Science.gov

Sample records for aneurysm model assessing

  1. Predictive modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral aneurysms.

    PubMed

    Walcott, Brian P; Reinshagen, Clemens; Stapleton, Christopher J; Choudhri, Omar; Rayz, Vitaliy; Saloner, David; Lawton, Michael T

    2016-06-01

    Cerebral aneurysms are weakened blood vessel dilatations that can result in spontaneous, devastating hemorrhage events. Aneurysm treatment aims to reduce hemorrhage events, and strategies for complex aneurysms often require surgical bypass or endovascular stenting for blood flow diversion. Interventions that divert blood flow from their normal circulation patterns have the potential to result in unintentional ischemia. Recent developments in computational modeling and in vivo assessment of hemodynamics for cerebral aneurysm treatment have entered into clinical practice. Herein, we review how these techniques are currently utilized to improve risk stratification and treatment planning.

  2. Endoleak Assessment Using Computational Fluid Dynamics and Image Processing Methods in Stented Abdominal Aortic Aneurysm Models

    PubMed Central

    Lu, Yueh-Hsun; Mani, Karthick; Panigrahi, Bivas; Hsu, Wen-Tang

    2016-01-01

    Endovascular aortic aneurysm repair (EVAR) is a predominant surgical procedure to reduce the risk of aneurysm rupture in abdominal aortic aneurysm (AAA) patients. Endoleak formation, which eventually requires additional surgical reoperation, is a major EVAR complication. Understanding the etiology and evolution of endoleak from the hemodynamic perspective is crucial to advancing the current posttreatments for AAA patients who underwent EVAR. Therefore, a comprehensive flow assessment was performed to investigate the relationship between endoleak and its surrounding pathological flow fields through computational fluid dynamics and image processing. Six patient-specific models were reconstructed, and the associated hemodynamics in these models was quantified three-dimensionally to calculate wall stress. To provide a high degree of clinical relevance, the mechanical stress distribution calculated from the models was compared with the endoleak positions identified from the computed tomography images of patients through a series of imaging processing methods. An endoleak possibly forms in a location with high local wall stress. An improved stent graft (SG) structure is conceived accordingly by increasing the mechanical strength of the SG at peak wall stress locations. The presented analytical paradigm, as well as numerical analysis using patient-specific models, may be extended to other common human cardiovascular surgeries. PMID:27660648

  3. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model.

    PubMed

    Cooke, Daniel L; Bauer, Diana; Sun, Zhengda; Stillson, Carol; Nelson, Jeffrey; Barry, David; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V; Su, Hua; Saeed, Maythem M

    2015-02-01

    The lack of safe and reliable methods to sample vascular tissue in situ limits discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders, including aneurysms. We investigated the feasibility and comparable efficacy of in vivo vascular endothelial cell sampling using a spectrum of endovascular devices. Using the rabbit elastase carotid aneurysm model we evaluated the performance of existing aneurysmal coils, intracranial stents, and stent-like devices to collect vascular endothelial cells. Additionally, we modified a subset of devices to assess the effects of alterations to coil pitch, coil wire contour, and stent surface finishing. Device performance was evaluated by (1) the number of viable endothelial cells harvested, (2) the degree of vascular wall damage analyzed using digital subtraction angiography and histopathological analysis, and (3) the ease of device navigability and retrieval. Isolated cells underwent immunohistochemical analysis to confirm cell type and viability. Coil and stent specifications, technique, and endothelial cell counts were tabulated and statistical analysis performed. Using conventional detachable-type and modified aneurysm coils 11 of 14 (78.6%) harvested endothelial cells with a mean of 7.93 (±8.33) cells/coil, while 15 of 15 (100%) conventional stents, stent-like devices and modified stents harvested endothelial cells with a mean of 831.33 (±887.73) cells/device. Coil stiffness was significantly associated with endothelial cell count in univariate analysis (p = 0.044). For stents and stent-like devices univariate analysis demonstrated stent-to-aorta diameter ratios (p = 0.001), stent length (p = 0.049), and the use of a pulling retrieval technique (p = 0.019) significantly predictive of endothelial cell counts, though a multivariate model using these variables demonstrated only the stent-to-aorta diameter ratio (p = 0.029) predictive of endothelial cell counts. Modified

  4. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model

    PubMed Central

    Bauer, Diana; Sun, Zhengda; Stillson, Carol; Nelson, Jeffrey; Barry, David; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V; Su, Hua; Saeed, Maythem M

    2015-01-01

    The lack of safe and reliable methods to sample vascular tissue in situ limits discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders, including aneurysms. We investigated the feasibility and comparable efficacy of in vivo vascular endothelial cell sampling using a spectrum of endovascular devices. Using the rabbit elastase carotid aneurysm model we evaluated the performance of existing aneurysmal coils, intracranial stents, and stent-like devices to collect vascular endothelial cells. Additionally, we modified a subset of devices to assess the effects of alterations to coil pitch, coil wire contour, and stent surface finishing. Device performance was evaluated by (1) the number of viable endothelial cells harvested, (2) the degree of vascular wall damage analyzed using digital subtraction angiography and histopathological analysis, and (3) the ease of device navigability and retrieval. Isolated cells underwent immunohistochemical analysis to confirm cell type and viability. Coil and stent specifications, technique, and endothelial cell counts were tabulated and statistical analysis performed. Using conventional detachable-type and modified aneurysm coils 11 of 14 (78.6%) harvested endothelial cells with a mean of 7.93 (±8.33) cells/coil, while 15 of 15 (100%) conventional stents, stent-like devices and modified stents harvested endothelial cells with a mean of 831.33 (±887.73) cells/device. Coil stiffness was significantly associated with endothelial cell count in univariate analysis (p = 0.044). For stents and stent-like devices univariate analysis demonstrated stent-to-aorta diameter ratios (p = 0.001), stent length (p = 0.049), and the use of a pulling retrieval technique (p = 0.019) significantly predictive of endothelial cell counts, though a multivariate model using these variables demonstrated only the stent-to-aorta diameter ratio (p = 0.029) predictive of endothelial cell counts. Modified

  5. Mouse models of intracranial aneurysm.

    PubMed

    Wang, Yutang; Emeto, Theophilus I; Lee, James; Marshman, Laurence; Moran, Corey; Seto, Sai-wang; Golledge, Jonathan

    2015-05-01

    Subarachnoid hemorrhage secondary to rupture of an intracranial aneurysm is a highly lethal medical condition. Current management strategies for unruptured intracranial aneurysms involve radiological surveillance and neurosurgical or endovascular interventions. There is no pharmacological treatment available to decrease the risk of aneurysm rupture and subsequent subarachnoid hemorrhage. There is growing interest in the pathogenesis of intracranial aneurysm focused on the development of drug therapies to decrease the incidence of aneurysm rupture. The study of rodent models of intracranial aneurysms has the potential to improve our understanding of intracranial aneurysm development and progression. This review summarizes current mouse models of intact and ruptured intracranial aneurysms and discusses the relevance of these models to human intracranial aneurysms. The article also reviews the importance of these models in investigating the molecular mechanisms involved in the disease. Finally, potential pharmaceutical targets for intracranial aneurysm suggested by previous studies are discussed. Examples of potential drug targets include matrix metalloproteinases, stromal cell-derived factor-1, tumor necrosis factor-α, the renin-angiotensin system and the β-estrogen receptor. An agreed clear, precise and reproducible definition of what constitutes an aneurysm in the models would assist in their use to better understand the pathology of intracranial aneurysm and applying findings to patients.

  6. From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment.

    PubMed

    Brinjikji, Waleed; Ding, Yong H; Kallmes, David F; Kadirvel, Ramanathan

    2016-05-01

    Preclinical studies are important in helping practitioners and device developers improve techniques and tools for endovascular treatment of intracranial aneurysms. Thus an understanding of the major animal models used in such studies is important. The New Zealand rabbit elastase induced arterial aneurysm of the common carotid artery is one of the most commonly used models in testing the safety and efficacy of new endovascular devices. In this review we discuss: (1) the various techniques used to create the aneurysm, (2) complications of aneurysm creation, (3) natural history of the arterial aneurysm, (4) histopathologic and hemodynamic features of the aneurysm, (5) devices tested using this model, and (6) weaknesses of the model. We demonstrate how preclinical studies using this model are applied in the treatment of intracranial aneurysms in humans. The model has similar hemodynamic, morphological, and histologic characteristics to human aneurysms, and demonstrates similar healing responses to coiling as human aneurysms. Despite these strengths, however, the model does have many weaknesses, including the fact that the model does not emulate the complex inflammatory processes affecting growing and ruptured aneurysms. Furthermore, the extracranial location of the model affects its ability to be used in preclinical safety assessments of new devices. We conclude that the rabbit elastase model has characteristics that make it a simple and effective model for preclinical studies on the endovascular treatment of intracranial aneurysms, but further work is needed to develop aneurysm models that simulate the histopathologic and morphologic characteristics of growing and ruptured aneurysms.

  7. Quantitative Assessment of Abdominal Aortic Aneurysm Geometry

    PubMed Central

    Shum, Judy; Martufi, Giampaolo; Di Martino, Elena; Washington, Christopher B.; Grisafi, Joseph; Muluk, Satish C.; Finol, Ender A.

    2011-01-01

    Recent studies have shown that the maximum transverse diameter of an abdominal aortic aneurysm (AAA) and expansion rate are not entirely reliable indicators of rupture potential. We hypothesize that aneurysm morphology and wall thickness are more predictive of rupture risk and can be the deciding factors in the clinical management of the disease. A non-invasive, image-based evaluation of AAA shape was implemented on a retrospective study of 10 ruptured and 66 unruptured aneurysms. Three-dimensional models were generated from segmented, contrast-enhanced computed tomography images. Geometric indices and regional variations in wall thickness were estimated based on novel segmentation algorithms. A model was created using a J48 decision tree algorithm and its performance was assessed using ten-fold cross validation. Feature selection was performed using the χ2-test. The model correctly classified 65 datasets and had an average prediction accuracy of 86.6% (κ = 0.37). The highest ranked features were sac length, sac height, volume, surface area, maximum diameter, bulge height, and intra-luminal thrombus volume. Given that individual AAAs have complex shapes with local changes in surface curvature and wall thickness, the assessment of AAA rupture risk should be based on the accurate quantification of aneurysmal sac shape and size. PMID:20890661

  8. Assessment Of Coronary Artery Aneurysms Using Transluminal Attenuation Gradient And Computational Modeling In Kawasaki Disease Patients

    NASA Astrophysics Data System (ADS)

    Grande Gutierrez, Noelia; Kahn, Andrew; Shirinsky, Olga; Gagarina, Nina; Lyskina, Galina; Fukazawa, Ryuji; Owaga, Shunichi; Burns, Jane; Marsden, Alison

    2015-11-01

    Kawasaki Disease (KD) can result in coronary artery aneurysms (CAA) in up to 25% of patients, putting them at risk of thrombus formation, myocardial infarction and sudden death. Clinical guidelines recommend CAA diameter >8 mm as the arbitrary criterion for initiating systemic anticoagulation. KD patient specific modeling and flow simulations suggest that hemodynamic data can predict regions at increased risk of thrombosis. Transluminal Attenuation Gradient (TAG) is determined from the change in radiological attenuation per vessel length and has been proposed as a non-invasive method for characterizing coronary stenosis from CT Angiography. We hypothesized that CAA abnormal flow could be quantified using TAG. We computed hemodynamics for patient specific coronary models using a stabilized finite element method, coupled numerically to a lumped parameter network to model the heart and vascular boundary conditions. TAG was quantified in the major coronary arteries. We compared TAG for aneurysmal and normal arteries and we analyzed TAG correlation with hemodynamic and geometrical parameters. Our results suggest that TAG may provide hemodynamic data not available from anatomy alone. TAG represents a possible extension to standard CTA that could help to better evaluate the risk of thrombus formation in KD.

