Sample records for anderson impurity problem

  1. Spin-polarized density-matrix functional theory of the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Töws, W.; Pastor, G. M.

    2012-12-01

    Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.

  2. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: sergei-davydov@mail.ru

    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less

  3. Monte Carlo method for magnetic impurities in metals

    NASA Technical Reports Server (NTRS)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  4. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  5. Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.

  6. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + {sigma} approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamicmore » conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.« less

  7. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  8. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  9. Interleaved numerical renormalization group as an efficient multiband impurity solver

    NASA Astrophysics Data System (ADS)

    Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.

    2016-06-01

    Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.

  10. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    PubMed

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  11. Impurity-directed transport within a finite disordered lattice

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah

    2018-02-01

    We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.

  12. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  13. Unbinding slave spins in the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Guerci, Daniele; Fabrizio, Michele

    2017-11-01

    We show that a generic single-orbital Anderson impurity model, lacking, for instance, any kind of particle-hole symmetry, can be exactly mapped without any constraint onto a resonant level model coupled to two Ising variables, which reduce to one if the hybridization is particle-hole symmetric. The mean-field solution of this model is found to be stable to unphysical spontaneous magnetization of the impurity, unlike the saddle-point solution in the standard slave-boson representation. Remarkably, the mean-field estimate of the Wilson ratio approaches the exact value RW=2 in the Kondo regime.

  14. Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.

    The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less

  15. Qualitative breakdown of the noncrossing approximation for the symmetric one-channel Anderson impurity model at all temperatures

    NASA Astrophysics Data System (ADS)

    Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.

    2016-08-01

    The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.

  16. Nanomechanical dissipation at a tip-induced Kondo onset

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio

    2017-08-01

    The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.

  17. Spectral density method to Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chebrolu, Narasimha Raju, E-mail: narasimharaju.phy@gmail.com; Chatterjee, Ashok

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  18. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  19. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE PAGES

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...

    2014-10-31

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  20. Machine learning for many-body physics: The case of the Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole

    We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.

  1. Disorder Problem In Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark

    2015-03-01

    Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.

  2. Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic structure

    NASA Astrophysics Data System (ADS)

    Mozara, R.; Valentyuk, M.; Krivenko, I.; Şaşıoǧlu, E.; Kolorenč, J.; Lichtenstein, A. I.

    2018-02-01

    Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in different directions. We present a many-body study of the Anderson impurity model representing a Co adatom on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by the constrained random-phase approximation. The most pronounced differences are naturally displayed by the many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results in parallel with the exact diagonalization method.

  3. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  4. Mixed valent metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riseborough, P. S.; Lawrence, Jon M.

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  5. Mixed valent metals

    DOE PAGES

    Riseborough, P. S.; Lawrence, Jon M.

    2016-07-04

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  6. A real-frequency solver for the Anderson impurity model based on bath optimization and cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus

    2018-05-01

    Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.

  7. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  8. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  9. Site-occupation embedding theory using Bethe ansatz local density approximations

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel

    2018-06-01

    Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

  10. Complexity of Quantum Impurity Problems

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Gosset, David

    2017-12-01

    We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

  11. The thermoelectric properties of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Cai, Jianwei

    Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.

  12. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  13. Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-04-01

    The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.

  14. Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.

  15. Non-Equilibrium Dynamics with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dong, Qiaoyuan

    This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.

  16. Single-particle dynamics of the Anderson model: a local moment approach

    NASA Astrophysics Data System (ADS)

    Glossop, Matthew T.; Logan, David E.

    2002-07-01

    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.

  17. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    NASA Astrophysics Data System (ADS)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  18. Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study

    NASA Astrophysics Data System (ADS)

    Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin

    2017-07-01

    We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0 1 , where the phases are separated by first-order quantum phase transitions that are accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both r >0 and r <0 . Throughout the regime of weak-to-moderate impurity-band coupling in which poor man's scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the functional relations between model parameters along these boundaries.

  19. Single- or multi-flavor Kondo effect in graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal

    2010-06-01

    Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.

  20. Effects of correlated hybridization in the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Líbero, Valter; Veiga, Rodrigo

    2013-03-01

    The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

  1. Exact diagonalization library for quantum electron models

    NASA Astrophysics Data System (ADS)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  2. Green's function approach to the Kondo effect in nanosized quantum corrals

    NASA Astrophysics Data System (ADS)

    Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.

    2018-04-01

    We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.

  3. Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less

  4. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  5. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-05

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  6. Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N

    DOE PAGES

    Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...

    2016-12-29

    We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less

  7. Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.

    PubMed

    Song, Yang; Dery, Hanan

    2014-07-25

    We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.

  8. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less

  9. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  10. Effect of impurities of selenium and iron on the Anderson localization of 1T-TaS 2

    NASA Astrophysics Data System (ADS)

    Ōnuki, Y.; Inada, R.; Tanuma, S.

    1980-01-01

    The temperature dependence of electrical resistivities θ( T) of 1T-TaS 2, 1T-TaS 2- xSe x and 1T-Fe xTa 1- xS 2 is found to be θ( T) ∝ exp( T0/ T) 1/n in the temperature range of 4 K to the measured lowest temperature, 0.1 K, showing the variable range hopping of Anderson localized states. The n-value is nearly 3 for selenium doping and nearly 2 for non-doping and iron doping. The positive magnetoresistance, which is sizable only in the temperature range of 2 K to 0.5 K in 1T-TaS 2, is found to be remarkably enhanced by the selenium doping, while the tendency is reversed by the iron doping.

  11. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In(1-x)Fe(x))2O3.

    PubMed

    Green, R J; Regier, T Z; Leedahl, B; McLeod, J A; Xu, X H; Chang, G S; Kurmaev, E Z; Moewes, A

    2015-10-16

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  12. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1 -xFex )2O3

    NASA Astrophysics Data System (ADS)

    Green, R. J.; Regier, T. Z.; Leedahl, B.; McLeod, J. A.; Xu, X. H.; Chang, G. S.; Kurmaev, E. Z.; Moewes, A.

    2015-10-01

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2 O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  13. Fano-shaped impurity spectral density, electric-field-induced in-gap state, and local magnetic moment of an adatom on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Li, Shuai; Lü, Jing-Tao; Gao, Jin-Hua

    2017-08-01

    Recently, the existence of local magnetic moment in a hydrogen adatom on graphene was confirmed experimentally [González-Herrero et al., Science 352, 437 (2016), 10.1126/science.aad8038]. Inspired by this breakthrough, we theoretically investigate the top-site adatom on trilayer graphene (TLG) by solving the Anderson impurity model via self-consistent mean field method. The influence of the stacking order, the adsorption site, and external electric field are carefully considered. We find that, due to its unique electronic structure, the situation of TLG is drastically different from that of the monolayer graphene. First, the adatom on rhombohedral stacked TLG (r-TLG) can have a Fano-shaped impurity spectral density, instead of the normal Lorentzian-like one, when the impurity level is around the Fermi level. Second, the impurity level of the adatom on r-TLG can be tuned into an in-gap state by an external electric field, which strongly depends on the direction of the applied electric field and can significantly affect the local magnetic moment formation. Finally, we systematically calculate the impurity magnetic phase diagrams, considering various stacking orders, adsorption sites, doping, and electric field. We show that, because of the in-gap state, the impurity magnetic phase of r-TLG will obviously depend on the direction of the applied electric field as well. All our theoretical results can be readily tested in experiment, and may give a comprehensive understanding about the local magnetic moment of an adatom on TLG.

  14. Classical mapping for Hubbard operators: Application to the double-Anderson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Miller, William H.; Levy, Tal J.

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to bemore » accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.« less

  15. Towards an ab initio description of correlated materials

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    Strongly-correlated materials are a rich playground for physical phenomena, exhibiting complex phase diagrams with many competing orders. Ab initio insights into materials combined with physical ideas provide the ability to identify the organizing principles driving the correlated electronic behavior and pursue first-principles design of new compounds. Realistic modeling of correlated materials is an active area of research, especially with the recent merger of density functional theory (DFT) with dynamical mean-field theory (DMFT). This thesis is structured in two parts. The first describes the methods and algorithmic developments which drive advances in DFT+DMFT. In Ch. 2 and 3, we provide an overview of the two foundational theories, DMFT and DFT. In the second half of Ch. 3, we describe some of the principles guiding the combination of the two theories to form DFT+DMFT. In Ch. 4, we describe the algorithm lying at the heart of modern DFT+DMFT implementations, the hybridization expansion formulation of continuous-time quantum monte carlo (CTQMC) for the general Anderson impurity problem, as well as a fast rejection algorithm for speeding-up the local trace evaluation. The final chapter in the methods section describes an algorithm for direct sampling of the partition function, and thus the free energy and entropy, of simple Anderson impurity models within CTQMC. The second part of the thesis is a collection of applications of our ab initio approach to key correlated materials. We first apply our method to plutonium binary alloys (Ch. 6), which when supplemented with slave-boson mean-field theory, allows us to understand the observed photoemission spectra. Ch. 7 describes the computation of spectra and optical conductivity for rare-earth nickelates grown as epitaxial thin films. In the final two chapters, we turn our attention to the high-temperature superconductors. In the first, we show that the charge-transfer energy is a key chemical variable which controls the superconducting transition temperatures across the cuprate families. In the second, we extend this idea towards first-principles design of cuprates by exploring a new family of copper oxysulfides.

  16. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  17. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    NASA Astrophysics Data System (ADS)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  18. Leading temperature dependence of the conductance in Kondo-correlated quantum dots.

    PubMed

    Aligia, A A

    2018-04-18

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  19. Correlation effects in superconducting quantum dot systems

    NASA Astrophysics Data System (ADS)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  20. Anderson acceleration and application to the three-temperature energy equations

    NASA Astrophysics Data System (ADS)

    An, Hengbin; Jia, Xiaowei; Walker, Homer F.

    2017-10-01

    The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.

  1. Geology and coal resources of the Hanging Woman Creek Study Area, Big Horn and Powder River Counties, Montana

    USGS Publications Warehouse

    Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.

    1978-01-01

    In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.

  2. Summary of data acquisition and field operations: Terra Resources, Anderson Canyon No. 3-17, Lincoln County, Wyoming; Terra Resources, North Anderson Canyon No. 40-16, Sweetwater County, Wyoming. Topical report, August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    A summary is presented of open-hole data collected on two cooperative wells for the GRI Tight Gas Sands Program. The overall objective of gathering well data in the Frontier Formation is to identify and evaluate technological problems in formation evaluation and hydraulic fracturing. Open-hole data acquisition is emphasized for the Anderson Canyon No. 3-17, a full cooperative well (i.e., coring, logging, cased-hole stress testing, fracture monitoring). Data collected on the North Anderson Canyon No. 40-16, a partial cooperative well (i.e., logging only), is described in an appendix.

  3. Higher-order Fermi-liquid corrections for an Anderson impurity away from half filling : Equilibrium properties

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-01-01

    We study the low-energy behavior of the vertex function of a single Anderson impurity away from half filling for finite magnetic fields, using the Ward identities with careful consideration of the antisymmetry and analytic properties. The asymptotic form of the vertex function Γσσ';σ'σ(i ω ,i ω';i ω',i ω ) is determined up to terms of linear order with respect to the two frequencies ω and ω', as well as the ω2 contribution for antiparallel spins σ'≠σ at ω'=0 . From these results, we also obtain a series of the Fermi-liquid relations beyond those of Yamada-Yosida [Prog. Theor. Phys. 54, 316 (1975), 10.1143/PTP.54.316]. The ω2 real part of the self-energy Σσ(i ω ) is shown to be expressed in terms of the double derivative ∂2Σσ(0 ) /∂ ɛdσ 2 with respect to the impurity energy level ɛdσ, and agrees with the formula obtained recently by Filippone, Moca, von Delft, and Mora (FMvDM) in the Nozières phenomenological Fermi-liquid theory [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. We also calculate the T2 correction of the self-energy and find that the real part can be expressed in terms of the three-body correlation function ∂ χ↑↓/∂ ɛd,-σ , where χ↑↓ is the static susceptibility between antiparallel spins. We also provide an alternative derivation of the asymptotic form of the vertex function. Specifically, we calculate the skeleton diagrams for the vertex function Γσσ ;σ σ(i ω ,0 ;0 ,i ω ) for parallel spins up to order U4 in the Coulomb repulsion U . It directly clarifies the fact that the analytic components of order ω vanish as a result of the cancellation of four related Feynman diagrams, which are related to each other through the antisymmetry operation.

  4. Out of equilibrium transport through an Anderson impurity: probing scaling laws within the equation of motion approach.

    PubMed

    Balseiro, C A; Usaj, G; Sánchez, M J

    2010-10-27

    We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing on the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G(2)(T, V) in order to test several scaling laws. We find that G(2)(T, V)/G(2)(T, 0) is a universal function of both eV/T(K) and T/T(K), T(K) being the Kondo temperature. The effect of an in-plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting Δ, the computed differential conductance peak splitting depends only on Δ/T(K), and for large fields approaches the value of 2Δ. Besides studying the traditional two leads setup, we also consider other configurations that mimic recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as ln(eV/T(K)). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.

  5. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopar, Víctor A.

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less

  6. "Be the Tree": Classical Literature, Art Therapy, and Transcending Trauma in "Speak"

    ERIC Educational Resources Information Center

    Snider, Jessi

    2014-01-01

    Laurie Halse Anderson's young adult novel "Speak" concerns the rape and subsequent silence of ninth grade protagonist Melinda Sordino. By relying on extensive literary allusions involving trees, rape, silence, and transformation, Anderson creates a young adult problem novel that is both of the moment and timeless in its themes. The…

  7. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  8. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  9. Convergence of high order perturbative expansions in open system quantum dynamics.

    PubMed

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-14

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  10. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  11. Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise.

    PubMed

    López, Rosa; Sánchez, David

    2003-03-21

    We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.

  12. Collision of impurities with Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  13. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    NASA Astrophysics Data System (ADS)

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  14. Efficient implementation of the continuous-time hybridization expansion quantum impurity solver

    NASA Astrophysics Data System (ADS)

    Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel

    2013-04-01

    Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

  15. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-03-01

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  16. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.

    PubMed

    Oguri, Akira; Hewson, A C

    2018-03-23

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  17. Quantum quench of Kondo correlations in optical absorption

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Andreas

    2013-03-01

    Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.

  18. Time-dependent i-DFT exchange-correlation potentials with memory: applications to the out-of-equilibrium Anderson model

    NASA Astrophysics Data System (ADS)

    Kurth, Stefan; Stefanucci, Gianluca

    2018-06-01

    We have recently put forward a steady-state density functional theory (i-DFT) to calculate the transport coefficients of quantum junctions. Within i-DFT it is possible to obtain the steady density on and the steady current through an interacting junction using a fictitious noninteracting junction subject to an effective gate and bias potential. In this work we extend i-DFT to the time domain for the single-impurity Anderson model. By a reverse engineering procedure we extract the exchange-correlation (xc) potential and xc bias at temperatures above the Kondo temperature T K. The derivation is based on a generalization of a recent paper by Dittmann et al. [N. Dittmann et al., Phys. Rev. Lett. 120, 157701 (2018)]. Interestingly the time-dependent (TD) i-DFT potentials depend on the system's history only through the first time-derivative of the density. We perform numerical simulations of the early transient current and investigate the role of the history dependence. We also empirically extend the history-dependent TD i-DFT potentials to temperatures below T K. For this purpose we use a recently proposed parametrization of the i-DFT potentials which yields highly accurate results in the steady state.

  19. Inquiry and Problem Solving.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    1999-01-01

    This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…

  20. Interim Report on the Investigation of the Fresh Properties of Synthetic Fiber-Reinforced Concrete for the Richardson Landing Casting Field

    DTIC Science & Technology

    2017-04-01

    Figure 2. ASTM (2011) (C40) organic impurities testing of dredged sand. ........................................... 6 Tables Table 1. ASTM (2006) (C136...International (2011) (C40). The ASTM C40 organic impurity color was reported as a 4. Aggregates with this dark of a color may have problems with air...entrainment, freeze thaw durability, and compressive strength due to organic impurities being present in the fine aggregate. Problems with air

  1. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    NASA Astrophysics Data System (ADS)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  2. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  3. Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio

    2012-02-01

    Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).

  4. How localized acceptors limit p-type conductivity in GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2013-03-01

    Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.

  5. Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Bonča, Janez; Pruschke, Thomas

    2009-12-01

    Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.

  6. Hall effect in Ce/sub 1-x/Y/sub x/Pd/sub 3/ mixed-valence alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fert, A.; Pureur, P.; Hamzic, A.

    Mixed-valence and Kondo lattice systems exhibit large anomalous Hall coefficients with a striking change of sign at low temperature in several systems (CePd/sub 3/, CeCu/sub 6/,..., etc.). We have studied the Hall effect of Ce/sub 1-x/Y/sub x/Pd/sub 3/, in which the substitution of small amounts of Y for Ce prevents the development of coherence at low temperature. We find that the Hall coefficient does not change its sign at low temperature and can be well understood in the one-impurity model of Ramakrishnan, Coleman, and Anderson. We infer that the change of sign observed in CePd/sub 3/ is an effect ofmore » coherence.« less

  7. Gutzwiller renormalization group

    DOE PAGES

    Lanatà, Nicola; Yao, Yong -Xin; Deng, Xiaoyu; ...

    2016-01-06

    We develop a variational scheme called the “Gutzwiller renormalization group” (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method exploits the low-entanglement property of the ground state of local Hamiltonians in combination with the framework of the Gutzwiller wave function and indicates that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. Furthermore, we perform benchmark calculations of the single-band AIM that validate our theory and suggest that the GRG mightmore » enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.« less

  8. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Alex; Kelley, C. T.; Slattery, Stuart R

    ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, withoutmore » significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.« less

  9. Anderson Acceleration for Fixed-Point Iterations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Homer F.

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  10. Electron Correlation in Oxygen Vacancy in SrTiO3

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Demkov, Alexander A.

    2014-03-01

    Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.

  11. Numerically Exact Long Time Magnetization Dynamics Near the Nonequilibrium Kondo Regime

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David; Millis, Andrew; Rabani, Eran

    2013-03-01

    The dynamical and steady-state spin response of the nonequilibrium Anderson impurity model to magnetic fields, bias voltages, and temperature is investigated by a numerically exact method which allows access to unprecedentedly long times. The method is based on using real, continuous time bold Monte Carlo techniques--quantum Monte Carlo sampling of diagrammatic corrections to a partial re-summation--in order to compute the kernel of a memory function, which is then used to determine the reduced density matrix. The method owes its effectiveness to the fact that the memory kernel is dominated by relatively short-time properties even when the system's dynamics are long-ranged. We make predictions regarding the non-monotonic temperature dependence of the system at high bias voltage and the oscillatory quench dynamics at high magnetic fields. We also discuss extensions of the method to the computation of transport properties and correlation functions, and its suitability as an impurity solver free from the need for analytical continuation in the context of dynamical mean field theory. This work is supported by the US Department of Energy under grant DE-SC0006613, by NSF-DMR-1006282 and by the US-Israel Binational Science Foundation. GC is grateful to the Yad Hanadiv-Rothschild Foundation for the award of a Rothschild Fellowship.

  12. Magnetic field effects on the local electronic structure near a single impurity in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Zhu, Jian-Xin; Tsai, Shan-Wen

    2011-03-01

    Impurities in graphene can have a significant effect on the local electronic structure of graphene when the Fermi level is near the Dirac point. We study the problem of an isolated impurity in a single layer graphene in the presence of a perpendicular magnetic field. We use a linearization approximation for the energy dispersion and employ a T-matrix formalism to calculate the Green's function. We investigate the effect of an external magnetic field on the Friedel oscillations and impurity-induced resonant states. Different types of impurities, such as vacancies, substitutional impurities, and adatoms, are also considered. LY and SWT acknowledge financial support from NSF(DMR-0847801)and from the UC Lab Fees Research Program.

  13. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    PubMed

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  14. Thinking Can Cause Forgetting: Memory Dynamics in Creative Problem Solving

    ERIC Educational Resources Information Center

    Storm, Benjamin C.; Angello, Genna; Bjork, Elizabeth Ligon

    2011-01-01

    Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we…

  15. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  16. Surface hopping with a manifold of electronic states. III. Transients, broadening, and the Marcus picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    2015-06-21

    In a previous paper [Dou et al., J. Chem. Phys. 142, 084110 (2015)], we have introduced a surface hopping (SH) approach to deal with the Anderson-Holstein model. Here, we address some interesting aspects that have not been discussed previously, including transient phenomena and extensions to arbitrary impurity-bath couplings. In particular, in this paper we show that the SH approach captures phonon coherence beyond the secular approximation, and that SH rates agree with Marcus theory at steady state. Finally, we show that, in cases where the electronic tunneling rate depends on nuclear position, a straightforward use of Marcus theory rates yieldsmore » a useful starting point for capturing level broadening. For a simple such model, we find I-V curves that exhibit negative differential resistance.« less

  17. Topological magnons in a one-dimensional itinerant flatband ferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Fei; Gu, Zhao-Long; Dong, Zhao-Yang; Li, Jian-Xin

    2018-06-01

    Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flatband is considered as the prototype. This model can be viewed as a quarter-filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to π , leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes, which is consistent with the bulk-edge correspondence. The Hubbard interaction-driven transition reveals a new mechanism to realize nontrivial magnon bands.

