35...38 Figure 8 - Schematic of Northam/Anderson Mixing Model ............................ 39 Figure 9 - Pressure-Area

  8. Entanglement entropy of a three-spin-interacting spin chain with a time-reversal-breaking impurity at one boundary.

    PubMed

    Nag, Tanay; Rajak, Atanu

    2018-04-01

    We investigate the effect of a time-reversal-breaking impurity term (of strength λ_{d}) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p-wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λ_{d} and eventually saturates with an exponential damping factor [∼exp(-λ_{d})] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λ_{d} for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λ_{d} and finally, for higher values of λ_{d}, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.

  9. Entanglement entropy of a three-spin-interacting spin chain with a time-reversal-breaking impurity at one boundary

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Rajak, Atanu

    2018-04-01

    We investigate the effect of a time-reversal-breaking impurity term (of strength λd) on both the equilibrium and nonequilibrium critical properties of entanglement entropy (EE) in a three-spin-interacting transverse Ising model, which can be mapped to a p -wave superconducting chain with next-nearest-neighbor hopping and interaction. Importantly, we find that the logarithmic scaling of the EE with block size remains unaffected by the application of the impurity term, although, the coefficient (i.e., central charge) varies logarithmically with the impurity strength for a lower range of λd and eventually saturates with an exponential damping factor [˜exp(-λd) ] for the phase boundaries shared with the phase containing two Majorana edge modes. On the other hand, it receives a linear correction in term of λd for an another phase boundary. Finally, we focus to study the effect of the impurity in the time evolution of the EE for the critical quenching case where the impurity term is applied only to the final Hamiltonian. Interestingly, it has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λd and finally, for higher values of λd, it increases very slowly dictated by an exponential damping factor. The impurity-induced behavior of EE might bear some deep underlying connection to thermalization.

  10. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  11. Time Series Model Identification by Estimating Information.

    DTIC Science & Technology

    1982-11-01

    principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R

  12. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanishi, Masamichi, E-mail: masamiya@crl.hpk.co.jp; Hirohata, Tooru; Hayashi, Syohei

    2014-11-14

    Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the presentmore » model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.« less

  13. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, Dennis Patrick

    This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%) despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2-4% Li, 0.6-2% C, 0.4-0.7% O, and Z eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.

  14. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Dennis Patrick

    This thesis presents new measurements of core impurity concentrations and transport in plasmas with lithium coatings on all-metal plasma facing components (PFCs) in the Lithium Tokamak Experiment (LTX). LTX is a modest-sized spherical tokamak uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma (as opposed to just the divertor or limiter region in other devices). Lithium (Li) wall-coatings have improved plasma performance and confinement in several tokamaks with carbon (C) PFCs, including the National Spherical Torus Experiment (NSTX). In NSTX, contamination of the core plasma with Li impurities was very low (<0.1%)more » despite extensive divertor coatings. Low Li levels in NSTX were found to be largely due to neoclassical forces from the high level of C impurities. Studying impurity levels and transport with Li coatings on stainless steel surfaces in LTX is relevant to future devices (including future enhancements to NSTX-Upgrade) with all-metal PFCs. The new measurements in this thesis were enabled by a refurbished Thomson scattering system and improved impurity spectroscopy, primarily using a novel visible spectrometer monitoring several Li, C, and oxygen (O) emission lines. A simple model was used to account for impurities in unmeasured charge states, assuming constant density in the plasma core and constant concentration in the edge. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with~2-4% Li, ~0.6-2% C, ~0.4-0.7% O, and Z_eff<1.2. Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, unlike in NSTX, where collisions with C dominated. Furthermore, neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two, in contrast to NSTX where they differed by an order of magnitude. However, time-independent simulations with MIST indicated that unlike NSTX, neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles.« less

  15. Microenvironment -Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

    DTIC Science & Technology

    2016-10-01

    accomplished all goals in Aims 1 and 2. Our lab recently relocated from the MD Anderson Cancer Center to Roswell Park Cancer Institute in Buffalo. We ...G. Tang, M.D., Ph.D. CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center Houston, TX 77030 REPORT DATE: October 2016 TYPE OF... Anderson Cancer Center Houston, TX 77030 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical

  16. A Cultural-Ecological Model of School Climate

    ERIC Educational Resources Information Center

    La Salle, Tamika P.; Meyers, Joel; Varjas, Kristen; Roach, Andrew

    2015-01-01

    School climate has been established as an important construct to measure because of its connections to student psychological, social, and academic outcomes (Anderson, 1982; Koth, Bradshaw, & Leaf, 2008; Kuperminc, Leadbeater, Emmons, & Blatt, 1997). Prior research has also established relationships between student perceptions of school…

  17. Quality assessment in head and neck oncologic surgery in a Brazilian cancer center compared with MD Anderson Cancer Center benchmarks.

    PubMed

    Lira, Renan Bezerra; de Carvalho, André Ywata; de Carvalho, Genival Barbosa; Lewis, Carol M; Weber, Randal S; Kowalski, Luiz Paulo

    2016-07-01

    Quality assessment is a major tool for evaluation of health care delivery. In head and neck surgery, the University of Texas MD Anderson Cancer Center (MD Anderson) has defined quality standards by publishing benchmarks. We conducted an analysis of 360 head and neck surgeries performed at the AC Camargo Cancer Center (AC Camargo). The procedures were stratified into low-acuity procedures (LAPs) or high-acuity procedures (HAPs) and outcome indicators where compared to MD Anderson benchmarks. In the 360 cases, there were 332 LAPs (92.2%) and 28 HAPs (7.8%). Patients with any comorbid condition had a higher incidence of negative outcome indicators (p = .005). In the LAPs, we achieved the MD Anderson benchmarks in all outcome indicators. In HAPs, the rate of surgical site infection and length of hospital stay were higher than what is established by the benchmarks. Quality assessment of head and neck surgery is possible and should be disseminated, improving effectiveness in health care delivery. © 2015 Wiley Periodicals, Inc. Head Neck 38: 1002-1007, 2016. © 2015 Wiley Periodicals, Inc.

  18. Classification of illicit heroin by UPLC-Q-TOF analysis of acidic and neutral manufacturing impurities.

    PubMed

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2015-12-01

    The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Entanglement entropy in a boundary impurity model.

    PubMed

    Levine, G C

    2004-12-31

    Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.

  20. A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems

    NASA Astrophysics Data System (ADS)

    Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.

    2008-09-01

    A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.

  1. Effect of normal impurities on anisotropic superconductors with variable density of states

    NASA Astrophysics Data System (ADS)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  2. How localized acceptors limit p-type conductivity in GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2013-03-01

    Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.

  3. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian

    2016-07-01

    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  4. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Han, Yulei; Qiao, Zhenhua

    In this talk, we theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  5. Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-12-01

    We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.

  6. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  7. Identification of process related trace level impurities in the actinide decorporation agent 3,4,3-LI(1,2-HOPO): Nozzle–skimmer fragmentation via ESI LC–QTOFMS

    DOE PAGES

    Panyala, Nagender R.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.

    2014-08-12

    We report that 3,4,3-LI(1,2-HOPO) is a chelating ligand and decorporation agent that can remove radioactive lanthanides and actinides from the body. Identification of trace impurities in drug samples is gaining much interest due to their significant influence on drug activity. In this study, trace impurities were detected in manufactured lots of 3,4,3-LI(1,2-HOPO) by a developed method of Liquid Chromatography coupled with photo-diode array UV detection and Electrospray Ionization-Quadrupole Time of Flight Mass spectrometry (LC-QTOFMS), via induced-in-source or collision-induced mass fragmentation (Nozzle-Skimmer Fragmentation). Molecular ions were fragmented within the nozzle-skimmer region of electrospray ionization (ESI) mass spectrometer equipped with a Timemore » of Flight detector. Eight major (detected at levels higher than a 0.1% threshold) and seven minor trace impurities were identified. The respective structures of these impurities were elucidated via analysis of the generated fragment ions using mass fragmentation and elemental composition software. Proposed structures of impurities were further confirmed via isotopic modeling.« less

  8. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    DOE PAGES

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less

  9. The influence of defects and impurities on the nucleation and growth of oriented films by evaporation

    NASA Technical Reports Server (NTRS)

    Green, A. K.

