Science.gov

Sample records for anechoic chambers

  1. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  2. Anechoic chamber in industrial plants. [construction materials and structural design

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Juncu, O.; Lorian, R.; Marfievici, D.; Mararu, I.

    1974-01-01

    A light anechoic chamber for routine acoustical measurements in the machine building industry is reported. The outer housing of the chamber consists of modules cast in glass fiber reinforced polyester resin; the inner housing consists of pyramidal modules cut out of sound absorbing slates. The parameters of this anechoic chamber facilitate acoustical measurements according to ISO and CAEM recommendations.

  3. Almond Test Body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  4. Ultrasonic anechoic chamber qualification: accounting for atmospheric absorption and transducer directivity.

    PubMed

    Jenny, Trevor; Anderson, Brian E

    2011-08-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have issues pertinent to this frequency range been fully discussed in the literature. An increasing number of technologies employ ultrasound; hence the need for an ultrasonic anechoic chamber. This paper will specifically discuss the need to account for atmospheric absorption and issues pertaining to source transducer directivity by presenting some results for qualification of a chamber at Brigham Young University.

  5. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  6. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  7. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  8. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  9. High-frequency monopole sound source for anechoic chamber qualification

    NASA Astrophysics Data System (ADS)

    Saussus, Patrick; Cunefare, Kenneth A.

    2003-04-01

    Anechoic chamber qualification procedures require the use of an omnidirectional monopole sound source. Required characteristics for these monopole sources are explicitly listed in ISO 3745. Building a high-frequency monopole source that meets these characteristics has proved difficult due to the size limitations imposed by small wavelengths at high frequency. A prototype design developed for use in hemianechoic chambers employs telescoping tubes, which act as an inverse horn. This same design can be used in anechoic chambers, with minor adaptations. A series of gradually decreasing brass telescoping tubes is attached to the throat of a well-insulated high-frequency compression driver. Therefore, all of the sound emitted from the driver travels through the horn and exits through an opening of approximately 2.5 mm. Directivity test data show that this design meets all of the requirements set forth by ISO 3745.

  10. On the acoustic wedge design and simulation of anechoic chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  11. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  12. Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application

    NASA Astrophysics Data System (ADS)

    Zulpadrianto, Z.; Yohandri, Y.; Putra, A.

    2018-04-01

    The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.

  13. Effect of inflow control on inlet noise of a cut-on fan. [in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.

    1980-01-01

    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

  14. Characteristics of an anechoic chamber for fan noise testing

    NASA Technical Reports Server (NTRS)

    Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.

    1977-01-01

    Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.

  15. Improved fire resistant radio frequency anechoic materials

    NASA Technical Reports Server (NTRS)

    Robinson, D. A.

    1969-01-01

    Protective, flameproof foam covering improves the resistance to fire and surface contamination of low-cost radio frequency absorbing and shielding anechoic materials. This promotes safety of operating personnel and equipment being tested in an otherwise combustible anechoic chamber.

  16. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    NASA Astrophysics Data System (ADS)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  17. The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT

    NASA Technical Reports Server (NTRS)

    da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano

    2008-01-01

    The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.

  18. Design and analysis of a hemi-anechoic chamber at Michigan Technological University

    NASA Astrophysics Data System (ADS)

    Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.

    2005-09-01

    A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.

  19. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  20. Near-Far Field Corrections in the Measurement of an Interferometric Two-Dimensional Radiometer in Anechoic Chambers

    NASA Astrophysics Data System (ADS)

    Selva Valero, Daniel

    In 2006 the two-dimensional interferometric radiometer MIRAS will be launched in a satellite by ESA. MIRAS is a Y-shaped array of 64 antennas that provides a radiometric resolution of 1K and a spatial resolution of 10-20Km, a perfect performance for Earth Observation. For the first time it will be taking global direct measures of soil moisture and ocean salinity for three years. Since these parameters are of main importance in weather prediction, they are very useful in studies of Climatic change. Aperture synthesis radiometers reach the same performance than total power ones, but with a major advantage: a much lower mass. This kind of passive radar provides measures of the cross-correlations between each pair of antennas in the array, being each correlation a sample of the visibility function. The brightness temperature distribution can be obtained by Inverse Fourier transform of the visibility function. The image of the brightness temperature will be processed in order to obtain the soil moisture and the ocean salinity. Before the launching a hard work on design and testing the instrument has to be done. Software simulators are necessary to design and predict the behavior of the instrument, but once the instrument is developed, a prototype must be built and all the features have to be tested in anechoic chambers and natural scenarios. When the instrument will be in orbit it will be in far-field from the earth, but this doesn't apply in the chamber. Although it is true that the target is in far-field from every element of the antenna, it is not far enough from the array to consider far-field from the set of antennas. Hence, some corrections must be done in order to transform the results obtained in near-field to the ones that would be obtained in far field. The main contribution of this paper is the expression of the corrections that we must apply to make the measures in anechoic chambers.

  1. Mode-Stirred Method Implementation for HIRF Susceptibility Testing and Results Comparison with Anechoic Method

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen, Sandra V.

    2001-01-01

    This paper describes the implementation of mode-stirred method for susceptibility testing according to the current DO-160D standard. Test results on an Engine Data Processor using the implemented procedure and the comparisons with the standard anechoic test results are presented. The comparison experimentally shows that the susceptibility thresholds found in mode-stirred method are consistently higher than anechoic. This is consistent with the recent statistical analysis finding by NIST that the current calibration procedure overstates field strength by a fixed amount. Once the test results are adjusted for this value, the comparisons with the anechoic results are excellent. The results also show that test method has excellent chamber to chamber repeatability. Several areas for improvements to the current procedure are also identified and implemented.

  2. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  3. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  4. Evaluation of RF Anechoic Chamber Fire Protection Systems

    DTIC Science & Technology

    1980-07-01

    Reflection - I Area Primary Reflection Area FIGURE 5. Re fle ct ions in Anechoic Chiamber. I Primary Reflection rce Areas ’ oil Receiver - FIGUE 6.Three...Uaa~a - a- oa -0 m ...- .m al -C . -.. -a a-id .a mCL aC r. 00 v~.a. m a. a’ c ~ a a Luv c C v ’aa C ൉.-a 0 IL a 0 ~ .. -0 - 00- Ckaa I m.-aI 1 :1...CLASSIFICATION OF THIS PAGE (IWhen Data Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM I . REPORT NUMBER 2. GOVT ACCESSION NO, 3

  5. Characterization and validation of an anechoic facility for high-temperature jet noise studies

    NASA Astrophysics Data System (ADS)

    Craft, Joseph

    In response to the increasing demand for jet noise studies performed at realistic conditions, the Florida Center For Advanced Aero-Propulsion at Florida State University has recently brought online an upgraded Anechoic High-Temperature Jet Facility. The function of this facility is to accurately simulate and characterize the aeroacoustic properties of exhaust from jet engines at realistic temperatures and flow speeds. This new addition is a blow-down facility supplied by a 3500 kPa, 114 cubic meter compressed dry air system and a sudden-expansion ethylene burner that is capable of producing ideally expanded jets up to Mach 2.6 and stagnation temperatures up to 1500 K. The jet exhausts into a fully anechoic chamber which is equipped to acquire acoustic and flow measurements including the temperature and pressure of the jet. The facility is capable of operating under free jet as well as in various impinging jet configurations pertinent to sea- and land-based aircraft, such as the F-35B. Compared to the original facility, the updated rig is capable of longer run times at higher temperatures. In this paper we demonstrate the facility's experimental capabilities and document jet aeroacoustic characteristics at various flow and temperature conditions. The anechoic chamber was characterized using ISO (3745:2003) guidelines and the lower cutoff frequency of the chamber was determined to be 315 Hz. Aeroacoustic properties of jets operating at subsonic conditions and supersonic Mach numbers ranging from 1.2 to 2.1 at temperatures of 300 K to 1300 K are documented. Where available, very good agreement was found when the present results were compared with data in the jet noise literature.

  6. Making an anechoic choral recording

    NASA Astrophysics Data System (ADS)

    Freiheit, Ron; Alexander, John; Ferguson, John

    2005-09-01

    The utilization of auralization as a tool for acoustic analysis continues to grow and develop. An important element for successful auralization listening experiences is the selection of anechoic source material. In researching the current library of anechoically recorded source material, it was discovered that choral material was not readily available. The Wenger Corporation, St. Olaf College, and 3M undertook a joint project to create an anechoic choral recording. The paper describes the challenges of this recording project-from the technological, logistical, and musical standpoints-and the solutions that were successfully implemented.

  7. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  8. Flat-walled multilayered anechoic linings: Optimization and application

    NASA Astrophysics Data System (ADS)

    Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.

    2005-11-01

    The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.

  9. Perceived noisiness under anechoic, semi-reverberant and earphone listening conditions

    NASA Technical Reports Server (NTRS)

    Clarke, F. R.; Kryter, K. D.

    1972-01-01

    Magnitude estimates by each of 31 listeners were obtained for a variety of noise sources under three methods of stimuli presentation: loudspeaker presentation in an anechoic chamber, loudspeaker presentation in a normal semi-reverberant room, and earphone presentation. Comparability of ratings obtained in these environments were evaluated with respect to predictability of ratings from physical measures, reliability of ratings, and to the scale values assigned to various noise stimuli. Acoustic environment was found to have little effect upon physical predictive measures and ratings of perceived noisiness were little affected by the acoustic environment in which they were obtained. The need for further study of possible differing interactions between judged noisiness of steady state sound and the methods of magnitude estimation and paired comparisons is indicated by the finding that in these tests the subjects, though instructed otherwise, apparently judged the maximum rather than the effective magnitude of steady-state noises.

  10. A Comparison of Antenna Measurements in a Near-Field Range and a Newly Renovated Short-Tapered Chamber

    DTIC Science & Technology

    2016-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study was undertaken to quantify and compare electromagnetic device (i.e., antenna) measurements using the US Army...15. SUBJECT TERMS electromagnetic , chamber, near-field range, anechoic chamber, antenna measurement 16. SECURITY CLASSIFICATION OF: 17...undertaken to quantify and compare electromagnetic (EM) device (i.e., antenna) measurements using the US Army Research Laboratory’s (ARL’s) near-field

  11. Influence of hole shape on sound absorption of underwater anechoic layers

    NASA Astrophysics Data System (ADS)

    Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian

    2018-07-01

    A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.

  12. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  13. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  14. Command History OPNAV 5750-1 Fiscal Year 2004

    DTIC Science & Technology

    2006-05-04

    highly capable facilities including three hyperbaric 2 chambers, anechoic chambers, auditory and vision laboratories, closed atmosphere test room...3 Hyperbaric Chambers (1 Saturation) • 1000m3 Anechoic Chamber • 140m3 Reverberant Chamber • 10 Audio Testing Booths • Vision Research...Using Hand-Held Personal Digital Assistants (PDAs) in a Hyperbaric Environment and the PDA-based Submarine Escape and Rescue Calculator and

  15. Performance of the high speed anechoic wind tunnel at Lyon University

    NASA Technical Reports Server (NTRS)

    Sunyach, M.; Brunel, B.; Comte-Bellot, G.

    1986-01-01

    The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.

  16. Naval Postgraduate School Anechoic Chamber Evaluation

    DTIC Science & Technology

    2004-09-01

    6 Figure 6. Reflection of a ray tube at a planar interface. (After Ref. [2].)..........................8 Figure 7. Diffracted ray ...geometry and the Keller cone. (From Ref. [2].) .........................9 Figure 8. Ray -fixed coordinate system. (From Ref. [2...10 Figure 9. Singly and doubly diffracted rays . (From Ref. [2].) ........................................11 Figure 10

  17. Equivalent modulus method for finite element simulation of the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate

    NASA Astrophysics Data System (ADS)

    Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2016-03-01

    The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.

  18. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.

  19. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  20. Electronic Warfare Test and Evaluation (Essai et evaluation en matiere de guerre electronique)

    DTIC Science & Technology

    2012-12-01

    Largest known chamber is 80 x 76 x 21 m. Shielding and quiet zones Usually ≥100 dB over at least 0.5 – 18 GHz. TEMPEST grade. Quiet zones: one or...accommodated as an afterthought. The highest level of RF/EO/IR/UV security control is offered by TEMPEST -grade aircraft-sized anechoic chambers. 6.9.7 SUT...aircraft-sized, RF- and laser-shielded anechoic chamber, shielded rooms, and an EW Sub-System Test Laboratory, all TEMPEST grade. It is co-located with the

  1. Effect of a chamber orchestra on direct sound and early reflections for performers on stage: A boundary element method study.

    PubMed

    Panton, Lilyan; Holloway, Damien; Cabrera, Densil

    2017-04-01

    Early reflections are known to be important to musicians performing on stage, but acoustic measurements are usually made on empty stages. This work investigates how a chamber orchestra setup on stage affects early reflections from the stage enclosure. A boundary element method (BEM) model of a chamber orchestra is validated against full scale measurements with seated and standing subjects in an anechoic chamber and against auditorium measurements, demonstrating that the BEM simulation gives realistic results. Using the validated BEM model, an investigation of how a chamber orchestra attenuates and scatters both the direct sound and the first-order reflections is presented for two different sized "shoe-box" stage enclosures. The first-order reflections from the stage are investigated individually: at and above the 250 Hz band, horizontal reflections from stage walls are attenuated to varying degrees, while the ceiling reflection is relatively unaffected. Considering the overall effect of the chamber orchestra on the direct sound and first-order reflections, differences of 2-5 dB occur in the 1000 Hz octave band when the ceiling reflection is excluded (slightly reduced when including the unobstructed ceiling reflection). A tilted side wall case showed the orchestra has a reduced effect with a small elevation of the lateral reflections.

  2. Usefulness of a Novel Ultrasonographic Classification Based on Anechoic Area Patterns for Differentiating Warthin Tumors from Pleomorphic Adenomas of the Parotid Gland

    PubMed Central

    Matsuda, Eriko; Fukuhara, Takahiro; Donishi, Ryohei; Kawamoto, Katsuyuki; Hirooka, Yasuaki; Takeuchi, Hiromi

    2018-01-01

    Background Ultrasonographic homogeneity is an important differential finding between Warthin tumor and pleomorphic adenoma, two types of benign parotid gland tumors, with the former likely to be heterogeneous and the latter homogeneous. However, differences in the performance of ultrasound machines or the homogeneity cut-off level affect the judgment of ultrasonographic homogeneity. Therefore, in this study, we adopted a novel system for classifying the composition of tumors via ultrasonography, using anechoic area as a substitute for differences in homogeneity to differentiate between Warthin tumors and pleomorphic adenomas. Methods We evaluated 68 tumors that were histopathologically diagnosed as Warthin tumor or pleomorphic adenoma between July 2009 and November 2015. Ultrasonographic images of the tumors were evaluated on the basis of key differentiating features, including features on B-mode imaging and color Doppler imaging. Additionally, the tumors were classified into four groups based on anechoic area, and findings were compared between Warthin tumors and pleomorphic adenomas. Results While 38 of the tumors were pleomorphic adenomas, 30 were Warthin tumors. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for detection of Warthin tumors using our novel classification system were 73.3%, 76.3%, 71.0%, 78.4% and 75.0%, respectively. Compared to pleomorphic adenomas, Warthin tumors showed large or sponge-like anechoic areas, rich vascularization and an oval shape even at large tumor sizes, and the difference was significant. On defining Warthin tumor as a tumor demonstrating two or more of the findings noted above, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for its detection were 73.3%, 84.2%, 78.6%, 80.0% and 79.4%, respectively. Conclusion Our novel classification system based on anechoic area patterns demonstrated by the tumors had high

  3. Usefulness of a Novel Ultrasonographic Classification Based on Anechoic Area Patterns for Differentiating Warthin Tumors from Pleomorphic Adenomas of the Parotid Gland.

    PubMed

    Matsuda, Eriko; Fukuhara, Takahiro; Donishi, Ryohei; Kawamoto, Katsuyuki; Hirooka, Yasuaki; Takeuchi, Hiromi

    2017-12-01

    Ultrasonographic homogeneity is an important differential finding between Warthin tumor and pleomorphic adenoma, two types of benign parotid gland tumors, with the former likely to be heterogeneous and the latter homogeneous. However, differences in the performance of ultrasound machines or the homogeneity cut-off level affect the judgment of ultrasonographic homogeneity. Therefore, in this study, we adopted a novel system for classifying the composition of tumors via ultrasonography, using anechoic area as a substitute for differences in homogeneity to differentiate between Warthin tumors and pleomorphic adenomas. We evaluated 68 tumors that were histopathologically diagnosed as Warthin tumor or pleomorphic adenoma between July 2009 and November 2015. Ultrasonographic images of the tumors were evaluated on the basis of key differentiating features, including features on B-mode imaging and color Doppler imaging. Additionally, the tumors were classified into four groups based on anechoic area, and findings were compared between Warthin tumors and pleomorphic adenomas. While 38 of the tumors were pleomorphic adenomas, 30 were Warthin tumors. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for detection of Warthin tumors using our novel classification system were 73.3%, 76.3%, 71.0%, 78.4% and 75.0%, respectively. Compared to pleomorphic adenomas, Warthin tumors showed large or sponge-like anechoic areas, rich vascularization and an oval shape even at large tumor sizes, and the difference was significant. On defining Warthin tumor as a tumor demonstrating two or more of the findings noted above, the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy for its detection were 73.3%, 84.2%, 78.6%, 80.0% and 79.4%, respectively. Our novel classification system based on anechoic area patterns demonstrated by the tumors had high sensitivity, specificity and

  4. Experimental and numerical investigations on melamine wedges.

    PubMed

    Schneider, S

    2008-09-01

    Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

  5. Radar Image Processing for the AFIT Anechoic Chamber

    DTIC Science & Technology

    1990-12-01

    analyzer is set up for data collection using the frequency list mode option. The frequency list mode, a variation of the step sweep mode, synthesizes each of...enhanced since the frequencies are precisely repeated. The frequency list option allows the operator to select any number of data samples from 1 to 401. This

  6. New acoustic test facility at Georgia Tech

    NASA Astrophysics Data System (ADS)

    Biesel, Van; Cunefare, Kenneth

    2002-11-01

    Georgia Tech's Integrated Acoustics Laboratory (IAL) is a state of the art research facility dedicated to the study of acoustics and vibration. The centerpiece of the laboratory is a 24 ft x24 ft x20 ft full anechoic chamber, which has been in operation since 1998. The IAL is currently expanding to include a reverberation room and hemi-anechoic chamber, designed and built by Acoustic Systems. These two chambers will be joined by an 8 ft x8 ft transmission loss opening, allowing for a detailed measurement and analysis of complex barriers. Both chambers will accommodate vehicles and similarly large structures. The reverberation room will have adequate volume for standardized absorption measurements. Each chamber will be equipped with dedicated multichannel data acquisition systems and instrumentation for the support of simultaneous research in all areas of the laboratory. The new test chambers are funded by a grant from the Ford Motor Company and are planned to be completed and fully functional by 1 January 2003.

  7. Anechoic wind tunnel study of turbulence effects on wind turbine broadband noise

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Harris, W. L.

    1995-01-01

    This paper describes recent results obtained at MIT on the experimental and theoretical modelling of aerodynamic broadband noise generated by a downwind rotor horizontal axis wind turbine. The aerodynamic broadband noise generated by the wind turbine rotor is attributed to the interaction of ingested turbulence with the rotor blades. The turbulence was generated in the MIT anechoic wind tunnel facility with the aid of biplanar grids of various sizes. The spectra and the intensity of the aerodynamic broadband noise have been studied as a function of parameters which characterize the turbulence and of wind turbine performance parameters. Specifically, the longitudinal integral scale of turbulence, the size scale of turbulence, the number of turbine blades, and free stream velocity were varied. Simultaneous measurements of acoustic and turbulence signals were made. The sound pressure level was found to vary directly with the integral scale of the ingested turbulence but not with its intensity level. A theoretical model based on unsteady aerodynamics is proposed.

  8. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  9. Inflow Ducting in High-Volume-Flow Subsonic Anechoic Chambers.