  9. Subject-specific modeling of intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Cebral, Juan R.; Hernandez, Monica; Frangi, Alejandro; Putman, Christopher; Pergolizzi, Richard; Burgess, James

    2004-04-01

    Characterization of the blood flow patterns in cerebral aneurysms is important to explore possible correlations between the hemodynamics conditions and the morphology, location, type and risk of rupture of intracranial aneurysms. For this purpose, realistic patient-specific models are constructed from computed tomography angiography and 3D rotational angiography image data. Visualizations of the distribution of hemodynamics forces on the aneurysm walls as well as the intra-aneurysmal flow patterns are presented for a number of cerebral aneurysms of different sizes, types and locations. The numerical models indicate that there are different classes of intra-aneurysmal flow patterns, that may carry different risks of rupture.

  10. The Helsinki Rat Microsurgical Sidewall Aneurysm Model

    PubMed Central

    Marbacher, Serge; Marjamaa, Johan; Abdelhameed, Essam; Hernesniemi, Juha; Niemelä, Mika; Frösen, Juhana

    2014-01-01

    Experimental saccular aneurysm models are necessary for testing novel surgical and endovascular treatment options and devices before they are introduced into clinical practice. Furthermore, experimental models are needed to elucidate the complex aneurysm biology leading to rupture of saccular aneurysms. Several different kinds of experimental models for saccular aneurysms have been established in different species. Many of them, however, require special skills, expensive equipment, or special environments, which limits their widespread use. A simple, robust, and inexpensive experimental model is needed as a standardized tool that can be used in a standardized manner in various institutions. The microsurgical rat abdominal aortic sidewall aneurysm model combines the possibility to study both novel endovascular treatment strategies and the molecular basis of aneurysm biology in a standardized and inexpensive manner. Standardized grafts by means of shape, size, and geometry are harvested from a donor rat's descending thoracic aorta and then transplanted to a syngenic recipient rat. The aneurysms are sutured end-to-side with continuous or interrupted 9-0 nylon sutures to the infrarenal abdominal aorta. We present step-by-step procedural instructions, information on necessary equipment, and discuss important anatomical and surgical details for successful microsurgical creation of an abdominal aortic sidewall aneurysm in the rat. PMID:25350840

  11. A nonlinear biomathematical model for the study of intracranial aneurysms.

    PubMed

    Nieto, J J; Torres, A

    2000-08-01

    The formation and rupture of aneurysms is a significant medical problem, but is not clearly understood. Most intracranial aneurysm are located in the circle of Willis. We consider a nonlinear mathematical model that simulates the blood flow inside the aneurysm, one of the relevant factors in the evolution of an aneurysm. Different techniques from nonlinear analysis are used in order to obtain, from the model, several consequences that would help to understand some medical aspects of aneurysms of the circle of Willis.

  12. Flow Studies in Basilar Tip Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Cole, Russell; Selby, Kathy; Saloner, David; Savas, Omer

    2001-11-01

    Particle image velocimetry and flow visualization are performed on two models of basilar tip bifurcation aneurysms. The models are intended to correspond to an aneurysm at two stages during its growth. The models are subject to steady flow conditions covering the physiological range of Reynold’s numbers while being subject to both symmetric and asymmetric outflow conditions. A brief investigation is also made using pulsatile input flow with a physiologically representative waveform. Experiment showed a general pattern of increasing unsteadiness in the aneurysm head with increasing Reynold’s number. Only for a case of a small-headed model and asymmetric outflow could a quasi-stable flow pattern be established. For the same model with symmetric outflow conditions, instability in the aneurysm head occurs at the low end of physiological Reynold’s numbers. A larger-headed aneurysm model displayed a similar onset of instability for both symmetric and asymmetric outflow conditions, with flow within the aneurysm head being less pronounced than the small-headed model.

  13. A Pilot Study Assessing the Impact of 3-D Printed Models of Aortic Aneurysms on Management Decisions in EVAR Planning.

    PubMed

    Tam, Matthew D; Latham, Tom R; Lewis, Mark; Khanna, Kunal; Zaman, Ali; Parker, Mike; Grunwald, Iris Q

    2016-01-01

    Endovascular repair of aortic aneurysms with difficult anatomy is challenging. There is no consensus for planning such procedures. Six cases of aortic aneurysms with challenging anatomical features, such as short, angulated, and conical necks and tortuous iliacs were harvested. The computed tomography (CT) scans were anonymized. Lifesize 3-dimensional (3-D) printed models were created of the lumen. Endovascular operators were asked to review the CT angiography (CTA), make a management plan, and give an indication of their confidence. They were then presented with the equivalent model and asked to review their decision. Their attitudes to such models were briefly surveyed. A total of 28 endovascular operators reviewed 144 cases. After review of the physical model, the management plan changed in 29 (20.1%) of 144 cases. Initial plan after CTA review was endovascular 73.6%, open repair 22.9%, and second opinion 3.5%. After model review, this became endovascular 67.4%, open repair 19.4%, and second opinion 4.8%. Although the general trend was toward more open procedures, off-label techniques reduced from 19.4% to 15.2% following model review. When the management plan did not change, level of confidence did increase in 37 (43.5%) of 85 cases. The majority of operators stated that they would find models useful for planning in some procedures. For 1 case, the change in the percentage of participants being sure in the management plan was statistically significant (P = .031). The 3-D printed models may be potentially useful in planning cases with EVAR. It is a paradigm that warrants further investigation. © The Author(s) 2016.

  14. 3D Printing of Intracranial Aneurysms Using Fused Deposition Modeling Offers Highly Accurate Replications.

    PubMed

    Frölich, A M J; Spallek, J; Brehmer, L; Buhk, J-H; Krause, D; Fiehler, J; Kemmling, A

    2016-01-01

    As part of a multicenter cooperation (Aneurysm-Like Synthetic bodies for Testing Endovascular devices in 3D Reality) with focus on implementation of additive manufacturing in neuroradiologic practice, we systematically assessed the technical feasibility and accuracy of several additive manufacturing techniques. We evaluated the method of fused deposition modeling for the production of aneurysm models replicating patient-specific anatomy. 3D rotational angiographic data from 10 aneurysms were processed to obtain volumetric models suitable for fused deposition modeling. A hollow aneurysm model with connectors for silicone tubes was fabricated by using acrylonitrile butadiene styrene. Support material was dissolved, and surfaces were finished by using NanoSeal. The resulting models were filled with iodinated contrast media. 3D rotational angiography of the models was acquired, and aneurysm geometry was compared with the original patient data. Reproduction of hollow aneurysm models was technically feasible in 8 of 10 cases, with aneurysm sizes ranging from 41 to 2928 mm(3) (aneurysm diameter, 3-19 mm). A high level of anatomic accuracy was observed, with a mean Dice index of 93.6% ± 2.4%. Obstructions were encountered in vessel segments of <1 mm. Fused deposition modeling is a promising technique, which allows rapid and precise replication of cerebral aneurysms. The porosity of the models can be overcome by surface finishing. Models produced with fused deposition modeling may serve as educational and research tools and could be used to individualize treatment planning. © 2016 by American Journal of Neuroradiology.

  15. CFD-based Thrombotic Risk Assessment in Kawasaki Disease Patients with Coronary Artery Aneurysms

    NASA Astrophysics Data System (ADS)

    Sengupta, Dibyendu; Kung, Ethan; Kahn, Andrew; Burns, Jane; Marsden, Alison

    2012-11-01

    Coronary aneurysms occur in 25% of untreated Kawasaki Disease (KD) patients and put patients at increased risk for myocardial infarction and sudden death. Clinical guidelines recommend using aneurysm diameter >8 mm as the arbitrary criterion for treating with anti-coagulation therapy. This study uses patient-specific modeling to non-invasively determine hemodynamic parameters and quantify thrombotic risk. Anatomic models were constructed from CT angiographic image data from 5 KD aneurysm patients and one normal control. CFD simulations were performed to obtain hemodynamic data including WSS and particle residence times (PRT). Thrombosis was clinically observed in 4/9 aneurysmal coronaries. Thrombosed vessels required twice as many cardiac cycles (mean 8.2 vs. 4.2) for particles to exit, and had lower mean WSS (1.3 compared to 2.8 dynes/cm2) compared to vessels with non-thrombosed aneurysms of similar max diameter. 1 KD patient in the cohort with acute thrombosis had diameter < 8 mm. Regions of low WSS and high PRT predicted by simulations correlated with regions of subsequent thrombus formation. Thrombotic risk stratification for KD aneurysms may be improved by incorporating both hemodynamic and geometric quantities. Current clinical guidelines to assess patient risk based only on aneurysm diameter may be misleading. Further prospective study is warranted to evaluate the utility of patient-specific modeling in risk stratifying KD patients with coronary aneurysms. NIH R21.

  16. Using vortex corelines to analyze the hemodynamics of patient specific cerebral aneurysm models

    NASA Astrophysics Data System (ADS)

    Byrne, Greg; Mut, Fernando; Cebral, Juan

    2012-02-01

    We construct one-dimensional sets known as vortex corelines for computational fluid dynamic (CFD) simulations of blood flow in patient specific cerebral aneurysm models. These sets identify centers of swirling blood flow that may play an important role in the biological mechanisms causing aneurysm growth, rupture, and thrombosis. We highlight three specific applications in which vortex corelines are used to assess flow complexity and stability in cerebral aneurysms, validate numerical models against PIV-based experimental data, and analyze the effects of flow diverting devices used to treat intracranial aneurysms.

