Science.gov

Sample records for anderson quin cycle

  1. Quine and the Segregrational Sign.

    ERIC Educational Resources Information Center

    Wolf, George

    1999-01-01

    In the context of theory of integrational linguistics, the segregational sign is distinguished from the integrational sign, and the operation of the former is analyzed. Focus is on how logic guides the sign, and how the theory of W. V. Quine accounts for these issues. (MSE)

  2. A note on the use of Quin2 in studying shear-induced platelet aggregation.

    PubMed

    Giorgio, T D; Hellums, J D

    1986-02-01

    Quin2, a calcium ion chelator which can penetrate plasma membranes, was used to study the role of intracellular calcium ion concentration in mediating shear-induced platelet activation. Washed platelet suspensions were subjected to various levels of uniform, known shear stress in a cone and plate viscometer in the absence of added agonists. Additional samples were aggregated in response to chemical platelet agonists in a conventional aggregometer. The aggregometer response of Quin2-containing platelets to collagen, thrombin and ADP exhibited increased lag time and reduced maximum rate of aggregation in comparison to controls. However, the extent of aggregation of the Quin2-containing platelets eventually reached the same level as that of the controls. Very different results were obtained for aggregation by shear stress in the viscometer. Shear-induced aggregation was significantly suppressed by Quin2 treatment at both short (30 seconds) and long (300 seconds) times of exposure to the shear field. Shear-induced dense granular release and cellular lysis were unaltered by Quin2 treatment at 30 second exposure times, but both were significantly increased by Quin2 treatment at 300 second exposure times. These results suggest that intracellular calcium ion mobilization is an important early step in shear-induced platelet activation. Additionally, Quin2 appears to have effects resulting in increased platelet fragility. Thus, the findings raise questions on the suitability of Quin2 as an intracellular calcium ion probe in studies in shear fields. PMID:3705013

  3. Anderson Localization of Solitons

    SciTech Connect

    Sacha, Krzysztof; Zakrzewski, Jakub; Mueller, Cord A.; Delande, Dominique

    2009-11-20

    At low temperature, a quasi-one-dimensional ensemble of atoms with an attractive interaction forms a bright soliton. When exposed to a weak and smooth external potential, the shape of the soliton is hardly modified, but its center-of-mass motion is affected. We show that in a spatially correlated disordered potential, the quantum motion of a bright soliton displays Anderson localization. The localization length can be much larger than the soliton size and could be observed experimentally.

  4. The Ecological Approach to Language Development: A Radical Solution to Chomsky's and Quine's Problems.

    ERIC Educational Resources Information Center

    Reed, Edward S.

    1995-01-01

    Asserts that several of the assumptions underlying Noam Chomsky's and W. V. O. Quine's theories of language acquisition and development are misleading or false. It is argued, among other things, that children do not "acquire" language, but rather learn how to participate in the linguistic community surrounding them. (99 references) (MDM)

  5. The Anderson Current Loop

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1994-01-01

    Four-wire-probe concept applied to electrical-resistance transducers. Anderson current loop is excitation-and-signal-conditioning circuit suitable for use with strain gauges, resistance thermometers, and other electrical-resistance transducers mounted in harsh environments. Used as alternative to Wheatstone bridge. Simplifies signal-conditioning problem, enabling precise measurement of small changes in resistance of transducer. Eliminates some uncertainties in Wheatstone-bridge resistance-change measurements in flight research. Current loop configuration makes effects of lead-wire and contact resistances insignificantly small. Also provides output voltage that varies linearly with change in gauge resistance, and does so at double sensitivity of Wheatstone bridge.

  6. Anderson attractors in active arrays

    PubMed Central

    Laptyeva, Tetyana V.; Tikhomirov, Andrey A.; Kanakov, Oleg I.; Ivanchenko, Mikhail V.

    2015-01-01

    In dissipationless linear media, spatial disorder induces Anderson localization of matter, light, and sound waves. The addition of nonlinearity causes interaction between the eigenmodes, which results in a slow wave diffusion. We go beyond the dissipationless limit of Anderson arrays and consider nonlinear disordered systems that are subjected to the dissipative losses and energy pumping. We show that the Anderson modes of the disordered Ginsburg-Landau lattice possess specific excitation thresholds with respect to the pumping strength. When pumping is increased above the threshold for the band-edge modes, the lattice dynamics yields an attractor in the form of a stable multi-peak pattern. The Anderson attractor is the result of a joint action by the pumping-induced mode excitation, nonlinearity-induced mode interactions, and dissipative stabilization. The regimes of Anderson attractors can be potentially realized with polariton condensates lattices, active waveguide or cavity-QED arrays. PMID:26304462

  7. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  8. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks

    PubMed Central

    Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu

    2016-01-01

    Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171

  9. Anderson and Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, T. V.

    The legacy of P. W. Anderson, perhaps the most fertile and influential condensed matter physicist of the second half of the twentieth century, is briefly mentioned here. I note three pervasive values. They are: emergence with its constant tendency to surprise us and to stretch our imagination, the Baconian emphasis on the experimental moorings of modern science, and mechanism as the explanatory core. Out of his work, which is spread over more than six decades and in many ways has charted modern condensed matter physics, nearly a dozen seminal contributions, chosen idiosyncratically, are mentioned at the risk of leaving out many which may also have started subfields. Some of these are: antiferromagnestism and broken symmetry, superexchange and strong electron correlations, localization in disordered systems, gauge invariance and mass, and the resonating valence bond in magnetic systems as well as in high-temperature superconductivity...

  10. Astronaut Anderson Works in SPACEHAB

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Space Shuttle Orbiter Columbia STS-107 mission launched January 16, 2003. STS-107 is strictly a multidiscipline microgravity and Earth science research mission involving 80-plus International experiments to be performed during 16-days, many of which will be managed by the Marshall Space Flight Center in Huntsville, Alabama. The majority of the research will be conducted in the Shuttle's mid deck, the area directly under the cockpit, and in the new SPACEHAB Research Double Module. This is the first flight for that module, which doubles the volume available for experiments and significantly increases the amount and complexity of research from the last dedicated Shuttle science mission, STS-95, flown in 1998 with a single SPACEHAB module. The pressurized module is carried in Columbia's payload bay and is accessible to the crew via a turnel from the Shuttle's mid deck. Pictured is an interesting view, looking through the adjoining tunnel, of astronaut Michael P. Anderson, mission specialist, performing work in SPACEHAB. The first shuttle mission in 2003, the STS-107 mission marks the 113th flight overall in NASA's Space Shuttle program, and the 28th flight of the Space Shuttle Orbiter Columbia.

  11. Taking on Titan: Meet Carrie Anderson

    NASA Video Gallery

    When she was a little girl, Carrie Anderson dreamed of becoming an astronomer. Now, as a space scientist at NASA Goddard Space Flight Center, Carrie studies the atmosphere on Titan: one of Saturn's...

  12. Anderson localization in metallic nanoparticle arrays.

    PubMed

    Mai, Zhijie; Lin, Fang; Pang, Wei; Xu, Haitao; Tan, Suiyan; Fu, Shenhe; Li, Yongyao

    2016-06-13

    Anderson localization has been observed in various types of waves, such as matter waves, optical waves and acoustic waves. Here we reveal that the effect of Anderson localization can be also induced in metallic nonlinear nanoparticle arrays excited by a random electrically driving field. We find that the dipole-induced nonlinearity results in ballistic expansion of dipole intensity during evolution; while the randomness of the external driving field can suppress such an expansion. Increasing the strength of randomness above the threshold value, a localized pattern of dipole intensity can be generated in the metallic nanoparticle arrays. By means of statistics, the mean intensity distribution of the dipoles reveals the formation of Anderson localization. We further show that the generated Anderson localization is highly confined, with its size down to the scale of incident wavelength. The reported results might facilitate the manipulations of electromagnetic fields in the scale of wavelength. PMID:27410338

  13. The Châtelperronian conundrum: Blade and bladelet lithic technologies from Quinçay, France.

    PubMed

    Roussel, M; Soressi, M; Hublin, J-J

    2016-06-01

    The discovery of an almost complete Neanderthal skeleton in a Châtelperronian context at Saint-Césaire 35 years ago changed our perspective on the beginning of the Upper Paleolithic in western Europe. Since then, the Châtelperronian has generally been considered a "transitional" industry rather than an Upper or a Middle Paleolithic industry because of its chronological position, and the association of Neanderthal remains with blades, bone tools and personal ornaments. Several competing hypotheses have been proposed to explain the association between Neanderthals and these types of artefacts including post-depositional mixing, acculturation from anatomically modern human populations, or an independent technological evolution by local Neanderthal populations. Quinçay Cave is the only Châtelperronian site where personal ornaments have been found that does not contain an overlying Upper Paleolithic layer. This means that the post-depositional mixing of later elements into the Châtelperronian may not be used as an explanation for the presence of these materials. We report here on a detailed technological analysis of lithic artefacts from the three Châtelperronian layers at Quinçay Cave. We compare our results with the technology of Mousterian blade industries dating to OIS (oxygen isotope stage) 5, the Mousterian of Acheulian Tradition type B, and the Proto-Aurignacian. We show that the Châtelperronian is sufficiently divergent from the Middle Paleolithic to be classified as a fully Upper Paleolithic industry, with a focus on blade and bladelet production. We also show that the Quinçay Châtelperronian includes retouched bladelets that resemble those found in the Proto-Aurignacian, but were produced in a different manner. We argue that a technological convergence cannot account for these behaviors, since the specific type of retouched bladelet associated with the Châtelperronian was also regularly used by Proto-Aurignacian of neighboring regions. We suggest

  14. The Châtelperronian conundrum: Blade and bladelet lithic technologies from Quinçay, France.

    PubMed

    Roussel, M; Soressi, M; Hublin, J-J

    2016-06-01

    The discovery of an almost complete Neanderthal skeleton in a Châtelperronian context at Saint-Césaire 35 years ago changed our perspective on the beginning of the Upper Paleolithic in western Europe. Since then, the Châtelperronian has generally been considered a "transitional" industry rather than an Upper or a Middle Paleolithic industry because of its chronological position, and the association of Neanderthal remains with blades, bone tools and personal ornaments. Several competing hypotheses have been proposed to explain the association between Neanderthals and these types of artefacts including post-depositional mixing, acculturation from anatomically modern human populations, or an independent technological evolution by local Neanderthal populations. Quinçay Cave is the only Châtelperronian site where personal ornaments have been found that does not contain an overlying Upper Paleolithic layer. This means that the post-depositional mixing of later elements into the Châtelperronian may not be used as an explanation for the presence of these materials. We report here on a detailed technological analysis of lithic artefacts from the three Châtelperronian layers at Quinçay Cave. We compare our results with the technology of Mousterian blade industries dating to OIS (oxygen isotope stage) 5, the Mousterian of Acheulian Tradition type B, and the Proto-Aurignacian. We show that the Châtelperronian is sufficiently divergent from the Middle Paleolithic to be classified as a fully Upper Paleolithic industry, with a focus on blade and bladelet production. We also show that the Quinçay Châtelperronian includes retouched bladelets that resemble those found in the Proto-Aurignacian, but were produced in a different manner. We argue that a technological convergence cannot account for these behaviors, since the specific type of retouched bladelet associated with the Châtelperronian was also regularly used by Proto-Aurignacian of neighboring regions. We suggest

  15. Anderson localization in the time domain

    NASA Astrophysics Data System (ADS)

    Sacha, Krzysztof; Delande, Dominique

    2016-08-01

    In analogy with the usual Anderson localization taking place in time-independent disordered quantum systems where the disorder acts in configuration space, systems exposed to temporally disordered potentials can display Anderson localization in the time domain. We demonstrate this phenomenon with one-dimensional examples where a temporally disordered potential induces localization during the quantum evolution of wave packets, in contrast with a fully delocalized classical dynamics. This is an example of a time crystal phenomenon, i.e., a crystalline behavior in the time domain.

  16. Low shear viscosity due to Anderson localization

    SciTech Connect

    Giannakis, Ioannis; Hou Defu; Ren Haicang; Li Jiarong

    2008-01-15

    We study the Anderson localization effect on the shear viscosity in a system with random medium by Kubo formula. We show that this effect can suppress nonperturbatively the shear viscosity and other transport coefficients. The possible relevancy of such a suppression to the near perfect fluid behavior of the quark-gluon plasma created in heavy-ion collisions is discussed.

  17. 27 CFR 9.86 - Anderson Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Anderson Valley. 9.86 Section 9.86 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... straight line to Benchmark (BM) 680 in Section 30, T.13N., R.13W., located in the northeast portion of...

  18. 27 CFR 9.86 - Anderson Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Anderson Valley. 9.86 Section 9.86 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... straight line to Benchmark (BM) 680 in Section 30, T.13N., R.13W., located in the northeast portion of...

  19. 27 CFR 9.86 - Anderson Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Anderson Valley. 9.86 Section 9.86 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... straight line to Benchmark (BM) 680 in Section 30, T.13N., R.13W., located in the northeast portion of...

  20. 27 CFR 9.86 - Anderson Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Anderson Valley. 9.86 Section 9.86 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... straight line to Benchmark (BM) 680 in Section 30, T.13N., R.13W., located in the northeast portion of...

  1. Hybrid Bloch-Anderson localization of light.

    PubMed

    Stützer, Simon; Kartashov, Yaroslav V; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander

    2013-05-01

    We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.

  2. Anderson localization from the replica formalism.

    PubMed

    Altland, Alexander; Kamenev, Alex; Tian, Chushun

    2005-11-11

    We study Anderson localization in quasi-one-dimensional disordered wires within the framework of the replica sigma model. Applying a semiclassical approach (geodesic action plus Gaussian fluctuations) recently introduced within the context of supersymmetry by Lamacraft, Simons, and Zirnbauer, we compute the exact density of transmission matrix eigenvalues of superconducting wires (of symmetry class CI.) For the unitary class of metallic systems (class A) we are able to obtain the density function, save for its large transmission tail.

  3. Phil Anderson's Magnetic Ideas in Science

    NASA Astrophysics Data System (ADS)

    Coleman, Piers

    In Philip W. Anderson's research, magnetism has always played a special role, providing a prism through which other more complex forms of collective behavior and broken symmetry could be examined. I discuss his work on magnetism from the 1950s, where his early work on antiferromagnetism led to the pseudospin treatment of superconductivity -- to the 1970s and 1980s, highlighting his contribution to the physics of local magnetic moments. Phil's interest in the mechanism of moment formation, and screening evolved into the modern theory of the Kondo effect and heavy fermions.

  4. Resonant Anderson localization in segmented wires.

    PubMed

    Estarellas, Cristian; Serra, Llorenç

    2016-03-01

    We discuss a model of random segmented wire, with linear segments of two-dimensional wires joined by circular bends. The joining vertices act as scatterers on the propagating electron waves. The model leads to resonant Anderson localization when all segments are of similar length. The resonant behavior is present with one and also with several propagating modes. The probability distributions evolve from diffusive to localized regimes when increasing the number of segments in a similar way for long and short localization lengths. As a function of the energy, a finite segmented wire typically evolves from localized to diffusive to ballistic behavior in each conductance plateau.

  5. Astronaut Clay Anderson Speaks With S.C. Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Clay Anderson participates in a Digital Learning Network (DLN) event with students at Crayton Middle School, Columbia,...

  6. Random nanolasing in the Anderson localized regime

    NASA Astrophysics Data System (ADS)

    Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P.

    2014-04-01

    The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes, thus preventing mode competition and improving stability. This enables highly efficient, stable and broadband wavelength-controlled lasers with very small mode volumes. Furthermore, the complex interplay between gain, dispersion-controlled slow light, and disorder is demonstrated experimentally for a non-conservative random medium. The statistical analysis shows a way towards optimizing random-lasing performance by reducing the localization length, a universal parameter.

  7. Distribution of critical temperature at Anderson localization

    NASA Astrophysics Data System (ADS)

    Gammag, Rayda; Kim, Ki-Seok

    2016-05-01

    Based on a local mean-field theory approach at Anderson localization, we find a distribution function of critical temperature from that of disorder. An essential point of this local mean-field theory approach is that the information of the wave-function multifractality is introduced. The distribution function of the Kondo temperature (TK) shows a power-law tail in the limit of TK→0 regardless of the Kondo coupling constant. We also find that the distribution function of the ferromagnetic transition temperature (Tc) gives a power-law behavior in the limit of Tc→0 when an interaction parameter for ferromagnetic instability lies below a critical value. However, the Tc distribution function stops the power-law increasing behavior in the Tc→0 limit and vanishes beyond the critical interaction parameter inside the ferromagnetic phase. These results imply that the typical Kondo temperature given by a geometric average always vanishes due to finite density of the distribution function in the TK→0 limit while the typical ferromagnetic transition temperature shows a phase transition at the critical interaction parameter. We propose that the typical transition temperature serves a criterion for quantum Griffiths phenomena vs smeared transitions: Quantum Griffiths phenomena occur above the typical value of the critical temperature while smeared phase transitions result at low temperatures below the typical transition temperature. We speculate that the ferromagnetic transition at Anderson localization shows the evolution from quantum Griffiths phenomena to smeared transitions around the critical interaction parameter at low temperatures.

  8. Heavy adatoms and Anderson localization in graphene

    NASA Astrophysics Data System (ADS)

    Garcia Aguilar, Jose H.; Uchoa, Bruno; Covaci, Lucian; Rappoport, Tatiana G.

    2014-03-01

    We analyze electronic localization in a graphene layer doped with adatoms sitting in the center of the honeycomb hexagon, as happens with the heaviest adatoms. In this configuration, the hybridization between the adatom orbitals and its neighboring carbon atoms mediate hopping processes that connect all six vertices of the honeycomb hexagon around the impurity. The amplitudes of the hopping depend on the symmetry of the orbital that hybridizes with graphene, leading to an orbital-dependent ``plaquette disorder''. To capture the physics of localization, we propose an effective graphene-only Hamiltonian that preserves the associated orbital symmetries and conduct a scaling analysis of the local density of states (LDOS) for large system sizes. We show that adatoms that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms for which Anderson localization is suppressed, leading to an exotic quantum critical metallic state with large charge puddles, that localizes only at the Dirac point.

  9. Energy transport in the Anderson insulator

    NASA Astrophysics Data System (ADS)

    Gutman, D. B.; Protopopov, I. V.; Burin, A. L.; Gornyi, I. V.; Santos, R. A.; Mirlin, A. D.

    2016-06-01

    We study the heat conductivity in Anderson insulators in the presence of a power-law interaction. Particle-hole excitations built on localized electron states are viewed as two-level systems randomly distributed in space and energy and coupled due to electron-electron interaction. A small fraction of these states form resonant pairs that in turn build a complex network allowing for energy propagation. We identify the character of energy transport through this network and evaluate the thermal conductivity. For physically relevant cases of two-dimensional and three-dimensional spin systems with 1 /r3 dipole-dipole interaction (originating from the conventional 1 /r Coulomb interaction between electrons), the found thermal conductivity κ scales with temperature as κ ∝T3 and κ ∝T4 /3 , respectively. Our results may be of relevance also to other realizations of random spin Hamiltonians with long-range interactions.

  10. The Anderson Reservoir seismic gap - Induced aseismicity?

    USGS Publications Warehouse

    Bufe, C.G.

    1976-01-01

    A persistent 10-km seismicity gap along the Calaveras fault appears to be related to the presence of the Leroy Anderson Reservoir in the Calaveras-Silver Creek fault zones southeast of San Jose, California. A magnitude-4.7 earthquake occurred at a depth of 5 km in the centre of the gap on October 3, 1973. The sequence of immediate aftershocks usually accompanying shallow earthquakes of this magnitude in central California did not occur. A bridge crossing the reservoir near its southeast end has been severely deformed, apparently the result of tectonic creep on the Calaveras fault. The occurrence of creep and absence of small earthquakes along the Calaveras in the vicinity of the reservoir suggest a transition from stick slip to stable sliding, possibly brought about by increased pore pressure. ?? 1976.

  11. Anderson Localization in Quark-Gluon Plasma

    SciTech Connect

    Kovacs, Tamas G.; Pittler, Ferenc

    2010-11-05

    At low temperature the low end of the QCD Dirac spectrum is well described by chiral random matrix theory. In contrast, at high temperature there is no similar statistical description of the spectrum. We show that at high temperature the lowest part of the spectrum consists of a band of statistically uncorrelated eigenvalues obeying essentially Poisson statistics and the corresponding eigenvectors are extremely localized. Going up in the spectrum the spectral density rapidly increases and the eigenvectors become more and more delocalized. At the same time the spectral statistics gradually crosses over to the bulk statistics expected from the corresponding random matrix ensemble. This phenomenon is reminiscent of Anderson localization in disordered conductors. Our findings are based on staggered Dirac spectra in quenched lattice simulations with the SU(2) gauge group.

  12. Slow Relaxation in Anderson Critical Systems

    NASA Astrophysics Data System (ADS)

    Choi, Soonwon; Yao, Norman; Choi, Joonhee; Kucsko, Georg; Lukin, Mikhail

    2016-05-01

    We study the single particle dynamics in disordered systems with long range hopping, focusing on the critical cases, i.e., the hopping amplitude decays as 1 /rd in d-dimension. We show that with strong on-site potential disorder, the return probability of the particle decays as power-law in time. As on-site potential disorder decreases, the temporal profile smoothly changes from a simple power-law to the sum of multiple power-laws with exponents ranged from 0 to νmax. We analytically compute the decay exponents using a simple resonance counting argument, which quantitatively agrees with exact numerical results. Our result implies that the dynamics in Anderson Critical systems are dominated by resonances. Harvard-MIT CUA, Kwanjeong Educational Fellowship, AFOSR MURI, Samsung Scholarship.

  13. Theory of the topological anderson insulator.

    PubMed

    Groth, C W; Wimmer, M; Akhmerov, A R; Tworzydło, J; Beenakker, C W J

    2009-11-01

    We present an effective medium theory that explains the disorder-induced transition into a phase of quantized conductance, discovered in computer simulations of HgTe quantum wells. It is the combination of a random potential and quadratic corrections proportional to p2 sigma(z) to the Dirac Hamiltonian that can drive an ordinary band insulator into a topological insulator (having an inverted band gap). We calculate the location of the phase boundary at weak disorder and show that it corresponds to the crossing of a band edge rather than a mobility edge. Our mechanism for the formation of a topological Anderson insulator is generic, and would apply as well to three-dimensional semiconductors with strong spin-orbit coupling.

  14. The Role of Contrast in the Perception of Achromatic Transparency: Comment on Singh and Anderson (2002) and Anderson (2003)

    ERIC Educational Resources Information Center

    Albert, Marc K.

    2008-01-01

    M. Singh and B. L. Anderson proposed a perceptual theory of achromatic transparency in which the perceived transmittance of a perceived transparent filter is determined by the ratio of the Michelson contrast seen in the region of transparency to that of the background seen directly. Subsequently, B. L. Anderson, M. Singh, and J. Meng proposed that…

  15. Mott transitions in the periodic Anderson model.

    PubMed

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-11-16

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger's theorem to the Mott insulator.

  16. Mott transitions in the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Logan, David E.; Galpin, Martin R.; Mannouch, Jonathan

    2016-11-01

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator.

  17. Mott transitions in the periodic Anderson model.

    PubMed

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-11-16

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger's theorem to the Mott insulator. PMID:27618214

  18. Geology of the Anderson Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Withington, C.F.

    1953-01-01

    The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  19. Anderson localisation in spin chains for perfect state transfer

    NASA Astrophysics Data System (ADS)

    Ronke, Rebecca; Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.; Miyadera, Takayuki

    2016-09-01

    Anderson localisation is an important phenomenon arising in many areas of physics, and here we explore it in the context of quantum information devices. Finite dimensional spin chains have been demonstrated to be important devices for quantum information transport, and in particular can be engineered to allow for "perfect state transfer" (PST). Here we present extensive investigations of disordered PST spin chains, demonstrating spatial localisation and transport retardation effects, and relate these effects to conventional Anderson localisation. We provide thresholds for Anderson localisation in these finite quantum information systems for both the spatial and the transport domains. Finally, we consider the effect of disorder on the eigenstates and energy spectrum of our Hamiltonian, where results support our conclusions on the presence of Anderson localisation.

  20. STS-107 M.S Michael Anderson at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, STS-107 Mission Specialist Michael Anderson (gloved, in center) gets hands-on experience with equipment. Identified as a research mission, STS-107 is scheduled for launch July 19, 2001

  1. Topological approximation of the nonlinear Anderson model.

    PubMed

    Milovanov, Alexander V; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t→+∞. The second moment of the associated probability distribution grows with time as a power law ∝ t^{α}, with the exponent α=1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  2. Topological approximation of the nonlinear Anderson model

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  3. Polarons in π-Conjugated Polymers: Anderson or Landau?

    PubMed

    Barford, William; Marcus, Max; Tozer, Oliver Robert

    2016-02-01

    Using both analytical expressions and the density matrix renormalization group method, we study the fully quantized disordered Holstein model to investigate the localization of charges and excitons by vibrational or torsional modes-i.e., the formation of polarons-in conformationally disordered π-conjugated polymers. We identify two distinct mechanisms for polaron formation, namely Anderson localization via disorder (causing the formation of Anderson polarons) and self-localization by self-trapping via normal modes (causing the formation of Landau polarons). We identify the regimes where either description is more valid. The key distinction between Anderson and Landau polarons is that for the latter the particle wave function is a strong function of the normal coordinates, and hence the "vertical" and "relaxed" wave functions are different. This has theoretical and experimental consequences for Landau polarons. Theoretically, it means that the Condon approximation is not valid, and so care needs to be taken when evaluating transition rates. Experimentally, it means that the self-localization of the particle as a consequence of its coupling to the normal coordinates may lead to experimental observables, e.g., ultrafast fluorescence depolarization. We apply these ideas to poly(p-phenylenevinylene). We show that the high frequency C-C bond oscillation only causes Landau polarons for a very narrow parameter regime; generally we expect disorder to dominate and Anderson polarons to be a more applicable description. Similarly, for the low frequency torsional fluctuations we show that Anderson polarons are expected for realistic parameters.

  4. Modified Anderson Model——Dynamics of Brittle Faulting

    NASA Astrophysics Data System (ADS)

    Tong, H.

    2014-12-01

    Anderson's model has been a basic theory of fault mechanical analysis in one century. However, because of the assumptions, there are some major limitations in Anderson model, and it does not account for frequently observed oblique slips, complicated fault cases in nature and the slips occurring on pre-existing planes of weakness. On the basis of Reactivation Tendency Analysis theory proposed by Tong and Yin (2011), we proposed Modified Anderson model and extended Anderson model from 1) homogeneous media to Inhomogeneous media with pre-existing weakness(es); 2) Andersonian stress state to arbitrary stress state; 3) transient activity trend analysis to fault formation and evolution, and verified with sandbox experiments and natural cases. With Modified Anderson model, we can predict 1) the sequence of fault formation; 2) fault orientations and distribution; 3) slip directions (dip slip, oblique-dip slip, oblique slip, oblique strike slip and strike sip) of different fault when the directions of principal stress, orientations and mechanical properties (cohesion and frictional coefficient) of pre-existing weakness(es) are given. The origin of the complicated fault systems in nature can be explained reasonably. There will be a wide applications for oil and gas exploration and development, coal mining, earthquake risk evaluation, etc.

  5. Anderson wall and BLOCH oscillations in molecular rotation.

    PubMed

    Floß, Johannes; Averbukh, Ilya Sh

    2014-07-25

    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor, the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum--the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of ℏ. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  6. Spectral correlations in finite-size Anderson insulators

    NASA Astrophysics Data System (ADS)

    Micklitz, T.

    2016-03-01

    We investigate spectral correlations in quasi-one-dimensional Anderson insulators with broken time-reversal symmetry. While energy levels are uncorrelated in the thermodynamic limit of infinite wire length, some correlations remain in finite-size Anderson insulators. Asymptotic behaviors of level-level correlations in these systems are known in the large- and small-frequency limits, corresponding to the regime of classical diffusive dynamics and the deep quantum regime of strong Anderson localization. Employing nonperturbative methods and a mapping to the Coulomb-scattering problem, recently introduced by M. A. Skvortsov and P. M. Ostrovsky [JETP Lett. 85, 72 (2007), 10.1134/S0021364007010158], we derive a closed analytical expression for the spectral statistics in the classical-to-quantum region bridging the known asymptotic behaviors. We further discuss how Poisson statistics at large energies develop into Wigner-Dyson statistics as the wire-length decreases.

  7. Field theory of Anderson transition of the kicked rotor

    NASA Astrophysics Data System (ADS)

    Tian, Chushun; Altland, Alexander

    2012-11-01

    We present a microscopic theory of Anderson transition in the quantum kicked rotor. The behavior of the system is shown to depend sensitively on the value of the effective Planck constant, \\tilde h . For the periodically kicked rotor, we obtain quantitative results for the time-dependent behavior of the rotor's energy that characterizes the system's localization/resonance properties. For the quasiperiodically kicked rotor, we find that for irrational values of \\tilde h/(4\\pi ) , the quantum phase transition exhibited in this system falls into the universality class of Anderson (metal-insulator) transition in disordered electronic systems; for rational values, the rotor-Anderson insulator turns into a ‘supermetal’ (i.e. the static conductivity diverges) and the system exhibits metal-supermetal transition.

  8. The M. D. Anderson proton therapy system

    SciTech Connect

    Smith, Alfred; Gillin, Michael; Bues, Martin; Zhu, X. Ronald; Suzuki, Kazumichi; Mohan, Radhe; Woo, Shiao; Lee, Andrew; Komaki, Ritsko; Cox, James; Hiramoto, Kazuo; Akiyama, Hiroshi; Ishida, Takayuki; Sasaki, Toshie; Matsuda, Koji

    2009-09-15

    Purpose: The purpose of this study is to describe University of Texas M. D. Anderson proton therapy system (PTC-H) including the accelerator, beam transport, and treatment delivery systems, the functionality and clinical parameters for passive scattering and pencil beam scanning treatment modes, and the results of acceptance tests. Methods: The PTC-H has a synchrotron (70-250 MeV) and four treatment rooms. An overall control system manages the treatment, physics, and service modes of operation. An independent safety system ensures the safety of patients, staff, and equipment. Three treatment rooms have isocentric gantries and one room has two fixed horizontal beamlines, which include a large-field treatment nozzle, used primarily for prostate treatments, and a small-field treatment nozzle for ocular treatments. Two gantry treatment rooms and the fixed-beam treatment room have passive scattering nozzles. The third gantry has a pencil beam scanning nozzle for the delivery of intensity modulated proton treatments (IMPT) and single field uniform dose (SFUD) treatments. The PTC-H also has an experimental room with a fixed horizontal beamline and a passive scattering nozzle. The equipment described above was provided by Hitachi, Ltd. Treatment planning is performed using the Eclipse system from Varian Medical Systems and data management is handled by the MOSAIQ system from IMPAC Medical Systems, Inc. The large-field passive scattering nozzles use double scattering systems in which the first scatterers are physically integrated with the range modulation wheels. The proton beam is gated on the rotating range modulation wheels at gating angles designed to produce spread-out-Bragg peaks ranging in size from 2 to 16 g/cm{sup 2}. Field sizes of up to 25x25 cm{sup 2} can be achieved with the double scattering system. The IMPT delivery technique is discrete spot scanning, which has a maximum field size of 30x30 cm{sup 2}. Depth scanning is achieved by changing the energy

  9. Strong Anderson localization in cold atom quantum quenches.

    PubMed

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  10. STS-89 M.S. Michael Anderson suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Michael Anderson smiles as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. A major in the U.S. Air Force, Anderson has a master of science degree in physics from Creighton University. He and six fellow crew members will soon depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station.

  11. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  12. Interpolation Processes in Object Perception: Reply to Anderson (2007)

    ERIC Educational Resources Information Center

    Kellman, Philip J.; Garrigan, Patrick; Shipley, Thomas F.; Keane, Brian P.

    2007-01-01

    P. J. Kellman, P. Garrigan, & T. F. Shipley presented a theory of 3-D interpolation in object perception. Along with results from many researchers, this work supports an emerging picture of how the visual system connects separate visible fragments to form objects. In his commentary, B. L. Anderson challenges parts of that view, especially the idea…

  13. Anderson-Fabry cardiomyopathy: prevalence, pathophysiology, diagnosis and treatment.

    PubMed

    Putko, Brendan N; Wen, Kevin; Thompson, Richard B; Mullen, John; Shanks, Miriam; Yogasundaram, Haran; Sergi, Consolato; Oudit, Gavin Y

    2015-03-01

    Anderson-Fabry disease (AFD) is a lysosomal storage disease caused by the inappropriate accumulation of globotriaosylceramide in tissues due to a deficiency in the enzyme α-galactosidase A (α-Gal A). Anderson-Fabry cardiomyopathy is characterized by structural, valvular, vascular and conduction abnormalities, and is now the most common cause of mortality in patients with AFD. Large-scale metabolic and genetic screening studies have revealed AFD to be prevalent in populations of diverse ethnic origins, and the variant form of AFD represents an unrecognized health burden. Anderson-Fabry disease is an X-linked disorder, and genetic testing is critical for the diagnosis of AFD in women. Echocardiography with strain imaging and cardiac magnetic resonance imaging using late enhancement and T1 mapping are important imaging tools. The current therapy for AFD is enzyme replacement therapy (ERT), which can reverse or prevent AFD progression, while gene therapy and the use of molecular chaperones represent promising novel therapies for AFD. Anderson-Fabry cardiomyopathy is an important and potentially reversible cause of heart failure that involves LVH, increased susceptibility to arrhythmias and valvular regurgitation. Genetic testing and cardiac MRI are important diagnostic tools, and AFD cardiomyopathy is treatable if ERT is introduced early.

  14. 10. VIEW OF SITE B FROM WEST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF SITE B FROM WEST END OF ANDERSON WAY, FACING NORTHEAST (BUILDINGS 131, 130, 129, and 128 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  15. 6. VIEW OF SITE A FROM ANDERSON WAY NEAR BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SITE A FROM ANDERSON WAY NEAR BUILDING 132, FACING SOUTHEAST (BUILDINGS 124, 122, 120, and 118 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  16. 9. VIEW OF SITE B FROM EAST END OF ANDERSON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SITE B FROM EAST END OF ANDERSON WAY, FACING WEST (BUILDINGS 126, 128, 129, 130, and 131 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  17. Spectral density method to Anderson-Holstein model

    SciTech Connect

    Chebrolu, Narasimha Raju Chatterjee, Ashok

    2015-06-24

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  18. Louisa Garrett Anderson (1873-1943), surgeon and suffragette.

    PubMed

    Geddes, Jennian F

    2008-11-01

    Louisa Garrett Anderson, daughter of Britain's first woman doctor, has been largely forgotten today despite the fact that her contribution to the women's movement was as great as that of her mother. Recognized by her contemporaries as an important figure in the suffrage campaign, Anderson chose to lend her support through high-profile action, being one of the few women doctors in her generation who risked their professional as well as their personal reputation in the fight for women's rights by becoming a suffragette - in her case, even going so far as to spend a month in prison for breaking a window on a demonstration. On the outbreak of war, with only the clinical experience she had gained as outpatient surgeon in a women's hospital, Anderson established a series of women-run military hospitals where she was a Chief Surgeon. The most successful was the Endell Street Military Hospital in London, funded by the Royal Army Medical Corps and the only army hospital ever to be run and staffed entirely by women. Believing that a doctor had an obligation to take a lead in public affairs, Anderson continued campaigning for women's issues in the unlikely setting of Endell Street, ensuring that their activities remained in the public eye through constant press coverage. Anderson's achievement was that her work played no small part in expunging the stigma of the militant years in the eyes of the public and - more importantly - was largely instrumental in putting women doctors on equal terms with their male colleagues. PMID:18952990

  19. Cavity quantum electrodynamics with Anderson-localized modes.

    PubMed

    Sapienza, Luca; Thyrrestrup, Henri; Stobbe, Søren; Garcia, Pedro David; Smolka, Stephan; Lodahl, Peter

    2010-03-12

    A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.

  20. STS-107 Crew Interviews: Michael Anderson, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 3 and Payload Commander Michael Anderson is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He outlines his role in the mission in general, and specifically in conducting onboard science experiments. He discusses the following instruments and sets of experiments in detail: CM2 (Combustion Module 2), FREESTAR (Fast Reaction Enabling Science Technology and Research, MEIDEX (Mediterranean Israeli Dust Experiment) and MGM (Mechanics of Granular Materials). Anderson also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, he touches on the dual work-shift nature of the mission, the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety during training and the value of international cooperation.