  18. Bell pair creation in current of Kondo-correlated dot

    NASA Astrophysics Data System (ADS)

    Sakano, Rui; Oguri, Akira; Nishikawa, Yunori; Abe, Eisuke

    Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality. This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.

  19. Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Kucab, Krzysztof

    2017-05-01

    Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.

  20. Quantum theory of an atom in proximity to a superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  1. Domestic aviation : service problems and limited competition continue in some markets

    DOT National Transportation Integrated Search

    1998-04-23

    Congressional testimony by John H. Anderson, Jr., Director, Transportation : Issues, Resources, Community, and Economic Development Division, General : Accounting Office (GAO), on competition in the domestic airline industry. : In October 1996, the G...

  2. Investigation of problems of closing of geophysical cracks in thermoelastic media in the case of flow of fluids with impurities

    NASA Astrophysics Data System (ADS)

    Martirosyan, A. N.; Davtyan, A. V.; Dinunts, A. S.; Martirosyan, H. A.

    2018-04-01

    The purpose of this article is to investigate a problem of closing cracks by building up a layer of sediments on surfaces of a crack in an infinite thermoelastic medium in the presence of a flow of fluids with impurities. The statement of the problem of closing geophysical cracks in the presence of a fluid flow is presented with regard to the thermoelastic stress and the influence of the impurity deposition in the liquid on the crack surfaces due to thermal diffusion at the fracture closure. The Wiener–Hopf method yields an analytical solution in the special case without friction. Numerical calculations are performed in this case and the dependence of the crack closure time on the coordinate is plotted. A similar spatial problem is also solved. These results generalize the results of previous studies of geophysical cracks and debris in rocks, where the closure of a crack due to temperature effects is studied without taking the elastic stresses into account.

  3. Classical impurities and boundary Majorana zero modes in quantum chains

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  4. The Anderson localization problem, the Fermi-Pasta-Ulam paradox and the generalized diffusion approach

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.

    2011-12-01

    The goal of this paper is twofold. First, based on the interpretation of a quantum tight-binding model in terms of a classical Hamiltonian map, we consider the Anderson localization (AL) problem as the Fermi-Pasta-Ulam (FPU) effect in a modified dynamical system containing both stable and unstable (inverted) modes. Delocalized states in the AL are analogous to the stable quasi-periodic motion in FPU, whereas localized states are analogous to thermalization, respectively. The second aim is to use the classical Hamilton map for a simplified derivation of exact equations for the localization operator H(z). The latter was presented earlier (Kuzovkov et al 2002 J. Phys.: Condens. Matter 14 13777) treating the AL as a generalized diffusion in a dynamical system. We demonstrate that counter-intuitive results of our studies of the AL are similar to the FPU counter-intuitivity.

  5. Vacancies in epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less

  6. A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew C.

    Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.

  7. Molecular Kondo effect in flat-band lattices

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Thuy Thi

    2018-04-01

    The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.

  8. Gaussian impurity moving through a Bose-Einstein superfluid

    NASA Astrophysics Data System (ADS)

    Pinsker, Florian

    2017-09-01

    In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.

  9. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  10. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  11. Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

    NASA Astrophysics Data System (ADS)

    Khedri, A.; Meden, V.; Costi, T. A.

    2017-11-01

    We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.

  12. Theory of resonant x-ray emission spectra in compounds with localized f electrons

    NASA Astrophysics Data System (ADS)

    Kolorenč, Jindřich

    2018-05-01

    I discuss a theoretical description of the resonant x-ray emission spectroscopy (RXES) that is based on the Anderson impurity model. The parameters entering the model are determined from material-specific LDA+DMFT calculations. The theory is applicable across the whole f series, not only in the limits of nearly empty (La, Ce) or nearly full (Yb) valence f shell. Its performance is illustrated on the pressure-enhanced intermediate valency of elemental praseodymium. The obtained results are compared to the usual interpretation of RXES, which assumes that the spectrum is a superposition of several signals, each corresponding to one configuration of the 4f shell. The present theory simplifies to such superposition only if nearly all effects of hybridization of the 4f shell with the surrounding states are neglected. Although the assumption of negligible hybridization sounds reasonable for lanthanides, the explicit calculations show that it substantially distorts the analysis of the RXES data.

  13. Electronic structure and magnetic properties of Dy adatom on Ir surface

    NASA Astrophysics Data System (ADS)

    Shick, A. B.; Lichtenstein, A. I.

    2018-05-01

    The electronic structure and magnetism of individual Dy atom adsorbed on the (1 1 1) surface of Ir is investigated using the combination of the density functional theory with the Hubbard-I approximation to the Anderson impurity model (DFT + HIA). The Dy3+ adatom is found magnetic with the magnetic moment of 9.35μB in the external magnetic field. The spin and orbital magnetic moments, and their ratio are evaluated, and compared with the X-ray magnetic circular dichroism data. The positive magnetic anisotropy energy of ≈ 1.3 meV determines the out-of-plane orientation of the Dy adatom magnetic moment. The role of 5d-4f interorbital exchange polarization in modification of the 4f shell energy spectrum is emphasized. We predict the Dy magnetization to drop by the factor of three with switching off the external magnetic field.

  14. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE PAGES

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.; ...

    2016-11-30

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  15. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    PubMed

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  16. Driving a Superconductor to Insulator Transition with Random Gauge Fields.

    PubMed

    Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M

    2016-11-30

    Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.

  17. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  18. What's Ahead for Elementary Education?

    ERIC Educational Resources Information Center

    Carter, Jimmy: And Others

    1980-01-01

    The major candidates in the 1980 presidential election, Jimmy Carter, Ronald Reagan, and John Anderson, present their opinions on the problems facing elementary education today, their plans for improving it, and their views on the future of the new Department of Education. (SJL)

  19. Impurity transport in fractal media in the presence of a degrading diffusion barrier

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. S.; Leonov, K. V.

    2017-08-01

    We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time t 0 of emergence of impurity from the barrier and time t * corresponding to the beginning of degradation. For t 0 < t *, degradation processes are immaterial. In the opposite situation, when t 0 > t *, the results on time intervals t < t * can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with t * < t < t 0 depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval t * < t < t 0 is very narrow, and the transport regime occurring over time intervals t < t * passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval t * < t < t 0 occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals t < t 0 has two steps, while for t > t 0, it has only one step. The more remote step for t < t 0 and the single step for t > t 0 coincide with the asymptotic form in the problem without a barrier.

  20. Problem Solving and Reasoning.

    DTIC Science & Technology

    1984-02-01

    Sloan Foundation (HAS). This paper is a draft of a chapter to appear in R. C. Atkinson, R. Herrnstein, G. Lindzey, and R. D. Luce (Eds.), Stevens ...D. Luce (Eds.), Stevens ’ Handbook of Experimental Psychology, (Revised Edition). New York: John Wiley & Sons. PROBLEM SOLVING AND REASONING James G... LaBerge & S. J. Samuels (Eds.), Perception and comprehension. Hillsdale, NJ: Erlbaum. Anderson, J. R. (1982). Acquisition of cognitive skill

  1. Mobile spin impurity in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duncan, C. W.; Bellotti, F. F.; Öhberg, P.; Zinner, N. T.; Valiente, M.

    2017-07-01

    We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.

  2. Dynamics of Fermionic Impurity in One Dimension

    NASA Astrophysics Data System (ADS)

    Guan, Huijie; Andrei, Natan

    2014-03-01

    We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.

  3. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    NASA Astrophysics Data System (ADS)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  4. Bose polaron problem: Effect of mass imbalance on binding energy

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2016-12-01

    By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.

  5. Childhood Obesity: Trends and Potential Causes

    ERIC Educational Resources Information Center

    Anderson, Patricia M.; Butcher, Kristin F.

    2006-01-01

    The increase in childhood obesity over the past several decades, together with the associated health problems and costs, is raising grave concern among health care professionals, policy experts, children's advocates, and parents. Patricia Anderson and Kristin Butcher document trends in children's obesity and examine the possible underlying causes…

  6. Two approaches to the care of an elder parent: a study of Robert Anderson's I Never Sang for My Father and Sawako Ariyoshi's Kokotsu no hito [The Twilight Years].

    PubMed

    Donow, H S

    1990-08-01

    Care of an elder patient is often regarded by the children as an unwanted burden. Anderson's 1968 play, I Never Sang for My Father, and Ariyoshi's 1972 novel, Kokotsu no hito [The Twilight years], show how two different families of two different cultures (American and Japanese) respond to this crisis. Both texts arrive at dramatically different conclusions: in one the children, Gene and Alice, prove unwilling or unable to cope with the problems posed by their father's need; in the other Akiko, though nearly overwhelmed by the burden of her father-in-law's illness, emerges richer for the experience.

  7. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.

    PubMed

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert

    2013-06-14

    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  8. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  9. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene

    2018-02-01

    In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.

  10. The Relative Importance of Low Significance Level and High Power in Multiple Tests of Significance.

    ERIC Educational Resources Information Center

    Westermann, Rainer; Hager, Willi

    1983-01-01

    Two psychological experiments--Anderson and Shanteau (1970), Berkowitz and LePage (1967)--are reanalyzed to present the problem of the relative importance of low Type 1 error probability and high power when answering a research question by testing several statistical hypotheses. (Author/PN)

  11. Schemas in Problem Solving: An Integrated Model of Learning, Memory, and Instruction

    DTIC Science & Technology

    1992-01-01

    article: "Hybrid Computation in Cognitive Science: Neural Networks and Symbols" (J. A. Anderson, 1990). And, Marvin Minsky echoes the sentiment in his...distributed processing: A handbook of models, programs, and exercises. Cambridge, MA: The MIT Press. Minsky , M. (1991). Logical versus analogical or symbolic

  12. Team Dimensions: Their Identity, Their Measurement and Their Relationships

    DTIC Science & Technology

    1985-01-01

    business games (e.g., Cummings, Huber & Arendt, 1974; Kennedy, 1971 ). Apart from the problem solving tasks, the second largest group of studies...positive relationship between size and number of answers on. an anagram task. In a disjunctive problem, solving-task-, Frank & Anderson ( 1971 ) found that...4, or 5 members. However, there were no differences between the groups in time to solutions. Goldman ( 1971 ) found posi’tive effects for size with

  13. Deposition on disordered substrates with precursor layer diffusion

    NASA Astrophysics Data System (ADS)

    Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.

    1998-09-01

    Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.

  14. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    ERIC Educational Resources Information Center

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  15. A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems

    NASA Astrophysics Data System (ADS)

    Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.

    2008-09-01

    A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.

  16. High-resolution X-ray absorption spectroscopy as a probe of crystal-field and covalency effects in actinide compounds

    DOE PAGES

    Butorin, Sergei M.; Kvashnina, Kristina O.; Vegelius, Johan R.; ...

    2016-07-01

    Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the 5f shell directly in the HERFD-XAS spectra of actinides. Using ThO 2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO 2 is not an ionic compound as previously believed. The Th 6d occupancy in the ground statemore » was estimated to be twice that of the Th 5f states. Here, we demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems.« less

  17. Transport properties of coupled quantum dots in the presence of phonons

    NASA Astrophysics Data System (ADS)

    Martins, G.; Al-Hassanieh, K.

    2005-03-01

    Here is presented the numerical study of the effect of Holstein phonons in the transport properties of two coupled quantum dots (QDs) in the Kondo regime. For the QDs we use the Anderson impurity model and each QD is coupled to a different Holstein mode. At T=0, in the absence of phonons, and with 1 electron per dot, the usual splitting of the Kondo resonance is observed.^1 When the QDs are coupled to the phonons, there is a reduction of the effective Coulomb repulsion, which is explained through a canonical transformation. In addition, the conductance at the electron-hole symmetric gate potential is not affected by the phonons. This is caused by the modulation of the coupling factors.^2 The difference between the effects of phonons in lithographic QDs and in molecular conductors is also discussed. 1- C.A. Büsser et al, Phys. Rev. B 62, 9907 (2000). 2- K.A. Al-Hassanieh, C.A. Büsser, G.B. Martins, Adriana Moreo and Elbio Dagotto (preprint)

  18. Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach

    NASA Astrophysics Data System (ADS)

    Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico

    2018-01-01

    We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.

  19. Revealing the electronic ground state of ReNiO3 combining Ni-L3 x-ray absorption and resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Balandesh, Shadi; Strocov, Vladimir N.; Zubko, Pavlo; Sawatzky, George; Triscone, Jean-Marc; Schmitt, Thorsten

    Rare-earth nickelates ReNiO3 attract a lot of interest thanks to their intriguing physical properties like sharp metal to insulator transition, unusual magnetic order and expected superconductivity in nickelate-based heterostructures. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). Taking a NdNiO3 thin film as a representative example, we reveal with x-ray absorption and resonant inelastic x-ray scattering unusual coexistence of bound and continuum excitations, providing strong evidence for abundant O 2p holes in the GS of these materials. Using an Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the O 2p valence band, confirming suggestions that these materials exhibit a negative charge-transfer energy, with O 2p states extending across the Fermi level.

  20. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    PubMed Central

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal–insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal–insulator transition in terms of bond disproportionation. PMID:27725665

  1. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  2. Quantum evolution: The case of weak localization for a 3D alloy-type Anderson model and application to Hamiltonian based quantum computation

    NASA Astrophysics Data System (ADS)

    Cao, Zhenwei

    Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).

  3. Exploring the JIMP Concept: Literature Review (Examen du Concept IIMP: Analyse Documentaire)

    DTIC Science & Technology

    2010-02-01

    publicly giving a cheque to a local charity could be problem if the local person accepting the cheque is a criminal in the eyes of the local citizens. Such...misplaced or even irresponsible in the eyes of some military personnel. Another way of framing this problem is that personnel within each system are...inconsistencies have the potential to undermine the credibility and effectiveness of militaries in the eyes of local populations. Specifically, Anderson, a

  4. Impurities block the alpha to omega martensitic transformation in titanium.

    PubMed

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  5. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  6. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  7. Continuous-time quantum Monte Carlo impurity solvers

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self-energy and local correlation functions. Solution method: Quantum impurity models require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms for which we present implementations here meet this challenge. Continuous-time quantum impurity methods are based on partition function expansions of quantum impurity models that are stochastically sampled to all orders using diagrammatic quantum Monte Carlo techniques. For a review of quantum impurity models and their applications and of continuous-time quantum Monte Carlo methods for impurity models we refer the reader to [2]. Additional comments: Use of dmft requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. Running time: 60 s-8 h per iteration.

  8. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less

  9. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  10. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  11. A taxonomic monograph of the leaf-litter inhabiting weevil genus Plumolepilius new genus (Coleoptera: Curculionidae: Molytinae: Conotrachelini) from Mexico, Guatemala, and El Salvador.

    PubMed

    Barrios-Izás, Manuel A; Anderson, Robert S; Morrone, Juan J

    2016-09-14

    We describe the Mesoamerican leaf litter weevil genus Plumolepilius Barrios-Izás & Anderson, new genus (Coleoptera: Curculionidae: Molytinae: Conotrachelini) (type species P. trifiniensis Barrios-Izás & Anderson, new species), species of which inhabit mountain ecosystems from the state of Chiapas in southeastern Mexico to northern Panama. In this paper we describe nine new species from Mexico, Guatemala, and El Salvador: P. trifiniensis Barrios-Izás & Anderson, new species (El Salvador and Guatemala); P. branstetteri Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. longinoi Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. cortezi Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. canoi Barrios-Izás & Anderson, new species (Guatemala); P. schusteri Barrios-Izás & Anderson, new species (Guatemala and Mexico); P. daryi Barrios-Izás & Anderson, new species (Guatemala); P. yolnabajensis Barrios-Izás & Anderson, new species (Guatemala); and P. macalajauensis Barrios-Izás & Anderson, new species (Guatemala).        The genus and the species are named and described, information on their geographical distributions is given and images of the habitus of both sexes and the aedeagus are presented. A key to the species of Plumolepilius based on males is included.        The monophyly of Plumolepilius was confirmed by a parsimony analysis of external and male aedeagus morphology and the genus is best characterized by the presence of plumose scales lining the prosternal channel. Phylogenetic analysis supports that Lepilius Champion 1905 is the sister genus of Plumolepilius.

  12. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2018-03-01

    The electrons in the edge channels of two-dimensional topological insulators can be described as a helical Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis. Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels, which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature. We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states. The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature. Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge conductance to zero as the temperature approaches zero.

  13. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willert, Jeffrey; Taitano, William T.; Knoll, Dana

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computationalmore » results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.« less

  14. Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.

    PubMed

    Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique

    2015-12-11

    Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.

  15. The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.

    1981-01-01

    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.

  16. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known asmore » “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.« less

  17. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  18. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters.

    PubMed

    Smith, David C

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  19. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  20. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  1. Anderson transition in a three-dimensional kicked rotor

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; García-García, Antonio M.

    2009-03-01

    We investigate Anderson localization in a three-dimensional (3D) kicked rotor. By a finite-size scaling analysis we identify a mobility edge for a certain value of the kicking strength k=kc . For k>kc dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3D Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kc we carry out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations, the number variance is linear, level repulsion is still observed, and quantum diffusion is anomalous with ⟨p2⟩∝t2/3 . We note that in the 3D kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3D kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Heuristically it is expected that localization effects will be weaker in a nonrandom potential since destructive interference will be less effective to arrest quantum diffusion. However we have found that certain choices of irrational periods enhance Anderson localization effects.

  2. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  3. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  4. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  5. Magnetoresistance of an Anderson insulator of bosons.

    PubMed

    Gangopadhyay, Anirban; Galitski, Victor; Müller, Markus

    2013-07-12

    We study the magnetoresistance of two-dimensional bosonic Anderson insulators. We describe the change in spatial decay of localized excitations in response to a magnetic field, which is given by an interference sum over alternative tunneling trajectories. The excitations become more localized with increasing field (in sharp contrast to generic fermionic excitations which get weakly delocalized): the localization length ξ(B) is found to change as ξ(-1)(B)-ξ(-1)(0)~B(4/5). The quantum interference problem maps onto the classical statistical mechanics of directed polymers in random media (DPRM). We explain the observed scaling using a simplified droplet model which incorporates the nontrivial DPRM exponents. Our results have implications for a variety of experiments on magnetic-field-tuned superconductor-to-insulator transitions observed in disordered films, granular superconductors, and Josephson junction arrays, as well as for cold atoms in artificial gauge fields.

  6. Free market environmentalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.L.; Leal, D.R.

    1991-01-01

    Free Market Environmentalism by Terry L. Anderson and Donald R. Leal is a call to action rather than an empirical study. These authors argue that the environment and the market are inextricably connected in a positive rather than negative way. In their view, individual property owners, who are in a position and have an incentive to obtain time- and place-specific information about their resource endowments, are better suited than centralized bureaucracies to manage resources. Government should strive as much as possible to encourage and facilitate the working of the market through the enforcement of property rights, including clearly specified titles,more » strict liability rules and adjudication of disputed property rights in court. Markets could then be created in a variety of environmental policy domains. For example, Yellowstone National park currently has a problem with migrating bison who wander off the park premises and infect the cattle of adjoining ranches with deadly viruses. To Anderson and Leal, this problem could be solved if park officials owned the bison and could be sued for damages. Overfishing could be solved through the allocation of property rights to specific people who would be allowed to trade their rights. This property rights model is applied to a wide variety of environmental circumstances and problems including land policy, outdoor recreation, energy development, groundwater pollution, garbage disposal, and global warming.« less

  7. Systems with Many Degrees of Freedom: from Mean - Theories of Non-Fermi Liquid Behavior in Impurity Models to Implied Binomial Trees for Modeling Financial Markets

    NASA Astrophysics Data System (ADS)

    Barle, Stanko

    In this dissertation, two dynamical systems with many degrees of freedom are analyzed. One is the system of highly correlated electrons in the two-impurity Kondo problem. The other deals with building a realistic model of diffusion underlying financial markets. The simplest mean-field theory capable of mimicking the non-Fermi liquid behavior of the critical point in the two-impurity Kondo problem is presented. In this approach Landau's adiabaticity assumption--of a one-to-one correspondence between the low-energy excitations of the interacting and noninteracting systems--is violated through the presence of decoupled local degrees of freedom. These do not couple directly to external fields but appear indirectly in the physical properties leading, for example, to the log(T, omega) behavior of the staggered magnetic susceptibility. Also, as observed previously, the correlation function <{bf S}_1 cdot{bf S}_2> = -1/4 is a consequence of the equal weights of the singlet and triplet impurity configurations at the critical point. In the second problem, a numerical model is developed to describe the diffusion of prices in the market. Implied binomial (or multinomial) trees are constructed to enable practical pricing of derivative securities in consistency with the existing market. The method developed here is capable of accounting for both the strike price and term structure of the implied volatility. It includes the correct treatment of interest rate and dividends which proves robust even if these quantities are unusually large. The method is explained both as a set of individual innovations and, from a different prospective, as a consequence of a single plausible transformation from the tree of spot prices to the tree of futures prices.