    DTIC Science & Technology

    1983-10-12

    resin with 1/4" (6.4mm) thick walls and its inner diameter is 9 1/2" (21.4cm). A bellmouth was fabricated from expanded polystyrene and fitted to the...is modeled with steel-angle-reinforced 1/4" (6.4mm) plywood walls that are lined with expanded polystyrene wedges. Great care was taken during the...t, mounted, the wedges are made of expanded polystyrene , and were cut to shape by the supplier with a hot wire system. The wedges are p

  10. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  11. Calibration and Use of B Dot Probes for Electromagnetic Measuring

    DTIC Science & Technology

    1977-08-09

    response. E. Time Domain Reflectometry Measurements Pulse impedance measurements for the 1.75-in. diameter double-gap probe design were first performed...Far Field (Radiation) Patterns of a B Dot Probe 1. Anechoic Chamber The facility utilized for the probe patterns was the NASA 120-ft chamber at

  12. Characterization of microchannel anechoic corners formed by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  13. Absorber for microwave investigation in the open space

    NASA Astrophysics Data System (ADS)

    Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol

    2017-04-01

    In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.

  14. David Florida Laboratory: Support for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Dumoulin, Jean-Guy; Mamen, Rolf

    1995-01-01

    The comprehensive integration and environmental (including RF) test facilities of the Canadian Space Agency's David Florida Laboratory (CSA)(DFL) were used extensively for the MSAT Program. Following a description of the facilities, the paper outlines their application to the qualification of the two MSAT satellites following an overview of the test plan. Particular emphasis is given to passive intermodulation measurement (PIM) demands, which for the MSAT satellites, contributed to the need to extend the anechoic chamber. The extended chamber was also used for an EMC test and SAR signature test of the RADARSAT satellite. The DFL's facilities are being used for additional aspects of mobile satellite communications. One shielded anechoic Extra High Frequency (EHF) chamber and associated test equipment are employed predominantly for measuring the performance of the IRIDIUM satellites' Engineering Model Gateway Moveable Antennas (EM)(GMA). Other chambers are used for testing aeronautical antennas on behalf of Inmarsat. Still others combine thermal and PIM testing. The paper concludes with a review of the test requirements of evolving satcom missions such as Inmarsat Aero-1.

  15. Simulation of Flight-Type Engine Fan Noise in the NASA-Lewis 9X15 Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Dietrich, D. A.

    1976-01-01

    Flight type noise as contrasted to the usual ground static test noise exhibits substantial reductions in the time unsteadiness of tone noise, and in the mean level of tones calculated to be nonpropagating or cut-off. A model fan designed with cuttoff of the fundamental tone was acoustically tested in the anechoic wind tunnel under both static and tunnel flow conditions. The properties that characterize flight type noise were progressively simulated with increasing tunnel flow. The distinctly lobed directivity pattern of propagating rotor/stator interaction modes was also observed. Excess noise attributed to the ingestion of the flow disturbances that prevail near most static test facilities is substantially reduced with tunnel flow.

  16. Fiber-optic interferometric sensors for measurements of pressure fluctuations: Experimental evaluation

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Soderman, P. T.

    1993-01-01

    This paper addresses an anechoic chamber evaluation of a fiber-optic interferometric sensor (fiber-optic microphone), which is being developed at NASA Ames Research Center for measurements of pressure fluctuations in wind tunnels.

  17. Flow chamber

    DOEpatents

    Morozov, Victor [Manassas, VA

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  18. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  19. Analysis And Validation of the Field Coupled Through an Aperture in an Avionics Enclosure

    NASA Astrophysics Data System (ADS)

    Bakore, Rahul

    This work focused on accurately predicting the current response of an equipment under test (EUT) to a random electromagnetic field representing a threat source to model radio frequency directed energy weapons (RFDEWs). The modeled EUT consists of a single wire attached to the interior wall of a shielding enclosure that includes an aperture on one face. An in-house computational electromagnetic (CEM) code based on method of moments (MOM) and accelerated by the multi-level fast multipole algorithm (MLFMA), was enhanced through the implementation of first order vector basis functions that approximates the EUT surface current. The electric field integral equation (EFIE) is solved using MOM/MLFMA. Use of first-order basis functions gives a large savings in computational time over the previous implementation with zero-order Rao-Wilton-Glisson basis functions. A sample EUT was fabricated and tested within an anechoic chamber and a reverberation chamber over a wide frequency band. In the anechoic chamber measurements, the current response on the wire within the EUT due to a single uniform plane wave was found and compared with the numerical simulations. In the reverberation chamber measurements, the mean current magnitude excited on the wire within the EUT by a mechanically stirred random field was measured and compared with the numerical simulations. The measured scattering parameter between the source antenna and the EUT measurement port was used to derive the current response on the wire in both chambers. The numerically simulated currents agree very well with the measurements in both the anechoic and reverberation chambers over the measured frequency band, confirming the validity of the numerical approach for calculating EUT response due to a random field. An artificial neural network (ANN) was trained that can rapidly provide the mean induced current response of an EUT due to a random field under different aperture configurations arbitrarily placed on one face of an

  20. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  1. IMMUNOLOGICAL AND HEMATOLOGICAL EFFECTS OF MICROWAVE POWER TRANSMISSION FROM A SATELLITE POWER SYSTEM (PART 1 AND PART 2)

    EPA Science Inventory

    Two systems for exposing mice to 2450 MHz electromagnetic fields are described. The first system was used to expose mice dorsally to circularly polarized electromagnetic fields. The second system was a minature anechoic chamber modified from the original design. Mice were exposed...

  2. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  3. Auditory environmental context affects visual distance perception.

    PubMed

    Etchemendy, Pablo E; Abregú, Ezequiel; Calcagno, Esteban R; Eguia, Manuel C; Vechiatti, Nilda; Iasi, Federico; Vergara, Ramiro O

    2017-08-03

    In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.

  4. Development and Validation of a Test System for measuring the Acoustic Signature of Chemical, Biological, Radiological and Nuclear Personal Protective Equipment Ensembles

    DTIC Science & Technology

    2010-05-01

    silent metronome . The anechoic chamber measured approximately 3 x 3 m in length and width and approximately 2 m in height. The free field microphone...ensure performed exercises would occur at the same relative speed (i.e., a metronome ). The silent system relied on a string of miniature lights

  5. From the smallest to the largest - The measurement of radar cross sections at CELAR

    NASA Astrophysics Data System (ADS)

    Gadenne, Philippe; Gaudon, Pierre; Motet, Jean-Claude; Puech, Olivier

    Recent improvements implemented at CELAR RCS-measuring facilities are described, and some typical results are presented. Particular attention is given to: (1) improvement of anechoic-chamber measurement methods; (2) data processing with LEADER software for the STRADI facility; and (3) operation of a full-scale military aircraft measurement facility.

  6. SpaceX Crew Dragon Ship

    NASA Image and Video Library

    2018-05-20

    The SpaceX Crew Dragon spacecraft is in the anechoic chamber for electromagnetic interference testing on May 20, 2018, at NASA's Kennedy Space Center in Florida. The Crew Dragon will be shipped to the agency's Plum Brook Station test facility at Glenn Research City in Cleveland, Ohio, for testing in the Reverberant Acoustic Test Facility, the world's most powerful acoustic test chamber. Crew Dragon is being prepared for its first uncrewed test flight, targeted for August 2018.

  7. On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments.

    PubMed

    Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout

    2016-07-01

    For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  9. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  10. GPS-ABC Radiated Chamber Testing Overview and Results : GPS-ABC Workshop V RTCA Washington, DC October 14, 2016.

    DOT National Transportation Integrated Search

    2016-10-14

    GPS receiver testing was carried out April 2529, 2016 at the Army : Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment : Facility (EMVAF), White Sands Missile Range (WSMR), NM : EMVAF 100 x 70 x 40 Anechoic C...

  11. Reproducibility of Dual-Microphone Voice Range Profile Equipment

    ERIC Educational Resources Information Center

    Printz, Trine; Pedersen, Ellen Raben; Juhl, Peter; Nielsen, Troels; Grøntved, Ågot Møller; Godballe, Christian

    2017-01-01

    Purpose: The aim of this study was to add further knowledge about the usefulness of the Voice Range Profile (VRP) assessment in clinical settings and research by analyzing VRP dual-microphone equipment precision, reliability, and room effect. Method: Test-retest studies were conducted in an anechoic chamber and an office: (a) comparing sound…

  12. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  13. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  14. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  15. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  16. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  17. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  18. Applications of AMC-based impedance surfaces

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Amiri, Mikal Askarian; Modi, Anuj Y.; Pandi, Sivaseetharaman; Birtcher, Craig R.

    2018-03-01

    The recent and major enhancements of artificial magnetic conductor (AMC) and their applications namely RCS reduction, low-profile antennas and holographic leaky wave antennas are reviewed. Full-wave simulations are compared to measurements of fabricated models, and a good agreement is attained. All of the measurement were conducted in the Arizona State University electromagnetic anechoic chamber (EMAC).

  19. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Sound signal tests. 67.10-20... signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in the... meters; and (3) Be made in an anechoic chamber large enough to accommodate the entire sound signal, as if...

  20. Human Factors Engineering Bibliographic Series. Volume 2: 1960-1964 Literature

    DTIC Science & Technology

    1966-10-01

    flutter discrimination, melodic and temporal) binaural vs. monaural equipment and methods (e.g., anechoic chambers, audiometric devices, communication...brightness, duration, timbre, vocality) stimulus mixtures (e.g., harmonics, beats , combination tones, modulations) thresholds training, nonverbal--see Training...scales and aids) Beats --see Audition (stimulus mixtures) Bells--see Auditory (displays, nonverbal) Belts, Harnesses, and other Restraining Devices--see

  1. Augmentation Award for Surface Science Research Training.

    DTIC Science & Technology

    1996-11-01

    atomic force microscopy facility. In particular, he designed an anechoic chamber for minimizing acoustical noise in our air and electrochemistry imaging...well as our new air/electochemical STM/AFM. In addition to the UHV-STM, the 11/20/96 10:43 e773 702 5863 J.F.I. I•On7 new air- levitated vactium rhnrher

  2. Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior

    DTIC Science & Technology

    2007-05-04

    TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic

  3. Department of Defense In-House RDT&E Activities

    DTIC Science & Technology

    1981-10-30

    DISEASES*.’......*......... 43 MISSILE LABORATORY ................................................. 44 MOBILITY EQUIPMENT R&D COMMAND...HELICOPTER INFLIGHT MONITORING SYS WITH INSTRUMENTED RANGE; ANECHOIC AND REVERBERATION CHAMBERS; MOBILE -’ ACCOUSTICS LAB; EYE MOVEMENT MEASURING...IN- CLUDES: LIGHTWEIGIHT OPTICAL TRACKING SYSTEM, 25-TON CRANE, 2 20-TON MOBILE CRANES, 5-TON WRECKER, 40,000 LB ACFT LOADER, THREE T-28B ACFT, 1 UH

  4. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Sound signal tests. 67.10-20... signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in the... meters; and (3) Be made in an anechoic chamber large enough to accommodate the entire sound signal, as if...

  5. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Sound signal tests. 67.10-20... signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in the... meters; and (3) Be made in an anechoic chamber large enough to accommodate the entire sound signal, as if...

  6. 33 CFR 67.10-20 - Sound signal tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Sound signal tests. 67.10-20... signals § 67.10-20 Sound signal tests. (a) Sound signal tests must: (1) Be made by the applicant in the... meters; and (3) Be made in an anechoic chamber large enough to accommodate the entire sound signal, as if...

  7. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  8. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  9. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  10. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  11. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  12. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  16. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  17. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  18. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  19. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  20. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  1. International Symposium on Electromagnetic Compatibility, Wakefield, MA, August 20-22, 1985, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. The general topics addressed include: EMI transient/impulsive disturbances, electromagnetic shielding, antennas and propagation, measurement technology, anechoic chamber/open site measurements, communications systems, electrostatic discahrge, cables/transmission lines. Also considered are: elecromagnetic environments, antennas, electromagnetic pulse, nonlinear effect, computer/data transmission systems, EMI standards and requirements, enclosures/TEM cells, systems EMC, and test site measurements.

  2. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  4. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  5. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  6. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  7. Seedling-Size Fumigation Chambers

    Treesearch

    Keith F. Jensen; Frederick W. Bender

    1977-01-01

    The design of fumigation chambers is described. Each chamber has individual temperature, humidity, light, and pollutant control. Temperature is variable from 15 to 35ºC and controlled within ± 1ºC. Humidity is variable from 25 to 95 percent and controlled within ± 3 percent. Seedlings have been successfully grown in these chambers...

  8. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  9. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  10. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  11. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...

  12. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...

  13. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...

  14. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...

  15. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot...

  16. ’Head-On’ Scattering of a Tubular Cylinder of Finite Length for Radar Target Identification Purposes

    DTIC Science & Technology

    1985-03-01

    environment. The anechoic chamber is enclosed with aluminium plates and internally lined with a radio frequency absorbing material. The absorbing material...provides the necessary attenuation to the reflections from the walls, floor and ceiling, and the aluminium surface provides protection against external...inch aluminium sphere is used. Some measurements are taken with a cylinder with fins attached .The description of the cylinder with fins is shown in

  17. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 1: Noise source locations and extrapolation of static free-field jet noise data

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.

  18. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, second from left, are seen with Mike Gazarik, vice president of Engineering at Ball Aerospace, left and Shawn Conley, test operations manager at Ball Aerospace, left, in front of the large semi-anechoic chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  19. Phase Sensitiveness to Soil Moisture in Controlled Anechoic Chamber: Measurements and First Results

    NASA Astrophysics Data System (ADS)

    Ben Khadhra, K.; Nolan, M.; Hounam, D.; Boerner, T.

    2005-12-01

    To date many radar methods and models have been reported for the estimation of soil moisture, such as the Oh-model or the Dubois model. Those models, which use only the magnitude of the backscattered signal, show results with 5 to 10 % accuracy. In the last two decades SAR Interferometry (InSAR) and differential InSAR (DInSAR), which uses the phase of the backscattered signal, has been shown to be a useful tool for the creation of Digital Elevation Models (DEMs), and temporal changes due to earthquakes, subsidence, and other ground motions. Nolan (2003) also suggested the possibility to use DINSAR penetration depth as a proxy to estimate the soil moisture. The principal is based on the relationship between the penetration depth and the permittivity, which varies as a function of soil moisture. In this paper we will present new interferometric X-band laboratory measurements, which have been carried out in the Bistatic Measurement Facility at the DLR Oberpfaffenhofen, Microwaves and Radar Institute in Germany. The bistatic geometry enables us to have interferometric pairs with different baseline and different soil moistures controlled by a TDR (Time Domain Reflectivity) system. After calibration of the measuring system using a large metal plate, the sensitivity of phase and reflectivity with regard to moisture variation and therefore the penetration depth was evaluated. The effect of the surface roughness has been also reported. Current results demonstrate a non-linear relationship between the signal phase and the soil moisture, as expected, confirming the possibility of using DInSAR to measure variations in soil moisture.

  20. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  1. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  2. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  3. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  4. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The twomore » isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  5. Metal explosion chambers: designing, manufacturing, application

    NASA Astrophysics Data System (ADS)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  6. Almond-Shaped Test Body

    NASA Technical Reports Server (NTRS)

    Dominek, Allen; Wood, Richard; Gilreath, Mel

    1992-01-01

    Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.

  7. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  8. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  9. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    NASA Astrophysics Data System (ADS)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  10. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  11. Measurements of the reflection factor of flat ground surfaces

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Myles, M. M.; Ver, I. L.

    1977-01-01

    Measurements are made of the reflection factors of asphalt, concrete, and sod at oblique angles of incidence. Initial measurements were carried out in an anechoic chamber to eliminate the effects of wind and temperature gradients. These were followed by measurements made outdoors over a wider frequency range. Data are presented for the magnitudes of the reflection factors of asphalt, concrete, and sod at angles of incidence of 38 deg and 45 deg.

  12. DECISION-MAKING SPARK CHAMBERS,

    DTIC Science & Technology

    of scattering of a particle and coplanarity of two particles. Decision - making spark chambers are used to trigger an optical spark chamber of two...the position of a spark and the separation of two sparks. Many other kinds of spatial decisions can be made with these devices such as the recognition

  13. SUMO Chamber Conditions

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Powers, Heath [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Chamber conditions (temperature, relative humidity, vapor pressure deficit) for SUMO Open Top Chambers (OTCs) used to control air temperatures surrounding heated and control chamber trees. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  14. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  15. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  16. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  17. Analysis of acoustic data for hybrid and electric vehicles measured on hemi-anechoic chambers

    DOT National Transportation Integrated Search

    2015-04-01

    The Pedestrian Safety Enhancement Act of 2010 requires the National Highway Traffic Safety : Administration to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by electri...

  18. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  19. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  20. Control of Asymmetric Jet

    DTIC Science & Technology

    1992-06-30

    with 5hciir Irycr frequencies arnd miodfy th-e preferied mode. Perforte~d steel plateCs "-leed with tempcratuze-resistatr: mnsulativ- mineral wool reduce...Insulation of the Jet facility was initially ... ovid. d 6y ibuiglass, then mineral wool and at the present there is none for health concerns. The...imerior of the jet’s anechoic chamber was also insulated with mineral wool to foitify acoustic damping, however this too has been removed due to portions

  1. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    PubMed

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (< 23.5% oxygen) had the only survivors. Information in this report was obtained from the literature and from the Undersea and Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  2. Relationship Between Auditory Context and Visual Distance Perception: Effect of Musical Expertise in the Ability to Translate Reverberation Cues Into Room-Size Perception.

    PubMed

    Etchemendy, Pablo E; Spiousas, Ignacio; Vergara, Ramiro

    2018-01-01

    In a recently published work by our group [ Scientific Reports, 7, 7189 (2017)], we performed experiments of visual distance perception in two dark rooms with extremely different reverberation times: one anechoic ( T ∼ 0.12 s) and the other reverberant ( T ∼ 4 s). The perceived distance of the targets was systematically greater in the reverberant room when contrasted to the anechoic chamber. Participants also provided auditorily perceived room-size ratings which were greater for the reverberant room. Our hypothesis was that distance estimates are affected by room size, resulting in farther responses for the room perceived larger. Of much importance to the task was the subjects' ability to infer room size from reverberation. In this article, we report a postanalysis showing that participants having musical expertise were better able to extract and translate reverberation cues into room-size information than nonmusicians. However, the degree to which musical expertise affects visual distance estimates remains unclear.

  3. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  4. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  5. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  6. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  7. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  8. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  9. Vaporization chambers and associated methods

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  10. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  11. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  12. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  13. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  14. Radar cross section measurements of a scale model of the space shuttle orbiter vehicle

    NASA Technical Reports Server (NTRS)

    Yates, W. T.

    1978-01-01

    A series of microwave measurements was conducted to determine the radar cross section of the Space Shuttle Orbiter vehicle at a frequency and at aspect angles applicable to re-entry radar acquisition and tracking. The measurements were performed in a microwave anechoic chamber using a 1/15th scale model and a frequency applicable to C-band tracking radars. The data were digitally recorded and processed to yield statistical descriptions useful for prediction of orbiter re-entry detection and tracking ranges.

  15. Vacuum chamber with a supersonic flow aerodynamic window

    DOEpatents

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  16. Vacuum chamber with a supersonic-flow aerodynamic window

    DOEpatents

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  17. Acute shallowing of the anterior chamber.

    PubMed Central

    Mapstone, R

    1981-01-01

    In aging eyes phenylephrine drops have no significant effect on the depth of the anterior chamber, whereas pilocarpine drops produce a significant shallowing. If both drugs are instilled simultaneously, a significantly greater decrease in anterior chamber depth occurs. The effect is seen in normal, glaucomatous, and hypertensive eyes, and in eyes with shallow anterior chambers. It did not occur in eyes that had had an iridectomy. During the course of a positive provocative test an acute reduction in anterior depth occurs which is reversed when the angle opens and pressure returns to normal levels. It is concluded that the depth of the anterior chamber is not a static dimension but that changes can occur which are rapid and transient. The mechanism of shallowing and deepening depends on an increase or a decrease in the pupil block force. It is a necessary consequence too that eyes with nonshallow anterior chambers can get closed-angle glaucoma and that this possibility cannot be detected by a conventional gonioscopic approach. PMID:6455153

  18. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  19. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  20. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed; Agarwal, Rachna

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, tomore » the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.« less

  1. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective

  2. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  3. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  4. A new ring-shaped graphite monitor ionization chamber

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M. T.; Caldas, L. V. E.