    1973-01-01

    The influence of substrate imperfections on the nucleation and growth of fcc metals on alkali halides is discussed. Films deposited on well characterized substrated under well defined vacuum evaporation conditions are investigated. The experimental results of this work are correlated with similar work by other investigators. Models which have been proposed by various authors to explain experimental results are critically examined and areas of difficulty are pointed out. The influence of defects on nucleation rate and the orientation of the film is emphasized. Specific examples of impurity effects, irradiation effects and the influence of amorphous layers are discussed in detail. Evidence is shown that the formation of multiply twinned particles is a result of coalescence and growth. The only consistent model for the orienting influence of impurities is shown to be a chemical reaction effect. It is demonstrated that an alkali metal impurity is very likely responsible for the orienting influence of both water vapor exposure and irradiation. A negative result is found for the reported possibility of an orienting influence being transmitted through an amorphous layer.

  10. Reducing treatment of coppersmelting slag: Thermodynamic analysis of impurities behavior

    NASA Astrophysics Data System (ADS)

    Komkov, Alexey; Kamkin, Rostislav

    2011-01-01

    A thermodynamic mathematical model, describing behavior of Pb, Zn, and As during reducing slag cleaning in the Vanyukov furnace has been developed. Using a developed model, the influence of different factors, such as temperature, oxygen partial pressure, the ratio of the formed phases on the behavior of impurities, was analyzed. It was found that arsenic can significantly move to the bottom phase, and zinc can be significantly vaporized under conditions in the Vanyukov furnace.

  11. Measurements and modeling of intra-ELM tungsten sourcing and transport in DIII-D

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Leonard, A. W.; Thomas, D. M.; McLean, A. G.; Makowski, M. A.; Wang, H. Q.; Unterberg, E. A.; Briesemeister, A. R.; Rudakov, D. L.; Bykov, I.; Donovan, D.

    2017-10-01

    Intra-ELM tungsten erosion profiles in the DIII-D divertor, acquired via W I spectroscopy with high temporal and spatial resolution, are consistent with SDTrim.SP sputtering modeling using measured ion saturation currents and impact energies during ELMs as input and an ad-hoc 2% C2+ impurity flux. The W sputtering profile peaks close to the OSP both during and between ELMs in the favorable BT direction. In reverse BT the W source peaks close to the OSP between ELMs but strongly broadens and shifts outboard during ELMs, heuristically consistent with radially outward ion transport via ExB drifts. Ion impact energies during ELMs (inferred taking the ratio of divertor heat flux to the ion saturation current) are found to be approximately equal to Te,ped, lower than the 4*Te,ped value predicted by the Fundamenski/Moulton free streaming model. These impact energies imply both D main ions and C impurities contribute strongly to W sputtering during ELMs on DIII-D. This work represents progress towards a predictive model to link upstream conditions (i.e., pedestal height) and SOL impurity levels to the ELM-induced W impurity source at both the strike-point and far-target regions in the ITER divertor. Correlations between ELM size/frequency and SOL W fluxes measured via a midplane deposition probe will also be presented. Work supported by US DOE under DE-FC02-04ER54698.

  12. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring. During August–October 1999, several field trips were conducted in the vicinity of Anderson Springs to continue monitoring and sampling the thermal manifestations. The new fumarolic area had increased in temperature and in discharge intensity since 1998, and a zone of dead trees had developed on the steep bank directly west of the fumaroles. Ground temperatures and diffuse flow of CO2 flow through soils were measured in the area surrounding the main spring and new fumaroles and in the zone of tree-kill.

  13. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021561 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  14. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021569 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  15. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021562 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  16. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021558 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  17. Anderson localisation and optical-event horizons in rogue-soliton generation.

    PubMed

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  18. Penning Ionization: Measurement of Ion and Molecular Lifetimes.

    DTIC Science & Technology

    1977-12-01

    State of CH", James Carozza and Richard Anderson, J. Opt. Soc. Am. 67, 118 (1977). "Spin & Coherence Transfer in Penning Ionization", L.D. Schearer...Lamp , F. Rev. Sei. Instru. 48, 92 (1977). _^^ ^rtjri ’’Radiative Lifetime of the PrÄ State of CH , James Carroza and Richard ’ Anderson, J. Opt...lr.h .--.- •’••• —•;••.: — - ----- Radiative lifetime of the A2A state of CHr James Carozza and Richard Anderson Drparimem 0/ Physics

  19. Multiple-beam propagation in an Anderson localized optical fiber.

    PubMed

    Karbasi, Salman; Koch, Karl W; Mafi, Arash

    2013-01-14

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.

  20. Spray and Combustion of Gelled Hypergolic Propellants

    DTIC Science & Technology

    2014-10-20

    Anderson Postdoc tlnu 2/09 Ast:I·ium Mau DeRidder Anderson Postdoc tlnu 5110 Spacex Chenzhou Lian Merkle Postdoc tlnu 8/10 IBM Watson Labs Changjin Yoon...Heister PhD, 1211 1 GE Global Research Center - 5 - - 6 - Erik Dambach Heister/Pourpoint PhD, 5/11 SpaceX Paulo Santos Campanella PhD, 8/11...Yair Solomon Anderson MS, 8/12 Technion Jordan Forness Heister/Pourpoint MS, 5/13 SpaceX Jennifer Mallory Sojka PhD, 5/12 Western New England

  1. Analysis and optimization of population annealing

    NASA Astrophysics Data System (ADS)

    Amey, Christopher; Machta, Jonathan

    2018-03-01

    Population annealing is an easily parallelizable sequential Monte Carlo algorithm that is well suited for simulating the equilibrium properties of systems with rough free-energy landscapes. In this work we seek to understand and improve the performance of population annealing. We derive several useful relations between quantities that describe the performance of population annealing and use these relations to suggest methods to optimize the algorithm. These optimization methods were tested by performing large-scale simulations of the three-dimensional (3D) Edwards-Anderson (Ising) spin glass and measuring several observables. The optimization methods were found to substantially decrease the amount of computational work necessary as compared to previously used, unoptimized versions of population annealing. We also obtain more accurate values of several important observables for the 3D Edwards-Anderson model.

  2. Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene.

    PubMed

    Repetsky, S P; Vyshyvana, I G; Kruchinin, S P; Bellucci, Stefano

    2018-06-14

    In the one-band model of strong coupling, the influence of substitutional impurity atoms on the energy spectrum and electrical conductance of graphene is studied. It is established that the ordering of substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the energy spectrum of graphene with width η|δ| centered at the point yδ, where η is the parameter of ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is the impurity concentration. The maximum value of the parameter of ordering is [Formula: see text]. For the complete ordering of impurity atoms, the energy gap width equals [Formula: see text]. If the Fermi level falls in the region of the mentioned gap, then the electrical conductance [Formula: see text] at the ordering of graphene, i.e., the metal-dielectric transition arises. If the Fermi level is located outside the gap, then the electrical conductance increases with the parameter of order η by the relation [Formula: see text]. At the concentration [Formula: see text], as the ordering of impurity atoms η →1, the electrical conductance of graphene [Formula: see text], i.e., the transition of graphene in the state of ideal electrical conductance arises.

  3. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such asmore » INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.« less

  4. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    NASA Astrophysics Data System (ADS)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  5. Plasma Interactions with Mixed Materials and Impurity Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs ofmore » future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.« less

  6. 5. PHOTOCOPY ADVERTISING VIEW OF THE LAMBERT AUTOCAR WITH CUTAWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOCOPY ADVERTISING VIEW OF THE LAMBERT AUTOCAR WITH CUTAWAY OF TRANSMISSION, FROM ANDERSON CITY DIRECTORY, CA. 1906-1907 - Buckeye Manufacturing Company, Columbia Avenue, Anderson, Madison County, IN

  7. Use of negative multinomial linear models to investigate environmental effects on community structure.

    EPA Science Inventory

    A frequent goal in ecology is to understand the relationships between biological communities and their environment. Anderson and McCardle (2001) provided a nonparametric method, known as Permanova, that is often used for this purpose. Permanova represents a significant advance,...