  8. Density of Electronic States in Impurity-Doped Quantum Well Wires

    NASA Astrophysics Data System (ADS)

    Sierra-Ortega, J.; Mikhailov, I. D.

    2003-03-01

    We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)

  9. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  10. The topological Anderson insulator phase in the Kane-Mele model

    NASA Astrophysics Data System (ADS)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  11. On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations

    NASA Astrophysics Data System (ADS)

    Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.

    2016-11-01

    The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.

  12. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  13. Magnetic properties of Co-doped Nb clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.

  14. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  15. Reply to "Comment on `Conductance scaling in Kondo-correlated quantum dots: Role of level asymmetry and charging energy'"

    NASA Astrophysics Data System (ADS)

    Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.

    2014-08-01

    The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.

  16. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE PAGES

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; ...

    2016-10-11

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO 3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculationsmore » and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d 8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  17. Spin filtering in a double quantum dot device: Numerical renormalization group study of the internal structure of the Kondo state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.

    2014-03-31

    A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less

  18. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  19. Log-rise of the resistivity in the holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  20. Analysis of Sulfidation Routes for Processing Weathered Ilmenite Concentrates Containing Impurities

    NASA Astrophysics Data System (ADS)

    Ahmad, Sazzad; Rhamdhani, M. Akbar; Pownceby, Mark I.; Bruckard, Warren J.

    Rutile is the preferred feedstock for producing high-grade TiO2 pigment but due to decreasing resources, alternative materials such as ilmenite is now used to produce a synthetic rutile (SR) feedstock. This requires removal of impurities (e.g. Fe, Mg, Mn) which, for a primary ilmenite is straightforward process. Processing of weathered ilmenite however, is complex, especially when chrome-bearing impurities are present since minor chromium downgrades the SR market value as it imparts color to the final TiO2 pigment, Chrome-bearing spinels are a problem in weathered ilmenites from the Murray Basin, Australia as their physical and chemical properties overlap with ilmenite making separation difficult. In this paper, different sulfidation process routes for weathered ilmenites are analyzed for their applicability to Murray Basin deposits as a mean of remove chrome spinel impurities. Thermodynamic and experimental studies indicated that selective sulfidation of chrome-bearing spinel can be achieved under controlled pO2 and pS2 processing conditions thereby making them amenable to separation.

  1. Thinking can cause forgetting: memory dynamics in creative problem solving.

    PubMed

    Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon

    2011-09-01

    Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving. (c) 2011 APA, all rights reserved.

  2. Multilayer Networks of Self-Interested Adaptive Units.

    DTIC Science & Technology

    1987-07-01

    T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive Science, 9:147-169, 1985. 121 S. Amarel. Problems of Representation in...Barto and C. W. Anderson. Structural learning in connectionist sys- tems. In Proceedings of the Seventh Annual Conference of the Cognitive Science...E. Hinton and T. J. Sejnowski. Analyzing cooperative computation. In Proceedings of the Fifth Annual Conference of the Cognitive Science Society

  3. A memorial colloquium honoring Herbert L. Anderson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, D.E.

    This paper is the result of a colloquium honoring Herbert Anderson. The paper contains memorial statements to the late Mr. Anderson and reports on; chemical analysis of the 1988 Soviet mission to Mars, Mammalian cell genetic regulation and the nature of cancer, and clean atmosphere and nuclear reactors. (JEF)

  4. Award for Distinguished Scientific Early Career Contributions to Psychology: Adam K. Anderson

    ERIC Educational Resources Information Center

    American Psychologist, 2009

    2009-01-01

    Adam K. Anderson, recipient of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for his outstanding contribution to understanding the representation of emotion and its influence on cognition. By combining psychological and neuroscience techniques with rigorous and creative experimental designs, Anderson has…

  5. Log-Multiplicative Association Models as Item Response Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Yu, Hsiu-Ting

    2007-01-01

    Log-multiplicative association (LMA) models, which are special cases of log-linear models, have interpretations in terms of latent continuous variables. Two theoretical derivations of LMA models based on item response theory (IRT) arguments are presented. First, we show that Anderson and colleagues (Anderson & Vermunt, 2000; Anderson & Bockenholt,…

  6. Some comments on Anderson and Pospahala's correction of bias in line transect sampling

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Chain, B.R.

    1980-01-01

    ANDERSON and POSPAHALA (1970) investigated the estimation of wildlife population size using the belt or line transect sampling method and devised a correction for bias, thus leading to an estimator with interesting characteristics. This work was given a uniform mathematical framework in BURNHAM and ANDERSON (1976). In this paper we show that the ANDERSON-POSPAHALA estimator is optimal in the sense of being the (unique) best linear unbiased estimator within the class of estimators which are linear combinations of cell frequencies, provided certain assumptions are met.

  7. Two-photon Anderson localization in a disordered quadratic waveguide array

    NASA Astrophysics Data System (ADS)

    Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.

    2016-05-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.

  8. Anderson localization of light near boundaries of disordered photonic lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovic, Dragana M.; Texas A and M University at Qatar, P. O. Box 23874, Doha; Kivshar, Yuri S.

    We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.

  9. Security Policy Enforcement

    DTIC Science & Technology

    2005-09-21

    most notable was the CAP sys- tem (Wilkes & Needham, 1980 ). Although they can be im- plemented, the systems are notoriously complex and their lack of...when a system is subverted (Anderson, Irvine, & Schell, 2004; Myers, 1980 ). In this case, a member of the system’s development team intentionally adds...Cooper, R. H., Hyslop , W. F., Nickerson, B. G., Stewart, W. M., & Ward, O. K. (1993). The cascade vulnerability problem. In Proceedings of the IEEE

  10. Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode

    DTIC Science & Technology

    1979-08-01

    phases of air -to- air combat, for example). This is far simpler than the general problem of control law definition. How- ever, the results of such...unlimited. Ali FORCE FUGHT DYNAMICS LABORATORYAIR FORCE WRIGHT AERONAUTICALLABORATORIES AIR FORCE SYSTEMS COMMANDI * WRIGHT-PATITERSON AIR FORCE BASE...not necessarily shared by the Air Force. Brian. W. VauVliet Project Engineer S Rorad0. Anderson, Chief Control Dynamics Branch Flight Control Division

  11. Fermi edge singularity in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris

    2010-03-01

    We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)

  12. Media and risky behaviors.

    PubMed

    Escobar-Chaves, Soledad Liliana; Anderson, Craig A

    2008-01-01

    Liliana Escobar-Chaves and Craig Anderson investigate two important trends among American youth and examine the extent to which the two trends might be related. First, the authors note that U.S. youth are spending increasing amounts of time using electronic media, with the average American youngster now spending one-third of each day with some form of electronic media. Second, the authors demonstrate that American adolescents are engaging in a number of unhealthful behaviors that impose huge societal costs. Escobar-Chaves and Anderson detail the extent of five critical types of adolescent health risk behaviors identified by the Centers for Disease Control and Prevention-obesity, smoking, drinking, sexual risk taking, and violence. Obesity, the authors note, has become an epidemic among America's young people. Cigarette smoking among adolescents is one of the ten leading health indicators of greatest government concern. Alcohol abuse and alcohol dependence are widespread problems among the nation's youth and are the source of the three leading causes of death among youth. More than 20 percent of American high school students have sexual intercourse for the first time before they reach the age of fourteen. And twelve- to twenty-year-olds perpetrated 28 percent of the single-offender and 41 percent of multiple-offender violent crimes in the United States in 2005. Escobar-Chaves and Anderson present and evaluate research findings on the influence of electronic media on these five risk behaviors among adolescents. Researchers, they say, have found modest evidence that media consumption contributes to the problem of obesity, modest to strong evidence that it contributes to drinking and smoking, and strong evidence that it contributes to violence. Research has been insufficient to find links between heavy media exposure and early sexual initiation. The authors note the need for more large-scale longitudinal studies that specifically examine the cumulative effects of electronic media on risky health behavior.

  13. A Re-Examination of the Community of Inquiry Framework: Social Network and Content Analysis

    ERIC Educational Resources Information Center

    Shea, Peter; Hayes, Suzanne; Vickers, Jason; Gozza-Cohen, Mary; Uzuner, Sedef; Mehta, Ruchi; Valchova, Anna; Rangan, Prahalad

    2010-01-01

    This study provides a simultaneous examination of all components of the Community of Inquiry (CoI) framework (Garrison, Anderson & Archer, 2000; Anderson, Rourke, Garrison & Archer, 2001; and Rourke, Garrison, Anderson & Archer, 1999) and seeks to extend previous work into the nature, development, and relationships between the constructs of…

  14. Human Symbol Manipulation within an Integrated Cognitive Architecture

    ERIC Educational Resources Information Center

    Anderson, John R.

    2005-01-01

    This article describes the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture (Anderson et al., 2004; Anderson & Lebiere, 1998) and its detailed application to the learning of algebraic symbol manipulation. The theory is applied to modeling the data from a study by Qin, Anderson, Silk, Stenger, & Carter (2004) in which children…

  15. Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.

    2014-09-01

    In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.

  16. Light focusing in the Anderson regime.

    PubMed

    Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio

    2014-07-29

    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.

  17. Analytical approach to impurity transport studies: Charge state dynamics in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurygin, V. A.

    2006-08-15

    Ionization and recombination of plasma impurities govern their charge state kinetics, which is imposed upon the dynamics of ions that implies a superposition of the appropriate probabilities and causes an impurity charge state dynamics. The latter is considered in terms of a vector field of conditional probabilities and presented by a vector charge state distribution function with coupled equations of the Kolmogorov type. Analytical solutions of a diffusion problem are derived with the basic spatial and temporal dimensionless parameters. Analysis shows that the empirical scaling D{sub A}{proportional_to}n{sub e}{sup -1} [K. Krieger, G. Fussmann, and the ASDEX Upgrade Team, Nucl. Fusionmore » 30, 2392 (1990)] can be explained by the ratio of the diffusive and kinetic terms, D{sub A}/(n{sub e}a{sup 2}), being used instead of diffusivity, D{sub A}. The derived time scales of charge state dynamics are given by a sum of the diffusive and kinetic times. Detailed simulations of charge state dynamics are performed for argon impurity and compared with the reference modeling.« less

  18. The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data.

    PubMed

    Danker, Jared F; Anderson, John R

    2007-04-15

    In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.

  19. Reducing Response Time Bounds for DAG-Based Task Systems on Heterogeneous Multicore Platforms

    DTIC Science & Technology

    2016-01-01

    synchronous parallel tasks on multicore platforms. In 25th ECRTS, 2013. [10] U. Devi. Soft Real - Time Scheduling on Multiprocessors. PhD thesis...report, Washington University in St Louis, 2014. [18] C. Liu and J. Anderson. Supporting soft real - time DAG-based sys- tems on multiprocessors with...analysis for DAG-based real - time task systems im- plemented on heterogeneous multicore platforms. The spe- cific analysis problem that is considered was

  20. California Black Oak Drying Problems and the Bacterial Factor.

    DTIC Science & Technology

    1979-01-01

    operations in Anderson area and to adjacent kilns by spacing stickers 18 inches apart and Georgia and wondered if bacterial tree drying softwood lumber at...on stickers in a weighted, volatile fatty acids which are the sapwood , and then from the outer, covered pile placed outdoors on the characteristic of...1. JT~~~ Figure 1 —Scanning electron micrographs of nonintected sapwood (A-B) and bacterially infected heartwood (C-D) from

  1. High-Performance Solid-State and Fiber Lasers Controlled by Volume Bragg Gratings

    DTIC Science & Technology

    2013-09-01

    Glebov: Proc. SPIE 8237 (2012) 823705. 12) I. Divliansky, D. Ott, B. Anderson, G. Venus, and L. Glebov: To be published in Opt. Express. 13) A. Jain...B. Anderson, D. Drachenberg, V. Rotar, G. Venus, and L. Glebov: Proc. SPIE 8237 (2012) 823705. 47) B. Anderson, S. Kaim, G. B. Venus, J. Lumeau, V

  2. KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

    NASA Image and Video Library

    2003-10-28

    KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

  3. Impurity-generated non-Abelions

    NASA Astrophysics Data System (ADS)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.

  4. Application of a trap-free two-dimensional liquid chromatography combined with ion trap/time-of-flight mass spectrometry for separation and characterization of impurities and isomers in cefpiramide.

    PubMed

    Wang, Jian; Xu, Yu; Wen, Chunmei; Wang, Zhijian

    2017-11-01

    High-resolution mass spectrometry had been routinely used for structure identification of impurity. However, all LC-MS methods were based on a volatile mobile phase, and a non-volatile system is used in the official analytical method of United States Pharmacopoeia for cefpiramide which limited the use of mass spectrometry for structure characterization of the impurities. Here we presented the utilization of a trap-free two-dimensional liquid chromatography coupled to high resolution ion trap/time-of-flight mass spectrometry (2D LC-IT-TOF MS) with positive and negative modes of electrospray ionization for characterization of eight impurities in cefpiramide. Trap-free two-dimensional liquid chromatography and online desalting technique made it possible to characterize the impurity in cefpiramide in the condition of official standard, and the TIC chromatogram of LC-MS was in conformity with the LC chromatogram of the official analytical method in the peak sequence of impurities, which could further improve the method of official monographs in pharmacopoeias. Each peak separated by the non-volatile mobile phase was trapped by a 20 μL quantitative loop then transferred into a system with a volatile mobile phase connected to a MS detector. In the first dimension, the column was Kromasil C 8 analytical column (250 mm × 4.6 mm, 5 μm) with a non-volatile salt mobile phase at the flow rate of 0.8 mL min -1 . In the second dimension, the column was Shimadzu Shim-pack GISS C 18 (50 mm × 2.1 mm, 1.9 μm) with a volatile salt mobile phase at the flow rate of 0.3 mL min -1 . Through the multiple heart-cutting 2D-LC approach and online desalting technique, the problem of incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely. The fragmentation behavior of cefpiramide and its eight impurities were studied. The structures of eight impurities in cefpiramide drug substance were deduced based on the HPLC-MS n data, in which seven impurities were novel impurities. The forming mechanisms of degradation products in cefpiramide were also studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  6. Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation

    NASA Astrophysics Data System (ADS)

    Kain, Ben; Ling, Hong Y.

    2017-09-01

    We consider the Fermi polaron problem at zero temperature, where a single impurity interacts with noninteracting host fermions. We approach the problem starting with a Fröhlich-like Hamiltonian where the impurity is described with canonical position and momentum operators. We apply the Lee-Low-Pine (LLP) transformation to change the fermionic Fröhlich Hamiltonian into the fermionic LLP Hamiltonian, which describes a many-body system containing host fermions only. We adapt the self-consistent Hartree-Fock (HF) approach, first proposed by Edwards, to the fermionic LLP Hamiltonian in which a pair of host fermions with momenta k and k' interact with a potential proportional to k .k' . We apply the HF theory, which has the advantage of not restricting the number of particle-hole pairs, to repulsive Fermi polarons in one dimension. When the impurity and host fermion masses are equal our variational ansatz, where HF orbitals are expanded in terms of free-particle states, produces results in excellent agreement with McGuire's exact analytical results based on the Bethe ansatz. This work raises the prospect of using the HF ansatz and its time-dependent generalization as building blocks for developing all-coupling theories for both equilibrium and nonequilibrium Fermi polarons in higher dimensions.

  7. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  8. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  9. Transport in 2D Systems in the So-Called Metallic Phase

    NASA Astrophysics Data System (ADS)

    Das Sarma, Sankar

    2001-03-01

    I will discuss electronic transport in 2D semiconductor systems at low temperatures and densities. In particular, I will consider effects of screening,electron-impurity and electron-phonon interactions, and an external parallel magnetic field on the 2D temperature and density dependent conductivity. I will show that a theory [1] recently developed by Euyheon Hwang and myself may qualitatively account for much of the observed temperature, density, and field dependence of the 2D "metallic" conductivity for electrons in Si MOSFETs and n-GaAs heterostructures, and for holes in Si-Ge heterostructures and p-GaAs systems. I will provide a critique, based on the available experimental data and exact numerical simulations [2] of the Anderson-Hubbard-Mott model, of whether the 2D M-I-T phenomenon is likely to be the high temperature behavior of a T=0 quantum phase transition or the low temperature manifestation of a high-temperature semiclassical transition. Work supported by the US-ONR and the US-ARO. [1] S.Das Sarma and E.H.Hwang,PRL83,164(1999);84,5596(2000); Phys. Rev. B61, R7838(2000). [2] R. Kotlyar and S. Das Sarma, cond-mat/0002304.

  10. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    PubMed

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  11. Singular Valence Fluctuations at a Kondo Destroyed Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Pixley, Jedediah; Kirchner, Stefan; Ingersent, Kevin; Si, Qimiao

    2012-02-01

    Recent experiments on the heavy fermion superconductor beta-YbAlB4 have indicated that this compound satisfies quantum critical scaling [1]. Motivated by the observation of mixed valency in this material [2], we study the Kondo destruction physics in the mixed-valence regime [3] of a particle-hole asymmetric Anderson impurity model with a pseudogapped density of states. In the vicinity of the quantum critical point we determine the finite temperature spin and charge susceptibilities by utilizing a continuous time quantum Monte Carlo method [4] and the numerical renormalization group. We show that this mixed-valence quantum critical point displays a Kondo breakdown effect. Furthermore, we find that both dynamic spin and charge susceptibilities obey frequency over temperature scaling, and that the static charge susceptibility diverges with a universal exponent. Possible implications of our results for beta-YbAlB4 are discussed. [1] Matsumoto et al, Science 331, 316 (2011). [2] Okawaet al, Physical Review Letters 104, 247201 (2010). [3] J. H. Pixley, S. Kirchner, Kevin Ingersent and Q. Si, arXiv:1108.5227v1 (2011). [4] M. Glossop, S. Kirchner, J. H. Pixley and Q. Si, Phys. Rev. Lett. 107, 076404 (2011).

  12. Hole Transport in the Upper Hubbard Band in Ge:Cu under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Walukiewicz, W.; Dubon, O. D.; Silvestri, H. H.; Haller, E. E.

    1998-03-01

    We have reported recently on a uniaxial stress induced transformation of the ground state of Cu triple acceptors in Ge from highly localized 1s^3 to the much more extended 1s^22s^1 configuration (O.D. Dubon et. al., Phys Rev Lett. 78, 3519, (1997)). We find that the transformation leads to a gigantic enhancement of the low temperature conductivity. The conductivity is due to hole transport in the upper Hubbard band formed by overcharged 1s^22s^2 states. We have calculated hole mobilities in this band assuming that the states in the upper Hubbard band can be treated in the optical approximation as normal extended states with a well-defined effective mass. We find that for Cu concentrations below 10^15 cm-3 the experimentally observed mobilities approach 10^6 cm^2/Vs. These very high mobilities can be explained by hole scattering from ionized and neutral impurity centers. At higher Cu concentrations we observe an onset of Anderson localization that manifests itself in a thermally activated low temperature mobility. This work was supported by US DOE under Contract No. DE-AC03-76SF00098.

  13. Parallel tempering simulation of the three-dimensional Edwards-Anderson model with compact asynchronous multispin coding on GPU

    NASA Astrophysics Data System (ADS)

    Fang, Ye; Feng, Sheng; Tam, Ka-Ming; Yun, Zhifeng; Moreno, Juana; Ramanujam, J.; Jarrell, Mark

    2014-10-01

    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 ps per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.