    2010-07-01

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energéticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  5. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  6. Ionization chamber correction factors for MR-linacs

    NASA Astrophysics Data System (ADS)

    Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-01

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  7. Ionization chamber correction factors for MR-linacs.

    PubMed

    Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela

    2018-06-07

    Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.

  8. Evaluation of carbon dioxide dissipation within a euthanasia chamber.

    PubMed

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P-

    2014-07-01

    CO₂ euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO₂ to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO₂ levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO₂ dropped to below 10% COv within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO₂ dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO₂ dissipation. We recommend that users allow 2 min for CO₂ to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate.

  9. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  10. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  11. Investigation of the chamber correction factor (k(ch)) for the UK secondary standard ionization chamber (NE2561/NE2611) using medium-energy x-rays.

    PubMed

    Rosser, K E

    1998-11-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water for medium-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB code of practice for the UK secondary standard (NE2561/NE2611) ionization chamber are derived and their constituent factors examined. The comparison of the chambers' responses in air revealed that of the chambers tested only the NE2561, NE2571 and NE2505 exhibit a flat (within 5%) energy response in air. Under no circumstances should the NACP, Sanders electron chamber, or any chamber that has a wall made of high atomic number material, be used for medium-energy x-ray dosimetry. The measurements in water reveal that a chamber that has a substantial housing, such as the PTW Grenz chamber, should not be used to measure absorbed dose to water in this energy range. The value of k(ch) for an NE2561 chamber was determined by measuring the absorbed dose to water and comparing it with that for an NE2571 chamber, for which k(ch) data have been published. The chamber correction factor varies from 1.023 +/- 0.03 to 1.018 +/- 0.001 for x-ray beams with HVL between 0.15 and 4 mm Cu. The values agree with that for an NE2571 chamber within the experimental uncertainty. The corrections due to the stem, waterproof sleeve and replacement of the phantom material by the chamber for an NE2561 chamber are described.

  12. Experimental investigation of a lightweight rocket chamber

    NASA Technical Reports Server (NTRS)

    Dalgleish, John E; Tischler, Adelbert O

    1953-01-01

    Experiments have been conducted with a jacketed rocket combustion chamber that was fabricated by hydraulic-forming from sheet metal. Rocket combustion chambers made by this method have been used successfully. Runs with these combustion chambers have been made at over-all heat-transfer rates 1.7 Btu per square inch per second with water cooling and also ammonia as a regenerative coolant.

  13. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  14. Autoignition Chamber for Remote Testing of Pyrotechnic Devices

    NASA Technical Reports Server (NTRS)

    Harrington, Maureen L.; Steward, Gerald R.; Dartez, Toby W.

    2009-01-01

    The autoignition chamber (AIC) performs by remotely heating pyrotechnic devices that can fit the inner diameter of the tube furnace. Two methods, a cold start or a hot start, can be used with this device in autoignition testing of pyrotechnics. A cold start means extending a pyrotechnic device into the cold autoignition chamber and then heating the device until autoignition occurs. A hot start means heating the autoignition chamber to a specified temperature, and then extending the device into a hot autoignition chamber until autoignition occurs. Personnel are remote from the chamber during the extension into the hot chamber. The autoignition chamber, a commercially produced tubular furnace, has a 230-V, single-phase, 60-Hz electrical supply, with a total power output of 2,400 W. It has a 6-in. (15.2-cm) inner diameter, a 12-in. (30.4-cm) outer diameter and a 12-in.- long (30.4-cm), single-zone, solid tubular furnace (element) capable of heating to temperatures up to 2,012 F (1,100 C) in air.

  15. Evaluation of Carbon Dioxide Dissipation within a Euthanasia Chamber

    PubMed Central

    Djoufack-Momo, Shelly M; Amparan, Ashlee A; Grunden, Beverly; Boivin, Gregory P

    2014-01-01

    CO2 euthanasia is used widely for small laboratory animals, such as rodents. A common necessity in many animal research facilities is to euthanize mice in sequential batches. We assessed the effects of several variables on the time it took for CO2 to dissipate within a chamber. Using standard euthanasia time, changes in flow rate were compared between a slow 15% fill rate for 7 min, and a slow 15% followed by a rapid 50% filling for a total of 5 min. Additional variables assessed included the effects of opening the lid after the completion of chamber filling, turning the chamber over after completion of filling, and the use and removal of a cage from within the chamber. For all trials, CO2 levels in the chambers peaked between 50% and 80%. After the gas was turned off, the concentration of CO2 dropped to below 10% CO2 within 2 min, except when the lid was left on the chamber, where concentration levels remained above 10% after 20 min. CO2 dissipation was significantly faster when the chamber was turned upside down after filling. Significant interaction effects occurred among the factors of cage presence within the chamber, flow rate, and chamber position. Only leaving the lid on the chamber had any practical implication for delaying CO2 dissipation. We recommend that users allow 2 min for CO2 to clear from the chamber before subsequent euthanasia procedures, unless the chamber is manipulated to increase the dissipation rate. PMID:25199098

  16. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  17. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  18. Ensuring a reliable satellite

    NASA Astrophysics Data System (ADS)

    Johnson, Charles E.; Persinger, Randy R.; Lemon, James J.; Volkert, Keith J.

    Comprehensive testing and monitoring approaches have been formulated and implemented for Intelsat VI, which is the largest commercial satellite in service. An account is given of the ground test program from unit level through launch site activities, giving attention to the test data handling system. Test methods unique to Intelsat VI encompass near-field anechoic chamber antenna measurements, offloading 1-g deployment of solar cell and deflector antennas, and electrostatic discharge measurements. The problems accruing to the sheer size of this spacecraft are stressed.

  19. Aerospace Technology: Technical Data and Information on Foreign Test Facilities

    DTIC Science & Technology

    1990-06-22

    effects of an airflow on various active models (nozzles or rotors ) or pas- sive models (airfoils). It is specially dedicated to acoustic testing driven by...Tunnel Figure V.3: Aerospatiale Rotor Test Bench and 99 Microphones Installed Inside Test Chamber of the CEPRA 19 Anechoic Wind Tunnel Figure V.4...Figure V.26: Ground Effect Test on Airbus A320 Model in 127 Test Section of the ONERA S1MA Wind Tunnel Figure V.27: ONERA S3Ch Transonic Wind Tunnel 130

  20. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Jones, J. D.

    1987-01-01

    The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.

  1. RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination

    NASA Astrophysics Data System (ADS)

    Vokura, V. J.; Balanis, Constantine A.; Birtcher, Craig R.

    1994-03-01

    Monostatic RCS measurements of a long bar (at X-band) and of a scale model aircraft (at C-band) were performed under the quasi-plane wave illumination produced by a dual parabolic-cylinder CATR. At Arizona State University's ElectroMagnetic Anechoic Chamber (EMAC) facility, these measurements were repeated under the cylindrical wave illumination produced by a March Microwave Single-Plane Collimating Range (SPCR). The SPRC measurements were corrected using corrected using the 'reference target method.' The corrected SPCR measurements are in good agreement with the CATR measurements.

  2. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  3. Wireless transmission of biosignals for hyperbaric chamber applications

    PubMed Central

    Perez-Vidal, Carlos; Gracia, Luis; Carmona, Cristian; Alorda, Bartomeu; Salinas, Antonio

    2017-01-01

    This paper presents a wireless system to send biosignals outside a hyperbaric chamber avoiding wires going through the chamber walls. Hyperbaric chambers are becoming more and more common due to new indications of hyperbaric oxygen treatments. Metallic walls physically isolate patients inside the chamber, where getting a patient’s vital signs turns into a painstaking task. The paper proposes using a ZigBee-based network to wirelessly transmit the patient's biosignals to the outside of the chamber. In particular, a wearable battery supported device has been designed, implemented and tested. Although the implementation has been conducted to transmit the electrocardiography signal, the device can be easily adapted to consider other biosignals. PMID:28296900

  4. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W.R.; Raffray, A.R.; Abdel-Khalik, S.I.

    2003-07-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including drywall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall (favored by heavy ion and z-pinch drivers). Recent progress and remaining challenges in developing IFE chambers are reviewed.

  5. Low-Cost, High-Performance Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur J.

    2015-01-01

    Ultramet designed and fabricated a lightweight, high-temperature combustion chamber for use with cryogenic LOX/CH4 propellants that can deliver a specific impulse of approx.355 seconds. This increase over the current 320-second baseline of nitrogen tetroxide/monomethylhydrazine (NTO/MMH) will result in a propellant mass decrease of 55 lb for a typical lunar mission. The material system was based on Ultramet's proven oxide-iridium/rhenium architecture, which has been hot-fire tested with stoichiometric oxygen/hydrogen for hours. Instead of rhenium, however, the structural material was a niobium or tantalum alloy that has excellent yield strength at both ambient and elevated temperatures. Phase I demonstrated alloys with yield strength-to-weight ratios more than three times that of rhenium, which will significantly reduce chamber weight. The starting materials were also two orders of magnitude less expensive than rhenium and were less expensive than the C103 niobium alloy commonly used in low-performance engines. Phase II focused on the design, fabrication, and hot-fire testing of a 12-lbf thrust class chamber with LOX/CH4, and a 100-lbf chamber for LOX/CH4. A 5-lbf chamber for NTO/MMH also was designed and fabricated.

  6. Polarity effects and apparent ion recombination in microionization chambers

    SciTech Connect

    Miller, Jessica R., E-mail: miller@humonc.wisc.edu; Hooten, Brian D.; Micka, John A.

    Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurementsmore » were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was

  7. Effects of open-top chambers on 'Valencia' orange trees

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Kats, G.

    1992-01-01

    Young 'Valencia' orange trees (Citrus sinensis(L) Osbeck) were grown for four years in large open-top chambers with ambient (nonfiltered) air or in outside air to determine any effects of the chambers on the air pollutant susceptibility of the trees. Long-term ozone average concentrations (12 hours, growing season) were 8% lower, and cumulative ozone dose (hourly values >0.1 microL/L) was 29% lower in ambient chambers compared to outside air. Fruit yields were much higher (>39%) for ambient chamber trees than for outside trees over three harvests, due at least partly to less fruit drop during the growing season for ambient chambermore » trees. Ambient chamber trees were much larger than outside trees and produced over twice as much leaf material over four years of study. Leaves on ambient chamber trees were larger and less dense than on outside trees. Leaves on ambient chamber trees were under more stress than leaves on outside trees during summer months; with lower stomatal conductances (14% average) and transpiration rates (12%), and more negative leaf water pressure potentials (28%). In contrast, leaves on ambient chamber trees had higher net photosynthetic rates (13%) and higher leaf starch concentrations prior to tree flowering (31%), than leaves on outside trees. While these results indicated large long-term impacts on tree growth which must be considered when using open-top chambers, they did not indicate any net effect of chambers on the air pollutant susceptibility of trees which would limit the usefulness of chamber tree data for air quality impact assessment purposes.« less

  8. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  9. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  10. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  12. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber. (a...

  14. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Shawn Serbin; Alistair Rogers; Kim Ely

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  15. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  16. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  17. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  18. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  19. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...

  20. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...

  1. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...

  2. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...

  3. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...

  4. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  5. The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; hide

    1985-01-01

    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.

  6. Weld Development for Aluminum Fission Chamber

    SciTech Connect

    Cross, Carl Edward; Martinez, Jesse Norris

    2017-05-16

    The Sigma welding team was approached to help fabricate a small fission chamber (roughly ½ inch dia. x ½ inch tall cylinder). These chambers are used as radiation sensors that contain small traces of radionuclides (Cf 252, U 235, and U 238) that serve to ionize gas atoms in addition to external radiation. When a voltage is applied within the chamber, the resulting ion flow can be calibrated and monitored. Aluminum has the advantage of not forming radioactive compounds when exposed to high external radiation (except from minor Na alloy content). Since aluminum has not been used before in thismore » application, this presented an unexplored challenge.« less

  7. Measurement and Compensation of BPM Chamber Motion in HLS

    NASA Astrophysics Data System (ADS)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  8. The thin-wall tube drift chamber operating in vacuum (prototype)

    NASA Astrophysics Data System (ADS)

    Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  9. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  10. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  11. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  12. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  13. Monte Carlo modeling of ion chamber performance using MCNP.

    PubMed

    Wallace, J D

    2012-12-01

    Ion Chambers have a generally flat energy response with some deviations at very low (<100 keV) and very high (>2 MeV) energies. Some improvements in the low energy response can be achieved through use of high atomic number gases, such as argon and xenon, and higher chamber pressures. This work looks at the energy response of high pressure xenon-filled ion chambers using the MCNP Monte Carlo package to develop geometric models of a commercially available high pressure ion chamber (HPIC). The use of the F6 tally as an estimator of the energy deposited in a region of interest per unit mass, and the underlying assumptions associated with its use are described. The effect of gas composition, chamber gas pressure, chamber wall thickness, and chamber holder wall thicknesses on energy response are investigated and reported. The predicted energy response curve for the HPIC was found to be similar to that reported by other investigators. These investigations indicate that improvements to flatten the overall energy response of the HPIC down to 70 keV could be achieved through use of 3 mm-thick stainless steel walls for the ion chamber.

  14. Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics [review article

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.

    2004-01-01

    The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen

  15. SU-E-T-677: Reproducibility of Production of Ionization Chambers

    SciTech Connect

    Kukolowicz, P; Bulski, W; Ulkowski, P

    Purpose: To compare the reproducibility of the production of several cylindrical and plane-parallel chambers popular in Poland in terms of a calibration coefficient. Methods: The investigation was performed for PTW30013 (20 chambers), 30001 (10 chambers), FC65-G (17 chambers) cylindrical chambers and for PPC05 (14 chambers), Roos 34001 (8 chambers) plane parallel chambers. The calibration factors were measured at the same accredited secondary standard laboratory in terms of a dose to water. All the measurements were carried out at the same laboratory, by the same staff, in accordance with the same IAEA recommendations. All the chambers were calibrated in the Co60more » beam. Reproducibility was described in terms of the mean value, its standard deviation and the ratio of the maximum and minimum value of calibration factors for each set of chambers separately. The combined uncertainty budged (1SD) calculated according to the IAEA-TECDOC-1585 of the calibration factor was of 0.25%. Results: The calibration coefficients for PTW30013, 30001, and FC65-G chambers were 5.36±0.03, 5.28±0.06, 4.79±0.015 nC/Gy respectively and for PPC05, and Roos chambers were 59±2, 8.3±0.1 nC/Gy respectively. The maximum/minimum ratio of calibration factors for PTW30013, 30001, FC65-G, and for PPC05, Roos chambers were 1.03, 1.03, 1.01, 1.14 and 1.03 respectively. Conclusion: The production of all ion chambers was very reproducible except the Markus type PPC05 for which the ratio of maximum/minimum calibration coefficients of 1.14 was obtained.« less

  16. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  17. Promoting "Minds-on" Chamber Music Rehearsals

    ERIC Educational Resources Information Center

    Berg, Margaret H.

    2008-01-01

    Chamber music provides myriad opportunities to develop students' ability to think like professional musicians while engaged in the authentic task of working closely with and learning from peers. However, the potential for musical growth inherent in chamber music participation is often unrealized due to either a lack of teacher guidance and support…

  18. Leaf water potentials measured with a pressure chamber.

    PubMed

    Boyer, J S

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within +/- 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  19. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  20. Air kerma calibration factors and chamber correction values for PTW soft x-ray, NACP and Roos ionization chambers at very low x-ray energies.

    PubMed

    Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J

    2001-08-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).

  1. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  2. Measurement and Compensation of BPM Chamber Motion in HLS

    SciTech Connect

    Li, J. W.; Sun, B. G.; Cao, Y.

    2010-06-23

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less

  3. Developing Cloud Chambers with High School Students

    NASA Astrophysics Data System (ADS)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  4. Liquid Engine Design: Effect of Chamber Dimensions on Specific Impulse

    NASA Technical Reports Server (NTRS)

    Hoggard, Lindsay; Leahy, Joe

    2009-01-01

    Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.

  5. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  6. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  7. SciTech Connect

    Bonior, Jason D; Hu, Zhen; Guo, Terry N.

    This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

  8. Metasurfaced Reverberation Chamber.

    PubMed

    Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran

    2018-01-25

    The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.

  9. Improving mercury flux chamber measurements over water surface.

    PubMed

    Lanzillotra, E; Ceccarini, C; Ferrara, R

    2003-07-01

    A modified floating flux chamber was designed and used to measure mercury evasional fluxes in a coastal area of the Mediterranean Sea in different meteo-marine conditions during the hours of maximum insolation (PAR intensity 360-430 W m(-2)) in the summer season. The chamber has been modified providing a flap at the inlet port preventing the back-flow of air from the interior of the chamber. Results demonstrate that the modified flux chamber gives flux values noticeably higher both in rippled sea conditions (mean value 7.88 +/- 1.45 ng m(-2) h(-1)) and in rough sea conditions (mean value 21.71 +/- 2.17 ng m(-2) h(-1)) with respect to those obtained by using the unmodified chamber (respectively 5.23 +/- 0.67 and 14.15 +/- 1.03 ng m(-2) h(-1)).

  10. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  11. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  12. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  13. Crypto-magma chambers beneath Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Yasuda, Atsushi; Fujii, Toshitsugu; Yoshimoto, Mitsuhiro

    2010-06-01

    Mt. Fuji consists dominantly of basalt. A study of olivine-hosted melt-inclusions from layers of air-fall scoria, however, shows clear evidence of andesitic liquids. Whole rock compositions show a narrow range of SiO 2, but a wide range of FeO*/MgO and incompatible elements. Phenocrystic plagioclase generally shows bi-modal distributions in compositional frequency, while most olivine phenocrysts show uni-modal distribution with reverse zoning and often contain andesitic melt-inclusions. These suggest that magmas erupted from Fuji are generated through mixing between basaltic and more SiO 2-rich (often andesitic) end-members. We propose that Fuji's magmatic plumbing system consists of at least two magma chambers: a relatively deep (˜20 km) basaltic one and a relatively shallow (˜ 8-9 km) and more SiO 2-rich one. Evolved basalts with wide compositional ranges of incompatible elements are generated in the deep basaltic magma chamber by prevalent fractional crystallization of pyroxenes with olivine and calcic plagioclase at high pressure. Meanwhile basaltic magma left behind by the previous eruption in the conduit accumulates in a shallow magma chamber, and is differentiated to more SiO 2-rich composition by fractional crystallization of olivine, less-calcic plagioclase, and clinopyroxene. Shortly before a new eruption, a large amount of evolved basaltic magma containing calcic plagioclase rises from the deeper magma chamber and is mixed with the more SiO 2-rich magma in the shallow chamber, to generate the hybrid basaltic magma.

  14. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  15. Utilizing Chamber Data for Developing and Validating Climate Change Models

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  16. Leaf Water Potentials Measured with a Pressure Chamber

    PubMed Central

    Boyer, J. S.

    1967-01-01

    Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements. The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer. PMID:16656476

  17. Structural analysis of cylindrical thrust chambers, volume 1

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.

    1979-01-01

    Life predictions of regeneratively cooled rocket thrust chambers are normally derived from classical material fatigue principles. The failures observed in experimental thrust chambers do not appear to be due entirely to material fatigue. The chamber coolant walls in the failed areas exhibit progressive bulging and thinning during cyclic firings until the wall stress finally exceeds the material rupture stress and failure occurs. A preliminary analysis of an oxygen free high conductivity (OFHC) copper cylindrical thrust chamber demonstrated that the inclusion of cumulative cyclic plastic effects enables the observed coolant wall thinout to be predicted. The thinout curve constructed from the referent analysis of 10 firing cycles was extrapolated from the tenth cycle to the 200th cycle. The preliminary OFHC copper chamber 10-cycle analysis was extended so that the extrapolated thinout curve could be established by performing cyclic analysis of deformed configurations at 100 and 200 cycles. Thus the original range of extrapolation was reduced and the thinout curve was adjusted by using calculated thinout rates at 100 and 100 cycles. An analysis of the same underformed chamber model constructed of half-hard Amzirc to study the effect of material properties on the thinout curve is included.

  18. Stainless Steel Vacuum Chamber for Scanning Transmission X-ray Microsopy

    SciTech Connect

    Kilcoyne, Arthur L.