  8. Creating a Community of Inquiry in Online Library Instruction

    ERIC Educational Resources Information Center

    Rapchak, Marcia E.

    2017-01-01

    According to the Community of Inquiry (CoI) model (Garrison, Anderson, & Archer, 2000), an enriching educational experience online in a collaborative learning environment requires three interdependent elements: social presence, teaching presence, and cognitive presence. Social presence provides interaction in the online environment that allows…

  9. Jump events in a 3D Edwards-Anderson spin glass

    NASA Astrophysics Data System (ADS)

    Mártin, Daniel A.; Iguain, José Luis

    2017-11-01

    The statistical properties of infrequent particle displacements, greater than a certain distance, are known as jump dynamics in the context of structural glass formers. We generalize the concept of a jump to the case of a spin glass, by dividing the system into small boxes, and considering the infrequent cooperative spin flips in each box. Jumps defined this way share similarities with jumps in structural glasses. We perform numerical simulations for the 3D Edwards-Anderson model, and study how the properties of these jumps depend on the waiting time after a quench. Similar to the results for structural glasses, we find that while jump frequency depends strongly on time, the jump duration and jump length are roughly stationary. At odds with some results reported on studies of structural glass formers, at long enough times, the rest time between jumps varies as the inverse of jump frequency. We give a possible explanation for this discrepancy. We also find that our results are qualitatively reproduced by a fully-connected trap model.

  10. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlyingmore » physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed reduced with the FA antenna configuration, the mechanism determining the SOL plasma potential in the presence of ICRF and its impact on impurity contamination and sources remains to be understood.« less

  11. Anderson transition in a three-dimensional kicked rotor

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; García-García, Antonio M.

    2009-03-01

    We investigate Anderson localization in a three-dimensional (3D) kicked rotor. By a finite-size scaling analysis we identify a mobility edge for a certain value of the kicking strength k=kc . For k>kc dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3D Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kc we carry out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations, the number variance is linear, level repulsion is still observed, and quantum diffusion is anomalous with ⟨p2⟩∝t2/3 . We note that in the 3D kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3D kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Heuristically it is expected that localization effects will be weaker in a nonrandom potential since destructive interference will be less effective to arrest quantum diffusion. However we have found that certain choices of irrational periods enhance Anderson localization effects.

  12. Two-point functions in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.

  13. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, F.

    Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

  14. Modeling Statistics of Fish Patchiness and Predicting Associated Influence on Statistics of Acoustic Echoes

    DTIC Science & Technology

    2014-09-30

    were compared with 3-D multi-beam data collected by Paramo and Gerlotto. The data were consistent with the Anderson model in that both the data and...column of a random, oceanic waveguide,” J. Acoust. Soc. Am., DOI 10.1121/1.4881925 [published, refereed] Stanton, T.K., Bhatia, S., J. Paramo , and F

  15. Online Education: Analysis of Interaction and Knowledge Building Patterns among Foreign Language Teachers

    ERIC Educational Resources Information Center

    Celentin, Paola

    2007-01-01

    In this article we discuss findings from a case-study related to the distance education of teachers of Italian as a second/foreign language. This case-study has examined interactions among teachers during their discussions in a web-forum exploiting the model of content analysis proposed in the "Practical Inquiry Model" by Garrison, Anderson, and…

  16. Best Statistical Distribution of flood variables for Johor River in Malaysia

    NASA Astrophysics Data System (ADS)

    Salarpour Goodarzi, M.; Yusop, Z.; Yusof, F.

    2012-12-01

    A complex flood event is always characterized by a few characteristics such as flood peak, flood volume, and flood duration, which might be mutually correlated. This study explored the statistical distribution of peakflow, flood duration and flood volume at Rantau Panjang gauging station on the Johor River in Malaysia. Hourly data were recorded for 45 years. The data were analysed based on water year (July - June). Five distributions namely, Log Normal, Generalize Pareto, Log Pearson, Normal and Generalize Extreme Value (GEV) were used to model the distribution of all the three variables. Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests were used to evaluate the best fit. Goodness-of-fit tests at 5% level of significance indicate that all the models can be used to model the distribution of peakflow, flood duration and flood volume. However, Generalize Pareto distribution is found to be the most suitable model when tested with the Anderson-Darling test and the, Kolmogorov-Smirnov suggested that GEV is the best for peakflow. The result of this research can be used to improve flood frequency analysis. Comparison between Generalized Extreme Value, Generalized Pareto and Log Pearson distributions in the Cumulative Distribution Function of peakflow

  17. Louisa Garrett Anderson (1873-1943), surgeon and suffragette.

    PubMed

    Geddes, Jennian F

    2008-11-01

    Louisa Garrett Anderson, daughter of Britain's first woman doctor, has been largely forgotten today despite the fact that her contribution to the women's movement was as great as that of her mother. Recognized by her contemporaries as an important figure in the suffrage campaign, Anderson chose to lend her support through high-profile action, being one of the few women doctors in her generation who risked their professional as well as their personal reputation in the fight for women's rights by becoming a suffragette - in her case, even going so far as to spend a month in prison for breaking a window on a demonstration. On the outbreak of war, with only the clinical experience she had gained as outpatient surgeon in a women's hospital, Anderson established a series of women-run military hospitals where she was a Chief Surgeon. The most successful was the Endell Street Military Hospital in London, funded by the Royal Army Medical Corps and the only army hospital ever to be run and staffed entirely by women. Believing that a doctor had an obligation to take a lead in public affairs, Anderson continued campaigning for women's issues in the unlikely setting of Endell Street, ensuring that their activities remained in the public eye through constant press coverage. Anderson's achievement was that her work played no small part in expunging the stigma of the militant years in the eyes of the public and - more importantly - was largely instrumental in putting women doctors on equal terms with their male colleagues.

  18. Performance prediction of high Tc superconducting small antennas using a two-fluid-moment method model

    NASA Astrophysics Data System (ADS)

    Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.

    1992-01-01

    The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.

  19. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  20. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE PAGES

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.; ...

    2017-12-19

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  1. Charter School Innovations: A Teacher Growth Model

    ERIC Educational Resources Information Center

    Radoslovich, Julie; Roberts, Shelley; Plaza, Andres

    2014-01-01

    Committed to being a charter school with a professional learning community that empowers teachers, New Mexico's South Valley Academy (SVA) staff transformed its state evaluation process into a practitioner action research process (Anderson, Herr, & Nihlen, 2007). While teachers self-diagnose growth needs and play active roles in improving…

  2. Developing an ACT-R Model of Mental Manipulation

    DTIC Science & Technology

    2000-05-01

    entire test. However, from the verbal protocol and existing literature ( Biederman , 1987 ), it was clear that subjects had a tendency to break images into...Associates. Anderson, J.R. (1993). Rules of the mind. Lawrence Erlbaum Associates. Biederman , I. ( 1987 ). Recognition by components: A theory of human

  3. 1. VIEW OF SOUTH (GABLE END) AND WEST WALLS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SOUTH (GABLE END) AND WEST WALLS FROM ANDERSON WAY, FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Nurses' Quarters, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  4. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie... Victoria Area: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  5. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...

  6. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  7. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  8. Modelling of convective processes during the Bridgman growth of poly-silicon

    NASA Astrophysics Data System (ADS)

    Popov, V. N.

    2009-09-01

    An original 3D model was used to numerically examine convective heat-and-mass transfer processes in the melt during the growth of polycrystalline silicon in vertical Bridgman configuration. The flow in the liquid was modelled using the Navier — Stokes equations in the Boussinesq approximation. The distribution of dissolved impurities was determined by solving the convective diffusion equation. The effects due to non-uniform heating of the lateral wall of the vessel and due to the shape of the crystallization front on the structure of melt flows and on the distribution of dissolved impurities in the liquid are examined.

  9. Quantum evolution: The case of weak localization for a 3D alloy-type Anderson model and application to Hamiltonian based quantum computation

    NASA Astrophysics Data System (ADS)

    Cao, Zhenwei

    Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).

  10. Statistical theory of nucleation in the presence of uncharacterized impurities

    NASA Astrophysics Data System (ADS)

    Sear, Richard P.