  14. Anomalous Anderson localization

    NASA Astrophysics Data System (ADS)

    Deng, Wenji

    2000-04-01

    We propose a generalized Anderson model and study numerically the localization phenomena in one dimension. In our model, not all the sites take on-site random site energy. The on-site energy εn on the nth site is assigned as follows. If n+P-1=0 ( mod P) , where P is a positive integer, εn is assumed to be randomly distributed between - W/2 and W/2. On the other lattice sites, the site energy is fixed, say εn=0.The localization length ξ defined as | t| 2=e -2 L/ ξ, where t is the transmission coefficient, is calculated using the transfer matrix method. It is found that the single-electron states with wave vectors k= π/P, 2 π/P,…,(P-1) π/P are no longer localized as in the standard Anderson model. Compared with the smooth localization length spectrum of the Anderson model, there appear P-1 sharp peaks periodically located at P-1 values of wave vector on the localization length spectrum of the generalized Anderson model with parameter P.

  15. Patriot Games: Yes, Indeed, the British Are Coming! But M. T. Anderson's Revolutionary War Novel Is Unlike Anything You've Ever Read

    ERIC Educational Resources Information Center

    Horning, Kathleen

    2006-01-01

    This article presents an interview with 38-year-old writer Matthew Tobin Anderson. In the interview, Anderson talks about his experiences, passion for writing, teenage interests, and his relation to the distinguished writer Mark Twain. He also states the importance of liberty and what it takes to be a patriot and a loyalist. Furthermore, Matthew…

  16. Analytical solutions for coagulation and condensation kinetics of composite particles

    NASA Astrophysics Data System (ADS)

    Piskunov, Vladimir N.

    2013-04-01

    The processes of composite particles formation consisting of a mixture of different materials are essential for many practical problems: for analysis of the consequences of accidental releases in atmosphere; for simulation of precipitation formation in clouds; for description of multi-phase processes in chemical reactors and industrial facilities. Computer codes developed for numerical simulation of these processes require optimization of computational methods and verification of numerical programs. Kinetic equations of composite particle formation are given in this work in a concise form (impurity integrated). Coagulation, condensation and external sources associated with nucleation are taken into account. Analytical solutions were obtained in a number of model cases. The general laws for fraction redistribution of impurities were defined. The results can be applied to develop numerical algorithms considerably reducing the simulation effort, as well as to verify the numerical programs for calculation of the formation kinetics of composite particles in the problems of practical importance.

  17. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    NASA Astrophysics Data System (ADS)

    Hoyos, Jaime H.; Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  18. Calculation of Suspended Sediment Transport by Combined Wave-Current Flows.

    DTIC Science & Technology

    1994-11-01

    Anderson, and Silberg (1985) presented a model that had an eddy viscosity and boundary layer thickness that varied in time. The reference concentration was...sediment model. This model, along with that of Fredsoe, Anderson, and Silberg (1985), are the only two models that account for both the sediment and the...ignores any correlation between the periodic components of the velocity and the concentration. Even in the model of Fredsoe, Anderson, and Silberg (1985

  19. Red light for Anderson localization

    NASA Astrophysics Data System (ADS)

    Skipetrov, S. E.; Page, J. H.

    2016-02-01

    During the last 30 years, the search for Anderson localization of light in three-dimensional (3D) disordered samples yielded a number of experimental observations that were first considered successful, then disputed by opponents, and later refuted by their authors. This includes recent results for light in TiO2 powders that Sperling et al now show to be due to fluorescence and not to Anderson localization (2016 New J. Phys. 18 013039). The difficulty of observing Anderson localization of light in 3D may be due to a number of factors: insufficient optical contrast between the components of the disordered material, near-field effects, etc. The way to overcome these difficulties may consist in using partially ordered materials, complex structured scatterers, or clouds of cold atoms in magnetic fields.

  20. Metal insulator transitions in perovskite SrIrO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr; Kim, Ki-Seok

    Understanding of metal insulator transitions in a strongly correlated system, driven by Anderson localization (disorder) and/or Mott localization (correlation), is a long standing problem in condensed matter physics. The prevailing fundamental question would be how these two mechanisms contrive to accomplish emergent anomalous behaviors. Here, we have grown high quality perovskite SrIrO{sub 3} thin films, containing a strong spin orbit coupled 5d element Ir, on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), SrTiO{sub 3} (001), and NdGaO{sub 3} (110) with increasing lattice mismatch, in order to carry out a systematic study on the transport properties. We foundmore » that metal insulator transitions can be induced in this system; by either reducing thickness (on best lattice matched substrate) or changing degree of lattice strain (by lattice mismatch between film and substrates) of films. Surprisingly these two pathways seek two distinct types of metal insulator transitions; the former falls into disorder driven Anderson type whereas the latter turns out to be of unconventional Mott-Anderson type with the interplay of disorder and correlation. More interestingly, in the metallic phases of SrIrO{sub 3}, unusual non-Fermi liquid characteristics emerge in resistivity as Δρ ∝ T{sup ε} with ε evolving from 4/5 to 1 to 3/2 with increasing lattice strain. We discuss theoretical implications of these phenomena to shed light on the metal insulator transitions.« less

  1. Rib fracture - aftercare

    MedlinePlus

    ... Alternative Names Broken rib - aftercare References Browner BD, Jupiter JB, Krettek C, Anderson PA. Scapula and rib fractures. In: Browner BD, Jupiter JB, Krettek C, Anderson PA, eds. Skeletal Trauma: ...

  2. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  3. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  4. Scaling analysis of Anderson localizing optical fibers

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Mafi, Arash

    2017-02-01

    Anderson localizing optical fibers (ALOF) enable a novel optical waveguiding mechanism; if a narrow beam is scanned across the input facet of the disordered fiber, the output beam follows the transverse position of the incoming wave. Strong transverse disorder induces several localized modes uniformly spread across the transverse structure of the fiber. Each localized mode acts like a transmission channel which carries a narrow input beam along the fiber without transverse expansion. Here, we investigate scaling of transverse size of the localized modes of ALOF with respect to transverse dimensions of the fiber. Probability density function (PDF) of the mode-area is applied and it is shown that PDF converges to a terminal shape at transverse dimensions considerably smaller than the previous experimental implementations. Our analysis turns the formidable numerical task of ALOF simulations into a much simpler problem, because the convergence of mode-area PDF to a terminal shape indicates that a much smaller disordered fiber, compared to previous numerical and experimental implementations, provides all the statistical information required for the precise analysis of the fiber.

  5. UV Emissions and the Electron Density in the Auroral and Low to Mid-Latitude Daytime Ionospheres.

    DTIC Science & Technology

    1982-11-01

    Anderson, 1982). Their concern has been with the analysis of satellite observed limb profiles for features such as 01 1356 A and N2 LBH bands. We have...two in going from solar minimum to maximum conditions. An ad- vantage of there being little relative variation among intensities is that altitude...desirable for our problem of interest since it concerns remote sensing of the ionosphere. The questions ariser as to how long the wavelength of I

  6. A Comparison of Three Curve Intersection Algorithms

    NASA Technical Reports Server (NTRS)

    Sederberg, T. W.; Parry, S. R.

    1985-01-01

    An empirical comparison is made between three algorithms for computing the points of intersection of two planar Bezier curves. The algorithms compared are: the well known Bezier subdivision algorithm, which is discussed in Lane 80; a subdivision algorithm based on interval analysis due to Koparkar and Mudur; and an algorithm due to Sederberg, Anderson and Goldman which reduces the problem to one of finding the roots of a univariate polynomial. The details of these three algorithms are presented in their respective references.

  7. Microenvironment -Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

    DTIC Science & Technology

    2016-10-01

    accomplished all goals in Aims 1 and 2. Our lab recently relocated from the MD Anderson Cancer Center to Roswell Park Cancer Institute in Buffalo. We ...G. Tang, M.D., Ph.D. CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center Houston, TX 77030 REPORT DATE: October 2016 TYPE OF... Anderson Cancer Center Houston, TX 77030 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical

  8. Effect of ionization suppression by trace impurities in mobile phase water on the accuracy of quantification by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K

    2010-06-15

    The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.

  9. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉.

    PubMed

    Chahrour, Osama; Malone, John; Collins, Mark; Salmon, Vrushali; Greenan, Catherine; Bombardier, Amy; Ma, Zhongze; Dunwoody, Nick

    2017-10-25

    The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Temporal complexity in emission from Anderson localized lasers

    NASA Astrophysics Data System (ADS)

    Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil

    2017-12-01

    Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.

  11. Phonological neighborhood and word frequency effects on the stuttered disfluencies of children who stutter: comments on Anderson (2007).

    PubMed

    Howell, Peter

    2010-10-01

    This letter comments on a study by Anderson (2007) that compared the effects of word frequency, neighborhood density, and phonological neighborhood frequency on part-word repetitions, prolongations, and single-syllable word repetitions produced by children who stutter. Anderson discussed her results with respect to 2 theories about stuttering: the covert repair hypothesis and execution planning (EXPLAN) theory. Her remarks about EXPLAN theory are examined. Anderson considered that EXPLAN does not predict the relationship between word and neighborhood frequency and stuttering for part-word repetitions and prolongations (she considered that EXPLAN predicts that stuttering occurs on simple words for children). The actual predictions that EXPLAN makes are upheld by her results. She also considered that EXPLAN cannot account for why stuttering is affected by the same variables that lead to speech errors, and it is shown that this is incorrect. The effects of word frequency, neighborhood density, and phonological neighborhood frequency on part-word repetitions, prolongations, and single-syllable word repetitions reported by Anderson (2007) are consistent with the predictions of the EXPLAN model.

  12. Quality assessment in head and neck oncologic surgery in a Brazilian cancer center compared with MD Anderson Cancer Center benchmarks.

    PubMed

    Lira, Renan Bezerra; de Carvalho, André Ywata; de Carvalho, Genival Barbosa; Lewis, Carol M; Weber, Randal S; Kowalski, Luiz Paulo

    2016-07-01

    Quality assessment is a major tool for evaluation of health care delivery. In head and neck surgery, the University of Texas MD Anderson Cancer Center (MD Anderson) has defined quality standards by publishing benchmarks. We conducted an analysis of 360 head and neck surgeries performed at the AC Camargo Cancer Center (AC Camargo). The procedures were stratified into low-acuity procedures (LAPs) or high-acuity procedures (HAPs) and outcome indicators where compared to MD Anderson benchmarks. In the 360 cases, there were 332 LAPs (92.2%) and 28 HAPs (7.8%). Patients with any comorbid condition had a higher incidence of negative outcome indicators (p = .005). In the LAPs, we achieved the MD Anderson benchmarks in all outcome indicators. In HAPs, the rate of surgical site infection and length of hospital stay were higher than what is established by the benchmarks. Quality assessment of head and neck surgery is possible and should be disseminated, improving effectiveness in health care delivery. © 2015 Wiley Periodicals, Inc. Head Neck 38: 1002-1007, 2016. © 2015 Wiley Periodicals, Inc.

  13. A parametric LQ approach to multiobjective control system design

    NASA Technical Reports Server (NTRS)

    Kyr, Douglas E.; Buchner, Marc

    1988-01-01

    The synthesis of a constant parameter output feedback control law of constrained structure is set in a multiple objective linear quadratic regulator (MOLQR) framework. The use of intuitive objective functions such as model-following ability and closed-loop trajectory sensitivity, allow multiple objective decision making techniques, such as the surrogate worth tradeoff method, to be applied. For the continuous-time deterministic problem with an infinite time horizon, dynamic compensators as well as static output feedback controllers can be synthesized using a descent Anderson-Moore algorithm modified to impose linear equality constraints on the feedback gains by moving in feasible directions. Results of three different examples are presented, including a unique reformulation of the sensitivity reduction problem.

  14. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian

    2016-07-01

    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  15. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Han, Yulei; Qiao, Zhenhua

    In this talk, we theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  16. Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain

    NASA Astrophysics Data System (ADS)

    Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof

    2017-12-01

    Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.

  17. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring. During August–October 1999, several field trips were conducted in the vicinity of Anderson Springs to continue monitoring and sampling the thermal manifestations. The new fumarolic area had increased in temperature and in discharge intensity since 1998, and a zone of dead trees had developed on the steep bank directly west of the fumaroles. Ground temperatures and diffuse flow of CO2 flow through soils were measured in the area surrounding the main spring and new fumaroles and in the zone of tree-kill.

  18. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021561 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  19. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021569 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  20. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021562 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  1. Anderson during EVA 2

    NASA Image and Video Library

    2010-04-11

    ISS023-E-021558 (11 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, participates in the mission's second session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the seven-hour, 26-minute spacewalk, Anderson and Rick Mastracchio (out of frame), mission specialist, unhooked and removed the depleted ammonia tank and installed a 1,700-pound ammonia tank on the station’s Starboard 1 truss, completing the second of a three-spacewalk coolant tank replacement process.

  2. Anderson localisation and optical-event horizons in rogue-soliton generation.

    PubMed

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  3. Penning Ionization: Measurement of Ion and Molecular Lifetimes.

    DTIC Science & Technology

    1977-12-01

    State of CH", James Carozza and Richard Anderson, J. Opt. Soc. Am. 67, 118 (1977). "Spin & Coherence Transfer in Penning Ionization", L.D. Schearer...Lamp , F. Rev. Sei. Instru. 48, 92 (1977). _^^ ^rtjri ’’Radiative Lifetime of the PrÄ State of CH , James Carroza and Richard ’ Anderson, J. Opt...lr.h .--.- •’••• —•;••.: — - ----- Radiative lifetime of the A2A state of CHr James Carozza and Richard Anderson Drparimem 0/ Physics

  4. Multiple-beam propagation in an Anderson localized optical fiber.

    PubMed

    Karbasi, Salman; Koch, Karl W; Mafi, Arash

    2013-01-14

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.

  5. Spray and Combustion of Gelled Hypergolic Propellants

    DTIC Science & Technology

    2014-10-20

    Anderson Postdoc tlnu 2/09 Ast:I·ium Mau DeRidder Anderson Postdoc tlnu 5110 Spacex Chenzhou Lian Merkle Postdoc tlnu 8/10 IBM Watson Labs Changjin Yoon...Heister PhD, 1211 1 GE Global Research Center - 5 - - 6 - Erik Dambach Heister/Pourpoint PhD, 5/11 SpaceX Paulo Santos Campanella PhD, 8/11...Yair Solomon Anderson MS, 8/12 Technion Jordan Forness Heister/Pourpoint MS, 5/13 SpaceX Jennifer Mallory Sojka PhD, 5/12 Western New England

  6. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido

    2018-04-01

    Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.

  7. 5. PHOTOCOPY ADVERTISING VIEW OF THE LAMBERT AUTOCAR WITH CUTAWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOCOPY ADVERTISING VIEW OF THE LAMBERT AUTOCAR WITH CUTAWAY OF TRANSMISSION, FROM ANDERSON CITY DIRECTORY, CA. 1906-1907 - Buckeye Manufacturing Company, Columbia Avenue, Anderson, Madison County, IN

  8. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification.

    PubMed

    Paneysar, Joginder Singh; Barton, Stephen; Chandra, Sudeshna; Ambre, Premlata; Coutinho, Evans

    2017-03-01

    Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu +2 , Co +2 and Cd +2 ) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.

  9. Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns.

    PubMed

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2011-03-01

    Students were taught an algorithm for solving a new class of mathematical problems. Occasionally in the sequence of problems, they encountered exception problems that required that they extend the algorithm. Regular and exception problems were associated with different patterns of brain activation. Some regions showed a Cognitive pattern of being active only until the problem was solved and no difference between regular or exception problems. Other regions showed a Metacognitive pattern of greater activity for exception problems and activity that extended into the post-solution period, particularly when an error was made. The Cognitive regions included some of parietal and prefrontal regions associated with the triple-code theory of (Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506) and associated with algebra equation solving in the ACT-R theory (Anderson, J. R. (2005). Human symbol manipulation within an 911 integrated cognitive architecture. Cognitive science, 29, 313-342. Metacognitive regions included the superior prefrontal gyrus, the angular gyrus of the triple-code theory, and frontopolar regions.

  10. Louisa Garrett Anderson (1873-1943), surgeon and suffragette.

    PubMed

    Geddes, Jennian F

    2008-11-01

    Louisa Garrett Anderson, daughter of Britain's first woman doctor, has been largely forgotten today despite the fact that her contribution to the women's movement was as great as that of her mother. Recognized by her contemporaries as an important figure in the suffrage campaign, Anderson chose to lend her support through high-profile action, being one of the few women doctors in her generation who risked their professional as well as their personal reputation in the fight for women's rights by becoming a suffragette - in her case, even going so far as to spend a month in prison for breaking a window on a demonstration. On the outbreak of war, with only the clinical experience she had gained as outpatient surgeon in a women's hospital, Anderson established a series of women-run military hospitals where she was a Chief Surgeon. The most successful was the Endell Street Military Hospital in London, funded by the Royal Army Medical Corps and the only army hospital ever to be run and staffed entirely by women. Believing that a doctor had an obligation to take a lead in public affairs, Anderson continued campaigning for women's issues in the unlikely setting of Endell Street, ensuring that their activities remained in the public eye through constant press coverage. Anderson's achievement was that her work played no small part in expunging the stigma of the militant years in the eyes of the public and - more importantly - was largely instrumental in putting women doctors on equal terms with their male colleagues.

  11. 1. VIEW OF SOUTH (GABLE END) AND WEST WALLS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SOUTH (GABLE END) AND WEST WALLS FROM ANDERSON WAY, FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Nurses' Quarters, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  12. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie... Victoria Area: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  13. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...

  14. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  15. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County...: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  16. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  17. Effect of Differential Diffusion in Two-Component Media

    NASA Astrophysics Data System (ADS)

    Ingel', L. Kh.

    2017-03-01

    Examples are presented of an exact solution of a nonstationary problem on the development of convection in a binary mixture (seawater) near an infinite vertical surface in which the buoyancy disturbances are determined both by the temperature and by the disturbances of the impurity (salt) concentration. Consideration is given to the development of convection in a homogeneous medium near an infinite vertical surface at whose boundary specification is made of constant (after ″switching on″ at the initial moment) heat fluxes and impurities or variations of these substances, i.e., problems with boundary conditions of 1st and 2nd kind are considered. The obtained analytical solutions demonstrate the possibility of a nontrivial effect associated with the difference in the values of the coefficients of transfer of two substances: the inflows of positive buoyancy may lead, contrary to intuitive notions, to the origination of descending motion of the medium rather than the ascending one. Clarification is provided for the physical meaning of such effects, which can be substantial, for example, in melting of sea ice.

  18. Violent video game effects remain a societal concern: Reply to Hilgard, Engelhardt, and Rouder (2017).

    PubMed

    Kepes, Sven; Bushman, Brad J; Anderson, Craig A

    2017-07-01

    A large meta-analysis by Anderson et al. (2010) found that violent video games increased aggressive thoughts, angry feelings, physiological arousal, and aggressive behavior and decreased empathic feelings and helping behavior. Hilgard, Engelhardt, and Rouder (2017) reanalyzed the data of Anderson et al. (2010) using newer publication bias methods (i.e., precision-effect test, precision-effect estimate with standard error, p-uniform, p-curve). Based on their reanalysis, Hilgard, Engelhardt, and Rouder concluded that experimental studies examining the effect of violent video games on aggressive affect and aggressive behavior may be contaminated by publication bias, and these effects are very small when corrected for publication bias. However, the newer methods Hilgard, Engelhardt, and Rouder used may not be the most appropriate. Because publication bias is a potential a problem in any scientific domain, we used a comprehensive sensitivity analysis battery to examine the influence of publication bias and outliers on the experimental effects reported by Anderson et al. We used best meta-analytic practices and the triangulation approach to locate the likely position of the true mean effect size estimates. Using this methodological approach, we found that the combined adverse effects of outliers and publication bias was less severe than what Hilgard, Engelhardt, and Rouder found for publication bias alone. Moreover, the obtained mean effects using recommended methods and practices were not very small in size. The results of the methods used by Hilgard, Engelhardt, and Rouder tended to not converge well with the results of the methods we used, indicating potentially poor performance. We therefore conclude that violent video game effects should remain a societal concern. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Analytical slave-spin mean-field approach to orbital selective Mott insulators

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Kotliar, Gabriel

    2017-09-01

    We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in the presence of Hund's coupling interaction. By analytical analysis of the Hamiltonian, we show that the locking of the two orbitals vs orbital selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean field to impurity problems, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating interorbital tunnelings in the case of multiorbital Bethe lattices with particle-hole symmetry.

  20. Quantitative analysis of PMR-15 polyimide resin by HPLC

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  1. Laser Remote Sensing of Pollution on Water Surfaces

    NASA Technical Reports Server (NTRS)

    Bunkin, A. F.; Surovegin, Aleksander L.