    The stainless steel chamber was specifically conceived and designed for housing an interferometer controlled scanning transmission x-ray microscope (STXM). The construction of the chamber is such that internal components of the microscope rest within the chamber and are fixed to a 4 inch stainless steel belly band. The integral and most important part of the chamber is the belly band, which serves to isolate high frequency vibrations (e.g., floor surroundings, people traffic) from the sensitive measurements performed using the microscope. In addition, the chamber effectively acts as a sound barrier to the nanometer measurements conducted within. The assembled chamber (andmore » microscope) are readily adjustable at the micron level using strut members external to the chamber but fixed to the belly band and a stand made of polymer concreate.« less

  19. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  20. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  1. Drift chambers on the basis of Mylar tube blocks

    NASA Astrophysics Data System (ADS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  2. Effect of primary iris and ciliary body cyst on anterior chamber angle in patients with shallow anterior chamber*

    PubMed Central

    Wang, Bing-hong; Yao, Yu-feng

    2012-01-01

    Objective: To evaluate the prevalence of primary iris and/or ciliary body cysts in eyes with shallow anterior chamber and their effect on the narrowing of the anterior chamber angle. Methods: Among the general physical check-up population, subjects with shallow anterior chambers, as judged by van Herick technique, were recruited for further investigation. Ultrasound biomicroscope (UBM) was used to detect and measure the cysts located in the iris and/or ciliary body, the anterior chamber depth (ACD), the angle opening distance at 500 μm (AOD500), and the trabecular-iris angle (TIA). A-scan ultrasonography was used to measure the ocular biometry, including lens thickness, axial length, lens/axial length factor (LAF), and relative lens position (RLP). The effect of the cyst on narrowing the corresponding anterior chamber angle and the entire angle was evaluated by the UBM images, ocular biometry, and gonioscopic grading. The eye with unilateral cyst was compared with the eye without the cyst for further analysis. Results: Among the 727 subjects with shallow anterior chamber, primary iris and ciliary body cysts were detected in 250 (34.4%) patients; among them 96 (38.4%) patients showed unilateral single cyst, 21 (8.4%) patients had unilateral double cysts, and 42 (16.8%) patients manifested unilateral multiple and multi-quadrants cysts. Plateau iris configuration was found in 140 of 361 (38.8%) eyes with cysts. The mean size of total cysts was (0.6547±0.2319) mm. In evaluation of the effect of the cyst size and location on narrowing the corresponding angle to their position, the proportion of the cysts causing corresponding angle narrowing or closure among the cysts larger than 0.8 mm (113/121, 93.4%) was found to be significantly higher than that of the cysts smaller than 0.8 mm (373/801, 46.6%), and a significant higher proportion was also found in the cysts located at iridociliary sulcus (354/437, 81.0%) than in that at the pars plicata (131/484, 27.1%). In

  3. Raymond J. Chambers--A Personal Reflection

    ERIC Educational Resources Information Center

    Gaffikin, Michael

    2012-01-01

    This paper is presented as a tribute to Raymond J. Chambers. As its title suggests, it is a personal reflection through the eyes of someone who worked closely with him over a period of 10 years during a latter part of his career, and who completed a doctoral thesis with aspects of the work of Chambers as its subject. During this time, author…

  4. Study on optimization of multiionization-chamber system for BNCT.

    PubMed

    Fujii, T; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    In order to monitor stability of doses from the four components such as thermal, epi-thermal, fast neutron and gamma-ray during BNCT irradiation, we are developing a multiionization-chamber system. This system is consisted of four kinds of ionization chamber, which have specific sensitivity for each component, respectively. Since a suitable structure for each chamber depends on the energy spectrum of the irradiation field, the optimization study of the chamber structures for the epi-thermal neutron beam of cyclotron-based epi-thermal neutron source (C-BENS) was performed by using a Monte Carlo simulation code "PHITS" and suitable chamber-structures were determined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    engineering circles, the trend in the design of new tyres of combustion chambers is to combine the use of aerodynamics , ;he science of heat transfer and...7. FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AF8 ON F/6 21/2 BASIC AERODYNAMICS OF COMBUSTION CHAMBERS,(U) MAY 81 N HUANG UNCLASSIFIED FTD-ID(RS)T...160󈨔 NL so EEEEEE 0hEEEEEEmollllmmlllll mEImmmmmEEE mEEEEEmmEEmmmE IilillilillEEE FTD-1D(RS)T-1684-80 FOREIGN TECHNOLOGY DIVISION BASIC AERODYNAMICS CF

  6. Ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  7. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  8. A small whole-body exposure chamber for laboratory use.

    PubMed

    O'Shaughnessy, Patrick T; Achutan, Chandran; O'Neill, Marsha E; Thorne, Peter S

    2003-03-01

    With the development of transgenic and specialized mouse strains, there is an increased need for inhalation exposure systems designed for smaller exposure groups. An inhalation exposure chamber, designed specifically for the exposure of up to 40 mice, was characterized. The chamber was fabricated from 0.32-cm-thick ((1)/(8)-in) aluminum sheets with outside dimensions of 61 cm long by 32 cm high by 34 cm deep, resulting in an internal volume of 65 L. Two stainless-steel open-mesh cages, separated by an absorbent barrier, can be stacked within the central portion of the chamber. Access is provided through a gasketed door with a safety-glass face. Tests were performed to determine the chamber leakage rate, degree of mixing, and spatial variation of two aerosols within the chamber. Results indicated that the fractional leakage rate was 0.0003 min(-1), well below a reported criterion for an operating chamber. Chamber operation gave similar mixing performance with, or without, use of an interior fan. For aerosols with a mass median aerodynamic diameter (MMAD) of 2.56 micro m and 3.14 micro m, the spatial variation of particulate matter concentration resulted in coefficients of variation (CVs) of 4.8% and 11.0%, respectively. These CV values are comparable to those obtained from similar studies involving other inhalation exposure chambers.

  9. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    NASA Astrophysics Data System (ADS)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2017-06-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  10. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  11. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  12. The Evolution and Development of Cephalopod Chambers and Their Shape

    PubMed Central

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth. PMID:26963712

  13. The Evolution and Development of Cephalopod Chambers and Their Shape.

    PubMed

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.

  14. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  15. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  16. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  17. Optimization of a vacuum chamber for vibration measurements.

    PubMed

    Danyluk, Mike; Dhingra, Anoop

    2011-10-01

    A 200 °C high vacuum chamber has been built to improve vibration measurement sensitivity. The optimized design addresses two significant issues: (i) vibration measurements under high vacuum conditions and (ii) use of design optimization tools to reduce operating costs. A test rig consisting of a cylindrical vessel with one access port has been constructed with a welded-bellows assembly used to seal the vessel and enable vibration measurements in high vacuum that are comparable with measurements in air. The welded-bellows assembly provides a force transmissibility of 0.1 or better at 15 Hz excitation under high vacuum conditions. Numerical results based on design optimization of a larger diameter chamber are presented. The general constraints on the new design include material yield stress, chamber first natural frequency, vibration isolation performance, and forced convection heat transfer capabilities over the exterior of the vessel access ports. Operating costs of the new chamber are reduced by 50% compared to a preexisting chamber of similar size and function.

  18. Multi-chamber nucleic acid amplification and detection device

    SciTech Connect

    Dugan, Lawrence

    A nucleic acid amplification and detection device includes an amplification cartridge with a plurality of reaction chambers for containing an amplification reagent and a visual detection reagent, and a plurality of optically transparent view ports for viewing inside the reaction chambers. The cartridge also includes a sample receiving port which is adapted to receive a fluid sample and fluidically connected to distribute the fluid sample to the reaction chamber, and in one embodiment, a plunger is carried by the cartridge for occluding fluidic communication to the reaction chambers. The device also includes a heating apparatus having a heating element whichmore » is activated by controller to generate heat when a trigger event is detected. The heating apparatus includes a cartridge-mounting section which positioned a cartridge in thermal communication with the heating element so that visual changes to the contents of the reaction chambers are viewable through the view ports.« less

  19. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  20. 12. View north of Tropic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View north of Tropic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  1. 13. View south of Arctic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View south of Arctic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  2. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  3. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  4. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  5. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hot gas inlet chamber dropout doors. 77.303... COAL MINES Thermal Dryers § 77.303 Hot gas inlet chamber dropout doors. Thermal dryer systems which employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  6. Space Simulation Chamber Rescues Water Damaged Books.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    More than 4,000 valuable water-damaged books were restored by using a space-simulation chamber at the Lockheed Missile and Space Company. It was the fifth time that the chamber has been used for the restoration of valuable books and documents. (Author/MLF)

  7. Titanium wound chambers for wound healing research.

    PubMed

    Nuutila, Kristo; Singh, Mansher; Kruse, Carla; Philip, Justin; Caterson, Edward J; Eriksson, Elof

    2016-11-01

    Standardized and reproducible animal models are crucial in medical research. Rodents are commonly used in wound healing studies since, they are easily available, affordable and simple to handle and house. However, the most significant limitation of rodent models is that the wounds heal by contraction while in humans the primary mechanisms of healing are reepithelialization and granulation tissue formation. The robust contraction results in faster wound closure that complicates the reproducibility of rodent studies in clinical trials. We have developed a titanium wound chamber for rodent wound healing research. The chamber is engineered from two pieces of titanium and is placed transcutaneously on the dorsum of a rodent. The chamber inhibits wound contraction and provides a means for controlled monitoring and sampling of the wound environment in vivo with minimal foreign body reaction. This technical report introduces two modalities utilizing the titanium chambers in rats: (1) Wound in a skin island model and, (2) Wound without skin model. Here, we demonstrate in rats how the "wound in a skin island model" slows down wound contraction and how the "wound without skin" model completely prevents the closure. The titanium wound chamber provides a reproducible standardized models for wound healing research in rodents. © 2016 by the Wound Healing Society.

  8. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device intended...

  9. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device intended...

  10. New central drift chamber for the MARK II at SLC

    SciTech Connect

    Bartelt, J.E.

    A new central drift chamber has been constructed for the Mark II detector for use at the new SLAC Linear Collider (SLC). The design of the chamber is based on a multi-sense-wire cell of the jet chamber type. In addition to drift-time measurements, pulse-height measurements from the sense wires provide electron-hadron separation by dE/dx. The chamber has been tested in operation at PEP before its move to the SLC. The design and construction are described, and measurements from the new chamber are presented.

  11. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  12. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  13. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this

  14. 21 CFR 874.1060 - Acoustic chamber for audiometric testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acoustic chamber for audiometric testing. 874.1060... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1060 Acoustic chamber for audiometric testing. (a) Identification. An acoustic chamber for audiometric testing is a room that is...

  15. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that is...

  16. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that is...

  17. 21 CFR 878.5650 - Topical oxygen chamber for extremities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Topical oxygen chamber for extremities. 878.5650... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5650 Topical oxygen chamber for extremities. (a) Identification. A topical oxygen chamber for extremities is a device that is...

  18. Temperature in the anterior chamber during phacoemulsification.

    PubMed

    Suzuki, Hisaharu; Oki, Kotaro; Igarashi, Tsutomu; Shiwa, Toshihiko; Takahashi, Hiroshi

    2014-05-01

    To evaluate changes in the aqueous humor temperature using 2 phacoemulsification units (Stellaris 28.5 kHz device and Whitestar Signature 40 kHz device). Nippon Medical School, Musashikosugi Hospital, Kawasaki City, Kanagawa, Japan. Experimental study. Aqueous humor temperatures were measured with a temperature probe set in the anterior chamber during ultrasound (US) oscillation in porcine eyes under 5 conditions. Continuous longitudinal oscillation caused a rapid rise in aqueous humor temperature, while the pulse and elliptical modes suppressed temperature elevation. Reducing the number of US tip vibrations did not reduce the temperature in the anterior chamber. However, raising the vacuum setting allowed the aspirations to rise to the set value, thereby lowering the temperature in the anterior chamber. Because differences in the phacoemulsification settings can lead to temperature elevations in the anterior chamber, surgeons must carefully monitor these settings to prevent corneal tissue damage. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  20. Experimental determination of pCo perturbation factors for plane-parallel chambers

    NASA Astrophysics Data System (ADS)

    Kapsch, R. P.; Bruggmoser, G.; Christ, G.; Dohm, O. S.; Hartmann, G. H.; Schüle, E.

    2007-12-01

    For plane-parallel chambers used in electron dosimetry, modern dosimetry protocols recommend a cross-calibration against a calibrated cylindrical chamber. The rationale for this is the unacceptably large (up to 3-4%) chamber-to-chamber variations of the perturbation factors (pwall)Co, which have been reported for plane-parallel chambers of a given type. In some recent publications, it was shown that this is no longer the case for modern plane-parallel chambers. The aims of the present study are to obtain reliable information about the variation of the perturbation factors for modern types of plane-parallel chambers, and—if this variation is found to be acceptably small—to determine type-specific mean values for these perturbation factors which can be used for absorbed dose measurements in electron beams using plane-parallel chambers. In an extensive multi-center study, the individual perturbation factors pCo (which are usually assumed to be equal to (pwall)Co) for a total of 35 plane-parallel chambers of the Roos type, 15 chambers of the Markus type and 12 chambers of the Advanced Markus type were determined. From a total of 188 cross-calibration measurements, variations of the pCo values for different chambers of the same type of at most 1.0%, 0.9% and 0.6% were found for the chambers of the Roos, Markus and Advanced Markus types, respectively. The mean pCo values obtained from all measurements are \\bar{p}^Roos_Co = 1.0198, \\bar{p}^Markus_Co = 1.0175 and \\bar{p}^Advanced_Co = 1.0155 ; the relative experimental standard deviation of the individual pCo values is less than 0.24% for all chamber types; the relative standard uncertainty of the mean pCo values is 1.1%.

  1. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  2. Development of Alumina Ceramics Vacuum Chamber for J-PARC

    NASA Astrophysics Data System (ADS)

    Kinsho, Michikazu; Saito, Yoshio; Kabeya, Zenzaburo; Ogiwara, Norio

    We successfully developed alumina ceramics vacuum chamber for the 3 GeV-RCS of J-PARC at JAEA. This chamber has titanium flanges and an outer RF shield to reduce duct impedance, and moreover TiN film is coated on the inside surface to preclude charge build up and to reduce secondary emitted electrons. The outgassing rate of the ceramics chamber measured by the conductance modulation method has a sufficiently low value of 1.2×10-8 Pa m3 s-1 m2 after 50 hours pumping. The temperature of the titanium flange became 45°C due to eddy current heating under dipole magnet operation. It was found that the radiation damage to the capacitor used for the RF shield of this duct was small, the capacitance only decreased by 7% after gamma ray irradiation of 30 MGy. In order to determine effect of the ceramics chamber on the proton beam, this ceramics chamber prepared for J-PARC was installed instead in the 12 GeV main ring at KEK-PS. The proton beam could be controlled to accelerate stably after installation, and thus it was found that this chamber did not influence the beam very much. This ceramics chamber is thus usable for the 3 GeV-RCS of J-PARC.

  3. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  4. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2018-04-01

    This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the ‘lateral dose response function’ K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131–48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 (‘Semiflex 3D’, internal radius 2.4 mm) and PTW 31022 (‘PinPoint 3D’, internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not

  5. Some effects of cyclic induced deformation in rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Quentmeyer, R. J.

    1979-01-01

    A test program to investigate the deformation process observed in the hot gas wall of rocket thrust chambers was conducted using three different liner materials. Five thrust chambers were cycled to failure using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/m square (600 psia). The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the types of failure encountered. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers.

  6. 11. Detail view west from airlock chamber of typical refrigerator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view west from airlock chamber of typical refrigerator door into Trophic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  7. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  8. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  9. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  10. Inhibition of Granulopoiesis in Diffusion Chambers by a Granulocyte Chalone

    DTIC Science & Technology

    1974-07-01

    culture has o 5_g a been well documented. ’ Breivik et al. , using chamber to chamber transfers in nonpretreated hosts, have illustrated the...1972. 7. Breivik , H. and Benestad, H. B. Regulation of granulocyte and macrophage formation in diffusion chamber cultures of mouse...haematopoietic cells. Exptl. Cell Res. 70:340-348, 1972. 8. Breivik , H., Benestad, H. B. and B^yum, A. Diffusion chamber and spleen colony assay of murine

  11. 51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. UPPER CHAMBER OF BISCUIT KILN No. 4, FROM THE SECOND FLOOR. ALL BRICK KILNS AT THE MORAVIAN POTTERY AND TILE WORKS HAD TWO CHAMBERS. WARE WAS STACKED IN THE LOWER CHAMBERS FOR FIRING AND THE UPPER CHAMBERS PROVIDED ACCESS TO FLUES AND DAMPERS FROM THE SECOND FLOOR. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  12. The mechanism of detection of air pollution by an ionization chamber.

    PubMed

    Novković, D; Vukanac; Milosević, Z

    2000-01-01

    The mechanism of detection of chemical vapors in air by an ionization chamber supplied by DC and AC voltage has been described. The theoretical explanation is based on numerical solutions of the differential equations of the cylindrical ionization chamber. The current of the ionization chamber operating in the AC regime has two components: a conductive component, caused by the ions drifts, and a capacitive component, caused by the distortion of the electric field. The ionization chamber operating in the DC regime has only the first component; hence the AC supplied chamber has larger response than the DC supplied chamber.

  13. Determination of molecular contamination performance for space chamber tests

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1973-01-01

    The limitations of chamber tests with regard to the molecular contamination of a spacecraft undergoing vacuum test were examined. The molecular flow conditions existing in the chamber and the parameters dictating the degree of contamination were analyzed. Equations and graphs were developed to show the fraction of molecules returning to the spacecraft out of those emitted and to show other chamber flow parameters as a function of chamber and spacecraft surface molecular pumping and geometric configuration. Type and location of instruments required to measure the outgassing, the degree of contamination, and the returning flows are also discussed.

  14. Field precision machining technology of target chamber in ICF lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  15. Vacuum Chamber Documentation for U of H Collection

    NASA Image and Video Library

    2006-06-16

    Documentation for the University of Houston (UH) Clear Lake collection of their library books after the Vacuum Chamber runs were performed to remove the water from them. Vacuum Chamber B in Building 32 was used.

  16. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with a...

  17. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  18. 30 CFR 56.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be flushed with a...

  19. 30 CFR 57.7807 - Flushing the combustion chamber.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  20. The "Flexi-Chamber": A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements.

    PubMed

    Camp, Emma F; Krause, Sophie-Louise; Santos, Lourianne M F; Naumann, Malik S; Kikuchi, Ruy K P; Smith, David J; Wild, Christian; Suggett, David J

    2015-01-01

    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups.

  1. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  2. Semiclosed-circuit atmosphere control in a portable recompression chamber

    NASA Technical Reports Server (NTRS)

    Riegel, P. S.; Caudy, D. W.

    1972-01-01

    A small portable recompression chamber is described that can be used both to treat a diver for decompression sickness or to transport him to a larger chamber complex. The device can be operated in either open circuit or semiclosed circuit atmospheres, permits two way conversation between patient and attendant, and uses an air injector for circulation of the chamber atmosphere.

  3. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  4. Superconductor shields test chamber from ambient magnetic fields

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  5. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  6. Investigation of thermal and temporal responses of ionization chambers in radiation dosimetry.

    PubMed

    AlMasri, Hussein; Funyu, Akira; Kakinohana, Yasumasa; Murayama, Sadayuki

    2012-07-01

    The ionization chamber is a primary dosimeter that is used in radiation dosimetry. Generally, the ion chamber response requires temperature/pressure correction according to the ideal gas law. However, this correction does not consider the thermal volume effect of chambers. The temporal and thermal volume effects of various chambers (CC01, CC13, NACP parallel-plate, PTW) with different wall and electrode materials have been studied in a water phantom. Measurements were done after heating the water with a suitable heating system, and chambers were submerged for a sufficient time to allow for temperature equilibrium. Temporal results show that all chambers equilibrate quickly in water. The equilibration time was between 3 and 5 min for all chambers. Thermal results show that all chambers expanded in response to heating except for the PTW, which contracted. This might be explained by the differences in the volumes of all chambers and also by the difference in wall material composition of PTW from the other chambers. It was found that the smallest chamber, CC01, showed the greatest expansion. The magnitude of the expansion was ~1, 0.8, and 0.9% for CC01, CC13, and parallel-plate chambers, respectively, in the temperature range of 295-320 K. The magnitude of the detected contraction was <0.3% for PTW in the same temperature range. For absolute dosimetry, it is necessary to make corrections for the ion chamber response, especially for small ion chambers like the CC01. Otherwise, room and water phantom temperatures should remain within a close range.