    2004-08-01

    First order phase transitions proceed via nucleation. The rate of nucleation varies exponentially with the free-energy barrier to nucleation, and so is highly sensitive to variations in this barrier. In practice, very few systems are absolutely pure, there are typically some impurities present which are rather poorly characterized. These interact with the nucleus, causing the barrier to vary, and so must be taken into account. Here the impurity-nucleus interactions are modelled by random variables. The rate then has the same form as the partition function of Derrida’s random energy model, and as in this model there is a regime in which the behavior is non-self-averaging. Non-self-averaging nucleation is nucleation with a rate that varies significantly from one realization of the random variables to another. In experiment this corresponds to variation in the nucleation rate from one sample to another. General analytic expressions are obtained for the crossover from a self-averaging to a non-self-averaging rate of nucleation.

  11. First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET

    2017-12-01

    ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.

  12. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

    DOE PAGES

    Mollén, A.; Landreman, M.; Smith, H. M.; ...

    2015-11-20

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at lowmore » collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z eff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.« less

  13. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  14. 1. VIEW OF BUILDING 128: SOUTH (GABLE END) AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF BUILDING 128: SOUTH (GABLE END) AND WEST SIDES FROM ANDERSON WAY, FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Hospital Wards, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  15. 1. VIEW OF WEST (GABLE END) AND SOUTH SIDES, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST (GABLE END) AND SOUTH SIDES, FROM WEST END OF ANDERSON WAY FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Mess Hall, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  16. Anderson during a MSG Leak Test in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-06-28

    ISS015-E-14705 (28 June 2007) --- Astronaut Clayton C. Anderson, Expedition 15 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  17. Ballistic Missile Early Warning System Clear Air Force Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County... Victoria Area: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  19. Local gas injection as a scrape-off layer diagnostic on the Alcator C-Mod tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonski, David F.

    1996-05-01

    A capillary puffing array has been installed on Alcator C-Mod which allows localized introduction of gaseous species in the scrape-off layer. This system has been utilized in experiments to elucidate both global and local properties of edge transport. Deuterium fueling and recycling impurity screening are observed to be characterized by non-dimensional screening efficiencies which are independent of the location of introduction. In contrast, the behavior of non-recycling impurities is seen to be characterized by a screening time which is dependent on puff location. The work of this thesis has focused on the use of the capillary array with a cameramore » system which can view impurity line emission plumes formed in the region of an injection location. The ionic plumes observed extend along the magnetic field line with a comet-like asymmetry, indicative of background plasma ion flow. The flow is observed to be towards the nearest strike-point, independent of x-point location, magnetic field direction, and other plasma parameters. While the axes of the plumes are generally along the field line, deviations are seen which indicate cross-field ion drifts. A quasi-two dimensional fluid model has been constructed to use the plume shapes of the first charge state impurity ions to extract information about the local background plasma, specifically the temperature, parallel flow velocity, and radial electric field. Through comparisons of model results with those of a three dimensional Monte Carlo code, and comparisons of plume extracted parameters with scanning probe measurements, the efficacy of the model is demonstrated. Plume analysis not only leads to understandings of local edge impurity transport, but also presents a novel diagnostic technique.« less

  20. Image transport through a disordered optical fibre mediated by transverse Anderson localization.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-25

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  1. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  2. An Activation-Based Model of Routine Sequence Errors

    DTIC Science & Technology

    2015-04-01

    part of the ACT-R frame- work (e.g., Anderson, 1983), we adopt a newer, richer no- tion of priming as part of our approach ( Harrison & Trafton, 2010...2014). Other models of routine sequence errors, such as the in- teractive activation network ( IAN ) model (Cooper & Shal- lice, 2006) and the simple...error patterns that results from an interface layout shift. The ideas behind our expanded priming approach, however, could apply to IAN , which uses

  3. A New Bloom: Transforming Learning

    ERIC Educational Resources Information Center

    Cochran, David; Conklin, Jack

    2007-01-01

    This article discusses a new design for the classic Bloom's Taxonomy developed by Anderson, L. W. & Krathwohl, D. (2001), which can be used to evaluate learners' technology-enhanced experience in more powerful and critical ways. The New Bloom's Taxonomy incorporates contemporary research on learning and human cognition into its model. The…

  4. Teaching Presence and Communication Timeliness in Asynchronous Online Courses

    ERIC Educational Resources Information Center

    Skramstad, Erik; Schlosser, Charles; Orellana, Anymir

    2012-01-01

    This study examined student perceptions of teaching presence and communication timeliness in asynchronous online courses. Garrison, Anderson, and Archer's (2000) community of inquiry model provided the framework for the survey research methodology used. Participants were 59 student volunteers taking 1 or more asynchronous online graduate courses.…

  5. Planned Focus on Form: Automatization of Procedural Knowledge

    ERIC Educational Resources Information Center

    Khatib, Mohammad; Nikouee, Majid

    2012-01-01

    The present study is premised on Anderson's ACT model that proposes declarative knowledge is automatizable through practice (1982). The research examined the extent to which declarative knowledge of one morphosyntactic structure, namely present perfect, can be automatized 2 days after practice and can be retained 2 weeks after practice. Twenty…

  6. Student Satisfaction with Online Learning: Is It a Psychological Contract?

    ERIC Educational Resources Information Center

    Dziuban, Charles; Moskal, Patsy; Thompson, Jessica; Kramer, Lauren; DeCantis, Genevieve; Hermsdorfer, Andrea

    2015-01-01

    The authors explore the possible relationship between student satisfaction with online learning and the theory of psychological contracts. The study incorporates latent trait models using the image analysis procedure and computation of Anderson and Rubin factors scores with contrasts for students who are satisfied, ambivalent, or dissatisfied with…

  7. A Measurement Model of Microgenetic Transfer for Improving Instructional Outcomes

    ERIC Educational Resources Information Center

    Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.

    2015-01-01

    Efforts to improve instructional task design often make reference to the mental structures, such as "schemas" (e.g., Gick & Holyoak, 1983) or "identical elements" (Thorndike & Woodworth, 1901), that are common to both the instructional and target tasks. This component based (e.g., Singley & Anderson, 1989) approach…

  8. Postscript: Identity and Constraints in Models of Object Formation

    ERIC Educational Resources Information Center

    Kellman, Philip J.; Garrigan, Patrick; Shipley, Thomas F.; Keane, Brian P.

    2007-01-01

    Presents some additional comments from the current authors regarding their original article Interpolation processes in object perception: Reply to Anderson (2007). As this exchange concludes, we believe that the account of interpolation and object formation proposed by Kellman and Shipley (1991), further developed in recent years (Kellman, 2003;…

  9. Home-Grown Citizens

    ERIC Educational Resources Information Center

    Anderson, Sarah; Gurnee, Anne

    2016-01-01

    While the purpose of K-12 education is largely to train students for college and career, free education in a democratic society has another purpose: to prepare citizens to rule themselves. In this article, Anderson and Gurnee explain how place-based learning equips students to be active citizens in their communities. In this model, school localize…

  10. A Theoretical Model of Team-Licensed Merchandise Purchasing (TLMP)

    ERIC Educational Resources Information Center

    Lee, Donghun; Trail, Galen

    2011-01-01

    Although it is evident that sales of team licensed merchandise (TLM) contribute to the overall consumption of sport, research efforts that comprehensively describe what triggers the consumption of TLM is lacking (Lee, Trail, Kwon, & Anderson, 2011). Therefore, based on multiple theories (i.e., values theory, identity theory, attitude theory, and…

  11. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE PAGES

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...

    2017-07-20

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  12. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  13. Stability of the two-dimensional Fermi polaron

    NASA Astrophysics Data System (ADS)

    Griesemer, Marcel; Linden, Ulrich

    2018-02-01

    A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

  14. Formation and stability of impurity "snakes" in tokamak plasmas.

    PubMed

    Delgado-Aparicio, L; Sugiyama, L; Granetz, R; Gates, D A; Rice, J E; Reinke, M L; Bitter, M; Fredrickson, E; Gao, C; Greenwald, M; Hill, K; Hubbard, A; Hughes, J W; Marmar, E; Pablant, N; Podpaly, Y; Scott, S; Wilson, R; Wolfe, S; Wukitch, S

    2013-02-08

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.