  1. Perturbative Interpretation of Adaptive Thouless-Anderson-Palmer Free Energy

    NASA Astrophysics Data System (ADS)

    Yasuda, Muneki; Takahashi, Chako; Tanaka, Kazuyuki

    2016-07-01

    In conventional well-known derivation methods for the adaptive Thouless-Anderson-Palmer (TAP) free energy, special assumptions that are difficult to mathematically justify except in some mean-field models, must be made. Here, we present a new adaptive TAP free energy derivation method. Using this derivation technique, without any special assumptions, the adaptive TAP free energy can be simply obtained as a high-temperature expansion of the Gibbs free energy.

  2. Solar hot water system installed at Anderson, South Carolina

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina. The building is a low-rise, two-story 114-room motel. The solar system was designed to provide 40 percent of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

  3. Categorization of nocturnal drainage flows in the Anderson Creek valley

    SciTech Connect

    Gudiksen, P.H.; Walton, J.J.

    1981-06-01

    A network of eight meteorological towers was operated over about a one-year period within the Anderson Creek valley in the Geysers Geothermal Area of northern California. The purpose was to define the noctural wind and temperature structure along the valley's sloped surfaces for use in evaluating the frequency of drainage flows throughout the year and to assess the representativeness of the flows observed during the few nights that intensive studies were undertaken. (ACR)

  4. Anderson localization and the theory of dirty superconductors

    NASA Technical Reports Server (NTRS)

    Kapitulnik, A.; Kotliar, G.

    1985-01-01

    A study is made of the effect of Anderson localization in dirty superconductors. The scale dependence of the diffusion in the vicinity of the mobility edge results in a strong renormalization of the zero-temperature coherence length. This implies the breakdown of the Ginzburg criterion close to the metal-insulator transition and thus the importance of fluctuations in this regime. The upper critical field is calculated, and possible experiments are also discussed.

  5. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  6. STS-107 Payload Commander Michael Anderson suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson completes suit check prior to Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  7. Markovian Anderson Model: Bounds for the Rate of Propagation

    NASA Astrophysics Data System (ADS)

    Tcheremchantsev, Serguei

    We consider the Anderson model in with potentials whose values at any site of the lattice are Markovian independent random functions of time. For solutions to the time-dependent Schrödinger equation we show under some conditions that with probability 1 where for d=1,2 and for .

  8. A Suitable Option for Gustilo and Anderson Grade III Injury

    PubMed Central

    Yang, Ronghua; Wang, Zhijun; Huang, Wenzhu; Zhao, Yuhuan; Xu, Lusheng; Yu, Shaobin

    2016-01-01

    Background The management of Gustilo and Anderson grade III injury remains difficult, particularly due to the incidence of wound infections, delayed fracture union, and traumatic extremity amputation. However, little data is available on delayed skin graft or flap reconstructions of Gustilo grade III injury, especially using new technologies of wound coverage, such as vacuum sealing drainage (VSD) combined with limited internal and/or external fixation. Material/Methods Between June 2008 and May 2013, we performed the VSD technique combined with limited internal and/or external fixation on 38 patients (22 males and 16 females, with a mean age of 36.5 years) with Gustilo and Anderson grade III injury. VSD was regularly changed and delayed skin grafts or flaps were used to cover the defect. Two patients were lost to follow-up, and the remaining 36 were available for evaluation. The complications, wound healing, infections, and bony union were assessed for a mean duration of 2.5 years (range, 1–4 years). Results Complications were seen in 5 of the 36 cases: 2 cases had infection alone, 1 case had delayed union or nonunion, 1 case had infection and delayed union, and 1 case had wound necrosis, infection, and nonunion. VSD was regularly changed 2–6 times. Morphological appearance and functional recovery were satisfactory in all cases. Conclusions Using VSD before skin grafts or flaps coverage, combined with limited internal and/or external fixation, is a suitable option for Gustilo and Anderson grade III injury. PMID:27564219

  9. Topological Anderson insulator induced by inter-cell hopping disorder

    SciTech Connect

    Lv, Shu-Hui; Song, Juntao Li, Yu-Xian

    2013-11-14

    We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has been studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.

  10. A Suitable Option for Gustilo and Anderson Grade III Injury.

    PubMed

    Yang, Ronghua; Wang, Zhijun; Huang, Wenzhu; Zhao, Yuhuan; Xu, Lusheng; Yu, Shaobin

    2016-01-01

    BACKGROUND The management of Gustilo and Anderson grade III injury remains difficult, particularly due to the incidence of wound infections, delayed fracture union, and traumatic extremity amputation. However, little data is available on delayed skin graft or flap reconstructions of Gustilo grade III injury, especially using new technologies of wound coverage, such as vacuum sealing drainage (VSD) combined with limited internal and/or external fixation. MATERIAL AND METHODS Between June 2008 and May 2013, we performed the VSD technique combined with limited internal and/or external fixation on 38 patients (22 males and 16 females, with a mean age of 36.5 years) with Gustilo and Anderson grade III injury. VSD was regularly changed and delayed skin grafts or flaps were used to cover the defect. Two patients were lost to follow-up, and the remaining 36 were available for evaluation. The complications, wound healing, infections, and bony union were assessed for a mean duration of 2.5 years (range, 1-4 years). RESULTS Complications were seen in 5 of the 36 cases: 2 cases had infection alone, 1 case had delayed union or nonunion, 1 case had infection and delayed union, and 1 case had wound necrosis, infection, and nonunion. VSD was regularly changed 2-6 times. Morphological appearance and functional recovery were satisfactory in all cases. CONCLUSIONS Using VSD before skin grafts or flaps coverage, combined with limited internal and/or external fixation, is a suitable option for Gustilo and Anderson grade III injury. PMID:27564219

  11. Centrifugal Distortion Causes Anderson Localization in Laser Kicked Molecules

    NASA Astrophysics Data System (ADS)

    Floss, Johannes; Averbukh, Ilya Sh.

    2014-05-01

    The periodically kicked 2D rotor is a textbook model in nonlinear dynamics. The classical kicked rotor can exhibit truly chaotic motion, whilst in the quantum regime this chaotic motion is suppressed by a mechanism similar to Anderson Localization. Up to now, these effects have been mainly observed in an atom optics analogue of a quantum rotor: cold atoms in a standing light wave. We demonstrate that common linear molecules (like N2, O2, CO2, ...), kicked by a train of short linearly polarized laser pulses, can exhibit a new mechanism for dynamical Anderson Localization due to their non-rigidity. When the pulses are separated by the rotational revival time trev = πℏ / B , the angular momentum J grows ballistically (Quantum Resonance). We show that, due to the centrifugal distortion of fast spinning molecules, above some critical value J =Jcr the Quantum Resonance is suppressed via the mechanism of Anderson Localization. This leads to a non-sinusoidal oscillation of the angular momentum distribution, which may be experimentally observed even at ambient conditions by using current techniques for laser molecular alignment.

  12. On the Anderson localization conjecture in Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Liaw, Constanze; Busse, Kyle; Matthews, Lorin; Hyde, Truell

    2015-11-01

    In 1958, Anderson suggested that sufficiently large impurities in a semi-conductor could lead to spatial localization of electrons. This idea unfolded into the field of Anderson Localization, one of the most fascinating phenomena in solid-state physics as it plays a major role in the conductive properties of imperfectly ordered materials. The Anderson Localization Conjecture claims that random disorder of any strength causes localization of electrons in the medium. The problem has proven to be highly non-trivial. Over the years the community has argued whether spatial localization occurs in 2D for small impurities. From a mathematical standpoint, the conjecture is still considered an open question. In 2013, Liaw challenged the commonly held assumption that localization holds in 2D by introducing a new mathematically more rigorous method to test for extended states, and applying it to the discrete random Schrödinger operator. One of the advantages of the underlying method is its versatility. It can be applied to any ordered system such as colloids, crystals, and atomic lattices. In a cross-disciplinary effort we merge this method with a numerical code used to simulate 2D physics systems, in preparation for experimentally testing the theory against complex plasma crystals.

  13. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.

  14. Note: Work function change measurement via improved Anderson method

    SciTech Connect

    Sabik, A. Gołek, F.; Antczak, G.

    2015-05-15

    We propose the modification to the Anderson method of work function change (Δϕ) measurements. In this technique, the kinetic energy of the probing electrons is already low enough for non-destructive investigation of delicate molecular systems. However, in our implementation, all electrodes including filament of the electron gun are polarized positively. As a consequence, electron bombardment of any elements of experimental system is eliminated. Our modification improves cleanliness of the ultra-high vacuum system. As an illustration of the solution capabilities, we present Δϕ of the Ag(100) surface induced by cobalt phthalocyanine layers.

  15. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  16. Theory of the Anderson transition in the quasiperiodic kicked rotor.

    PubMed

    Tian, Chushun; Altland, Alexander; Garst, Markus

    2011-08-12

    We present the first microscopic theory of transport in quasiperiodically driven environments ("kicked rotors"), as realized in recent atom optic experiments. We find that the behavior of these systems depends sensitively on the value of a dimensionless Planck constant h: for irrational values of h/(4π) they fall into the universality class of disordered electronic systems and we describe the corresponding localization phenomena. In contrast, for rational values the rotor-Anderson insulator acquires an infinite (static) conductivity and turns into a "supermetal." We discuss the ensuing possibility of a metal-supermetal quantum phase transition.

  17. Kubo-Anderson Mixing in the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; Brink, A. Maassen Van Den

    A novel ab initio analysis of the Reynolds stress is presented in order to model non-local turbulence transport. The theory involves a sample path space and a stochastic hypothesis. A scaling relation maps the path space onto the boundary layer. Analytical sampling rates are shown to model mixing by exchange. Nonlocal mixing involves a scaling exponent ɛ≈0.58 (ɛ→∞ in the diffusion limit). The resulting transport equation represents a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process.

  18. Theory of the Anderson transition in the quasiperiodic kicked rotor.

    PubMed

    Tian, Chushun; Altland, Alexander; Garst, Markus

    2011-08-12

    We present the first microscopic theory of transport in quasiperiodically driven environments ("kicked rotors"), as realized in recent atom optic experiments. We find that the behavior of these systems depends sensitively on the value of a dimensionless Planck constant h: for irrational values of h/(4π) they fall into the universality class of disordered electronic systems and we describe the corresponding localization phenomena. In contrast, for rational values the rotor-Anderson insulator acquires an infinite (static) conductivity and turns into a "supermetal." We discuss the ensuing possibility of a metal-supermetal quantum phase transition. PMID:21902396

  19. The S=1 Underscreened Anderson Lattice model for Uranium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Simões, A. S. R.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing coexistence of the Kondo effect and ferromagnetic order are investigated within the degenerate Anderson Lattice Hamiltonian, describing a 5f2 electronic configuration with S = 1 spins. Through the Schrieffer-Wolff transformation, both an exchange Kondo interaction for the S = 1 f-spins and an effective f-band term are obtained, allowing to describe the coexistence of Kondo effect and ferromagnetic ordering and a weak delocalization of the 5f-electrons. We calculate the Kondo and Curie temperatures and we can account for the pressure dependence of the Curie temperature of UTe.

  20. STS-107 Payload Commander Michael Anderson suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson smiles as he undergoes suit check prior to Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  1. STS-107 Payload Commander Michael Anderson checks equipment at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson checks equipment during training at SPACEHAB. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. STS-107 is scheduled to launch July 11, 2002

  2. Luminescent Copper(I) Halide Butterfly Dimers Coordinated to [Au(CH3imCH2py)2]BF4 and [Au(CH3imCH2quin)2]BF4

    SciTech Connect

    Catalano, V.; Moore, A; Shearer, J; Kim, J

    2009-01-01

    The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} and [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} or [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} produces trimetallic complexes containing Cu{sub 2}X{sub 2}-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity ({approx}2.5-2.6 {angstrom}) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separations of {approx}2.5 {angstrom} found in the iodo-complexes and the longest separations of 2.9 {angstrom} found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from {approx}2.8 to 3.0 {angstrom}. In the absence of halides, the dimetallic complex [AuCu(CH{sub 3}imCH{sub 2}py){sub 2}(NCCH{sub 3}){sub 2}](BF{sub 4}){sub 2}, containing a long Au-Cu distance of {approx}4.72 {angstrom} is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} the deep-red, dimetallic compound, AuCuBr{sub 2}(CH{sub 3}imCH{sub 2}quin){sub 2}, was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.

  3. Anderson localization and Mott insulator phase in the time domain.

    PubMed

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  4. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  5. Exponential Orthogonality Catastrophe at the Anderson Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Kettemann, S.

    2016-09-01

    We consider the orthogonality catastrophe at the Anderson metal-insulator transition (AMIT). The typical overlap F between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the AMIT exponentially with system size L as F ˜exp (-c Lη) , where η is the power of multifractal intensity correlations. Thus, strong disorder typically increases the sensitivity of a system to an added impurity exponentially. We recover, on the metallic side of the transition, Anderson's result that the fidelity F decays with a power law F ˜L-q (EF) with system size L . Its power increases as the Fermi energy EF approaches the mobility edge EM as q (EF)˜[(EF-EM )/EM]-ν η , where ν is the critical exponent of the correlation length ξc. On the insulating side of the transition, F is constant for system sizes exceeding the localization length ξ . While these results are obtained for the typical fidelity F , we find that log F is widely, log normally, distributed with a width diverging at the AMIT. As a consequence, the mean value of the fidelity F converges to one at the AMIT, in strong contrast to its typical value which converges to zero exponentially fast with system size L . This counterintuitive behavior is explained as a manifestation of multifractality at the AMIT.

  6. Reply. [to the comment by Anderson et al. (1993)

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.; Ferek, Ronald G.; Hobbs, Peter V.

    1994-01-01

    While Hegg et al. (1993) accepts the criticism of Anderson et al. (1994) in principle, this involves the adoption of an aerosol composition model and the model that they propose to reconcile these observations with the assertion of Charlson et al. (1992) does not agree with many observations, particularly those made over the North Atlantic Ocean. Although the use of a gain factor (i.e. the partial derivative of aerosol mass with respect to the sulfate ion), proposed by Anderson et al., may be valid for particular cases where a proposed composition model really reflects the actual aerosol composition, this procedure is considered questionable in general. The use of sulfate as a tracer for nonsulfate aerosol mass is questionable, because in the present authors' data set, sulfate averaged only about 26% of the dry aerosol mass. The ammonium mass associated with sulfate mass is not analogous to that betwen the oxygen mass and sulfur mass in the sulfate ion. Strong chemical bonds are present between sulfur and oxygen in sulfate, whereas ammonium and sulfate in haze droplets are ions in solution that may or may not be associated with one another. Thus, there is no reason to assume that sulfate will act as a reliable tracer of ammonium mass. Hegg et al. expresses the view that their approach used for estimating sulfate light scattering efficiency is appropriate for the current level of understanding of atmospheric aerosols.

  7. Integrals of motion for one-dimensional Anderson localized systems

    NASA Astrophysics Data System (ADS)

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-01

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.

  8. Anderson Localization in Quantum Chaos: Scaling and Universality

    NASA Astrophysics Data System (ADS)

    García-García, A. M.; Wang, J.

    2007-10-01

    The one-parameter scaling theory is a powerful tool to investigate Anderson localization effects in disordered systems. In this paper we show that this theory can be adapted to the context of quantum chaos provided that the classical phase space is homogeneous, not mixed. The localization problem in this case is defined in momentum, not in real space. We then employ the one-parameter scaling theory to: (a) propose a precise characterization of the type of classical dynamics related to the Wigner-Dyson and Poisson statistics which also predicts in which situations Anderson localization corrections invalidate the relation between classical chaos and random matrix theory encoded in the Bohigas-Giannoni-Schmit conjecture, (b) to identify the universality class associated with the metal-insulator transition in quantum chaos. In low dimensions it is characterized by classical superdiffusion, in higher dimensions it has in general a quantum origin as in the case of disordered systems. We illustrate these two cases by studying 1d kicked rotors with non-analytical potentials and a 3d kicked rotor with a smooth potential.

  9. Award for Distinguished Scientific Early Career Contributions to Psychology: Adam K. Anderson

    ERIC Educational Resources Information Center

    American Psychologist, 2009

    2009-01-01

    Adam K. Anderson, recipient of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for his outstanding contribution to understanding the representation of emotion and its influence on cognition. By combining psychological and neuroscience techniques with rigorous and creative experimental designs, Anderson has…

  10. 78 FR 41835 - Inflation Adjustments to the Price-Anderson Act Financial Protection Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... made the initial changes to the Price-Anderson Act amounts on October 27, 2005 (70 FR 61885), and the... Federal Regulations is sold by the Superintendent of Documents. #0;Prices of new books are listed in the... 3150-AJ25 Inflation Adjustments to the Price-Anderson Act Financial Protection Regulations...

  11. 77 FR 67057 - CSX Transportation, Inc.-Discontinuance of Service Exemption-in Anderson County, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board CSX Transportation, Inc.--Discontinuance of Service Exemption--in Anderson... the track in Oak Ridge, Anderson County, Tenn. The line traverses United States Postal Service...

  12. The topological Anderson insulator phase in the Kane-Mele model.

    PubMed

    Orth, Christoph P; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L

    2016-04-05

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  13. The topological Anderson insulator phase in the Kane-Mele model.

    PubMed

    Orth, Christoph P; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L

    2016-01-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase. PMID:27045779

  14. The topological Anderson insulator phase in the Kane-Mele model

    PubMed Central

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-01-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase. PMID:27045779

  15. The topological Anderson insulator phase in the Kane-Mele model

    NASA Astrophysics Data System (ADS)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  16. 78 FR 11626 - Foreign-Trade Zone 176-Rockford, IL, Authorization of Production Activity, AndersonBrecon Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... public comment (77 FR 64311, 10-19-2012). The FTZ Board has determined that no further review of the..., AndersonBrecon Inc. (Medical Device Kitting), Rockford, IL On October 12, 2012, AndersonBrecon...

  17. Anderson Localization, Non-linearity and Stable Genetic Diversity

    NASA Astrophysics Data System (ADS)

    Epstein, Charles L.

    2006-07-01

    In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.

  18. Permittivity disorder induced Anderson localization in magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, R.; Namdar, A.

    2016-11-01

    This theoretical study was carried out to investigate the permittivity disorder induced Anderson localization of light in one-dimensional magnetophotonic crystals. It was shown that the disorder create the resonant transmittance modes associated with enhanced Faraday rotations inside the photonic band gap. The average localization length of the right- and left-handed circular polarizations (RCP and LCP), the total transmittance together with the ensemble average of the RCP and LCP phases, and the Faraday rotation of the structure were also investigated. For this purpose, the off-diagonal elements of the permittivity tensor were varied for various wavelengths of incident light. The obtained results revealed the nonreciprocal property of circular eigen modes. This study can potentially open up a new aspect for utilizing the disorder magnetophotonic structures in nonreciprocal systems such as isolators and circulators.

  19. X-slave boson approach to the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Franco, R.; Figueira, M. S.; Foglio, M. E.

    2001-05-01

    The periodic anderson model (PAM) in the limit U=∞, can be studied by employing the Hubbard X operators to project out the unwanted states. In a previous work, we have studied the cumulant expansion of this Hamiltonian employing the hybridization as a perturbation, but probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the "chain approximation (CHA)" are employed. To consider this problem, we use a technique similar to the one employed by Coleman to treat the same problem with slave-bosons in the mean-field approximation. Assuming a particular renormalization for hybridization, we obtain a description that avoids an unwanted phase transition that appears in the mean-field slave-boson method at intermediate temperatures.

  20. X-boson cumulant approach to the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Franco, R.; Figueira, M. S.; Foglio, M. E.

    2002-07-01

    The periodic Anderson model can be studied in the limit U=∞ by employing the Hubbard X operators to project out the unwanted states. We had already studied this problem by employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the ``chain approximation'' (CHA) are employed. To rectify this situation, we modify the CHA by employing a procedure that was used in the mean-field approximation of Coleman's slave-boson method. Our technique reproduces the features of that method in its region of validity, but avoids the unwanted phase transition that appears in the same method both when μ>>Ef at low T and for all values of the parameters at intermediate temperatures. Our method also has a dynamic character that is absent from the mean-field slave-boson method.

  1. Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori

    2015-09-01

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.

  2. Limb salvage talectomy for 3C Gustilo–Anderson fracture

    PubMed Central

    Mohammad, Hasan Raza; Pillai, Anand

    2016-01-01

    Foot fractures vary in severity with complex midfoot fractures having poor morbidity rates and high amputation rates. Complex midfoot fractures are rarely reported since they are uncommon and only treated in specialist centres. Given the important role of the midfoot in foot function, reconstruction is preferable. Soft tissue management on the dorsal aspect of the foot poses further challenges to reconstructive surgeons. We report a case of a 55-year-old woman who sustained an open 3C Gustilo–Anderson fracture that was initially treated with open reduction internal fixation and free flap. She subsequently developed flap and internal fixation failure with osteomyelitis of the talus. We report a good outcome using primary limb shortening with a talectomy, tibiocalcaneal arthrodesis using external fixation and a combination of vancomycin-loaded calcium sulphate and intravenous antibiotics in our patient. PMID:27173882

  3. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    SciTech Connect

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

  4. Three-dimensional Anderson localization in variable scale disorder.

    PubMed

    McGehee, W R; Kondov, S S; Xu, W; Zirbel, J J; DeMarco, B

    2013-10-01

    We report on the impact of variable-scale disorder on 3D Anderson localization of a noninteracting ultracold atomic gas. A spin-polarized gas of fermionic atoms is localized by allowing it to expand in an optical speckle potential. Using a sudden quench of the localized density distribution, we verify that the density profile is representative of the underlying single-particle localized states. The geometric mean of the disordering potential correlation lengths is varied by a factor of 4 via adjusting the aperture of the speckle focusing lens. We observe that the root-mean-square size of the localized gas increases approximately linearly with the speckle correlation length, in qualitative agreement with the scaling predicted by weak scattering theory.

  5. Topological Anderson insulators in systems without time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Su, Ying; Avishai, Y.; Wang, X. R.

    2016-06-01

    Occurrence of the topological Anderson insulator (TAI) in a HgTe quantum well suggests that when time-reversal symmetry (TRS) is maintained, the pertinent topological phase transition, marked by re-entrant 2 e2/h quantized conductance contributed by helical edge states, is driven by disorder. Here we show that when TRS is broken, the physics of the TAI becomes even richer. The pattern of longitudinal conductance and nonequilibrium local current distribution displays novel TAI phases characterized by nonzero Chern numbers, indicating the occurrence of multiple chiral edge modes. Tuning either disorder or Fermi energy (in both topologically trivial and nontrivial phases), drives transitions between these distinct TAI phases, characterized by jumps of the quantized conductance from 0 to e2/h and from e2/h to 2 e2/h . An effective medium theory based on the Born approximation yields an accurate description of different TAI phases in parameter space.

  6. Anderson localization of matter waves in quantum-chaos theory

    NASA Astrophysics Data System (ADS)

    Fratini, E.; Pilati, S.

    2015-06-01

    We study the Anderson localization of atomic gases exposed to three-dimensional optical speckles by analyzing the statistics of the energy-level spacings. This method allows us to consider realistic models of the speckle patterns, taking into account the strongly anisotropic correlations which are realized in concrete experimental configurations. We first compute the mobility edge Ec of a speckle pattern created using a single laser beam. We find that Ec drifts when we vary the anisotropy of the speckle grains, going from higher values when the speckles are squeezed along the beam propagation axis to lower values when they are elongated. We also consider the case where two speckle patterns are superimposed, forming interference fringes, and we find that Ec is increased compared to the case of idealized isotropic disorder. We discuss the important implications of our findings for cold-atom experiments.

  7. Topology, delocalization via average symmetry and the symplectic Anderson transition.

    PubMed

    Fu, Liang; Kane, C L

    2012-12-14

    A field theory of the Anderson transition in two-dimensional disordered systems with spin-orbit interactions and time-reversal symmetry is developed, in which the proliferation of vortexlike topological defects is essential for localization. The sign of vortex fugacity determines the Z(2) topological class of the localized phase. There are two distinct fixed points with the same critical exponents, corresponding to transitions from a metal to an insulator and a topological insulator, respectively. The critical conductivity and correlation length exponent of these transitions are computed in an N=1-[symbol: see text] expansion in the number of replicas, where for small [symbol: see text] the critical points are perturbatively connected to the Kosterlitz-Thouless critical point. Delocalized states, which arise at the surface of weak topological insulators and topological crystalline insulators, occur because vortex proliferation is forbidden due to the presence of symmetries that are violated by disorder, but are restored by disorder averaging.

  8. Integrals of motion for one-dimensional Anderson localized systems

    DOE PAGESBeta

    Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram

    2016-03-02

    Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less

  9. Random Walks in Anderson's Garden: A Journey from Cuprates to Cooper Pair Insulators and Beyond

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Anderson's Garden is a drawing presented to Philip W. Anderson on the eve of his 60th birthday celebration, in 1983, by a colleague (author unknown). This cartoon (Fig. 1) succinctly depicts some of Anderson's pre-1983 works. As an avid reader of Anderson's papers, a random walk in Anderson's garden had become a part of my routine since graduate school days. This was of immense help and prepared me for a wonderful collaboration with Anderson on the theory of high-Tc cuprates and quantum spin liquids at Princeton. Here I narrate this story, ending with a brief summary of my ongoing theoretical efforts to extend Anderson's RVB theory for superconductivity to encompass the recently observed high-temperature (Tc ~ 203K) superconductivity in solid H2S at pressure ~200GPa. In H2S molecule, four valence electrons form two saturated covalent bonds, H-S-H. These bond singlets are confined Cooper pairs close to chemical potential. Solid H2S is a Cooper pair insulator. Pressure changes the structure and not the number of valence electrons. Bond singlet pairing tendency continues and new S-S and H-H bonds are formed. S-S bonds are mostly saturated. However, hydrogen sublattice has unsaturated H-H bonds. It prepares ground for a RVB superconducting state.

  10. Transport and Anderson localization in disordered two-dimensional photonic lattices.

    PubMed

    Schwartz, Tal; Bartal, Guy; Fishman, Shmuel; Segev, Mordechai

    2007-03-01

    One of the most interesting phenomena in solid-state physics is Anderson localization, which predicts that an electron may become immobile when placed in a disordered lattice. The origin of localization is interference between multiple scatterings of the electron by random defects in the potential, altering the eigenmodes from being extended (Bloch waves) to exponentially localized. As a result, the material is transformed from a conductor to an insulator. Anderson's work dates back to 1958, yet strong localization has never been observed in atomic crystals, because localization occurs only if the potential (the periodic lattice and the fluctuations superimposed on it) is time-independent. However, in atomic crystals important deviations from the Anderson model always occur, because of thermally excited phonons and electron-electron interactions. Realizing that Anderson localization is a wave phenomenon relying on interference, these concepts were extended to optics. Indeed, both weak and strong localization effects were experimentally demonstrated, traditionally by studying the transmission properties of randomly distributed optical scatterers (typically suspensions or powders of dielectric materials). However, in these studies the potential was fully random, rather than being 'frozen' fluctuations on a periodic potential, as the Anderson model assumes. Here we report the experimental observation of Anderson localization in a perturbed periodic potential: the transverse localization of light caused by random fluctuations on a two-dimensional photonic lattice. We demonstrate how ballistic transport becomes diffusive in the presence of disorder, and that crossover to Anderson localization occurs at a higher level of disorder. Finally, we study how nonlinearities affect Anderson localization. As Anderson localization is a universal phenomenon, the ideas presented here could also be implemented in other systems (for example, matter waves), thereby making it feasible

  11. The Anderson model for electron localisation non-linear σ model, asymptotic gauge invariance

    NASA Astrophysics Data System (ADS)

    Pruisken, Adrianus M. M.; Schäfer, Lothar

    1982-01-01

    The Anderson model for localisation problems is treated with field theory, employing the replica trick. We show that no valid perturbation theory results out of the usual ( S2) 2 formalism due to mishandling of symmetries. The problem is reformulated in terms of matrix fields. It is shown that the Anderson model asymptotically exhibits an exact local gauge symmetry. Elimination of massive longitudinal components leads to a non-compact σ model, obtained earlier for the description of electronic disorder. We thus establish that the Anderson model is in the same universality class as Wegner's gauge invariant real matrix model.

  12. Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices

    SciTech Connect

    Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.

    2005-10-21

    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.

  13. Scaling of Von Neumann Entropy at the Anderson Transition

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sudip

    Extensive body of work has shown that for the model of a non-interacting electron in a random potential there is a quantum critical point for dimensions greater than two — a metal-insulator transition. This model also plays an important role in the plateau-to-plateu transition in the integer quantum Hall effect, which is also correctly captured by a scaling theory. Yet, in neither of these cases the ground state energy shows any non-analyticity as a function of a suitable tuning parameter, typically considered to be a hallmark of a quantum phase transition, similar to the non-analyticity of the free energy in a classical phase transition. Here we show that von Neumann entropy (entanglement entropy) is non-analytic at these phase transitions and can track the fundamental changes in the internal correlations of the ground state wave function. In particular, it summarizes the spatially wildly fluctuating intensities of the wave function close to the criticality of the Anderson transition. It is likely that all quantum phase transitions can be similarly described.

  14. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  15. Kondo hole route to incoherence in the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Vidhyadhiraja, N. S.

    2013-03-01

    The interplay of disorder and interactions in strongly correlated electronic systems is a subject of perennial interest. In this work, we have investigated the effect of Kondo-hole type disorder on the dynamics and transport properties of heavy fermion systems. We employ the periodic Anderson model within the framework of coherent potential approximation and dynamical mean field theory. The crossover from lattice coherent behaviour to an incoherent single-impurity behaviour is reflected in all aspects: a highly frequency (ω)-dependent hybridization becomes almost flat, the coherence peak in resistivity (per impurity) gives way to a Hammann form that saturates at low temperature (T); the Drude peak and the mid-infrared peak in the optical conductivity vanish almost completely. The zero temperature resistivity can be captured in a closed form expression, and we show how the Nordheim's rule gets strongly modified in these systems. The thermopower exhibits a characteristic peak, which changes sign with increasing disorder, and its location is shown to correspond to the low energy scale of the system (ωL). In fact, the thermopower appears to be much more sensitive to disorder variations than the resistivity. A comparison to experiments yields quantitative agreement. JNCASR and CSIR

  16. Breast reconstruction at the MD Anderson Cancer Center

    PubMed Central

    2016-01-01

    The introduction of the transverse rectus abdominis myocutaneous flap in the 1970s marks the beginning of modern breast reconstruction although implants were available even earlier mainly for breast augmentation. Mastectomy techniques have evolved from the early Halsted radical mastectomy to the modern skin sparing mastectomy. The latter made possible using implants for breast reconstruction. Although prosthetic reconstruction provides a simpler procedure with quick recovery, autologous reconstruction offers more natural and long-lasting results especially in the setting of radiotherapy. Both forms have been extensively used at the MD Anderson Cancer Center (MDACC) while microsurgical breast reconstruction has been the hallmark of the MDACC experience. One of the most challenging areas of breast reconstruction is how to achieve good results without compromising adjuvant therapy when post-mastectomy radiotherapy is required. Managing upper extremity lymphedema following breast cancer treatment is another difficult issue which has gained great attention in recent years. This article highlights the important work in various aspects of breast reconstruction that has been done at the MDACC. PMID:27563563

  17. Spin susceptibility of Anderson impurities in arbitrary conduction bands

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Tong, Ning-Hua; Cao, Zhan; Sun, Qing-Feng; Luo, Hong-Gang

    2015-10-01

    Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.

  18. Breast reconstruction at the MD Anderson Cancer Center.

    PubMed

    Yu, Peirong

    2016-08-01

    The introduction of the transverse rectus abdominis myocutaneous flap in the 1970s marks the beginning of modern breast reconstruction although implants were available even earlier mainly for breast augmentation. Mastectomy techniques have evolved from the early Halsted radical mastectomy to the modern skin sparing mastectomy. The latter made possible using implants for breast reconstruction. Although prosthetic reconstruction provides a simpler procedure with quick recovery, autologous reconstruction offers more natural and long-lasting results especially in the setting of radiotherapy. Both forms have been extensively used at the MD Anderson Cancer Center (MDACC) while microsurgical breast reconstruction has been the hallmark of the MDACC experience. One of the most challenging areas of breast reconstruction is how to achieve good results without compromising adjuvant therapy when post-mastectomy radiotherapy is required. Managing upper extremity lymphedema following breast cancer treatment is another difficult issue which has gained great attention in recent years. This article highlights the important work in various aspects of breast reconstruction that has been done at the MDACC. PMID:27563563

  19. Impurity-induced antiferromagnetic domains in the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Benali, A.; Bai, Z. J.; Curro, N. J.; Scalettar, R. T.

    2016-08-01

    A central feature of the periodic Anderson model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization V , and singlet formation at large V . At zero temperature, and in dimension d >1 , these two phases are separated by a quantum critical point Vc. We use quantum Monte Carlo (QMC) simulations to explore the effect of impurities which have a local hybridization V*Vc . We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Exact diagonalization calculations for linear chains allow us to verify that the qualitative features obtained at intermediate coupling and finite T persist to strong coupling and T =0 , regimes which are difficult to access with QMC. Our calculations agree qualitatively with NMR measurements in CeCoIn5 -xCdx .

  20. Anderson localization in optical lattices with correlated disorder

    NASA Astrophysics Data System (ADS)

    Fratini, E.; Pilati, S.

    2015-12-01

    We study the Anderson localization of atomic gases exposed to simple-cubic optical lattices with a superimposed disordered speckle pattern. The two mobility edges in the first band and the corresponding critical filling factors are determined as a function of the disorder strength, ranging from vanishing disorder up to the critical disorder intensity where the two mobility edges merge and the whole band becomes localized. Our theoretical analysis is based both on continuous-space models that take into account the details of the spatial correlation of the speckle pattern, and also on a simplified tight-binding model with an uncorrelated distribution of the on-site energies. The mobility edges are computed via the analysis of the energy-level statistics, and we determine the universal value of the ratio between consecutive level spacings at the mobility edge. We analyze the role of the spatial correlation of the disorder, and we also discuss a qualitative comparison with available experimental data for interacting atomic Fermi gases obtained in the moderate interaction regime.

  1. Theory of Anderson pseudospin resonance with Higgs mode in superconductors

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Aoki, Hideo

    2015-08-01

    A superconductor illuminated by an ac electric field with frequency Ω is theoretically found to generate a collective precession of Anderson's pseudospins, and hence a coherent amplitude oscillation of the order parameter, with a doubled frequency 2 Ω through a nonlinear light-matter coupling. We provide a fundamental theory, based on the mean-field formalism, to show that the induced pseudospin precession resonates with the Higgs amplitude mode of the superconductor at 2 Ω =2 Δ with 2 Δ being the superconducting gap. The resonant precession is accompanied by a divergent enhancement of the third-harmonic generation (THG). By decomposing the THG susceptibility into the bare one and vertex correction, we find that the enhancement of the THG cannot be explained by individual quasiparticle excitations (pair breaking), so that the THG serves as a smoking gun for an identification of the collective Higgs mode. We further explore the effect of electron-electron scattering on the pseudospin resonance by applying the nonequilibrium dynamical mean-field theory to the attractive Hubbard model driven by ac electric fields. The result indicates that the pseudospin resonance is robust against electron correlations, although the resonance width is broadened due to electron scattering, which determines the lifetime of the Higgs mode.

  2. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Automotive Exteriors, LLC, working out of Troy, Michigan. The workers provided office, engineering and sales... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI; Amended Certification Regarding Eligibility To Apply for...

  3. Modified Anderson orthogonality catastrophe power law in the presence of shell structure

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Swarnali; Hentschel, Martina

    2011-01-01

    We study Anderson orthogonality catastrophe (AOC) for parabolic quantum dots and focus on the effects of degeneracies, realized through the inherent shell structure of their energy levels that can be lifted through an external magnetic field, on the Anderson overlap. We find rich and interesting behaviors as a function of the strength and position of the perturbation, the system size, and the applied magnetic field. In particular, even for weak perturbations, we observe a pronounced AOC that is related to the degeneracy of energy levels. Most importantly, the power-law decay of the Anderson overlap as a function of the number of particles is modified in comparison to the metallic case due to the rearrangement of the energy-level shell structure. We support our analytical results by numerical calculations and also study the distribution of Anderson overlaps.