    1992-01-01

    One of the most important problems of modern environmental science is the detection and identification of various impurities in the ocean. Sources of impurities in sea water are diverse. The most common of them are accidental transport, agricultural, and oil industry spills. Once the ecological balance is disturbed, biological processes in sea water become affected, resulting in changes in chlorophyll concentrations, water turbidity, and temperature. During the last few years, we have created new types of lidars and arranged nearly ten aircraft and shipboard expeditions. Some aircraft expeditions dealt with terrestrial investigations. Others were devoted to oceanological research, the results of which are discussed here. Emphasis is on the detection of phytoplankton chlorophyll and hydrocarbon in sea water.

  2. Localization by bichromatic potentials versus Anderson localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Mathias; Leboeuf, Patricio

    The one-dimensional propagation of waves in a bichromatic potential may be modeled by the Aubry-Andre Hamiltonian. This, in turn, presents a localization transition that has been observed in recent experiments using ultracold atoms or light. It is shown here that, in contrast to the Anderson model, the localization mechanism has a classical origin, namely it is not due to a quantum suppression of a classically allowed transport process, but rather is produced by a trapping by the potential. Explicit comparisons with the Anderson model as well as with experiments are presented.

  3. 1. VIEW OF BUILDING 128: SOUTH (GABLE END) AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF BUILDING 128: SOUTH (GABLE END) AND WEST SIDES FROM ANDERSON WAY, FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Hospital Wards, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  4. 1. VIEW OF WEST (GABLE END) AND SOUTH SIDES, FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST (GABLE END) AND SOUTH SIDES, FROM WEST END OF ANDERSON WAY FACING NORTHEAST. - Fort McPherson, World War II Station Hospital, Mess Hall, Anderson Way & Howe Street, Atlanta, Fulton County, GA

  5. Anderson during a MSG Leak Test in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-06-28

    ISS015-E-14705 (28 June 2007) --- Astronaut Clayton C. Anderson, Expedition 15 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  6. Ballistic Missile Early Warning System Clear Air Force Station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 40 CFR 81.344 - Texas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass County... Victoria Area: Victoria County Attainment AQCR 022 Shreveport-Texarkana-Tyler Interstate Unclassifiable... 022Shreveport-Texarkana-Tyler Interstate Unclassifiable/Attainment Anderson County Bowie County Camp County Cass...

  8. Image transport through a disordered optical fibre mediated by transverse Anderson localization.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-25

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  9. Temperature Dependence of Magnetically Active Charge Excitations in Magnetite across the Verwey Transition

    NASA Astrophysics Data System (ADS)

    Taguchi, M.; Chainani, A.; Ueda, S.; Matsunami, M.; Ishida, Y.; Eguchi, R.; Tsuda, S.; Takata, Y.; Yabashi, M.; Tamasaku, K.; Nishino, Y.; Ishikawa, T.; Daimon, H.; Todo, S.; Tanaka, H.; Oura, M.; Senba, Y.; Ohashi, H.; Shin, S.

    2015-12-01

    We study the electronic structure of bulk single crystals and epitaxial films of Fe3 O4 . Fe 2 p core level spectra show clear differences between hard x-ray (HAX) and soft x-ray photoemission spectroscopy (PES). The bulk-sensitive spectra exhibit temperature (T ) dependence across the Verwey transition, which is missing in the surface-sensitive spectra. By using an extended impurity Anderson full-multiplet model—and in contrast to an earlier peak assignment—we show that the two distinct Fe species (A and B site) and the charge modulation at the B site are responsible for the newly found double peaks in the main peak above TV and its T -dependent evolution. The Fe 2 p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the contributions from magnetically distinct A and B sites. Valence band HAXPES shows a finite density of states at EF for the polaronic half metal with a remnant order above TV and a clear gap formation below TV. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B -site electronic states, consistent with resistivity and optical spectra.

  10. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  11. Theory of L -edge spectroscopy of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.

    2017-12-01

    X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.

  12. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE PAGES

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...

    2017-07-20

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  13. Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Ganahl, Martin; Evertz, Hans Gerd; Arrigoni, Enrico; von der Linden, Wolfgang

    2013-07-01

    We study the time evolution and steady state of the charge current in a single-impurity Anderson model, using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state current. Among these quenches we identify those favorable for extracting steady-state observables. The period of short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝Δ-1 is the major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is explored by considering a damping term in the time evolution.

  14. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  15. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYSTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  16. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  17. The New North Korean Problem: History and Responsibilities in the Age of Kim Jong Un

    DTIC Science & Technology

    2012-03-29

    Unfortunately, none of these has come close to fruition. 14 Geun- hye Park , a member of the National Assembly of the Republic of Korea, describes a key...Korean Spring?,” The Washington Quarterly, Winter, 2012. 38 Cha and Anderson, 10. 39 Kim 16. 40 Kim 34. 41 Bluth 88. 42 Geun- Hye Park , “A New Kind of...Griffin, 2004. Park , Geun Hye . “A New Kind of Korea: Building Trust Between Seoul and Pyongyang.” Foreign Affairs 90, no.5(September-October 2011

  18. JILA BEC/Ultracold Atoms Homepage

    Science.gov Websites

    JILA BEC & Ultracold Atoms Bose Einstein Condensate Eric Cornell Cornell Group Debbie Jin Jin Group Jun Ye Ye Group Dana Anderson Anderson Group What is BEC? Easy BEC Machine Nobel BEC BibTek Papers

  19. 75 FR 42611 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... visiting the Resource Room. FOR FURTHER INFORMATION CONTACT: Mr. Wes Anderson, U.S. Department of Energy..., SW., Washington, DC 20585- 0121. Tel.: (202) 586-7335. E-mail: Wes.Anderson@ee.doe.gov . Ms...

  20. Educational Leadership. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Tollett, John R., Ed.

    This document contains the following papers on educational leadership from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Electronic Curriculum Development and Assessment" (Kevin M. Anderson and Cindy L. Anderson); "The Dilemma of Teacher Training" (Alfred Bork); "Technology and…

  1. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    NASA Astrophysics Data System (ADS)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce internal corrosion and deposits containing products of their degradation.

  3. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    PubMed

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of PWM (position weight matrix) motif model.

  4. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which derives the effective Euclidean action from the classical equation of motion. We calculate the effective mass of the polaron in the model polar liquid at zero and finite temperatures. The self-trapping transition of this polaron turns out to be discontinuous in certain regions of the phase diagram. In order to systematically investigate the role of quantum fluctuations on the polaron properties, we adopt a quantum field theory which supports nearly-critical local modes: the quantum Landau-Brazovskii (QLB) model, which exhibits fluctuation-induced first order transition (weak crystallization). In the vicinity of the phase transition, the quantum fluctuations are strongly correlated; one can in principle tune the strength of these fluctuations, by adjusting the parameters close to or away from the transition point. Furthermore, sufficiently close to the transition, the theory accommodates "soliton'' solutions, signaling the nonlinear response of the system. Therefore, the model seems to be a promising candidate for studying the effects of strong quantum fluctuations and also failure of linear response theory, in the polaron problem. We observe that at zero temperature, and away from the Brazovskii transition where the linear response approximation is valid, the localization transition of the polaron is discontinuous. Upon enhancing fluctuations---of either thermal or quantum nature---the gap of the effective mass closes at distinct second-order critical points. Sufficiently close to the Brazovskii transition where the nonlinear contributions of the field are significantly large, a new state appears in addition to extended and self-trapped polarons: an impurity-induced soliton. We interpret this as the break-down of linear response, reminiscent of what we observe in a polar liquid. Quantum LB model has been proposed to be realizable in ultracold Bose gases in cavities. We thus discuss the experimental feasibility, and propose a setup which is believed to exhibit the aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.

  5. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009277 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  6. Anderson and water bubble

    NASA Image and Video Library

    2010-04-12

    S131-E-009299 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.

  7. Carl Anderson and the Discovery of the Positron

    Science.gov Websites

    experimental piece of equipment of choice to study cosmic rays. ... Anderson designed and built his own cloud ? Top Some links on this page may take you to non-federal websites. Their policies may differ from this

  8. Program Spotlight: UPR and MD Anderson Partnership Welcomes Its First Graduates

    Cancer.gov

    CRCHD joins the PIs and Diversity Training co-leaders of the Univ. of Puerto Rico and the Univ. of Texas MD Anderson Cancer Center U54 Partnership for Excellence in Cancer Research in congratulating its first graduates.

  9. 76 FR 30555 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    [email protected] . FOR FURTHER INFORMATION CONTACT: Mr. Wes Anderson, U.S. Department of Energy, Office... Avenue, SW., Washington, DC 20585-0121. Telephone: (202) 586-7335. E-mail: Wes.Anderson@ee.doe.gov . Ms...

  10. 76 FR 39245 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Wes.Anderson@ee.doe.gov . Mr. Eric Stas or Ms. Jennifer Tiedeman, U.S. Department of Energy, Office of.... Wesley Anderson (central air conditioners and heat pumps), U.S. Department of Energy, Office of Energy...

  11. A Brief History of Thoracic Surgery at the University of Texas MD Anderson Cancer Center.

    PubMed

    Walsh, Garrett Lyndon; Mehran, Reza John

    2016-01-01

    This article describes the history of the creation of the Department of Thoracic Surgery at the University of Texas MD Anderson Cancer Center in Houston, Texas. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Detection of Anderson-Fabry cardiomyopathy with CMR in a patient with chest pain and elevated cardiac biomarkers.

    PubMed

    Albin, Glenn; Ryan, Michael; Heltne, Carl

    2006-01-01

    This case illustrates the utility of CMR in evaluating a patient with undiagnosed Anderson-Fabry disease who presented with chest pain, elevated cardiac biomarkers, normal coronary arteries, and an abnormal echocardiogram.

  13. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE PAGES

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    2015-01-01

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  14. KSC-03PD-2976

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- Sandra Anderson, wife of STS-107 Payload Commander Michael Anderson, visits a new residence hall at the Florida Institute of Technology (FIT) in Melbourne, Fla., named for her late husband. Family members of the STS-107 astronauts, other dignitaries, members of the university community and the public gathered for a dedication ceremony for the Columbia Village at FIT. Each of the seven new residence halls in the complex is named for one of the STS-107 astronauts who perished during the Columbia accident -- Rick Husband, Willie McCool, Laurel Clark, Michael Anderson, David Brown, Kalpana Chawla, and Ilan Ramon.

  15. Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.

  16. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  17. Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Itai, K.; Fazekas, P.

    1996-07-01

    We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.

  18. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition of steam discharges from the Southeast Geysers. The hot spring waters are low in ions of Cl, B, and Li, but relatively high in HCO3, SO4 and NH4. The stable-isotope compositions (deuterium and oxygen-18) of these waters plot near the global meteoric water line. Geochemical data through time reveal apparent maxima in the concentrations of SO4, Fe, and Mn in 1991 to 1992, before the cluster became hotter. The black-to-gray deposits from the new spring cluster are rich in pyrite and contain anomalous metals. About one-half mile to the east of the hot springs, mineralized water discharges intermittently from an old adit of the Schwartz (Anderson) mine, and enters a tributary of Anderson Creek. This drainage increased substantially in July 1998, and a slurry of mine water and precipitates were transported down the tributary and into Anderson Creek. In December 1998, the adit water was 22°C, and had a chemical composition that was similar to spring waters that once discharged in the ravines surrounding the old Anderson Springs resort. The cause for the abrupt changes that have occurred in thermal features at Anderson Springs is still not resolved. One possibility is that these changes are a response to withdrawal of steam from The Geysers geothermal field over more than 20 years of production. Pressure declines in the geothermal reservoir may have caused a "drying out" of the overlying condensation zone. Induced boiling in this zone and upflow of deep steam to shallower depths would cause heating and vaporization of shallow ground waters. In addition, earthquakes occurring in the vicinity of Anderson Springs have increased significantly after nearby geothermal power plants began operation. These earthquakes may have enhanced surface discharge of thermal fluids along fractures and faults.

  19. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    ERIC Educational Resources Information Center

    Ondrus, Martin G.; And Others

    1983-01-01

    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  20. Thermal properties and chemical reactivity. Quarterly report, October 1971--December 1971

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, L.C.

    1998-12-31

    A very high boiling impurity was concentrated from a sample of FEFO with a hexane wash. Additional washing of this sample has increased the concentration of this impurity. A mass spectrum was obtained but an identification has not been made. The results of the analysis of the products from the thermal decomposition of FEFO at 120, 135, 150 C are discussed. A chromatogram of FEFO heated for 22 hours at 150 C shows a definite increase in low and high boiling impurities. The evaluation of the condition of the two coupon test assemblies aged at 80 C for 21 andmore » 27 months are discussed. Thermal analysis of the LX-09 from these two coupon tests, a PASS A mechanical test specimen and a control sample are reported. A PDP-12/30 was interfaced with a Perkin Elmer DSC-1 to measure the heat of fusion of PETN. Some of the problems associated with getting reproducible data are discussed. The heat of fusion for six lots of LX-13 grade PETN are given.« less

  1. 76 FR 59416 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Anderson, Gary Anderson, Penny Andrews, John Armstrong, Charles R. Armstrong, Sue Athmann, Ronald Ayala, Janice Barber, Delores Baroukh, Nader Bartoldus, Charles Bathurst, Donald Bauhs, Kim Beagles, James... Butcher, Michael Button, Christopher Byrne, Michael Byrne, Sean J. Cahill, Donna L. Callahan, Mary Ellen...

  2. 10. VIEW OF SITE B FROM WEST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF SITE B FROM WEST END OF ANDERSON WAY, FACING NORTHEAST (BUILDINGS 131, 130, 129, and 128 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  3. The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems. (II). Backscattering

    NASA Astrophysics Data System (ADS)

    Manciu, Marian; Sen, Surajit; Hurd, Alan J.

    1999-12-01

    We demonstrate that the propagation of solitons, soliton-like excitations and acoustic pulses discussed in the preceding article (M. Manciu, S. Sen and A.J. Hurd, Physica A, preceding article) can be used to detect buried impurities in a chain of elastic grains with Hertzian contacts. We also present preliminary data for 3D granular beds, where soliton-like objects can form and can be used to probe for buried impurities, thus suggesting that soliton-pulse spectroscopy has the potential to become a valuable tool for probing the structural properties of granular assemblies. The effects of restitution are briefly discussed. We refer to available experiments which support our contention.

  4. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  5. Quality by design (QbD) based development and validation of an HPLC method for amiodarone hydrochloride and its impurities in the drug substance.

    PubMed

    Karmarkar, S; Yang, X; Garber, R; Szajkovics, A; Koberda, M

    2014-11-01

    The USP monograph describes an HPLC method for seven impurities in the amiodarone drug substance using a L1 column, 4.6mm×150mm, 5μm packing (PF listed ODS2 GL-Science, Inertsil column) at 30°C with detection at 240nm. The standard contains 0.01mg/mL of amiodarone, and USP specified impurities D and E with a resolution requirement of NLT 3.5 between peaks D and E. Impurities in a 5mg/mL sample are quantitated against the standard. Impurity A peak elutes just before peak D. We observed two problems with the method; the column lot-to-lot variability resulted in unresolved A, D, and E peaks, and peak D in the sample preparation eluted much later than that in the standard solution. Therefore, optimization experiments were conducted on the USP method following the QbD approach with Fusion AE™ software (S-Matrix Corporation). The resulting optimized conditions were within the allowable changes per USP 〈621〉. Lot-to-lot variability was negligible with the Atlantis T3 (Waters Corporation) L1 column. Peak D retention time remained constant from standard to sample. The optimized method was validated in terms of accuracy, precision, linearity, range, LOQ/LOD, specificity, robustness, equivalency to the USP method, and solution stability. The QbD based development helped in generating a design space and operating space with knowledge of all method performance characteristics and limitations and successful method robustness within the operating space. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  7. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  8. Special Needs. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    2002

    This document contains the following papers on special needs from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Selected Technology-Infused Thematic Activities for Elementary and Special Education Teacher Education Programs" (Cindy L. Anderson and Kevin M. Anderson); (2) "Educational IT: How Students and…

  9. 40 CFR 81.343 - Tennessee.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Johnson County X That portion of Knox County within a section of downtown Knoxville X Rest of Knox County.... Knoxville, TN: Anderson County This action is effective 3/8/2011 Attainment Blount County This action is.... Knoxville, TN: Anderson County Nonattainment. Blount County Nonattainment. Knox County Nonattainment. Loudon...

  10. 19. View of satcom communication dome with TR radome in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of satcom communication dome with TR radome in background right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. 9. VIEW OF SITE B FROM EAST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SITE B FROM EAST END OF ANDERSON WAY, FACING WEST (BUILDINGS 126, 128, 129, 130, and 131 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  12. 41 CFR 109-40.5100 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.51-Price-Anderson Coverage Certifications for Nuclear Shipments § 109-40.5100 Scope of subpart. This subpart sets forth the policy for issuance of certifications regarding Price-Anderson coverage of particular shipments of nuclear materials. ...

  13. Slow dynamics of electron glasses: The role of disorder

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2017-04-01

    We examine in this work the role of disorder in contributing to the sluggish relaxation observed in intrinsic electron glasses. Our approach is guided by several empirical observations: First and foremost, Anderson localization is a pre-requisite for observing these nonequilibrium phenomena. Secondly, sluggish relaxation appears to favor Anderson insulators with relatively large Fermi energies (hence proportionally large disorder). These observations motivated us to consider a way to measure the underlying disorder in a realistic Anderson insulator. Optical studies using a series of amorphous indium oxide (InxO ) establish a simple connection between carrier concentration and the disorder necessary to approach the metal-insulator transition from the insulating side. This is used to estimate the typical magnitude of the quenched potential fluctuation in the electron-glass phase of this system. The implications of our findings on the slow dynamics of Anderson insulators are discussed. In particular, the reason for the absence of a memory dip and the accompanying electron-glass effects in lightly-doped semiconductors emerges as a natural consequence of their weak disorder.

  14. Random Matrix Theory and the Anderson Model

    NASA Astrophysics Data System (ADS)

    Bellissard, Jean

    2004-08-01

    This paper is devoted to a discussion of possible strategies to prove rigorously the existence of a metal-insulator Anderson transition for the Anderson model in dimension d≥3. The possible criterions used to define such a transition are presented. It is argued that at low disorder the lowest order in perturbation theory is described by a random matrix model. Various simplified versions for which rigorous results have been obtained in the past are discussed. It includes a free probability approach, the Wegner n-orbital model and a class of models proposed by Disertori, Pinson, and Spencer, Comm. Math. Phys. 232:83-124 (2002). At last a recent work by Magnen, Rivasseau, and the author, Markov Process and Related Fields 9:261-278 (2003) is summarized: it gives a toy modeldescribing the lowest order approximation of Anderson model and it is proved that, for d=2, its density of states is given by the semicircle distribution. A short discussion of its extension to d≥3 follows.

  15. Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radic, J.; Bacic, V.; Jukic, D.

    We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.

  16. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  17. Anderson localization in sigma models

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Wellnhofer, Jacob

    2018-03-01

    In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.

  18. 40 CFR 81.343 - Tennessee.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Johnson County X That portion of Knox County within a section of downtown Knoxville X Rest of Knox County... County (2) Attainment. Knoxville, TN: Anderson County This action is effective 3/8/2011 Attainment Blount... Date 1 Type Knoxville, TN: 2 Nonattainment Marginal. Anderson County (part) 2000 Census tracts: 202...

  19. FE Anderson exercising on the CEVIS during STS-118/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-08-16

    S118-E-07657 (16 Aug. 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Endeavour remains docked with the station.

  20. CEBAS - MS Anderson works with three middeck payloads

    NASA Image and Video Library

    1998-03-03

    S89-E-5204 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut Michael P. Anderson, mission specialist, checking the Biotechnology Refrigerator (BTR) while transferring logistics, onboard the Space Shuttle Endeavour. This ESC view was taken on January 25, 1998, at 18:54:53 GMT.

  1. MS Anderson works with three middeck payloads

    NASA Image and Video Library

    1998-03-03

    S89-E-5207 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut Michael P. Anderson, mission specialist, checking the Biotechnology Refrigerator (BTR) while transferring logistics onboard the Space Shuttle Endeavour. This ESC view was taken on January 25, 1998, at 18:56:29 GMT.

  2. 56. Building 105, close view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Building 105, close view of ion return RF balance tube adjustment controls. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 45. Building 102, view of waveguide "coaxial waste load" device ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Building 102, view of waveguide "coaxial waste load" device connected to waveguide combiner. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. Anderson v. University of Wisconsin: Handicap and Race Discrimination in Readmission Procedures.

    ERIC Educational Resources Information Center

    Smith, Elizabeth R.

    1989-01-01

    "Anderson v. University of Wisconsin" gives important guidance to universities by detailing the components of race and handicap discrimination claims, and illustrating how these claims can succeed. Readmission procedures that could reduce the likelihood of charges of discrimination are suggested. (Author/MLW)

  5. 78. View of radar systems technical publication library, transmitter building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. View of radar systems technical publication library, transmitter building no. 102, second floor. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Evaluation of the Malaga Bend salinity alleviation project, Eddy County, New Mexico

    USGS Publications Warehouse

    Kunkler, J.L.