  15. Evolution of quantitative methods for the study and management of avian populations: on the importance of individual contributions

    USGS Publications Warehouse

    Nichols, J.D.

    2004-01-01

    The EURING meetings and the scientists who have attended them have contributed substantially to the growth of knowledge in the field of estimating parameters of animal populations. The contributions of David R. Anderson to process modeling, parameter estimation and decision analysis are briefly reviewed. Metrics are considered for assessing individual contributions to a field of inquiry, and it is concluded that Anderson’s contributions have been substantial. Important characteristics of Anderson and his career are the ability to identify and focus on important topics, the premium placed on dissemination of new methods to prospective users, the ability to assemble teams of complementary researchers, and the innovation and vision that characterized so much of his work. The paper concludes with a list of interesting current research topics for consideration by EURING participants.

  16. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  17. Development of adsorptive hybrid filters to enable two-step purification of biologics

    PubMed Central

    Peck, Michael; Voloshin, Alexei M.; Moreno, Angela M.; Tan, Zhijun; Hester, Jonathan; Borys, Michael C.; Li, Zheng Jian

    2017-01-01

    ABSTRACT Recent progress in mammalian cell culture process has resulted in significantly increased product titers, but also a substantial increase in process- and product-related impurities. Due to the diverse physicochemical properties of these impurities, there is constant need for new technologies that offer higher productivity and improved economics without sacrificing the process robustness required to meet final drug substance specifications. Here, we examined the use of new synthetic adsorptive hybrid filters (AHF) modified with the high binding capacity of quaternary amine (Emphaze™ AEX) and salt-tolerant biomimetic (Emphaze™ ST-AEX) ligands for clearance of process-related impurities like host cell protein (HCP), residual DNA, and virus. The potential to remove soluble aggregates was also examined. Our aim was to develop a mechanistic understanding of the interactions governing adsorptive removal of impurities during filtration by evaluating the effect of various filter types, feed streams, and process conditions on impurity removal. The ionic capacity of these filters was measured and correlated with their ability to remove impurities for multiple molecules. The ionic capacity of AHF significantly exceeded that of traditional adsorptive depth filters (ADF) by 40% for the Emphaze™ AEX and by 700% for the Emphaze™ ST-AEX, providing substantially higher reduction of soluble anionic impurities, including DNA, HCPs and model virus. Nevertheless, we determined that ADF with filter aid provided additional hydrophobic functionality that resulted in removal of higher molecular weight species than AHF. Implementing AHF demonstrated improved process-related impurity removal and viral clearance after Protein A chromatography and enabled a two-step purification process. The consequences of enhanced process performance are far reaching because it allows the downstream polishing train to be restructured and simplified, and chromatographic purity standards to be met with a reduced number of chromatographic steps. PMID:27929735

  18. Hyperspectral, photogrammetric and morphological characterization of surface impurities over the Greenland ice sheet from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.

    2016-12-01

    The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.

  19. Studies of Impurities in the Pegasus Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanchez, C.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is used to initiate ST plasmas without a solenoid. Testing predictive models for the evolution of Ip(t) during LHI requires measurement of the plasma resistivity to quantify the dissipation of helicity. To that end, three diagnostic systems are coupled with an impurity transport model to quantify plasma contaminants. These are: visible bremsstrahlung (VB) spectroscopy; bolometry; and VUV spectroscopy. A spectral survey has been performed to identify line-free regions for VB measurements in the visible. Initial VB measurements are obtained with a single sightline through the plasma, and will be expanded to an imaging array to provide spatial resolution. A SPRED multichannel VUV spectrometer is being upgraded to provide high-speed ( 0.2 ms) spectral surveys for ion species identification, with a high-resolution grating installed for metallic line identification. A 16-channel thinistor bolometer array is planned. Absolutely calibrated VB, bolometer measurements, and qualitative ion species identification from SPRED are used as constraints in an impurity transport code to estimate absolute impurity content. Earlier work using this general approach indicated Zeff < 3 , before the edge current sources were shielded to reduce plasma-injector interactions. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  1. JILA BEC/Ultracold Atoms Homepage

    Science.gov Websites

    JILA BEC & Ultracold Atoms Bose Einstein Condensate Eric Cornell Cornell Group Debbie Jin Jin Group Jun Ye Ye Group Dana Anderson Anderson Group What is BEC? Easy BEC Machine Nobel BEC BibTek Papers

  2. 75 FR 42611 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... visiting the Resource Room. FOR FURTHER INFORMATION CONTACT: Mr. Wes Anderson, U.S. Department of Energy..., SW., Washington, DC 20585- 0121. Tel.: (202) 586-7335. E-mail: Wes.Anderson@ee.doe.gov . Ms...

  3. Educational Leadership. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Tollett, John R., Ed.

    This document contains the following papers on educational leadership from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Electronic Curriculum Development and Assessment" (Kevin M. Anderson and Cindy L. Anderson); "The Dilemma of Teacher Training" (Alfred Bork); "Technology and…

  4. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  6. Diffusion-coupled cohesive interface simulations of stress corrosion intergranular cracking in polycrystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Chao; Gao, Yanfei; Wang, Yanli

    To study the stress corrosion intergranular cracking mechanism, a diffusion-coupled cohesive zone model (CZM) is proposed for the simulation of the stress-assisted diffusional process along grain boundaries and the mechanical response of grain boundary sliding and separation. This simulation methodology considers the synergistic effects of impurity diffusion driven by pressure gradient and degradation of grain boundary strength by impurity concentration. The diffusion-coupled CZM is combined with crystal plasticity finite element model (CPFEM) to simulate intergranular fracture of polycrystalline material under corrosive environment. Significant heterogeneity of the stress field and extensive impurity accumulation is observed at grain boundaries and junction points.more » Deformation mechanism maps are constructed with respect to the grain boundary degradation factor and applied strain rate, which dictate the transition from internal to near-surface intergranular fracture modes under various strain amplitudes and grain sizes.« less

  7. Soliton-impurity interaction in two Ablowitz-Ladik chains with different coupling

    NASA Astrophysics Data System (ADS)

    Kamburova, R. S.; Primatarowa, M. T.

    2014-12-01

    The interaction of solitons with point defects in a system of coupled Ablowitz- Ladik (AL) chains is studied numerically. The system is a discrete analog of coupled nonlinear Schrodinger equations. Two types of interchain coupling are investigated: one which admits reduction of the system to the standard integrable AL model (dispersive coupling) and one which couples opposite sites of the chains and does not admit reduction to the AL model (nondispersive coupling). The action of the two coupling types is additive and they can compensate each other in some cases. We have obtained that the single-peak bound soliton-defect solution (attractive impurity) is stable against perturbations, while the double-peak bound soliton-defect solution (repulsive impurity) is unstable and can be easily destroyed. Linear point defects do not influence the period of energy transfer and it is close to the period for the homogeneous case.

  8. Resonant pair tunneling in double quantum dots.

    PubMed

    Sela, Eran; Affleck, Ian

    2009-08-21

    We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.

  9. Relaxation of the environment of Gd3+ and Eu2+ impurity ions in the Y3Al5O12 garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Artyomov, M. Yu.; Potapov, A. P.; Chernyshev, V. A.; Fokin, A. V.; Serdtsev, A. V.

    2017-05-01

    The second-rank spin Hamiltonian parameters of Gd3+ and Eu2+ orthorhombic centers in crystals of the yttrium aluminum garnet Y3Al5O12 have been analyzed within the framework of the superposition model for the zero-field splitting of the ground state. It has been shown that the description of the experimental data in this model is possible only under the assumption of relaxation of the ligand environment of the paramagnetic impurity.