  4. Wegner estimates, Lifshitz tails, and Anderson localization for Gaussian random magnetic fields

    NASA Astrophysics Data System (ADS)

    Ueki, Naomasa

    2016-07-01

    The Wegner estimate for the Hamiltonian of the Anderson model for the special Gaussian random magnetic field is extended to more general magnetic fields. The Lifshitz tail upper bounds of the integrated density of states as analyzed by Nakamura are reviewed and extended so that Gaussian random magnetic fields can be treated. By these and multiscale analysis, the Anderson localization at low energies is proven.

  5. Parabolic Anderson Model in a Dynamic Random Environment: Random Conductances

    NASA Astrophysics Data System (ADS)

    Erhard, D.; den Hollander, F.; Maillard, G.

    2016-06-01

    The parabolic Anderson model is defined as the partial differential equation ∂ u( x, t)/ ∂ t = κ Δ u( x, t) + ξ( x, t) u( x, t), x ∈ ℤ d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u( x, 0) = u 0( x), x ∈ ℤ d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ, split into two at rate ξ ∨ 0, and die at rate (- ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents λ p(κ ) = limlimits _{tto ∞} 1/t log {E} ([u(0,t)]p)^{1/p}, quad p in {N} , qquad λ 0(κ ) = limlimits _{tto ∞} 1/2 log u(0,t). For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ𝓚, where 𝓚 = {𝓚( x, y) : x, y ∈ ℤ d , x ˜ y} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (𝓚), p ∈ ℕ, are given by the formula λ p({K} ) = {sup} {λ p(κ ) : κ in {Supp} ({K} )}, where, for a fixed realisation of 𝓚, Supp(𝓚) is the set of values taken by the 𝓚-field. We also show that for the associated quenched Lyapunov exponent λ 0(𝓚) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(𝓚) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all 𝓚

  6. Attractive Hubbard model with disorder and the generalized Anderson theorem

    SciTech Connect

    Kuchinskii, E. Z. Kuleeva, N. A. Sadovskii, M. V.

    2015-06-15

    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.

  7. Polaronic conduction and Anderson localization in reduced strontium barium niobate

    NASA Astrophysics Data System (ADS)

    Dandeneau, Christopher S.; Yang, YiHsun; Olmstead, Marjorie A.; Bordia, Rajendra K.; Ohuchi, Fumio S.

    2015-12-01

    Electron transport mechanisms in reduced Sr0.5Ba0.5Nb2O6 (SBN50) are investigated from ˜100 to 955 K through an analysis of the electrical conductivity (σ) and the Seebeck coefficient (S) with respect to temperature (T). Notably, experimental evidence is presented that supports a scenario of Anderson localization below 600 K and carrier excitation across a mobility edge at higher temperature. As a relaxor ferroelectric, stoichiometric SBN has intrinsic disorder associated with both the distribution of Sr/Ba vacancies and the formation of polarized nanoregions. The removal of oxygen through reduction generates conduction electrons in SBN. At the lowest temperatures measured (100-155 K), the electrical conductivity exhibits a temperature dependence characteristic of variable range hopping, followed by a transition to small polaron hopping at intermediate temperatures (250-545 K). In both the variable range and small polaron hopping regimes, a semiconductor-like temperature dependence of the electrical conductivity (dσ/dT > 0) was observed. However, above 615 K, dσ/dT decreases dramatically and eventually becomes metal-like (dσ/dT < 0). Concomitantly, the Seebeck coefficient exhibits a linear dependence on lnT from 615 to 955 K with the same slope (˜104 μ V/K) for both polycrystalline SBN50 and single crystalline SBN61 (both reduced), indicating a similar, constant density of states near the Fermi level for both compositions. The application of Seebeck coefficient theory to this inherently disordered material reveals that the excitation of carriers across a mobility edge is likely responsible for the change in dσ/dT at high temperature. Such findings may have a significant impact in the field of conductive ferroelectrics.

  8. Anderson localization to enhance light-matter interaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Garcia, Pedro David

    2016-04-01

    Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M

  9. Exciting Molecules Close to the Rotational Quantum Resonance: Anderson Wall and Rotational Bloch Oscillations.

    PubMed

    Floß, Johannes; Averbukh, Ilya Sh

    2016-05-19

    We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under conditions close to the quantum resonance. The quantum resonance effect causes an unlimited ballistic growth of the angular momentum. We show that a disturbance of the quantum resonance, either by the centrifugal distortion of the rotating molecules or a controlled detuning of the pulse train period from the so-called rotational revival time, eventually halts the growth by causing Anderson localization beyond a critical value of the angular momentum, the Anderson wall. Below the wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.

  10. John Anderson's development of (situational) realism and its bearing on psychology today.

    PubMed

    Hibberd, Fiona J

    2009-10-01

    In 1927, the Scottish philosopher John Anderson arrived in Australia to take up the chair of Philosophy at the University of Sydney. By the late 1930s, the "macrostructure" of his realist system was in place. It includes a theory of process and a substantial metaphysics, one that opposes positivism, linguistic philosophy and all forms of idealism. However, beyond Australia it remains largely unknown, despite its bearing on a number of current issues in psychology and the social sciences generally. This article outlines Anderson's transition from Hegelian idealism to realism, describes aspects of his ontology and epistemology, compares some of Anderson's ideas with Dewey's pragmatism and explains their relevance to present-day psychology. PMID:20027696

  11. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems.

    PubMed

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A; Wang, Jian; Niu, Qian

    2016-07-29

    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization. PMID:27517785

  12. Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian

    2016-07-01

    We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.

  13. Mean-field theory and ɛ expansion for Anderson localization

    NASA Astrophysics Data System (ADS)

    Harris, A. B.; Lubensky, T. C.

    1981-03-01

    A general field-theoretic formulation of the Anderson model for the localization of wave functions in a random potential is given in terms of n-component replicated fields in the limit n-->0, and is analyzed primarily for spatial dimension d>=4. Lengths ξ1 and ξ2 associated with the spatial decay of correlations in the single-particle and two-particle Green's functions, respectively, are introduced. Two different regimes, the weak coupling and strong coupling, are distinguished depending on whether ξ-11 or ξ-12, respectively, vanishes as the mobility energy, Ec, is approached. The weak-coupling regime vanishes as d-->4+. Mean-field theory is developed from the uniform minimum of the Lagrangian for both the strong- and weak-coupling cases. For the strong-coupling case it gives the exponents va=14, γa=βa=12, η=0, and μ=1, where βa is the exponent associated with the density of extended states and μ is that associated with the conductivity. Simple heuristic arguments are used to verify the correctness of these unusual mean-field values. Infrared divergences in perturbation theory for the strong-coupling case occur for d<8, and an ɛ expansion (ɛ=8-d) is developed which is found to be identical to that previously analyzed for the statistics of lattice animals and which gives βa=12-ɛ12, η=-ɛ9, va=14+ɛ36, and μ=1-5ɛ36. The results are consistent with the Ward identity, which in combination with scaling arguments requires that βa+γa=1. The treatment takes account of the fact that the average of the on-site Green's function [G(x-->,x-->E)]av is nonzero and is predicated on this quantity being real, i.e., on the density of states vanishing at the mobility edge. We also show that localized states emerge naturally from local minima of finite action in the Lagrangian. These instanton solutions are analyzed on a lattice where the cutoff produced by the lattice constant leads to lattice instantons which exist for all d, in contrast to the case for the

  14. Non-perturbative Anderson localization in heavy-tailed potentials via large deviations moment analysis

    NASA Astrophysics Data System (ADS)

    Chulaevsky, Victor

    2016-09-01

    We study a class of Anderson Hamiltonians with heavy-tailed independent and identically distributed random potential on graphs with sub-exponential growth of the balls and of the number of self-avoiding paths connecting pairs of points. We show that for a class of marginal distributions, Anderson localization occurs non-perturbatively, i.e., for any nonzero amplitude of the potential, like in one-dimensional systems. The proof is based on the moment analysis of the Green functions via large deviations estimates.

  15. Wildlife Impact Assessment: Anderson Ranch, Black Canyon, and Boise Diversion Projects, Idaho. Final Report.

    SciTech Connect

    Meuleman, G. Allyn

    1986-05-01

    This report presents an analysis of impacts on wildlife and their habitats as a result of construction and operation of the US Bureau of Reclamation's Anderson Ranch, Black Canyon, and Boise Diversion Projects in Idaho. The objectives were to: (1) determine the probable impacts of development and operation of the Anderson Ranch, Black Canyon, and Boise Diversion Projects to wildlife and their habitats; (2) determine the wildlife and habitat impacts directly attributable to hydroelectric development and operation; (3) briefly identify the current major concerns for wildlife in the vicinities of the hydroelectric projects; and (4) provide for consultation and coordination with interested agencies, tribes, and other entities expressing interest in the project.

  16. Financial protection against nuclear hazards: thirty years' experience under the Price-Anderson Act

    SciTech Connect

    Rockett, L.R.; Hayn, I.

    1984-01-01

    The purpose of this study is to evaluate the operation of the Price-Anderson Act in the light of the last 10 years' experience and the changes that have occurred during that period both in the law and regulations and in the nuclear and insurance industries, and to provide an independent analysis of various proposals to extend or amend the Act prior to its 1987 expiration. The report does not analyze the impact of the Silkwood v. Kerr McGee Corp. decision. The five chapters cover historical background, financial protection under the Price-Anderson Act and in the absence of the Act, fundamental policy issues, and alternative proposals.

  17. Anderson localization in one-dimension with Levy-type disorder

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Ekuma, Chinedu; Terletska, Hanna; Meng, Ziyang; Moreno, Juana; Jarrell, Mark

    2013-03-01

    Abstract: Quantum transport through disordered systems has been the subject of extensive research since Anderson's seminal theory of localization. Motivated by experimental realizations of light transport across media exhibiting Levy-type fluctuations, we study the one-dimensional Anderson model where the random site energies are governed by a probability distribution with a broad tail, otherwise known as Levy-type. We numerically compute the Lyapunov exponent and its variance. This exponent is a self-averaging quantity whose inverse in certain cases can be used to define the localization length. Furthermore, we check for the validity of single parameter scaling (SPS), and its dependence on the Levy index.

  18. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE PAGESBeta

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    2015-01-01

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  19. 77 FR 72906 - Chessie Logistics Co., LLC-Acquisition and Operation Exemption-J. Emil Anderson & Son, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Surface Transportation Board Chessie Logistics Co., LLC--Acquisition and Operation Exemption-- J. Emil... exemption under 49 CFR 1150.31 to acquire from J. Emil Anderson & Son, Inc. (Anderson) and to operate 1.006... it. See Mannheim Armitage Ry.--Acquis. & Operation Exemption--Certain Trackage Rights of J....

  20. Melissa L. Anderson: APA/APAGS Award for Distinguished Graduate Student in Professional Psychology

    ERIC Educational Resources Information Center

    American Psychologist, 2012

    2012-01-01

    Presents a short biography of the winner of the American Psychological Association/American Psychological Association of Graduate Students Award for Distinguished Graduate Student in Professional Psychology. The 2012 winner is Melissa L. Anderson for her ongoing commitment to understanding, treating, and preventing domestic violence in Deaf women…

  1. Adolescent Identities and Sexual Behavior: An Examination of Anderson's Player Hypothesis

    ERIC Educational Resources Information Center

    Giordano, Peggy C.; Longmore, Monica A.; Manning, Wendy D.; Northcutt, Miriam J.

    2009-01-01

    We investigate the social and behavioral characteristics of male adolescents who self-identify as players, focusing particularly on Anderson's claim that this social role is inextricably linked with poverty and minority status. Results indicate that black respondents, those affiliated with liberal peers and young men who initially report a…

  2. Nonperturbative spectral-density function for the Anderson model at arbitrary temperatures

    NASA Technical Reports Server (NTRS)

    Neal, Henry L.

    1991-01-01

    Using a nonperturbative self-energy solution for the nondegenerate Anderson model, the temperature-dependent spectral-density function is calculated in the symmetric limit. The function is found to give reliable results for all values of the parameter u and inverse temperature beta.

  3. Anderson v. University of Wisconsin: Handicap and Race Discrimination in Readmission Procedures.

    ERIC Educational Resources Information Center

    Smith, Elizabeth R.

    1989-01-01

    "Anderson v. University of Wisconsin" gives important guidance to universities by detailing the components of race and handicap discrimination claims, and illustrating how these claims can succeed. Readmission procedures that could reduce the likelihood of charges of discrimination are suggested. (Author/MLW)

  4. Community of Inquiry in e-Learning: A Critical Analysis of the Garrison and Anderson Model

    ERIC Educational Resources Information Center

    Jezegou, Annie

    2010-01-01

    This article is based on a constructively critical analysis of the "community of inquiry" model developed by Garrison and Anderson (2003) as part of their "e-learning" research. The authors claim that certain collaborative interactions create "distant presence" fostering the emergence of a "community of inquiry" which has a positive influence on…

  5. 4. VIEW OF SITE A FROM ANDERSON WAY, FACING SOUTH/SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF SITE A FROM ANDERSON WAY, FACING SOUTH/SOUTHWEST. (BUILDINGS 126, 124, 122, 120, and 114 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  6. Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.

    SciTech Connect

    Meuleman, G. Allyn

    1987-06-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

  7. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures

    PubMed Central

    Park, Chul Hyun; Shon, Oog Jin; Kim, Gi Beom

    2016-01-01

    Background: Traditionally, Gustilo Anderson grade IIIb open tibial fractures have been treated by initial wide wound debridement, stabilization of fracture with external fixation, and delayed wound closure. The purpose of this study is to evaluate the clinical and radiological results of staged treatment using negative pressure wound therapy (NPWT) for Gustilo Anderson grade IIIb open tibial fractures. Materials and Methods: 15 patients with Gustilo Anderson grade IIIb open tibial fractures, treated using staged protocol by a single surgeon between January 2007 and December 2011 were reviewed in this retrospective study. The clinical results were assessed using a Puno scoring system for severe open fractures of the tibia at the last followup. The range of motion (ROM) of the knee and ankle joints and postoperative complication were evaluated at the last followup. The radiographic results were assessed using time to bone union, coronal and sagittal angulations and a shortening at the last followup. Results: The mean score of Puno scoring system was 87.4 (range 67–94). The mean ROM of the knee and ankle joints was 121.3° (range 90°–130°) and 37.7° (range 15°–50°), respectively. Bone union developed in all patients and the mean time to union was 25.3 weeks (range 16–42 weeks). The mean coronal angulation was 2.1° (range 0–4°) and sagittal was 2.7° (range 1–4°). The mean shortening was 4.1 mm (range 0–8 mm). Three patients had partial flap necrosis and 1 patient had total flap necrosis. There was no superficial and deep wound infection. Conclusion: Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures. PMID:27746498

  8. Observation of Anderson localization in ultrathin films of three-dimensional topological insulators.

    PubMed

    Liao, Jian; Ou, Yunbo; Feng, Xiao; Yang, Shuo; Lin, Chaojing; Yang, Wenmin; Wu, Kehui; He, Ke; Ma, Xucun; Xue, Qi-Kun; Li, Yongqing

    2015-05-29

    Anderson localization, the absence of diffusive transport in disordered systems, has been manifested as hopping transport in numerous electronic systems, whereas in recently discovered topological insulators it has not been directly observed. Here, we report experimental demonstration of a crossover from diffusive transport in the weak antilocalization regime to variable range hopping transport in the Anderson localization regime with ultrathin (Bi_{1-x}Sb_{x})_{2}Te_{3} films. As disorder becomes stronger, negative magnetoconductivity due to the weak antilocalization is gradually suppressed, and eventually, positive magnetoconductivity emerges when the electron system becomes strongly localized. This work reveals the critical role of disorder in the quantum transport properties of ultrathin topological insulator films, in which theories have predicted rich physics related to topological phase transitions.

  9. Magnetic frustration in the three-band Anderson lattice model for high-temperature superconductors

    SciTech Connect

    Ihle, D.; Kasner, M. )

    1990-09-01

    The three-band Anderson lattice model for the CuO{sub 2} planes in high-{Tc} superconductors is established. Treating this model by perturbation theory, the effective spin interactions are derived. The antiferromagnetic superexchange integrals are calculated as functions of the direct oxygen transfer and the hole concentration. It is found that frustration in the superexchange occurs, even in the undoped case, which increases with oxygen trnasfer and decreases with hole concentration.

  10. Anderson localization of electrons in single crystals: Li (x) Fe(7)Se(8).

    PubMed

    Ying, Tianping; Gu, Yueqiang; Chen, Xiao; Wang, Xinbo; Jin, Shifeng; Zhao, Linlin; Zhang, Wei; Chen, Xiaolong

    2016-02-01

    Anderson (disorder-induced) localization, proposed more than half a century ago, has inspired numerous efforts to explore the absence of wave diffusions in disordered media. However, the proposed disorder-induced metal-insulator transition (MIT), associated with the nonpropagative electron waves, has hardly been observed in three-dimensional (3D) crystalline materials, let alone single crystals. We report the observation of an MIT in centimeter-size single crystals of Li x Fe7Se8 induced by lattice disorder. Both specific heat and infrared reflectance measurements reveal the presence of considerable electronic states in the vicinity of the Fermi level when the MIT occurs, suggesting that the transition is not due to Coulomb repulsion mechanism. The 3D variable range hopping regime evidenced by electrical transport measurements at low temperatures indicates the localized nature of the electronic states on the Fermi level. Quantitative analyses of carrier concentration, carrier mobility, and simulated density of states (DOS) fully support that Li x Fe7Se8 is an Anderson insulator. On the basis of these results, we provide a unified DOS picture to explain all the experimental results, and a schematic diagram for finding other potential Anderson insulators. This material will thus serve as a rich playground for both theoretical and experimental investigations on MITs and disorder-induced phenomena. PMID:26989781

  11. Anderson localization of electrons in single crystals: LixFe7Se8

    PubMed Central

    Ying, Tianping; Gu, Yueqiang; Chen, Xiao; Wang, Xinbo; Jin, Shifeng; Zhao, Linlin; Zhang, Wei; Chen, Xiaolong

    2016-01-01

    Anderson (disorder-induced) localization, proposed more than half a century ago, has inspired numerous efforts to explore the absence of wave diffusions in disordered media. However, the proposed disorder-induced metal-insulator transition (MIT), associated with the nonpropagative electron waves, has hardly been observed in three-dimensional (3D) crystalline materials, let alone single crystals. We report the observation of an MIT in centimeter-size single crystals of LixFe7Se8 induced by lattice disorder. Both specific heat and infrared reflectance measurements reveal the presence of considerable electronic states in the vicinity of the Fermi level when the MIT occurs, suggesting that the transition is not due to Coulomb repulsion mechanism. The 3D variable range hopping regime evidenced by electrical transport measurements at low temperatures indicates the localized nature of the electronic states on the Fermi level. Quantitative analyses of carrier concentration, carrier mobility, and simulated density of states (DOS) fully support that LixFe7Se8 is an Anderson insulator. On the basis of these results, we provide a unified DOS picture to explain all the experimental results, and a schematic diagram for finding other potential Anderson insulators. This material will thus serve as a rich playground for both theoretical and experimental investigations on MITs and disorder-induced phenomena. PMID:26989781

  12. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition

  13. Analysis of the characteristics of patients with open tibial fractures of Gustilo and Anderson type III☆

    PubMed Central

    Jaña Neto, Frederico Carlos; de Paula Canal, Marina; Alves, Bernardo Aurélio Fonseca; Ferreira, Pablício Martins; Ayres, Jefferson Castro; Alves, Robson

    2016-01-01

    Objective To analyze the characteristics of patients with Gustilo–Anderson Type III open tibial fractures treated at a tertiary care hospital in São Paulo between January 2013 and August 2014. Methods This was a cross-sectional retrospective study. The following data were gathered from the electronic medical records: age; gender; diagnosis; trauma mechanism; comorbidities; associated fractures; Gustilo and Anderson, Tscherne and AO classifications; treatment (initial and definitive); presence of compartment syndrome; primary and secondary amputations; MESS (Mangled Extremity Severity Score) index; mortality rate; and infection rate. Results 116 patients were included: 81% with fracture type IIIA, 12% IIIB and 7% IIIC; 85% males; mean age 32.3 years; and 57% victims of motorcycle accidents. Tibial shaft fractures were significantly more prevalent (67%). Eight patients were subjected to amputation: one primary case and seven secondary cases. Types IIIC (75%) and IIIB (25%) predominated among the patients subjected to secondary amputation. The MESS index was greater than 7 in 88% of the amputees and in 5% of the limb salvage group. Conclusion The profile of patients with open tibial fracture of Gustilo and Anderson Type III mainly involved young male individuals who were victims of motorcycle accidents. The tibial shaft was the segment most affected. Only 7% of the patients underwent amputation. Given the current controversy in the literature about amputation or salvage of severely injured lower limbs, it becomes necessary to carry out prospective studies to support clinical decisions. PMID:27069881

  14. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  15. Unprecedented χ isomers of single-side triol-functionalized Anderson polyoxometalates and their proton-controlled isomer transformation.

    PubMed

    Zhang, Jiangwei; Liu, Zhenhua; Huang, Yichao; zhang, Jin; Hao, Jian; Wei, Yongge

    2015-06-01

    The μ2-O atom in Anderson polyoxometalates was regioselectively activated by the introduction of protons, which, upon functionalization with triol ligands, could afford a series of unique χ isomers of the organically-derived Anderson cluster {[RCC(CH2O)3]MMo6O18(OH)3}(3-). Herein proton-controlled isomer transformation between the δ and χ isomer was observed by using the fingerprint region in the IR spectra and (13)C NMR spectra.

  16. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  17. SHORTER MENSTRUAL CYCLES ASSOCIATED WITH CHLORINATION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Shorter Menstrual Cycles Associated with Chlorination by-Products in Drinking Water.
    Gayle Windham, Kirsten Waller, Meredith Anderson, Laura Fenster, Pauline Mendola, Shanna Swan. California Department of Health Services.

    In previous studies of tap water consumption we...

  18. CHLORINATION BY-PRODUCTS IN DRINKING WATER AND MENSTRUAL CYCLE FUNCTION

    EPA Science Inventory

    Chlorination by-Products in Drinking Water and Menstrual Cycle Function

    Gayle C. Windham1, Kirsten Waller2, Meredith Anderson2, Laura Fenster1, Pauline Mendola3, Shanna Swan4

    1California Department of Health Services, Division of Environmental and Occupational Disea...

  19. Causation's nuclear future: applying proportional liability to the Price-Anderson Act.

    PubMed

    O'Connell, William D

    2014-11-01

    For more than a quarter century, public discourse has pushed the nuclear-power industry in the direction of heavier regulation and greater scrutiny, effectively halting construction of new reactors. By focusing on contemporary fear of significant accidents, such discourse begs the question of what the nation's court system would actually do should a major nuclear incident cause radiation-induced cancers. Congress's attempt to answer that question is the Price-Anderson Act, a broad statute addressing claims by the victims of a major nuclear accident. Lower courts interpreting the Act have repeatedly encountered a major stumbling block: it declares that judges must apply the antediluvian preponderance-of-the-evidence logic of state tort law, even though radiation science insists that the causes of radiation-induced cancers are more complex. After a major nuclear accident, the Act's paradoxically outdated rules for adjudicating "causation" would make post-incident compensation unworkable. This Note urges that nuclear-power-plant liability should not turn on eighteenth-century tort law. Drawing on modern scientific conclusions regarding the invariably "statistical" nature of cancer, this Note suggests a unitary federal standard for the Price-Anderson Act--that a defendant be deemed to have "caused" a plaintiff's injury in direct proportion to the increased risk of harm the defendant has imposed. This "proportional liability" rule would not only fairly evaluate the costs borne by injured plaintiffs and protect a reawakening nuclear industry from the prospect of bank-breaking litigation, but would prove workable with only minor changes to the Price-Anderson Act's standards of "injury" and "fault."

  20. Hydrothermal assembly and luminescence property of lanthanide-containing Anderson polyoxometalates

    SciTech Connect

    Liu Ying; Liu Shuxia Cao Ruige; Ji Hongmei; Zhang Shiwei; Ren Yuanhang

    2008-09-15

    Two compounds, {l_brace}[Sm(H{sub 2}O){sub 5}]{sub 2}(TeMo{sub 6}O{sub 24}){r_brace}.6H{sub 2}O (1) and {l_brace}[Eu(H{sub 2}O){sub 7}]{sub 2} (TeMo{sub 6}O{sub 24}){r_brace}.5H{sub 2}O (2) have been synthesized by hydrothermal reactions and characterized by elemental analyses, IR spectra, thermal stability analyses, X-ray powder diffraction, and single-crystal X-ray diffraction. Compound 1 represents the first example of a 2D layer architecture constructed from Anderson-type polyoxoanions [TeMo{sub 6}O{sub 24}]{sup 6-} and rare-earth ions Ln{sup 3+}. Compound 2 displays a 1D chain structure built up of alternating Anderson-type polyoxoanions [TeMo{sub 6}O{sub 24}]{sup 6-} and rare-earth ions Eu{sup 3+} along the c-axis. Luminescence measurement of 2 exhibits typical red fluorescent emission of the Eu{sup 3+} ion at room temperature. Furthermore, the emission is intense enough to be observed macroscopically under UV irradiation (365 nm). - Graphical abstract: Two compounds based on Anderson-type polyoxoanion building blocks and rare-earth ions have been synthesized under hydrothermal conditions. Compound 1 exhibits a 2D layer architecture constructed from [TeMo{sub 6}O{sub 24}]{sup 6-} anions and rare-earth ions Ln{sup 3+}. Compound 2 displays a 1D chain structure and possesses the intense luminescence property.

  1. Anderson Localization of a Bose-Einstein Condensate in a 3D Random Potential

    SciTech Connect

    Skipetrov, S. E.; Minguzzi, A.; Tiggelen, B. A. van; Shapiro, B.

    2008-04-25

    We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory of localization to show that the long-time behavior of the condensate density is controlled by a single parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that the two critical exponents of the localization transition determine the evolution of the condensate density in time and space.

  2. Conserving Many Body Approach to the Infinite-U Anderson Model

    NASA Astrophysics Data System (ADS)

    Lebanon, Eran; Rech, Jerome; Coleman, P.; Parcollet, Olivier

    2006-09-01

    Using a Luttinger-Ward scheme for interacting gauge particles, we present a conserving many body treatment of a family of fully screened infinite-U Anderson models that has a smooth crossover into the Fermi-liquid state, with a finite scattering phase shift at zero temperature and a Wilson ratio greater than 1. We illustrate our method, computing the temperature dependence of the thermodynamics, resistivity, and electron dephasing rate and discuss its future application to nonequilibrium quantum dots and quantum critical mixed valent systems.

  3. Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping.

    PubMed

    Rodríguez, A; Malyshev, V A; Sierra, G; Martín-Delgado, M A; Rodríguez-Laguna, J; Domínguez-Adame, F

    2003-01-17

    The single-parameter scaling hypothesis predicts the absence of delocalized states for noninteracting quasiparticles in low-dimensional disordered systems. We show analytically, using a supersymmetric method combined with a renormalization group analysis, as well as numerically that extended states may occur in the one- and two-dimensional Anderson model with a nonrandom hopping falling off as some power of the distance between sites. The different size scaling of the bare level spacing and the renormalized magnitude of the disorder seen by the quasiparticles finally results in the delocalization of states at one of the band edges of the quasiparticle energy spectrum.

  4. Magnetic Response and Valence Fluctuations in the Extended Anderson Lattice Model with Quasiperiodicity

    NASA Astrophysics Data System (ADS)

    Shinzaki, Ryu; Nasu, Joji; Koga, Akihisa

    2016-11-01

    We study the magnetic response and valence fluctuations in the extended Anderson model on a two-dimensional Penrose lattice using real-space dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. Calculating the f-electron number, c-f spin correlations, and magnetic susceptibility at each site, we find site-dependent formation of the singlet state and valence distributions at low temperatures, which are reflected by the quasiperiodic lattice structure. The bulk magnetic susceptibility is also addressed.

  5. [Varroa destructor (Anderson and Trueman, 2000); the change in classification within the genus Varroa (Oudemans, 1904)].

    PubMed

    Topolska, G

    2001-01-01

    Varroa jacobsoni was noted for the first time in 1904, in the nest ofApis cerana. In Apis mellifera nests the first Varroa mites were probably found in Korea (1950), next in Japan (1958). In the following years they have spread all over the world. All the time they were regarded as V. jacobsoni. Recently Anderson and Trueman have proved that Varroa jacobsoni is more than one species. They gave the new name Varroa destructor n. sp. to the group of six haplotypes. Mites, which became pests ofA. mellifera worldwide, belong to V. destructor.

  6. Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Abanov, Ar.; Murakami, Shuichi; Sinova, Jairo

    2010-08-01

    We study the thermoelectric properties of three-dimensional topological Anderson insulators with line dislocations. We show that at high densities of dislocations the thermoelectric figure of merit ZT can be dominated by one-dimensional topologically protected conducting states channeled through the lattice screw dislocations in the topological insulator materials with a nonzero time-reversal-invariant momentum such as Bi0.9Sb0.1. When the chemical potential does not exceed much the mobility edge the ZT at room temperatures can reach large values, much higher than unity for reasonable parameters, hence making this system a strong candidate for applications in heat management of nanodevices.

  7. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  8. Anisotropic behavior of quantum transport in graphene superlattices: Coexistence of ballistic conduction with Anderson insulating regime

    NASA Astrophysics Data System (ADS)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-04-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multiple scattering phenomena can strongly depend on the transport measurement geometry. This eventually yields the coexistence of a ballistic waveguide and a highly resistive channel (Anderson insulator) in the same two-dimensional platform, evidenced by a σyy/σxx ratio varying over several orders of magnitude, and suggesting the possibility of building graphene electronic circuits based on the unique properties of chiral massless Dirac fermions in graphene.

  9. Variational Monte Carlo study of magnetic states in the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori

    2015-03-01

    We study the magnetic states of the periodic Anderson model with a finite Coulomb interaction between f electrons on a square lattice by applying variational Monte Carlo method. We consider Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge density wave states. We find an antiferromagnetic phase around half-filling. There is a phase transition accompanying change in the Fermi-surface topology in this antiferromagnetic phase. We also study a case away from half-filling, and find a ferromagnetic state as the ground state there.

  10. Correlation-driven d -wave superconductivity in Anderson lattice model: Two gaps

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Józef

    2016-07-01

    Superconductivity in heavy-fermion systems has an unconventional nature and is considered to originate from the universal features of the electronic structure. Here, the Anderson lattice model is studied by means of the full variational Gutzwiller wave function incorporating nonlocal effects of the on-site interaction. We show that the d -wave superconducting ground state can be driven solely by interelectronic correlations. The proposed microscopic mechanism leads to a multigap superconductivity with the dominant contribution due to f electrons and in the dx2-y2-wave channel. Our results rationalize several important observations for CeCoIn5.

  11. Numerical study of the periodic Anderson model with a quarter-filled conduction band

    NASA Astrophysics Data System (ADS)

    Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    2015-03-01

    Using the dynamical cluster approximation with continuous-time quantum Monte Carlo as the cluster solver and the recently introduced dual-fermion method, we study the underlying physics of the periodic Anderson model where the conduction band is near quarter-filling while the f-band electron band is half filled. For these parameters, the RKKY coupling changes its nature from ferromagnetic to anti-ferromagnetic, yielding an interesting phase-diagram. Especially, we find the charge ordering of the conduction band is strongly enhanced, which could be due to the proximity to a quantum critical point.

  12. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  13. Richard G.W. Anderson (1940–2011) and the birth of receptor-mediated endocytosis

    PubMed Central

    2011-01-01

    On March 19, 2011, the discipline of cell biology lost a creative force with the passing of Richard G.W. Anderson, Professor and Chairman of the Department of Cell Biology at the University of Texas Southwestern Medical School. An unabashed chauvinist for cell biology, Dick served for many years on the editorial board of The Journal of Cell Biology and the Council of the American Society for Cell Biology. He died of glioblastoma multiforme six days before his 71st birthday. PMID:21576388

  14. STS-107 Payload Commander Michael Anderson during TCDT M113 training activities

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- -- STS-107 Payload Commander Michael Anderson takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  15. STS-89 Mission Specialist Michael Anderson is assisted with his flight suit in the white room

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Michael Anderson is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. The STS- 89 mission will be the eighth docking of the Space Shuttle with the Russian Space Station Mir. After docking, Mission Specialist Andrew Thomas, Ph.D., will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS- 89 is scheduled for a Jan. 22 liftoff at 9:48 p.m.

  16. Eigenmodal analysis of Anderson localization: Applications to photonic lattices and Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Ying, Guanwen; Kouzaev, Guennadi

    2016-10-01

    We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.

  17. Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji

    2015-04-01

    By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.

  18. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring

  19. The atomic approach to the Anderson model for the finite U case: application to a quantum dot.

    PubMed

    Lobo, T; Figueira, M S; Foglio, M E

    2010-07-01

    In the present work we apply the atomic approach to the single-impurity Anderson model (SIAM). A general formulation of this approach, that can be applied both to the impurity and to the lattice Anderson Hamiltonian, was developed in a previous work (Foglio et al 2009 arxiv: 0903.0139v2 [cond-mat.str-el]). The method starts from the cumulant expansion of the periodic Anderson model, employing the hybridization as a perturbation. The atomic Anderson limit is analytically solved and its sixteen eigenenergies and eigenstates are obtained. This atomic Anderson solution, which we call the AAS, has all the fundamental excitations that generate the Kondo effect, and in the atomic approach is employed as a 'seed' to generate the approximate solutions for finite U. The width of the conduction band is reduced to zero in the AAS, and we choose its position such that the Friedel sum rule is satisfied, close to the chemical potential mu. We perform a complete study of the density of states of the SIAM over the whole relevant range of parameters: the empty dot, intermediate valence, Kondo and magnetic regimes. In the Kondo regime we obtain a density of states that characterizes well the structure of the Kondo peak. To show the usefulness of the method we have calculated the conductance of a quantum dot, side-coupled to a conduction band.

  20. The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project

    SciTech Connect

    Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R.

    1998-12-31

    In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

  1. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System

    SciTech Connect

    Toth, Alex; Kelley, C. T.; Slattery, Stuart R; Hamilton, Steven P; Clarno, Kevin T; Pawlowski, R. P. P.

    2015-01-01

    ABSTRACT A standard method for solving coupled multiphysics problems in light water reactors is Picard iteration, which sequentially alternates between solving single physics applications. This solution approach is appealing due to simplicity of implementation and the ability to leverage existing software packages to accurately solve single physics applications. However, there are several drawbacks in the convergence behavior of this method; namely slow convergence and the necessity of heuristically chosen damping factors to achieve convergence in many cases. Anderson acceleration is a method that has been seen to be more robust and fast converging than Picard iteration for many problems, without significantly higher cost per iteration or complexity of implementation, though its effectiveness in the context of multiphysics coupling is not well explored. In this work, we develop a one-dimensional model simulating the coupling between the neutron distribution and fuel and coolant properties in a single fuel pin. We show that this model generally captures the convergence issues noted in Picard iterations which couple high-fidelity physics codes. We then use this model to gauge potential improvements with regard to rate of convergence and robustness from utilizing Anderson acceleration as an alternative to Picard iteration.

  2. Metallic Transport and Anderson Localization on In Atomic Layers on Silicon

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shiro; Hosomura, Yoshikazu; Matsuda, Iwao; Hobara, Rei; Hasegawa, Shuji

    2008-03-01

    Metallic temperature dependence of electrical resistance have not been observed except extremely limited number of examples[1] below 100K in atomic-scale low-dimensional metal systems due to Anderson localization. Si(111)-√7 x√3 -In surface reconstruction consist of 1.2 ML In atoms. According to ARPES study, the surface is 2D metal with the large Fermi wave number (kF=14nm-1) and the large electron density (4.6x10^14eV-1cm-2), leading to a low resistance [2]. By using variable-temperature micro-four-point probe method [3], low resistance and metallic transport was found down to 10 K. It is quantitatively explained by the ARPES result by using Boltzmann equation R2D=4π^2λm^*e^2kF^2 kBT. By introducing defect, it shows semiconducting temperature dependence of variable range hopping due to Anderson localization. [1]K. Lee, et al. , Nature 441, 65 (2006). [2]E. Rotenberg, et al. , Phys. Rev. Lett. 91, 246404 (2003). [3]T. Tanikawa, et al. , e-J. Surf. Sci. Nanotech. 1, 50 (2003)

  3. Hydrothermal assembly and luminescence property of lanthanide-containing Anderson polyoxometalates

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Shu-Xia; Cao, Rui-Ge; Ji, Hong-Mei; Zhang, Shi-Wei; Ren, Yuan-Hang

    2008-09-01

    Two compounds, {[Sm(H 2O) 5] 2(TeMo 6O 24)}·6H 2O ( 1) and {[Eu(H 2O) 7] 2 (TeMo 6O 24)}·5H 2O ( 2) have been synthesized by hydrothermal reactions and characterized by elemental analyses, IR spectra, thermal stability analyses, X-ray powder diffraction, and single-crystal X-ray diffraction. Compound 1 represents the first example of a 2D layer architecture constructed from Anderson-type polyoxoanions [TeMo 6O 24] 6- and rare-earth ions Ln 3+. Compound 2 displays a 1D chain structure built up of alternating Anderson-type polyoxoanions [TeMo 6O 24] 6- and rare-earth ions Eu 3+ along the c-axis. Luminescence measurement of 2 exhibits typical red fluorescent emission of the Eu 3+ ion at room temperature. Furthermore, the emission is intense enough to be observed macroscopically under UV irradiation (365 nm).