  17. Interobserver variability in the assessment of aneurysm occlusion with the WEB aneurysm embolization system.

    PubMed

    Fiorella, David; Arthur, Adam; Byrne, James; Pierot, Laurent; Molyneux, Andy; Duckwiler, Gary; McCarthy, Thomas; Strother, Charles

    2015-08-01

    The WEB (WEB aneurysm embolization system, Sequent Medical, Aliso Viejo, California, USA) is a self-expanding, nitinol, mesh device designed to achieve aneurysm occlusion after endosaccular deployment. The WEB Occlusion Scale (WOS) is a standardized angiographic assessment scale for reporting aneurysm occlusion achieved with intrasaccular mesh implants. This study was performed to assess the interobserver variability of the WOS. Seven experienced neurovascular specialists were trained to apply the WOS. These physicians independently reviewed angiographic image sets from 30 patients treated with the WEB under blinded conditions. No additional clinical information was provided. Raters graded each image according to the WOS (complete occlusion, residual neck or residual aneurysm). Final statistics were calculated using the dichotomous outcomes of complete occlusion or incomplete occlusion. The interobserver agreement was measured by the generalized κ statistic. In this series of 30 test case aneurysms, observers rated 12-17 as completely occluded, 3-9 as nearly completely occluded, and 9-11 as demonstrating residual aneurysm filling. Agreement was perfect across all seven observers for the presence or absence of complete occlusion in 22 of 30 cases. Overall, interobserver agreement was substantial (κ statistic 0.779 with a 95% CI of 0.700 to 0.857). The WOS allows a consistent means of reporting angiographic occlusion for aneurysms treated with the WEB device. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Aneurysm

    MedlinePlus

    ... is thought to play a role in abdominal aortic aneurysms. Atherosclerotic disease (cholesterol buildup in arteries) may also ... not it is painful and throbbing. With an aortic aneurysm, go to the emergency room or call 911 ...

  19. Morphology Parameters for Mirror Posterior Communicating Artery Aneurysm Rupture Risk Assessment

    PubMed Central

    JIANG, Hao; SHEN, Jian; WENG, Yu-Xiang; PAN, Jian-Wei; YU, Jian-Bo; WAN, Zi-Ang; ZHAN, Renya

    Recent studies have shown that posterior communicating artery (PComA) aneurysms are more likely to rupture. However, surgical intervention for PComA aneurysms may be associated with increased treatment-related morbidity rate. Therefore, it is meaningful to investigate the factors related to PComA aneurysm rupture. The purpose of this study was to identify morphological parameters that significantly correlate with PComA aneurysm rupture. We divided 14 pairs of mirror posterior communicating artery aneurysms (PComA-MANs) into ruptured and unruptured groups. Computed tomography angiography (CTA) imaging was evaluated with three-dimensional (3D) Slicer to generate models of the aneurysms and surrounding vasculature. Nine morphological parameters [size, height, width, neck width, aspect ratio (AR), bottleneck factor (BNF), height/width ratio (H/W), size ratio (SR), and bleb formation] were examined in the two groups for significance with respect to rupture. By contrast, statistically significant differences were found in ruptured and unruptured group for size, AR, BNF, SR, and bleb formation (P < 0.05). Parameters that had no significant differences between the two groups were height (P = 0.103), width (P = 0.078), neck width (P = 0.808), and H/W (P = 0.417). We conclude that MANs may be a useful model for the morphological analysis of intracranial aneurysm rupture. Larger size, higher AR, BNF, SR, and bleb formation may be related to rupture of PComA aneurysms. Larger sample studies minimizing the interference from patient-related factors and aneurysm type were expected for acquiring more accurate assessment of the relationship between these parameters and PComA aneurysm rupture. PMID:26041624

  20. Computational modeling of flow-altering surgeries in basilar aneurysms.

    PubMed

    Rayz, V L; Abla, A; Boussel, L; Leach, J R; Acevedo-Bolton, G; Saloner, D; Lawton, M T

    2015-05-01

    In cases where surgeons consider different interventional options for flow alterations in the setting of pathological basilar artery hemodynamics, a virtual model demonstrating the flow fields resulting from each of these options can assist in making clinical decisions. In this study, image-based computational fluid dynamics (CFD) models were used to simulate the flow in four basilar artery aneurysms in order to evaluate postoperative hemodynamics that would result from flow-altering interventions. Patient-specific geometries were constructed using MR angiography and velocimetry data. CFD simulations carried out for the preoperative flow conditions were compared to in vivo phase-contrast MRI measurements (4D Flow MRI) acquired prior to the interventions. The models were then modified according to the procedures considered for each patient. Numerical simulations of the flow and virtual contrast transport were carried out in each case in order to assess postoperative flow fields and estimate the likelihood of intra-aneurysmal thrombus deposition following the procedures. Postoperative imaging data, when available, were used to validate computational predictions. In two cases, where the aneurysms involved vital pontine perforator arteries branching from the basilar artery, idealized geometries of these vessels were incorporated into the CFD models. The effect of interventions on the flow through the perforators was evaluated by simulating the transport of contrast in these vessels. The computational results were in close agreement with the MR imaging data. In some cases, CFD simulations could help determine which of the surgical options was likely to reduce the flow into the aneurysm while preserving the flow through the basilar trunk. The study demonstrated that image-based computational modeling can provide guidance to clinicians by indicating possible outcome complications and indicating expected success potential for ameliorating pathological aneurysmal flow

  1. Microsurgically induced aneurysm models in rats, Part II: clipping, shrinking and micro-Doppler sonography.

    PubMed

    Mücke, T; Scholz, M; Kesting, M R; Wolff, K-D; Schmieder, K; Harders, A G

    2008-02-01

    To adapt to the changed approach in the treatment of aneurysms, the authors have developed three different experimental aneurysm models for teaching clipping, microvascular Doppler sonography and shrinking. 39 microaneurysms were created in 22 animals in three different locations at the carotid, femoral and iliac arteries and treated by neurosurgical clipping. Additionally, shrinking was accomplished in selected cases. Microvascular Doppler sonography with a 20-MHz microprobe was performed prior to and after clipping to assess the achieved result of the clipping manoeuvre. Multiple clip applications in different techniques were performed for optimisation of clip placement and additional training. All created aneurysms could be clipped successfully. The mean duration for clipping and control of clipping results by the micro-Doppler was 8:51+/-4:41 minutes at all aneurysms. The aneurysm clip was repositioned in 16 of 39 (41%) cases, on the basis of the Doppler findings in 14 aneurysms (36%). A relevant stenosis was detected in 10 (25.7%) and incomplete occlusion in 4 (10.2%) attempts. In one aneurysm vasospasm was detected at the distal part of the parent artery. Complete clipping was achieved in all cases. During the entire procedure three unexpected complications involving rupture and bleeding impeded the training. Surgically induced aneurysms in rats allow the possibility of multiple clipping, shrinking and micro-Doppler sonography for the simulation of aneurysm treatment.

  2. Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension

    PubMed Central

    Hosaka, Koji; Downes, Daniel P; Nowicki, Kamil W; Hoh, Brian L

    2014-01-01

    Introduction Cerebral aneurysms occur in up to 5% of the population. There are several murine models of aneurysms; however, all have limitations and none reproducibly model aneurysm rupture. To fulfill this need, we modified two current rodent aneurysm models to create a murine model which reproducibly produces intracranial aneurysms and rupture. Methods The left common carotid arteries and the right renal arteries were ligated in C57BL/6 female mice with a hypertensive diet. One week later, small burr holes were created with a stereotactic frame using the following stereotactic measurements: 1.2 mm rostral and 0.7 mm lateral to the right of the bregma. A 26 G needle was gradually advanced via the burr hole until contact with the skull base, upon which the needle was pulled back 0.3 mm. Five, 10 and 20 μL of 10 U/mL elastase solution and 10 μL of 1 U/mL elastase solution were stereotactically injected into the basal cisterns. Angiotensin II was then continually infused at a dose of 1000 ng/kg/min via an osmotic pump placed subcutaneously. In the control mice, 20 μL bromophenol blue solution was injected. Three weeks later, or earlier if mice expired prior to 3 weeks, the circle of Willis was inspected by microscopy for aneurysm formation and/or signs of rupture. Histological analyses were then performed to evaluate elastic lamina destruction, inflammatory cell and macrophage infiltration, absence of intimal endothelial cells and thickening of the smooth muscle layer within the aneurysm wall. To compare with human aneurysms, human aneurysm specimens (n=35; 34 unruptured and 1 ruptured) and normal control superficial temporal arteries (STAs) (n=9) were examined. Results All mice given 5, 10 and 20 μL of 10 U/mL elastase solution developed intracranial aneurysms within the circle of Willis; 40%, 60% and 50% of mice had ruptured aneurysms, respectively. In mice given 10 μL of 1.0 U/mL elastase solution, 90% developed intracranial

  3. Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study.

    PubMed

    Vakil, P; Ansari, S A; Cantrell, C G; Eddleman, C S; Dehkordi, F H; Vranic, J; Hurley, M C; Batjer, H H; Bendok, B R; Carroll, T J

    2015-05-01

    Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (K(trans), VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized K(trans) would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors. Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (K(trans), VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. K(trans) and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics. Interobserver agreement was strong as shown in regression analysis (R(2) > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the K(trans) can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P < .001). Regression analysis demonstrated a significant trend toward an increased K(trans) with increasing aneurysm size (P < .001). Logistic regression showed that K(trans) also predicted risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size. We report the first evidence of dynamic contrast-enhanced MR imaging-modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, K(trans) was a significant and size

  4. [Biomechanical modelling of cerebral aneurysm generation].

    PubMed

    Munteanu, Fl; Poeată, I

    2009-01-01

    The mechanisms of production for these aneurysms were not very well explained, therefore, the paper presents the conditions and steps in this vascular deficiency generation. The physiological overpressures were evaluated and the role of the compliance and hydraulic strength was determined by using windkessel model. The mathematical model was performed on the internal carotid artery and it reveals the role of blood vessel compliance and the increasing of hydraulic vascular-parietal resistance, caused by the contractile dysfunctions of pre-capillary sphincters during the appearance of sac-like and physiological forms of aneurisms.

  5. Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach.