  10. Modelling Seasonally Freezing Ground Conditions

    DTIC Science & Technology

    1989-05-01

    used as the ’snow input’ in the larger hydrological models, e.g. Pangburn (1987). The most advanced index model is Anderson’s (1973) model. This bases...source as the soils) is shown in figures 32 and 33. Table 10 shows the percentage areas of Hydrologic Soil Groups, Land Use and Slope Distribution for...C") z c~cu CYa) 65 table 10: Percentage areas of Hydrologic Soil Grouos, Land Use and Slope Distribution over W3 (?Pn!ke e: al., 1978) Parameter

  11. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009277 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  12. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009299 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  13. Carl Anderson and the Discovery of the Positron

    Science.gov Websites

    experimental piece of equipment of choice to study cosmic rays. ... Anderson designed and built his own cloud ? Top Some links on this page may take you to non-federal websites. Their policies may differ from this

  14. Program Spotlight: UPR and MD Anderson Partnership Welcomes Its First Graduates

    Cancer.gov

    CRCHD joins the PIs and Diversity Training co-leaders of the Univ. of Puerto Rico and the Univ. of Texas MD Anderson Cancer Center U54 Partnership for Excellence in Cancer Research in congratulating its first graduates.

  15. 76 FR 30555 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    [email protected] . FOR FURTHER INFORMATION CONTACT: Mr. Wes Anderson, U.S. Department of Energy, Office... Avenue, SW., Washington, DC 20585-0121. Telephone: (202) 586-7335. E-mail: Wes.Anderson@ee.doe.gov . Ms...

  16. 76 FR 39245 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Wes.Anderson@ee.doe.gov . Mr. Eric Stas or Ms. Jennifer Tiedeman, U.S. Department of Energy, Office of.... Wesley Anderson (central air conditioners and heat pumps), U.S. Department of Energy, Office of Energy...

  17. A Brief History of Thoracic Surgery at the University of Texas MD Anderson Cancer Center.

    PubMed

    Walsh, Garrett Lyndon; Mehran, Reza John

    2016-01-01

    This article describes the history of the creation of the Department of Thoracic Surgery at the University of Texas MD Anderson Cancer Center in Houston, Texas. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Detection of Anderson-Fabry cardiomyopathy with CMR in a patient with chest pain and elevated cardiac biomarkers.

    PubMed

    Albin, Glenn; Ryan, Michael; Heltne, Carl

    2006-01-01

    This case illustrates the utility of CMR in evaluating a patient with undiagnosed Anderson-Fabry disease who presented with chest pain, elevated cardiac biomarkers, normal coronary arteries, and an abnormal echocardiogram.

  19. KSC-03PD-2976

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

  20. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition of steam discharges from the Southeast Geysers. The hot spring waters are low in ions of Cl, B, and Li, but relatively high in HCO3, SO4 and NH4. The stable-isotope compositions (deuterium and oxygen-18) of these waters plot near the global meteoric water line. Geochemical data through time reveal apparent maxima in the concentrations of SO4, Fe, and Mn in 1991 to 1992, before the cluster became hotter. The black-to-gray deposits from the new spring cluster are rich in pyrite and contain anomalous metals. About one-half mile to the east of the hot springs, mineralized water discharges intermittently from an old adit of the Schwartz (Anderson) mine, and enters a tributary of Anderson Creek. This drainage increased substantially in July 1998, and a slurry of mine water and precipitates were transported down the tributary and into Anderson Creek. In December 1998, the adit water was 22°C, and had a chemical composition that was similar to spring waters that once discharged in the ravines surrounding the old Anderson Springs resort. The cause for the abrupt changes that have occurred in thermal features at Anderson Springs is still not resolved. One possibility is that these changes are a response to withdrawal of steam from The Geysers geothermal field over more than 20 years of production. Pressure declines in the geothermal reservoir may have caused a "drying out" of the overlying condensation zone. Induced boiling in this zone and upflow of deep steam to shallower depths would cause heating and vaporization of shallow ground waters. In addition, earthquakes occurring in the vicinity of Anderson Springs have increased significantly after nearby geothermal power plants began operation. These earthquakes may have enhanced surface discharge of thermal fluids along fractures and faults.

  1. Digital Capture and Fabrication Tools for Interpretation of Historic Sites

    NASA Astrophysics Data System (ADS)

    Ackerman, A.; Glekas, E.

    2017-08-01

    Historic sites and the narratives they produce can have a lasting impact on the community through public engagement and education. However, when these sites are neglected and lost over time, opportunities to engage the public with the history of these places is lost with them. The interpretation of heritage that has been lost or forgotten is an emerging trend in humanities studies. This trend, in combination with technological advancements in digital media and representation, presents an innovative opportunity for historic preservation professionals to create new paths for public engagement. This paper discusses applications of photogrammetry, 3D modeling, and digital fabrication in digitally reconstructing interpretive models of the Larz Anderson Estate (now Larz Anderson Park). This site has changed dramatically through its transition from a private estate to a public park and recreation area, with few remnants of the original estate remaining extant. The above stated use of digital strategies aims to create digital and physical models of the estate's change over time, with the aim of interpreting the site's lost heritage for the public. Combining existing archival research and heritage documentation methods with these digital representation techniques tells the story of a place that no longer exists.

  2. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  3. Assessing Competencies Needed to Engage With Digital Health Services: Development of the eHealth Literacy Assessment Toolkit.

    PubMed

    Karnoe, Astrid; Furstrand, Dorthe; Christensen, Karl Bang; Norgaard, Ole; Kayser, Lars

    2018-05-10

    To achieve full potential in user-oriented eHealth projects, we need to ensure a match between the eHealth technology and the user's eHealth literacy, described as knowledge and skills. However, there is a lack of multifaceted eHealth literacy assessment tools suitable for screening purposes. The objective of our study was to develop and validate an eHealth literacy assessment toolkit (eHLA) that assesses individuals' health literacy and digital literacy using a mix of existing and newly developed scales. From 2011 to 2015, scales were continuously tested and developed in an iterative process, which led to 7 tools being included in the validation study. The eHLA validation version consisted of 4 health-related tools (tool 1: "functional health literacy," tool 2: "health literacy self-assessment," tool 3: "familiarity with health and health care," and tool 4: "knowledge of health and disease") and 3 digitally-related tools (tool 5: "technology familiarity," tool 6: "technology confidence," and tool 7: "incentives for engaging with technology") that were tested in 475 respondents from a general population sample and an outpatient clinic. Statistical analyses examined floor and ceiling effects, interitem correlations, item-total correlations, and Cronbach coefficient alpha (CCA). Rasch models (RM) examined the fit of data. Tools were reduced in items to secure robust tools fit for screening purposes. Reductions were made based on psychometrics, face validity, and content validity. Tool 1 was not reduced in items; it consequently consists of 10 items. The overall fit to the RM was acceptable (Anderson conditional likelihood ratio, CLR=10.8; df=9; P=.29), and CCA was .67. Tool 2 was reduced from 20 to 9 items. The overall fit to a log-linear RM was acceptable (Anderson CLR=78.4, df=45, P=.002), and CCA was .85. Tool 3 was reduced from 23 to 5 items. The final version showed excellent fit to a log-linear RM (Anderson CLR=47.7, df=40, P=.19), and CCA was .90. Tool 4 was reduced from 12 to 6 items. The fit to a log-linear RM was acceptable (Anderson CLR=42.1, df=18, P=.001), and CCA was .59. Tool 5 was reduced from 20 to 6 items. The fit to the RM was acceptable (Anderson CLR=30.3, df=17, P=.02), and CCA was .94. Tool 6 was reduced from 5 to 4 items. The fit to a log-linear RM taking local dependency (LD) into account was acceptable (Anderson CLR=26.1, df=21, P=.20), and CCA was .91. Tool 7 was reduced from 6 to 4 items. The fit to a log-linear RM taking LD and differential item functioning into account was acceptable (Anderson CLR=23.0, df=29, P=.78), and CCA was .90. The eHLA consists of 7 short, robust scales that assess individual's knowledge and skills related to digital literacy and health literacy. ©Astrid Karnoe, Dorthe Furstrand, Karl Bang Christensen, Ole Norgaard, Lars Kayser. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.05.2018.