  4. Scaling analysis of transverse Anderson localization in a disordered optical waveguide

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Mafi, Arash

    2016-08-01

    The intention of this paper is twofold. First, the mode-width probability density function (PDF) is introduced as a powerful statistical tool to study and compare the transverse Anderson localization properties of a disordered quasi-one-dimensional optical waveguide. Second, by analyzing the scaling properties of the mode-width PDF with the transverse size of the waveguide, it is shown that the mode-width PDF gradually converges to a terminal configuration. Therefore, it may not be necessary to study a real-sized disordered structure in order to obtain its statistical localization properties and the same PDF can be obtained for a substantially smaller structure. This observation is important because it can reduce the often demanding computational effort that is required to study the statistical properties of Anderson localization in disordered waveguides. Using the mode-width PDF, substantial information about the impact of the waveguide parameters on its localization properties is extracted. This information is generally obscured when disordered waveguides are analyzed using other techniques such as the beam propagation method. As an example of the utility of the mode-width PDF, it is shown that the cladding refractive index can be used to quench the number of extended modes, hence improving the contrast in image transport properties of disordered waveguides.

  5. Nutritional influences on early white matter development: response to Anderson and Burggren.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Walker, Lindsay; Dirks, Holly; O'Muircheartaigh, Jonathan

    2014-10-15

    Does breastfeeding alter early brain development? In a recent retrospective study, our group examined the cross-sectional relationship between early infant feeding practice and white matter maturation and cognitive development. In groups matched for child and mother age, gestation duration, birth weight, gender distribution, and socio-economic status; we observed that children who were breastfed exclusively for at least 3 months showed, on average, increased white matter myelin development compared to children who either were exclusively formula-fed, or received a mixture of breast milk and formula. In secondary analysis on sub-sets of these children, again matched for important confounding variables, we found improved cognitive test scores of receptive language in the exclusively breast-fed children compared to formula or formula+breast-fed children; and that prolonged breastfeeding was associated with increased motor, language, and visual functioning in exclusively breast-fed children. In response to this work, Anderson and Burggren have questioned our methodology and, by association, our findings. Further, they use their critique as a platform for advancing an alternative interpretation of our findings: that observed results were not associated with prolonged breast-feeding, but rather delayed the introduction of cow's milk. In this response, we address and clarify some of the misconceptions presented by Anderson and Burggren.

  6. Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Potthoff, Michael

    2016-08-01

    The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

  7. Electronic structure and correlations of vitamin B12 studied within the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2016-04-01

    We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of states from mainly the CN axial ligand and the corrin ring as well as the Co eg-like orbitals. We also observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC data with the density functional theory calculations. We also discuss the photoabsorption spectrum of cyanocobalamine.

  8. Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Mirr, Craig R; Koch, Karl W; Mafi, Arash

    2013-07-29

    We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.

  9. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.

    PubMed

    Prati, Enrico; Hori, Masahiro; Guagliardo, Filippo; Ferrari, Giorgio; Shinada, Takahiro

    2012-07-01

    Dopant atoms are used to control the properties of semiconductors in most electronic devices. Recent advances such as single-ion implantation have allowed the precise positioning of single dopants in semiconductors as well as the fabrication of single-atom transistors, representing steps forward in the realization of quantum circuits. However, the interactions between dopant atoms have only been studied in systems containing large numbers of dopants, so it has not been possible to explore fundamental phenomena such as the Anderson-Mott transition between conduction by sequential tunnelling through isolated dopant atoms, and conduction through thermally activated impurity Hubbard bands. Here, we observe the Anderson-Mott transition at low temperatures in silicon transistors containing arrays of two, four or six arsenic dopant atoms that have been deterministically implanted along the channel of the device. The transition is induced by controlling the spacing between dopant atoms. Furthermore, at the critical density between tunnelling and band transport regimes, we are able to change the phase of the electron system from a frozen Wigner-like phase to a Fermi glass by increasing the temperature. Our results open up new approaches for the investigation of coherent transport, band engineering and strongly correlated systems in condensed-matter physics.

  10. Tunable Dirac-point resonance induced by a STM-coupled Anderson impurity on a topological insulator surface

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Wang, Rui-Qiang; Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-09-01

    The interaction effect between the surface states of a topological insulator (TI) and a STM-coupled Anderson impurity is studied by using equations of motion of the Green’s functions. Remarkably, we show that when a coupling between the Anderson impurity and the STM tip is included, the tunneling resonance and the Kondo peak can be tuned to be exactly at the Dirac point, by adjusting the impurity level and Fermi energy, such that the local density of states at the Dirac point is significantly enhanced. This is in contrast to the case of a STM-decoupled Anderson impurity, where both resonances are always fully suppressed at the Dirac point. Our finding suggests a pathway to experimentally control the fundamental properties of the electrons on a TI surface.

  11. Patriot Games: Yes, Indeed, the British Are Coming! But M. T. Anderson's Revolutionary War Novel Is Unlike Anything You've Ever Read

    ERIC Educational Resources Information Center

    Horning, Kathleen

    2006-01-01

    This article presents an interview with 38-year-old writer Matthew Tobin Anderson. In the interview, Anderson talks about his experiences, passion for writing, teenage interests, and his relation to the distinguished writer Mark Twain. He also states the importance of liberty and what it takes to be a patriot and a loyalist. Furthermore, Matthew…

  12. Measuring service quality at the University of Texas M.D. Anderson Cancer Center.

    PubMed

    Anderson, E A; Zwelling, L A

    1996-01-01

    Evaluates the service quality of four clinics at the University of Texas M.D. Anderson Cancer Center using a questionnaire methodology. The SERVQUAL instrument was administered to patients of the Medical Breast, Leukemia, Medical Gastroenterology and Bone Marrow Aspiration clinics. Results show that, according to the service gap methodology of comparing expectations and perceptions, across all four clinics the issues of billing accuracy and waiting times are deemed by patients as significant problems. In comparing the individual clinics, the Medical Gastroenterology and Leukemia clinics are best performers and the Medical Breast clinic is the worst. However, these differences in performance are due to differences in patients' expectations of service quality, rather than differences in perceptions. Concludes that customer expectations can have a strong impact on a firm's evaluation of its service quality. PMID:10162922

  13. Beyond Anderson localization in 1D: anomalous localization of microwaves in random waveguides.

    PubMed

    Fernández-Marín, A A; Méndez-Bermúdez, J A; Carbonell, J; Cervera, F; Sánchez-Dehesa, J; Gopar, V A

    2014-12-01

    Experimental evidence demonstrating that anomalous localization of waves can be induced in a controllable manner is reported. A microwave waveguide with dielectric slabs randomly placed is used to confirm the presence of anomalous localization. If the random spacing between slabs follows a distribution with a power-law tail (Lévy-type distribution), unconventional properties in the microwave-transmission fluctuations take place revealing the presence of anomalous localization. We study both theoretically and experimentally the complete distribution of the transmission through random waveguides characterized by α=1/2 ("Lévy waveguides") and α=3/4, α being the exponent of the power-law tail of the Lévy-type distribution. As we show, the transmission distributions are determined by only two parameters, both of them experimentally accessible. Effects of anomalous localization on the transmission are compared with those from the standard Anderson localization.

  14. Classical mapping for Hubbard operators: application to the double-Anderson model.

    PubMed

    Li, Bin; Miller, William H; Levy, Tal J; Rabani, Eran

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  15. Interpretation of high-dimensional numerical results for the Anderson transition

    SciTech Connect

    Suslov, I. M.

    2014-12-15

    The existence of the upper critical dimension d{sub c2} = 4 for the Anderson transition is a rigorous consequence of the Bogoliubov theorem on renormalizability of φ{sup 4} theory. For d ≥ 4 dimensions, one-parameter scaling does not hold and all existent numerical data should be reinterpreted. These data are exhausted by the results for d = 4, 5 from scaling in quasi-one-dimensional systems and the results for d = 4, 5, 6 from level statistics. All these data are compatible with the theoretical scaling dependences obtained from Vollhardt and Wolfle’s self-consistent theory of localization. The widespread viewpoint that d{sub c2} = ∞ is critically discussed.

  16. Anderson-Holstein model in two flavors of the noncrossing approximation

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ta; Cohen, Guy; Millis, Andrew J.; Reichman, David R.

    2016-05-01

    The dynamical interplay between electron-electron interactions and electron-phonon coupling is investigated within the Anderson-Holstein model, a minimal model for open quantum systems that embody these effects. The influence of phonons on spectral and transport properties is explored in equilibrium, for nonequilibrium steady state and for transient dynamics after a quench. Both the particle-hole symmetric and the more generic particle-hole asymmetric cases are studied. The treatment is based on two complementary noncrossing approximations, the first of which is constructed around the weak-coupling limit and the second around the polaron limit. In general, the two methods disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The frameworks used here can form the starting point for numerically exact methods based on bold-line continuous-time quantum Monte Carlo algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.

  17. Multichannel Numerical Renormalization Group study of the Anderson Hamiltonian with multiple impurities

    NASA Astrophysics Data System (ADS)

    Stokes, James; Konik, Robert

    2014-03-01

    Using the Numerical Renormalization Group (NRG), the low energy sector of the Anderson Hamiltonian with two impurities in parallel has been previously argued to be consistent with an underscreened spin-1 Kondo effect (R. Zitko and J. Bonca, Phys. Rev. B 76, 241305 (2007); Logan et al., Phys. Rev. B 80, 125117 (2009)). Bethe Ansatz and slave boson calculations have given the ground state as a singlet (M. Kulkarni and R. M. Konik, Phys. Rev. B 83, 245121 (2011)). As an attempt to understand these differences, we have developed a modified NRG routine that takes into account the multiple channels arising from the logarithmic discretization of the Fermi sea. This could conceivably allow for more complicated screening processes suggested by the Bethe ansatz computations. Results of studies using this code for various numbers of impurities and channels will be presented and discussed in relationship to these conflicting views.

  18. Multifractality at non-Anderson disorder-driven transitions in Weyl semimetals and other systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gurarie, V.; Radzihovsky, L.

    2016-10-01

    Systems with the power-law quasiparticle dispersion ɛk ∝kα exhibit non-Anderson disorder-driven transitions in dimensions d > 2 α, as exemplified by Weyl semimetals, 1D and 2D arrays of ultracold ions with long-range interactions, quantum kicked rotors, and semiconductor models in high dimensions. We study the wavefunction structure in such systems and demonstrate that at these transitions they exhibit fractal behaviour with an infinite set of multifractal exponents. The multifractality persists even when the wavefunction localisation is forbidden by symmetry or topology and occurs as a result of elastic scattering between all momentum states in the band on length scales shorter than the mean free path. We calculate explicitly the multifractal spectra in semiconductors and Weyl semimetals using one-loop and two-loop renormalisation-group approaches slightly above the marginal dimension d = 2 α.

  19. Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Abanov, Artem; Murakami, Shuichi; Sinova, Jairo

    2011-03-01

    We study the thermoelectric properties of three-dimensional topological Anderson insulators with line dislocations. We show that at high densities of dislocations the thermoelectric figure of merit ZT can be dominated by one-dimensional topologically protected conducting states channeled through the lattice screw dislocations in the topological insulator materials with a nonzero time-reversal-invariant momentum such as Bi 0.9 Sb 0.1 . When the chemical potential does not exceed much the mobility edge the ZT at room temperatures can reach large values, much higher than unity for reasonable parameters, hence making this system a strong candidate for applications in heat management of nanodevices. This work was supported by NSF under Grant Nos. DMR-0547875 and 0757992, by the Research Corporation Cottrell Scholar Award, and by the Welch Foundation (A-1678).

  20. Decoherence-induced conductivity in the one-dimensional Anderson model

    SciTech Connect

    Stegmann, Thomas; Wolf, Dietrich E.; Ujsághy, Orsolya

    2014-08-20

    We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determined by the second-order generalized Lyapunov exponent (GLE) [4].

  1. Measuring service quality at the University of Texas M.D. Anderson Cancer Center.

    PubMed

    Anderson, E A; Zwelling, L A

    1996-01-01

    Evaluates the service quality of four clinics at the University of Texas M.D. Anderson Cancer Center using a questionnaire methodology. The SERVQUAL instrument was administered to patients of the Medical Breast, Leukemia, Medical Gastroenterology and Bone Marrow Aspiration clinics. Results show that, according to the service gap methodology of comparing expectations and perceptions, across all four clinics the issues of billing accuracy and waiting times are deemed by patients as significant problems. In comparing the individual clinics, the Medical Gastroenterology and Leukemia clinics are best performers and the Medical Breast clinic is the worst. However, these differences in performance are due to differences in patients' expectations of service quality, rather than differences in perceptions. Concludes that customer expectations can have a strong impact on a firm's evaluation of its service quality.

  2. Analytic Flow Equations for the Fermi Liquid Parameters of the Anderson Impurity Model.

    PubMed

    Pandis, Vassilis; Hewson, Alex C

    2015-08-14

    The low temperature behavior of a Fermi liquid can be described in terms of quasiparticle excitations that are in 1-1 correspondence with those of the noninteracting system. Because of adiabatic continuity, the Landau parameters, which describe the interactions between the quasiparticles, must evolve continuously as the interactions are turned on and be described by a set of flow equations. For strongly correlated electron systems it is not possible to follow this flow in perturbation theory when the interactions become strong. We explore the idea here of overcoming this problem by renormalizing the quasiparticles in this flow using a renormalized perturbation theory. This approach is tested in the case of a single impurity Anderson model. Analytic flow equations are derived which give excellent results for the Landau parameters in the strong correlation regime.

  3. Anderson localization with second quantized fields in a coupled array of waveguides

    SciTech Connect

    Thompson, Clinton; Vemuri, Gautam; Agarwal, G. S.

    2010-11-15

    We report a theoretical study of Anderson localization of nonclassical light in an array of waveguides in which neighboring waveguides are evanescently coupled and in which the disorder can be added in a controlled manner. We use squeezed light at the input to investigate the effects of nonclassicality and compare the results with those obtained by using conventional classical fields, such as a coherent field and a Gaussian field. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we show that as a result of the multiplicative noise in the problem, the output field is far from Gaussian even if the input is a coherent field.

  4. ARPES in strongly correlated 4f and 5f systems: Comparison to the Periodic Anderson Model

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Cox, L.E.

    1997-12-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow, nearly temperature independent bands (i.e., no spectral weight loss or transfer with temperature). A small dispersion of the f-bands above the Kondo temperature is easily measurable so that a Kondo resonance, as defined by NCA, is not evident. Preliminary results, however, indicate that the Periodic Anderson Model captures some of the essential physics. Angle-integrated resonant photoemission results on {delta}-Pu indicate a narrow 5f feature at E{sub F}, similar in width to f-states in Ce and U compounds, but differing in that cross-section behavior of the near-E{sub F} feature suggests substantial 6D admixture.

  5. The Ce 4{ital f} surface shift: A test for the Anderson-impurity Hamiltonian

    SciTech Connect

    Duo, L.; De Rossi, S.; Vavassori, P.; Ciccacci, F.; Olcese, G.L.; Chiaia, G.; Lindau, I.

    1996-12-01

    Evidence is provided of the role of the different hybridization strengths between the surface and the bulk in determining the magnitude of the surface shift for the shallow Ce 4{ital f} levels, with respect to the deeper core levels. This was achieved by comparing the photoemission core levels for a weakly hybridized case (CeAl) to a case of intermediate hybridization ({gamma}-Ce). For CeAl a 4{ital f} surface shift of 0.45 eV was observed, similar to that for the 5{ital p} core level, whereas a smaller (if any) 4{ital f} surface shift was observed for {gamma}-Ce. Model calculations based on the Anderson impurity Hamiltonian are shown to give a correct evaluation of this effect, which can be exploited as a way of testing the results of such a description for the Ce {ital f} states. {copyright} {ital 1996 The American Physical Society.}

  6. Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model

    SciTech Connect

    Longhi, Stefano

    2007-05-01

    The decay dynamics of a nonlinear impurity mode embedded in a linear structured continuum is theoretically investigated in the framework of a nonlinear Fano-Anderson model. A gradient flow dynamics for the survival probability is derived in the Van Hove ({lambda}{sup 2}t) limit by a multiple-scale asymptotic analysis, and the role of nonlinearity on the decay law is discussed. In particular, it is shown that the existence of bound states embedded in the continuum acts as transient trapping states which slow down the decay. The dynamical behavior predicted in the {lambda}{sup 2}t limit is studied in detail for a simple tight-binding one-dimensional lattice model, which may describe electron or photon transport in condensed matter or photonic systems. Numerical simulations of the underlying equations confirm, in particular, the trapping effect in the decay process due to bound states embedded in the continuum.

  7. Tunable Anderson Localization in Hydrogenated Graphene Based on the Electric Field Effect: First-Principles Study

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Wei, Su-Huai

    2014-03-01

    We present a mechanism for reversible switching of the Anderson localization (AL) of electrons in hydrogenated graphene through modulation of the H coverage on graphene by external electric fields. The main idea is to exploit the unique acid-base chemistry (i.e., proton transfer reaction) between NH3 gas and hydrogenated graphene, which can be controlled by applying perpendicular electric fields. The proposed field-induced control of disorder in hydrogenated graphene not only has scientific merits in a systematic study of AL of electrons in grapheme but can also lead to new insight into the development of a new type of transistor based on reversible on/off switching of AL. Furthermore, the reversible and effective tuning of the H coverage on graphene should be useful for tailoring material properties of weakly hydrogenated graphene. This work was funded by the NREL LDRD program (DE-AC36-08GO28308).

  8. Financial protection against nuclear hazards: thirty years' experience under the Price-Anderson Act

    SciTech Connect

    Not Available

    1984-01-01

    Supplementing earlier reports on ways to provide financial protection against the potential hazards involved in the production of nuclear energy by analyzing the issues raised in the Silkwood v. Kerr-McGee Corporation decision, the author explores the impact of the case on the availability of funds to compensate the public and any increased exposure of the nuclear industry or the federal government to public liability. She concludes that the decision will have a significant impact on the day-to-day administration of claims, and could lead to higher premiums. The court would have to determine the priority given to claims in the event of a catastrophic accident, in which case the only significant impact would be under amendments to the Price-Anderson Act which resulted in elimination of its coverage or a substantial increase in or elimination of the limitation on liability.

  9. VizieR Online Data Catalog: Radio observations of Galactic WISE HII regions (Anderson+, 2015)

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, D. S.; Wenger, T. V.; Cunningham, V.

    2016-01-01

    We draw our targets from the MIR objects in the WISE catalog of Anderson+, 2014, J/ApJS/212/1. We also include in our sample Sharpless H II regions (Sharpless 1959, VII/20). See section 2 for further details. Our observations were made with the GBT 100m telescope from 2012 July through 2014 August. There are seven radio recombination lines (RRLs) that can be cleanly observed simultaneously with the GBT in the X-band: H87α to H93α. We average these seven RRLs (each at two orthogonal polarizations) to create a single average RRL spectrum. We followed the same GBT observational procedure as in the original HRDS (Green Bank Telescope H II Region Discovery Survey (GBT HRDS; Bania et al. 2010ApJ...718L.106B). (3 data files).

  10. One-dimensional Anderson Localization: distribution of wavefunction amplitude and phase at the band center

    SciTech Connect

    Kravtsov, V. E.; Yudson, V. I.

    2009-05-14

    The statistics of normalized wavefunctions in the one-dimensional (1d) Anderson model of localization is considered. It is shown that at any energy that corresponds to a rational filling factor f = (p/q) there is a statistical anomaly which is seen in expansion of the generating function (GF) to the order q-2 in the disorder parameter. We study in detail the principle anomaly at f = (1/2) that appears in the leading order. The transfer-matrix equation of the Fokker-Planck type with a two-dimensional internal space is derived for GF. It is shown that the zero-mode variant of this equation is integrable and a solution for the generating function is found in the thermodynamic limit.

  11. Conductance fluctuation of edge-disordered graphene nanoribbons: Crossover from diffusive transport to Anderson localization

    SciTech Connect

    Takashima, Kengo; Yamamoto, Takahiro

    2014-03-03

    Conductance fluctuation of edge-disordered graphene nanoribbons (ED-GNRs) is examined using the non-equilibrium Green's function technique combined with the extended Hückel approximation. The mean free path λ and the localization length ξ of the ED-GNRs are determined to classify the quantum transport regimes. In the diffusive regime where the length L{sub c} of the ED-GNRs is much longer than λ and much shorter than ξ, the conductance histogram is given by a Gaussian distribution function with universal conductance fluctuation. In the localization regime where L{sub c}≫ξ, the histogram is no longer the universal Gaussian distribution but a lognormal distribution that characterizes Anderson localization.

  12. High-order terms in the renormalized perturbation theory for the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Pandis, Vassilis; Hewson, Alex C.

    2015-09-01

    We study the renormalized perturbation theory of the single-impurity Anderson model, particularly the high-order terms in the expansion of the self-energy in powers of the renormalized coupling U ˜. Though the presence of counterterms in the renormalized theory may appear to complicate the diagrammatics, we show how these can be seamlessly accommodated by carrying out the calculation order-by-order in terms of skeleton diagrams. We describe how the diagrams pertinent to the renormalized self-energy and four vertex can be automatically generated, translated into integrals, and numerically integrated. To maximize the efficiency of our approach we introduce a generalized k -particle/hole propagator, which is used to analytically simplify the resultant integrals and reduce the dimensionality of the integration. We present results for the self-energy and spectral density to fifth order in U ˜, for various values of the model asymmetry, and compare them to a numerical renormalization group calculation.

  13. Crossover from conventional to inverse indirect magnetic exchange in the depleted Anderson lattice

    NASA Astrophysics Data System (ADS)

    Aulbach, Maximilian W.; Titvinidze, Irakli; Potthoff, Michael

    2015-05-01

    We investigate the finite-temperature properties of an Anderson lattice with regularly depleted impurities. The physics of this model is ruled by two different magnetic exchange mechanisms: conventional Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction at weak hybridization strength V and an inverse indirect magnetic exchange (IIME) at strong V , both favoring a ferromagnetic ground state. The stability of ferromagnetic order against thermal fluctuations is systematically studied by static mean-field theory for an effective low-energy spin-only model emerging perturbatively in the strong-coupling limit as well as by dynamical mean-field theory for the full model. The Curie temperature is found at a maximum for a half-filled conduction band and at intermediate hybridization strengths in the crossover regime between RKKY and IIME.

  14. Magnetic correlations in a periodic Anderson model with nonuniform conduction electron coordination

    NASA Astrophysics Data System (ADS)

    Hartman, N.; Chiu, W.-T.; Scalettar, R. T.

    2016-06-01

    The periodic Anderson model is widely studied to understand strong correlation physics and especially the competition of antiferromagnetism and singlet formation. In this paper we extend quantum Monte Carlo work on lattices with uniform numbers of neighbors to geometries in which the conduction electron sites can have variable coordination z . This situation is relevant both to recently discovered magnetic quasicrystals and also to magnetism in doped heavy fermion systems. Our key results are the presence of antiferromagnetic order at weak interorbital hybridization Vf d, and a delay in singlet formation to larger values of Vf d on sites with larger z . The staggered magnetization tends to be larger on sites with higher z , providing insight into the behavior to be expected in crown, dice, and CaVO lattices.

  15. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    SciTech Connect

    Willert, Jeffrey; Taitano, William T.; Knoll, Dana

    2014-09-15

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.

  16. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons

    NASA Astrophysics Data System (ADS)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  17. Qualitative breakdown of the noncrossing approximation for the symmetric one-channel Anderson impurity model at all temperatures

    NASA Astrophysics Data System (ADS)

    Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.

    2016-08-01

    The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.

  18. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures-Apropos of Two Cases.

    PubMed

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen; Helwig, Peter; Knöller, Stefan; Südkamp, Norbert; Hauschild, Oliver

    2016-01-01

    Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as "oblique type axis body fracture." Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic "oblique type" fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1-C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization. PMID:27042372

  19. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor...

  20. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor...

  1. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor...

  2. Identification and Analysis of Learning Preferences of Mentally Ill Adults in Rehabilitative Psychosocial Therapy at the Anderson Mental Health Center.

    ERIC Educational Resources Information Center

    Newman, Michael K.

    A study identified and analyzed the learning preferences of 17 seriously and chronically mentally ill adults participating in the rehabilitative psychosocial therapy program at the Toxaway Church Site of the Anderson Mental Health Center. Staff perceived as boring and unfocused the traditional treatment approach that relied mainly upon…

  3. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.

    PubMed

    Javadi, Alisa; Maibom, Sebastian; Sapienza, Luca; Thyrrestrup, Henri; García, Pedro D; Lodahl, Peter

    2014-12-15

    We present a statistical study of the Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from both single quantum emitters coupled to Anderson-localized cavities and directly from the cavities that are fed by multiple quantum dots. Strongly inhibited and enhanced decay rates are observed relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 4.5 ± 0.4 without applying any spectral tuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum Purcell factor of 23.8 ± 1.5 is recorded, which is at the onset of the strong-coupling regime. Our data quantify the potential of Anderson-localized cavities for controlling and enhancing the light-matter interaction strength in a photonic-crystal waveguide, which is of relevance for cavity quantum-electrodynamics experiments, efficient energy harvesting and random lasing.

  4. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures—Apropos of Two Cases

    PubMed Central

    Konstantinidis, Lukas; Schmal, Hagen; Helwig, Peter; Knöller, Stefan; Südkamp, Norbert; Hauschild, Oliver

    2016-01-01

    Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as “oblique type axis body fracture.” Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic “oblique type” fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1–C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization. PMID:27042372

  5. Transport across an Anderson quantum dot in the intermediate coupling regime

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Grifoni, Milena

    2013-09-01

    We describe linear and nonlinear transport across a strongly interacting single impurity Anderson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling Γ of the order of the thermal energy k B T. The coupling is large enough that sequential tunneling processes (second order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics. Upon applying a density matrix approach, the current is expressed in terms of rates obtained by considering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations. We call this the "dressed second order" (DSO) approximation. One advantage of the DSO is that, still in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling broadened conductance peaks. When the temperature is decreased even further ( k B T < Γ), the DSO captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly of the differential conductance versus applied bias, an enhancement of the conductance with decreasing temperature as well as universality of the shape of the conductance as function of the temperature. We can without complications address the case of a spin degenerate level split energetically by a magnetic field. In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore, we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty orbital regime.

  6. Volcanic ash dispersed in the Wyodak-Anderson coal bed, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Triplehorn, D.M.; Stanton, R.W.; Ruppert, L.F.; Crowley, S.S.

    1991-01-01

    Minerals derived from air-fall volcanic ash were found in two zones in the upper Paleocene Wyodak-Anderson coal bed of the Fort Union Formation in the Powder River Basin of Wyoming, and are the first reported evidence of such volcanic material in this thick (> 20 m) coal bed. The volcanic minerals occur in zones that are not visually obvious because they contain little or no clay. These zones were located by geophysical logs of the boreholes and X-ray radiography of the cores. The zones correspond to two of a series of incremental core samples of the coal bed that have anomalous concentrations of Zr, Ba, Nb, Sr, and P2O5. Two suites of minerals were found in both of the high-density zones. A primary suite (not authigenic) consists of silt-sized quartz grains, biotite, and minor zircon. A minor suite consists of authigenic minerals, including calcite, pyrite, kaolinite, quartz, anatase, barite, and an alumino-phosphate (crandallite?). The original volcanic ash is inferred to have consisted of silica glass containing phenocrysts of quartz, biotite, zircon, and possibly, associated feldspars, pyroxenes, and amphiboles. The glass, as well as the less stable minerals, probably dissolved relatively quickly and contributed to the minor authigenic mineral suite or was removed from the peat as a result of the prevailing hydrologic conditions present in a raised peat formation. This type of volcanic ash suggests that suggests that volcanic material could have rained on the peat; this fallout may have also had a fertilizing effect on the peat by providing nutrients essential for plant growth thus contributing to the thick accumulations of the Wyodak-Anderson bed. Notwithstanding, the presence of these minerals provides evidence for the contribution by volcanic sources to the mineral content of coal, but not as tonsteins. ?? 1991.

  7. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  8. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  9. Commensurability effects in one-dimensional Anderson localization: Anomalies in eigenfunction statistics

    SciTech Connect

    Kravtsov, V.E.; Yudson, V.I.

    2011-07-15

    Highlights: > Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. > Moments of inverse participation ratio are calculated. > Equation for generating function is derived at E = 0. > An exact solution for generating function at E = 0 is obtained. > Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/({lambda}{sub E}) , where a is the lattice constant and {lambda}{sub E} is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions {psi}(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function {Phi}{sub r}(u, {phi}) (u and {phi} have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P{sub r}({phi}){identical_to}{Phi}{sub r}(u=0,{phi}) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component {Phi}(u, {phi}) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and {phi}. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for {Phi}(u, {phi}) explicitly in quadratures. Using this solution we computed moments I{sub m} = N< vertical bar {psi} vertical bar {sup 2m}> (m {>=} 1) for a chain of the length N {yields} {infinity} and found an

  10. A new dataset of Wood Anderson magnitude from the Trieste (Italy) seismic station

    NASA Astrophysics Data System (ADS)

    Sandron, Denis; Gentile, G. Francesco; Gentili, Stefania; Rebez, Alessandro; Santulin, Marco; Slejko, Dario

    2014-05-01

    The standard torsion Wood Anderson (WA) seismograph owes its fame to the fact that historically it has been used for the definition of the magnitude of an earthquake (Richter, 1935). With the progress of the technology, digital broadband (BB) seismographs replaced it. However, for historical consistency and homogeneity with the old seismic catalogues, it is still important continuing to compute the so called Wood Anderson magnitude. In order to evaluate WA magnitude, the synthetic seismograms WA equivalent are simulated convolving the waveforms recorded by a BB instrument with a suitable transfer function. The value of static magnification that should be applied in order to simulate correctly the WA instrument is debated. The original WA instrument in Trieste operated from 1971 to 1992 and the WA magnitude (MAW) estimates were regularly reported in the seismic station bulletins. The calculation of the local magnitude was performed following the Richter's formula (Richter, 1935), using the table of corrections factor unmodified from those calibrated for California and without station correction applied (Finetti, 1972). However, the WA amplitudes were computed as vector sum rather than arithmetic average of the horizontal components, resulting in a systematic overestimation of approximately 0.25, depending on the azimuth. In this work, we have retrieved the E-W and N-S components of the original recordings and re-computed MAW according to the original Richter (1935) formula. In 1992, the WA recording were stopped, due to the long time required for the daily development of the photographic paper, the costs of the photographic paper and the progress of the technology. After a decade of interruption, the WA was recovered and modernized by replacing the recording on photographic paper with an electronic device and it continues presently to record earthquakes. The E-W and N-S components records were memorized, but not published till now. Since 2004, next to the WA (few

  11. DMSP Auroral Charging at Solar Cycle 24 Maximum

    NASA Technical Reports Server (NTRS)

    Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.

    2013-01-01

    It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.

  12. Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films.

    PubMed

    Jiang, Cheng-Wei; Ni, I-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson

    2014-06-01

    How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.

  13. Nonequilibrium transport in the Anderson-Holstein model with interfacial screening

    NASA Astrophysics Data System (ADS)

    Perfetto, Enrico; Stefanucci, Gianluca

    Image charge effects in nanoscale junctions with strong electron-phonon coupling open the way to unexplored physical scenarios. Here we present a comprehensive study of the transport properties of the Anderson-Holstein model in the presence of dot-lead repulsion. We propose an accurate many-body approach to deal with the simultaneous occurrence of the Franck-Condon blockade and the screening-induced enhancement of the polaron mobility. Remarkably, we find that a novel mechanism of negative differential conductance origins from the competition between the charge blocking due to the electron-phonon interaction and the charge deblocking due to the image charges. An experimental setup to observe this phenomenon is discussed. References [1]E. Perfetto, G. Stefanucci and M. Cini, Phys. Rev. B 85, 165437 (2012). [2] E. Perfetto and G. Stefanucci, Phys. Rev. B 88, 245437 (2013). [3] E. Perfetto and G. Stefanucci, Journal of Computational Electronics 14, 352 (2015). E.P. and G.S. acknowledge funding by MIUR FIRB Grant No. RBFR12SW0J.

  14. On one-step replica symmetry breaking in the Edwards–Anderson spin glass model

    NASA Astrophysics Data System (ADS)

    Del Ferraro, Gino; Wang, Chuang; Zhou, Hai-Jun; Aurell, Erik

    2016-07-01

    We consider a one-step replica symmetry breaking description of the Edwards–Anderson spin glass model in 2D. The ingredients of this description are a Kikuchi approximation to the free energy and a second-level statistical model built on the extremal points of the Kikuchi approximation, which are also fixed points of a generalized belief propagation (GBP) scheme. We show that a generalized free energy can be constructed where these extremal points are exponentially weighted by their Kikuchi free energy and a Parisi parameter y, and that the Kikuchi approximation of this generalized free energy leads to second-level, one-step replica symmetry breaking (1RSB), GBP equations. We then proceed analogously to the Bethe approximation case for tree-like graphs, where it has been shown that 1RSB belief propagation equations admit a survey propagation solution. We discuss when and how the one-step-replica symmetry breaking GBP equations that we obtain also allow a simpler class of solutions which can be interpreted as a class of generalized survey propagation equations for the single instance graph case.

  15. An inventory of wetlands in the East Fork Poplar Creek floodplain, Anderson and Roane Counties, Tennessee

    SciTech Connect

    1992-12-01

    An inventory of wetlands within the floodplain of East Fork Poplar Creek (EFPC) in Anderson and Roane Counties, Tennessee was conducted during October, 1991 through May, 1992 for the US Department of Energy (DOE) by the US Army Corps of Engineers, Nashville District. About 15 miles of EFPC channel and 500 acres of its floodplain are contaminated with mercury and other contaminants released from the Y-12 Plant on the DOE Oak Ridge Reservation. The wetland inventory will serve as baseline information for DOE`s remedial action planning and National Environmental Policy Act compliance efforts related to the contamination. In order to provide broad wetland determinations beyond which future wetland definitions are unlikely to expand, the 1989 Federal Manual for Identifying And Delineating Jurisdictional Wetlands was utilized. Using the manual`s methodology in a contaminated system under the approved health and safety plan presented some unique problems, resulting in intrusive sampling for field indicators of hydric soils being accomplished separately from observation of other criteria. Beginning with wetland areas identified on National Wetland Inventory Maps, the entire floodplain was examined for presence of wetland criteria, and 17 wetlands were identified ranging from 0.01 to 2.81 acres in size. The majority of wetlands identified were sized under 1 acre. Some of the wetlands identified were not delineated on the National Wetland Inventory Maps, and much of the wetland area delineated on the maps did not meet the criteria under the 1989 manual.

  16. Quantum-Mechanical Variant of the Thouless-Anderson-Palmer Equation for Error-Correcting Codes

    NASA Astrophysics Data System (ADS)

    Inoue, J.; Saika, Y.; Okada, M.