    PubMed

    Ohta, Makoto; Wetzel, Stephan G; Dantan, Philippe; Bachelet, Caroline; Lovblad, Karl O; Yilmaz, Hasan; Flaud, Patrice; Rüfenacht, Daniel A

    2005-01-01

    Hemodynamic changes in intracranial aneurysms after stent placement include the appearance of areas with stagnant flow and low shear rates. We investigated the influence of stent placement on blood flow velocity and wall shear stress of an intracranial aneurysm using a finite element modeling approach. To assess viscosity changes induced by stent placement, the rheology of blood as non-Newtonian fluid was taken into account in this model. A two-dimensional model with a parent artery, a smaller branching artery, and an aneurysm located at the bifurcation, before and after stent placement, was used for simulation. Flow velocity plots and wall shear stress before and after stent placement was calculated over the entire cardiac circle. Values for dynamic viscosity were calculated with a constitutive equation that was based on experimental studies and yielded a viscosity, which decreases as the shear rate increases. Stent placement lowered peak velocities in the main vortex of the aneurysm by a factor of at least 4 compared to peak velocities in the main artery, and it considerably decreased the wall shear stress of the aneurysm. Dynamic viscosity increases after stent placement persisted over a major part of the cardiac cycle, with a factor of up to 10, most pronounced near the dome of the aneurysm. Finite element modeling can offer insight into rheological changes induced by stent treatment of aneurysms and allows visualizing dynamic viscosity changes induced by stent placement.

  6. A tissue-engineered aneurysm model for evaluation of endovascular devices.

    PubMed

    Touroo, Jeremy S; Williams, Stuart K

    2012-12-01

    Endovascular stent grafts used for treatment of arterial aneurysms require preclinical testing for investigation of biological responses following implantation. The preclinical evaluation process related to the safety and efficacy of these devices is limited by the absence of an in vitro aneurysmal blood vessel equivalent capable of providing high-throughput, cost-effective assessments. With this in mind, the focus of this work was to develop an aneurysm model consisting of human blood vessel cells. To create aneurysmal scaffolds, expanded polytetrafluoroethylene vascular grafts were dilated utilizing an angioplasty balloon. Stromal vascular fraction cells isolated from human adipose tissue were integrated with the scaffolds, and luminal flow of nutrient medium was executed for 14 days in a vascular bioreactor. Following bioreactor perfusion, histology verified that a neointimal lining of human tissue had formed. Immunohistochemistry and scanning electron microscopy revealed a flow-contacting layer of smooth muscle cells, characterizing the model as a representation of neointimal formation in an injured or diseased vessel. This study has demonstrated the engineering of a vascular construct containing an aneurysmal dilation. A tissue-engineered aneurysm model could provide an alternative to current nonbiological in vitro aneurysm models and serve as a practical tool in the progression of new devices toward in vivo studies.

  7. Rheological Changes After Stenting of a Cerebral Aneurysm: A Finite Element Modeling Approach

    SciTech Connect

    Ohta, Makoto; Wetzel, Stephan G. Dantan, Philippe; Bachelet, Caroline; Lovblad, Karl O.; Yilmaz, Hasan; Flaud, Patrice; Ruefenacht, Daniel A.

    2005-12-15

    Hemodynamic changes in intracranial aneurysms after stent placement include the appearance of areas with stagnant flow and low shear rates. We investigated the influence of stent placement on blood flow velocity and wall shear stress of an intracranial aneurysm using a finite element modeling approach. To assess viscosity changes induced by stent placement, the rheology of blood as non-Newtonian fluid was taken into account in this model. A two-dimensional model with a parent artery, a smaller branching artery, and an aneurysm located at the bifurcation, before and after stent placement, was used for simulation. Flow velocity plots and wall shear stress before and after stent placement was calculated over the entire cardiac circle. Values for dynamic viscosity were calculated with a constitutive equation that was based on experimental studies and yielded a viscosity, which decreases as the shear rate increases. Stent placement lowered peak velocities in the main vortex of the aneurysm by a factor of at least 4 compared to peak velocities in the main artery, and it considerably decreased the wall shear stress of the aneurysm. Dynamic viscosity increases after stent placement persisted over a major part of the cardiac cycle, with a factor of up to 10, most pronounced near the dome of the aneurysm. Finite element modeling can offer insight into rheological changes induced by stent treatment of aneurysms and allows visualizing dynamic viscosity changes induced by stent placement.

  8. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm

    NASA Astrophysics Data System (ADS)

    Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.

    2008-07-01

    The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.

  9. A New Murine Model of Endovascular Aortic Aneurysm Repair

    PubMed Central

    Rouer, Martin; Meilhac, Olivier; Delbosc, Sandrine; Louedec, Liliane; Pavon-Djavid, Graciela; Cross, Jane; Legagneux, Josette; Bouilliant-Linet, Maxime; Michel, Jean-Baptiste; Alsac, Jean-Marc

    2013-01-01

    Endovascular aneurysm exclusion is a validated technique to prevent aneurysm rupture. Long-term results highlight technique limitations and new aspects of Abdominal aortic aneurysm (AAA) pathophysiology. There is no abdominal aortic aneurysm endograft exclusion model cheap and reproducible, which would allow deep investigations of AAA before and after treatment. We hereby describe how to induce, and then to exclude with a covered coronary stentgraft an abdominal aortic aneurysm in a rat. The well known elastase induced AAA model was first reported in 19901 in a rat, then described in mice2. Elastin degradation leads to dilation of the aorta with inflammatory infiltration of the abdominal wall and intra luminal thrombus, matching with human AAA. Endovascular exclusion with small covered stentgraft is then performed, excluding any interactions between circulating blood and the aneurysm thrombus. Appropriate exclusion and stentgraft patency is confirmed before euthanasia by an angiography thought the left carotid artery. Partial control of elastase diffusion makes aneurysm shape different for each animal. It is difficult to create an aneurysm, which will allow an appropriate length of aorta below the aneurysm for an easy stentgraft introduction, and with adequate proximal and distal neck to prevent endoleaks. Lots of failure can result to stentgraft introduction which sometimes lead to aorta tear with pain and troubles to stitch it, and endothelial damage with post op aorta thrombosis. Giving aspirin to rats before stentgraft implantation decreases failure rate without major hemorrhage. Clamping time activates neutrophils, endothelium and platelets, and may interfere with biological analysis. PMID:23851958

  10. An Animal Model of Abdominal Aortic Aneurysm Created with Peritoneal Patch: Technique and Initial Results

    SciTech Connect

    Maynar, Manuel Hernandez, Javier; Sun Fei; Miguel, Carmen de; Crisostomo, Veronica; Uson, Jesus; Pineda, Luis-Fernando

    2003-04-15

    The purpose of this study was to develop an abdominal aortic aneurysm model that more closely resembles themorphology of human aneurysms with potential for further growth of the sac. An infrarenal abdominal aortic aneurysm (AAA) model was created with a double-layered peritoneal patch in 27 domestic swine. The patch,measuring in average from 6 to 12 cm in length and from 2 to 3 cm in width, was sutured to the edge of an aortotomy. Pre- and postsurgical digital subtraction aortograms (DSA) were obtained to document the appearance and dimensions of the aneurysm. All animals were followed with DSA for up to 5 months. Laparoscopic examination enhanced by the use of laparoscopic ultrasound was also carried out in 2 animals to assess the aneurysm at 30 and 60 days following surgery. Histological examination was performed on 4 animals. All the animals that underwent the surgical creation of the AAA survived the surgical procedure.Postsurgical DSA demonstrated the presence of the AAA in all animals,defined as more than 50% increase in diameter. The aneurysmal mean diameter increased from the baseline of 10.27 {+-} 1.24 to 16.69{+-} 2.29 mm immediately after surgery, to 27.6 {+-} 6.59 mm at 14 days, 32.45 {+-} 8.76 mm at 30 days (p <0.01), and subsequently decreased to 25.98 {+-} 3.75 mm at 60 days. A total of 15 animals died of aneurysmal rupture that occurred more frequently in the long aneurysms ({>=}6 cm in length) than the short aneurysms (<6 cm in length) during the first 2 weeks after surgery(p < 0.05). No rupture occurred beyond 16 days after surgery. Four animals survived and underwent 60-day angiographic follow-up. Laparoscopic follow-up showed strong pulses, a reddish external appearance and undetectable suture lines on the aneurysmal wall. On pathology, the patches were well incorporated into the aortic wall, the luminal wall appeared almost completely endothelialized, and cellular and matrix proliferation were noted in the aneurysmal wall. A reproducible

  11. A virtual coiling technique for image-based aneurysm models by dynamic path planning.

    PubMed

    Morales, Hernán G; Larrabide, Ignacio; Geers, Arjan J; San Román, Luis; Blasco, Jordi; Macho, Juan M; Frangi, Alejandro F

    2013-01-01

    Computational algorithms modeling the insertion of endovascular devices, such as coil or stents, have gained an increasing interest in recent years. This scientific enthusiasm is due to the potential impact that these techniques have to support clinicians by understanding the intravascular hemodynamics and predicting treatment outcomes. In this work, a virtual coiling technique for treating image-based aneurysm models is proposed. A dynamic path planning was used to mimic the structure and distribution of coils inside aneurysm cavities, and to reach high packing densities, which is desirable by clinicians when treating with coils. Several tests were done to evaluate the performance on idealized and image-based aneurysm models. The proposed technique was validated using clinical information of real coiled aneurysms. The virtual coiling technique reproduces the macroscopic behavior of inserted coils and properly captures the densities, shapes and coil distributions inside aneurysm cavities. A practical application was performed by assessing the local hemodynamic after coiling using computational fluid dynamics (CFD). Wall shear stress and intra-aneurysmal velocities were reduced after coiling. Additionally, CFD simulations show that coils decrease the amount of contrast entering the aneurysm and increase its residence time.