  7. Central Drift Chamber for Belle-II

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.

    2017-06-01

    The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.

  8. A guide to Ussing chamber studies of mouse intestine

    PubMed Central

    Clarke, Lane L.

    2009-01-01

    The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method. PMID:19342508

  9. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  10. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  11. The cloud chamber as a field diagnostic tool

    SciTech Connect

    Clark, A

    1967-10-19

    This document presents the Pros and Cons of using a cloud chamber for field use. Historical aspects are briefly discussed. A cloud chamber experiment on Midi Mist is described. Plans for fielding an experiment on Hupmobile are presented.

  12. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  13. Internal Chambers of CHIMRA

    NASA Image and Video Library

    2012-10-04

    This cutaway view shows the internal chambers of the Collection and Handling for In-Situ Martian Rock Analysis CHIMRA device, attached to the turret at the end of the robotic arm on NASA Curiosity Mars rover.

  14. Nonevaporable getter coating chambers for extreme high vacuum

    DOE PAGES

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al; ...

    2018-03-01

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  15. Nonevaporable getter coating chambers for extreme high vacuum

    SciTech Connect

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  16. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    USGS Publications Warehouse

    Bartkow, M.E.; Kennedy, K.E.; Huckins, J.N.; Holling, N.; Komarova, T.; Muller, J.F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. ?? 2006 Elsevier Ltd. All rights reserved.

  17. A high-efficiency acoustic chamber and the anomalous sample rotation

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Allen, J. L.

    1992-01-01

    A high efficiency acoustic chamber for the levitation and manipulation of liquid or molten samples in a microgravity environment has been developed. The chamber uses two acoustic drivers that are mounted at opposite corners of the chamber; by driving these at the same frequency, with 18-deg phase shifts, an increase in force of a factor of 3-4 is obtainable relative to the force of a single-driver system that is operated at the same power level. This enhancement is due to the increased coupling between the sound driver and the chamber. An anomalous rotation is noted to be associated with the chamber; this is found to be eliminated by a physically as-yet inexplicable empirical solution.

  18. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept

  19. Atlas-Centaur Separation Test in the Space Power Chambers

    NASA Image and Video Library

    1963-11-21

    An Atlas/Centaur mass model undergoes a separation test inside the Space Power Chambers at NASA Lewis Research Center. Lewis was in the midst of an extensive effort to prepare the Centaur second-stage rocket for its missions to send the Surveyor spacecraft to the moon as a precursor to the Apollo missions. As part of these preparations, Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers—the Space Power Chambers. The conversion included the removal of the tunnel’s internal components and the insertion of bulkheads to seal off the new chambers within the tunnel. One chamber could simulate conditions found at 100 miles altitude, while this larger chamber simulated the upper atmosphere. In this test series, researchers wanted to verify that the vehicle’s retrorockets would properly separate the Centaur from the Atlas. The model was suspended horizontally on a trolley system inside chamber. A net was hung at one end to catch the jettisoned Atlas model. The chamber atmosphere was reduced to a pressure altitude of 100,000 feet, and high-speed cameras were synchronized to the ignition of the retrorockets. The simulated Centaur is seen here jettisoning from the Atlas out of view to the right. The study resulted in a new jettison method that would significantly reduce the separation time and thus minimize the danger of collision between the two stages during separation.

  20. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott; Turner, James (Technical Monitor)

    2001-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity, but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to-diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer and one fuel orifices) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme as Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 92%, can be obtained. MSFC and the U.S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of

  1. Effects of vane/blade ratio and spacing on fan noise, volume 1

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Kantola, R. A.

    1983-01-01

    The noise characteristics of a high-speed fan were studied. The experimental investigation was carried out on a 50.8 cm (20 in.) diameter scale model fan stage in an anechoic chamber with an inflow turbulence control screen installed. The forty-four blade rotor was tested with forty-eight vane and eighty-six vane stator rows, over a range of aixal rotor-stator spacings from 0.5 to 2.3 rotor tip chords. A two-dimensional strip theory model of rotor-stator interaction noise was employed to predict the measured tone power level trends, and good overall agreement with measured trends was obtained.

  2. Measurement of Automobile UWB Radar Cross Sections at Ka Band

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takehiko; Takahashi, Naoto; Yoshikawa, Makoto; Tsunoda, Kikuo; Tenno, Nobuyuki

    Ultra-wideband (UWB) radar cross sections (RCS) of an automobile were measured in the frequency range from 22 to 29 GHz, with a view to obtaining information on the design of vehicular cruise control short-range radars. The measurements were made in a radio anechoic chamber using three transmitting and receiving polarization combinations (V-V, H-H, and +45° to -45°). A vector network analyzer was used in making the wideband measurements. The UWB RCSs were derived by integrating the receiving power from 22 to 29 GHz. It was found that the UWB RCS of the automobile varied as follows:

  3. Quantitative ionization chamber alignment to a water surface: Theory and simulation.

    PubMed

    Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric

    2017-07-01

    To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning

  4. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  5. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  6. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  7. Initial Back-to-Back Fission Chamber Testing in ATRC

    SciTech Connect

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less

  8. Method for measuring anterior chamber volume by image analysis

    NASA Astrophysics Data System (ADS)

    Zhai, Gaoshou; Zhang, Junhong; Wang, Ruichang; Wang, Bingsong; Wang, Ningli

    2007-12-01

    Anterior chamber volume (ACV) is very important for an oculist to make rational pathological diagnosis as to patients who have some optic diseases such as glaucoma and etc., yet it is always difficult to be measured accurately. In this paper, a method is devised to measure anterior chamber volumes based on JPEG-formatted image files that have been transformed from medical images using the anterior-chamber optical coherence tomographer (AC-OCT) and corresponding image-processing software. The corresponding algorithms for image analysis and ACV calculation are implemented in VC++ and a series of anterior chamber images of typical patients are analyzed, while anterior chamber volumes are calculated and are verified that they are in accord with clinical observation. It shows that the measurement method is effective and feasible and it has potential to improve accuracy of ACV calculation. Meanwhile, some measures should be taken to simplify the handcraft preprocess working as to images.

  9. CHAMBER - IONIZATION - EXPERIMENT - GEMINI-TITAN (GT)-6 EQUIPMENT - CAPE

    NASA Image and Video Library

    1965-12-10

    S65-61788 (For release: 11 Dec. 1965) --- Close-up view of equipment which will be used in the D-8 (Radiation in Spacecraft) experiment on the National Aeronautics and Space Administration's Gemini-6 spaceflight. This experiment is designed to make highly accurate measurements of the absorbed dose rate of radiation which penetrates the Gemini spacecraft, and determine the spatial distribution of dose levels inside the spacecraft particularly in the crew area. This is experimentation of the U.S. Air Force Weapons Laboratory, Kirtland AFB, N.M. LOWER LEFT: The second ionization chamber, this one is unshielded. This chamber can be removed from its bracket by the astronaut who will periodically take measurements at various locations in the spacecraft. Nearby is Passive Dosimeter Unit which is one of five small packets each containing a standard pocket ionization chamber, gamma electron sensitive film, glass needles and thermo luminescent dosimeters which are mounted at various locations in the cabin. UPPER LEFT: Photo illustrates how ionization chamber can be removed from bracket for measurements. LOWER RIGHT: Shield of bulb-shaped chamber will be removed (shown in photo) as the spacecraft passes through the South Atlantic anomaly, the area where the radiation belt dips closest to Earth's surface. UPPER RIGHT: Dome-shaped object is shield covering one of two Tissue Equivalent Ionization Chambers (sensors) which will read out continuously the instantaneous rate at which dose is delivered during the flight. This chamber is mounted permanently. The information will be recorded aboard the spacecraft, and will also be received directly by ground stations. This chamber is shielded to simulate the amount of radiation the crew members are receiving beneath their skin. Photo credit: NASA or National Aeronautics and Space Administration

  10. Double-chambered left ventricle in a cat.

    PubMed

    Smith, Paul J; Tarazi, Marwan N; Ho, Siew Yen

    2014-06-01

    Double-chambered left ventricle is a rare congenital disorder in which the left ventricular cavity is subdivided into two cavities by an anomalous septum or muscle band. We describe a case of double-chambered left ventricle, most likely caused by the presence of excessive left ventricular bands, in an asymptomatic cat. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  12. Sexual dimorphism of the internal mandibular chamber in Fayum Pliohyracidae (Mammalia)

    USGS Publications Warehouse

    de Blieux, D.D.; Baumrind, M.R.; Simons, E.L.; Chatrath, P.S.; Meyer, G.E.; Attia, Y.S.

    2006-01-01

    An internal mandibular fenestra and chamber are found in many fossil hyracoids. The internal mandibular fenestra is located on the lingual surface of the mandibular corpus and opens into a chamber within the mandible. The mandibular chamber is maximally developed in late Eocene Thyrohyrax meyeri and early Oligocene Thyrohyrax domorictus from the Fayum Province of Egypt. The function of this chamber is unknown as it is not found in extant hyraxes, nor is it known to occur in any other mammal. In Thyrohyrax, this feature appears to be sexually dimorphic because it is confined to roughly one half of the specimens that otherwise cannot be separated by dental characteristics or measurements. It has been suggested that the chamber is found in females based on the presumed distribution of this character in other fossil hyracoids. Fossils from Fayum Quarry L-41, preserving the sexually dimorphic anterior dentition, show that, in Thyrohyrax meyeri and Thyrohyrax domorictus, the internal mandibular chamber is found in males. In Thyrohyrax litholagus, an internal mandibular fenestra and inflated mandibular chamber occurs in males whereas females show the variable presence of an internal mandibular fossa or fenestra but lack an expanded chamber. Other genera show differing patterns of sexual variation in which some Fayum hyracoids have an internal mandibular fenestra in both sexes but with the greatest development of the mandibular chamber occurring in males. We review functions proposed for the internal mandibular chamber and suggest that it housed a laryngeal air sac that may have had a vocal function by acting as a resonating chamber. ?? 2006 by the Society of Vertebrate Paleontology.

  13. Hermetic Seal Leak Detection Apparatus with Variable Size Test Chamber

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor)

    2015-01-01

    The present invention is a versatile hermetic seal leak detection apparatus for testing hermetically sealed containers and devices for leaks without the need to create a custom or specially manufactured testing chamber conforming to the dimensions of the specific object under test. The size of the testing chamber may be mechanically adjusted by the novel use of bellows to reduce and optimize the amount of gas space in a test chamber which surrounds the hermetically sealed object under test. The present invention allows the size of the test chamber to be selectively adjusted during testing to provide an optimum test chamber gas space. The present invention may be further adapted to isolate and test specific portions of the hermetically sealed object under test for leaks.

  14. Stability of fragrance patch test preparations applied in test chambers.

    PubMed

    Mowitz, M; Zimerson, E; Svedman, C; Bruze, M

    2012-10-01

    Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  15. Influence of counting chamber type on CASA outcomes of equine semen analysis.

    PubMed

    Hoogewijs, M K; de Vliegher, S P; Govaere, J L; de Schauwer, C; de Kruif, A; van Soom, A

    2012-09-01

    Sperm motility is considered to be one of the key features of semen analysis. Assessment of motility is frequently performed using computer-assisted sperm analysis (CASA). Nevertheless, no uniform standards are present to analyse a semen sample using CASA. We hypothesised that the type of counting chamber used might influence the results of analysis and aimed to study the effect of chamber type on estimated concentration and motility of an equine semen sample assessed using CASA. Commonly used disposable Leja chambers of different depths were compared with disposable and reusable ISAS chambers, a Makler chamber and a World Health Organization (WHO) motility slide. Motility parameters and concentrations obtained with CASA using these different chambers were analysed. The NucleoCounter was used as gold standard for determining concentration. Concentration and motility parameters were significantly influenced by the chamber type used. Using the NucleoCounter as the gold standard for determining concentration, the correlation coefficients were low for all of the various chambers evaluated, with the exception of the 12 µm deep Leja chamber. Filling a chamber by capillary forces resulted in a lower observed concentration and reduced motility parameters. All chambers evaluated in this study resulted in significant lower progressive motility than the WHO prepared slide, with the exception of the Makler chamber, which resulted in a slight, but statistically significant, increase in progressive motility estimates. Computer-assisted sperm analysis can only provide a rough estimate of sperm concentration and overestimation is likely when drop-filled slides with a coverslip are used. Motility estimates using CASA are highly influenced by the counting chamber; therefore, a complete description of the chamber type used should be provided in semen reports and in scientific articles. © 2011 EVJ Ltd.

  16. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  17. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  18. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  19. VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) AND ALTITUDE CHAMBER L (TO RIGHT) FROM THE 42’-0” LEVEL OF ACCESS PLATFORMS, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  20. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  2. Structured events in Pamir carbon X-ray chambers

    NASA Technical Reports Server (NTRS)

    Leptukh, G. G.

    1985-01-01

    Experimental and theoretical investigations of structured events or narrow groups of hadrons in the Pamir carbon chambers are presented. These events are formed by the usual fluctuations of in-chamber development of nuclear electromagnetic cascade (NEC) initiated by a single hadron from the atmosphere.

  3. Safety shield for vacuum/pressure chamber viewing port

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R. S. (Inventor)

    1981-01-01

    Observers are protected from flying debris resulting from a failure of a vacuum or pressure chamber viewing port following an implosion or explosion by an optically clear shatter resistant safety shield which spaced apart from the viewing port on the outer surface of the chamber.

  4. Turbine component cooling channel mesh with intersection chambers

    DOEpatents

    Lee, Ching-Pang; Marra, John J

    2014-05-06

    A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

  5. Ion flow experiments in a multipole discharge chamber

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.

  6. BOREAS TGB-1 NSA SF6 Chamber Flux Data

    NASA Technical Reports Server (NTRS)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.

  7. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  8. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  9. The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.

    2016-12-01

    Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.

  10. Dose verification with different ion chambers for SRT/SBRT plans

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Tas, B.; Okumus, A.; Uzel, O. E.

    2017-02-01

    Verification of patient plan is very important in stereotactic treatments. VMAT plans were prepared with 6MV-FFF or 10MV-FFF energies for 25 intracranial and extracranial stereotactic patients. Absolute dose was measured for dose verification in each plans. Iba® CC01, Iba® CC04, Iba® CC13 ion chambers placed at a depth of 5cm in solid phantom (RW3). Also we scanned this phantom with ion chambers by Siemens® Biograph mCT. QA plans were prepared by transferring twenty five patient plans to phantom assemblies for three ion chambers. All plans were performed separately for three ion chambers at Elekta® Versa HD linear accelerator. Statistical analysis of results were made by Wilcoxon signed-rank test. Difference between dose values were determined %1.84±3.4 (p: 0.001) with Iba CC13 ion chamber, %1.80±3.4 (p: 0.002) with Iba CC04 ion chamber and %0.29±4.6 (p: 0.667) with Iba CC01 ion chamber. In stereotactic treatments, dosimetric uncertainty increases in small areas. We determined more accurate results with small sized detectors. Difference between TPS calculations and all measurements were founded lower than %2.

  11. Development and preliminary test of a new plateau hyperbaric chamber.

    PubMed

    Sun, Liang; Ding, Meng-jiang; Cai, Tian-cai; Fan, Hao-jun; Zhang, Jian-peng

    2015-10-01

    The objective of this study is to validate the performance, define its limits, and provide details on a new plateau hyperbaric chamber at 355-, 2880-, and 4532-m high altitude. A new multiplace plateau hyperbaric chamber was designed to satisfy the needed of patients who have acute mountain sickness. Tests were conducted inside the chamber at 355-, 2880-, and 4532-m high altitude. The safely and conveniences of the new plateau hyperbaric chamber were estimated. Minimum pressures of the main compartment can reach up to 0.029, 0.022, and 0.02 MPa at 355-, 2880-, and 4532-m high altitude. During pressurization, there was no leak of air around the chamber. The time lag of pressure equilibration between main and buffer compartment varies from 30.3±2.01 to 200.5±5.44 seconds and between buffer compartment and ambient pressure varies from 60.2±4.13 to 215.9±6.76 seconds. The chamber can be applicated for acute mountain sickness treatment safety and convenience. However, further experience about animals and human within the chamber is needed to improve the hardware and establish conditions of effective utilization of this equipment in the high altitude. Copyright © 2015. Published by Elsevier Inc.

  12. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  13. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  14. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  15. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  16. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  17. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  18. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  19. Controlled release chamber for dispensing aromatic substances.

    PubMed

    Cilek, J E; Hallmon, C F

    2008-12-01

    A novel device for the containment and precise release of aromatic substances is described. The device consists of a threaded-tubular polyvinyl chloride chamber (and screw-top cap) with ports for introduction and release of gaseous compounds. This chamber is inexpensive, easy to assemble, and useful for evaluating the combined release of carbon dioxide and aromatic hygroscopic substances as mosquito attractants in field studies.

  20. Temperature uniformity in the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti

    2017-12-01

    The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  1. Combustion chamber struts can be effectively transpiration cooled

    NASA Technical Reports Server (NTRS)

    Palmer, G. H.

    1966-01-01

    Vapor-deposited sintering technique increases the feasible temperature range of transpiration-cooled structural members in combustion chambers. This technique produces a porous mass of refractory metal wires around a combustion chamber structural member. This mass acts as a transpiration-cooled surface for a thick-walled tube.

  2. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  3. Temperature characterisation of the CLOUD chamber at CERN

    NASA Astrophysics Data System (ADS)

    Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.

    2014-12-01

    Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.

  4. Tracking chamber made of 15-mm mylar drift tubes

    NASA Astrophysics Data System (ADS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  5. Development of pneumatic actuator with low-wave reflection characteristics

    NASA Astrophysics Data System (ADS)

    Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.

    2010-08-01

    This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

  6. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  7. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  8. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  9. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  10. Thermal comfort of dual-chamber ski gloves

    NASA Astrophysics Data System (ADS)

    Dotti, F.; Colonna, M.; Ferri, A.

    2017-10-01

    In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called “grip” to maximize finger flexibility and one called “warm” to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5-min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test.

  11. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    SciTech Connect

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  12. Procedure times, complication rates, and survival times associated with single-chamber versus dual-chamber pacemaker implantation in dogs with clinical signs of bradyarrhythmia: 54 cases (2004-2009).

    PubMed

    Genovese, David W; Estrada, Amara H; Maisenbacher, Herbert W; Heatwole, Bonnie A; Powell, Melanie A

    2013-01-15

    To compare procedure times and major and minor complication rates associated with single-chamber versus dual-chamber pacemaker implantation and with 1-lead, 2-lead, and 3-lead pacemaker implantation in dogs with clinical signs of bradyarrhythmia. Retrospective case series. 54 dogs that underwent pacemaker implantation because of clinical signs of bradyarrhythmia. Medical records of dogs that received pacemakers between July 2004 and December 2009 were reviewed for information regarding signalment, diagnosis, pacemaker implantation, pacemaker type, complications, and survival time. Analyses were performed to determine significant differences in anesthesia time, procedure time, and outcome for dogs on the basis of pacing mode and number of pacing leads. 28 of 54 (51.9%) dogs received single-chamber pacemakers and 26 (48.1%) received dual-chamber pacemakers. Mean ± SD procedural time was significantly longer for patients with dual-chamber pacemakers (133.5 ± 51.3 minutes) than for patients with single-chamber pacemakers (94.9 ± 37.0 minutes), and procedure time increased significantly as the number of leads increased (1 lead, 102.3 ± 51.1 minutes; 2 leads, 114.9 ± 24.8 minutes; 3 leads, 158.2 ± 8.5 minutes). Rates of major and minor complications were not significantly different between dogs that received single-chamber pacemakers and those that received dual-chamber pacemakers or among dogs grouped on the basis of the number of pacing leads placed. Although dual-chamber pacemaker implantation did result in increased procedural and anesthesia times, compared with single-chamber pacemaker implantation, this did not result in a higher complication rate.

  13. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  14. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  15. Therapeutic effect of bilastine in Japanese cedar pollinosis using an artificial exposure chamber (OHIO Chamber).