    Statistical mechanics of information has been applied to problems in various research topics of information science and technology [1],[2]. Among those research topics, error-correcting code is one of the most developed subjects. In the research field of error-correcting codes, Nicolas Sourlas showed that the so-called convolutional codes can be constructed by spin glass with infinite range p-body interactions and the decoded message should be corresponded to the ground state of the Hamiltonian [3]. Ruján pointed out that the bit error can be suppressed if one uses finite temperature equilibrium states as the decoding result, instead of the ground state [4], and the so-called Bayes-optimal decoding at some specific condition was proved by Nishimori [5] and Nishimori and Wong [6]. Kabashima and Saad succeeded in constructing more practical codes, namely low-density parity check (LDPC) codes by using the infinite range spin glass model with finite connectivities [7]. They used the so-called TAP (Thouless-Anderson-Palmer) equations to decode the original message for a given parity check.

  17. Initiating tumor banking for translational research: MD Anderson and Liverpool experience.

    PubMed

    Mishra, A; Pandey, A; Shaw, R

    2007-01-01

    The ultimate progress in the cancer diagnosis and therapy has only been possible with the ongoing translational research that is likely to play a very important role in future as well. Hence the importance of such translation from bedside to bench and vis versa cannot be over-emphasized. Accordingly it has become more important to collect tumor samples along with the clinical information in a systematic manner to perform a good basic science research in future. With a population of over a billion and a heavy burden of cancer, India has the 'biggest' potential to establish the 'largest' tumor bank across the globe. Establishing a tumor bank involves money and manpower that may not be feasible across most of the centers in India. Taking into the considering the model of tumor banking of the two leading institutions of the world (MD Anderson Cancer Center, USA and University Hospital Aintree, Liverpool UK), this article presents the salient tips for a center in India to get started with tumor banking with minimal investment. Furthermore a simplified form of ethical consent is presented for the centers to adapt unanimously. PMID:17401220

  18. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons

    NASA Astrophysics Data System (ADS)

    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.

    2005-09-01

    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that different effects occur when the wetting layer surrounding the QD becomes filled with electrons because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. We are interested, in particular, in how many-body correlations resulting from the presence of the Fermi sea affect the absorption and emission spectra. Using Wilson’s numerical renormalization group method, we calculate the zero-temperature absorption (emission) spectrum of a QD, which starts from (ends up in) a strongly correlated Kondo ground state. We predict two features: First, we find that the spectrum shows a power-law divergence close to the threshold, with an exponent that can be understood by analogy to the well-known x-ray edge absorption problem. Second, the threshold energy ω0 —below which no photon is absorbed (above which no photon is emitted)—shows a marked, monotonic shift as a function of the exciton binding energy Uexc .

  19. Phase diagram and reentrance for the 3D Edwards-Anderson model using information theory

    NASA Astrophysics Data System (ADS)

    Cortez, V.; Saravia, G.; Vogel, E. E.

    2014-12-01

    Data compressor techniques are used to study the phase diagram of the generalized Edwards-Anderson model in three dimensions covering the full range of mixture between ferromagnetic (concentration 1-x) and antiferromagnetic interactions (concentration x). The recently proposed data compressor wlzip is used to recognize criticality by the maximum information content in the files storing the simulation processes. The method allows not only the characterization of the ferromagnetic to paramagnetic (FP) transition (x<0.22, or x>0.78) but also it equally well yields the spin-glass to paramagnetic (SP) transition (0.22

  20. Itinerant-Localized Transitions in Magnetic Phases of the Periodic Anderson Model

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori

    To clarify the characteristics of Fermi-surface reconstruction, called Lifshitz transitions, in magnetic phases of f-electron materials, we investigate magnetically ordered states of the periodic Anderson model by applying the variational Monte Carlo method. As variational wavefunctions, we use the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, and ferromagnetic states. Around half-filling, we find an antiferromagnetic phase, and far away from half-filling, we find a ferromagnetic phase as the ground state. Inside both magnetic phases, Lifshitz transitions take place. At the Lifshitz transitions, the sizes of the ordered moments change. In order to understand the Lifshitz transitions further, we also analyze the f -electron contribution to the Fermi surface by evaluating the jump in the momentum distribution function at the Fermi momentum. Then, we find that, in the large ordered-moment states, the f -electron contribution to the Fermi surface becomes small. This observation clearly shows that these Lifshitz transitions are itinerant-localized transitions of the f electrons.

  1. Basic Properties of Conductivity and Normal Hall Effect in the Periodic Anderson Model

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-04-01

    Exact formulas of diagonal conductivity σxx and Hall conductivity σxy are derived from the Kubo formula in hybridized two-orbital systems with arbitrary band dispersions. On the basis of the theoretical framework for the Fermi liquid based on these formulas, the ground-state properties of the periodic Anderson model with electron correlation and weak impurity scattering are studied on the square lattice. It is shown that imbalance of the mass-renormalization factors causes remarkable increase in σxx and σxy in the valence-fluctuation regime as the f level increases while the cancellation of the renormalization factors causes slight increase in σxx and σxy in the Kondo regime. The Hall coefficient RH shows almost constant behavior in both the regimes. Near half filling, RH is expressed by the total hole density as R{H} = 1/(bar{n}{hole}e) while RH approaches zero near quarter filling, which reflects the curvature of the Fermi surface. These results hold as far as the damping rate for f electrons is less than about 10% of the renormalized hybridization gap. From these results we discuss pressure dependence of residual resistivity and normal Hall effect in Ce- and Yb-based heavy electron systems.

  2. Effects of correlated hybridization in the single-impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Líbero, Valter; Veiga, Rodrigo

    2013-03-01

    The development of new materials often dependents on the theoretical foundations which study the microscopic matter, i.e., the way atoms interact and create distinct configurations. Among the interesting materials, those with partially filled d or f orbitals immersed in nonmagnetic metals have been described by the Anderson model, which takes into account Coulomb correlation (U) when a local level (energy Ed) is doubled occupied, and an electronic hybridization between local levels and conduction band states. In addition, here we include a correlated hybridization term, which depends on the local-level occupation number involved. This term breaks particle-hole symmetry (even when U + 2Ed = 0), enhances charge fluctuations on local levels and as a consequence strongly modifies the crossover between the Hamiltonian fixed-points, even suppressing one or other. We exemplify these behaviors showing data obtained from the Numerical Renormalization Group (NRG) computation for the impurity temperature-dependent specific heat, entropy and magnetic susceptibility. The interleaving procedure is used to recover the continuum spectrum after the NRG-logarithmic discretization of the conduction band. Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP.

  3. Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; da Rosa Simões, Acirete S.; Iglesias, J. R.; Lacroix, C.; Perkins, N. B.; Coqblin, B.

    2011-01-01

    Magnetic properties of uranium and neptunium compounds showing the coexistence of the Kondo screening effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate f level in each site, corresponding to 5f2 electronic configuration with S=1 spins. A derivation of the Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective f-band term, in addition to the regular exchange Kondo interaction between the S=1 f spins and the s=1/2 spins of the conduction electrons. The resulting effective Kondo lattice model can describe both the Kondo regime and a weak delocalization of the 5f electrons. Within this model we compute the Kondo and Curie temperatures as a function of model parameters, namely the Kondo exchange interaction constant JK, the magnetic intersite exchange interaction JH, and the effective f bandwidth. We deduce, therefore, a phase diagram of the model which yields the coexistence of the Kondo effect and ferromagnetic ordering and also accounts for the pressure dependence of the Curie temperature of uranium compounds such as UTe.

  4. Anderson localization of electromagnetic waves in randomly-stratified magnetodielectric media with uniform impedance.

    PubMed

    Kim, Kihong

    2015-06-01

    The propagation and the Anderson localization of electromagnetic waves in a randomly-stratified slab, where both the dielectric permittivity and the magnetic permeability depend on one spatial coordinate in a random manner, is theoretically studied. The case where the wave impedance is uniform, while the refractive index is random, is considered in detail. The localization length and the disorder-averaged transmittance of s and p waves incident obliquely on the slab are calculated as a function of the incident angle θ and the strength of randomness in a numerically precise manner, using the invariant imbedding method. It is found that the waves incident perpendicularly on the slab are delocalized, while those incident obliquely are localized. As the incident angle increases from zero, the localization length decreases from infinity monotonically to some finite value. The localization length is found to depend on the incident angle as θ-4 and a simple analytical formula, which works quite well for weak disorder and small incident angles, is derived. The localization length does not depend on the wave polarization, but the disorder-averaged transmittance generally does.

  5. Non-conventional Anderson localization in a matched quarter stack with metamaterials

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.

    2013-05-01

    We study the problem of non-conventional Anderson localization emerging in bilayer periodic-on-average structures with alternating layers of materials, with positive and negative refraction indices na and nb. Attention is paid to the model of the so-called quarter stack with perfectly matched layers (the same unperturbed by disorder impedances, Za = Zb, and optical path lengths, nada = |nb|db, with da and db being the thicknesses of basic layers). As was recently numerically discovered, in such structures with weak fluctuations of refractive indices (compositional disorder), the localization length Lloc is enormously large in comparison to the conventional localization occurring in the structures with positive refraction indices only. In this paper we develop a new approach, which allows us to derive the expression for Lloc for weak disorder and any wave frequency ω. In the limit ω → 0 one gets a quite specific dependence, L-1loc∝σ4ω8, which is obtained within the fourth order of perturbation theory. We also analyze the interplay between two types of disorder, when in addition to the fluctuations of na and nb, the thicknesses da and db slightly fluctuate as well (positional disorder). We show how conventional localization recovers with the addition of positional disorder.

  6. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Rezai, Raheleh; Ebrahimi, Farshad

    2014-04-01

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.

  7. Modified Anderson procedure for correcting abnormal mixed head position in nystagmus

    PubMed Central

    Arroyo-Yllanes, M E; Fonte-Vázquez, A; Pérez-Pérez, J F

    2002-01-01

    Background/aim: Treatment of nystagmus is controversial mainly in cases where it is combined with abnormal head position. This study was carried out to demonstrate that patients with abnormal head position in all three axes associated with nystagmus show improvement in the torsional and vertical components if only horizontal factors are addressed by surgical weakening of the horizontal muscles. Methods: 21 patients with horizontal nystagmus and abnormal head position were studied. All had an abnormal head position in all three axes with a predominant head turn. In all cases a modified Anderson procedure was performed—that is, 2 mm retroequatorial recessions of the horizontal yoke rectus muscles responsible for the blockage position, plus corrective surgery for strabismus when needed. Results: The three components of the abnormal head position were improved with surgery of horizontal yoke rectus muscles only (p=0.001). Conclusion: Large recessions of the horizontal yoke rectus muscles in nystagmus with blockage position, when the head turn predominates over the vertical and torsional components, are effective in diminishing the abnormal head position on all three axes. PMID:11864878

  8. Investigation of Anderson localization in disordered heterostructures irradiated by a Gaussian beam

    NASA Astrophysics Data System (ADS)

    Ardakani, Abbas Ghasempour

    2016-02-01

    The propagation of a Gaussian beam through a one-dimensional disordered media is studied. By employing the transfer matrix method, the localization length as a function of frequency is calculated for different values of transverse coordinate r. It is demonstrated that the localization length significantly depends on r in different frequency ranges. This result is in contrast to those reported for a plane wave incident on disordered structures in which the localization length is transversely constant. For some frequency regions, the peak of localization length is red-shifted and becomes smaller with increasing the transverse coordinate. At some frequencies, the system is in the localized state for particular values of r, while at other r values the system is in the extend regime at the same frequencies. It is observed that the quality of localization at each frequency depends on r. To quantify the localization behavior of the whole Gaussian beam, a modified localization length is defined in terms of the input and output powers of the Gaussian beam where the dependence of Anderson localization on the transverse coordinate is considered. It is suggested that this modified localization length is used in experiments performed for study of wave propagation in one-dimensional random media under illumination of laser beams.

  9. Anderson Localization for Schrödinger Operators on with Strongly Mixing Potentials

    NASA Astrophysics Data System (ADS)

    Bourgain, Jean; Schlag, Wilhelm

    In this paper we show that for a.e. x∈[ 0,2 π) the operators defined on as and with Dirichlet condition ψ- 1= 0, have pure point spectrum in with exponentially decaying eigenfunctions where δ > 0 and are small. As it is a simple consequence of known techniques that for small λ one has [- 2 +δ, 2-δ]⊂ spectrum (H(x)) for a.e.x∈[ 0, 2 π), we thus established Anderson localization on the spectrum up to the edges and the center. More general potentials than cosine can be treated, but only those energies with nonzero spectral density are allowed. Finally, we prove the same result for operators on the whole line with potential , where A:?2-->?2 is a hyperbolic toral automorphism, F∈C1(?2), ∫F= 0, and λ small. The basis for our analysis is an asymptotic formula for the Lyapunov exponent for λ--> 0 by Figotin-Pastur, and generalized by Chulaevski-Spencer. We combine this asymptotic expansion with certain martingale large deviation estimates in order to apply the methods developed by Bourgain and Goldstein in the quasi-periodic case.

  10. Anderson-like alkoxo-polyoxovanadate clusters serving as unprecedented second building units to construct metal-organic polyhedra.

    PubMed

    Zhang, Yu-Teng; Wang, Xin-Long; Li, Shuang-Bao; Gong, Ya-Ru; Song, Bai-Qiao; Shao, Kui-Zhan; Su, Zhong-Min

    2016-08-11

    Unprecedented Anderson-like alkoxo-polyoxovanadate [V6O6(OCH3)9(μ6-SO4)(COO)3](2-) polyanions can serve as 3-connected second building units (SBUs) that assemble with dicarboxylate or tricarboxylate ligands to form a new family of metal organic tetrahedrons of V4E6 and V4F4 type (V = vertex, E = edge, and F = face). To our knowledge, this alkoxo-polyoxovanadate-based SBU is the first ever reported. PMID:27363544

  11. Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions

    NASA Astrophysics Data System (ADS)

    Pietracaprina, Francesca; Ros, Valentina; Scardicchio, Antonello

    2016-02-01

    In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-body) or many-body localized phase. This approximation, which consists of summing over the amplitudes of only the shortest paths in the locator expansion, is known to overestimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean-field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available. For the Anderson problem, we find a critical value of the disorder which is 0.9 % off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc=4.0 ±0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν =1 . In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean-field approximations. We discuss the relevance of the correlations between the shortest paths for both the single- and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.

  12. Full density-matrix numerical renormalization group calculation of impurity susceptibility and specific heat of the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Merker, L.; Weichselbaum, A.; Costi, T. A.

    2012-08-01

    Recent developments in the numerical renormalization group (NRG) allow the construction of the full density matrix (FDM) of quantum impurity models [see A. Weichselbaum and J. von Delft, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.076402 99, 076402 (2007)] by using the completeness of the eliminated states introduced by F. B. Anders and A. Schiller [F. B. Anders and A. Schiller, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.196801 95, 196801 (2005)]. While these developments prove particularly useful in the calculation of transient response and finite-temperature Green's functions of quantum impurity models, they may also be used to calculate thermodynamic properties. In this paper, we assess the FDM approach to thermodynamic properties by applying it to the Anderson impurity model. We compare the results for the susceptibility and specific heat to both the conventional approach within NRG and to exact Bethe ansatz results. We also point out a subtlety in the calculation of the susceptibility (in a uniform field) within the FDM approach. Finally, we show numerically that for the Anderson model, the susceptibilities in response to a local and a uniform magnetic field coincide in the wide-band limit, in accordance with the Clogston-Anderson compensation theorem.

  13. [Heart involvement in Anderson-Fabry disease: Italian recommendations for diagnostic, follow-up and therapeutic management].

    PubMed

    Pieruzzi, Federico; Pieroni, Maurizio; Zachara, Elisabetta; Marziliano, Nicola; Morrone, Amelia; Cecchi, Franco

    2015-11-01

    Anderson-Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations of the GLA gene that encodes alpha-galactosidase A. It is characterized by a multisystemic involvement: the renal, neurological, heart, cochleovestibular and cutaneous systems are the most damaged. Morbidity and mortality of Anderson-Fabry disease depend on renal insufficiency, heart failure and nervous system involvement. Left ventricular hypertrophy is the most common cardiac manifestation followed by conduction system disease, valve dysfunction, and arrhythmias. Mild to moderate left ventricular hypertrophy may simulate a non-obstructive hypertrophic cardiomyopathy. Management of Anderson-Fabry disease starting from the diagnosis of cardiac involvement, the prevention of complications, the therapeutic aspects, up to appropriate clinical follow-up, requires a multidisciplinary approach. According to recent management guidelines, only few evidence-based data are available to guide the clinical and therapeutic approach to this rare disease. An Italian Board, composed by nephrologists, cardiologists, geneticists, pediatricians and neurologists has been established in order to approve by consensus a diagnostic and therapeutic management protocol. The authors report the results of this cardiologic management consensus. PMID:26571477

  14. Petrographic characteristics of the Wyodak-Anderson coal bed (Paleocene), Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Warwick, P.D.; Stanton, R.W.

    1988-01-01

    Six lithofacies of the thick ( > 30 m) Wyodak-Anderson subbituminous coal bed of the Fort Union Formation (Paleocene), Powder River Basin, Wyoming, can be delimited using megascopic and petrographic data. Previous lithofacies analysis of the rock types associated with the Wyodak-Anderson bed suggested that raised peat accumulated in restricted parts of an inland flood plain. The peat bodies were separated by deposits of contemporaneous, possibly anastomosed channels. In this study, megascopic descriptions from four mine highwalls of the Wyodak-Anderson coal bed were found to be similar to facies defined by microscopic data from core and highwall samples. The data indicate that the upper and lower parts of the coal bed are rich in preserved wood remains (for instance, humotelinite), whereas the middle part of the bed contains comparatively larger amounts of material that resulted from degradation and comminution of the peat (e.g. eugelinite). The facies are interpreted to be the result of different chemical and biological environments at the time of peat formation. ?? 1988.

  15. FES cycling.

    PubMed

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  16. On Planetary Evolution and the Evolution of Planetary Science During the Career of Don Anderson

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2003-12-01

    The planets of our solar system have long been viewed by Don Anderson as laboratories for testing general aspects of planetary evolution and as points of comparison to the Earth. I was fortunate to have been a student 39 years ago in a course at Caltech that Don taught with Bob Kovach on the interiors of the Earth and the planets. At that time, Mariner 4 had not yet flown by Mars, the lunar Ranger program was still in progress, and it was permissible to entertain the hypothesis that all of the terrestrial planets were identical in bulk composition. In the last four decades spacecraft have visited every planet from Mercury to Neptune; samples from the Moon, Mars, asteroids, and comets reside in our laboratories; and more than 100 planets have been discovered orbiting other stars. More importantly, traditionally distinct fields have merged to the point where planetary scientists must be conversant with the findings and modes of thinking from astronomy and biology as well as the geosciences. A few examples illustrate this confluence. Theoretical models for the structure of the atmospheres of gas-giant planets led to the first astronomical detection of an extrasolar planetary atmosphere for the transiting planet HD209458b. Although the atmospheric models were based on those for solar-system gas giants, the 3.5-day orbital period means that this planet is 100 times closer to its star than Jupiter is to the Sun, its effective temperature is 1100 K, and the detected signature of the planetary atmosphere was absorption by neutral sodium. Sodium in Mercury's exosphere, detected astronomically from Earth, figures into the question of how the terrestrial planets came to have distinct bulk compositions. Hypotheses to account for Mercury's high uncompressed density, and by inference its high ratio of metal to silicate, range from chemical gradients in the early solar nebula to preferential removal of silicates from a differentiated protoplanet by nebular heating or giant impact

  17. The pioneer woman's view of migraine: Elizabeth Garrett Anderson's thesis "Sur la migraine".

    PubMed

    Wilkinson, M; Isler, H

    1999-01-01

    This is a presentation of a doctoral thesis of 1870. The author was English but the thesis and the examinations were in French. Elizabeth Garrett Anderson, usually referred to as E.G.A., was the first woman in Britain to obtain the title of M.D., but not the first in Europe. Nadeshda Prokofevna Suslova, a Russian, received her M.D. in 1867 in Zurich, the most liberal university at that time, soon to be flooded by female students from Russia. E.G.A. had been applying to the few possible European universities but she settled for Paris after the Empress Eugenie had decided that she should be accepted there. This meant that she could succeed without having to be a Paris resident, just by writing a thesis and passing a series of examinations presided over by Paul Broca. This was important as she was already conducting private and dispensary practice, and could not find a locum (she insisted on a woman). E.G.A. had suffered many setbacks, for being a woman, as such being unacceptable in dissection rooms and operating theatres, and generally in a professional career where women were unheard of. She was finally permitted to receive her medical diploma from the Worshipful Society of Apothecaries of London. She wrote about her thesis: "I have chosen Headache as its subject. I had to find a subject which could be well studied without post-mortem observations, of which I can have but very few in either private or dispensary practice; and I wished also to take a large subject, one that demanded some insight into the harmony that exists between the main physiological functions." Marcia Wilkinson (M.W.), who worked in the Elizabeth Garrett Anderson Hospital in London for 35 years, heard there of E.G.A.'s thesis on migraine and sent for it from Paris. In 1966 she translated it into English from the original French, being interested both in the subject and in the person of this resolute and lucid woman. When H. Isler found the French thesis in the British Library he intended to

  18. Organic-inorganic hybrids constructed by Anderson-type polyoxoanions and copper coordination complexes

    SciTech Connect

    Cao Ruige; Liu Shuxia Liu Ying; Tang Qun; Wang Liang; Xie Linhua; Su Zhongmin

    2009-01-15

    Four organic-inorganic hybrid compounds based on Anderson-type polyoxoanions, namely, {l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 3}]{sub 2}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}{l_brace}[Cu(2,2'-bpy)(H{sub 2}O)Cl][Cu(2,2'-bpy) (H{sub 2}O)(NO{sub 3})][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.18H{sub 2}O (1), [Cu(2,2'-bpy)(H{sub 2}O){sub 2}Cl]{l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}][Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{r_brace}.4H{sub 2}O (2), (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Cr(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.36H{sub 2}O (3), and (H{sub 3}O){l_brace}[Cu(2,2'-bpy)(H{sub 2}O){sub 2}]{sub 2}[Cu(2,2'-bpy)(H{sub 2}O)]{sub 2}{r_brace}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]{sub 3}.33H{sub 2}O (4), were isolated by conventional solution method, and crystal structures have been determined by single-crystal X-ray diffraction. Among them, compound 1 displays a discrete supramolecular structure, compound 2 shows a chainlike structure with chloro-copper complexes as counteranions, and compounds 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice water molecules residing in the channels. The compounds 3 and 4 represent the first example of 3D organic-inorganic hybrid compounds in the TMs/2,2'-bpy/POMs system. Investigation of the reaction conditions reveals that the geometry and size of the anions together with its coordinating abilities to the metal centers have a decisive influence on both the composition and the dimensionality of the final compounds. - Graphical Abstract: Four organic-inorganic hybrids based on Anderson-type polyoxoanions have been synthesized. Compound 1 displays a discrete structure, 2 shows a chainlike structure, 3 and 4 are isomorphic and exhibit unique 3D open frameworks with lattice waters residing in the channels. The different structures suggest that the overall structures of the compounds are influenced by the nature of the acidic anions.

  19. Gutzwiller wave-function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef

    2015-09-01

    The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling, →1 . The nonstandard features of the emerging correlated quantum liquid state are stressed.

  20. The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility

    SciTech Connect

    Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; Cox, James; McMaken, Bruce; Styles, John

    2003-08-26

    The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.

  1. The University of Texas M.D. Anderson Cancer Center Proton Therapy Facility

    NASA Astrophysics Data System (ADS)

    Smith, Alfred; Newhauser, Wayne; Latinkic, Mitchell; Hay, Amy; McMaken, Bruce; Styles, John; Cox, James

    2003-08-01

    The University of Texas M.D. Anderson Cancer Center (MDACC), in partnership with Sanders Morris Harris Inc., a Texas-based investment banking firm, and The Styles Company, a developer and manager of hospitals and healthcare facilities, is building a proton therapy facility near the MDACC main complex at the Texas Medical Center in Houston, Texas USA. The MDACC Proton Therapy Center will be a freestanding, investor-owned radiation oncology center offering state-of-the-art proton beam therapy. The facility will have four treatment rooms: three rooms will have rotating, isocentric gantries and the fourth treatment room will have capabilities for both large and small field (e.g. ocular melanoma) treatments using horizontal beam lines. There will be an additional horizontal beam room dedicated to physics research and development, radiation biology research, and outside users who wish to conduct experiments using proton beams. The first two gantries will each be initially equipped with a passive scattering nozzle while the third gantry will have a magnetically swept pencil beam scanning nozzle. The latter will include enhancements to the treatment control system that will allow for the delivery of proton intensity modulation treatments. The proton accelerator will be a 250 MeV zero-gradient synchrotron with a slow extraction system. The facility is expected to open for patient treatments in the autumn of 2005. It is anticipated that 675 patients will be treated during the first full year of operation, while full capacity, reached in the fifth year of operation, will be approximately 3,400 patients per year. Treatments will be given up to 2-shifts per day and 6 days per week.

  2. Cushing's syndrome secondary to ectopic ACTH secretion: The University of Texas MD Anderson Cancer Center Experience

    PubMed Central

    Ejaz, Shamim; Vassilopoulou-Sellin, Rena; Busaidy, Naifa L.; Hu, Mimi I.; Waguespack, Steven G.; Jimenez, Camilo; Ying, Anita K.; Cabanillas, Maria; Abbara, Maher; Habra, Mouhammed Amir

    2011-01-01

    Background Cushing's syndrome (CS) secondary to ectopic ACTH secretion (EAS) has been described in association with a variety of tumors. The current experience with this syndrome is based on a few case series and individual case reports. Limited data are available about the tumors associated with CS-EAS in cancer center setting. This report describes CS-EAS at MD Anderson Cancer Center to further enhance our understanding and management of this syndrome. Methods This is a retrospective review for 43 patients with CS-EAS who were diagnosed between 1979 and 2009 at our institution. Results Different neuroendocrine tumors were associated with CS-EAS. Twenty one patients (48.9%) had tumors located in the chest cavity with bronchial carcinoid and small cell lung cancer representing the two most common causes. The ACTH source remained occult in 4 patients (9.3 %) despite extensive work-up. Clinical presentation was variable and the classical features of CS were not evident in some patients. Death occurred in 27 patients (62.8%) and the median overall survival was 32.2 months. Major morbidities included new onset or worsening hyperglycemia (77%), symptomatic venous thromboembolism (14%) and infections (23%). Conclusions In CS-EAS cases seen at a comprehensive cancer center, tumors originating in the chest cavity were the leading tumors associated with this syndrome. We suspect that CS-EAS is underreported because of the atypical presentation in some cases. Thus, we suggest careful evaluation of patients with neuroendocrine tumors to avoid missing co-existing CS-EAS. PMID:21412758

  3. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  4. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  5. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment.

    PubMed

    Cabrera Cordon, A R; Shirk, P D; Duehl, A J; Evans, J D; Teal, P E A

    2013-02-01

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.

  6. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    SciTech Connect

    Rezai, Raheleh Ebrahimi, Farshad

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  7. The magnetocaloric effect with critical behavior of a periodic Anderson-like organic polymer.

    PubMed

    Ding, L J; Zhong, Y; Fan, S W; Zhu, L Y

    2016-01-01

    We study the magnetocaloric effect and the critical behavior of a periodic Anderson-like organic polymer using Green's function theory, in which the localized f orbitals hybridize with the conduction orbitals at even sites. The field-induced metal-insulator transitions with the magnetic Grüneisen parameter showing |Γh|∼T(-1) power-law critical behaviour are revealed, which provides a new thermodynamic means for probing quantum phase transitions. It is found that the competition of up-spin and down-spin hole excitations is responsible for the double peak structure of magnetic entropy change (-ΔS) for the dominant Kondo coupling case, implying a double magnetic cooling process via demagnetization, which follows a power law dependence of the magnetic field h: -ΔS∼h(n). The local exponent n tends to 1 and 2 below and above TC, while has a minimum of 0.648 at TC, which is in accordance with the experimental observation of perovskite manganites Pr0.55Sr0.45MnO3 and Nd0.55Sr0.45MnO3 (J. Y. Fan et al., Appl. Phys. Lett., 2011, 98, 072508; Europhys. Lett., 2015, 112, 17005) corresponding to the conventional ferromagnets within the mean field theory -ΔS∼h(2/3). At TC, the -ΔS∼h curves with a convex curvature superpose each other for small V values, which are separated by the large V case, distinguishing the RKKY interaction and Kondo coupling explicitly. Furthermore, the critical scaling law n(TC) = 1 + (β- 1)/(β + γ) = 1 + 1/δ(1 - 1/β) is related to the critical exponents (β, γ, and δ) extracted from the Arrott-Noakes equation of state and the Kouvel-Fisher method, which fulfill the Widom scaling relation δ = 1 + γβ(-1), indicating the self-consistency and reliability of the obtained results. In addition, based on the scaling hypothesis through checking the scaling analysis of magnetization, the M-T-h curves collapse into two independent universal branches below and above TC.

  8. The magnetocaloric effect with critical behavior of a periodic Anderson-like organic polymer.

    PubMed

    Ding, L J; Zhong, Y; Fan, S W; Zhu, L Y

    2016-01-01

    We study the magnetocaloric effect and the critical behavior of a periodic Anderson-like organic polymer using Green's function theory, in which the localized f orbitals hybridize with the conduction orbitals at even sites. The field-induced metal-insulator transitions with the magnetic Grüneisen parameter showing |Γh|∼T(-1) power-law critical behaviour are revealed, which provides a new thermodynamic means for probing quantum phase transitions. It is found that the competition of up-spin and down-spin hole excitations is responsible for the double peak structure of magnetic entropy change (-ΔS) for the dominant Kondo coupling case, implying a double magnetic cooling process via demagnetization, which follows a power law dependence of the magnetic field h: -ΔS∼h(n). The local exponent n tends to 1 and 2 below and above TC, while has a minimum of 0.648 at TC, which is in accordance with the experimental observation of perovskite manganites Pr0.55Sr0.45MnO3 and Nd0.55Sr0.45MnO3 (J. Y. Fan et al., Appl. Phys. Lett., 2011, 98, 072508; Europhys. Lett., 2015, 112, 17005) corresponding to the conventional ferromagnets within the mean field theory -ΔS∼h(2/3). At TC, the -ΔS∼h curves with a convex curvature superpose each other for small V values, which are separated by the large V case, distinguishing the RKKY interaction and Kondo coupling explicitly. Furthermore, the critical scaling law n(TC) = 1 + (β- 1)/(β + γ) = 1 + 1/δ(1 - 1/β) is related to the critical exponents (β, γ, and δ) extracted from the Arrott-Noakes equation of state and the Kouvel-Fisher method, which fulfill the Widom scaling relation δ = 1 + γβ(-1), indicating the self-consistency and reliability of the obtained results. In addition, based on the scaling hypothesis through checking the scaling analysis of magnetization, the M-T-h curves collapse into two independent universal branches below and above TC. PMID:26617276

  9. Estimate of the Critical Exponent of the Anderson Transition in the Three and Four-Dimensional Unitary Universality Classes

    NASA Astrophysics Data System (ADS)

    Slevin, Keith; Ohtsuki, Tomi

    2016-10-01

    Disordered non-interacting systems are classified into ten symmetry classes, with the unitary class being the most fundamental. The three and four-dimensional unitary universality classes are attracting renewed interest because of their relation to three-dimensional Weyl semi-metals and four-dimensional topological insulators. Determining the critical exponent of the correlation/localisation length for the Anderson transition in these classes is important both theoretically and experimentally. Using the transfer matrix technique, we report numerical estimations of the critical exponent in a U(1) model in three and four dimensions.

  10. Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f-noise model

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre

    2016-05-01

    We calculate the joint min-max distribution and the Edwards-Anderson's order parameter for the circular model of 1/f-noise. Both quantities, as well as generalisations, are obtained exactly by combining the freezing-duality conjecture and Jack-polynomial techniques. Numerical checks come with significantly improved control of finite-size effects in the glassy phase, and the results convincingly validate the freezing-duality conjecture. Application to diffusive dynamics is discussed. We also provide a formula for the pre-factor ratio of the joint/marginal Carpentier-Le Doussal tail for minimum/maximum which applies to any logarithmic random energy model.

  11. Bi-stability in single impurity Anderson model with strong electron-phonon interaction(polaron regime)

    NASA Astrophysics Data System (ADS)

    Eskandari-asl, Amir

    2016-09-01

    We consider a single impurity Anderson model (SIAM) in which the quantum dot(QD) is strongly coupled to a phonon bath in polaron regime. This coupling results in an effective e-e attraction. By computing the self energies using a current conserving approximation which is up to second order in this effective attraction, we show that if the interaction is strong enough, in non particle-hole (PH) symmetric case, the system would be bi-stable and we have hysteresis loop in the I-V characteristic. Moreover, the system shows negative differential conductance in some bias voltage intervals.

  12. Competition between antiferromagnetic order and spin-liquid behavior in the two-dimensional periodic Anderson model at half filling

    SciTech Connect

    Vekic, M.; Cannon, J.W.; Scalapino, D.J.; Scalettar, R.T.; Sugar, R.L. Physics Department, Centenary College, 2911 Centenary Boulevard, Shreveport, Louisiana 71104 Department of Physics, University of California, Santa Barbara, California 93106 )

    1995-03-20

    We study the two-dimensional periodic Anderson model at half filling using quantum Monte Carlo (QMC) techniques. The ground state undergoes a magnetic order-disorder transition as a function of the effective exchange coupling between the conduction and localized bands. Low-lying spin and charge excitations are determined using the maximum entropy method to analytically continue the QMC data. At finite temperature we find a competition between the Kondo effect and antiferromagnetic order which develops in the localized band through Ruderman-Kittel-Kasuya-Yosida interactions.

  13. Block Lanczos density-matrix renormalization group method for general Anderson impurity models: Application to magnetic impurity problems in graphene

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomonori; Yunoki, Seiji

    2014-11-01

    We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimensions. This new scheme, named BL-DMRG method, allows us to calculate not only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG method can be easily extended to treat a multiorbital Anderson impurity model where not only inter- and intraorbital Coulomb interactions but also Hund's coupling and pair hopping interactions are included. We also show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene with a structural defect and with a single hydrogen or fluorine absorbed, where a single Anderson impurity is coupled to conduction electrons in the honeycomb lattice. These models include (i) a single adatom on the honeycomb lattice, (ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy in graphene. Our analysis of the local dynamical magnetic susceptibility and the local density of states at the impurity site reveals that, for the particle-hole symmetric case at half-filling of electron density, the ground state of model (i) behaves as an isolated magnetic impurity with no Kondo screening, while the ground state of the other two models forms a spin-singlet state where the impurity moment is screened by the conduction electrons. We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and the conduction sites for these three models. Our results clearly show that, reflecting the presence or absence of unscreened

  14. Ferromagnetic ordering in Mn-doped quantum wells GaAs-AlGaAs resulting from the virtual Anderson transition

    SciTech Connect

    Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.; Kozub, V. I.

    2014-08-20

    We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.

  15. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  16. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory. PMID:27232042

  17. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  18. Low-energy fixed points of the σ-τ and the O(3) symmetric Anderson models

    NASA Astrophysics Data System (ADS)

    Bulla, R.; Hewson, A. C.; Zhang, G.-M.

    1997-11-01

    We study the single-channel (compactified) models, the σ-τ model, and the O(3) symmetric Anderson model, which were introduced by Coleman et al., and Coleman and Schofield, as a simplified way to understand the low-energy behavior of the isotropic and anisotropic two-channel Kondo systems. These models display both Fermi-liquid and marginal-Fermi-liquid behavior and an understanding of the nature of their low-energy fixed points may give some general insights into the low-energy behavior of other strongly correlated systems. We calculate the excitation spectrum at the non-Fermi-liquid fixed point of the σ-τ model using conformal field theory, and show that the results are in agreement with those obtained in recent numerical renormalization group (NRG) calculations. For the O(3) Anderson model we find further logarithmic corrections in the weak-coupling perturbation expansion to those obtained in earlier calculations, such that the renormalized interaction term now becomes marginally stable rather than marginally unstable. We derive a Ward identity and a renormalized form of the perturbation theory that encompasses both the weak- and strong-coupling regimes and show that the χ/γ ratio is 8/3 (χ is the total susceptibility, spin plus isospin), independent of the interaction U and in agreement with the NRG calculations.

  19. Quantum transparency of Anderson insulator junctions: Statistics of transmission eigenvalues, shot noise, and proximity conductance

    NASA Astrophysics Data System (ADS)

    Nikolić, Branislav K.; Dragomirova, Ralitsa L.