  12. New experimental model of terminal aneurysms in Swine: technical note.

    PubMed

    Yatomi, Kenji; Yamamoto, Munetaka; Mitome-Mishima, Yumiko; Nonaka, Sensyu; Yoshida, Kensaku; Oishi, Hidenori; Arai, Hajime

    2012-11-01

    Animal models of intracranial aneurysms are important for training surgeons and creating innovative endovascular treatment. Swine have physical dimensions close to those of humans and so are widely used in cardiology research. swine used as models for intracranial aneurysms have had difficulty maintaining long-term aneurysm patency. We present a swine model that may allow researchers to follow long-term outcomes after endovascular treatment. We developed a terminal aneurysm model in swine (n = 3) using a vein pouch of an end-to-side anastomosis of the right carotid artery. We anastomosed the left carotid artery end and the right carotid artery side, designing it so the blood flows into the aneurysmal neck directly from the opposite side. we also anastomosed the ascending cervical artery and the right carotid artery, with flow reversal in the proximal right carotid artery by ligating the more proximal side. At the same time, a side-wall aneurysm was made, and we compared their patency periods. The terminal aneurysms remained patent for 3 months, and there were no major changes in their size or shape. In contrast, the side-wall aneurysms had become occluded at the 1-month follow-up. Our swine model displayed long-term patency and has the potential to allow long-term evaluation of new techniques and embolic agents. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    PubMed

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  14. A mathematical model of aortic aneurysm formation

    PubMed Central

    Hao, Wenrui; Gong, Shihua; Wu, Shuonan; Xu, Jinchao; Go, Michael R.; Friedman, Avner; Zhu, Dai

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta, such that the diameter exceeds 3 cm. The natural history of AAA is progressive growth leading to rupture, an event that carries up to 90% risk of mortality. Hence there is a need to predict the growth of the diameter of the aorta based on the diameter of a patient’s aneurysm at initial screening and aided by non-invasive biomarkers. IL-6 is overexpressed in AAA and was suggested as a prognostic marker for the risk in AAA. The present paper develops a mathematical model which relates the growth of the abdominal aorta to the serum concentration of IL-6. Given the initial diameter of the aorta and the serum concentration of IL-6, the model predicts the growth of the diameter at subsequent times. Such a prediction can provide guidance to how closely the patient’s abdominal aorta should be monitored. The mathematical model is represented by a system of partial differential equations taking place in the aortic wall, where the media is assumed to have the constituency of an hyperelastic material. PMID:28212412

  15. A mathematical model of aortic aneurysm formation.

    PubMed

    Hao, Wenrui; Gong, Shihua; Wu, Shuonan; Xu, Jinchao; Go, Michael R; Friedman, Avner; Zhu, Dai

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta, such that the diameter exceeds 3 cm. The natural history of AAA is progressive growth leading to rupture, an event that carries up to 90% risk of mortality. Hence there is a need to predict the growth of the diameter of the aorta based on the diameter of a patient's aneurysm at initial screening and aided by non-invasive biomarkers. IL-6 is overexpressed in AAA and was suggested as a prognostic marker for the risk in AAA. The present paper develops a mathematical model which relates the growth of the abdominal aorta to the serum concentration of IL-6. Given the initial diameter of the aorta and the serum concentration of IL-6, the model predicts the growth of the diameter at subsequent times. Such a prediction can provide guidance to how closely the patient's abdominal aorta should be monitored. The mathematical model is represented by a system of partial differential equations taking place in the aortic wall, where the media is assumed to have the constituency of an hyperelastic material.

  16. Aneurysm flow characteristics in realistic carotid artery aneurysm models induced by proximal virtual stenotic plaques: a computational hemodynamics study

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Peloc, Nora L.; Chien, Aichi; Goldberg, Ezequiel; Putman, Christopher M.; Cebral, Juan R.

    2015-03-01

    Cerebral aneurysms may rarely coexist with a proximal artery stenosis. In that small percent of patients, such coexistence poses a challenge for interventional neuroradiologists and neurosurgeons to make the best treatment decision. According to previous studies, the incidence of cerebral aneurysms in patients with internal carotid artery stenosis is no greater than five percent, where the aneurysm is usually incidentally detected, being about two percent for aneurysms and stenoses in the same cerebral circulation. Those cases pose a difficult management decision for the physician. Case reports showed patients who died due to aneurysm rupture months after endarterectomy but before aneurysm clipping, while others did not show any change in the aneurysm after plaque removal, having optimum outcome after aneurysm coiling. The aim of this study is to investigate the intra-aneurysmal hemodynamic changes before and after treatment of stenotic plaque. Virtually created moderate stenoses in vascular models of internal carotid artery aneurysm patients were considered in a number of cases reconstructed from three dimensional rotational angiography images. The strategy to create those plaques was based on parameters analyzed in a previous work where idealized models were considered, including relative distance and stenosis grade. Ipsilateral and contralateral plaques were modeled. Wall shear stress and velocity pattern were computed from finite element pulsatile blood flow simulations. The results may suggest that wall shear stress changes depend on relative angular position between the aneurysm and the plaque.

  17. An anatomic risk model to screen post endovascular aneurysm repair patients for aneurysm sac enlargement.

    PubMed

    Png, Chien Yi M; Tadros, Rami O; Beckerman, William E; Han, Daniel K; Tardiff, Melissa L; Torres, Marielle R; Marin, Michael L; Faries, Peter L

    2017-09-01

    Follow-up computed tomography angiography (CTA) scans add considerable postimplantation costs to endovascular aneurysm repairs (EVARs) of abdominal aortic aneurysms (AAAs). By building a risk model, we hope to identify patients at low risk for aneurysm sac enlargement to minimize unnecessary CTAs. 895 consecutive patients who underwent EVAR for AAA were reviewed, of which 556 met inclusion criteria. A Probit model was created for aneurysm sac enlargement, with preoperative aneurysm morphology, patient demographics, and operative details as variables. Our final model included 287 patients and had a sensitivity of 100%, a specificity of 68.9%, and an accuracy of 70.4%. Ninety-nine (35%) of patients were assigned to the high-risk group, whereas 188 (65%) of patients were assigned to the low-risk group. Notably, regarding anatomic variables, our model reported that age, pulmonary comorbidities, aortic neck diameter, iliac artery length, and aneurysms were independent predictors of post-EVAR sac enlargement. With the exception of age, all statistically significant variables were qualitatively supported by prior literature. With regards to secondary outcomes, the high-risk group had significantly higher proportions of AAA-related deaths (5.1% versus 1.1%, P = 0.037) and Type 1 endoleaks (9.1% versus 3.2%, P = 0.033). Our model is a decent predictor of patients at low risk for post AAA EVAR aneurysm sac enlargement and associated complications. With additional validation and refinement, it could be applied to practices to cut down on the overall need for postimplantation CTA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Aneurysms

    MedlinePlus

    ... Adults Making Your Wishes Known Home & Community Home › Aging & Health A to Z › Aneurysms Font size A A A Print Share Glossary Basic Facts & Information Causes & Symptoms Diagnosis & Tests Care & Treatment Lifestyle & Management Other Resources Caregiving How ...

  19. Lattice Boltzmann Modeling of Thrombosis in Giant Aneurysms

    NASA Astrophysics Data System (ADS)

    Chopard, B.; Ouared, R.; Ruefenacht, D. A.; Yilmaz, H.

    We propose a numerical model of blood flow and blood clotting whose purpose is to describe thrombus formation in cerebral aneurysms. We identify possible mechanisms that can cause occurence of spontaneous thrombosis in unruptured giant intracranial aneurysms. Our main claim is that, under normal conditions, there is a low shear rate threshold below which thrombosis starts and growths. This assumption is supported by several evidences from literature. The proposed mechanisms are incorporated into a Lattice Boltzmann (LB) model for blood flow and platelets adhesion and aggregation. Numerical simulations show that the low shear rate threshold assumption together with aneurysm geometry account well for the observations.

  20. Fractional Modeling of Viscoelasticity in Brain Aneurysms

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Karniadakis, George

    2014-11-01

    We develop fundamental new numerical methods for fractional order PDEs, and investigate corresponding models for arterial walls. Specifically, the arterial wall is a heterogeneous soft tissue with complex biomechanical properties, and its constitutive laws are typically derived using integer-order differential equations. However, recent simulations on 1D model have indicated that fractional order models may offer a more powerful alternative for describing arterial wall mechanics, because they are less sensitive to the parameter estimation compared with the integer-calculus-based models. We study the specific fractional PDEs that better model the properties of the 3D arterial walls, and for the first time employ them in simulating flow structure interactions for patient-specific brain aneurysms. A comparison study indicates that for the integer order models, the viscous behavior strongly depends on the relaxation parameters while the fractional order models are less sensitive. This finding is consistent with what is observed in the 1D models for arterial networks (Perdikaris & Karniadakis, 2014), except that when the fractional order is small, the 3D fractional-order models are more sensitive to the fractional order compared to the 1D models.

  1. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity.

    PubMed

    de Oliveira, Marcelo Magaldi Ribeiro; Ferrarez, Carlos Eduardo; Ramos, Taise Mosso; Malheiros, Jose Augusto; Nicolato, Arthur; Machado, Carla Jorge; Ferreira, Mauro Tostes; de Oliveira, Fellype Borges; de Sousa, Cecília Félix Penido Mendes; Costa, Pollyana Helena Vieira; Gusmao, Sebastiao; Lanzino, Giuseppe; Maestro, Rolando Del

    2017-03-24

    OBJECTIVE Surgery for brain aneurysms is technically demanding. In recent years, the process to learn the technical skills necessary for these challenging procedures has been affected by a decrease in the number of surgical cases available and progressive restrictions on resident training hours. To overcome these limitations, surgical simulators such as cadaver heads and human placenta models have been developed. However, the effectiveness of these models in improving technical skills is unknown. This study assessed concurrent and predictive validity of brain aneurysm surgery simulation in a human placenta model compared with a "live" human brain cadaveric model. METHODS Two human cadaver heads and 30 human placentas were used. Twelve neurosurgeons participated in the concurrent validity part of this study, each operating on 1 human cadaver head aneurysm model and 1 human placenta model. Simulators were evaluated regarding their ability to simulate different surgical steps encountered during real surgery. The time to complete the entire aneurysm task in each simulator was analyzed. The predictive validity component of the study involved 9 neurosurgical residents divided into 3 groups to perform simulation exercises, each lasting 6 weeks. The training for the 3 groups consisted of educational video only (3 residents), human cadaver only (3 residents), and human placenta only (3 residents). All residents had equivalent microsurgical experience with superficial brain tumor surgery. After completing their practice training, residents in each of the 3 simulation groups performed surgery for an unruptured middle cerebral artery (MCA) aneurysm, and their performance was assessed by an experienced vascular neurosurgeon who watched the operative videos. RESULTS All human cadaver heads and human placentas were suitable to simulate brain aneurysm surgery. In the concurrent validity portion of the experiment, the placenta model required a longer time (p < 0.001) than cadavers

  2. Modeling of cerebral aneurysm using equivalent electrical circuit (Lumped Model).

    PubMed

    Abdi, M; Karimi, A; Navidbakhsh, M; Hassani, K; Faghihi, S

    2014-03-01

    The circle of Willis (CoW) is a key asset in brain performance as it supports adequate blood supply to the brain. The lumped method (electrical equivalent circuits) is a useful model to simulate the process of the human cardiovascular system. In this study, the whole cardiovascular system is modeled, using an equivalent electrical circuit to investigate an aneurysm in an artery. The cerebrovascular system consists of 29 compartments, which includes the CoW. Each vessel is modeled by a resistor, a capacitor and an inductor. Using MATLAB Simulink, the left and right ventricles are modeled by controlled voltage sources and diodes. The effects of the left internal carotid artery aneurysm (Fusiform) on the pressure of the efferent arteries in the circle of Willis are studied. The modeling results are entirely in agreement with the available clinical observations. The results of the present study may have clinical implications for modeling different cardiovascular diseases, such as arterial stiffness and atherosclerosis.

  3. A comparative study of CFD of canine model of common carotid fusiform aneurysm and vertebrobasilar fusiform aneurysm in human patients.