    PubMed

    Hashiguchi, Kazuhiro; Wakabayashi, Ken-Ichiro; Togawa, Michinori; Saito, Akihiro; Okubo, Kimihiro

    2017-01-01

    Environmental exposure chambers have been used to expose subjects to aeroallergens to investigate the efficacy of prophylactic treatment with symptomatic agents in Japan. We first examined the therapeutic effect of bilastine (BIL), a novel non-sedative second-generation H 1 -antihistamine, in subjects with Japanese cedar pollinosis using an artificial exposure chamber (OHIO Chamber). This was a randomized, double-blind, four-way crossover, placebo- and active-controlled phase II study (trial registration number JapicCTI-132213). Subjects were exposed to cedar pollen (8000 grains/m 3 ) for 2 h on Day -1 and 4 h each on Day 1 and 2. BIL 10 or 20 mg, placebo, or fexofenadine hydrochloride (FEX) 60 mg was administered orally 1 h after the start of pollen exposure on Day 1. Placebo or FEX was administered 12 h after the first dosing. The primary efficacy endpoint was the sum of total nasal symptom score (TNSS) from 0 to 3 h after the Day 1 dosing. We enrolled 136 subjects and the sum of TNSS on Day 1 of the three active treatments was significantly lower than that of placebo and was maintained up to 26 h after the first dosing (Day 2). The sum of TNSS or sneezing score on Day 1 after BIL 20 mg was more significantly decreased than after FEX. Moreover, BIL showed a faster onset of action than FEX. We demonstrated the efficacy, rapid onset, and long duration of action of BIL in subjects with Japanese cedar pollinosis exposed to cedar pollen using the OHIO Chamber. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Idea Bank: Chamber Music within the Large Ensemble

    ERIC Educational Resources Information Center

    Neidlinger, Erica

    2011-01-01

    Many music educators incorporate chamber music in their ensemble programs--an excellent way to promote musical independence. However, they rarely think of the large ensemble as myriad chamber interactions. Rehearsals become more productive when greater responsibility for music-making is placed on the individual student. This article presents some…

  17. Temperature and humidity control in indirect calorimeter chambers

    USDA-ARS?s Scientific Manuscript database

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  18. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  19. Deployment and testing of a second prototype expandable surgical chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Markham, Sanford M.; Rock, John A.

    1991-01-01

    During microgravity exposure, two separate expandable surgical chambers were tested. Both chambers had been modified to fit the microgravity work station without extending over the sides of the table. Both chambers were attached to a portable laminar flow generator which served two purposes: to keep the chambers expanded during use; and to provide an operative area environment free of contamination. During the tests, the chambers were placed on various parts of a total body moulage to simulate management of several types of trauma. The tests consisted of cleansing contusions, debridement of burns, and suturing of lacerations. Also, indigo carmine dye was deliberately injected into the chamber during the tests to determine the ease of cleansing the chamber walls after contamination by escaping fluids. Upon completion of the tests, the expandable surgical chambers were deflated, folded, and placed in a flattened state back into their original containers for storage and later disposal. Results are briefly discussed.

  20. Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Kasper, H. J.; Pavli, A. J.

    1976-01-01

    During a test program to investigate low-cycle thermal fatigue, 13 rocket combustion chambers were fabricated and cyclically test fired to failure. Six oxygen-free, high-conductivity (OFHC) copper and seven Amzirc chambers were tested. The chamber liners were fabricated of copper or copper alloy and contained milled coolant channels. The chambers were completed by means of an electroformed nickel closeout. The oxidant/fuel ratio for the liquid oxygen and gaseous hydrogen propellants was 6.0. The failures in the OFHC copper chambers were not typical fatigue failures but are described as creep rupture enhanced by ratcheting. The coolant channels bulged toward the chamber centerline, resulting in progressive thinning of the wall during each cycle. The failures in the Amzirc alloy chambers were caused by low-cycle thermal fatigue. The lives were much shorter than were predicted by an analytical structural analysis computer program used in conjunction with fatigue life data from isothermal test specimens, due to the uneven distribution of Zr in the chamber material.

  1. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  2. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  3. Portable electron beam weld chamber

    NASA Technical Reports Server (NTRS)

    Lewis, J. R.; Dimino, J. M.

    1972-01-01

    Development and characteristics of portable vacuum chamber for skate type electron beam welding are discussed. Construction and operational details of equipment are presented. Illustrations of equipment are provided.

  4. The Other Shoe: An Early Operant Conditioning Chamber for Pigeons.

    PubMed

    Sakagami, Takayuki; Lattal, Kennon A

    2016-05-01

    We describe an early operant conditioning chamber fabricated by Harvard University instrument maker Ralph Gerbrands and shipped to Japan in 1952 in response to a request of Professor B. F. Skinner by Japanese psychologists. It is a rare example, perhaps the earliest still physically existing, of such a chamber for use with pigeons. Although the overall structure and many of the components are similar to contemporary pigeon chambers, several differences are noted and contrasted to evolutionary changes in this most important laboratory tool in the experimental analysis of behavior. The chamber also is testimony to the early internationalization of behavior analysis.

  5. Hot fire fatigue testing results for the compliant combustion chamber

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.

    1992-01-01

    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.

  6. Effects of AEC chamber selection on patient dose and image quality.

    PubMed

    Hawking, Nancy; Elmore, Angie

    2009-01-01

    To determine whether manipulation of the standard automatic exposure control (AEC) chamber selections reduces the patient's entrance skin exposure (ESE) without compromising image quality. Data for density and radiation dose were gathered at 2 clinical locations by exposing abdomen and pelvis phantoms to radiation using 3 AEC chamber selection configurations. ESE (skin dose) was measured using a multipurpose dosimeter. The experiment included both film-screen and computed radiography (CR) systems. For both phantoms, using the 2 outside chambers resulted in the lowest dose on the film-screen and CR systems. In general, optical density (OD) and exposure indicator (EI) remained within acceptable ranges and image quality was maintained using this chamber configuration. Using only the center chamber resulted in the highest dose increases and lowest image quality for film-screen and CR systems. When performing anteroposterior (AP) abdomen and AP pelvis examinations, radiographers can reduce patients' ESE and maintain image quality by selecting the 2 outside AEC chambers. Further research on AEC chamber selection should be conducted for additional anatomical regions.

  7. Portable automation of static chamber sample collection for quantifying soil gas flux

    USDA-ARS?s Scientific Manuscript database

    The collection of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled in a given time period is limited by the spacing between chambers and the availability of trained research technicians. However, the static chamber method can limit spatial ...

  8. Natural oscillations of a gas in an elongated combustion chamber

    NASA Astrophysics Data System (ADS)

    Nesterov, S. V.; Akulenko, L. D.; Baydulov, V. G.

    2017-02-01

    For the analysis of the frequencies and shapes of the natural oscillations of a gas in an elongated rectilinear combustion chamber, this chamber can be treated as a kind of an organ pipe that has the following specific features: 1. the chamber has an inlet and outlet nozzles; 2. a gas mixture burns in the combustion chamber; 3. the combustion materials flow out from the outlet nozzle; 4. the gas flows in such a way that its velocity in the larger part (closer to the outlet nozzle) of the chamber exceeds the speed of sound (Mach number M > 1). There are only separate domains (one or several), where M < 1. The excitation of the natural oscillations of the gas and an increase in the amplitude of such oscillations can lead to instability of the combustion process [1].

  9. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  10. Five meter magnetic spectrometer based on a streamer chamber

    SciTech Connect

    Bohm, G.; Vertogradov, L.S.; Grishkevich, Ya.V.

    1972-01-01

    In streamer chamber technology. Development of a five-meter magnetic spectrometer, based on a streamer chamber with a liquid hydrogen target is outlined. The spectrometer is called RISK (Relativistic Ionization Streamer Chamber (Kamera)) because it is proposed to measure the velocity of relativistic particles by means of their ionization energy loss as an aid in their identification. The spectrometer will be used for the study of high-energy hadron interactions at the Serpukhov Synchrotron. The status of the project is summarized. (WHK)

  11. Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank

    2016-04-01

    A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and

  12. Testing and evaluation of oxide-coated iridium/rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin

  13. Numerical analysis of whole-body cryotherapy chamber design improvement

    NASA Astrophysics Data System (ADS)

    Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu

    2018-05-01

    Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.

  14. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.; hide

    2000-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  15. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.

    2001-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  16. A closed unventilated chamber for the measurement of transepidermal water loss.

    PubMed

    Nuutinen, Jouni; Alanen, Esko; Autio, Pekka; Lahtinen, Marjo-Riitta; Harvima, Ilkka; Lahtinen, Tapani

    2003-05-01

    Open chamber systems for measuring transepidermal water loss (TEWL) have limitations related to ambient and body-induced airflows near the probe, probe size, measurement sites and angles, and measurement range. The aim of the present investigation was to develop a closed chamber system for the TEWL measurement without significant blocking of normal evaporation through the skin. Additionally, in order to use the evaporimeter to measure evaporation rates through other biological and non-biological specimens and in the field applications, a small portable, battery-operated device was a design criteria. A closed unventilated chamber (inner volume 2.0 cm(3) was constructed. For the skin measurement, the chamber with one side open (open surface area 1.0 cm(2) is placed on the skin. The skin application time was investigated at low and high evaporation rates in order to assess the blocking effect of the chamber on normal evaporation. From the rising linear part of the relative humidity (RH) in the chamber the slope was registered. The slope was calibrated into a TEWL value by evaporating water at different temperatures and measuring the water loss of heated samples with a laboratory scale. The closed chamber evaporation technique was compared with a conventional evaporimeter based on an open chamber method (DermaLab), Cortex Technology, Hadsund, Denmark). The reproducibility of the closed chamber method was measured with the water samples and with volar forearm and palm of the hand in 10 healthy volunteers. The skin application time varied between 7 and 9 s and the linear slope region between 3 and 5 s at the evaporation rates of 3-220 g/m(2) h. A correlation coefficient between the TEWL value from the closed chamber measurements and the readings of the laboratory scale was 0.99 (P < 0.001). The reproducibility of the evaporation measurements with the water samples was 4.0% at the evaporation rate of 40 g/m(2) h. A correlation coefficient of the TEWL values between the

  17. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  18. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2017-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  19. Calibration of the borated ion chamber at NIST reactor thermal column.

    PubMed

    Wang, Z; Hertel, N E; Lennox, A

    2007-01-01

    In boron neutron capture therapy and boron neutron capture enhanced fast neutron therapy, the absorbed dose of tissue due to the boron neutron capture reaction is difficult to measure directly. This dose can be computed from the measured thermal neutron fluence rate and the (10)B concentration at the site of interest. A borated tissue-equivalent (TE) ion chamber can be used to directly measure the boron dose in a phantom under irradiation by a neutron beam. Fermilab has two Exradin 0.5 cm(3) Spokas thimble TE ion chambers, one loaded with boron, available for such measurements. At the Fermilab Neutron Therapy Facility, these ion chambers are generally used with air as the filling gas. Since alpha particles and lithium ions from the (10)B(n,alpha)(7)Li reactions have very short ranges in air, the Bragg-Gray principle may not be satisfied for the borated TE ion chamber. A calibration method is described in this paper for the determination of boron capture dose using paired ion chambers. The two TE ion chambers were calibrated in the thermal column of the National Institute of Standards and Technology (NIST) research reactor. The borated TE ion chamber is loaded with 1,000 ppm of natural boron (184 ppm of (10)B). The NIST thermal column has a cadmium ratio of greater than 400 as determined by gold activation. The thermal neutron fluence rate during the calibration was determined using a NIST fission chamber to an accuracy of 5.1%. The chambers were calibrated at two different thermal neutron fluence rates: 5.11 x 10(6) and 4.46 x 10(7)n cm(-2) s(-1). The non-borated ion chamber reading was used to subtract collected charge not due to boron neutron capture reactions. An optically thick lithium slab was used to attenuate the thermal neutrons from the neutron beam port so the responses of the chambers could be corrected for fast neutrons and gamma rays in the beam. The calibration factor of the borated ion chamber was determined to be 1.83 x 10(9) +/- 5.5% (+/- 1sigma) n

  20. Fire environmental test chamber: its design and development

    Treesearch

    Clifford J. Auvil

    1973-01-01

    The Fire Environmental Test Chamber at the Forest Fire Laboratory, Riverside, California, can duplicate under controlled conditions the key factors that affect the flammability of wildland fuels. Within certain limits, it can produce air flow, solar radiation, temperatures, and relative humidity. First developed in 1962, the test chamber has since then undergoneseveral...

  1. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  2. Double-chamber electrode for spectrochemical determination of chlorine and other halogens

    USGS Publications Warehouse

    de Paiva, Azevedo; Specht, A.W.; Harner, R.S.

    1954-01-01

    A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.

  3. Automatic stage identification of Drosophila egg chamber based on DAPI images

    PubMed Central

    Jia, Dongyu; Xu, Qiuping; Xie, Qian; Mio, Washington; Deng, Wu-Min

    2016-01-01

    The Drosophila egg chamber, whose development is divided into 14 stages, is a well-established model for developmental biology. However, visual stage determination can be a tedious, subjective and time-consuming task prone to errors. Our study presents an objective, reliable and repeatable automated method for quantifying cell features and classifying egg chamber stages based on DAPI images. The proposed approach is composed of two steps: 1) a feature extraction step and 2) a statistical modeling step. The egg chamber features used are egg chamber size, oocyte size, egg chamber ratio and distribution of follicle cells. Methods for determining the on-site of the polytene stage and centripetal migration are also discussed. The statistical model uses linear and ordinal regression to explore the stage-feature relationships and classify egg chamber stages. Combined with machine learning, our method has great potential to enable discovery of hidden developmental mechanisms. PMID:26732176

  4. [Development of a microenvironment test chamber for airborne microbe research].

    PubMed

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  5. Design and evaluation of a restraint-free small animal inhalation dosing chamber.

    PubMed

    McConville, Jason T; Williams, Robert O; Carvalho, Thiago C; Iberg, Aimee N; Johnston, Keith P; Talbert, Robert L; Burgess, David; Peters, Jay I

    2005-01-01

    The aim of research was to design a small, restraint free, low stress animal dosing chamber for inhalation studies, and to investigate distribution of a model drug within the chamber. A small animal dosing chamber was designed that consisted of a polymethylmethacrylate (PMMA) airtight box (40.6 x 11.4 x 21.6 cm) with a hinged top, having a nominal wall thickness of 1.25 cm. The chamber was designed to hold up to 14 mice, each having a floor area of approximately 63 cm2, in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines. A "rodent proof" distribution fan was attached to the center of the hinged closure lid. The chamber was divided into 1 inch2 zones (120 in total) to enable a profile of drug distribution within the chamber to be obtained. Small holes were drilled into the side of the chamber and sealed using Parafilm to allow access to the sampling zones. Syringes (5 mL) with appropriate length polytetrafluoroethylene (PTFE) tubing were inserted into the holes to reach the sampling zones (eight on either side of the chamber giving a total of 16 zones). An aqueous caffeine solution (2% w/v) in glycerol (25% w/v) was prepared and nebulized into the chamber using an Aeroneb Pro nebulizer. Caffeine containing droplets were circulated into the chamber at a flow rate of 1.5 L/min(-1), and the air was recirculated in a closed system for a total of 20 minutes to ensure a high concentration of caffeine droplets throughout. Following nebulization, air samples (5 mL) were withdrawn from the 16 sampling zones of the sealed chamber. The process was repeated in quadruplet until a total of 64 sampling zones had been sampled. The entire experiment was also repeated with the absence of the "rodent-proof" distribution fan. Drug concentrations were calculated from a calibration curve of caffeine using UV absorbance at 272 nm. An average mass of caffeine (Standard Deviation; S.D.) of 5.0 (4.2) mg was detected throughout the chamber when the distribution

  6. Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Price, H. G.

    1980-01-01

    An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments; A total of four thrust chambers with throat diameters of 0.066 m were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot cycles accumulated with no apparent metal burning or distress. The fourth chamber was operated at 8.274 MN/square meters (1200 psia) pressure to obtain steady state heat transfer data. Wall temperature measurements confirmed the heat transfer correlation.

  7. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes

    PubMed Central

    Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya

    2016-01-01

    We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility. PMID:27958304

  8. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya

    2016-12-01

    We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility.

  9. Wenckebach upper rate response in single chamber pacemaker.

    PubMed

    Barold, S S

    2000-07-01

    The Medtronic Minix pacemaker during normal function in the VVT mode was found to exhibit a Wenckenbach upper rate response similar to that of dual chamber devices. This behavior occurred only when the upper rate interval was longer than the pacemaker refractory period. In a single chamber device this response may simulate pacemaker malfunction.

  10. On the p(dis) correction factor for cylindrical chambers.

    PubMed

    Andreo, Pedro

    2010-03-07

    The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor p(dis) for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in p(dis) (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between

  11. 8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SEDIMENTATION CHAMBER, VIEW UPSTREAM (PLANK COVER REMOVED FOR CLARITY). BOX FLUME DROPS SLIGHTLY INTO CHAMBER ON LEFT SIDE. CHAMBER IS A SERIES OF BAFFLES DESIGNED TO SLOW THE FLOW OF WATER. FLOW IS REDUCED TO ALLOW PARTICULATES TO SETTLE TO THE BOTTOM. TWO SCREENS (NOT SHOWN) FILTER LARGER DEBRIS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  12. [Two cases of Vogt-Koyanagi-Harada disease presenting shallow anterior chamber].

    PubMed

    Takemoto, Daisuke; Ijiri, Shigeyuki; Shimizu, Michiharu; Higashide, Tomomi; Sugiyama, Kazuhisa

    2015-05-01

    We report two cases of Vogt-Koyanagi-Harada disease (VKH) in which shallow anterior chambers were improved after steroid pulse therapy. The patients were women aged 65 and 72. They had headaches, decreased visual acuity and shallow anterior chamber in both eyes. There was no inflammation in the anterior chamber. Ultrasound biomicroscopy (UBM) showed ciliary edema, ciliochoroidal detachment, and angle closure. One case showed high intraocular pressure (IOP), and a diagnosis of acute primary angle closure was made. Although cataract surgery was performed in the left eye, postoperative optical coherence tomography (OCT) revealed serous retinal detachment in both eyes. The shallow anterior chamber and UBM findings were improved and serous retinal detachment disappeared after steroid pulse therapy in both cases. VKH may cause shallow anterior chamber and angle closure. The inflammatory changes of VKH in the anterior segment, i. e. ciliary edema and ciliochoroidal detachment, may exacerbate the shallow anterior chambers and narrow angles and result in an acute increase in IOP in eyes with short axial length. VKH associated with shallow anterior chamber may be misdiagnosed as acute primary angle closure. For differential diagnosis, examinations of the ocular fundus including OCT are useful.

  13. DESIGN, CONSTRUCTION, AND EVALUATION OF A CHAMBER FOR AEROBIOLOGY

    EPA Science Inventory

    A chamber was designed and constructed for aeromicrobiology applications. An ultraviolet (UV) radiation source was incorporated to sterilize the chamber between trials. Twelve bacterial species originally isolated from air samples and obtained from the American Type Culture Colle...

  14. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    PubMed

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  15. Donald Glaser, the Bubble Chamber, and Elementary Particles

    Science.gov Websites

    Effects of Ionizing Radiation on the Formation of Bubbles in Liquids Physical Review, Vol. 87, Issue 4 , 665, August 15, 1952 Characteristics of Bubble Chambers Physical Review, Vol. 97, Issue 2, 474-479 Chambers Physical Review, Vol. 102, Issue 6, 1653-1658, June 15, 1956 Methods of Particle Detection for

  16. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  17. Thermal vacuum chamber repressurization with instrument purging

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael S.

    2016-09-01

    At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center's (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  18. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2014-01-01

    At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  19. Experimental and theoretical investigation of fatigue life in reusable rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Kasper, H. J.; Pavli, A. J.

    1976-01-01

    During a test program to investigate low-cycle thermal fatigue, 13 rocket combustion chambers were fabricated and cyclically test fired to failure. Six oxygen-free, high-conductivity (OFHC) copper and seven Amzirc chambers were tested. The failures in the OFHC copper chambers were not typical fatigue failures but are described as creep rupture enhanced by ratcheting. The coolant channels bulged toward the chamber centerline, resulting in progressive thinning of the wall during each cycle. The failures in the Amzirc alloy chambers were caused by low-cycle thermal fatigue. The zirconium in this alloy was not evenly distributed in the chamber materials. The life that was achieved was nominally the same as would have been predicted from OFHC copper isothermal test data.