    2005-01-01

    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a “bad metal” in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a nonzero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of nontrivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [A. Vaknin, A. Frydman, and Z. Ovadyahu, Phys. Rev. B 61, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band insulators.

  20. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGESBeta

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  1. Development of the M. D. Anderson Cancer Center Gynecologic Applicators for the Treatment of Cervical Cancer: Historical Analysis

    SciTech Connect

    Yordy, John S.; Almond, Peter R.; Delclos, Luis

    2012-03-15

    Purpose: To provide historical background on the development and initial studies of the gynecological (gyn) applicators developed by Dr. Gilbert H. Fletcher, a radiation oncologist and chairperson from 1948 to 1981 of the department at the M.D. Anderson Hospital (MDAH) for Cancer Research in Houston, TX, and to acknowledge the previously unrecognized contribution that Dr. Leonard G. Grimmett, a radiation physicist and chairperson from 1949 to 1951 of the physics department at MDAH, made to the development of the gynecological applicators. Methods and Materials: We reviewed archival materials from the Historical Resource Center and from the Department of Radiation Physics at University of Texas M. D. Anderson Cancer Center, as well as contemporary published papers, to trace the history of the applicators. Conclusions: Dr. Fletcher's work was influenced by the work on gynecologic applicators in the 1940s in Europe, especially work done at the Royal Cancer Hospital in London. Those efforts influenced not only Dr. Fletcher's approach to the design of the applicators but also the methods used to perform in vivo measurements and determine the dose distribution. Much of the initial development of the dosimetry techniques and measurements at MDAH were carried out by Dr. Grimmett.

  2. Nailing the coffin shut on doubts that violent video games stimulate aggression: comment on Anderson et al. (2010).

    PubMed

    Huesmann, L Rowell

    2010-03-01

    Over the past half century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. C. A. Anderson et al.'s (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about other violent mass media has found: that violent video games stimulate aggression in the players in the short run and increase the risk for aggressive behaviors by the players later in life. The effects occur for males and females and for children growing up in Eastern or Western cultures. The effects are strongest for the best studies. Contrary to some critics' assertions, the meta-analysis of C. A. Anderson et al. is methodologically sound and comprehensive. Yet the results of meta-analyses are unlikely to change the critics' views or the public's perception that the issue is undecided because some studies have yielded null effects, because many people are concerned that the implications of the research threaten freedom of expression, and because many people have their identities or self-interests closely tied to violent video games.

  3. Nailing the coffin shut on doubts that violent video games stimulate aggression: comment on Anderson et al. (2010).

    PubMed

    Huesmann, L Rowell

    2010-03-01

    Over the past half century the mass media, including video games, have become important socializers of children. Observational learning theory has evolved into social-cognitive information processing models that explain that what a child observes in any venue has both short-term and long-term influences on the child's behaviors and cognitions. C. A. Anderson et al.'s (2010) extensive meta-analysis of the effects of violent video games confirms what these theories predict and what prior research about other violent mass media has found: that violent video games stimulate aggression in the players in the short run and increase the risk for aggressive behaviors by the players later in life. The effects occur for males and females and for children growing up in Eastern or Western cultures. The effects are strongest for the best studies. Contrary to some critics' assertions, the meta-analysis of C. A. Anderson et al. is methodologically sound and comprehensive. Yet the results of meta-analyses are unlikely to change the critics' views or the public's perception that the issue is undecided because some studies have yielded null effects, because many people are concerned that the implications of the research threaten freedom of expression, and because many people have their identities or self-interests closely tied to violent video games. PMID:20192555

  4. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  5. Systematics and the origin of species from the viewpoint of a botanist: edgar anderson prepares the 1941 jesup lectures with ernst mayr.

    PubMed

    Kleinman, Kim

    2013-01-01

    The correspondence between Edgar Anderson and Ernst Mayr leading into their 1941 Jesup Lectures on "Systematics and the Origin of Species" addressed population thinking, the nature of species, the relationship of microevolution to macroevolution, and the evolutionary dynamics of plants and animals, all central issues in what came to be known as the Evolutionary Synthesis. On some points, they found ready agreement; for others they forged only a short term consensus. They brought two different working styles to this project reflecting their different appreciations of what was possible at this point in evolutionary studies. For Mayr, it was a focused project with definitive short term conclusions imminent while Anderson viewed it as an episode in an ongoing historical process that, while exciting and suggestive, remained openended. Thus, Mayr and Anderson represent two distinct perspectives on the Evolutionary Synthesis in formation; by understanding both of their points of view, we can grasp more fully the state of evolutionary theory at this key moment.

  6. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  7. Level repulsion exponent β for many-body localization transitions and for Anderson localization transitions via Dyson Brownian motion

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2016-03-01

    The generalization of the Dyson Brownian motion approach of random matrices to Anderson localization (AL) models (Chalker et al 1996 Phys. Rev. Lett. 77 554) and to many-body localization (MBL) Hamiltonians (Serbyn and Moore 2015 arXiv:1508.07293) is revisited to extract the level repulsion exponent β, where β =1 in the delocalized phase governed by the Wigner-Dyson statistics, β =0 , in the localized phase governed by the Poisson statistics, and 0<{βc}<1 at the critical point. The idea is that the Gaussian disorder variables h i are promoted to Gaussian stationary processes h i (t) in order to sample the disorder stationary distribution with some time correlation τ. The statistics of energy levels can then be studied via Langevin and Fokker-Planck equations. For the MBL quantum spin Hamiltonian with random fields h i , we obtain β =2qn,n+1\\text{EA}(N)/qn,n\\text{EA}(N) in terms of the Edwards-Anderson matrix qnm\\text{EA}(N)\\equiv \\frac{1}{N}{\\sum}i=1N|< {φn}|σ iz|{φm}> {{|}2} for the same eigenstate m  =  n and for consecutive eigenstates m  =  n  +  1. For the Anderson localization tight-binding Hamiltonian with random on-site energies h i , we find β =2{{Y}n,n+1}(N)/≤ft({{Y}n,n}(N)-{{Y}n,n+1}(N)\\right) in terms of the density correlation matrix {{Y}nm}(N)\\equiv {\\sum}i=1N|< {φn}|i> {{|}2}|< i|{φm}> {{|}2} for consecutive eigenstates m  =  n  +  1, while the diagonal element m  =  n corresponds to the inverse participation ratio {{Y}nn}(N)\\equiv {\\sum}i=1N|< {φn}|i> {{|}4} of the eigenstate |{φn}> .

  8. Anderson localization and layered superconductor 2H-NbSe[sub 2-x]S[sub x

    SciTech Connect

    Sugawara, Ken; Yokota, Kazuhide; Takemoto, Jiro; Tanokura, Yoshiko; Sekine, Tomoyuki )

    1993-04-01

    The zero-field critical temperature and the coherence length in the layered superconductor 2H-NbSe[sub 2-x]S[sub x] (x=0-2.0) were investigated. The zero-field critical temperature decreases with increasing the residual resistivity. This result can be explained in terms of the three-dimensional Anderson localization with the mobility edge below the Fermi level. The coherence length as a function of x can be explained by the theory of the anisotropic three-dimensional dirty superconductor. However it shows anomalous behavior when x-0.6. This may be relevant to the change of the crystal structure or the disappearance of the CDW. The effective mass ratio does not depend on x when x[le]0.4.

  9. Price-Anderson Amendments Act of 1986. House of Representatives, Ninety-Ninth Congress, Second Session. August 5, 1986

    SciTech Connect

    Not Available

    1986-01-01

    The committee recommends several amendments to H.R. 3653, a bill designed to improve nuclear insurance procedures. Among the amendments are the inclusion of storage, handling, transportation, treatment, or disposal of, or research and development on and changes dealing with reimbursement procedures and limits. The bill reauthorizes the Price-Anderson Act, but limits liability and creates industry-wide liability in the event of a major accident. The report covers background information and hearings, summarizes the 15 amendments and each section how the bill will effect relevant changes in the Atomic Energy Act of 1954. Dissenting views argue against setting a liability cap on nuclear waste accidents because it discourages safety consciousness on the part of contractors and because there is no precedent in liability insurance for limiting liability.

  10. Dynamics of Barrier Crossings for the Generalized Anderson-Holstein Model: Beyond Electronic Friction and Conventional Surface Hopping.

    PubMed

    Ouyang, Wenjun; Dou, Wenjie; Jain, Amber; Subotnik, Joseph E

    2016-09-13

    We investigate barrier crossings within the context of the Anderson-Holstein model, as relevant to coupled nuclear-electronic dynamics near a metal surface. Beyond standard electronic friction or conventional surface-hopping dynamics, we show that a broadened classical master equation can recover both the correct nonadiabatic and the correct adiabatic dynamics for a general escape problem (even with possibly multiple escape channels). In the case of a large barrier with only a single escape channel, we also find a surprising conclusion: electronic friction can recover Marcus's nonadiabatic theory of electron transfer in the limit of small molecule-metal couplings. The latter conclusion establishes a hidden connection between Marcus's nonadiabatic theory and Kramer's adiabatic theory of rate constants. PMID:27564005

  11. Giant Fluctuations of Local Magnetoresistance of Organic Spin Valves and the Non-Hermitian 1D Anderson Model

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Nemirovsky, D.; Kagalovsky, V.; Raikh, M. E.

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations.

  12. Numerical renormalization group study of probability distributions for local fluctuations in the Anderson-Holstein and Holstein-Hubbard models.

    PubMed

    Hewson, Alex C; Bauer, Johannes

    2010-03-24

    We show that information on the probability density of local fluctuations can be obtained from a numerical renormalization group calculation of a reduced density matrix. We apply this approach to the Anderson-Holstein impurity model to calculate the ground state probability density ρ(x) for the displacement x of the local oscillator. From this density we can deduce an effective local potential for the oscillator and compare its form with that obtained from a semiclassical approximation as a function of the coupling strength. The method is extended to the infinite dimensional Holstein-Hubbard model using dynamical mean field theory. We use this approach to compare the probability densities for the displacement of the local oscillator in the normal, antiferromagnetic and charge ordered phases.

  13. Breakdown of Anderson localization in the transport of Bose-Einstein condensates through one-dimensional disordered potentials

    NASA Astrophysics Data System (ADS)

    Dujardin, Julien; Engl, Thomas; Schlagheck, Peter

    2016-01-01

    We study the transport of an interacting Bose-Einstein condensate through a 1D correlated disorder potential. We use for this purpose the truncated Wigner method, which is, as we show, corresponding to the diagonal approximation of a semiclassical van Vleck-Gutzwiller representation of this many-body transport process. We also argue that semiclassical corrections beyond this diagonal approximation are vanishing under disorder average, thus confirming the validity of the truncated Wigner method in this context. Numerical calculations show that, while for weak atom-atom interaction strengths Anderson localization is preserved with a slight modification of the localization length, for larger interaction strengths a crossover to a delocalized regime exists due to inelastic scattering. In this case, the transport is fully incoherent.

  14. Crystal structure of an organic–inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion

    PubMed Central

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A new organic–inorganic hybrid compound, penta­morpholinium hexa­hydrogen hexa­molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[FeIII(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central FeIII ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter­molecular N—H⋯O and O—H⋯O inter­actions between cations, POMs, sulfate anions and non-coordinating water mol­ecules creates a three-dimensional network structure. PMID:26594507

  15. Z2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of Anderson localization.

    PubMed

    Ryu, Shinsei; Mudry, Christopher; Obuse, Hideaki; Furusaki, Akira

    2007-09-14

    We discuss, for a two-dimensional Dirac Hamiltonian with a random scalar potential, the presence of a Z2 topological term in the nonlinear sigma model encoding the physics of Anderson localization in the symplectic symmetry class. The Z2 topological term realizes the sign of the Pfaffian of a family of Dirac operators. We compute the corresponding global anomaly, i.e., the change in the sign of the Pfaffian by studying a spectral flow numerically. This Z2 topological effect can be relevant to graphene when the impurity potential is long ranged and, also, to the two-dimensional boundaries of a three-dimensional lattice model of Z2 topological insulators in the symplectic symmetry class.

  16. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-11-01

    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  17. Giant fluctuations of local magnetoresistance of organic spin valves and the non-Hermitian 1D Anderson model.

    PubMed

    Roundy, R C; Nemirovsky, D; Kagalovsky, V; Raikh, M E

    2014-06-01

    Motivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain. We find the distribution of local TMR exactly by drawing upon formal similarity between evolution of spinors in time and of the reflection coefficient along a 1D chain in the Anderson model. The results obtained are confirmed by the numerical simulations. PMID:24949781

  18. The attorney/client privilege: a fond memory of things past an analysis of the privilege following United States v. Anderson.

    PubMed

    Mustokoff, M M; Swichar, J L; Herzfeld, C R

    2000-01-01

    Mr. Mustokoff, Mr. Swichar, and Ms. Herzfeld address the rudiments of the attorney/client privilege, its crime-fraud exception, corporate compliance programs, the United States government's quest for voluntary disclosure, and how those principles have been affected by United States v. Anderson.

  19. A new species of gall midge associated with Diplopterys pubipetala (A.Juss.) Anderson and Davis (Malpighiaceae) from Altinópolis, São Paulo, Brazil.

    PubMed

    Urso-Guimarães, M V; Carmo-Neto, A M

    2015-01-01

    Clinodiplosis bellum sp. nov. associated with Diplopterys pubipetala (A.Juss.) Anderson and Davis (Malpighiaceae) from Brazil are described. This is the first species of Clinodiplosis described to State of São Paulo and the first formal description of Diplopterys pubipetala (Malpighiaceae) as host plant of Cecidomyiidae species. Description and illustration of the Clinodiplosis bellum sp. nov. (Diptera: Cecidomyiidae) are given.

  20. Insertion-release of guest species and ionic conduction in polyoxometalate solids with a layer-like Anderson structure

    NASA Astrophysics Data System (ADS)

    Naruke, Haruo; Kajitani, Naoyuki; Konya, Takayuki

    2011-04-01

    The precipitation of Na + and K + mixed salts of Anderson type [SbW 6O 24] 7- by addition of excess of NaNO 3 and NaCl yielded polycrystalline powders of Na 2.5K 5.3[SbW 6O 24](NO 3) 0.8·12H 2O ( 1) and Na 2K 5.35[SbW 6O 24]Cl 0.35·12H 2O ( 2), respectively. The two compounds are isomorphous and exhibit a layer-like Anderson (LLA) type structure, which consists of [SbW 6O 24] 7--containing layers and interstitial Na +, K +, NO 3- or Cl -, and water O atoms. Recrystallization of 1 and 2 from hot water yielded Na 2K 5.4[SbW 6O 24](NO 3) 0.4·12H 2O ( 1-recry) and Na 2K 5.25[SbW 6O 24]Cl 0.25·12H 2O ( 2-recry) as a result of partial release of NO 3- and Cl - (and Na + and K + for charge compensation). Dehydration of 1 and 2 at 400 and 500 °C ( 1-dehyd400 and 2-dehyd500) caused a shrinkage of lattice, but their the LLA structures retained. Simulation of X-ray diffraction (XRD) patterns for the dehydrated forms allowed to presume that the each [SbW 6O 24] 7- anion had been 30°-rotated within its molecular plane in order to avoid intermolecular repulsion. A compressed powder of 1-dehyd400 exhibited fast alkaline-ion conduction with a bulk conductivity of 1.2×10 -2 Ω -1 cm -1 at 400 °C. The hosting of a sufficient amount of NO 3- together with Na + for charge compensation into the lattice is crucial for high conduction.

  1. Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-André models

    NASA Astrophysics Data System (ADS)

    Biddle, J.; Priour, D. J., Jr.; Wang, B.; Das Sarma, S.

    2011-02-01

    We study the quantum localization phenomena of noninteracting particles in one-dimensional lattices based on tight-binding models with various forms of hopping terms beyond the nearest neighbor, which are generalizations of the famous Aubry-André and noninteracting Anderson models. For the case with deterministic disordered potential induced by a secondary incommensurate lattice (i.e., the Aubry-André model), we identify a class of self-dual models, for which the boundary between localized and extended eigenstates are determined analytically by employing a generalized Aubry-André transformation. We also numerically investigate the localization properties of nondual models with next-nearest-neighbor hopping, Gaussian, and power-law decay hopping terms. We find that even for these nondual models, the numerically obtained mobility edges can be well approximated by the analytically obtained condition for localization transition in the self-dual models, as long as the decay of the hopping rate with respect to distance is sufficiently fast. For the disordered potential with genuinely random character, we examine scenarios with next-nearest-neighbor hopping, exponential, Gaussian, and power-law decay hopping terms numerically. We find that the higher-order hopping terms can remove the symmetry in the localization length about the energy band center compared to the Anderson model. Furthermore, our results demonstrate that for the power-law decay case, there exists a critical exponent below which mobility edges can be found. Our theoretical results could, in principle, be directly tested in shallow atomic optical lattice systems enabling non-nearest-neighbor hopping.

  2. Preliminary report on methodology for calculating coal resources of the Wyodak-Anderson coal zone, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.

  3. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  4. Your Menstrual Cycle

    MedlinePlus

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how long ...

  5. Effet de l'interaction coulombienne sur la localisation d'Anderson dans le gaz bidimensionnel d'électrons

    NASA Astrophysics Data System (ADS)

    Fleury, G.

    2010-09-01

    Nous étudions l’effet des interactions coulombiennes sur la localisation d’Anderson dans le gaz bidimensionnel d’électrons désordonné. L’objectif est de statuer sur la question de l’existence de métaux à deux dimensions. En l’absence d’interaction, la théorie d’échelle de la localisation prédit qu’un désordre infinitésimal suffit à localiser la fonction d’onde électronique et donc à rendre le système isolant à température nulle (Abrahams et al., 1979). Dans certaines limites extrêmes, les interactions peuvent être prises en compte et l’on aboutit également à un état isolant. Cependant, aucune théorie analytique ne permet de traiter le régime quantique non-perturbatif où désordre et interaction sont intermédiaires. Expérimentalement, il est possible de l’explorer dans des échantillons de haute mobilité et basse densité. Depuis 1994, des comportements métalliques inexpliqués y ont été observés (Kravchenko et al., 1994). Nous avons mis au point une méthode numérique permettant d’étudier le problème couplé de la localisation d’Anderson en présence d’interaction. Cette méthode mêle Monte Carlo quantique à température nulle et théorie d’échelle pour la conductance de Thouless. Nous trouvons que la théorie d’échelle de la localisation est préservée en présence d’interaction et donc que le gaz bidimensionnel, même corrélé, est isolant à température nulle. Nos résultats montrent de plus que les interactions délocalisent le gaz bidimensionnel et que cet effet de délocalisation est accru en présence de dégénérescence de vallées. Ils nous permettent de proposer un mécanisme simple rendant compte des principales caractéristiques des comportements métalliques observés expérimentalement.

  6. Coexistence of Anderson localization and small polarons in the normal phase of La 2-xSr xCuO 4

    NASA Astrophysics Data System (ADS)

    Tateno, Jun

    1993-09-01

    The feature of the electrical resistivity in the normal phase of La 2- xSr xCuO 4 is explained by the coexistence model of Anderson localization and small polarons. The estimated concentration of the small polarons from this model attains a maximum at the optimum concentration, where the superconducting transition temperature attains its maximum. The variation of the activation energy of the hopping conduction with x is explained by taking into account the transfer mechanism accompanied with a change of states between Anderson localization and a small polaron state. From this analysis the Bose condensation of bipolarons is considered to be valid as the origin of superconductivity in this material.

  7. Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model

    SciTech Connect

    Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham

    2015-02-28

    We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case of out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.

  8. Bipolaron-SO(5) non-Fermi liquid in a two-channel Anderson model with phonon-assisted hybridizations

    NASA Astrophysics Data System (ADS)

    Hattori, K.

    2012-06-01

    We analyze non-Fermi liquid (NFL) properties along a line of critical points in a two-channel Anderson model with phonon-assisted hybridizations. We succeed in identifying hidden nonmagnetic SO(5) degrees of freedom for the valence-fluctuation regime, and we analyze the model on the basis of boundary conformal field theory. We find that the NFL spectra along the critical line, which is the same as those in the two-channel Kondo model, can be alternatively derived by a fusion in the nonmagnetic SO(5) sector. The leading irrelevant operators near the NFL fixed points vary as a function of Coulomb repulsion U; operators in the spin sector dominate for large U, while those in the SO(5) sector dominate for small U, and we confirm this variation in our numerical renormalization group calculations. As a result, the thermodynamic singularity for small U differs from that of the conventional two-channel Kondo problem. In particular, the impurity contribution to specific heat is proportional to temperature, and bipolaron fluctuations, which are coupled electron-phonon fluctuations, diverge logarithmically at low temperatures for small U.

  9. Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2004-09-01

    The use of goodness of fit tests based on Cramer-von Mises and Anderson-Darling statistics is discussed, with reference to the composite hypothesis that a sample of observations comes from a distribution, FH, whose parameters are unspecified. When this is the case, the critical region of the test has to be redetermined for each hypothetical distribution FH. To avoid this difficulty, a transformation is proposed that produces a new test statistic which is independent of FH. This transformation involves three coefficients that are determined using the asymptotic theory of tests based on the empirical distribution function. A single table of coefficients is thus sufficient for carrying out the test with different hypothetical distributions; a set of probability models of common use in extreme value analysis is considered here, including the following: extreme value 1 and 2, normal and lognormal, generalized extreme value, three-parameter gamma, and log-Pearson type 3, in all cases with parameters estimated using maximum likelihood. Monte Carlo simulations are used to determine small sample corrections and to assess the power of the tests compared to alternative approaches.

  10. Typical Value of Susceptibilities in the Three Dimensional Edwards-Anderson Spin Glass Model in an External Field

    NASA Astrophysics Data System (ADS)

    Feng, Sheng; Tam, Ka-Ming; Fang, Ye; Ramanujam, J.; Moreno, Juana; Jarrell, Mark

    2015-03-01

    We study the Edwards-Anderson model on a simple cubic lattice with a finite constant external field using a Monte Carlo simulation code, which employs graphics processing units to dramatically speedup the simulation. Conventional indicators, such as the Binder ratio and correlation length, do not show any signs of a phase transition. We also studied R12, or the ratio of spin glass susceptibilities at finite wavenumbers, and show it is quite noisy that a systematic analysis cannot come to clear conclusion. This is largely due to the fact that the susceptibilities follow a broad, fat-tailed distribution, and the average is possibly dominated by rare events. Therefore we propose to study the typical value of these parameters by taking the geometric average over different disorder realizations, and compare it with the linear average measurements. We argue that the typical value should be also studied in additional to conventional linear average value, to provide another perspective for the study of phase transition in spin glasses. This work is sponsored by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  11. [The nephropathy in the Anderson-Fabry disease: new recommendations for the diagnosis, the follow-up and the therapy].

    PubMed

    Mignani, Renzo; Gallieni, Maurizio; Feriozzi, Sandro; Pisani, Antonio; Marziliano, Nicola; Morrone, Amelia

    2015-01-01

    Anderson-Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations of the GLA gene that encodes alpha-galactosidase A. It is a characterized by the involvement of several systems: renal, neurological, hearth, cochleovestibular and cutaneous systems are the most involved. Despite recent studies have provided new insights in the this disease, there are still lacks and discrepancies among all insiders regarding the diagnosis, clinical and therapeutic management. Enzyme replacement have been demonstrated to improve the course of the disease, especially when the diagnosis is early. There are still some debates on diagnosis and management of patients, in particular in the heterozygote female and the start of enzyme replacement. Thus, an Italian board, composed by nephrologists, cardiologists, genetics, pediatricians and neurologists has been established in order to approve through a consensus a diagnostic and therapeutic Italian management. Authors report the renal clinical and therapeutic management, a useful tool either for expert physicians or for those with a few experience in the diagnosis and management of this disease.

  12. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman).

    PubMed

    Cabrera, A R; Shirk, P D; Duehl, A J; Donohue, K V; Grozinger, C M; Evans, J D; Teal, P E A

    2013-10-01

    The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites.

  13. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGESBeta

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  14. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    SciTech Connect

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.

  15. No correlation between Anderson Reservoir stage level and underlying Calaveras fault seismicity despite calculated differential stress increases

    USGS Publications Warehouse

    Parsons, T.

    2011-01-01

    Concerns have been raised that stresses from reservoir impoundment may trigger damaging earthquakes because rate changes have been associated with reservoir impoundment or stage-level changes globally. Here, the idea is tested blindly using Anderson Reservoir, which lies atop the seismically active Calaveras fault. The only knowledge held by the author going into the study was the expectation that reservoir levels change cyclically because of seasonal rainfall. Examination of seismicity rates near the reservoir reveals variability, but no correlation with stage-level changes. Three-dimensional fi nite-element modeling shows stress changes suffi cient for earthquake triggering along the Calaveras fault zone. Since many of the reported cases of induced triggering come from low-strain settings, it is speculated that gradual stressing from stage-level changes in high-strain settings may not be signifi cant. From this study, it can be concluded that reservoirs are not necessarily risky in active tectonic settings. ?? 2011 Geological Society of America.

  16. Transient phases and dynamical transitions in the post-quench evolution of the generalized Bose-Anderson model

    NASA Astrophysics Data System (ADS)

    Chichinadze, Dmitry V.; Ribeiro, Pedro; Shchadilova, Yulia E.; Rubtsov, Alexey N.

    2016-08-01

    The exact description of the time evolution of open correlated quantum systems remains one of the major challenges of condensed matter theory, especially for asymptotic long times where most numerical methods fail. Here, the post-quench dynamics of the N -component Bose-Anderson impurity model is studied in the N →∞ limit. The equilibrium phase diagram is similar to that of the Bose-Hubbard model in that it contains local versions of Mott and Bose phases. Using a numerically exact procedure, we are able to study the real-time evolution including asymptotic long-time regimes. The formation of long-lived transient phases is observed for quench paths crossing foreign phases. For quenches inside the local Bose condensed phase, a dynamical phase transition is reported that separates the evolution towards a new equilibrium state and a regime characterized at large times by a persistent phase rotation of the order parameter. We explain how such nondecaying modes can exist in the presence of a dissipative bath. We discuss the extension of our results to the experimental relevant finite-N case and their implication for the existence of nondecaying modes in generic quantum systems in the presence of a bath.

  17. Microwave conductance in random waveguides in the cross-over to Anderson localization and single-parameter scaling.

    PubMed

    Shi, Zhou; Wang, Jing; Genack, Azriel Z

    2014-02-25

    The nature of transport of electrons and classical waves in disordered systems depends upon the proximity to the Anderson localization transition between freely diffusing and localized waves. The suppression of average transport and the enhancement of relative fluctuations in conductance in one-dimensional samples with lengths greatly exceeding the localization length, L>ξ, are related in the single-parameter scaling (SPS) theory of localization. However, the difficulty of producing an ensemble of statistically equivalent samples in which the electron wave function is temporally coherent has so-far precluded the experimental demonstration of SPS. Here we demonstrate SPS in random multichannel systems for the transmittance T of microwave radiation, which is the analog of the dimensionless conductance. We show that for L∼4ξ, a single eigenvalue of the transmission matrix (TM) dominates transmission, and the distribution of the T is Gaussian with a variance equal to the average of −ln T, as conjectured by SPS. For samples in the cross-over to localization, L∼ξ, we find a one-sided distribution for T. This anomalous distribution is explained in terms of a charge model for the eigenvalues of the TM τ in which the Coulomb interaction between charges mimics the repulsion between the eigenvalues of TM. We show in the localization limit that the joint distribution of T and the effective number of transmission eigenvalues determines the probability distributions of intensity and total transmission for a single-incident channel.

  18. Double expansion with respect to U and 1 /(N - 1) for an SU(N) impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Awane, Miyuki

    2014-03-01

    We apply a new large- N scheme for an SU(N) impurity Anderson model to the Green's function for finite frequency ω and finite Coulomb interaction U. This approach is essentially different from the conventional large- N theories, such as the non-crossing approximation and its extensions which are based on a perturbation expansion in the hybridization strength V. Our expansion scheme, which uses 1 /(N - 1) and the scaled interaction u ≡(N - 1) U as a set of two independent variables, gives the Hartree-Fock (HF) results at zeroth order. Then, to leading order in 1 /(N - 1) it describes the Hartree-Fock random phase approximation (HF-RPA). The higher-order corrections systematically describe the fluctuations beyond the HF-RPA. It was shown that the renormalized local-Fermi-liquid parameters, calculated up to order 1 /(N - 1) 2 , agree closely with the exact NRG results at N = 4 where the degeneracy is still not so large. We discuss the ω dependence of the Green's function to clarify both the low- and high-energy features.

  19. Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000

    SciTech Connect

    Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

    1998-04-01

    When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

  20. Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000

    SciTech Connect

    Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

    1998-07-01

    When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

  1. Density matrix renormalization group study in energy space for a single-impurity Anderson model and an impurity quantum phase transition

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomonori; Yunoki, Seiji

    2016-05-01

    The density matrix renormalization group method is introduced in energy space to study Anderson impurity models. The method allows for calculations in the thermodynamic limit and is advantageous for studying not only the dynamical properties, but also the quantum entanglement of the ground state at the vicinity of an impurity quantum phase transition. This method is applied to obtain numerically exactly the ground-state phase diagram of the single-impurity Anderson model on the honeycomb lattice at half-filling. The calculation of local static quantities shows that the phase diagram contains two distinct phases, the local moment (LM) phase and the asymmetric strong coupling (ASC) phase, but no Kondo screening phase. These results are supported by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we also study the low-energy effective pseudogap Anderson model using the method introduced here. Although the high-energy excitations are obviously different, we find that the ground-state phase diagram and the asymptotically low-energy excitations are in good quantitative agreement with those for the single-impurity Anderson model on the honeycomb lattice, thus providing a quantitative justification for the previous studies based on low-energy approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM phase, whereas it is singlet for the ASC phase and is accidentally threefold degenerate at the valence fluctuating point. This should be contrasted with the degeneracy of the energy spectrum because the ground state is found to be always singlet. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be used to determine with high accuracy the phase boundary of the impurity quantum phase transition.

  2. H. R. 1102: This Act may be cited as the Price-Anderson Financial Accountability Amendments of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, February 23, 1989

    SciTech Connect

    Not Available

    1989-01-01

    H.R. 1102 is a bill to amend the Price-Anderson provisions of the Atomic Energy Act of 1954 to provide for the financial accountability of certain contractors of the Department of Energy, and for other purposes.

  3. The anderson's rotating interferometer and its application to binary star measurements. (French Title: L'interféromètre à rotation de john august anderson (1876-1956) et son application - la tentative de résolution de nouvelles binaires)

    NASA Astrophysics Data System (ADS)

    Bonneau, D.

    2011-12-01

    Following the tests of interferometric observations carried out by Albert A. Michelson with the 2.5 m telescope of the Mount Wilson, George. E. Hale thinks that this technique could be applied to the measurement of close double stars. He asks John A. Anderson to produce an instrument allowing such measurements. The principle of the ocular rotating interferometer and the way of using it for the measurement of double stars are first described. Then the effects of atmospheric dispersion on the observation of the stellar interference fringes and the remedy that Anderson implements to compensate it are described. Images of the Anderson's interferometer are used to present the instrument and to describe its operation. Installed at the 2,5 m telescope, this instrument was used by Anderson and Paul W. Merrill to resolve the spectroscopic binary Capella for the first time, like a 'visual binary'. Moreover, Merrill took the measurement of two difficult visual pairs discovered by Aitken (kap UMa = A 1585 and nu2 Boo = A 1634) and tried to resolve some new visual binaries among stars known as binary spectroscopic, stars with composite spectra, variable stars and some bright stars, which led him to publish a list of 73 stars finally found simple. Finally, the remarks made by Merrill in conclusion of his work will be analyzed.

  4. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water. PMID:21537597

  5. Much ado about nothing: the misestimation and overinterpretation of violent video game effects in eastern and western nations: comment on Anderson et al. (2010).

    PubMed

    Ferguson, Christopher J; Kilburn, John

    2010-03-01

    The issue of violent video game influences on youth violence and aggression remains intensely debated in the scholarly literature and among the general public. Several recent meta-analyses, examining outcome measures most closely related to serious aggressive acts, found little evidence for a relationship between violent video games and aggression or violence. In a new meta-analysis, C. A. Anderson et al. (2010) questioned these findings. However, their analysis has several methodological issues that limit the interpretability of their results. In their analysis, C. A. Anderson et al. included many studies that do not relate well to serious aggression, an apparently biased sample of unpublished studies, and a "best practices" analysis that appears unreliable and does not consider the impact of unstandardized aggression measures on the inflation of effect size estimates. They also focused on bivariate correlations rather than better controlled estimates of effects. Despite a number of methodological flaws that all appear likely to inflate effect size estimates, the final estimate of r = .15 is still indicative of only weak effects. Contrasts between the claims of C. A. Anderson et al. (2010) and real-world data on youth violence are discussed. PMID:20192554

  6. Fermionic superoperators for zero-temperature nonlinear transport: Real-time perturbation theory and renormalization group for Anderson quantum dots

    NASA Astrophysics Data System (ADS)

    Saptsov, R. B.; Wegewijs, M. R.

    2012-12-01

    We study electron quantum transport through a strongly interacting Anderson quantum dot at finite bias voltage and magnetic field at zero temperature using the real-time renormalization group (RT-RG) in the framework of a kinetic (generalized master) equation for the reduced density operator. To this end, we further develop the general, finite-temperature real-time transport formalism by introducing field superoperators that obey fermionic statistics. This direct second quantization in Liouville Fock space strongly simplifies the construction of operators and superoperators that transform irreducibly under the Anderson-model symmetry transformations. The fermionic field superoperators naturally arise from the univalence (fermion-parity) superselection rule of quantum mechanics for the total system of quantum dot plus reservoirs. Expressed in these field superoperators, the causal structure of the perturbation theory for the effective time-evolution superoperator kernel becomes explicit. Using the constraints of the causal structure, we construct a parametrization of the exact effective time-evolution kernel for which we analytically find the eigenvectors and eigenvalues in terms of a minimal set of only 30 independent coefficients. The causal structure also implies the existence of a fermion-parity protected eigenvector of the exact Liouvillian, explaining a recently reported result on adiabatic driving [Contreras-Pulido , Phys. Rev. B 85, 075301 (2012)] and generalizing it to arbitrary order in the tunnel coupling Γ. Furthermore, in the wide-band limit, the causal representation exponentially reduces the number of diagrams for the time-evolution kernel. The remaining diagrams can be identified simply by their topology and are manifestly independent of the energy cutoff term by term. By an exact reformulation of this series, we integrate out all infinite-temperature effects, obtaining an expansion targeting only the nontrivial, finite-temperature corrections, and

  7. Ischemic stroke in patients with gliomas at The University of Texas-M.D. Anderson Cancer Center.

    PubMed

    Kamiya-Matsuoka, Carlos; Cachia, David; Yust-Katz, Shlomit; Rodriguez, Yvo A; Garciarena, Pedro; Rodarte, Elsa M; Tremont-Lukats, Ivo W

    2015-10-01

    Patients with gliomas are at risk of cerebrovascular accidents (CVA) with potential consequences on survival, function, and local tumor control. Our objective was to provide information about CVA in patients with gliomas and to estimate survival in this group. We reviewed all adult glioma patients with ischemic CVA at the University of Texas-M.D. Anderson Cancer Center from 2003 through 2014. We extracted demographic, clinical, imaging, treatment and outcome data. We used descriptive summary data and estimated or compared survival rates where appropriate. 60 of 6500 patients (0.1%) with high-grade (HGG, n = 47) or low-grade glioma (LGG, n = 13) had ischemic CVA Thirty-two (53%) patients had postoperative strokes, and 20 (33%) had CVA after 2 weeks of surgery. Forty-one patients (68%) had gross total resection. For HGG and CVA, the poststroke median overall survival was 17 months versus 61 months in LGG and CVA (P = 0.03; hazard ratio (HR): 2.8; 95% CI 1.07-4.60). Survival stratified by modified Rankin Scale grade was significant (X(2) = 9.8, P = 0.007). Five patients received bevacizumab before stroke onset; none responded to antiangiogenic therapy. There was no stroke-related death. At our institution for 10 years, ischemic CVA in glioma patients was a rare complication, clearly associated in half of cases to surgery, and with a variable negative impact on performance status and neurologic function. In this group, patients with more neurological deficits lived less. The survival difference between and within subgroups was most likely due to tumor grade. More research is necessary to improve prevention of postoperative stroke in glioma patients.