    PubMed

    Guo, Shewei; Jiang, Peng; Liu, Jian; Yang, Xinjian; Jiang, Chuhan; Li, Youxiang; Wu, Zhongxue

    2017-09-22

    Intracranial fusiform aneurysm (IFA) is a relatively uncommon subgroup of aneurysms. There are few reports that focus on the hemodynamics of IFA. In this study, we compared the hemodynamics of the canine model of common carotid fusiform aneurysm and vertebrobasilar fusiform aneurysms in human patients. Five male mongrel dogs were randomly chosen, and there unilateral common carotid artery (CCA) and external jugular vein were surgically exposed individually. The CCA was transected and interposed by the free segment of the external jugular vein through end-to-end anastomosis to form a fusiform aneurysm. 3D digital substraction angiography data of each dog's and five randomly chosen male patients' vertebrobasilar fusiform aneurysms were obtained and then analysed by computational fluid dynamics software. The morphological and hemodynamic parameters were compared between the dogs and the patients. The morphological and hemodynamic parameters of the fusiform aneurysms were similar between the dogs and the patients. However, the hemodynamics was more complex in the patients. The canine fusiform aneurysm model exhibits high similarity in morphology and hemodynamics with human patients'. Therefore, this model can be used to study the fluid-solid interaction in the aneurysm and to explore the underlying mechanisms of the development, rupture and occurrence of IFAs, which offers a pathophysiological tool to seek better treatments of IFAs.

  4. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Hao, Qing

    2016-11-01

    Wall shear stress is considered as an important factor for cerebral aneurysm growth and rupture. The objective of present study is to evaluate wall shear stress in aneurysm sac and neck by a fluid-structure-interaction (FSI) model, which was developed and validated against the particle image velocimetry (PIV) data. In this FSI model, the flow characteristics in a straight tube with different asymmetric aneurysm sizes over a range of Reynolds numbers from 200 to 1600 were investigated. The FSI results agreed well with PIV data. It was found that at steady flow conditions, when Reynolds number above 700, one large recirculating vortex would be formed, occupying the entire aneurysm sac. The center of the vortex is located at region near to the distal neck. A pair of counter rotating vortices would however be formed at Reynolds number below 700. Wall shear stresses reached highest level at the distal neck of the aneurysmal sac. The vortex strength, in general, is stronger at higher Reynolds number. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models.

  5. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics

    PubMed Central

    Frölich, Andreas; Spallek, Johanna; Forkert, Nils D.; Faizy, Tobias D.; Werner, Franziska; Knopp, Tobias; Krause, Dieter; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI) to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI) and dynamic digital subtraction angiography (DSA). Materials and Methods The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3–4 mm neck, 3.5 mm parent artery diameter) and connected to a peristaltic pump delivering a physiological flow (250 mL/min) and pulsation rate (70/min). High-resolution (4 h long) 4D phase contrast flow quantification (4D pc-fq) MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s) through a proximally placed catheter. Results and Discussion 4D pc-fq measurements showed distinct pulsatile flow velocities (20–80 cm/s) as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA) also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s), which is in accordance with the 4D pc-fq measurements. Conclusions The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic. PMID:27494610

  6. Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research

    PubMed Central

    Benet, Arnau; Plata-Bello, Julio; Abla, Adib A.; Acevedo-Bolton, Gabriel; Saloner, David; Lawton, Michael T.

    2015-01-01

    Aim. To evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training. Methods. Two 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated. Results. The 3D aneurysm models were successfully implanted to the cadaveric specimens' arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation. Conclusion. 3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research. PMID:26539542

  7. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm.

    PubMed

    Mao, Naihui; Gu, Tianxiang; Shi, Enyi; Zhang, Guangwei; Yu, Lei; Wang, Chun

    2015-07-01

    To explore if there is phenotypic switching in the vascular smooth muscle cells (vSMCs) of rat thoracic aortic aneurysms and the role it plays in the process of aneurysm formation. Male SD white rats were assigned randomly to the aneurysm group (AG) and control group (CG). The animal aneurysm model was obtained by soaking the peri-adventitia with porcine pancreatic elastase (PPE). The rats in the CG were given saline to provide contrast. A vascular ultrasound was used to monitor the diameter of the aneurysm. Specimens were stained with haematoxylin and eosin (HE), and α-SMA, SM-MHC, matrix metalloproteinase (MMP)-2 and MMP-9 were detected with immunohistochemistry staining. α-SMA, SM-MHC, MMP-2 and MMP-9 were conducted with western blot. vSMCs taken from the descending aorta of both of the CG and AG were separated and cultured until Passage 3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method were used to analyse cell proliferation. Western blot was used to evaluate MMP-2, MMP-9 expression and flow cytometry was employed to assess cell apoptosis. Vascular ultrasound showed obvious dilatation of soaked descending aorta. HE staining showed thickening of thoracic aorta and disarrangement of cells after soaking with PPE. Immunohistochemistry staining showed high expression of MMP-2 and MMP-9 but low expression of SM-MHC and α-SMA in the AG. Tissue western blot analysis of the AG showed that the protein gray value was high in MMP-2 and MMP-9, but low in α-SMA and SM-MHC, which had statistical differences compared with CG with a P-value of <0.05. MTT analysis showed vSMC proliferation activity was higher in the AG than in the CG. Flow cytometry analysis revealed that cell apoptosis between the control and aneurysm groups had significant statistical differences. There is vSMC phenotypic switching in animal models as seen through the rat thoracic aortic aneurysms. This may play an important role in the formation of aneurysms. Our findings are

  8. Animal models in the research of abdominal aortic aneurysms development.

    PubMed

    Patelis, N; Moris, D; Schizas, D; Damaskos, C; Perrea, D; Bakoyiannis, C; Liakakos, T; Georgopoulos, S

    2017-09-22

    Abdominal aortic aneurysm (AAA) is a prevalent and potentially life threatening disease. Many animal models have been developed to simulate the natural history of the disease or test preclinical endovascular devices and surgical procedures. The aim of this review is to describe different methods of AAA induction in animal models and report on the effectiveness of the methods described in inducing an analogue of a human AAA. The PubMed database was searched for publications with titles containing the following terms "animal" or ''animal model(s)'' and keywords "research", ''aneurysm(s)'', "aorta", ''pancreatic elastase'', "Angiotensin", "AngII" "Calcium Chloride" or "CaCl(2)". Starting date for this search was set to 2004, since previously bibliography was already covered by the review of Daugherty A. and Cassis L.A. We focused on animal studies that reported a model of aneurysm development and progression. A number of different approaches of AAA induction in animal models has been developed, used and combined since the first report in the 1960's. Although specific methods are successful in AAA induction in animal models, it is necessary that these methods and their respective results are inline with the pathophysiology and the mechanisms involved in human AAA development. A researcher should know the advantages/disadvantages of each animal model and choose the appropriate model.

  9. Hemodynamic Characteristics Regarding Recanalization of Completely Coiled Aneurysms: Computational Fluid Dynamic Analysis Using Virtual Models Comparison

    PubMed Central

    Park, Wonhyoung; Song, Yunsun; Park, Kye Jin; Koo, Hae-Won; Yang, Kuhyun

    2016-01-01

    Purpose Hemodynamic factors are considered to play an important role in initiation and progression of the recurrence after endosaccular coiling of the intracranial aneurysms. We made paired virtual models of completely coiled aneurysms which were subsequently recanalized and compared to identify hemodynamic characteristics related to the recurred aneurysmal sac. Materials and Methods We created paired virtual models of computational fluid dynamics (CFD) in five aneurysms which were initially regarded as having achieved complete occlusion and then recurred during follow-up. Paired virtual models consisted of the CFD model of 3D rotational angiography obtained in the recurred aneurysm and the control model of the initial, parent artery after artificial removal of the coiled and recanalized aneurysm. Using the CFD analysis of the virtual model, we analyzed the hemodynamic characteristics on the neck of each aneurysm before and after its recurrence. Results High wall shear stress (WSS) was identified at the cross-sectionally identified aneurysm neck at which recurrence developed in all cases. A small vortex formation with relatively low velocity in front of the neck was also identified in four cases. The aneurysm recurrence locations corresponded to the location of high WSS and/or small vortex formation. Conclusion Recanalized aneurysms revealed increased WSS and small vortex formation at the cross-sectional neck of the aneurysm. This observation may partially explain the hemodynamic causes of future recanalization after coil embolization. PMID:26958410

  10. Patient-specific modeling of intracranial aneurysmal stenting

    NASA Astrophysics Data System (ADS)

    Appanaboyina, Sunil; Mut, Fernando; Löhner, Rainald; Putman, Christopher M.; Cebral, Juan R.

    2007-03-01

    Simulating blood flow around stents in intracranial aneurysms is important for designing better stents and to personalize and optimize endovascular stenting procedures in the treatment of these aneurysms. However, the main difficulty lies in the generation of acceptable computational grids inside the blood vessels and around the stents. In this paper, a hybrid method that combines body-fitted grid for the vessel walls and adaptive embedded grids for the stent is presented. Also an algorithm to map a particular stent to the parent vessel is described. These approaches tremendously simplify the simulation of blood flow past these devices. The methodology is evaluated with an idealized stented aneurysm under steady flow conditions and demonstrated in various patient-specific cases under physiologic pulsatile flow conditions. These examples show that the methodology can be used with ease in modeling any patient-specific anatomy and using different stent designs. This paves the way for using these techniques during the planning phase of endovascular stenting interventions, particularly for aneurysms that are difficult to treat with coils or by surgical clipping.

  11. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    PubMed

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  12. Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms

    PubMed Central

    Humphrey, J.D.; Holzapfel, G.A.

    2011-01-01

    Biomechanical factors play fundamental roles in the natural history of abdominal aortic aneurysms (AAAs) and their responses to treatment. Advances during the past two decades have increased our understanding of the mechanics and biology of the human abdominal aorta and AAAs, yet there remains a pressing need for considerable new data and resulting patient-specific computational models that can better describe the current status of a lesion and better predict the evolution of lesion geometry, composition, and material properties and thereby improve interventional planning. In this paper, we briefly review data on the structure and function of the human abdominal aorta and aneurysmal wall, past models of the mechanics, and recent growth and remodeling models. We conclude by identifying open problems that we hope will motivate studies to improve our computational modeling and thus general understanding of AAAs. PMID:22189249

  13. The impact of deformation of an aneurysm model under pulsatile flow on hemodynamic analysis.

    PubMed

    Kawakami, T; Takao, H; Ichikawa, C; Kamiya, K; Murayama, Y; Motosuke, M

    2016-08-01

    Hemodynamic analysis of cerebral aneurysms has been widely carried out to clarify the mechanisms of their growth and rupture. In several cases, patient-specific aneurysm models made of transparent polymers have been used. Even though periodic changes in aneurysms due to the pulsation of blood flow could be important, the deformation of the model geometry and its effect on hemodynamic evaluation has not been fully investigated. In addition, the fabrication accuracy of aneurysm models has not been evaluated even though it may affect the hemodynamic parameters to be analyzed. In this study, the fabrication accuracy of a silicone aneurysm model was investigated. Additionally, the deformation of the model under pulsatile flow as well as its correlation with flow behavior was evaluated. Consequently, a fabrication method for an aneurysm model with high accuracy was established and the importance of the wall thickness of the model was also specified.