  4. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  5. Modelling of nitrogen seeding experiments in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Fable, E.; Dux, R.; Ryter, F.; ASDEX Upgrade Team

    2018-03-01

    Experiments using nitrogen were conducted in H-mode plasmas at ASDEX Upgrade that has a full-W wall. The edge region of H-mode plasmas is modulated by the edge-localized modes (ELMs) which lead to a loss of energy and particles from the confined plasma. In order to gain a better understanding of the complex physical mechanisms which govern the behaviour of radiation and impurities in the presence of ELMs, the evolution of impurities and radiation has been modelled in a time-dependent way. The simulations have been carried out with the ASTRA-STRAHL package featuring the self-consistent interplay between impurity transport, radiation, heat and particle transport of the background plasma, and the effects of ELMs. ELMs are modelled based on the two different assumptions of a diffusive and a convective transport, respectively. The experimental discharge behaviour was reproduced providing only transport coefficients, heat, and particle source. The results underlie the importance of non-coronal effects through the ELM-induced transport which lead to a strong enhancement of the nitrogen radiation. Taking these effects into account is crucial in order to not underestimate the radiation. The radiation properties of high-Z impurities such as tungsten are instead very weakly influenced by non-coronal effects due to its faster equilibration time. While the nitrogen density does not change significantly decreasing the ELM frequency, tungsten density and consequently the radiation increase strongly. The degree to which W is flushed out depends on whether the ELM transport is diffusive or convective. Simulations show that for the N seeded cases considered here, the diffusive model reproduces more accurately the experimental observations. The different behaviour of N and W can be explained in terms of profile peaking which increases with Z (neoclassical pinch). The strong increase in W radiation when the ELM frequency is decreased is not only due to the lack of a sufficiently strong flush out of this impurity but also to the fact that the long time between two crashes gives the impurities time to penetrate further into the plasma escaping the region where they can be flushed out. This is in agreement with the experimental observations and highlights the importance of maintaining high ELM frequencies for the stability and performance of the discharges.

  6. Development of a Methodology to Optimally Allocate Visual Inspection Time

    DTIC Science & Technology

    1989-06-01

    Model and then takes into account the costs of the errors. The purpose of the Alternative Model is to not make 104 costly mistakes while meeting the...James Buck, and Virgil Anderson, AIIE Transactions, Volume 11, No.4, December 1979. 26. "Inspection of Sheet Materials - Model and Data", Colin G. Drury ...worker error, the probability of inspector error, and the cost of system error. Paired comparisons of error phenomena from operational personnel are

  7. Exploring the Interaction between TSC2, PTEN, and the NMDA Receptor in Animal Models of Tuberous Sclerosis

    DTIC Science & Technology

    2014-09-01

    Sunnen CN, Crowell B, Lee GH, Anderson AE, and D’Arcangelo G. Examination of the Role of Pten in Ionotropic Glutamate Receptor Expression. National...PTEN, and the NMDA Receptor in Animal Models of Tuberous Sclerosis PRINCIPAL INVESTIGATOR: D’Arcangelo, Gabriella CONTRACTING...June 2014 4. TITLE AND SUBTITLE Exploring the Interaction between TSC2, PTEN, and the NMDA Receptor in Animal Models of Tuberous Sclerosis 5a

  8. 76 FR 59416 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Anderson, Gary Anderson, Penny Andrews, John Armstrong, Charles R. Armstrong, Sue Athmann, Ronald Ayala, Janice Barber, Delores Baroukh, Nader Bartoldus, Charles Bathurst, Donald Bauhs, Kim Beagles, James... Butcher, Michael Button, Christopher Byrne, Michael Byrne, Sean J. Cahill, Donna L. Callahan, Mary Ellen...

  9. 10. VIEW OF SITE B FROM WEST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF SITE B FROM WEST END OF ANDERSON WAY, FACING NORTHEAST (BUILDINGS 131, 130, 129, and 128 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  10. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.

    In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less

  11. Depinning of the transverse domain wall trapped at magnetic impurities patterned in planar nanowires: Control of the wall motion using low-intensity and short-duration current pulses

    NASA Astrophysics Data System (ADS)

    Paixão, E. L. M.; Toscano, D.; Gomes, J. C. S.; Monteiro, M. G.; Sato, F.; Leonel, S. A.; Coura, P. Z.

    2018-04-01

    Understanding and controlling of domain wall motion in magnetic nanowires is extremely important for the development and production of many spintronic devices. It is well known that notches are able to pin domain walls, but their pinning potential strength are too strong and it demands high-intensity current pulses to achieve wall depinning in magnetic nanowires. However, traps of pinning can be also originated from magnetic impurities, consisting of located variations of the nanowire's magnetic properties, such as exchange stiffness constant, saturation magnetization, anisotropy constant, damping parameter, and so on. In this work, we have performed micromagnetic simulations to investigate the depinning mechanism of a transverse domain wall (TDW) trapped at an artificial magnetic defect using spin-polarized current pulses. In order to create pinning traps, a simplified magnetic impurity model, only based on a local reduction of the exchange stiffness constant, have been considered. In order to provide a background for experimental studies, we have varied the parameter related to the pinning potential strength of the magnetic impurity. By adjusting the pinning potential of magnetic impurities and choosing simultaneously a suitable current pulse, we have found that it is possible to obtain domain wall depinning by applying low-intensity and short-duration current pulses. Furthermore, it was considered a planar magnetic nanowire containing a linear distribution of equally-spaced magnetic impurities and we have demonstrated the position control of a single TDW by applying sequential current pulses; that means the wall movement from an impurity to another.

  12. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction.

    PubMed

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G

    2017-03-01

    In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Implications of Wellness Models for Educational and School Psychology

    DTIC Science & Technology

    1990-08-01

    as underserved remained unchanged. These data demonstrate dramatically the futility of thinking in terms of treatment models in public health and the...master. This implies, of course, that even those students receiving highly succesful remedial instruction are most likely to fall further and further...comprehension. Review of Educational Research, 4 145-170. Anderson, R.C., and Biddle W.B. (1975). On askirg people questions about what they are reading. In

  14. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  15. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  16. Merlin C. Wittrock and the Revision of Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Krathwohl, David R.; Anderson, Lorin W.

    2010-01-01

    Merl Wittrock, a cognitive psychologist who had proposed a generative model of learning, was an essential member of the group that over a period of 5 years revised the "Taxonomy of Educational Objectives," originally published in 1956. This article describes the development of that 2001 revision (Anderson and Krathwohl, Editors) and Merl's…

  17. Validation of the Consumer Values versus Perceived Product Attributes Model Measuring the Purchase of Athletic Team Merchandise

    ERIC Educational Resources Information Center

    Lee, Donghun; Byon, Kevin K.; Schoenstedt, Linda; Johns, Gary; Bussell, Leigh Ann; Choi, Hwansuk

    2012-01-01

    Various consumer values and perceived product attributes trigger consumptive behaviors of athletic team merchandise (Lee, Trail, Kwon, & Anderson, 2011). Likewise, using a principal component analysis technique on a student sample, a measurement scale was proposed that consisted of nine factors affecting the purchase of athletic team…

  18. Government-Sponsored Research and Development Efforts in the Area of Intelligent Tutoring Systems. Summary Report.

    DTIC Science & Technology

    1995-02-01

    modeling a personal trainer MASA training through development and .-chnology ICAT applications, VR-training applications, and technology transfer to...Scholas- tic Aptitude Tests, the average score of ITS-tutored students was 410, compared with an average of 380 for non-ITS users [Anderson et al. 1994

  19. On Predictability of System Anomalies in Real World

    DTIC Science & Technology

    2011-08-01

    distributed system SETI @home [44]. Different from the above work, this work focuses on quantifying the predictability of real-world system anomalies. V...J.-M. Vincent, and D. Anderson, “Mining for statistical models of availability in large-scale distributed systems: An empirical study of seti @home,” in Proc. of MASCOTS, sept. 2009.

  20. A perspective on quantum integrability in many-body-localized and Yang-Baxter systems

    NASA Astrophysics Data System (ADS)

    Moore, Joel E.

    2017-10-01

    Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  1. Disordered Kitaev chains with long-range pairing.