  20. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    SciTech Connect

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  1. AGATE: A High Energy Gamma-Ray Telescope Using Drift Chambers

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Dingus, B. L.; Esposito, J. A.; Bertsch, D. L.; Cuddapah, R.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.

    1996-01-01

    The exciting results from the highly successful Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory (CGRO) has contributed significantly to increasing our understanding of high energy gamma-ray astronomy. A follow-on mission to EGRET is needed to continue these scientific advances as well as to address the several new scientific questions raised by EGRET. Here we describe the work being done on the development of the Advanced Gamma-Ray Astronomy Telescope Experiment (AGATE), visualized as the successor to EGRET. In order to achieve the scientific goals, AGATE will have higher sensitivity than EGRET in the energy range 30 MeV to 30 GeV, larger effective area, better angular resolution, and an extended low and high energy range. In its design, AGATE will follow the tradition of the earlier gamma-ray telescopes, SAS-2, COS B, and EGRET, and will have the same four basic components of an anticoincidence system, directional coincidence system, track imaging, and energy measurement systems. However, due to its much larger size, AGATE will use drift chambers as its track imaging system rather than the spark chambers used by EGRET. Drift chambers are an obvious choice as they have less deadtime per event, better spatial resolution, and are relatively easy and inexpensive to build. Drift chambers have low power requirements, so that many layers of drift chambers can be included. To test the feasibility of using drift chambers, we have constructed a prototype instrument consisting of a stack of sixteen 1/2m × 1/2m drift chambers and have measured the spatial resolution using atmospheric muons. The results on the drift chamber performance in the laboratory are presented here.

  2. Webb Instrument Inside Test Chamber

    NASA Image and Video Library

    2011-08-18

    The Mid-Infrared Instrument, a component of NASA James Webb Space Telescope, underwent testing inside the thermal space test chamber at the Science and Technology Facilities Council Rutherford Appleton Laboratory Space in Oxfordshire, England.

  3. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  4. Design and analysis of a double superimposed chamber valveless MEMS micropump.

    PubMed

    Zordan, E; Amirouche, F

    2007-02-01

    The newly designed micropump model proposed consists of a valveless double chamber pump completely simulated and optimized for drug delivery conditions. First, the inertia force and viscous loss in relation to actuation, pressure, and frequency is considered, and then a model of the nozzle/diffuser elements is introduced. The value of the flowrate obtained from the first model is then used to determine the loss coefficients starting from geometrical properties and flow velocity. From the developed model IT analysis is performed to predict the micropump performance based on the actuation parameters and no energy loss. A single-chamber pump with geometrical dimensions equal to each of the chambers of the double-chamber pump was also developed, and the results from both models are then compared for equally applied actuation pressure and frequency. Results show that the proposed design gives a maximum flow working frequency that is about 30 per cent lower than the single chamber design, with a maximum flowrate that is 140 per cent greater than that of the single chamber. Finally, the influences of geometrical properties on flowrate, maximum flow frequency, loss coefficients, and membrane strain are examined. The results show that the nozzle/ diffuser initial width and chamber side length are the most critical dimensions of the design.

  5. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  6. New drift chamber technology for high energy gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley D.; Cuddapah, Rajani

    1990-08-01

    Work to develop a low-power amplifier and discriminator for use on space qualifiable drift chambers is discussed. Consideration is given to the goals of the next generation of high-energy gamma-ray telescope design and to how the goals can be achieved using xenon gas drift chambers. The design and construction of a low power drift chamber amplifier and discriminator are described, and the design of a quad-time-to-amplitude converter is outlined.

  7. Indirect check of the stability of the reference ion chamber used for accelerator output calibration

    NASA Astrophysics Data System (ADS)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2014-11-01

    A linear accelerator's output is periodically checked by using a reference ion chamber which is also periodically calibrated at the accredited standard dosimetry laboratories. We suggest a simple procedure for checking the chamber's stability between calibrations by comparison with another ion chamber. To identify the long-term stability of chambers, we collected and assessed the dose-to-water conversion factors provided by standard laboratories for three chambers during a period of four years. To develop the chamber constancy check program, we used one Farmer-type reference ion chamber FC65-G, two ion chambers (CC13a and CC13b) and one CC01 ion chamber (IBA). Under the accelerator, each chamber was placed inside the solid phantom and irradiated; the experimental configurations were identical. To check the variation in charge collection of the reference chamber, we monitored the ratios of the FC65-G values over each chamber reading. Based on the error propagation of the two chamber ratios, we estimated the uncertainty of the output calibration from the chamber variation. The calibration factors provided for the three chambers showed 0.04 ˜ 0.12% standard deviations during four years. For procedure development, the reading ratios of FC65-G over CCxx showed very good stability; the ratios of FC65-G over CC13a, CC13b and CC01 varied less than 0.059, 0.087 and 0.248%, respectively, over five measurements. By ascribing possible uncertainties of the ratio to the reference chamber alone, we could conservatively check the stability of the reference chamber for treatment safety. An extension of the chamber calibration period was also evaluated. In conclusion, we designed a stability check procedure for the reference chamber based on a reading ratio of two chambers. This could help the user assess the chamber stability between periodic chamber calibration, and the associated patient treatment could be carried out with enhanced safety.

  8. Investigation of cables for ionization chambers.

    PubMed

    Spokas, J J; Meeker, R D

    1980-01-01

    Seven coaxial cables which are in use for carrying currents generated in ionization chambers have been critically studied with reference to their suitability to this application. Included in this study are four low-noise triaxial cables and three low-noise two-conductor cables. For each cable the following characteristics were considered: inherent noise currents, currents produced by cable movements, polarization currents, the degree of electrostatic shielding of the central signal-carrying conductor, and radiation-induced cable currents. The study indicated that of the seven cables, two low-noise triaxial cables, both employing solid Teflon dielectric surrounding the central conductor, appear to offer the best overall performance for use with ionization chambers.

  9. A DUST-SETTLING CHAMBER FOR SAMPLING-INSTRUMENT COMPARISON STUDIES

    EPA Science Inventory

    Introduction: Few methods exist that can evenly and reproducibly deposit dusts onto surfaces for surface-sampling methodological studies. A dust-deposition chamber was designed for that purpose.

    Methods: A 1-m3 Rochester-type chamber was modified to produce high airborne d...

  10. MEASUREMENT OF ORGANIC COMPOUND EMISSIONS USING SMALL TEST CHAMBERS

    EPA Science Inventory

    Organic compounds emitted from a variety of indoor materials have been measured using small (166 L) environmental test chambers. The paper discusses: a) factors to be considered in small chamber testing; b) parameters to be controlled; c) the types of results obtained. The follow...

  11. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  12. Accuracy of semen counting chambers as determined by the use of latex beads.

    PubMed

    Seaman, E K; Goluboff, E; BarChama, N; Fisch, H

    1996-10-01

    To assess the accuracy of the Hemacytometer (Hausser Scientific, Horsham, PA), Makler (Sefi-Medical Instrument, Haifa, Israel), Cell-VU (Millennium Sciences Inc., New York, NY), and Micro-Cell chambers (Conception Technologies, San Diego, CA) counting chambers. A solution containing a known concentration of latex beads was used as the standard to perform counts on the four different counting chambers. Bead counts for the four different chambers were compared with the bead counts of the standard solution. Variability within chambers also was determined. Mean bead concentrations for both the Cell-VU and Micro-Cell chambers were consistently similar to the bead concentration of the standard solution. Both the hemacytometer and the Makler chambers overestimated the actual bead concentration of the standard solution by as much as 50% and revealed significant interchamber variability. Our data revealed marked differences in the accuracy and reliability of the different counting chambers tested and emphasized the need for standardization and quality control of laboratory procedures.

  13. Photochemistry of Glyoxal in Wet Aerosols: Smog Chamber Study

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Kim, H.; Turpin, B. J.

    2015-12-01

    Aqueous chemistry is an important pathway for the formation of secondary organic aerosol (SOA). Reaction vessel studies provide evidence that in the aqueous phase photooxidation of water soluble organic compounds (e.g., glyoxal, methylglyoxal) form multifunctional organic products and oligomers. In this work, we extend this bulk-phase chemistry to the condensed-phase chemistry that occurs in/on aerosols by conducting smog chamber experiments — photooxidation of ammonium sulfate and sulfuric acid aerosols containing glyoxal and hydrogen peroxide in the presence of NOx under dry/humid conditions. Particles were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In the irradiated chamber, photooxidation products of glyoxal as seen in reaction vessel experiments (e.g., oxalic acids and tartaric acids) were also formed in both ammonium sulfate aerosols and sulfuric acid aerosols at humid and even dry conditions. However, the major products were organosulfurs (CHOS), organonitrogens (CHON), and nitrooxy-organosulfates (CHONS), which were also dominantly formed in the dark chamber. These products were formed via non-radical reactions, which depend on acidity and humidity. However, the real-time profiles in the dark chamber and the irradiated chamber were very different, suggesting photochemistry substantially affects non-radical formation in the condensed phase.

  14. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “R” ELEVATION. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  15. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “L” ELEVATION. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  16. Evaluation of a disposable plastic Neubauer counting chamber for semen analysis.

    PubMed

    Kirkman-Brown, Jackson; Björndahl, Lars

    2009-02-01

    To evaluate whether disposable plastic counting chambers effectively could replace nondisposable, time-consuming, and potentially dangerous glass hemocytometers. Evaluation of equipment in modern laboratory andrology. Comparison of results obtained with plastic chambers with results obtained with "gold-standard" glass hemocytometer counts. Diagnostic laboratory for andrology. Twenty-one patients undergoing investigation for infertility problems. No interventions with patients; sperm in diluted semen samples were used when patients had allowed the use for research and training. Sperm concentration, difference from results obtained with standard equipment. In the first three experimental series, with use of standard routine phase-contrast microscopy, significantly lower count results were obtained consistently from the plastic chambers than from standard chambers. In the fourth series, with use of specialized equipment, equivalent results were obtained but with a considerably greater time commitment because of difficulties in distinguishing sperm adjacent to the gridlines in the plastic chambers. The plastic disposable chamber type was not suitable for routine semen analysis because results are variable depending on the microscope used, and increased time is necessary to do the assessment accurately.

  17. Cloud Physics Test in the Space Power Chamber

    NASA Image and Video Library

    1975-09-21

    A researcher sets up equipment in the Space Power Chamber at National Aeronautics and Space Administration’s (NASA) Plum Brook Station to study the effects of contaminants on clouds. Drs. Rosa and Jorge Pena of Pennsylvania State University's Department of Meteorology initiated the program in an effort to develop methods of creating stable, long-lasting clouds in a test chamber in order to study their composition and formation. The researchers then wanted to use the artificially-created clouds to determine how they were affected by pollution. The 100-foot diameter and 122-foot high Space Power Chamber is the largest vacuum chamber in the world. The researchers covered the circular walls with muslin. A recirculating water system saturated the cloth. The facility engineers then reduced the chamber’s pressure which released the water from the muslin and generated a cloud. The researchers produced five different clouds in this first portion of this study. They discovered that they could not create stable clouds because of the heat generated by the water-pumping equipment. Nonetheless, they felt confident enough to commence planning the second phase of the program using a heat exchanger to cool the equipment.

  18. Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Calvisi, Michael L.; Sun, Sidney C.

    1991-01-01

    The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.

  19. CONSTRUCTION OF AN OXYGEN CHAMBER FOR THE TREATMENT OF PNEUMONIA

    PubMed Central

    Stadie, William C.

    1922-01-01

    1. The construction of an oxygen chamber is given. This chamber can be quickly filled with oxygen to any concentration up to 65 per cent and maintained at the desired concentration for an indefinite time. 2. The construction of ventilating system, cooling device, carbon dioxide remover, automatic oxygen analyzer, and filling and maintenance devices is given. 3. The chamber is designed so that pneumonia patients with anoxemia may be placed in it and breathe an atmosphere containing 40 to 60 per cent of oxygen. 4. The chamber is easy of ingress and egress, is economical in cost of operation, and comfortably accomodates patient and attendants so that adequate nursing and medical attention can be given at all times. PMID:19868609

  20. Sound absorption study of raw and expanded particulate vermiculites

    NASA Astrophysics Data System (ADS)

    Vašina, Martin; Plachá, Daniela; Mikeska, Marcel; Hružík, Lumír; Martynková, Gražyna Simha

    2016-12-01

    Expanded and raw vermiculite minerals were studied for their ability to absorb sound. Phase and structural characterization of the investigated vermiculites was found similar for both types, while morphology and surface properties vary. Sound waves reflect in wedge-like structure and get minimized, and later are absorbed totally. We found that thanks to porous character of expanded vermiculite the principle of absorption of sound into layered vermiculite morphology is analogous to principle of sound minimization in "anechoic chambers." It was found in this study that the best sound damping properties of the investigated vermiculites were in general obtained at higher powder bed heights and higher excitation frequencies.

  1. Model-based auralizations of violin sound trends accompanying plate-bridge tuning or holding.

    PubMed

    Bissinger, George; Mores, Robert

    2015-04-01

    To expose systematic trends in violin sound accompanying "tuning" only the plates or only the bridge, the first structural acoustics-based model auralizations of violin sound were created by passing a bowed-string driving force measured at the bridge of a solid body violin through the dynamic filter (DF) model radiativity profile "filter" RDF(f) (frequency-dependent pressure per unit driving force, free-free suspension, anechoic chamber). DF model auralizations for the more realistic case of a violin held/played in a reverberant auditorium reveal that holding the violin greatly diminishes its low frequency response, an effect only weakly compensated for by auditorium reverberation.

  2. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies. Part 2: The PTW/MARKUS chamber.

    PubMed

    Cross, P; Freeman, N

    1997-06-01

    The purpose of Part 2 study of calibration methods for plane parallel ionisation chambers was to determine the feasibility of using beams of calibration of the MARKUS chamber other than the standard AAPM TG39 reference beams of 60Co and a high energy electron beam (E0 > or = 15 MeV). A previous study of the NACP chamber had demonstrated an acceptable level of accuracy with corresponding spread of -0.5% to +0.8% for its calibration in non-standard situations (medium to low energy electron and photon beams). For non-standard situations the spread in NDMARKUS values was found to be +/-2.5%. The results suggest that user calibrations of the MARKUS chamber in non-standard situations are associated with more uncertainties than is the case with the NACP chamber.

  3. 17. View northwest of Tropic Chamber refrigeration equipment, in machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View northwest of Tropic Chamber refrigeration equipment, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  4. Ducted combustion chamber for direct injection engines and method

    DOEpatents

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  5. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOEpatents

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  6. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  7. 1. View southeast of Climatic Chambers Building from roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View southeast of Climatic Chambers Building from roof of Research Building. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  8. Construction and test of new precision drift-tube chambers for the ATLAS muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kroha, H.; Kortner, O.; Schmidt-Sommerfeld, K.; Takasugi, E.

    2017-02-01

    ATLAS muon detector upgrades aim for increased acceptance for muon triggering and precision tracking and for improved rate capability of the muon chambers in the high-background regions of the detector with increasing LHC luminosity. The small-diameter Muon Drift Tube (sMDT) chambers have been developed for these purposes. With half of the drift-tube diameter of the MDT chambers and otherwise unchanged operating parameters, sMDT chambers share the advantages of the MDTs, but have an order of magnitude higher rate capability and can be installed in detector regions where MDT chambers do not fit in. The chamber assembly methods have been optimized for mass production, minimizing construction time and personnel. Sense wire positioning accuracies of 5 μm have been achieved in serial production for large-size chambers comprising several hundred drift tubes. The construction of new sMDT chambers for installation in the 2016/17 winter shutdown of the LHC and the design of sMDT chambers in combination with new RPC trigger chambers for replacement of the inner layer of the barrel muon spectrometer are in progress.

  9. Some effects of thermal-cycle-induced deformation in rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Price, R. G., Jr.

    1981-01-01

    The deformation process observed in the hot gas side wall of rocket combustion chambers was investigaged for three different liner materials. Five thrust chambers were cycled to failure by using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/cu m. The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the problems of life prediction associated with the types of failures encountered in the present work. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers. From these deformation data and observation of the failure sites it is evident that modeling the failure process as classic low cycle thermal fatigue is inadequate as a life prediction method.

  10. Optimization and analysis of NF3 in situ chamber cleaning plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Bing; Yang, James H.; Badowski, Peter R.; Karwacki, Eugene J.

    2004-04-01

    We report on the optimization and analysis of a dilute NF3 in situ plasma-enhanced chemical vapor deposition chamber cleaning plasma for an Applied Materials P-5000 DxL chamber. Using design of experiments methodology, we identified and optimized operating conditions within the following process space: 10-15 mol % NF3 diluted with helium, 200-400 sccm NF3 flow rate, 2.5-3.5 Torr chamber pressure, and 950 W rf power. Optical emission spectroscopy and Fourier transform infrared spectroscopy were used to endpoint the cleaning processes and to quantify plasma effluent emissions, respectively. The results demonstrate that dilute NF3-based in situ chamber cleaning can be a viable alternative to perfluorocarbon-based in situ cleans with added benefits. The relationship between chamber clean time and fluorine atom density in the plasma is also investigated.

  11. Investigation of gaseous propellant combustion and associated injector/chamber design guidelines

    NASA Technical Reports Server (NTRS)

    Calhoon, D. F.; Ito, J. I.; Kors, D. L.

    1973-01-01

    Injector design criteria are provided for gaseous hydrogen-gaseous oxygen propellants. Design equations and procedures are presented which will allow an injector-chamber designer to a priori estimate of the performance, compatibility and stability characteristics of prototype injectors. The effects of chamber length, element geometry, thrust per element, mixture ratio, impingement angle, and element spacing were evaluated for four element concepts and their derivatives. The data from this series of tests were reduced to a single valued mixing function that describes the mixing potential of the various elements. Performance, heat transfer and stability data were generated for various mixture ratios, propellant temperatures, chamber pressures, contraction ratios, and chamber lengths. Applications of the models resulted in the design of procedures, whereby the performance and chamber heat flux can be calculated directly, and the injector stability estimated in conjunction with existing models.

  12. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  13. Continuous flow, explosives vapor generator and sensor chamber.

    PubMed

    Collins, Greg E; Giordano, Braden C; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D; Tucker, John E; Malito, Michael; Eversole, Jay D; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  14. Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters

    NASA Astrophysics Data System (ADS)

    Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.

    2015-12-01

    Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.

  15. 21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. PHOTOCOPY OF PHOTOGRAPH. view north of Tropic Chamber, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. 7. Detail view west of Arctic Chamber wind tunnel shell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view west of Arctic Chamber wind tunnel shell (typical) in east elevation. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  17. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  18. Factors controlling the structures of magma chambers in basaltic volcanoes

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, James W.

    1991-01-01

    The depths, vertical extents, and lateral extents of magma chambers and their formation are discussed. The depth to the center of a magma chamber is most probably determined by the density structure of the lithosphere; this process is explained. It is commonly assumed that magma chambers grow until the stress on the roof, floor, and side-wall boundaries exceed the strength of the wall rocks. Attempts to grow further lead to dike propagation events which reduce the stresses below the critical values of rock failure. The tensile or compressive failure of the walls is discussed with respect to magma migration. The later growth of magma chambers is accomplished by lateral dike injection into the country rocks. The factors controlling the patterns of growth and cooling of such dikes are briefly mentioned.

  19. DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS.

    SciTech Connect

    HE,P.; HSEUH,H.C.; MAPES,M.

    2001-06-18

    The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with {approximately}100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent resultsmore » were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented.« less

  20. 21 CFR 880.5450 - Patient care reverse isolation chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Therapeutic Devices § 880.5450 Patient care reverse isolation chamber. (a) Identification. A patient care... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient care reverse isolation chamber. 880.5450... harmful airborne material. This device protects a patient who is undergoing treatment for burns or is...

  1. Miniature microwave powered steam sterilization chamber

    NASA Astrophysics Data System (ADS)

    Atwater, James E.; Dahl, Roger W.; Garmon, Frank C.; Lunsford, Teddie D.; Michalek, William F.; Wheeler, Richard R., Jr.; Sauer, Richard L.