  8. Reduced Right Ventricular Native Myocardial T1 in Anderson-Fabry Disease: Comparison to Pulmonary Hypertension and Healthy Controls

    PubMed Central

    Pagano, Joseph J.; Chow, Kelvin; Khan, Aneal; Michelakis, Evangelos; Paterson, Ian; Oudit, Gavin Y.; Thompson, Richard B.

    2016-01-01

    Aims Anderson-Fabry disease (AFD) is characterized by progressive multiorgan accumulation of intracellular sphingolipids due to α-galactosidase A enzyme deficiency, resulting in progressive ventricular hypertrophy, heart failure, arrhythmias, and death. Decreased native (non-contrast) left ventricular (LV) T1 (longitudinal relaxation time) with MRI discriminates AFD from healthy controls or other presentations of concentric hypertrophy, but the right ventricle (RV) has not been studied. The aims of the current study were to evaluate native RV T1 values in AFD, with a goal of better understanding the pathophysiology of RV involvement. Methods and Results Native T1 values were measured in the inferior RV wall (RVI), interventricular septum (IVS), and inferior LV (LVI) in patients with AFD, patients with pulmonary hypertension, who provided an alternative RV pathological process for comparison, and healthy controls. A minimum wall thickness of 4 mm was selected to minimize partial volume errors in tissue T1 analysis. T1 analysis was performed in 6 subjects with AFD, 6 subjects with PH, and 21 controls. Native T1 values were shorter (adjusted p<0.05 for all comparisons), independent of location, in subjects with AFD (RVI-T1 = 1096±49 ms, IVS-T1 = 1053±41 ms, LVI-T1 = 1072±44 ms) compared to both PH (RVI-T1 = 1239±41 ms, IVS-T1 = 1280±123 ms, LVI-T1 = 1274±57 ms) and HC (IVS-T1 = 1180±60 ms, LVI-T1 = 1183±45 ms). RVI measurements were not possible in controls due to insufficient wall thickness. Conclusion Native T1 values appear similarly reduced in the left and right ventricles of individuals with AFD and RV wall thickening, suggesting a common pathology. In contrast, individuals with PH and thickened RVs showed increased native T1 values in both ventricles, suggestive of fibrosis. PMID:27305064

  9. A Scientific Synthesis and Assessment of the Arctic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Daniel J.; Guo, Laodong; McGuire, A. David

    2007-06-01

    The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).

  10. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    PubMed Central

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  11. Popular culture and sporting life in the rural margins of late eighteenth-century England: the world of Robert Anderson, "The Cumberland Bard".

    PubMed

    Huggins, Mike

    2012-01-01

    This study sets out to extend and challenge existing historiography on late eighteenth century British popular culture, customary sports, class and cultural identity, focusing upon the rural geo-political borderland of England. It suggests that prevailing class-based and more London-biased studies need to be balanced with more regionalist-based work, and shows the importance of northern regional leisure variants. The textual and historical analysis draws largely on the published works of a neglected working-class dialect poet, Robert Anderson, living and working in Cumberland, arguing that he represented a strain of ''bardic regionalism,'' a variant of Katie Trumpener’s ''bardic nationalism.'' PMID:22400156

  12. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-20) - Camas Prairie Acquisition, Anderson Ranch Dam Phase II

    SciTech Connect

    Stewart, Shannon C.

    2002-03-07

    BPA proposes to purchase approximately 1,370 acres of riparian and wetland habitat along Camas Creek near Hill City, Idaho as partial mitigation for impacts associated with the construction and operation of Anderson Ranch Dam. Title to the land will be held by IDFG. The land proposed for acquisition adjoins IDFG’s existing Camas Prairie Centennial Marsh Wildlife Management Area and will be managed as part of the management area. The goal of this project is to protect and enhance riparian, wetland, and upland habitats associated with the Camas Creek and Camas Prairie systems.

  13. Popular culture and sporting life in the rural margins of late eighteenth-century England: the world of Robert Anderson, "The Cumberland Bard".

    PubMed

    Huggins, Mike

    2012-01-01

    This study sets out to extend and challenge existing historiography on late eighteenth century British popular culture, customary sports, class and cultural identity, focusing upon the rural geo-political borderland of England. It suggests that prevailing class-based and more London-biased studies need to be balanced with more regionalist-based work, and shows the importance of northern regional leisure variants. The textual and historical analysis draws largely on the published works of a neglected working-class dialect poet, Robert Anderson, living and working in Cumberland, arguing that he represented a strain of ''bardic regionalism,'' a variant of Katie Trumpener’s ''bardic nationalism.''

  14. Solar Cycle 25: Another Moderate Cycle?

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Jiang, J.; Schüssler, M.

    2016-06-01

    Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  15. Cycling To Awareness.

    ERIC Educational Resources Information Center

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  16. HIV Life Cycle

    MedlinePlus

    HIV Overview The HIV Life Cycle (Last updated 9/8/2016; last reviewed 9/8/2016) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  17. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  18. The major ion, 87Sr/86Sr, and δ11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Lemarchand, Damien; Jacobson, Andrew D.; Cividini, Damien; Chabaux, François

    2015-11-01

    We developed a multicomponent, 1D advective transport model that describes the downgradient evolution of solute concentrations, 87Sr/86Sr ratios, and δ11B values in the Wyodak-Anderson Coal Bed (WACB) aquifer located in the Powder River Basin, Wyoming, USA. The purpose of the study was to evaluate the chemical vulnerability of groundwater to potential environmental change stemming from the extraction of coal bed methane and shale gas. Model calculations demonstrate that coupling between microbial activity and the dissolved carbonate system controls major ion transport in the WACB aquifer. The analysis of 87Sr/86Sr ratios further reveals the importance of ion-exchange reactions. Similarly, δ11B data emphasize the significance of pH-dependent surface reactions and demonstrate the vulnerability of the aquifer to the long-term acidification of recharge water.

  19. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  20. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  1. Measuring Cycling Effort.

    ERIC Educational Resources Information Center

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Investigates the basic mechanics of cycling with a simple reckoning of how much effort is needed from the cyclist. The work done by the cyclist is quantified when the ride is on the flat and also when pedaling uphill. Proves that by making use of the available gears on a mountain bike, cycling uphill can be accomplished without pain. (Author/ASK)

  2. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  3. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  4. Teaching the Krebs Cycle.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1983-01-01

    Outlines a simple but rigorous treatment of the Krebs Cycle suitable for A-level Biology students. The importance of the addition of water molecules in various stages of the cycle is stressed as well as the removal of hydrogen atoms by the oxidizing enzymes. (JN)

  5. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  6. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  7. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  8. Reusable thermal cycling clamp

    NASA Technical Reports Server (NTRS)

    Debnam, W. J., Jr.; Fripp, A. L.; Crouch, R. K. (Inventor)

    1985-01-01

    A reusable metal clamp for retaining a fused quartz ampoule during temperature cycling in the range of 20 deg C to 1000 deg C is described. A compressible graphite foil having a high radial coefficient of thermal expansion is interposed between the fused quartz ampoule and metal clamp to maintain a snug fit between these components at all temperature levels in the cycle.

  9. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  10. The Chlamydomonas cell cycle.

    PubMed

    Cross, Frederick R; Umen, James G

    2015-05-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.

  11. Cycles, Cycles Everywhere - Corals, Coccoliths, and Climate

    NASA Astrophysics Data System (ADS)

    Ridgwell, A.

    2004-05-01

    Critical to our understanding of both past and future climate change is the biogeochemcial cycle of carbon on Earth. This is popularly recognized in the context of the creation and destruction of solid organic matter such as vegetation and fossil fuels, which has a clear and intuitive relationship to the amount of carbon dioxide in the atmosphere. Less widely recognized is the cycling which involves solid inorganic carbon as carbonate minerals - the most abundant form of carbon present at or near the surface of the Earth, and one with a distinctly counter-intuitive relationship with atmospheric CO2. For instance, changes in the rate of production of coral skeletons may have played a role in Holocene climate change, but with increased carbonate carbon removal driving atmospheric CO2 higher and not lower. The carbonate skeletons produced by some species of plankton in the open ocean are also critical to the climate system. The sinking of these skeletal parts is currently suspected to be important in helping to transport organic matter to depth and thus temporarily isolating this carbon from the atmosphere. The deposition of plankton-derived carbonate to the sediments of the deep-sea also helps regulate atmospheric CO2 but on thousand year time-scales, and will play a key role in the eventual removal of fossil fuel carbon from the atmosphere. However, there is a growing awareness that carbonate production by plankton may be severely diminished in the future. Maybe the cycle of carbonate on Earth could be re-set to how it operated over two hundred million years ago. Here I review some of the current areas of interest in global carbonate cycling, particularly its relationship to climate change and to fundamental moments in the evolution of life.

  12. Mining the Learning Cycle.

    ERIC Educational Resources Information Center

    Hemler, Debra; King, Hobart

    1996-01-01

    Describes an approach that uses the learning cycle to meaningfully teach students about mineral properties while alleviating the tedious nature of identifying mineral specimens. Discusses mineral properties, cooperative learning, and mineral identification. (JRH)

  13. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  14. Cycle isolation monitoring

    SciTech Connect

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C.

    2009-07-15

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  15. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H.; Thaller, L. H.

    1982-01-01

    The group of techniques that as a class are referred to as synthetic battery cycling are described with reference to spacecraft battery systems. Synthetic battery cycling makes use of the capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system.

  16. IFR fuel cycle

    SciTech Connect

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-04-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  17. IFR fuel cycle

    SciTech Connect

    Battles, J.E.; Miller, W.E. ); Lineberry, M.J.; Phipps, R.D. )

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  18. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  19. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  20. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  1. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  2. Price-Anderson Act Amendments Act of 1985. Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Ninth Congress, First Session on S. 1225, June 25, 1985

    SciTech Connect

    Not Available

    1986-01-01

    A hearing on S. 1225, which clarifies and expands insurance coverage under the Price-Anderson Act, brought testimony from Nuclear Regulatory Commissioners, representatives of several states and power companies, insurance underwriters, and DOE. At issue was DOE's recommended changes to limit liability and to include commercial and defense waste facilities under the provisions for special coverage in event of an extraordinary nuclear occurrence. DOE's request was to update, but not to radically change the Price-Anderson Act. Utilities and insurance underwriters objected to policies which would impose heavier financial burdens on the nuclear power industry by requiring insurance pools. Witnesses noted the adverse effects of unlimited liability as well as the need to insure the health of the insurance industry in conjunction with promoting nuclear power. The testimony of 17 witnesses and additional responses for the record follows the text of S. 1225.

  3. How mathematical epidemiology became a field of biology: a commentary on Anderson and May (1981) ‘The population dynamics of microparasites and their invertebrate hosts’

    PubMed Central

    Heesterbeek, J. A. P.; Roberts, M. G.

    2015-01-01

    We discuss the context, content and importance of the paper ‘The population dynamics of microparasites and their invertebrate hosts’, by R. M. Anderson and R. M. May, published in the Philosophical Transactions of the Royal Society as a stand-alone issue in 1981. We do this from the broader perspective of the study of infectious disease dynamics, rather than the specific perspective of the dynamics of insect pathogens. We argue that their 1981 paper fits seamlessly in the systematic study of infectious disease dynamics that was initiated by the authors in 1978, combining effective use of simple mathematical models, firmly rooted in biology, with observable or empirically measurable ingredients and quantities, and promoting extensive capacity building. This systematic approach, taking ecology and biology rather than applied mathematics as the motivation for advance, proved essential for the maturation of the field, and culminated in their landmark textbook of 1991. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750231

  4. Energy dependence of localization with interactions and disorder: The generalized inverse participation ratio of an ensemble of two-site Anderson-Hubbard systems

    NASA Astrophysics Data System (ADS)

    Wortis, Rachel; Perera, Jayanayana

    2015-03-01

    We explore the effect of interactions on novel features found in non-interacting disordered systems. Johri and Bhatt [PRL 109 076402 (2012), PRB 86 125140 (2012)] showed that for non-interacting particles moving in a disordered potential Lifshitz states lead to a decrease in localization at the band edges. This is reflected in an abrupt decline in the inverse participation ratio following a sharp peak. We consider an ensemble of two-site Anderson-Hubbard systems and study a generalization of the inverse participation ratio applicable to interacting systems. With on-site Coulomb repulsion U, two types of resonances can occur: As in the non-interacting case, the potentials at the two sites may be similar. In addition, the potential at one site may differ from its neighbor by U. We demonstrate that these two types of resonance and the diversity of transitions in the interacting case result in much more varied dependence of localization on energy, with multiple local minima, including a strong suppression and more structure near the Fermi level. Opportunities for experimental observation are considered. NSERC of Canada.

  5. Calappid and leucosiid crabs (Crustacea: Decapoda: Brachyura) from Kerala, India, with the description of a new species of Mursia Desmarest, 1823, from the Arabian Sea and redescription of M. bicristimana Alcock & Anderson, 1894.

    PubMed

    Kumar, Biju A; Kumar, M Sushil; Galil, Bella S

    2013-12-13

    Eleven species of calappid and leucosiid crabs were identified from by-catch landed by trawlers at four fishing ports in Kerala, India that were surveyed in 2007 and supplemented by material obtained in January 2013. Four species are reported for the first time from India, six are new records for Kerala. The status of Mursia bicristimana Alcock & Anderson, 1894, is clarified and the species redescribed. A new species of Mursia is described from the Gulf of Aden, Arabian Sea. 

  6. Kalina cycle application to gas turbine combined cycles

    SciTech Connect

    Bjorge, R.W.; Corman, J.C.; Smith, R.W.

    1995-12-31

    Gas turbine-based combined cycles have gained broad market acceptance due to their favorable economics, high efficiency and excellent environmental performance. Combined-cycle performance improvements have tracked the rapid advance of gas turbine technology. The introduction of the steam-cooled STAG 107H and 109H combined-cycle systems with their 60% net plant efficiency capability is the latest step in this trend. High-efficiency steam bottoming cycles have also advanced, with the current state-of-the-art being the three-pressure reheat cycle. The Kalina Cycle utilizing a mixture of ammonia and water as the working fluid promises to further continue these combined cycle-performance improvements with dramatic changes in the bottoming cycle. These improvements are due to non-isothermal heat acquisition and heat rejection, as well as internal heat recuperation, which reduce losses of thermodynamic availability, or exergy, in the cycle. This paper discusses the application of the Kalina Cycle to gas turbine-based combined cycles, including system design and performance characteristics. It compares Kalina Cycle performance and economics with that of a state-of-the-art steam bottoming cycle, showing the potential economic advantages of this innovative cycle in combined-cycle applications. Several variants of the Kalina Cycle system and the Distillation Condensation Subsystem (DCSS), which replaces the condenser as the heat rejection and recuperation system of the Kalina Cycle, have been studied. Results show that the Kalina Cycle can enhance the gas turbine bottoming cycle power output by over 15% when compared with a three-pressure reheat Rankine bottoming cycle. This yields an efficiency improvement of 2-3 percentage points, a significant advance in the state-of-the-art. Based on these substantial performance gains, GE is pursuing the commercialization of the Kalina Cycle for combined-cycle applications under a worldwide exclusive license from Exergy, Inc.

  7. Helium process cycle

    SciTech Connect

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  8. Helium process cycle

    SciTech Connect

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  9. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  10. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  11. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  12. The urea cycle disorders.

    PubMed

    Helman, Guy; Pacheco-Colón, Ileana; Gropman, Andrea L

    2014-07-01

    The urea cycle is the primary nitrogen-disposal pathway in humans. It requires the coordinated function of six enzymes and two mitochondrial transporters to catalyze the conversion of a molecule of ammonia, the α-nitrogen of aspartate, and bicarbonate into urea. Whereas ammonia is toxic, urea is relatively inert, soluble in water, and readily excreted by the kidney in the urine. Accumulation of ammonia and other toxic intermediates of the cycle lead to predominantly neurologic sequelae. The disorders may present at any age from the neonatal period to adulthood, with the more severely affected patients presenting earlier in life. Patients are at risk for metabolic decompensation throughout life, often triggered by illness, fasting, surgery and postoperative states, peripartum, stress, and increased exogenous protein load. Here the authors address neurologic presentations of ornithine transcarbamylase deficiency in detail, the most common of the urea cycle disorders, neuropathology, neurophysiology, and our studies in neuroimaging. Special attention to late-onset presentations is given.

  13. Breaking a vicious cycle.

    PubMed

    Hayes, Daniel F; Allen, Jeff; Compton, Carolyn; Gustavsen, Gary; Leonard, Debra G B; McCormack, Robert; Newcomer, Lee; Pothier, Kristin; Ransohoff, David; Schilsky, Richard L; Sigal, Ellen; Taube, Sheila E; Tunis, Sean R

    2013-07-31

    Despite prodigious advances in tumor biology research, few tumor-biomarker tests have been adopted as standard clinical practice. This lack of reliable tests stems from a vicious cycle of undervaluation, resulting from inconsistent regulatory standards and reimbursement, as well as insufficient investment in research and development, scrutiny of biomarker publications by journals, and evidence of analytical validity and clinical utility. We offer recommendations designed to serve as a roadmap to break this vicious cycle and call for a national dialogue, as changes in regulation, reimbursement, investment, peer review, and guidelines development require the participation of all stakeholders. PMID:23903752

  14. Revenue cycle management.

    PubMed

    Manley, Ray; Satiani, Bhagwan

    2009-11-01

    With the widening gap between overhead expenses and reimbursement, management of the revenue cycle is a critical part of a successful vascular surgery practice. It is important to review the data on all the components of the revenue cycle: payer contracting, appointment scheduling, preregistration, registration process, coding and capturing charges, proper billing of patients and insurers, follow-up of accounts receivable, and finally using appropriate benchmarking. The industry benchmarks used should be those of peers in identical groups. Warning signs of poor performance are discussed enabling the practice to formulate a performance improvement plan.

  15. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  16. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  17. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  18. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  19. Understanding the petrochemical cycle

    SciTech Connect

    Sedriks, W.

    1996-10-01

    The presentation will examine the nature of the supply, demand and profitability cycles that appear to be endemic in the petrochemical industry. The focus will be on the underlying factors that cause cyclicality. Data for ethylene and first line derivatives will be used both to provide quantitative illustrations of the magnitude of the cyclical effects and to give an improved perspective on the forces that drive cylicality. We will also examine to what extent cycle timing may be predictable, and present some scenario based projections.

  20. Cycling/dispatching power plants

    SciTech Connect

    Makansi, J.

    1994-02-01

    This article examines the effect cycling capability has on a power systems plants and the tradeoffs in performance that may occur. The topics of this article include cycling capability, control and training tools, combined cycles, steam turbine selection, protection against water induction, plant staffing, boiler/steam turbines, full turbine bypasses, cycling of CFB boilers, generators, and environmental control system uses to monitor performance.

  1. Stellar magnetic cycles

    NASA Astrophysics Data System (ADS)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  2. The Science of Cycling

    ERIC Educational Resources Information Center

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  3. Assisted Cycling Tours

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2008-01-01

    This article discusses Assisted Cycling Tours (ACT), a Westminster, Colorado based 501(c)3, non-profit that is offering the joy of bicycle tours in breathtaking, scenic locations to children and adults with developmental and physical disabilities and their families. ACT was founded by Bob Matter and his son David with a goal of opening up the…

  4. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  5. The Learning Cycle.

    ERIC Educational Resources Information Center

    Beisenherz, Paul C.; Dantonio, Marylou; Richardson, Lon

    2000-01-01

    The Learning Cycle contains three phases. In the exploration phase, students construct shared understanding of critical characteristics of a concept. The teacher introduces a concept in the concept introduction phase. The application phase introduces activities to extend the concept. Includes five concept activities. (SAH)

  6. Re-Cycling

    ERIC Educational Resources Information Center

    Brown, Robert W.; Covault, Corbin E.

    2015-01-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version…

  7. LIFE-CYCLE ASSESSMENT

    EPA Science Inventory

    Life Cycle Assessment, or LCA, is an environmental accounting and mangement approach that consider all the aspects of resource use and environmental releases associated with an industrial system from cradle-to-grave. Specifically, it is a holistic view of environmental interacti...

  8. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  9. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  10. The Geologic Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  11. The global water cycle

    NASA Astrophysics Data System (ADS)

    Oki, Taikan; Entekhabi, Dara; Harrold, Timothy Ives

    The global water cycle consists of the oceans, water in the atmosphere, and water in the landscape. The cycle is closed by the fluxes between these reservoirs. Although the amounts of water in the atmosphere and river channels are relatively small, the fluxes are high, and this water plays a critical role in society, which is dependent on water as a renewable resource. On a global scale, the meridional component of river runoff is shown to be about 10% of the corresponding atmospheric and oceanic meridional fluxes. Artificial storages and water withdrawals for irrigation have significant impacts on river runoff and hence on the overall global water cycle. Fully coupled atmosphere-land-river-ocean models of the world's climate are essential to assess the future water resources and scarcities in relation to climate change. An assessment of future water scarcity suggests that water shortages will worsen, with a very significant increase in water stress in Africa. The impact of population growth on water stress is shown to be higher than that of climate change. The virtual water trade, which should be taken into account when discussing the global water cycle and water scarcity, is also considered. The movement of virtual water from North America, Oceania, and Europe to the Middle East, North West Africa, and East Asia represents significant global savings of water. The anticipated world water crisis widens the opportunities for the study of the global water cycle to contribute to the development of sustainability within society and to the solution of practical social problems.

  12. The Synthesis and Characterization of Aromatic Hybrid Anderson-Evans POMs and their Serum Albumin Interactions: The Shift from Polar to Hydrophobic Interactions.

    PubMed

    Al-Sayed, Emir; Blazevic, Amir; Roller, Alexander; Rompel, Annette

    2015-12-01

    Four aromatic hybrid Anderson polyoxomolybdates with Fe(3+) or Mn(3+) as the central heteroatom have been synthesized by using a pre-functionalization protocol and characterized by using single-crystal X-ray diffraction, FTIR, ESI-MS, (1) H NMR spectroscopy, and elemental analysis. Structural analysis revealed the formation of (TBA)3 [FeMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ]⋅3.5 ACN (TBA-FeMo6 -bzn; TBA=tetrabutylammonium, ACN=acetonitrile, bzn=TRIS-benzoic acid alkanolamide, TRISR=(HOCH2 )3 CR)), (TBA)3 [FeMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ]⋅2.5 ACN (TBA-FeMo6 -cin; cin=TRIS-cinnamic acid alkanolamide), (TBA)3 [MnMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ]⋅3.5 ACN (TBA-MnMo6 -bzn), and (TBA)3 [MnMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ]⋅2.5 ACN (TBA-MnMo6 -cin). To make these four compounds applicable in biological systems, an ion exchange was performed that gave the water-soluble (up to 80 mM) sodium salts Na3 [FeMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ] (Na-FeMo6 -bzn), Na3 [FeMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ] (Na-FeMo6 -cin), Na3 [MnMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ] (Na-MnMo6 -bzn), and Na3 [MnMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ] (Na-MnMo6 -cin). The hydrolytic stability of the sodium salts was examined by applying ESI-MS in the pH range of 4 to 9. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that human and bovine serum albumin (HSA and BSA) remain intact in solutions that contain up to 100 equivalents of the sodium salts over more than 4 d at 20 °C. Tryptophan (Trp) fluorescence quenching was applied to study the interactions between the sodium salts and HSA and BSA at pH 5.5 and 7.4. The quenching constants were extracted by using Stern-Volmer analysis, which suggested the formation of a 1:1 POM-protein complex in all samples. It is suggested that the aromatic hybrid POM approaches subdomain IIA of HSA and exhibits hydrophobic interactions with its hydrophobic tails, whereas the Anderson core is stabilized through electrostatic

  13. Quality of life in oncological patients with oropharyngeal dysphagia: validity and reliability of the Dutch version of the MD Anderson Dysphagia Inventory and the Deglutition Handicap Index.

    PubMed

    Speyer, Renée; Heijnen, Bas J; Baijens, Laura W; Vrijenhoef, Femke H; Otters, Elsemieke F; Roodenburg, Nel; Bogaardt, Hans C

    2011-12-01

    Quality of life is an important outcome measurement in objectifying the current health status or therapy effects in patients with oropharyngeal dysphagia. In this study, the validity and reliability of the Dutch version of the Deglutition Handicap Index (DHI) and the MD Anderson Dysphagia Inventory (MDADI) have been determined for oncological patients with oropharyngeal dysphagia. At Maastricht University Medical Center, 76 consecutive patients were selected and asked to fill in three questionnaires on quality of life related to oropharyngeal dysphagia (the SWAL-QOL, the MDADI, and the DHI) as well as a simple one-item visual analog Dysphagia Severity Scale. None of the quality-of-life questionnaires showed any floor or ceiling effect. The test-retest reliability of the MDADI and the Dysphagia Severity Scale proved to be good. The test-retest reliability of the DHI could not be determined because of insufficient data, but the intraclass correlation coefficients were rather high. The internal consistency proved to be good. However, confirmatory factor analysis could not distinguish the underlying constructs as defined by the subscales per questionnaire. When assessing criterion validity, both the MDADI and the DHI showed satisfactory associations with the SWAL-QOL (reference or gold standard) after having removed the less relevant subscales of the SWAL-QOL. In conclusion, when assessing the validity and reliability of the Dutch version of the DHI or the MDADI, not all psychometric properties have been adequately met. In general, because of difficulties in the interpretation of study results when using questionnaires lacking sufficient psychometric quality, it is recommended that researchers strive to use questionnaires with the most optimal psychometric properties.

  14. Examining the role of foraging and malvolio in host-finding behavior in the honey bee parasite, Varroa destructor (Anderson & Trueman).

    PubMed

    Cabrera, Ana R; Shirk, Paul D; Teal, Peter E A; Grozinger, Christina M; Evans, Jay D

    2014-02-01

    When a female varroa mite, Varroa destructor (Anderson & Trueman), invades a honey bee brood cell, the physiology rapidly changes from feeding phoretic to reproductive. Changes in foraging and malvolio transcript levels in the brain have been associated with modulated intra-specific food searching behaviors in insects and other invertebrates. Transcription profiles for both genes were examined during and immediately following brood cell invasion to assess their role as potential control elements. Vdfor and Vdmvl transcripts were found in all organs of varroa mites with the highest Vdfor transcript levels in ovary-lyrate organs and the highest Vdmvl in Malpighian tubules. Changes in transcript levels of Vdfor and Vdmvl in synganglia were not associated with the cell invasion process, remaining comparable between early reproductive mites (collected from the pre-capping brood cells) and phoretic mites. However, Vdfor and Vdmvl transcript levels were lowered by 37 and 53%, respectively, in synganglia from reproductive mites compared to early reproductive mites, but not significantly different to levels in synganglia from phoretic mites. On the other hand, in whole body preparations the Vdfor and Vdmvl had significantly higher levels of transcript in reproductive mites compared to phoretic and early reproductive, mainly due to the presence of both transcripts accumulating in the eggs carried by the ovipositing mite. Varroa mites are a critical component for honey bee population decline and finding varroa mite genes associated with brood cell invasion, reproduction, ion balance and other physiological processes will facilitate development of novel control avenues for this honey bee parasite. PMID:24375502

  15. The microbial nitrogen cycle.

    PubMed

    Jetten, Mike S M

    2008-11-01

    This special issue highlights several recent discoveries in the microbial nitrogen cycle including the diversity of nitrogen-fixing bacteria in special habitats, distribution and contribution of aerobic ammonium oxidation by bacteria and crenarchaea in various aquatic and terrestrial ecosystems, regulation of metabolism in nitrifying bacteria, the molecular diversity of denitrifying microorganisms and their enzymes, the functional diversity of freshwater and marine anammox bacteria, the physiology of nitrite-dependent anaerobic methane oxidation and the degradation of recalcitrant organic nitrogen compounds. Simultaneously the articles in this issue show that many questions still need to be addressed, and that the microbes involved in catalyzing the nitrogen conversions still harbour many secrets that need to be disclosed to fully understand the biogeochemical nitrogen cycle, and make future predictions and global modelling possible.

  16. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  17. Archaea in biogeochemical cycles.

    PubMed

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  18. Gondwanaland's seasonal cycle

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.; Short, David A.; Mengel, John G.

    1987-01-01

    A two-dimensional energy balance climate model has been used to simulate the seasonal temperature cycle on a supercontinent-sized land mass. Experiments with idealized and realistic geography indicate that the land-sea configuration in high latitudes exerts a strong influence on the magnitude of summer warming. These simulations provide significant insight into the evolution of climate during the Palaeozoic, and raise questions about the presumed pre-eminent role of carbon dioxide in explaining long-term climate change.

  19. Nuclear Fuel Cycle

    SciTech Connect

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  20. Stirling cycle engine

    DOEpatents

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  1. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. [Microbial geochemical calcium cycle].

    PubMed

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  3. The papillomavirus life cycle.

    PubMed

    Doorbar, John

    2005-03-01

    Papillomaviruses infect epithelial cells, and depend on epithelial differentiation for completion of their life cycle. The expression of viral gene products is closely regulated as the infected basal cell migrates towards the epithelial surface. Expression of E6 and E7 in the lower epithelial layers drives cells into S-phase, which creates an environment that is conducive for viral genome replication and cell proliferation. Genome amplification, which is necessary for the production of infectious virions, is prevented until the levels of viral replication proteins rise, and depends on the co-expression of several viral proteins. Virus capsid proteins are expressed in cells that also express E4 as the infected cell enters the upper epithelial layers. The timing of these events varies depending on the infecting papillomavirus, and in the case of the high-risk human papillomaviruses (HPVs), on the severity of neoplasia. Viruses that are evolutionarily related, such as HPV1 and canine oral papillomavirus (COPV), generally organize their productive cycle in a similar way, despite infecting different hosts and epithelial sites. In some instances, such as following HPV16 infection of the cervix or cottontail rabbit papillomavirus (CRPV) infection of domestic rabbits, papillomaviruses can undergo abortive infections in which the productive cycle of the virus is not completed. As with other DNA tumour viruses, such abortive infections can predispose to cancer. PMID:15753007

  4. Gap Cycling for SWIFT

    PubMed Central

    Corum, Curtis A.; Idiyatullin, Djaudat; Snyder, Carl J.; Garwood, Michael

    2014-01-01

    Purpose SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a “bulls-eye” artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy “gap cycling.” Methods We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results Theoretical analysis reveals the mechanism for gap-cycling’s effectiveness in canceling inter-band crosstalk in the received data. We show phantom and in-vivo results demonstrating bulls-eye artifact free images. Conclusion Gap cycling is an effective method to remove bulls-eye artifact resulting from inter-band crosstalk in SWIFT data. PMID:24604286

  5. Episodic Tremor and Slip: Cycles Within Cycles

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Wech, A.; Vidale, J. E.

    2009-12-01

    Episodic tremor and slip (ETS) events, each with geodetically determined moment magnitudes in the mid-6 range, repeat about every 15 months under the Olympic Peninsula/southern Vancouver Island region. We have automatically searched for non-volcanic tremor in all 5-minute time windows both during the past five ETS events and during the two inter-ETS periods from February, 2007 through April, 2008 and June 2008 through April 2009. Inter-ETS tremor was detected in 5000 windows, which overlap by 50%, so tremor was seen 2% of the time. The catalog of 5-minute tremor locations cluster in time and space into groups we call tremor swarms, revealing 50 inter-ETS tremor swarms. The number of hours of tremor per swarm ranged from about 1 to 68, totaling 374 hours. The inter-ETS tremor swarms generally locate along the downdip side of the major ETS events, and account for approximately 45% of the time that tremor has been detected during the last two entire ETS cycles. Many of the inter-ETS events are near-carbon copies in duration, spatial extent and propagation direction, as is seen for the larger 15-month-interval events. These 50 inter-ETS swarms plus two major ETS episodes follow a power law relationship such that the number of swarms, N, exceeding duration τ is given by N ˜ τ-0.7. If we assume that seismic moment is proportional to τ as proposed by Ide et al. [Nature, 2007], we find that the tremor swarms follow a standard Gutenberg-Richter logarithmic frequency-magnitude relation, N ˜ 10-bMw, with b = 1.0, which lies in the range for normal earthquake catalogs. Furthermore, the major ETS events fall on the curve defined by the inter-ETS swarms, suggesting that the inter-ETS swarms are just smaller versions of the major 15-month ETS events. Only the largest events coincide with geodetically observed slip, suggesting that current geodetic observations may be missing nearly half of the total slip. Finally, crude estimates of the spatial dimensions of tremor swarms L

  6. Terrestrial Carbon Cycle Variability

    PubMed Central

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  7. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  8. Rapid Cycling and Its Treatment

    MedlinePlus

    ... may be rapid, ultra-rapid or ultradian cycling. Biological rhythm disturbances: This theory proposes that people with rapid cycling have daily biological rhythms that are out of sync with typical “ ...

  9. Fictitious Supercontinent Cycles

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    "Supercontinent cycles" or "Wilson cycles" is the idea that before Pangaea there were a series of supercontinents that each formed and then broke apart and separated before colliding again, re-aggregating, and suturing into a new supercontinent in a continuing sequence. I suggest that "supercontinent cycles" are artificial constructs, like planetary orbit epicycles, attempts to describe geological phenomena within the framework of problematic paradigms, namely, planetesimal Earth formation and plate tectonics' mantle convection. The so-called 'standard model of solar system formation' is problematic as it would lead to insufficiently massive planetary cores and necessitates additional ad hoc hypotheses such as the 'frost line' between Mars and Jupiter to explain planetary differences and whole-planet melting to explain core formation from essentially undifferentiated matter. The assumption of mantle convection is crucial for plate tectonics, not only for seafloor spreading, but also for continental movement; continent masses are assumed to ride atop convection cells. In plate tectonics, plate collisions are thought to be the sole mechanism for fold-mountain formation. Indeed, the occurrence of mountain chains characterized by folding which significantly predate the breakup of Pangaea is the primary basis for assuming the existence of supercontinent cycles with their respective periods of ancient mountain-forming plate collisions. Mantle convection is physically impossible. Rayleigh Number justification has been misapplied. The mantle bottom is too dense to float to the surface by thermal expansion. Sometimes attempts are made to obviate the 'bottom heavy' prohibition by adopting the tacit assumption that the mantle behaves as an ideal gas with no viscous losses, i.e., 'adiabatic'. But the mantle is a solid that does not behave as an ideal gas as evidenced by earthquakes occurring at depths as great as 660 km. Absent mantle convection, plate tectonics is not valid

  10. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  11. GEOSS Water Cycle Integrator

    NASA Astrophysics Data System (ADS)

    Koike, T.; Lawford, R. G.; Cripe, D.

    2012-12-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS/WCI is now leading to effective actions and public awareness in support of water security and

  12. The Global Phosphorus Cycle

    NASA Astrophysics Data System (ADS)

    Ruttenberg, K. C.

    2003-12-01

    Phosphorus is an essential nutrient for all life forms. It is a key player in fundamental biochemical reactions (Westheimer, 1987) involving genetic material (DNA, RNA) and energy transfer (ATP), and in structural support of organisms provided by membranes (phospholipids) and bone (the biomineral hydroxyapatite). Photosynthetic organisms utilize dissolved phosphorus, carbon, and other essential nutrients to build their tissues using energy from the Sun. Biological productivity is contingent upon the availability of phosphorus to these simple organisms that constitute the base of the food web in both terrestrial and aquatic systems. (For reviews of P-utilization, P-biochemicals, and pathways in aquatic plants, see Fogg (1973), Bieleski and Ferguson (1983), and Cembella et al. (1984a, 1984b).)Phosphorus locked up in bedrock, soils, and sediments is not directly available to organisms. Conversion of unavailable forms to dissolved orthophosphate, which can be directly assimilated, occurs through geochemical and biochemical reactions at various stages in the global phosphorus cycle. Production of biomass fueled by P-bioavailability results in the deposition of organic matter in soils and sediments, where it acts as a source of fuel and nutrients to microbial communities. Microbial activity in soils and sediments, in turn, strongly influences the concentration and chemical form of phosphorus incorporated into the geological record.The global phosphorus cycle has four major components: (i) tectonic uplift and exposure of phosphorus-bearing rocks to the forces of weathering; (ii) physical erosion and chemical weathering of rocks producing soils and providing dissolved and particulate phosphorus to rivers; (iii) riverine transport of phosphorus to lakes and the ocean; and (iv) sedimentation of phosphorus associated with organic and mineral matter and burial in sediments (Figure 1). The cycle begins anew with uplift of sediments into the weathering regime.

  13. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  14. Re-Cycling

    NASA Astrophysics Data System (ADS)

    Brown, Robert W.; Covault, Corbin E.