  14. Systematic review of mortality risk prediction models in the era of endovascular abdominal aortic aneurysm surgery.

    PubMed

    Lijftogt, N; Luijnenburg, T W F; Vahl, A C; Wilschut, E D; Leijdekkers, V J; Fiocco, M F; Wouters, M W J M; Hamming, J F

    2017-07-01

    The introduction of endovascular aneurysm repair (EVAR) has reduced perioperative mortality after abdominal aortic aneurysm (AAA) surgery. The objective of this systematic review was to assess existing mortality risk prediction models, and identify which are most useful for patients undergoing AAA repair by either EVAR or open surgical repair. A systematic search of the literature was conducted for perioperative mortality risk prediction models for patients with AAA published since 2006. PRISMA guidelines were used; quality was appraised, and data were extracted and interpreted following the CHARMS guidelines. Some 3903 studies were identified, of which 27 were selected. A total of 13 risk prediction models have been developed and directly validated. Most models were based on a UK or US population. The best performing models regarding both applicability and discrimination were the perioperative British Aneurysm Repair score (C-statistic 0·83) and the preoperative Vascular Biochemistry and Haematology Outcome Model (C-statistic 0·85), but both lacked substantial external validation. Mortality risk prediction in AAA surgery has been modelled extensively, but many of these models are weak methodologically and have highly variable performance across different populations. New models are unlikely to be helpful; instead case-mix correction should be modelled and adapted to the population of interest using the relevant mortality predictors. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  15. Computational modeling of cerebral aneurysms in arterial networks reconstructed from multiple 3D rotational angiography images

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Putman, Christopher M.; Cebral, Juan R.

    2005-04-01

    Previous patient-specific computational fluid dynamics (CFD) models of cerebral aneurysms constructed from 3D rotational angiography have been limited to aneurysms with a single route of blood flow. However, there are numerous aneurysms that accept blood flow from more than one avenue of flow such as aneurysms in the anterior communicating artery. Although the anatomy of these aneurysms could be visualized with other modalities such as CTA and MRA, cerebral rotational angiography has the highest resolution, and is therefore the preferred modality for vascular CFD modeling. The purpose of this paper is to present a novel methodology to construct personalized CFD models of cerebral aneurysms with multiple feeding vessels from multiple rotational angiography images. The methodology is illustrated with two examples: a model of an anterior communicating artery aneurysm constructed from bilateral rotational angiography images, and a model of the complete circle of Willis of a patient with five cerebral aneurysms. In addition, a sensitivity analysis of the intraaneurysmal flow patterns with respect to mean flow balance in the feeding vessels was performed. It was found that the flow patterns strongly depend on the geometry of the aneurysms and the connected vessels, but less on the changes in the flow balance. These types of models are important for studying the hemodynamics of cerebral aneurysms and further our understanding of the disease progression and rupture, as well as for simulating the effect of surgical and endovascular interventions.

  16. Hemodynamic modeling of leukocyte and erythrocyte transport and interactions in intracranial aneurysms by a multiphase approach.

    PubMed

    Ou, Chubin; Huang, Wei; Yuen, Matthew Ming-Fai; Qian, Yi

    2016-10-03

    Hemodynamics has been recognized as an important factor in the development, growth, and rupture of cerebral aneurysms, and investigated by computational fluid dynamics techniques using a single phase approach. However, flow-dependent cell transport and interactions are usually ignored in single phase models, in which blood is usually treated as a single phase Newtonian fluid. For getting better insight into the underlying pathology of intracranial aneurysm, cell transport and interactions should be covered in hemodynamic studies. In the present study, a multiphase hemodynamic model incorporating cell transport and interactions was developed, in which blood was modeled as multiphase fluid having a continuous phase (plasma) and two particulate phases (erythrocytes and leukocytes). The model showed good agreement with experimental data and observations in the literature, and was applied to four patient-specific aneurysms in a pulsatile manner. Leukocyte accumulations were predicted at locations with flow disturbance and low wall shear stress. The concentrations of leukocyte at accumulation sites were found to exceed 200 to 500% of normal physiological level on three unstable aneurysms, including two ruptured aneurysms and a growing aneurysm where accumulation was observed near a daughter sac and a secondary aneurysm. This suggested that aneurysms with complex secondary flow patterns could be prone to leukocyte accumulation on the wall. As this is the first study to characterize cell transport and interactions in aneurysm hemodynamics, our model can serve as a foundation for future intracranial aneurysm models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Role of Learning in Health Technology Assessments: An Empirical Assessment of Endovascular Aneurysm Repairs in German Hospitals.

    PubMed

    Varabyova, Yauheniya; Blankart, Carl Rudolf; Schreyögg, Jonas

    2017-02-01

    Changes in performance due to learning may dynamically influence the results of a technology evaluation through the change in effectiveness and costs. In this study, we estimate the effect of learning using the example of two minimally invasive treatments of abdominal aortic aneurysms: endovascular aneurysm repair (EVAR) and fenestrated EVAR (fEVAR). The analysis is based on the administrative data of over 40,000 patients admitted with unruptured abdominal aortic aneurysm to more than 500 different hospitals over the years 2006 to 2013. We examine two patient outcomes, namely, in-hospital mortality and length of stay using hierarchical regression models with random effects at the hospital level. The estimated models control for patient and hospital characteristics and take learning interdependency between EVAR and fEVAR into account. In case of EVAR, we observe a significant decrease both in the in-hospital mortality and length of stay with experience accumulated at the hospital level; however, the learning curve for fEVAR in both outcomes is effectively flat. To foster the consideration of learning in health technology assessments of medical devices, a general framework for estimating learning effects is derived from the analysis. © 2017 The Authors. Health Economics published by John Wiley & Sons, Ltd.

  18. Endovascular Broad-Neck Aneurysm Creation in a Porcine Model Using a Vascular Plug

    SciTech Connect

    Muehlenbruch, Georg Nikoubashman, Omid; Steffen, Bjoern; Dadak, Mete; Palmowski, Moritz; Wiesmann, Martin

    2013-02-15

    Ruptured cerebral arterial aneurysms require prompt treatment by either surgical clipping or endovascular coiling. Training for these sophisticated endovascular procedures is essential and ideally performed in animals before their use in humans. Simulators and established animal models have shown drawbacks with respect to degree of reality, size of the animal model and aneurysm, or time and effort needed for aneurysm creation. We therefore aimed to establish a realistic and readily available aneurysm model. Five anticoagulated domestic pigs underwent endovascular intervention through right femoral access. A total of 12 broad-neck aneurysms were created in the carotid, subclavian, and renal arteries using the Amplatzer vascular plug. With dedicated vessel selection, cubic, tubular, and side-branch aneurysms could be created. Three of the 12 implanted occluders, two of them implanted over a side branch of the main vessel, did not induce complete vessel occlusion. However, all aneurysms remained free of intraluminal thrombus formation and were available for embolization training during a surveillance period of 6 h. Two aneurysms underwent successful exemplary treatment: one was stent-assisted, and one was performed with conventional endovascular coil embolization. The new porcine aneurysm model proved to be a straightforward approach that offers a wide range of training and scientific applications that might help further improve endovascular coil embolization therapy in patients with cerebral aneurysms.

  19. Unsteady velocity measurements in a realistic intracranial aneurysm model

    NASA Astrophysics Data System (ADS)

    Ugron, Ádám; Farinas, Marie-Isabelle; Kiss, László; Paál, György

    2012-01-01

    The initiation, growth and rupture of intracranial aneurysms are intensively studied by computational fluid dynamics. To gain confidence in the results of numerical simulations, validation of the results is necessary. To this end the unsteady flow was measured in a silicone phantom of a realistic intracranial aneurysm. A flow circuit was built with a novel unsteady flow rate generating method, used to model the idealised shape of the heartbeat. This allowed the measurement of the complex three-dimensional velocity distribution by means of laser-optical methods such as laser doppler anemometry (LDA) and particle image velocimetry (PIV). The PIV measurements, available with high temporal and spatial distribution, were found to have good agreement with the control LDA measurements. Furthermore, excellent agreement was found with the numerical results.

  20. Influence of surface model extraction parameter on computational fluid dynamics modeling of cerebral aneurysms.

    PubMed

    Omodaka, Shunsuke; Inoue, Takashi; Funamoto, Kenichi; Sugiyama, Shin-Ichirou; Shimizu, Hiroaki; Hayase, Toshiyuki; Takahashi, Akira; Tominaga, Teiji

    2012-09-21

    Threshold image intensity for reconstructing patient-specific vascular models is generally determined subjectively. We assessed the effects of threshold image intensity differences on computational fluid dynamics (CFD) using a simple method of threshold determination. This study included 11 consecutive patients with internal carotid artery aneurysms collected retrospectively between April 2009 and March 2010. In 3-dimensional rotational angiography image data, we set a line probe across the coronal cross-section of the parent internal carotid artery, and calculated a profile curve of the image intensity along this line. We employed the threshold coefficient (C(thre)) value in this profile curve, in order to determine the threshold image intensity objectively. We assessed the effects of C(thre) value differences on vascular model configuration and the wall shear stress (WSS) distribution of the aneurysm. The threshold image intensity increased as the C(thre) value increased. The frequency of manual editing increased as the C(thre) value decreased, while disconnection of the posterior communicating artery occurred more frequently as the C(thre) value increased. The volume of the vascular model decreased and WSS increased according to the C(thre) value increase. The pattern of WSS distribution changed remarkably in one case. Threshold image intensity differences can produce profound effects on CFD. Our results suggest the uniform setting of C(thre) value is important for objective CFD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mining data from CFD simulation for aneurysm and carotid bifurcation models.

    PubMed

    Miloš, Radović; Dejan, Petrović; Nenad, Filipović

    2011-01-01

    Arterial geometry variability is present both within and across individuals. To analyze the influence of geometric parameters, blood density, dynamic viscosity and blood velocity on wall shear stress (WSS) distribution in the human carotid artery bifurcation and aneurysm, the computer simulations were run to generate the data pertaining to this phenomenon. In our work we evaluate two prediction models for modeling these relationships: neural network model and k-nearest neighbor model. The results revealed that both models have high prediction ability for this prediction task. The achieved results represent progress in assessment of stroke risk for a given patient data in real time.