    1997-10-01

    A small device for the rapid ultrahigh temperature sterilization of surfaces is described. Microwave power generated by a 2.45 GHz magnetron is delivered via coaxial cable to a silicon carbide block housed within the chamber. Small quantities of water or aqueous hydrogen peroxide are introduced into the chamber. Upon application of power, the liquid flashes to vapor and superheats producing temperatures to 300 °C. The hot vapor permeates the enclosed space and contacts all exposed surfaces. Complete microbial kill of >10 6 colony forming units of the spore forming thermophile, Bacillus stearothermophilus, has been demonstrated using a variety of temperatures and exposure times in both steady state and thermal pulse modes of operation.

  2. Introduction for Diffusion Chamber Culture Symposium

    SciTech Connect

    Carsten, A. L.

    The diffusion-chamber system has been applied to studies of cell kinetics, progenitor cell quantitation, humoral effects, immunological effects, cytogenetics, organogenesis, and the cellular effects of drugs and physical factors such as radiation, hypoxia, etc. Chamber contents have been analyzed by clot dissolution with measuring of cell content, limiting dilution evaluation, radionuclide utilization (tritiated thymidine labeling), growth of colony number, size and type, CFU-S or CFU-C content, or proliferation by secondary culture in mice or in vitro systems, and chromosome changes. Cell types ranging from embryonal tissues to adult normal and neoplastic tissues have been grown in hosts across species barriers.more » Advantages and disadvantages of this system are discussed.« less

  3. 23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. PHOTOCOPY OF PHOTOGRAPH. View west of Tropic Chamber refrigeration equipment, ca. 1955. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  4. 16. View northwest of Arctic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View northwest of Arctic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  5. 18. View north of Tropic Chamber Worthington centrifugal compressor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View north of Tropic Chamber Worthington centrifugal compressor and control panel, in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  6. A watertight acrylic-free titanium recording chamber for electrophysiology in behaving monkeys

    PubMed Central

    Economides, John R.; Jocson, Cristina M.; Parker, John M.; Horton, Jonathan C.

    2011-01-01

    Neurophysiological recording in alert monkeys requires the creation of a permanent aperture in the skull for repeated insertion of microelectrodes. Most laboratories use polymethyl methacrylate to attach a recording chamber over the skull opening. Here, we describe a titanium chamber that fastens to the skull with screws, using no polymethyl methacrylate. The gap between the base of the chamber and the skull is filled with hydroxyapatite, forming a watertight gasket. As the chamber base osseointegates with the skull, the hydroxyapatite is replaced with bone. Rather than having a finite lifetime, the recording chamber becomes more firmly anchored the longer it is in place. It has a small footprint, low profile, and needs little maintenance to control infection. Toilette consists of occasional application of betadine to clean the scalp margin, followed by application of neomycin, polymyxin, and bacitracin ointment. Antibiotic is also placed inside the chamber to suppress bacterial proliferation. Thickening of the dura within the chamber can be prevented by regular application of mitocycin C and/or bevacizumab, an antibody against vascular endothelial growth factor. By conducting an e-mail survey, this protocol for chamber maintenance was compared with procedures used in 37 other vision research laboratories. Refinement of appliances and techniques used for recordings in awake monkeys promises to increase the pace of scientific discovery and to benefit animal welfare. PMID:21676928

  7. Saturation current and collection efficiency for ionization chambers in pulsed beams.

    PubMed

    DeBlois, F; Zankowski, C; Podgorsak, E B

    2000-05-01

    Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.

  8. Annual Net Ecosystem Productivity of Wetlands: A Comparison of Automated and Manual Chamber Methods

    NASA Astrophysics Data System (ADS)

    Burrows, E. H.; Bubier, J. L.; Mosedale, A.; Crill, P. M.

    2001-05-01

    Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) was measured in a minerotrophic poor fen in southeastern New Hampshire during the 2000 growing season using two types of chamber methods. Instantaneous CO2 flux was measured with transparent lexan and teflon static climate controlled chambers by calculating the change in headspace CO2 concentration in the chamber over time. Once per week the flux was sampled from ten manually operated chambers using a LI-COR 6200 portable photosynthesis system, which included a LI-6250 infrared gas analyzer, connected to the chambers. Ten automated chambers were installed in May of 2000, sampling CO2 flux every three hours over the diurnal cycle using a LI-COR 6262 infrared gas analyzer. The chambers and collars were placed throughout the fen in order to sample the range of plant communities. The manual sampling was done during the middle of the day, but the rate of photosynthesis changes depending on the amount of photosynthetically active radiation (PAR). In order to simulate varying light levels, shrouds blocking different amounts of light were placed over each manual chamber. An opaque shroud was used to measure respiration. NEE ranged from -13.0 to 12.5 μ mol CO2/m2/s in the manual chambers and -16.2 to 11.8 μ mol CO2/m2/s in the automated chambers for the mid-summer growing season. Manual respiration fluxes were measured under higher temperature regimes and the response of respiration to temperature will be factored in when comparing the two chamber techniques. Research during the summer of 2001 will also include diurnal measurements. Growing season net ecosystem productivity (NEP) will be estimated and compared for the two chamber systems. Several models will be used to estimate the flux when the manual chambers were not being sampled. The models will be based on biomass and dominant species in each chamber, and various environmental factors including water table, pH, relative humidity, PAR, air and peat temperature

  9. Effects of open-top chambers on Valencia' orange trees. [Citrus sinensis

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Kats, G.

    Open-top field chambers are the most widely used technology for evaluating the impacts of air pollutants on vegetation. This study was conducted to evaluate the long-term effects of chambers on Valencia orange trees (Citrus sinensis (L.) Osbeck). The trees were exposed to ambient ozone (O{sub 3}) for 51 months in large (4.3-m diam. by 2.9-m high) nonfiltered open-top chambers (NF) and in ambient air without chambers (AA). Results suggest that the yield increases for NF compared to AA trees could, in part, be accounted for by decreased flux of O{sub 3} into leaves (based on decreased O{sub 3} exposure andmore » leaf conductance). However, other factors, i.e., increased tree growth, altered leaf C allocation, and lack of wind stress occurring only in chambers, likely contributed to higher NF tree yields.« less

  10. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. The development of a portable ultrahigh vacuum chamber via silicon block.

    PubMed

    Chuang, Ho-Chiao; Huang, Chia-Shiuan

    2014-05-01

    This paper describes a nonmetallic, light weight portable chamber for ultra-high vacuum (UHV) applications. The chamber consists of a processed silicon block anodically bonding five polished Pyrex glass windows and a Pyrex glass adapter, without using any screws, bolts or vacuum adhesives. The design features provide an alternative chamber for UHV applications which require nonmetallic components. We have cyclically baked the chamber up to 180 °C for 160 h and have achieved an ultimate pressure of 1.4 × 10(-9) Torr (limited by our pumping station), with no leak detected. Both Pyrex glass windows and Pyrex glass adapter have been used successfully.

  13. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  14. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    PubMed Central

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; de Ruiter, Darryl J; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; van Rooyen, Dirk; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul HGM; Berger, Lee R

    2017-01-01

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species. DOI: http://dx.doi.org/10.7554/eLife.24232.001 PMID:28483039

  15. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa.

    PubMed

    Hawks, John; Elliott, Marina; Schmid, Peter; Churchill, Steven E; Ruiter, Darryl J de; Roberts, Eric M; Hilbert-Wolf, Hannah; Garvin, Heather M; Williams, Scott A; Delezene, Lucas K; Feuerriegel, Elen M; Randolph-Quinney, Patrick; Kivell, Tracy L; Laird, Myra F; Tawane, Gaokgatlhe; DeSilva, Jeremy M; Bailey, Shara E; Brophy, Juliet K; Meyer, Marc R; Skinner, Matthew M; Tocheri, Matthew W; VanSickle, Caroline; Walker, Christopher S; Campbell, Timothy L; Kuhn, Brian; Kruger, Ashley; Tucker, Steven; Gurtov, Alia; Hlophe, Nompumelelo; Hunter, Rick; Morris, Hannah; Peixotto, Becca; Ramalepa, Maropeng; Rooyen, Dirk van; Tsikoane, Mathabela; Boshoff, Pedro; Dirks, Paul Hgm; Berger, Lee R

    2017-05-09

    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi . Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi . Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi , and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.

  16. Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Hayden, Warren R.

    1988-01-01

    The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.

  17. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  18. Collaborative Composing in High School String Chamber Music Ensembles

    ERIC Educational Resources Information Center

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…

  19. Technical Note: Drifting vs. anchored flux chambers for measuring greenhouse gas emissions from running waters

    NASA Astrophysics Data System (ADS)

    Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.

    2015-09-01

    Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.

  20. Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang

    2014-10-01

    Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.

  1. $pi$$sup +-$ TRACKS IN A FILAMENT SCINTILLATION CHAMBER

    SciTech Connect

    Reynolds, G.T.; Swanson, R.A.; Scarl, D.B.

    1960-09-01

    The performance of a filament scintillation chamber system designed for studies on stopping mesons was studied by exposing it to the 90-Mev pi/sup plus or minus/ beam of the Nevis cyclotron and taking a total of 16,000 photographs. THe results indicate that (1) except for meson tracks, the chamber appears clean even without the 200-mu sec gating and the iron blockhouse, (2) the magnetic field has no effect on the performance and resolution, (3) three or four tracks can appear in a single picture of the 1-in.-diameter chamber without confusion, and (4) even at the highest beam fluxes, the gatingmore » restricts the tracks to those selected by the counter system. Pictures of the distinguishable stopping of pi/ sup +/ and pi/sup -/ mesons are included. (D.L.C.)« less

  2. Bluetooth Communication Interface for EEG Signal Recording in Hyperbaric Chambers.

    PubMed

    Pastena, Lucio; Formaggio, Emanuela; Faralli, Fabio; Melucci, Massimo; Rossi, Marco; Gagliardi, Riccardo; Ricciardi, Lucio; Storti, Silvia F

    2015-07-01

    Recording biological signals inside a hyperbaric chamber poses technical challenges (the steel walls enclosing it greatly attenuate or completely block the signals as in a Faraday cage), practical (lengthy cables creating eddy currents), and safety (sparks hazard from power supply to the electronic apparatus inside the chamber) which can be overcome with new wireless technologies. In this technical report we present the design and implementation of a Bluetooth system for electroencephalographic (EEG) recording inside a hyperbaric chamber and describe the feasibility of EEG signal transmission outside the chamber. Differently from older systems, this technology allows the online recording of amplified signals, without interference from eddy currents. In an application of this technology, we measured EEG activity in professional divers under three experimental conditions in a hyperbaric chamber to determine how oxygen, assumed at a constant hyperbaric pressure of 2.8 ATA , affects the bioelectrical activity. The EEG spectral power estimated by fast Fourier transform and the cortical sources of the EEG rhythms estimated by low-resolution brain electromagnetic analysis were analyzed in three different EEG acquisitions: breathing air at sea level; breathing oxygen at a simulated depth of 18 msw, and breathing air at sea level after decompression.

  3. An environmental chamber for investigating the evaporation of volatile chemicals.

    PubMed

    Dillon, H K; Rumph, P F

    1998-03-01

    An inexpensive test chamber has been constructed that provides an environment appropriate for testing the effects of temperature and chemical interactions on gaseous emissions from test solutions. Temperature, relative humidity, and ventilation rate can be controlled and a well-mixed atmosphere can be maintained. The system is relatively simple and relies on heated tap water or ice to adjust the temperature. Temperatures ranging from 9 to 21 degrees C have been maintained. At an average temperature of 15.1 degrees C, temperatures at any location within the chamber vary by no more than 0.5 degree C, and the temperature of the test solution within the chamber varies by no more than 0.1 degree C. The temperatures within the chamber are stable enough to generate precise steady-state concentrations. The wind velocities within the chamber are reproducible from run to run. Consequently, the effect of velocity on the rate of evaporation of a test chemical is expected to be uniform from run to run. Steady-state concentrations can be attained in less than 1 hour at an air exchange rate of about 5 per hour.

  4. Dual chamber arrhythmia detection in the implantable cardioverter defibrillator.

    PubMed

    Dijkman, B; Wellens, H J

    2000-10-01

    Dual chamber implantable cardioverter defibrillator (ICD) technology extended ICD therapy to more than termination of hemodynamically unstable ventricular tachyarrhythmias. It created the basis for dual chamber arrhythmia management in which dependable detection is important for treatment and prevention of both ventricular and atrial arrhythmias. Dual chamber detection algorithms were investigated in two Medtronic dual chamber ICDs: the 7250 Jewel AF (33 patients) and the 7271 Gem DR (31 patients). Both ICDs use the same PR Logic algorithm to interpret tachycardia as ventricular tachycardia (VT), supraventricular tachycardia (SVT), or dual (VT+ SVT). The accuracy of dual chamber detection was studied in 310 of 1,367 spontaneously occurring tachycardias in which rate criterion only was not sufficient for arrhythmia diagnosis. In 78 episodes there was a double tachycardia, in 223 episodes SVT was detected in the VT or ventricular fibrillation zone, and in 9 episodes arrhythmia was detected outside the boundaries of the PR Logic functioning. In 100% of double tachycardias the VT was correctly diagnosed and received priority treatment. SVT was seen in 59 (19%) episodes diagnosed as VT. The causes of inappropriate detection were (1) algorithm failure (inability to fulfill the PRchamber detection algorithms evaluated in a subset of diagnostically difficult arrhythmias allow safe detection of double tachycardias but require further extension and programmability to

  5. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    PubMed

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  6. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    SciTech Connect

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less

  7. Paris Chamber of Commerce Examinations and ACTFL/ETS Proficiency Levels.

    ERIC Educational Resources Information Center

    Cummins, Patricia W.

    1987-01-01

    Compares the Paris Chamber of Commerce Exams (both certificate and diploma levels) and the ACTFL Guidelines for language proficiency for the benefit of language teachers. Teaching strategies are suggested for preparing students for the Chamber of Commerce exams. (LMO)

  8. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Automatic anterior chamber angle assessment for HD-OCT images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  10. PROPANE BUBBLE CHAMBER (in Italian)

    SciTech Connect

    Loria, A.; Mittner, P.; Scotoni, I.

    1959-03-01

    A propane bubble chamber of about two liters volume is described: details concerning the membrane expansion mechanism, the structure of the windows and the illuminating system are given. Some features of the use of it, recently made at the CERN synchrocyclotron, are indicated. (auth)

  11. The central electrode correction factor for high-Z electrodes in small ionization chambers.

    PubMed

    Muir, B R; Rogers, D W O

    2011-02-01

    Recent Monte Carlo calculations of beam quality conversion factors for ion chambers that use high-Z electrodes [B. R. Muir and D. W. O. Rogers, Med. Phys. 37, 5939-5950 (2010)] have shown large deviations of kQ values from values calculated using the same techniques as the TG-51 and TRS-398 protocols. This report investigates the central electrode correction factor, Pcel, for these chambers. Ionization chambers are modeled and Pcel is calculated using the EGSnrc user code egs_chamber for three cases: in photon and electron beams under reference conditions; as a function of distance from an iridium-192 point source in a water phantom; and as a function of depth in a water phantom on which a 200 kVp x-ray source or 6 MV beam is incident. In photon beams, differences of up to 3% between Pcel calculations for a chamber with a high-Z electrode and those used by TG-51 for a 1 mm diameter aluminum electrode are observed. The central electrode correction factor for a given value of the beam quality specifier is different depending on the amount of filtration of the photon beam. However, in an unfiltered 6 MV beam, Pcel, varies by only 0.3% for a chamber with a high-Z electrode as the depth is varied from 1 to 20 cm in water. The difference between Pcel calculations for chambers with high-Z electrodes and TG-51 values for a chamber with an aluminum electrode is up to 0.45% in electron beams. The central electrode correction, which is roughly proportional to the chambers absorbed dose sensitivity, is found to be large and variable as a function of distance for chambers with high-Z and aluminum electrodes in low-energy photon fields. In this work, ionization chambers that employ high-Z electrodes have been shown to be problematic in various situations. For beam quality conversion factors, the ratio of Pcel in a beam quality Q to that in a Co-60 beam is required; for some chambers, kQ is significantly different from current dosimetry protocol values because of central

  12. U.S. Chamber Adds Business Viewpoint on Schools' Quality

    ERIC Educational Resources Information Center

    Archer, Jeff

    2007-01-01

    With a new and highly critical report card offering a business perspective on the effectiveness of state education systems, the U.S. Chamber of Commerce is pushing what it sees as a prescription for more innovative, efficient, and better-performing schools. For the chamber, the grades and policy platform further a concerted new effort to shape…

  13. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin

  14. Chamber for mechanical testing in H2 with observation by neutron scattering

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Bradley, Peter; Slifka, Andrew; Drexler, Elizabeth

    2017-06-01

    A gas-pressure chamber has been designed, constructed, and tested at a moderate pressure (3.4 MPa, 500 psi) and has the capability of mechanical loading of steel specimens for neutron scattering measurements. The chamber will allow a variety of in situ neutron scattering measurements: in particular, diffraction, quasielastic scattering, inelastic scattering, and imaging. The chamber is compatible with load frames available at the user facilities at the NIST Center for Neutron Research and Oak Ridge National Laboratory Spallation Neutron Source. A demonstration of neutron Bragg edge imaging using the chamber is presented.

  15. ISIM Lowered into Thermal Vacuum Chamber

    NASA Image and Video Library

    2017-12-08

    An overhead glimpse inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md., as engineers ready the James Webb Space Telescope's Integrated Science Instrument Module, just lowered into the chamber for its first thermal vacuum test. The ISIM and the ISIM System Integration Fixture that holds the ISIM Electronics Compartment is completely covered in protective blankets to shield it from contamination. Image credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Combustion interaction with radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.

    1990-01-01

    Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.

  17. NASA Prepares Webb Telescope Pathfinder for Famous Chamber

    NASA Image and Video Library

    2015-04-13

    Engineers and technicians manually deployed the secondary mirror support structure (SMSS) of the James Webb Space Telescope's Pathfinder backplane test model, outside of a giant space simulation chamber called Chamber A, at NASA's Johnson Space Center in Houston. This historic test chamber was previously used in manned spaceflight missions and is being readied for a cryogenic test of a Webb telescope component. In the weightless environment of space, the SMSS is deployed by electric motors. On the ground, specially trained operators use a hand crank and a collection of mechanical ground support equipment to overcome the force of gravity. "This structure needs to be in the deployed configuration during the cryogenic test to see how the structure will operate in the frigid temperatures of space," said Will Rowland, senior mechanical test engineer for Northrop Grumman Aerospace Systems, Redondo Beach, California. "The test also demonstrates that the system works and can be successfully deployed." After the deployment was completed, Chamber A's circular door was opened and the rails (seen in the background of the photo) were installed so that the Pathfinder unit could be lifted, installed and rolled into the chamber on a cart. The team completed a fit check for the Pathfinder. Afterwards they readied the chamber for the cryogenic test, which will simulate the frigid temperatures the Webb telescope will encounter in space. “The team has been doing a great job keeping everything on schedule to getting our first optical test results, " said Lee Feinberg, NASA Optical Telescope Element Manager. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Desiree Stover Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt

  18. Hazardous Waste Cleanup: Chemours Chambers Works in Deepwater, New Jersey

    EPA Pesticide Factsheets

    The 1,455-acre DuPont Chambers Works Complex -- composed of the Chambers Works manufacturing area and the former Carneys Point Works - is located along the eastern shore of the Delaware River by State Highway 130 (Shell Road) in Deepwater, New Jersey. East

  19. Fluid intensifier having a double acting power chamber with interconnected signal rods

    DOEpatents

    Whitehead, John C.

    2001-01-01

    A fluid driven reciprocating apparatus having a double acting power chamber with signal rods serving as high pressure pistons, or to transmit mechanical power. The signal rods are connected to a double acting piston in the power chamber thereby eliminating the need for pilot valves, with the piston being controlled by a pair of intake-exhaust valves. The signal rod includes two spaced seals along its length with a vented space therebetween so that the driving fluid and driven fluid can't mix, and performs a switching function to eliminate separate pilot valves. The intake-exhaust valves can be integrated into a single housing with the power chamber, or these valves can be built into the cylinder head only of the power chamber, or they can be separate from the power chamber.

  20. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers.

    PubMed

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-05-20

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.