    2015-11-01

    An old comedy routine on Saturday Night Live by Father Guido Sarducci introduced a "Five-Minute University," because five minutes is all that's remembered after graduation anyway. In counterpoint, we discuss "cycling," a teaching method for memory enhancement. Our principal implementation consists of offering a simple version of a given course in the first third of the semester, a deeper and more integrated version in the second third, and the final, targeted version in the last third. We describe the benefits and challenges in this tale from the trenches.

  15. Geomicrobiological cycling of antimony

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Terry, L.; Dovick, M. A.; Braiotta, F.

    2013-12-01

    Microbiologically catalyzed oxidation and reduction of toxic metalloids (e.g., As, Se, and Te) generally proceeds much faster than corresponding abiotic reactions. These microbial transformations constitute biogeochemical cycles that control chemical speciation and environmental behavior of metalloids in aqueous environments. Particular progress has been made over the past two decades in documenting microbiological biotransformations of As, which include anaerobic respiratory reduction of As(V) to As(III), oxidation of As(III) to As(V) linked to chemoautotrophy or photoautotrophy, and cellular detoxification pathways. By contrast, microbial interactions with Sb, As's group 15 neighbor and a toxic element of emerging global concern, are poorly understood. Our work with sediment microcosms, enrichment cultures, and bacterial isolates suggests that prokaryotic metabolisms may be similarly important to environmental Sb cycling. Enrichment cultures and isolates from a Sb-contaminated mine site in Idaho exhibited Sb(V)-dependent heterotrophic respiration under anaerobic conditions and Sb(III)-dependent autotrophic growth in the presence of air. Live, anoxic cultures reduced 2 mM Sb(V) to Sb(III) within 5 d, while no activity occurred in killed controls. Sb(V) reduction was stimulated by lactate or acetate and was quantitatively coupled to the oxidation of lactate. The oxidation of radiolabeled 14C-acetate (monitored by GC-GPC) demonstrated Sb(V)-dependent oxidation to 14CO2, suggesting a dissimilatory process. Sb(V) dependent growth in cultures was demonstrated by direct counting. Microbiological reduction of Sb(V) also occurred in anerobic sediment microcosms from an uncontaminated suburban lake, but did not appear to be linked to growth and is interpreted as a mechanism of biological detoxification. Aerobic microcosms and cultures from the Idaho mine oxidized 2 mM Sb(III) to Sb(V) within 7 d and coupled this reaction to cell growth quantified by direct counting. An

  16. Natural Cycles, Gases

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Jackman, Charles H.; Rood, R. B.; Aikin, A. C.; Stolarski, R. S.; Mccormick, M. P.; Fahey, David W.

    1992-01-01

    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust.

  17. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  18. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  19. Anderson's disease/chylomicron retention disease in a Japanese patient with uniparental disomy 7 and a normal SAR1B gene protein coding sequence

    PubMed Central

    2011-01-01

    Background Anderson's Disease (AD)/Chylomicron Retention Disease (CMRD) is a rare hereditary hypocholesterolemic disorder characterized by a malabsorption syndrome with steatorrhea, failure to thrive and the absence of chylomicrons and apolipoprotein B48 post-prandially. All patients studied to date exhibit a mutation in the SAR1B gene, which codes for an essential component of the vesicular coat protein complex II (COPII) necessary for endoplasmic reticulum to Golgi transport. We describe here a patient with AD/CMRD, a normal SAR1B gene protein coding sequence and maternal uniparental disomy of chromosome 7 (matUPD7). Methods and Results The patient, one of two siblings of a Japanese family, had diarrhea and steatorrhea beginning at five months of age. There was a white duodenal mucosa upon endoscopy. Light and electron microscopy showed that the intestinal villi were normal but that they had lipid laden enterocytes containing accumulations of lipid droplets in the cytoplasm and lipoprotein-size particles in membrane bound structures. Although there were decreased amounts in plasma of total- and low-density lipoprotein cholesterol, apolipoproteins AI and B and vitamin E levels, the triglycerides were normal, typical of AD/CMRD. The presence of low density lipoproteins and apolipoprotein B in the plasma, although in decreased amounts, ruled out abetalipoproteinemia. The parents were asymptomatic with normal plasma cholesterol levels suggesting a recessive disorder and ruling out familial hypobetalipoproteinemia. Sequencing of genomic DNA showed that the 8 exons of the SAR1B gene were normal. Whole genome SNP analysis and karyotyping revealed matUPD7 with a normal karyotype. In contrast to other cases of AD/CMRD which have shown catch-up growth following vitamin supplementation and a fat restricted diet, our patient exhibits continued growth delay and other aspects of the matUPD7 and Silver-Russell Syndrome phenotypes. Conclusions This patient with AD/CMRD has a

  20. Cell cycle effects of drugs

    SciTech Connect

    Dethlefsen, L.A.

    1986-01-01

    This book contains 11 chapters. Some of the chapter titles are: Cell Growth and Division Cycle; Cell Cycle Effects of Alkylating Agents; Biological Effects of Folic Acid Antagonists with Antineoplastic Activity; and Bleomycin-Mode of Action with Particular Reference to the Cell Cycle.

  1. Revenue cycle management: part I.

    PubMed

    Crew, Matt

    2006-01-01

    The revenue cycle starts long before a patient is seen and continues until a claim is completely resolved. Each step in the revenue cycle must be clearly defined and easy to follow. Use of various tools such as templates, forms, reports, spreadsheets, and components of your practice management system will help to provide the consistency you need for profitable revenue cycle management.

  2. Developing a Safe Cycling Course.

    ERIC Educational Resources Information Center

    Riddle, Amy Backus

    1983-01-01

    A cycling course can take advantage of students' interests, teach safe cycling, and give students a fuller appreciation of a lifetime sport. Suggestions for planning and scheduling a cycling course, covering safety procedures, and considering other elements necessary for a successful course are given. (PP)

  3. Sometimes "Newton's Method" Always "Cycles"

    ERIC Educational Resources Information Center

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  4. Calappid and leucosiid crabs (Crustacea: Decapoda: Brachyura) from Kerala, India, with the description of a new species of Mursia Desmarest, 1823, from the Arabian Sea and redescription of M. bicristimana Alcock & Anderson, 1894.

    PubMed

    Kumar, Biju A; Kumar, M Sushil; Galil, Bella S

    2013-01-01

    Eleven species of calappid and leucosiid crabs were identified from by-catch landed by trawlers at four fishing ports in Kerala, India that were surveyed in 2007 and supplemented by material obtained in January 2013. Four species are reported for the first time from India, six are new records for Kerala. The status of Mursia bicristimana Alcock & Anderson, 1894, is clarified and the species redescribed. A new species of Mursia is described from the Gulf of Aden, Arabian Sea.  PMID:25113495

  5. Culture in cycles: considering H.T. Odum's 'information cycle'

    NASA Astrophysics Data System (ADS)

    Abel, Thomas

    2014-01-01

    'Culture' remains a conundrum in anthropology. When recast in the mold of 'information cycles,' culture is transformed. New fault lines appear. Information is splintered into parallel or nested forms. Dynamics becomes cycling. Energy is essential. And culture has function in a directional universe. The 'information cycle' is the crowning component of H.T. Odum's theory of general systems. What follows is an application of the information cycle to the cultural domains of discourse, social media, ritual, education, journalism, technology, academia, and law, which were never attempted by Odum. In information cycles, cultural information is perpetuated - maintained against Second Law depreciation. Conclusions are that culture is in fact a nested hierarchy of cultural forms. Each scale of information production is semi-autonomous, with its own evolutionary dynamics of production and selection in an information cycle. Simultaneously, each information cycle is channeled or entrained by its larger scale of information and ultimately human-ecosystem structuring.

  6. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  7. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  8. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  9. The centriole duplication cycle.

    PubMed

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-09-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.

  10. The centriole duplication cycle

    PubMed Central

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  11. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  12. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  13. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2

  14. The supercontinent cycle

    SciTech Connect

    Nance, R.D.; Worsley, T.R.; Moody, J.B.

    1988-07-01

    This paper discusses a new theory of plate tectonics which proposes that Pangaea was only the most recent in a series of supercontinents that have been breaking up and reassembling every 500 million years or so. The cycle, driven by heat percolating up from the mantle, splits continents and drives interrelated processes that shape the earth's geology and climate and play a role in biological evolution. The framework of the supercontinent theory makes it possible to understand the timing of changes in sea level that have taken place in the past 570 million years, and also helps to explain periods of intense mountain building, episodes of glaciation, and changes in the nature of life on the earth.

  15. The Pyrogenic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Bird, Michael I.; Wynn, Jonathan G.; Saiz, Gustavo; Wurster, Christopher M.; McBeath, Anna

    2015-05-01

    Pyrogenic carbon (PyC; includes soot, char, black carbon, and biochar) is produced by the incomplete combustion of organic matter accompanying biomass burning and fossil fuel consumption. PyC is pervasive in the environment, distributed throughout the atmosphere as well as soils, sediments, and water in both the marine and terrestrial environment. The physicochemical characteristics of PyC are complex and highly variable, dependent on the organic precursor and the conditions of formation. A component of PyC is highly recalcitrant and persists in the environment for millennia. However, it is now clear that a significant proportion of PyC undergoes transformation, translocation, and remineralization by a range of biotic and abiotic processes on comparatively short timescales. Here we synthesize current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle.

  16. Nutrient Cycling Study

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  17. Sulphur geodynamic cycle.

    PubMed

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/(3)He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/(3)He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  18. Coupled quantum Otto cycle.

    PubMed

    Thomas, George; Johal, Ramandeep S

    2011-03-01

    We study the one-dimensional isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than in the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each spin seems to cause a flow of heat in a direction opposite to the global temperature gradient. This feature is explained by an analysis of the local effective temperature of the spins.

  19. Krebs Cycle Wordsearch

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2001-04-01

    This puzzle embeds 46 names, terms, abbreviations, and acronyms about the citric acid (Krebs) cycle in a 14- x 17-letter matrix. A descriptive narrative beside it describes important features of the pathway. All the terms a student needs to find are embedded there with the first letter followed by underlined blanks to be completed. Therefore, the students usually must find the terms to know how to spell them, correctly fill in the blanks in the narrative with the terms, and then find and highlight the terms in the letter matrix. When all are found, the 24 unused letters complete a sentence that describes a major feature of this central pathway. The puzzle may be used as homework, an extra-credit project, or a group project in the classroom in any course where basic metabolism is learned. It disguises as fun the hard work needed to learn the names of the intermediates, enzymes, and cofactors.

  20. Prediction of Solar Cycle Maximum Using Solar Cycle Lengths

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    2008-03-01

    If the rise time RT, fall time FT, and total time TT ( i.e., RT+FT) of a solar cycle are compared against the maximum amplitude Rz(max ) for the following cycle, then only the association between TT and Rz(max ) is inferred to be well anticorrelated, inferring that the larger (smaller) the value of Rz(max ) for the following cycle, the shorter (longer) the TT of the preceding cycle. Although the inferred correlation (-0.68) is statistically significant, the inferred standard error of estimate is quite large, so predictions using the inferred correlation are not very precise. Removal of cycle pairs 15/16, 19/20, and 20/21 (statistical outliers) yields a regression that is highly statistically significant (-0.85) and reduces the standard error of estimate by 18%. On the basis of the adjusted regression and presuming TT=140 months for cycle 23, the present ongoing cycle, cycle 24’s 90% prediction interval for Rz(max ) is estimated to be about 94±44, inferring only a 5% probability that its Rz(max ) will be larger than about 140, unless of course cycle pair 23/24 is a statistical outlier.

  1. Reproductive cycles of buffalo.

    PubMed

    Perera, B M A O

    2011-04-01

    The domestic water buffalo (Bubalus bubalis) has an important role in the agricultural economy of many developing countries in Asia, providing milk, meat and draught power. It is also used in some Mediterranean and Latin American countries as a source of milk and meat for specialized markets. Although the buffalo can adapt to harsh environments and live on poor quality forage, reproductive efficiency is often compromised by such conditions, resulting in late sexual maturity, long postpartum anoestrus, poor expression of oestrus, poor conception rates and long calving intervals. The age at puberty is influenced by genotype, nutrition, management and climate, and under favourable conditions occurs at 15-18 months in river buffalo and 21-24 months in swamp buffalo. The ovaries are smaller than in cattle and contain fewer primordial follicles. Buffalo are capable of breeding throughout the year, but in many countries a seasonal pattern of ovarian activity occurs. This is attributed in tropical regions to changes in rainfall resulting in feed availability or to temperature stress resulting in elevated prolactin secretion, and in temperate regions to changes in photoperiod and melatonin secretion. The mean length of the oestrous cycle is 21 days, with greater variation than observed in cattle. The signs of oestrus in buffalo are less overt than in cattle and homosexual behaviour between females is rare. The duration of oestrus is 5-27 h, with ovulation occurring 24-48 h (mean 34 h) after the onset of oestrus. The hormonal changes occurring in peripheral circulation are similar to those observed in cattle, but the peak concentrations of progesterone and oestradiol-17β are less. The number of follicular waves during an oestrous cycle varies from one to three and influences the length of the luteal phase as well as the inter-ovulatory interval. Under optimal conditions, dairy types managed with limited or no suckling resume oestrus cyclicity by 30-60 days after calving

  2. Reproductive cycles of buffalo.

    PubMed

    Perera, B M A O

    2011-04-01

    The domestic water buffalo (Bubalus bubalis) has an important role in the agricultural economy of many developing countries in Asia, providing milk, meat and draught power. It is also used in some Mediterranean and Latin American countries as a source of milk and meat for specialized markets. Although the buffalo can adapt to harsh environments and live on poor quality forage, reproductive efficiency is often compromised by such conditions, resulting in late sexual maturity, long postpartum anoestrus, poor expression of oestrus, poor conception rates and long calving intervals. The age at puberty is influenced by genotype, nutrition, management and climate, and under favourable conditions occurs at 15-18 months in river buffalo and 21-24 months in swamp buffalo. The ovaries are smaller than in cattle and contain fewer primordial follicles. Buffalo are capable of breeding throughout the year, but in many countries a seasonal pattern of ovarian activity occurs. This is attributed in tropical regions to changes in rainfall resulting in feed availability or to temperature stress resulting in elevated prolactin secretion, and in temperate regions to changes in photoperiod and melatonin secretion. The mean length of the oestrous cycle is 21 days, with greater variation than observed in cattle. The signs of oestrus in buffalo are less overt than in cattle and homosexual behaviour between females is rare. The duration of oestrus is 5-27 h, with ovulation occurring 24-48 h (mean 34 h) after the onset of oestrus. The hormonal changes occurring in peripheral circulation are similar to those observed in cattle, but the peak concentrations of progesterone and oestradiol-17β are less. The number of follicular waves during an oestrous cycle varies from one to three and influences the length of the luteal phase as well as the inter-ovulatory interval. Under optimal conditions, dairy types managed with limited or no suckling resume oestrus cyclicity by 30-60 days after calving

  3. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  4. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  5. The Cycles of Math and Science.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Rock, David

    2002-01-01

    Introduces lesson plans on cycles designed for middle school students. Activities include: (1) "Boiling and Evaporation"; (2) "Experimenting with Evaporation"; (3) "Condensation and the Water Cycle"; and (4) "Understanding Cycles". Explains the mathematical applications of cycles. (YDS)

  6. How do prokaryotic cells cycle?

    PubMed

    Margolin, William; Bernander, Rolf

    2004-09-21

    This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.

  7. Regenerative superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  8. Self-organizing biochemical cycles

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way.

  9. The Learning Cycle: A Reintroduction

    NASA Astrophysics Data System (ADS)

    Maier, Steven J.; Marek, Edmund A.

    2006-02-01

    The learning cycle is an inquiry approach to instruction that continues to demonstrate significant effectiveness in the classroom.1-3 Rooted in Piaget's theory of intellectual development, learning cycles provide a structured means for students to construct concepts from direct experiences with science phenomena. Learning cycles have been the subject of numerous articles in science practitioner periodicals as well as the focus of much research in science education journals.4 This paper reintroduces the learning cycle by giving a brief description, followed by an example suitable for a range of physics classrooms.

  10. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  11. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation.

  12. The closed fuel cycle

    SciTech Connect

    Froment, Antoine; Gillet, Philippe

    2007-07-01

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  13. Wilson Cycle studies

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1987-01-01

    The main activity relating to the study during this half year was a three week field trip to study Chinese sedimentary basins (June 10 to July 3, 1986) at no cost to the project. This study, while of a reconnaissance character, permitted progress in understanding how the processes of island arc-collision and micro-continental collision operated during the Paleozoic in far western China (especially the Junggar and Tarim basins and in the intervening Tien Shan Mountains). These effects of the continuing collision of India and Asia on the area were also studied. Most specifically, these result in the elevation of the Tien Shan to more than 4 km above sea level and the depression of Turfan to move 150m below sea level. Both thrusting and large-scale strike-slip motion are important in producing these elevation changes. Some effort during the half year was also devoted to the study of greenstone-belts in terms of the Wilson Cycle.

  14. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  15. Organic rankine cycle fluid

    DOEpatents

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  16. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  17. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. PMID:26859274

  18. Specific cell cycle synchronization with butyrate and cell cycle analysis.

    PubMed

    Li, Congjun

    2011-01-01

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in Madin Darby Bovine Kidney (MDBK) cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can also be determined.

  19. Life Cycle of Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  20. Seclusion and the lunar cycles.

    PubMed

    Mason, T

    1997-06-01

    1. The lunar cycle's influence over psychological disturbances in the human being is known as the Transylvanian effect. 2. Seclusion is used predominantly for the control and management of violence and aggression in patients. 3. If the Transylvanian effect is supported, a relationship between lunar cycles and the use of seclusion should exist; no such correlation, however, was found in this study. PMID:9189846

  1. The water cycle for kids

    USGS Publications Warehouse

    Neno, Stephanie; Morgan, Jim; Zonolli, Gabriele; Perlman, Howard; Gonthier, Gerard

    2013-01-01

    The U.S. Geological Survey (USGS) and the Food and Agriculture Organization of the United Nations (FAO) have created a water-cycle diagram for use in elementary and middle schools. The diagram is available in many languages. This diagram is part of the USGS's Water Science School, in which the water cycle is described in detail.

  2. Reducing Life-Cycle Costs.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…

  3. Variations on the Zilch Cycle

    ERIC Educational Resources Information Center

    Binder, P.-M.; Tanoue, C. K. S.

    2013-01-01

    Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…

  4. Life Cycle of a Pencil.

    ERIC Educational Resources Information Center

    Reeske, Mike

    2000-01-01

    Explains a project called "Life Cycle of a Pencil" which was developed by the National Science Teachers Association (NSTA) and the U.S. Environmental Protection Agency (USEPA). Describes the life cycle of a pencil in stages starting from the first stage of design to the sixth stage of product disposal. (YDS)

  5. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  6. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    SciTech Connect

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  7. Cheng Cycle reporting high availability

    SciTech Connect

    Not Available

    1986-02-01

    Operating results from the Cheng Cycle cogeneration plants at San Jose State University and at Sunkist Growers in Ontario, California look very good so far, according to officials of International Power Technology (IPT). Both plants contain IPT's Cheng Cycle Series 7-Cogen system, which produces between 3 and 6 MW of electricity and up to 45,000 pounds of steam per hour. The company is developing the patented technology as an improved combined cycle system which can produce steam and electricity under widely varying load demands.

  8. [Forest carbon cycle model: a review].

    PubMed

    Wang, Ping

    2009-06-01

    Forest carbon cycle is one of the important items in the research of terrestrial carbon cycle, while carbon cycle model is an important means in studying the carbon cycle mechanisms of forest ecosystem and in estimating carbon fluxes. Based on the sum-up of main carbon cycle models, this paper classified the forest carbon cycle models into two categories, i.e., patch scale forest carbon cycle models and regional scale terrestrial carbon cycle models, with their features commented. The future development trend in the research of forest carbon cycle models in China was discussed.

  9. Revenue cycle management, Part II.

    PubMed

    Crew, Matt

    2007-01-01

    The proper management of your revenue cycle requires the application of "best practices" and the continual monitoring and measuring of the entire cycle. The correct technology will enable you to gain the insight and efficiencies needed in the ever-changing healthcare economy. The revenue cycle is a process that begins when you negotiate payor contracts, set fees, and schedule appointments and continues until claims are paid in full. Every single step in the cycle carries equal importance. Monitoring all phases and a commitment to continually communicating the results will allow you to achieve unparalleled success. In part I of this article, we explored the importance of contracting, scheduling, and case management as well as coding and clinical documentation. We will now take a closer look at the benefits charge capture, claim submission, payment posting, accounts receivable follow-up, and reporting can mean to your practice.

  10. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  11. Self-organizing biochemical cycles

    PubMed Central

    Orgel, Leslie E.

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way. PMID:11058157

  12. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  13. Physiologic responses during indoor cycling.

    PubMed

    Battista, Rebecca A; Foster, Carl; Andrew, Jessica; Wright, Glenn; Lucia, Alejandro; Porcari, John P

    2008-07-01

    During the last decade, there has been active interest in indoor cycling (e.g., spinning) as a method of choreographed group exercise. Recent studies have suggested that exercise intensity during indoor cycling may be quite high and may transiently exceed Vo2max. This study sought to confirm these findings, as the apparent high intensity of indoor cycling has implications for both the efficacy and the risk of indoor cycling as an exercise method. Twenty healthy female students performed an incremental exercise test to define Vo2max and performed 2 videotaped indoor exercise classes lasting 45 minutes and 35 minutes. Vo2, heart rate (HR), and rating of perceived exertion (RPE) were measured during the indoor cycling classes, with Vo2 data integrated in 30-second intervals. The mean %Vo2max during the indoor cycling classes was modest (74 +/- 14% Vo2max and 66 +/- 14%Vo2max, respectively). However, 52% and 35% of the time during the 45- and 35-minute classes was spent at intensities greater than the ventilatory threshold (VT). The HR response indicated that 35% and 38% of the session time was above the HR associated with VT. In 10 of the 40 exercise sessions, there were segments in which the momentary Vo2 exceeded Vo2max observed during incremental testing, and the cumulative time with exercise intensity greater than Vo2max ranged from 0.5 to 14.0 minutes. It can be concluded that although the intensity of indoor cycling in healthy, physically active women is moderate, there are frequent observations of transient values of Vo2 exceeding Vo2max, and a substantial portion of the exercise bouts at intensities greater than VT. As such, the data suggest that indoor cycling must be considered a high-intensity exercise mode of exercise training, which has implications for both efficacy and risk. PMID:18545183

  14. Equipment life cycle costs minimised.

    PubMed

    Kuligowski, Sharon

    2004-11-01

    With the cost of energy now a major component of building operating costs, NHS Trust managers increasingly focus on estimating total life cycle costs of equipment such as boiler room and heat, steam and incineration plant. "Life cycle costing" is a broad term and encompasses a wide range of techniques that take into account both initial and future costs as well as the savings of an investment over a period of time. PMID:15575554

  15. Ecology of the nitrogen cycle

    SciTech Connect

    Sprent, J.J.

    1987-01-01

    This book consists of two parts, approximately equal in size. The first part covers the general features of the nitrogen cycle, while the second part consists of case histories from particular environments. These include arid and semi-arid areas, tundras, peat soils, lakes, marshes, and such saline systems as salt marshes, coral reefs, intertidal zones, and the open sea. The last chapter discusses the human impact on the cycle through agriculture, forestry, and acidification.

  16. Limit cycle vibrations in turbomachinery

    NASA Technical Reports Server (NTRS)

    Ryan, S. G.

    1991-01-01

    The focus is on an examination of rotordynamic systems which are simultaneously susceptible to limit cycle instability and subharmonic response. Characteristics of each phenomenon are determined as well as their interrelationship. A normalized, single mass rotor model is examined as well as a complex model of the high pressure fuel turbopump and the Space Shuttle Main Engine. Entrainment of limit cycle instability by subharmonic response is demonstrated for both models. The nonuniqueness of the solution is also demonstrated.

  17. Equipment life cycle costs minimised.

    PubMed

    Kuligowski, Sharon

    2004-11-01

    With the cost of energy now a major component of building operating costs, NHS Trust managers increasingly focus on estimating total life cycle costs of equipment such as boiler room and heat, steam and incineration plant. "Life cycle costing" is a broad term and encompasses a wide range of techniques that take into account both initial and future costs as well as the savings of an investment over a period of time.

  18. The chromosome cycle of prokaryotes.

    PubMed

    Kuzminov, Andrei

    2013-10-01

    In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.

  19. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  20. The NEWS Water Cycle Climatology

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  1. A biogeochemical cycle for aluminium?

    PubMed

    Exley, Christopher

    2003-09-15

    The elaboration of biogeochemical cycles for elements which are known to be essential for life has enabled a broad appreciation of the homeostatic mechanisms which underlie element essentiality. In particular they can be used effectively to identify any part played by human activities in element cycling and to predict how such activities might impact upon the lithospheric and biospheric availability of an element in the future. The same criteria were the driving force behind the construction of a biogeochemical cycle for aluminium, a non-essential element which is a known ecotoxicant and a suspected health risk in humans. The purpose of this exercise was to examine the concept of a biogeochemical cycle for aluminium and not to review the biogeochemistry of this element. The cycle as presented is rudimentary and qualitative though, even in this nascent form, it is informative and predictive and, for these reasons alone, it is deserving of future quantification. A fully fledged biogeochemical cycle for aluminium should explain the biospheric abundance of this element and whether we should expect its (continued) active involvement in biochemical evolution.

  2. The Sphinx's Riddle: Life and Career Cycles.

    ERIC Educational Resources Information Center

    Burack, Elmer H.

    1984-01-01

    Career cycles should be considered apart from life cycles, even though the two are interrelated. This essay examines five theories about life and career cycles, and offers insights into their limitations and potential uses. (JB)

  3. Thermodynamic Cycles--One More Time.

    ERIC Educational Resources Information Center

    Nolan, Michael J.

    1995-01-01

    Discusses interesting aspects of the Carnot cycle and other thermodynamic cycles that are generally not dealt with in elementary physics texts. Presents examples that challenge the student to think about the extraction of net work from a cycle. (JRH)

  4. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  5. Final Report - The Xanthophyll Cycle

    SciTech Connect

    Harry Yamamato

    2005-04-21

    The xanthophyll cycle is a ubiquitous activity in higher plants. A major function of the cycle is to protect the photosynthetic system from the potentially damaging effects of high light by dissipating excess energy that might otherwise damage the photosynthetic apparatus harmlessly as heat by a process termed non-photochemical quenching (NFQ). This research focused on investigating the dynamics of the relationship between PsbS, subunit PSII protein required for NPQ, and zeaxanthin by perturbing the natural relationship of these components by overexpression of PsbS, violaxanthin de-epoxidase (VDE), and PsbS-VDE in tobacco. The effects of these treatments showed that the relationship between NPQ and zeaxanthin formation is more complex than previously indicated from studies carried out under high light. It is postulated that the xanthophyll cycle functions as a type of signal-transduction system within the thylakoid membrane. Recent studies in model lipid systems demonstrated that zeaxanthin exerts feedback inhibition on violaxanthin de-epoxidase. This feedback inhibition is consistent with the lipid phase functioning as a modulating factor in the dynamics of the cycle's operation. While this research and those in other laboratories have defined both the biochemistry and molecular mechanism of the cycle's operation, especially for violaxanthin de-epoxidase, there is yet insufficient knowledge that explains the ubiquitous presence of the cycle in all higher plants and a related cycle in diatoms. Antisense VDE tobacco plants (work carried out under another grant) withstood the high-light environment in Hawaii over one generation. Thus, it is speculated that the protective system was essential for survival in earth's high-light earth environment over multiple generations. The proposed signal transduction protective system, however, may explain the ability of the protective system to modulate or adapt to a range of environments.

  6. The Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Houser, P.; Belvedere, D.; Imam, B.; Schiffer, R.; Schlosser, C.; Gupta, H.; Welty, C.; Vörösmarty, C.; Matthews, D.; Lawford, R.

    2006-12-01

    The goal of the Water cycle Solutions Network is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend research results to augment decision support tools and meet national needs. WaterNet will engage relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect water cycle research results (WCRs) towards the improvement of water-related Decision Support Tools (DSTs). An actionable database includes enough sufficient knowledge about its nodes and their heritage so that connections between these nodes are identifiable and robust. Recognizing the many existing highly valuable water-related science and application networks, we will focus the balance of our efforts on enabling their interoperability in a solutions network context. We will initially focus on identification, collection, and analysis of the two end points, these being the WCRs and water related DSTs. We will then develop strategies to connect these two end points via innovative communication strategies, improved user access to NASA resources, improved water cycle research community appreciation for DST requirements, improved policymaker, management and stakeholder knowledge of NASA research and application products, and improved identification of pathways for progress. Finally, we will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. The WaterNet will deliver numerous pre-evaluation reports that will identify the pathways for improving the collective ability of the water cycle community to routinely harness WCRs that address crosscutting water cycle challenges.

  7. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    SciTech Connect

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  8. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    SciTech Connect

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.

  9. Focused training boosts revenue cycle skills, accountability.

    PubMed

    Richmond, Craig

    2011-09-01

    In 2009, the MetroHealth System took its first steps toward creating a comprehensive revenue cycle university, with the goal of developing revenue cycle staff talent and achieving best-in-class revenue cycle operations. MetroHealth became a beta site for HFMA's online Credentialed Revenue Cycle Representative (CRCR) program, and asked its revenue cycle leaders to present classes on key revenue cycle issues. As of June 2011, 62 percent of 122 revenue cycle employees who had taken the CRCR course passed the exam. The CRCR designation is now a prerequisite for career advancement in certain revenue cycle areas at MetroHealth.

  10. A comparative look at sunspot cycles

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties were used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters. The resultant schematic sunspot cycle was contrasted with the mean sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-R(MAX) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Linear regression analyses were performed comparing late cycle parameters with early cycle parameters and solar cycle number. The early occurring cycle parameters can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both R(MIN) and R(MAX) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations were also obtained for several measures of solar activity.

  11. Answering Key Fuel Cycle Questions

    SciTech Connect

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-10-03

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties.

  12. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  13. Measuring risky adolescent cycling behaviour.

    PubMed

    Feenstra, Hans; Ruiter, Robert A C; Schepers, Jan; Peters, Gjalt-Jorn; Kok, Gerjo

    2011-09-01

    Adolescents are at a greater risk of being involved in traffic accidents than most other age groups, even before they start driving cars. This article aims to determine the factor structure of a self-report questionnaire measuring adolescent risky cycling behaviour, the ACBQ (Adolescent Cycling Behaviour Questionnaire). The questionnaire's structure was based on the widely used Driver Behaviour Questionnaire (DBQ). A sample of secondary school students (N = 1749; age range: 13-18 years) filled out the questionnaire. Factor analysis revealed a three-factor structure underlying the questionnaire, which was confirmed on two equally large portions of the entire sample. These three underlying factors were identified as errors, common violations and exceptional violations. The ACBQ is a useful instrument for measuring adolescents' risky cycling behaviour.

  14. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  15. ALMA Cycle 0 Publication Statistics

    NASA Astrophysics Data System (ADS)

    Stoehr, F.; Grothkopf, U.; Meakins, S.; Bishop, M.; Uchida, A.; Testi, L.; Iono, D.; Tatematsu, K.; Wootten, A.

    2015-12-01

    The scientific impact of a facility is the most important measure of its success. Monitoring and analysing the scientific return can help to modify and optimise operations and adapt to the changing needs of scientific research. The methodology that we have developed to monitor the scientific productivity of the ALMA Observatory, as well as the first results, are described. We focus on the outcome of the first cycle (Cycle 0) of ALMA Early Science operations. Despite the fact that only two years have passed since the completion of Cycle 0 and operations have already changed substantially, this analysis confirms the effectiveness of the underlying concepts. We find that ALMA is fulfilling its promise as a transformational facility for the observation of the Universe in the submillimetre.

  16. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Mouat, D. A.

    1984-01-01

    The present investigation is concerned with the role of remote sensing in the analysis of biochemical cycling. A general review is provided of the interest of NASA in biochemical cycling, taking into account an assessment of the state and dynamics of the pools and fluxes of four major elements (carbon, nitrogen, phosphorus, sulfur), an understanding of the coupling and interaction of the biosphere and the atmosphere, and an understanding of the biosphere and the oceans. Attention is given to biogeochemical cycling science issues, the potential remote sensing role, the vegetation type, aspects of vegetation structure, the leaf area index, the canopy height, functional relationships, environmental and soil variables, questions of experimental design, sampling sites and ground data, and radiometric data and analysis.

  17. Tracing the glacial sulphur cycle

    NASA Astrophysics Data System (ADS)

    Hansson, M. E.; Jonsell, U.; Bigler, M.; de Angelis, M.; Fischer, H.; Siggaard-Andersen, M.-L.; Steffensen, J. P.; Udisti, R.; Wolff, E.

    2003-04-01

    Sulphate aerosols are playing a major role in climate forcing in the present atmosphere and therefore possibly also during other climatic stages. The deposition of sulphur-containing species onto polar ice sheets provides a tool for determining variations in the sulphur cycle in the past. Relatively short atmospheric residence times for sulphate aerosols cause spatial gradients and a high sensitivity to variations in the general circulation of the atmosphere and the hydrological cycle. Several factors may influence the air-snow transfer functions and post-depositional process may modify the deposited signal. Therefore, both a large spatial and temporal coverage is needed to identify significant changes in the sulphur cycle in the past. The EPICA Dome C ice core from Antarctica is providing the longest records ever, spanning several glacial cycles. Unique high-resolution chemical records, from discontinuous samples analysed by Ion Chromatography (IC), are gradually evolving from the cooperation between the laboratories in the EPICA Chemistry Consortium. The EPICA DML ice core is analysed in parallel by the same laboratories and the profiles are growing with the progress of the drilling each season. The sulphate and methane sulphonate records are here in focus and will be presented as far as they reach at present. High-resolution chemical records are now also available from the NorthGRIP ice core from Greenland spanning the last glacial cycle. An interhemispheric comparison of sulphur-containing species during the glacial period will be presented, using both new high-resolution data and previous ice core data from a few locations as well as initial results from sulphur isotope measurements, with the aim to increase our understanding of variations in the global sulphur cycle with climate change.

  18. SIRTF Cycle-1 Research Opportunities

    NASA Astrophysics Data System (ADS)

    Soifer, B. T.; Bicay, M. D.

    2003-12-01

    The Space InfraRed Telescope Facility (SIRTF), the fourth and final element in NASA's family of Great Observatories, was successfully launched into an Earth-trailing heliocentric orbit on August 25, 2003. The SIRTF Science Center (SSC) at Caltech is now soliciting Cycle-1 research proposals from the worldwide scientific community. Proposals must be submitted electronically to the SSC by February 14, 2004. A preliminary version of the Cycle-1 Call for Proposals (CP) was issued by the SSC in November 2002. A CP Update and supporting technical documentation, which incorporates the on-orbit performance of the observatory, were released in December 2003. Investigations may be proposed for new SIRTF observations, through the General Observer (GO) program, or for archival research. About 3700 hours of observing time is being offered for the Cycle-1 GO Program, in small (less than 50 hours) and medium (50 to 200 hours) categories. More than \\15 million in NASA data analysis support is available to qualified GO investigators. For GO proposals, a detailed list of proposed observations, generated by the SIRTF Planning Observations Tool, must accompany the research proposal. The Archival Research (AR) Program in Cycle-1 is limited to the analysis of data from the First-Look Survey, a 100-hour program to be executed by the SSC at the start of the science mission. Up to \\750,000 in NASA data analysis support is available to qualified AR investigators. All documents supporting the Cycle-1 solicitation are available online in the Proposal Kit section of the SSC public Web site (http://sirtf.caltech.edu/SSC/). Questions pertaining to the Cycle-1 CP should be sent electronically to the SSC HelpDesk at sirtf@ipac.caltech.edu. SIRTF is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

  19. Tricarboxylic-acid-cycle intermediates and cycle endurance capacity.

    PubMed

    Brown, Amy C; Macrae, Holden S H; Turner, Nathan S

    2004-12-01

    The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists' time to exhaustion during a submaximal endurance-exercise test (approximately 70 % to 75 % VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL x kg(-1) x in(-1), 28.6 +/- 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 +/- 18, P = 113 +/- 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 +/- 3.2, P = 15 +/- 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75 % VO2peak or speed recovery from previously fatiguing exercise.

  20. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.