    1980-01-01

    In an effort to reduce the flow of brine springs in the Malaga Bend reach of the Pecos River in southeastern New Mexico, brine was pumped from an aquifer underlying the Malaga Bend reach to a local depression known as Anderson Lake. The attempt to improve the quality of river water with this experiment was not successful because brine leakage from Anderson Lake to the nearby Pecos River through permeable subsurface rocks was greater than the previous natural spring inflow. Brine leakage from Anderson Lake from July 22, 1963, through September 30, 1968, was estimated by evaporation-pan, salt accumulation, and dissolved-constituent methods. The leakage values given by these three methods are in good agreement with each other and indicate that between the dates given, leakage from the lake was about 2 ,300 acre-feet, compared with a brine inflow to the lake of about 3,690 acre-feet. Other data indicate that pumping from the brine aquifer greatly reduced the natural inflow from brine springs to the Malaga Bend reach. The rate of brine leakage from Anderson Lake is probably greater than might be expected from other brine lakes in the area because the cavities in the bottom of the lake apparently are in hydrologic connection with the Pecos River. This connection is shown by a relation between the salinity of the Pecos River and the reservoir stage of Anderson Lake. (USGS)

  7. Polymeric metallic electrodes for rechargeable battery applications

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1982-01-01

    A review is presented on the status of plastic metal electrodes, emphasizing the use of polyacetylene as a prototype polymeric material. The electrochemical characteristics of polyacetylene are examined; and the potential use of this material, as well as other types of plastic metal electrodes, in batteries is evaluated. Several problem areas which must be solved before polyacetylene can be widely used in battery applications are discussed, including the problem of electrolyte stability, the problem that the depth of discharge and the energy density is limited by the metal-semiconductor transition, and also the poor electrochemical performance of impure material.

  8. Nonlinear Burn Control in Tokamaks using Heating, Non-axisymmetric Magnetic Fields, Isotopic fueling and Impurity injection

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Schuster, Eugenio

    2016-10-01

    Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.

  9. Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusoglu Sarikaya, C.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.

    2016-06-15

    The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the codemore » is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.« less

  10. An Empirical Study of Cultures of Assessment in Higher Education

    ERIC Educational Resources Information Center

    Fuller, Matthew B.

    2013-01-01

    Higher education campus leaders face a complex state of affairs regarding the documentation of evidence of student learning. There is no shortage of technical guidance for conducting assessment (e.g. Allen, 2006; Bresciani, 2007; Bresciani, Zelna, & Anderson, 2004; Lui, 2011; Maki, 2010; Suskie, 2009; Walvrood & Anderson, 2010), and a…

  11. 75 FR 57974 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... individuals listed below: Aguilar, David V. Alexander, Barbara Alikhan, Arif Anderson, Audrey Anderson, Gary L. Armstrong, Charles R. Ayala, Janice Aytes, Michael L. Bacon, Roxana Baldwin, William D. Baroukh, Nader Barr... N. Muenchau, Ernest Myers, David L. Neal, Jeffrey R. Neufeld, Donald W. Nicholson, David O'Connell...

  12. Graduate students Chris Hill and Ryan Anderson examine a cross section of the prototype rocket engine igniter.

    NASA Image and Video Library

    2017-09-08

    Majid Babai along with Dr. Judy Schneider, and graduate students Chris Hill and Ryan Anderson examine a cross section of the prototype rocket engine igniter created by an innovative bi-metallic 3-D printing advanced manufacturing process under a microscope.

  13. Fundamental Studies in Blow-Down and Cryogenic Cooling

    DTIC Science & Technology

    1993-09-01

    Mudawar , I. and Anderson, T.M., -High Flux Electronic Cooling by Means of Pool Boiling - Part I: Parametric Investigation of the Effects of Coolant...Electronics, pp. 25-34, 1989. 30 Mudawar , I. and Anderson, T.M., "High Flux Electronic Cooling by Means of Pool Boiling - Part 1I: Optimization of

  14. 60. View of radome hydraulic module control center in mezzanine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. View of radome hydraulic module control center in mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Observation of transverse Anderson localization in an optical fiber.

    PubMed

    Karbasi, Salman; Mirr, Craig R; Yarandi, Parisa Gandomkar; Frazier, Ryan J; Koch, Karl W; Mafi, Arash

    2012-06-15

    We utilize transverse Anderson localization as the waveguiding mechanism in optical fibers with random transverse refractive index profiles. Using experiments and numerical simulations, we show that the transverse localization results in an effective propagating beam diameter that is comparable to that of a typical index-guiding optical fiber.

  16. 33. View of data converter and power supply for TR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. View of data converter and power supply for TR system in transmitter building no. 102, mezzanine level. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. Expedition 14 Crew and Backup Crew Training

    NASA Image and Video Library

    2006-05-24

    JSC2006-E-20053 (24 May 2006) --- Astronaut Clayton C. Anderson, Expedition 14 backup flight engineer, participates in Journals experiment overview training in the Flight Operations Facility at Johnson Space Center. This type of training is a presentation format regarding the experiment objectives and tools. Training instructor Lindsay Kirschner assisted Anderson.

  18. Prevention of HIV/AIDS Education in Rural Communities II.

    ERIC Educational Resources Information Center

    Torabi, Mohammad R., Ed.

    1997-01-01

    This second special issue of the Health Education Monograph Series on HIV/AIDS Prevention in Rural Communities presents seven articles: (1) "Preventing Maternal-Infant Transmission of HIV: Social and Ethical Issues" (James G. Anderson, Marilyn M. Anderson, and Tara Booth); (2) "HIV Infection in Diverse Rural Population: Migrant Farm…

  19. 77. View of interior of room 115, building no. 102, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. View of interior of room 115, building no. 102, with technical publications and equipment for testing. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Evaluation of the train signal and rail systems for the Anton Anderson Memorial Tunnel.

    DOT National Transportation Integrated Search

    2014-07-01

    The Whittier Access Project was completed in 2000. One phase of the project was to convert the 2.5 mile long Anton Anderson : Memorial Tunnel (Whittier Tunnel) into the worlds only dual-use highway/railroad tunnel with one way reversible highway t...

  1. Telecommunications: Systems and Services. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Abramson, Gertrude, Ed.

    This document contains the following papers on telecommunications systems and services from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Using the Web To Provide Parent Progress Reports on Standards for All Students: Developing the System" (Kevin M. Anderson and Cindy L. Anderson); (2) "Computer and…

  2. Illiteracy in America. Joint Hearings before the Subcommittee on Elementary, Secondary, and Vocational Education of the Committee on Education and Labor, House of Representatives and the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources, United States Senate, Ninety-Ninth Congress, First Session, August 1; October 1, 3, 1985.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    Consisting of testimony and prepared materials presented to a joint session of House and Senate subcommittees, this report deals with the problem of illiteracy in the United States. The report contains statements from Richard C. Anderson, director of the Center for the Study of Reading; Samuel L. Banks, president of the Association for the Study…

  3. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  4. View of Anderson removing the EAS during a session of EVA on Expedition 15

    NASA Image and Video Library

    2007-07-23

    ISS015-E-19140 (23 July 2007) --- Anchored to the Canadarm2 foot restraint, astronaut Clay Anderson, Expedition 15 flight engineer, removes the Early Ammonia Servicer (EAS) from its place on the International Space Station during a session of extravehicular activity (EVA). Anderson later jettisoned the EAS by shoving it opposite of the station's direction of travel. The EAS was installed on the P6 truss during STS-105 in August 2001, as an ammonia reservoir if a leak had occurred. It was never used, and was no longer needed after the permanent cooling system was activated last December. The blackness of space and Earth's horizon provide the backdrop for the scene.

  5. View of Anderson removing the EAS during a session of EVA on Expedition 15

    NASA Image and Video Library

    2007-07-23

    ISS015-E-19135 (23 July 2007) --- Anchored to the Canadarm2 foot restraint, astronaut Clay Anderson, Expedition 15 flight engineer, removes the Early Ammonia Servicer (EAS) from its place on the International Space Station during a session of extravehicular activity (EVA). Anderson later jettisoned the EAS by shoving it opposite of the station's direction of travel. The EAS was installed on the P6 truss during STS-105 in August 2001, as an ammonia reservoir if a leak had occurred. It was never used, and was no longer needed after the permanent cooling system was activated last December. The blackness of space and Earth's horizon provide the backdrop for the scene.

  6. Financial protection against nuclear hazards: thirty years' experience under the Price-Anderson Act

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockett, L.R.; Hayn, I.

    1984-01-01

    The purpose of this study is to evaluate the operation of the Price-Anderson Act in the light of the last 10 years' experience and the changes that have occurred during that period both in the law and regulations and in the nuclear and insurance industries, and to provide an independent analysis of various proposals to extend or amend the Act prior to its 1987 expiration. The report does not analyze the impact of the Silkwood v. Kerr McGee Corp. decision. The five chapters cover historical background, financial protection under the Price-Anderson Act and in the absence of the Act, fundamentalmore » policy issues, and alternative proposals.« less

  7. Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemarie, Gabriel; Delande, Dominique; Chabe, Julien

    Using a cold atomic gas exposed to laser pulses - a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies - we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent {nu}=1.59{+-}0.01, which is found to be equal to the one previously computed for themore » Anderson model.« less

  8. "Bringing Taxonomy to the Service of Genetics": Edgar Anderson and Introgressive Hybridization.

    PubMed

    Kleinman, Kim

    2016-12-01

    In introgressive hybridization (the repeated backcrossing of hybrids with parental populations), Edgar Anderson found a source for variation upon which natural selection could work. In his 1953 review article "Introgressive Hybridization," he asserted that he was "bringing taxonomy to the service of genetics" whereas distinguished colleagues such as Theodosius Dobzhansky and Ernst Mayr did the precise opposite. His work as a geneticist particularly focused on linkage and recombination and was enriched by collaborations with Missouri Botanical Garden colleagues interested in taxonomy as well as with cytologists C.D. Darlington and Karl Sax. As the culmination of a biosystemtatic research program, Anderson's views challenged the mainstream of the Evolutionary Synthesis.

  9. 75 FR 8346 - Proposed CERCLA Administrative Settlement; Anderson-Calhoun Mine and Mill Site, Leadpoint, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ...-Calhoun Mine and Mill Site, Leadpoint, WA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...-Calhoun Mine and Mill Site in Leadpoint, Washington, with settling party Blue Tee Corporation. The... Anderson-Calhoun Mine and Mill Site in Leadpoint, Washington, EPA Docket No. CERCLA-10-2010-0105 and should...

  10. 78 FR 41835 - Inflation Adjustments to the Price-Anderson Act Financial Protection Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... Price-Anderson Act Financial Protection Regulations AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The Atomic Energy Act of 1954, as amended (AEA), requires the U.S. Nuclear Regulatory...

  11. Association of Small Computer Users in Education (ASCUE) Summer Conference. Proceedings (28th, North Myrtle Beach, South Carolina, June 18-22, 1995).

    ERIC Educational Resources Information Center

    Armel, Donald, Ed.

    Papers from a conference on microcomputers are: "Organizational Leadership through Information Technology" (John A. Anderson); "Multimedia in the Classroom--Rejuvenating the Literacy Course" (Stephen T. Anderson, Sr.); "Something New about Notetaking: A Computer-Based Instructional Experiment" (Donald Armel);…

  12. Protecting Our Underwater Friends

    ERIC Educational Resources Information Center

    Norman, Connie

    2012-01-01

    The author was fortunate enough to teach in the children's program at Anderson Ranch Arts Center in Snowmass, Colorado. Anderson Ranch is a magical place where artists young and old come to expand their creative spirits. The children's art program spans a wide range of media for children aged six through seventeen. There are classes to explore…

  13. Anderson uses laptop computer in the U.S. Laboratory during Joint Operations

    NASA Image and Video Library

    2007-06-13

    S117-E-07134 (12 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, uses a computer near the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station while Space Shuttle Atlantis (STS-117) was docked with the station. Astronaut Sunita Williams, flight engineer, is at right.

  14. Anderson localization in Nb/Al superconducting bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, M.; Lacquaniti, V.; Maggi, S.

    2000-01-01

    The authors have measured the temperature dependence of resistivity in relatively thick Nb/Al bilayers fabricated at room temperature, observing the decrease of {rho} for increasing T typical of Anderson localization in disordered systems. The authors report the experimental conditions which determine this behavior and compare it to theoretical models for localization in 3D systems.

  15. The Effect on Student Achievement of Increasing Kinetic Structure of Teachers' Lectures.

    ERIC Educational Resources Information Center

    Lamb, William G.; And Others

    1979-01-01

    Tests O. R. Anderson's theory of kinetic structure of verbal communications by administering lectures on swine flu to high school biology students and then reteaching the lectures with increased commonality. Results weakly support Anderson's theory. Implications are made for training teachers to increase the commonality of their lectures. (CS)

  16. 49. View of waveguide system entering building no. 105 (typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. View of waveguide system entering building no. 105 (typical of all radar scanner buildings), showing testing connection points and monitoring equipment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. 24. View of lobby area on first floor transmitter building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. View of lobby area on first floor transmitter building no. 102 looking into controlled access corridor and door system - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 61. View of TR spiral access stair system from transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. View of TR spiral access stair system from transmitter building no. 102 mezzanine level; note elevator door on right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. 17. View looking north to transmitter building no. 102 from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View looking north to transmitter building no. 102 from south along west side of passageway link with TR radome in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. 42. View of CSMR room equipment status board and operators ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. View of CSMR room equipment status board and operators console with two phone links to MWOC in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. 36. View of preset counter (PC) console and tracking console ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. View of preset counter (PC) console and tracking console on right, located in MWOC facility in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. 53. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. View from ground level in building no. 105 showing lower radar scanner switch with incoming waveguide and control switch. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 58. View of high pressure IngersollRand dehumidifier/dessicator and compressor system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of high pressure Ingersoll-Rand dehumidifier/dessicator and compressor system to supply dry pressurized air to waveguides. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 23. View of junction of passageway link with radar transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. View of junction of passageway link with radar transmitter building 102 (view looking south) showing main personnel entrance door. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 22. View of vehicle entrance to passageway link system taken ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View of vehicle entrance to passageway link system taken from looking west. Note DR 3 antenna in background left. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 37. View of detection radar environmental display (DRED) console for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. View of detection radar environmental display (DRED) console for middle DR 2 (structure no. 736) antenna, located in MWOC facility. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 79. View of interior of room 114, supervisor's office, transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. View of interior of room 114, supervisor's office, transmitter building no. 102, with microfiche viewer and technical publications. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. Theoretical Study of the Saturated Stage of a Relativistic Magnetron

    DTIC Science & Technology

    2008-11-30

    mentioned that an earlier method to estimate the validity of a variational approximation had been given in Ref. [28], where Dexais, Anderson and Lasik ...Zemlyanaya. Phys. Rev. Lett. 80 (1998)5117. [28] M. Dexais. D. Anderson. M. Lasik . Phys. Rev. A 40 (1989) 2441. This research was supported in part by

  9. Improving Earthquake and Explosion Discrimination by Using Love and Rayleigh Wave Magnitudes (Postprint) Annual Report 3

    DTIC Science & Technology

    2012-03-22

    ELEMENT NUMBER 62601F 6. AUTHOR(S) Jessie Bonner1, Anastasia Stroujkova1, and Dale N. Anderson2 5d. PROJECT NUMBER 1010 5e...MAGNITUDES Jessie Bonner1, Anastasia Stroujkova1, and Dale N. Anderson2 Weston Geophysical Corporation1 and Los Alamos National Laboratory2

  10. Student Predisposition to Instructor Feedback and Perceptions of Teaching Presence Predict Motivation toward Online Courses

    ERIC Educational Resources Information Center

    Cole, Andrew William; Nicolini, Kristine M.; Anderson, Christopher; Bunton, Thomas; Cherney, Maura R.; Fisher, Valerie Cronin; Draeger, Richard, Jr.; Featherston, Michelle; Motel, Laura; Peck, Brittnie; Allen, Mike

    2017-01-01

    Much research into college student motivation focuses on traditional face-to-face (FtF) classroom settings. Building from previous research in Feedback Intervention Theory (Kluger & DeNisi, 1996) and the Community of Inquiry framework (Anderson, Rourke, Garrison, & Archer, 2001; Garrison, Anderson, & Archer, 1999), this study sought to…

  11. 76 FR 56004 - Mannheim Armitage Railway, LLC-Acquisition and Operation Exemption-Certain Trackage Rights of J...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35540] Mannheim Armitage Railway, LLC--Acquisition and Operation Exemption--Certain Trackage Rights of J. Emil Anderson & Son, Inc... verified notice of exemption \\1\\ under 49 CFR 1150.31 to acquire from J. Emil Anderson & Son, Inc...

  12. Researching the Community of Inquiry Framework: Review, Issues, and Future Directions

    ERIC Educational Resources Information Center

    Garrison, D. Randy; Arbaugh, J. B.

    2007-01-01

    Since its publication in "The Internet and Higher Education," Garrison, Anderson, and Archer's [Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. "The Internet and Higher Education," 2(2-3), 87-105.] community of inquiry (CoI) framework has generated…

  13. Adolescent Identities and Sexual Behavior: An Examination of Anderson's Player Hypothesis

    ERIC Educational Resources Information Center

    Giordano, Peggy C.; Longmore, Monica A.; Manning, Wendy D.; Northcutt, Miriam J.

    2009-01-01

    We investigate the social and behavioral characteristics of male adolescents who self-identify as players, focusing particularly on Anderson's claim that this social role is inextricably linked with poverty and minority status. Results indicate that black respondents, those affiliated with liberal peers and young men who initially report a…

  14. 83. View of specialized maintenance shop in transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. View of specialized maintenance shop in transmitter building no. 101, with shelves of obsolete electronic equipment with disposition and shipping tags. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. 30. View of mezzanine floor level in transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. View of mezzanine floor level in transmitter building no. 102 showing control transmitter electronic cabinets and control modules. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. 29. View of typical radio frequency monitor group electronic tubetype ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. View of typical radio frequency monitor group electronic tube-type cabinet. System is water-cooled with antenna assist. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. A Tale of Two Movements: The Power and Consequences of Misremembering "Brown"

    ERIC Educational Resources Information Center

    Williamson, Joy Ann

    2006-01-01

    If, as James Anderson stated, a nation committed to democracy and equality has every reason to be ashamed on "Brown v. Board of Education's" 50th anniversary, why the commemoration and celebration? By revising Anderson's challenge to examine the complex role of "Brown" in the nation's memory and history, this chapter…

  18. 6. View of DR 3 antenna typical backstay concrete stanchion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of DR 3 antenna typical back-stay concrete stanchion showing embedded anchors and structural steel leg with pin attachment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. 77 FR 72906 - Chessie Logistics Co., LLC-Acquisition and Operation Exemption-J. Emil Anderson & Son, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35700] Chessie Logistics Co., LLC--Acquisition and Operation Exemption-- J. Emil Anderson & Son, Inc. Chessie Logistics Co..., including 431 feet of siding, in the city of Melrose Park, Cook County, Ill. (the Track). According to...

  20. Understanding the Advising Learning Process Using Learning Taxonomies

    ERIC Educational Resources Information Center

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  1. 82. View of specialized maintenance shop in transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. View of specialized maintenance shop in transmitter building no. 101, showing technical publications library and equipment logging trays. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. [Heart involvement in Anderson-Fabry disease: Italian recommendations for diagnostic, follow-up and therapeutic management].

    PubMed

    Pieruzzi, Federico; Pieroni, Maurizio; Zachara, Elisabetta; Marziliano, Nicola; Morrone, Amelia; Cecchi, Franco

    2015-11-01

    Anderson-Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations of the GLA gene that encodes alpha-galactosidase A. It is characterized by a multisystemic involvement: the renal, neurological, heart, cochleovestibular and cutaneous systems are the most damaged. Morbidity and mortality of Anderson-Fabry disease depend on renal insufficiency, heart failure and nervous system involvement. Left ventricular hypertrophy is the most common cardiac manifestation followed by conduction system disease, valve dysfunction, and arrhythmias. Mild to moderate left ventricular hypertrophy may simulate a non-obstructive hypertrophic cardiomyopathy. Management of Anderson-Fabry disease starting from the diagnosis of cardiac involvement, the prevention of complications, the therapeutic aspects, up to appropriate clinical follow-up, requires a multidisciplinary approach. According to recent management guidelines, only few evidence-based data are available to guide the clinical and therapeutic approach to this rare disease. An Italian Board, composed by nephrologists, cardiologists, geneticists, pediatricians and neurologists has been established in order to approve by consensus a diagnostic and therapeutic management protocol. The authors report the results of this cardiologic management consensus.