    PubMed

    Cai, Xiaoming

    2017-03-22

    We study the competition of disorder and superconductivity for a generalized Kitaev model in incommensurate potentials. The generalized Kitaev model describes one dimensional spinless fermions with long-range p-wave superconducting pairing, which decays with distance l as a power law  ∼[Formula: see text]. We focus on the transition from the topological superconducting phase to the topologically trivial Anderson localized phase, and effects of the exponent α on this phase transition. In the topological superconducting phase, for a system under open boundary condition the amplitude of zero-mode Majorana fermion has a hybrid exponential-algebraic decay as the distance increases from the edge. In the Anderson localized phase, some single-particle states remain critical for very strong disorders and the number of critical states increases as α decreases. In addition, except for critical disorders, the correlation function always has an exponential decay at the short range and an algebraic decay at the long range. Phase transition points are also numerically determined and the topological phase transition happens earlier at a smaller disorder strength for a system with smaller α.

  2. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  3. Quantum quenches in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  4. Tar yields from low-temperature carbonization of coal facies from the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Stanton, Ronald W.; Warwick, Peter D.; Swanson, Sharon M.

    2005-01-01

    Tar yields from low-temperature carbonization correlate with the amount of crypto-eugelinite in samples selected to represent petrographically distinct coal facies of the Wyodak-Anderson coal zone. Tar yields from Fischer Assay range from <1 to 11 wt.% on a dry basis and correspond (r = 0.72) to crypto-eugelinite contents of the coal that range from 15 to 60 vol.%. Core and highwall samples were obtained from active surface mines in the Gillette field, Powder River Basin, Wyoming. Because the rank of the samples is essentially the same, differences in low-temperature carbonization yields are interpreted from compositional differences, particularly the crypto-eugelinite content. In the Wyodak-Anderson coal zone, crypto-eugelinite probably was derived from degraded humic matter which absorbed decomposition products from algae, fungi, bacteria, and liptinitic plant parts (materials possibly high in hydrogen). Previous modeling of the distribution of crypto-eugelinite in the discontinuous Wyodak-Anderson coal zone indicated that tar yields should be greater from coal composing the upper part and interior areas than from coal composing the lower parts and margins of the individual coal bodies. It is possible that hydrocarbon yields from natural coalification processes would be similar to yields obtained from laboratory pyrolysis. If so, the amount of crypto-eugelinite may also be an important characteristic when evaluating coal as source rock for migrated hydrocarbons.

  5. Can 3D light localization be reached in ‘white paint’?

    NASA Astrophysics Data System (ADS)

    Sperling, T.; Schertel, L.; Ackermann, M.; Aubry, G. J.; Aegerter, C. M.; Maret, G.

    2016-01-01

    When waves scatter multiple times in 3D random media, a disorder driven phase transition from diffusion to localization may occur (Anderson 1958 Phys. Rev. 109 1492-505 Abrahams et al 1979 Phys. Rev. Lett. 42 673-6). In ‘The question of classical localization: a theory of white paint?’ Anderson suggested the possibility to observe light localization in TiO2 samples (Anderson 1985 Phil. Mag. B 52 505-9). We recently claimed the observation of localization effects measuring photon time of flight (ToF) distributions (Störzer et al 2006 Phys. Rev. Lett. 96 063904) and evaluating transmission profiles (TPs) (Sperling et al 2013 Nat. Photonics 7 48-52) in such TiO2 samples. Here we present a careful study of the long time tail of ToF distributions and the long time behavior of the TP width for very thin samples and different turbidities that questions the localization interpretation. We further show new data that allow an alternative consistent explanation of these previous data by a fluorescence process. An adapted diffusion model including an appropriate exponential fluorescence decay accounts for the shape of the ToF distributions and the TP width. These observations question whether the strong localization regime can be reached with visible light scattering in polydisperse TiO2 samples, since the disorder parameter can hardly be increased any further in such a ‘white paint’ material.

  6. Nailing the coffin shut on doubts that violent video games stimulate aggression: comment on Anderson et al. (2010).

    PubMed

    Huesmann, L Rowell

    2010-03-01

    Over the past half century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. C. A. Anderson et al.'s (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about other violent mass media has found: that violent video games stimulate aggression in the players in the short run and increase the risk for aggressive behaviors by the players later in life. The effects occur for males and females and for children growing up in Eastern or Western cultures. The effects are strongest for the best studies. Contrary to some critics' assertions, the meta-analysis of C. A. Anderson et al. is methodologically sound and comprehensive. Yet the results of meta-analyses are unlikely to change the critics' views or the public's perception that the issue is undecided because some studies have yielded null effects, because many people are concerned that the implications of the research threaten freedom of expression, and because many people have their identities or self-interests closely tied to violent video games.

  7. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  8. Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon

    NASA Astrophysics Data System (ADS)

    Mukashev, B. N.; Abdullin, Kh. A.; Gorelkinskii, Yu. V.; Tamendarov, M. F.; Tokmoldin, S. Zh

    2001-01-01

    Formation of intrinsic and impurity defect complexes in hydrogenated monocrystalline silicon is studied. Hydrogen was incorporated into samples by different ways: either by proton implantation at 80 and 300 K, or by annealing at 1250°C for 30-60 min in a sealed quartz ampoule containing ∼10 -3 ml of distilled water, or by treatment in hydrogen plasma. Radiation defects were incorporated either during the hydrogen implantation or by additional irradiation with protons or α-particles. The measurements were performed by electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS) and infrared absorption (IR) methods. Essential differences of defect formation processes in hydrogenated samples as compared with reference samples were detected. The main reasons responsible for the differences are (i) hydrogen precipitation in a supersaturated solution during thermal treatment; (ii) interaction of hydrogen with defects and impurities and hydrogen-induced formation of defects; (iii) ability of hydrogen to play the role of accelerator of impurities precipitation. These factors result in the formation of vacancy-related, interstitial-related and impurity clusters which are observed only in the presence of hydrogen. The nature of the clusters and possible models of their structure are discussed.

  9. Robust superconductivity with nodes in the superconducting topological insulator CuxBi2Se3 : Zeeman orbital field and nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki

    2015-02-01

    We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.

  10. Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Xiang, Nong; Men, Zongzheng

    2018-01-01

    The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.

  11. Special Needs. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    2002

    This document contains the following papers on special needs from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Selected Technology-Infused Thematic Activities for Elementary and Special Education Teacher Education Programs" (Cindy L. Anderson and Kevin M. Anderson); (2) "Educational IT: How Students and…

  12. 40 CFR 81.343 - Tennessee.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Johnson County X That portion of Knox County within a section of downtown Knoxville X Rest of Knox County.... Knoxville, TN: Anderson County This action is effective 3/8/2011 Attainment Blount County This action is.... Knoxville, TN: Anderson County Nonattainment. Blount County Nonattainment. Knox County Nonattainment. Loudon...

  13. 19. View of satcom communication dome with TR radome in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of satcom communication dome with TR radome in background right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. 9. VIEW OF SITE B FROM EAST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SITE B FROM EAST END OF ANDERSON WAY, FACING WEST (BUILDINGS 126, 128, 129, 130, and 131 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  15. 41 CFR 109-40.5100 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.51-Price-Anderson Coverage Certifications for Nuclear Shipments § 109-40.5100 Scope of subpart. This subpart sets forth the policy for issuance of certifications regarding Price-Anderson coverage of particular shipments of nuclear materials. ...

  16. Slow dynamics of electron glasses: The role of disorder

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2017-04-01

    We examine in this work the role of disorder in contributing to the sluggish relaxation observed in intrinsic electron glasses. Our approach is guided by several empirical observations: First and foremost, Anderson localization is a pre-requisite for observing these nonequilibrium phenomena. Secondly, sluggish relaxation appears to favor Anderson insulators with relatively large Fermi energies (hence proportionally large disorder). These observations motivated us to consider a way to measure the underlying disorder in a realistic Anderson insulator. Optical studies using a series of amorphous indium oxide (InxO ) establish a simple connection between carrier concentration and the disorder necessary to approach the metal-insulator transition from the insulating side. This is used to estimate the typical magnitude of the quenched potential fluctuation in the electron-glass phase of this system. The implications of our findings on the slow dynamics of Anderson insulators are discussed. In particular, the reason for the absence of a memory dip and the accompanying electron-glass effects in lightly-doped semiconductors emerges as a natural consequence of their weak disorder.

  17. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  18. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  19. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  20. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.

    2011-12-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

Top