  3. Investigations on the heat flux and impurity for the HL-2M divertor

    NASA Astrophysics Data System (ADS)

    Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.

    2016-12-01

    The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}}   =  0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}}   =  2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better performance in terms of the parameters of discharges.

  4. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).

  5. Feature inference with uncertain categorization: Re-assessing Anderson's rational model.

    PubMed

    Konovalova, Elizaveta; Le Mens, Gaël

    2017-09-18

    A key function of categories is to help predictions about unobserved features of objects. At the same time, humans are often in situations where the categories of the objects they perceive are uncertain. In an influential paper, Anderson (Psychological Review, 98(3), 409-429, 1991) proposed a rational model for feature inferences with uncertain categorization. A crucial feature of this model is the conditional independence assumption-it assumes that the within category feature correlation is zero. In prior research, this model has been found to provide a poor fit to participants' inferences. This evidence is restricted to task environments inconsistent with the conditional independence assumption. Currently available evidence thus provides little information about how this model would fit participants' inferences in a setting with conditional independence. In four experiments based on a novel paradigm and one experiment based on an existing paradigm, we assess the performance of Anderson's model under conditional independence. We find that this model predicts participants' inferences better than competing models. One model assumes that inferences are based on just the most likely category. The second model is insensitive to categories but sensitive to overall feature correlation. The performance of Anderson's model is evidence that inferences were influenced not only by the more likely category but also by the other candidate category. Our findings suggest that a version of Anderson's model which relaxes the conditional independence assumption will likely perform well in environments characterized by within-category feature correlation.

  6. Fabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C.

    PubMed

    Caetano, Francisca; Botelho, Ana; Mota, Paula; Silva, Joana; Leitão Marques, António

    2014-03-01

    Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, atypical chest pain and palpitations, in whom a transthoracic echocardiogram revealed an apical variant of hypertrophic cardiomyopathy. Analysis of specific sarcomeric genetic mutations was negative. The patient underwent a screening protocol for Anderson-Fabry disease, using a dried blood spot test, which was standard at our institution for patients with left ventricular hypertrophy. The enzymatic activity assay revealed reduced α-galactosidase A enzymatic activity. Molecular analysis identified a missense point mutation in the GLA gene (p.R118C). This case report shows that Anderson-Fabry disease may cause an apical form of left ventricular hypertrophy. The diagnosis was only achieved because of systematic screening, which highlights the importance of screening for Anderson-Fabry disease in patients with unexplained left ventricular hypertrophy, including those presenting with more unusual patterns, such as apical variants of left ventricular hypertrophy. This case also supports the idea that the missense mutation R118C is indeed a true pathogenic mutation of Anderson-Fabry disease. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  7. Non-conventional Anderson localization in a matched quarter stack with metamaterials

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.

    2013-05-01

    We study the problem of non-conventional Anderson localization emerging in bilayer periodic-on-average structures with alternating layers of materials, with positive and negative refraction indices na and nb. Attention is paid to the model of the so-called quarter stack with perfectly matched layers (the same unperturbed by disorder impedances, Za = Zb, and optical path lengths, nada = |nb|db, with da and db being the thicknesses of basic layers). As was recently numerically discovered, in such structures with weak fluctuations of refractive indices (compositional disorder), the localization length Lloc is enormously large in comparison to the conventional localization occurring in the structures with positive refraction indices only. In this paper we develop a new approach, which allows us to derive the expression for Lloc for weak disorder and any wave frequency ω. In the limit ω → 0 one gets a quite specific dependence, L-1loc∝σ4ω8, which is obtained within the fourth order of perturbation theory. We also analyze the interplay between two types of disorder, when in addition to the fluctuations of na and nb, the thicknesses da and db slightly fluctuate as well (positional disorder). We show how conventional localization recovers with the addition of positional disorder.

  8. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  9. Preliminary report on methodology for calculating coal resources of the Wyodak-Anderson coal zone, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.

  10. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures.

    PubMed

    Park, Chul Hyun; Shon, Oog Jin; Kim, Gi Beom

    2016-09-01

    Traditionally, Gustilo Anderson grade IIIb open tibial fractures have been treated by initial wide wound debridement, stabilization of fracture with external fixation, and delayed wound closure. The purpose of this study is to evaluate the clinical and radiological results of staged treatment using negative pressure wound therapy (NPWT) for Gustilo Anderson grade IIIb open tibial fractures. 15 patients with Gustilo Anderson grade IIIb open tibial fractures, treated using staged protocol by a single surgeon between January 2007 and December 2011 were reviewed in this retrospective study. The clinical results were assessed using a Puno scoring system for severe open fractures of the tibia at the last followup. The range of motion (ROM) of the knee and ankle joints and postoperative complication were evaluated at the last followup. The radiographic results were assessed using time to bone union, coronal and sagittal angulations and a shortening at the last followup. The mean score of Puno scoring system was 87.4 (range 67-94). The mean ROM of the knee and ankle joints was 121.3° (range 90°-130°) and 37.7° (range 15°-50°), respectively. Bone union developed in all patients and the mean time to union was 25.3 weeks (range 16-42 weeks). The mean coronal angulation was 2.1° (range 0-4°) and sagittal was 2.7° (range 1-4°). The mean shortening was 4.1 mm (range 0-8 mm). Three patients had partial flap necrosis and 1 patient had total flap necrosis. There was no superficial and deep wound infection. Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures.

  11. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  12. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  13. Mathematics as an Im/Pure Knowledge System: Symbiosis, (W)Holism and Synergy in Mathematics Education

    ERIC Educational Resources Information Center

    Luitel, Bal Chandra

    2013-01-01

    The problem of culturally decontextualised mathematics education faced by Nepali students, teachers and teacher educators has often been oriented by the view of the nature of "mathematics as a body of pure knowledge," which gives rise to an exclusive emphasis on an ideology of singularity, epistemology of objectivism, language of…

  14. Fermi energy 5f spectral weight variation in uranium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varyingmore » degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.« less

  15. DFT treatment of transport through Anderson junction: exact results and approximations

    NASA Astrophysics Data System (ADS)

    Burke, Kieron

    2012-02-01

    Since the pioneering break-junction experiments of Reed and Tour measuring the conductance of dithiolated benzene between gold leads, many researchers in physics and chemistry have been calculating conductance for such systems using density functional theory (DFT). Off resonance, the predicted current is often 10-100 times larger than that measured. This error is often ascribed to the application of ground-state DFT to a non-equilibrium problem. I will argue that, in fact, this is largely due to errors in the density functional approximations in popular use, rather than necessarily errors in the methodology. A stark illustration of this principle is the ability of DFT to reproduce the exact transmission through an Anderson junction at zero-temperature and weak bias, including the Kondo plateau, but only if the exact ground-state density functional is used. In fact, this case can be used to reverse-engineer the exact functional for this problem. Popular approximations can also be tested, including both smooth and discontinuous functionals of the density, as well as symmetry-broken approaches. [4pt] [1] Kondo effect given exactly by density functional theory, J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, arXiv:1106.3104; [0pt] [2] Broadening of the Derivative Discontinuity in Density Functional Theory, F. Evers, and P. Schmitteckert, arXiv:1106.3658; [0pt] [3] DFT-based transport calculations, Friedel's sum rule and the Kondo effect, P. Tr"oster, P. Schmitteckert, and F. Evers, arXiv:1106.3669; [0pt] [4] Towards a description of the Kondo effect using time-dependent density functional theory, G. Stefanucci, and S. Kurth, arXiv:1106.3728.

  16. Cognitive skill learning and schizophrenia: implications for cognitive remediation.

    PubMed

    Michel, L; Danion, J M; Grangé, D; Sandner, G

    1998-10-01

    The ability to acquire a motor and cognitive skill was investigated in 26 patients with schizophrenia and 26 normal participants using repeated testing on the Tower of Toronto puzzle. Seven patients with defective performance were retested using additional trials and immediate feedback designed to facilitate problem solving. A component analysis of performance was used based on J. R. Anderson's (1987) model of cognitive skill learning. Patients exhibited a performance deficit on both motor and cognitive skills. However, their acquisition rate was similar to that of normal participants on most parameters, indicating that skill learning suffered little or no impairment. Performance deficit was accounted for by poor problem-solving ability, explicit memory, and general intellectual capacities. It was remediable in some, but not all, patients. Remediation failure was also related to severe defects of cognitive functions.

  17. Combining Anderson's Model in the Teaching of Art Appreciation for Undergraduate Students

    ERIC Educational Resources Information Center

    Subramaniam, Maithreyi; Basaree, Ruzaika Omar; Hanafi, Jaffri; Putih, Abu Talib

    2016-01-01

    This study utilized 33 students taking creative communication design 3 in the third year of the graphic design and multimedia program, using an Anderson's model in teaching art appreciation. The quantitative research design and procedures were employed in this study. An experimental research using the quasi-experimental design, a single-group…

  18. 71. Transmitter building no. 102, view of arrangement showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Transmitter building no. 102, view of arrangement showing the Klystron tube vaults along right side of photograph and capacitor vaults along left side of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Narratives as Dialogic, Contested, and Aesthetic Performances

    ERIC Educational Resources Information Center

    Harter, Lynn M.

    2009-01-01

    Dr. Pete Anderson, a clinician and professor at the University of Texas MD Anderson Cancer Center, entered the life of Anna and her family two years ago. Anna was referred to him because of his clinical research and expertise in pediatric oncology and multimodality therapies. Anna had been diagnosed with metastatic Ewing's Sarcoma, a form of bone…

  20. 2. View of southerly DR 1 antenna looking north 25 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of southerly DR 1 antenna looking north 25 degrees west and and showing radar scanner building no. 105 east face through antenna. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. 3. View of middle DR 2 antenna looking north 30 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of middle DR 2 antenna looking north 30 degrees west and showing radar scanner building no. 105 east face through antenna. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Design Calculation Procedure for Passive Solar Houses at Navy Installations in East Coast Regions with Temperate Climate. Volume II.

    DTIC Science & Technology

    1981-10-01

    READING 17. Rick Fisher and Bill Yanda, Solar Greenhouse, John Muir Publications, Santa Fe, NM 87501, 1976. 18. 0. A. Bainbridge, "Water Wall Passive...Anderson and Michael Riordan , The Solar House Book, Chesire Books, Harrisville, New Hampshire, 1976. 24. Bruce Anderson, Solar Energy: Fundamentals in

  3. E. N. Anderson: Caring for place: ecology, ideology, and emotion in traditional landscape management

    Treesearch

    Susan Stevens Hummel

    2016-01-01

    Anderson is deeply concerned with inadequate responses to ongoing global environmental degradation. Accordingly, he offers cases of traditional societies that survived over long time periods without destroying their environments. His focus is on ways humans think about plants, animals, and landscapes because of his conviction that stories about them are what make us...

  4. 75 FR 69160 - Quarterly Publication of Individuals, Who Have Chosen To Expatriate, as Required by Section 6039G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Anderson John Derek Anderson Rose Mary Andreen Clas Svante Joel Ang Diana Shu-Zhen Angelini Kevin Yang... Anthony Bergandi Marco Lee Berre Jean N. Berryman Curtis Frederick Beveridge Richard Henry Earle Beveridge... Cheung Mark Quintin Chih-Hsiang Lisa Lee Chiu Sammy Kai-Kong Christianson Marlys Chun Jessica Chung...

  5. 43. View of CSMR room equipment locator and system checkout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of CSMR room equipment locator and system checkout console for detection radars and rearward communication data links in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 9. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of back side of radar scanner building no. 106 showing passageway links to other buildings east and west, and DR 3 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 10. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of back side of radar scanner building no. 104 showing passageway links to other building to east and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. 50. View of waveguides beginning to move toward two radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. View of waveguides beginning to move toward two radar scanner switches (two per radar scanner building) by vertical bends; also tuning devices are located here. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 21. View from south to southerly face of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from south to southerly face of scanner building 104 showing building radius. Radius of building face matches radius of DR antenna systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. 18. View from DR 2 antenna looking south 45 degrees ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View from DR 2 antenna looking south 45 degrees west to backside transmitter building 101 and in left foreground showing site well system building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. 20. View from northeast to southwest side of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View from northeast to southwest side of scanner building 104 showing two waveguide termination faces (fiberglass light bands on left of photograph). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. 46. Building 102, view showing waveguide control switch used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Building 102, view showing waveguide control switch used to achieve equal length adjustments and frequency control between separate Klystron tube radion frequency (RF) generators. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. Comments in defense of symposia proceedings: Response to Bart and Anderson

    Treesearch

    Deborah M. Finch; A. Lorin Ward; R. H. Hamre

    1982-01-01

    A recent "Opinion" in the Wildlife Society Bulletin (Bart and Anderson 1981) made a case against publishing symposia proceedings because (1) papers of non-refereed symposia often lack credibility and, therefore, harm both the authors and the profession, (2) proceedings are not readily retrievable, and (3) some symposium reports are not appropriate for...

  14. 32. View of relay assembly group and interconnecting group electronic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. View of relay assembly group and interconnecting group electronic modules located on second floor of transmitter building no. 102 in MIP area. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. 85. View of specialized maintenance shop in transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. View of specialized maintenance shop in transmitter building no. 101, showing test bed with meters, power supplies, oscilloscopes, and other electronic test equipment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. 35. View of data and analysis console (DAC), located in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. View of data and analysis console (DAC), located in MWOC facility in transmitter building no. 102, showing clock and missile impact predictor time. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. Dystopian Visions of Global Capitalism: Philip Reeve's "Mortal Engines" and M.T Anderson's "Feed"

    ERIC Educational Resources Information Center

    Bullen, Elizabeth; Parsons, Elizabeth

    2007-01-01

    This article examines Philip Reeve's novel for children, "Mortal Engines", and M.T. Anderson's young adult novel, "Feed", by assessing these dystopias as prototypical texts of what Ulrich Beck calls risk society. Through their visions of a fictional future, the two narratives explore the hazards created by contemporary techno-economic progress,…

  18. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2018-05-07

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  19. 39. View of checkout indicator computer console for DR beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View of checkout indicator computer console for DR beams, TR chains, and special checkout target control located in CSMR in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. First progress report, 1961-1962, cooperative watershed management in the lower conifer zone of California

    Treesearch

    Walt Hopkins; Kenneth L. Boden

    1962-01-01

    The job of watershed management research is to conduct studies which will suggest better methods of management for water and predict the effects of a wide span of land management practices upon streamflow, water yield, and sedimentation. A program for watershed management research was prepared by Henry Anderson in 1960 (Anderson, 1960).

  1. A Response and Commentary To: A Review of e-Learning in Canada

    ERIC Educational Resources Information Center

    Anderson, Terry

    2006-01-01

    Terry Anderson is a professor and Canada Research chair in Distance Education at Athabasca University, Canada's Open University, where he teaches in the Masters of Distance Education program. In this article, Anderson begins his response to "A Review of E-Learning in Canada" by commenting that he believes Philip Abrami and his colleagues…

  2. 73. View of line of stainless steel coolant storage tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. View of line of stainless steel coolant storage tanks for bi-sodium sulfate/water coolant solution at first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 106. Air defense command "master plan", base map," RCA Service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. Air defense command "master plan", base map," RCA Service Company tab no. F-1, sheet 1 of 2, dated 22 October, 1965. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 107. Air defense command "master plan, basic mission plan," RCA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. Air defense command "master plan, basic mission plan," RCA Service Company tab no. F-1, sheet 2 of 2, dated 1 June, 1963. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. FBI Attempt to Screen Archive Prompts Fears: Journalist's Family Wants to Block Search of Papers Held by University

    ERIC Educational Resources Information Center

    Carlson, Scott

    2006-01-01

    During his life and career as a muckraking journalist in Washington, Jack Anderson cultivated secret sources throughout the halls of government--sources who passed on information that allowed Anderson to investigate and write about Watergate, CIA assassination schemes, and countless scandals. His syndicated column, Washington Merry-Go-Round,…

  6. (dis)Ability and Music Education: Paralympian Patrick Anderson and the Experience of Disability in Music

    ERIC Educational Resources Information Center

    Bell, Adam Patrick

    2017-01-01

    What does it mean to experience disability in music? Based on interviews with Patrick Anderson--arguably the greatest wheelchair basketball player of all time--this article presents insights into the complexities of the experience of disability in sports and music. Contrasted with music education's tendency to adhere to a medicalized model of…

  7. A Safe School Climate: A Systemic Approach and the School Counselor

    ERIC Educational Resources Information Center

    Hernandez, Thomas J.; Seem, Susan R.

    2004-01-01

    The climate of the school is central to the educational mission of a school (Anderson, 1998; Sherman et al., 1997; Jenkins, 1997; Lockwood, 1997). Anderson surveyed recent school safety research and found that altering a school's internal climate can have a significant positive effect on the feeling of safety in the school community. Gottfredson…

  8. View of Expedition 15 FE Anderson performing the ANITA Experiment in the Node 1

    NASA Image and Video Library

    2007-10-06

    ISS015-E-32200 (6 Oct. 2007) --- Astronaut Clay Anderson, Expedition 15 flight engineer, uses an air sample pump and 2.5 liter gas sample bag to gather and analyze air samples for the Analyzing Interferometer for Ambient Air (ANITA) experiment in the Unity node of the International Space Station.

  9. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. 105. View of tracking radome replacement project, progress photograph, official ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. View of tracking radome replacement project, progress photograph, official photograph BMEWS Project by unknown photographer, 11 August 1981, clear as negative no. A-18562. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. 75 FR 16177 - Notice of Lodging of Material Modification to Consent Decree Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... the State of Indiana v. City of Anderson, Indiana, Civil Action No. IP 02- 1103 C M/S (S.D. Ind.) was... Anderson, Indiana, Civil Action No. IP 02-1103 C M/S (S.D. Ind.) and D.J. Ref. No. 90-5-2-1-07043/2. The...

  12. Identification and characterization of potential impurities of donepezil.

    PubMed

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  13. Observation of Anderson localization in disordered nanophotonic structures

    NASA Astrophysics Data System (ADS)

    Sheinfux, Hanan Herzig; Lumer, Yaakov; Ankonina, Guy; Genack, Azriel Z.; Bartal, Guy; Segev, Mordechai

    2017-06-01

    Anderson localization is an interference effect crucial to the understanding of waves in disordered media. However, localization is expected to become negligible when the features of the disordered structure are much smaller than the wavelength. Here we experimentally demonstrate the localization of light in a disordered dielectric multilayer with an average layer thickness of 15 nanometers, deep into the subwavelength regime. We observe strong disorder-induced reflections that show that the interplay of localization and evanescence can lead to a substantial decrease in transmission, or the opposite feature of enhanced transmission. This deep-subwavelength Anderson localization exhibits extreme sensitivity: Varying the thickness of a single layer by 2 nanometers changes the reflection appreciably. This sensitivity, approaching the atomic scale, holds the promise of extreme subwavelength sensing.

  14. A Short History of the Theory and Experimental Discovery of Superfluidity in 3He

    NASA Astrophysics Data System (ADS)

    Brinkman, W. F.

    I discuss the development of the theory and experiments on superfluid 3He. After the discovery of superfluidity in 3He by Osheroff, Richardson and Lee, Phil Anderson quickly recruited Doug Osheroff to come to Bell Labs and set up a dilution fridge to continue his experiments. One of the mysteries at that time was how the high-temperature A-phase, which has a gapless excitation spectrum, could be stabilized relative to the fully gapped, lower temperature B-phase. I explain how Phil Anderson and I developed the spin fluctuation theory of the A-phase of superfluid 3He which accounted for its stability, leading to the Anderson-Brinkman-Morel (ABM) theory of the superfluid A-phase...

  15. Anderson localization of graphene by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp; Ogawa, S.

    Irradiation of a single-layer graphene (SLG) with accelerated helium ions (He{sup +}) controllably generates defect distributions, which create a charge carrier scattering source within the SLG. We report direct experimental observation of metal-insulator transition in SLG on SiO{sub 2}/Si substrates induced by Anderson localization. This transition was investigated using scanning capacitance microscopy by monitoring the He{sup +} dose conditions on the SLG. The experimental data show that a defect density of more than ∼1.2% induced Anderson localization. We also investigated the localization length by determining patterned placement of the defects and estimated the length to be several dozen nanometers. Thesemore » findings provide valuable insight for patterning and designing graphene-based nanostructures using helium ion microscopy.« less

  16. Impurity effects in transition metal silicides

    NASA Technical Reports Server (NTRS)

    Lien, C.-D.; Nicolet, M.-A.

    1984-01-01

    Impurities can affect the properties of silicides directly by virtue of their presence. Impurities can also influence the processes by which silicides are formed. The effect of impurities on the reaction of transition metal films with a silicon substrate induced by thermal annealing are well documented. The interpretation of these results is discussed. It is shown that impurity redistribution is a major factor in determining how significant the effect of an impurity is. Redistribution observed for dopant impurities is also discussed.

  17. Proposal for a new trajectory for subaxial cervical lateral mass screws.

    PubMed

    Amhaz-Escanlar, Samer; Jorge-Mora, Alberto; Jorge-Mora, Teresa; Febrero-Bande, Manuel; Diez-Ulloa, Maximo-Alberto

    2018-06-20

    Lateral mass screws combined with rods are the standard method for posterior cervical spine subaxial fixation. Several techniques have been described, among which the most used are Roy Camille, Magerl, Anderson and An. All of them are based on tridimensional angles. Reliability of freehand angle estimation remains poorly investigated. We propose a new technique based on on-site spatial references and compare it with previously described ones assessing screw length and neurovascular potential complications. Four different lateral mass screw insertion techniques (Magerl, Anderson, An and the new described technique) were performed bilaterally, from C3 to C6, in ten human spine specimens. A drill tip guide wire was inserted as originally described for each trajectory, and screw length was measured. Exit point was examined, and potential vertebral artery or nerve root injury was assessed. Mean screw length was 14.05 mm using Magerl's technique, 13.47 mm using Anderson's, 12.8 mm using An's and 17.03 mm using the new technique. Data analysis showed significantly longer lateral mass screw length using the new technique (p value < 0.00001). Nerve potential injury occurred 37 times using Magerl's technique, 28 using Anderson's, 13 using An's and twice using the new technique. Vertebral artery potential injury occurred once using Magerl's technique, 8 times using Anderson's and none using either An's or the new proposed technique. The risk of neurovascular complication was significantly lower using the new technique (p value < 0.01). The new proposed technique allows for longer screws, maximizing purchase and stability, while lowering the complication rate.

  18. Association of Small Computer Users in Education (ASCUE) Summer Conference Proceedings (29th, North Myrtle Beach, South Carolina, June 9-13, 1996).

    ERIC Educational Resources Information Center

    Smith, Peter, Ed.

    Papers from a conference on small college computing issues are: "Ethics, Privacy, and Security in Higher Education Technology" (John A. Anderson); "Multimedia in the Classroom: Recollections After Two Years" (Stephen T. Anderson Sr.); "Creating a Computer Competency Requirement for Mary Washington College Students" (David J. Ayersman, Ernest C.…

  19. Markovian Anderson Model: Bounds for the Rate of Propagation

    NASA Astrophysics Data System (ADS)

    Tcheremchantsev, Serguei

    We consider the Anderson model in with potentials whose values at any site of the lattice are Markovian independent random functions of time. For solutions to the time-dependent Schrödinger equation we show under some conditions that with probability 1 where for d=1,2 and for .

  20. Identification and Analysis of Learning Preferences of Mentally Ill Adults in Rehabilitative Psychosocial Therapy at the Anderson Mental Health Center.

    ERIC Educational Resources Information Center

    Newman, Michael K.

    A study identified and analyzed the learning preferences of 17 seriously and chronically mentally ill adults participating in the rehabilitative psychosocial therapy program at the Toxaway Church Site of the Anderson Mental Health Center. Staff perceived as boring and unfocused the traditional treatment approach that relied mainly upon…

  1. 62. View of amplifiermodulator control system with power distribution panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. View of amplifier-modulator control system with power distribution panel on left, control power supply in middle, and amplifier modulator on right, second floor in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. University of Texas MD Anderson Cancer Center (UT-MDACC): Systematic Functional Annotation of Somatic Mutations in Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized a functional annotation of mutations and fusions found in human cancers using two cell models, Ba/F3 (murine pro-B suspension cells) and MCF10A (human non-tumorigenic mammary epithelial cells). Read the abstract

  3. 75. Transmitter building no. 102, view of typical radio frequency ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Transmitter building no. 102, view of typical radio frequency switching group for lower antenna A & B and upper antenna A & B and MIP/MWOC automated interface cabinet. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 28. View of data test area for DR data take ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. View of data test area for DR data take off set operators panel and cabinet at second floor of transmitter building no. 102 in MIP area. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 16. View of east side of transmitter building no. 102 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View of east side of transmitter building no. 102 looking south with TR radome in upper right of photograph and DR 2 antenna in left of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 55. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. View from ground level in building no. 105 showing lower radar scanner switch with eighty-eight 1-1/2" diameter copper ion return RF balance tube systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. Frederic Joliot, Irene Curie and the Early History of the Positron (1932-33)

    ERIC Educational Resources Information Center

    Leone, Matteo; Robotti, Nadia

    2010-01-01

    As is well known, the positron was discovered in August 1932 by Carl Anderson while studying cloud chamber tracks left by cosmic rays. Far less known is the fact that a few months before Anderson's discovery, in April 1932, Frederic Joliot and Irene Curie had missed an opportunity to discover the positron during a nuclear physics experiment. One…

  8. 48. View of typical 90 degree elbow located at horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. View of typical 90 degree elbow located at horizontal corner with output (to scanner radar system control switch) waveguide on top and return wave on bottom of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor Samuel...

  10. 117. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 12, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. 122. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "elevations & details" - structural, AS-BLT AW 35-46-04, sheet 73, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. 118. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 13, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. 121. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "sections & elevations" - structural, AS-BLT AW 35-46-04, sheet 72, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. 34. View of typical work station in transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. View of typical work station in transmitter building no. 102, second floor, with continental electronics "keying pulse line amplifier trigger pulse AM-3445/FPT9" cabinet at desk. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. 67. Building 102, view of electronic switching amplifier (in retracted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Building 102, view of electronic switching amplifier (in retracted or open position) with video monitor mounted at top to monitor performance and condition of system in oil bath. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. 68. Building 102, view of same system as in photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Building 102, view of same system as in photograph no. AK-30-A-67 except switching amplifier in closed position; note video cameras in foreground of photograph at bottom. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor Samuel...

  18. University of Texas MD Anderson Cancer Center: Systematic Functional Annotation of Somatic Mutations in Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized a functional annotation of mutations and fusions found in human cancers using two cell models, Ba/F3 (murine pro-B suspension cells) and MCF10A (human non-tumorigenic mammary epithelial cells). Read the abstract

  19. Reflections on the Reflecting Art Therapy Team in Education and Treatment

    ERIC Educational Resources Information Center

    Riley, Shirley

    2004-01-01

    The reflecting team has been a respected mode of therapeutic intervention since psychiatrist Tom Anderson first proposed the concept in 1985 (Anderson, 1991). The notion of a team observing the therapist conducting a session, the reflecting team reflecting on the session in the presence of the client (either behind a one-way mirror or in person),…

  20. Topological Anderson insulator phase in a Dirac-semimetal thin film

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Dong-Hui; Zhou, Bin

    2017-06-01

    The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three-dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that the quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either a normal insulator or quantum spin Hall insulator, depending on the thin-film thickness. We present the study of disorder effects in a thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from a normal band insulator to a topological Anderson insulator in a Dirac-semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3Bi shows that in the topological Anderson insulator phase, a quantized conductance plateau occurs in the bulk gap of the band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on the Born approximation fits the numerical data.

  1. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  2. Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength

    NASA Astrophysics Data System (ADS)

    Trefzger, Christian; Castin, Yvan

    2014-09-01

    We study in three dimensions the problem of a spatially homogeneous zero-temperature ideal Fermi gas of spin-polarized particles of mass m perturbed by the presence of a single distinguishable impurity of mass M. The interaction between the impurity and the fermions involves only the partial s wave through the scattering length a and has negligible range b compared to the inverse Fermi wave number 1/kF of the gas. Through the interactions with the Fermi gas the impurity gives birth to a quasiparticle, which will be here a Fermi polaron (or more precisely a monomeron). We consider the general case of an impurity moving with wave vector K ≠0: Then the quasiparticle acquires a finite lifetime in its initial momentum channel because it can radiate particle-hole pairs in the Fermi sea. A description of the system using a variational approach, based on a finite number of particle-hole excitations of the Fermi sea, then becomes inappropriate around K =0. We rely thus upon perturbation theory, where the small and negative parameter kFa→0- excludes any branches other than the monomeronic one in the ground state (as, e.g., the dimeronic one), and allows us a systematic study of the system. We calculate the impurity self-energy Σ(2)(K,ω) up to second order included in a. Remarkably, we obtain an analytical explicit expression for Σ(2)(K,ω), allowing us to study its derivatives in the plane (K,ω). These present interesting singularities, which in general appear in the third-order derivatives ∂3Σ(2)(K,ω). In the special case of equal masses, M =m, singularities appear already in the physically more accessible second-order derivatives ∂2Σ(2)(K,ω); using a self-consistent heuristic approach based on Σ(2) we then regularize the divergence of the second-order derivative ∂K2ΔE(K) of the complex energy of the quasiparticle found in Trefzger and Castin [Europhys. Lett. 104, 50005 (2013), 10.1209/0295-5075/104/50005] at K =kF, and we predict an interesting scaling law in the neighborhood of K =kF. As a by product of our theory we have access to all moments of the momentum of the particle-hole pair emitted by the impurity while damping its motion in the Fermi sea at the level of Fermi's golden rule.

  3. Methods and Models for Life Cycle Costing (Methodes et Modeles D’Evaluation du cout de Possession)

    DTIC Science & Technology

    2007-06-01

    22 .38 R ange M ax im um 318 .94 R ange W id th 296 .56 M ean S td . E rro r 0 .61 F o recas t: D D 21 $ C ry s ta l B a ll R ep o rt S im u la...Wiley, New York. [ 71 ] Olson, D. (1995), Decision Aids for Selection Problems, Springer Verlag, New York. [72] Yoon, K.P. and Hwang, C.-L. (1995...was developed by Mr. Tim Anderson, Aerospace Corporation in collaboration with Dr. Steve Book MCR Federal Inc. UNCERTAINTY AND RISK RTO-TR-SAS-054 7

  4. Population Switching and Charge Sensing in Quantum Dots: A Case for a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Goldstein, Moshe; Berkovits, Richard; Gefen, Yuval

    2010-06-01

    A broad and a narrow level of a quantum dot connected to two external leads may swap their respective occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of this effect is also suggested.

  5. Development of RP UPLC-TOF/MS, stability indicating method for omeprazole and its related substances by applying two level factorial design; and identification and synthesis of non-pharmacopoeial impurities.

    PubMed

    Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N

    2016-01-25

    A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.

  6. High-Dimensional Disorder-Driven Phenomena in Weyl Semimetals, Semiconductors, and Related Systems

    NASA Astrophysics Data System (ADS)

    Syzranov, Sergey V.; Radzihovsky, Leo

    2018-03-01

    It is commonly believed that a noninteracting disordered electronic system can undergo only the Anderson metal-insulator transition. It has been suggested, however, that a broad class of systems can display disorder-driven transitions distinct from Anderson localization that have manifestations in the disorder-averaged density of states, conductivity, and other observables. Such transitions have received particular attention in the context of recently discovered 3D Weyl and Dirac materials but have also been predicted in cold-atom systems with long-range interactions, quantum kicked rotors, and all sufficiently high-dimensional systems. Moreover, such systems exhibit unconventional behavior of Lifshitz tails, energy-level statistics, and ballistic-transport properties. Here, we review recent progress and the status of results on non-Anderson disorder-driven transitions and related phenomena.

  7. Quantum jumps on Anderson attractors

    NASA Astrophysics Data System (ADS)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  8. Anderson transition in a multiply-twisted helix.

    PubMed

    Ugajin, R

    2001-06-01

    We investigated the Anderson transition in a multiply-twisted helix in which a helical chain of components, i.e., atoms or nanoclusters, is twisted to produce a doubly-twisted helix, which itself can be twisted to produce a triply-twisted helix, and so on, in which there are couplings between adjacent rounds of helices. As the strength of the on-site random potentials increases, an Anderson transition occurs, suggesting that the number of dimensions is 3 for electrons running along the multiply-twisted helix when the couplings between adjacent rounds are strong enough. If the couplings are weakened, the dimensionality becomes less, resulting in localization of electrons. The effect of random connections between adjacent rounds of helices and random magnetic fields that thread the structure is analyzed using the spectral statistics of a quantum particle.

  9. Finite-time scaling at the Anderson transition for vibrations in solids

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Skipetrov, S. E.

    2017-11-01

    A model in which a three-dimensional elastic medium is represented by a network of identical masses connected by springs of random strengths and allowed to vibrate only along a selected axis of the reference frame exhibits an Anderson localization transition. To study this transition, we assume that the dynamical matrix of the network is given by a product of a sparse random matrix with real, independent, Gaussian-distributed nonzero entries and its transpose. A finite-time scaling analysis of the system's response to an initial excitation allows us to estimate the critical parameters of the localization transition. The critical exponent is found to be ν =1.57 ±0.02 , in agreement with previous studies of the Anderson transition belonging to the three-dimensional orthogonal universality class.

  10. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  11. Effects of Impurities and Processing on Silicon Solar Cells, Phase 3

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.

  12. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  13. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  14. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  15. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  16. "Rejoicing in the Beauties of Nature": The Image of the Western Landscape during the Fur Trade

    ERIC Educational Resources Information Center

    Oman, Kerry R.

    2009-01-01

    While traveling along the Platte River on May 18, 1834, William Marshall Anderson stopped to pick up a human skull bleaching in the prairie sunlight. Anderson was from Louisville, Kentucky, and had been sent west by his physician to accompany a fur-trade caravan to the Rocky Mountains in hopes of regaining lost physical strength. He came west not…

  17. Concepts and Methods of Measuring Productivity at the Organization Level

    DTIC Science & Technology

    1993-09-01

    Interfaces, The Institute of Management Sciences, 1987. Anderson, D. et al., An Introduction to Management Science, West Publishing Co., 1991... to Management Science, West Publishing Co., 1991. Anthony, G. M., "IEs Measure Work, Write Standards for White Collar Workers at Financial...Plant Productivity Measure for ’High-Tech’ Manufacturing, Interfaces, The Institute of Management Sciences, 1987. Anderson, D. et al., An Introduction

  18. Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations

    DOE PAGES

    Toth, Alex; Ellis, J. Austin; Evans, Tom; ...

    2017-10-26

    Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

  19. 2005 8th Annual Systems Engineering Conference. Volume 2, Wednesday Presentations

    DTIC Science & Technology

    2005-10-27

    Acquisition Programs: An OSD Perspective, Col Warren Anderson, OUSD (AT&L) Defense Systems Implementation of Policy Requiring Systems Engineering Plans...Technical Excellence, Col Warren Anderson, OUSD (AT&L) Defense Systems Applying CMMI to System Safety, Mr. Tom Pfitzer, APT Research, Inc. System...to following pages for Tutorials Schedule) Buffett Lunch Tutorial Tracks (Please refer to following pages for Tutorials Schedule) Reception in

  20. 7. View of DR 3 antenna typical front stay concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of DR 3 antenna typical front stay concrete showing embedment anchors, foundation steel base plate, vertical member with small diameter turnbuckles, antenna assembly in background, and story board for scale. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Alex; Ellis, J. Austin; Evans, Tom

    Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

  2. Development of a Blood-Based Biomarker Panel for Indeterminate Lung Nodules

    DTIC Science & Technology

    2016-09-01

    Taguchi CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center Houston, TX 77030 REPORT DATE: September 2016 TYPE OF REPORT...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Texas MD Anderson Cancer Center Rene...protein, autoantibody and microRNA) to distinguish malignant lung nodules from benign lung nodules. We have so far assayed 20 protein markers, 122

  3. 120. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "foundation & first floor plan" - structural, AS-BLT AW 35-46-04, sheet 65, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 119. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Back side technical facilities S.R. radar transmitter & computer building no. 102, section I "tower plan, sections & details" - structural, AS-BLT AW 35-46-04, sheet 62, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 25. Similar view of lobby area on first floor transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Similar view of lobby area on first floor transmitter building no. 102 looking at door in photograph AK-30-A-24 in closed position showing locking system and restricted access notification. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Geomorphic Mapping Pool 7 - Upper Mississippi River Basin

    DTIC Science & Technology

    1987-10-05

    PSA deposit (greater than 1 meter). Anderson and Overstreet (1986) have shown that historical sedi- ment in the Iowa River at Coralville reservoir...1986 Holocene Landscape Evolution in the Iowa River Valley: Coralville Reservoir, Iowa . Unpublished M.S. Thesis, University of Wisconsin-Madison, WI...District. Donohue & Associates, Inc. Sheboygan, WI. ANDERSON, JEFFREY D. and D.F. OVERSTREET, 1986, The Archaeology of Coralville Lake, Iowa Volume II

  7. Many-Body Effects in the Mesoscopic x-Ray Edge Problem

    NASA Astrophysics Data System (ADS)

    Hentschel, M.; R"Oder, G.; Ullmo, D.

    Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.

  8. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  9. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak.

    PubMed

    Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  10. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: a prospective long-term cardiac magnetic resonance imaging study.

    PubMed

    Imbriaco, M; Pisani, A; Spinelli, L; Cuocolo, A; Messalli, G; Capuano, E; Marmo, M; Liuzzi, R; Visciano, B; Cianciaruso, B; Salvatore, M

    2009-07-01

    Anderson-Fabry disease is a multisystem X linked disorder of lipid metabolism frequently associated with cardiac symptoms, including left ventricular (LV) hypertrophy gradually impairing cardiac function. Evidence showing that enzyme-replacement therapy (ERT) can be effective in reducing LV hypertrophy and improving myocardial function in the long term is limited. This study aimed to assess the long-term effects of ERT with recombinant alpha-galactosidase A (agalsidase beta, Fabrazyme) on LV function and myocardial signal intensity in 11 patients with Anderson-Fabry disease. Eleven patients (eight males, three females) with varying stages of genetically confirmed Anderson-Fabry disease were examined by means of physical examination and magnetic resonance imaging before ERT with agalsidase beta at 1 mg/kg every other week (study 1) and after a mean treatment duration of 45 months (study 2). At 45 months of treatment, LV mass and LV wall thickness had significantly reduced: 188 (SD 60) g versus 153 (47) g, and 16 (4) mm versus 14 (4) mm, respectively. Furthermore, a significant reduction in myocardial T2 relaxation times was noted in all myocardial regions, that is, interventricular septum 80 (5) ms versus 66 (8) ms, apex 79 (10) ms versus 64 (10) ms, and lateral wall 80 (8) ms versus 65 (16) ms. Changes in LV ejection fraction were not significant. Amelioration of clinical symptoms was observed in all patients. Long-term therapy with agalsidase beta at 1 mg/kg every 2 weeks was effective in significantly reducing LV hypertrophy, improving overall cardiac performance and ameliorating clinical symptoms in patients with Anderson-Fabry disease.

  12. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  13. Study of the propagation of a plane turbulent jet in flow-through chamber workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laigna, K.Yu.; Potter, E.A.

    1988-05-01

    The purpose of this study was to determine experimentally the parameters of microstructures of confined planar jets and to investigate the specific features of turbulent diffusion of impurities in such flows for problems of mine ventilation and pollution abatement in underground workings. A confined planar jet flowing from a slot coaxially into the model of a chamber working of rectangular transverse cross section was studied. The averaged and pulsating characteristics of the jet were measured by a thermoanemometer. Transient and channel zones were identified and the movement of the jet within them was described. Results demonstrated that the turbulent diffusionmore » coefficient in the jet-affected zone was greater by two or three orders of magnitude than in the remainder of the flow and that it is therefore incorrect to use turbulent diffusion coefficients of confined flows for evaluations of the jet diffusion of impurities.« less

  14. Anatomy of quantum critical wave functions in dissipative impurity problems

    NASA Astrophysics Data System (ADS)

    Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge

    2017-02-01

    Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.

  15. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  16. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  17. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  18. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  19. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Willert, Jeffrey; Park, H.; Knoll, D. A.

    2014-10-01

    Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.

  20. A study of volatile contaminants in recovered water

    NASA Technical Reports Server (NTRS)

    Mckee, H. C.; Marek, R., Jr.

    1972-01-01

    The recovery and reuse of water during long term space flight is discussed. Particular attention was given to obtaining basic information on the volatile impurities in urine samples and in water recovered from urine by distillation. Data also cover laboratory distillation tests to determine the nature and extent of volatile constituents in the distillate and an evaluation of possible problems in distillation due to iodine used for control of microbial contamination. Efforts made to develop design criteria for distillation equipment to minimize the problems of volatile contaminants various methods which might be used for purification subsequent to recovery are included.

Top