  2. Clinical prediction models for aneurysmal subarachnoid hemorrhage: a systematic review.

    PubMed

    Jaja, Blessing N R; Cusimano, Michael D; Etminan, Nima; Hanggi, Daniel; Hasan, David; Ilodigwe, Don; Lantigua, Hector; Le Roux, Peter; Lo, Benjamin; Louffat-Olivares, Ada; Mayer, Stephan; Molyneux, Andrew; Quinn, Audrey; Schweizer, Tom A; Schenk, Thomas; Spears, Julian; Todd, Michael; Torner, James; Vergouwen, Mervyn D I; Wong, George K C; Singh, Jeff; Macdonald, R Loch

    2013-02-01

    Clinical prediction models can enhance clinical decision-making and research. However, available prediction models in aneurysmal subarachnoid hemorrhage (aSAH) are rarely used. We evaluated the methodological validity of SAH prediction models and the relevance of the main predictors to identify potentially reliable models and to guide future attempts at model development. We searched the EMBASE, MEDLINE, and Web of Science databases from January 1995 to June 2012 to identify studies that reported clinical prediction models for mortality and functional outcome in aSAH. Validated methods were used to minimize bias. Eleven studies were identified; 3 developed models from datasets of phase 3 clinical trials, the others from single hospital records. The median patient sample size was 340 (interquartile range 149-733). The main predictors used were age (n = 8), Fisher grade (n = 6), World Federation of Neurological Surgeons grade (n = 5), aneurysm size (n = 5), and Hunt and Hess grade (n = 3). Age was consistently dichotomized. Potential predictors were prescreened by univariate analysis in 36 % of studies. Only one study was penalized for model optimism. Details about model development were often insufficiently described and no published studies provided external validation. While clinical prediction models for aSAH use a few simple predictors, there are substantial methodological problems with the models and none have had external validation. This precludes the use of existing models for clinical or research purposes. We recommend further studies to develop and validate reliable clinical prediction models for aSAH.

  3. Modeling the Growth of Infrarenal Abdominal Aortic Aneurysms

    PubMed Central

    Bailey, Marc A.; Baxter, Paul D.; Jiang, Tao; Charnell, Aimee M.; Griffin, Kathryn J.; Johnson, Anne B.; Bridge, Katherine I.; Sohrabi, Soroush; Scott, D. Julian A.

    2013-01-01

    Background: Abdominal aortic aneurysm (AAA) growth is a complex process that is incompletely understood. Significant heterogeneity in growth trajectories between patients has led to difficulties in accurately modeling aneurysm growth across cohorts of patients. We set out to compare four models of aneurysm growth commonly used in the literature and confirm which best fits the patient data of our AAA cohort. Methods: Patients with AAA were included in the study if they had two or more abdominal ultrasound scans greater than 3 months apart. Patients were censored from analysis once their AAA exceeded 5.5 cm. Four models were applied using the R environment for statistical computing. Growth estimates and goodness of fit (using the Akaike Information Criterion, AIC) were compared, with p-values based on likelihood ratio testing. Results: Of 510 enrolled patients, 264 met the inclusion criteria, yielding a total of 1861 imaging studies during 932 cumulative years of surveillance. Overall, growth rates were: (1) 0.35 (0.31,0.39) cm/yr in the growth/time calculation, (2) 0.056 (0.042,0.068) cm/yr in the linear regression model, (3) 0.19 (0.17,0.21) cm/yr in the linear multilevel model, and (4) 0.21 (0.18,0.24) cm/yr in the quadratic multilevel model at time 0, slowing to 0.15 (0.12,0.17) cm/yr at 10 years. AIC was lowest in the quadratic multilevel model (1508) compared to other models (P < 0.0001). Conclusion: AAA growth was heterogeneous between patients; the nested nature of the data is most appropriately modeled by multilevel modeling techniques. PMID:26798704

  4. Modeling the Growth of Infrarenal Abdominal Aortic Aneurysms.

    PubMed

    Bailey, Marc A; Baxter, Paul D; Jiang, Tao; Charnell, Aimee M; Griffin, Kathryn J; Johnson, Anne B; Bridge, Katherine I; Sohrabi, Soroush; Scott, D Julian A

    2013-12-01

    Abdominal aortic aneurysm (AAA) growth is a complex process that is incompletely understood. Significant heterogeneity in growth trajectories between patients has led to difficulties in accurately modeling aneurysm growth across cohorts of patients. We set out to compare four models of aneurysm growth commonly used in the literature and confirm which best fits the patient data of our AAA cohort. Patients with AAA were included in the study if they had two or more abdominal ultrasound scans greater than 3 months apart. Patients were censored from analysis once their AAA exceeded 5.5 cm. Four models were applied using the R environment for statistical computing. Growth estimates and goodness of fit (using the Akaike Information Criterion, AIC) were compared, with p-values based on likelihood ratio testing. Of 510 enrolled patients, 264 met the inclusion criteria, yielding a total of 1861 imaging studies during 932 cumulative years of surveillance. Overall, growth rates were: (1) 0.35 (0.31,0.39) cm/yr in the growth/time calculation, (2) 0.056 (0.042,0.068) cm/yr in the linear regression model, (3) 0.19 (0.17,0.21) cm/yr in the linear multilevel model, and (4) 0.21 (0.18,0.24) cm/yr in the quadratic multilevel model at time 0, slowing to 0.15 (0.12,0.17) cm/yr at 10 years. AIC was lowest in the quadratic multilevel model (1508) compared to other models (P < 0.0001). AAA growth was heterogeneous between patients; the nested nature of the data is most appropriately modeled by multilevel modeling techniques.

  5. Transluminal Attenuation Gradient for Thrombotic Risk Assessment in Kawasaki Disease Patients with Coronary Artery Aneurysms

    NASA Astrophysics Data System (ADS)

    Grande Gutierrez, Noelia; Kahn, Andrew; Burns, Jane; Marsden, Alison

    2014-11-01

    Kawasaki Disease (KD) can result in coronary aneurysms in up to 25% of patients if not treated early putting patients at risk of thrombus formation, myocardial infarction and sudden death. Clinical guidelines for administering anti-coagulation therapy currently rely on anatomy alone. Previous studies including patient specific modeling and computer simulations in KD patients have suggested that hemodynamic data can predict regions susceptible to thrombus formation. In particular, high Particle Residence Time gradient (PRTg) regions have shown to correlate with regions of thrombus formation. Transluminal Attenuation Gradient (TAG) is determined from the change in radiological attenuation per vessel length. TAG has been used for characterizing coronary artery stenoses, however this approach has not yet been used in aneurysmal vessels. The aim of this study is to analyze the correlation between TAG and PRTg in KD patients with aneurysms and evaluate the use of TAG as an index to quantify thrombotic risk. Patient specific anatomic models for fluids simulations were constructed from CT angiographic image data from 3 KD aneurysm patients and one normal control. TAG values for the aneurysm patients were markedly lower than for the non-aneurysmal patient (mean -18.38 vs. -2). In addition, TAG values were compared to PRTg obtained for each patient. Thrombotic risk stratification for KD aneurysms may be improved by incorporating TAG and should be evaluated in future prospective studies.

  6. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn C.

    2012-08-01

    Abdominal aortic aneurysm (AAA) is characterized by disturbed blood flow patterns that are hypothesized to contribute to disease progression. The transport topology in six patient-specific abdominal aortic aneurysms was studied. Velocity data were obtained by image-based computational fluid dynamics modeling, with magnetic resonance imaging providing the necessary simulation parameters. Finite-time Lyapunov exponent (FTLE) fields were computed from the velocity data, and used to identify Lagrangian coherent structures (LCS). The combination of FTLE fields and LCS was used to characterize topological flow features such as separation zones, vortex transport, mixing regions, and flow impingement. These measures offer a novel perspective into AAA flow. It was observed that all aneurysms exhibited coherent vortex formation at the proximal segment of the aneurysm. The evolution of the systolic vortex strongly influences the flow topology in the aneurysm. It was difficult to predict the vortex dynamics from the aneurysm morphology, motivating the application of image-based flow modeling.

  7. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.

    PubMed

    Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey

    2017-01-01

    The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.

  8. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models.

    PubMed

    Arzani, Amirhossein; Shadden, Shawn C

    2012-08-01

    Abdominal aortic aneurysm (AAA) is characterized by disturbed blood flow patterns that are hypothesized to contribute to disease progression. The transport topology in six patient-specific abdominal aortic aneurysms was studied. Velocity data were obtained by image-based computational fluid dynamics modeling, with magnetic resonance imaging providing the necessary simulation parameters. Finite-time Lyapunov exponent (FTLE) fields were computed from the velocity data, and used to identify Lagrangian coherent structures (LCS). The combination of FTLE fields and LCS was used to characterize topological flow features such as separation zones, vortex transport, mixing regions, and flow impingement. These measures offer a novel perspective into AAA flow. It was observed that all aneurysms exhibited coherent vortex formation at the proximal segment of the aneurysm. The evolution of the systolic vortex strongly influences the flow topology in the aneurysm. It was difficult to predict the vortex dynamics from the aneurysm morphology, motivating the application of image-based flow modeling.

  9. FSI and CFD Modeling of Cerebral Aneurysm Model and Comparing to PIV Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Zhaopeng; Hao, Qing

    2014-11-01

    Wall shear stress or strain is considered as an important factor for cerebral aneurysm growth and even rupture. The objective of present study is to evaluate wall shear stress in aneurysm sac and neck by Fluid Structure Interaction (FSI) and solid wall Computational Fluid Dynamics (CFD) approaches and compare the simulation results against Particle Image Velocimetry (PIV) experimental data from an elastic in vitro aneurysm model. The FSI and CFD simulation results showed that both approaches captured the flow patterns inside the aneurysm sac under pulsatile flow, that in diastole time period the flow inside the aneurysm sac was a stable circular clock-wise flow; when higher velocity entered into the aneurysm sac during systole and in a short diastole time period an anti-clock circular flow pattern emerged near the distal neck. Both approaches showed that the shear stress near the proximal neck experienced higher shear stress than the distal neck, while in the aneurysm dome the shear stress was always the lowest. In this study, we also showed that shear stress values at proximal neck and distal neck from FSI approach were lower than solid wall CFD approach.

  10. Modelling of aortic aneurysm and aortic dissection through 3D printing.

    PubMed

    Ho, Daniel; Squelch, Andrew; Sun, Zhonghua

    2017-03-01

    The aim of this study was to assess if the complex anatomy of aortic aneurysm and aortic dissection can be accurately reproduced from a contrast-enhanced computed tomography (CT) scan into a three-dimensional (3D) printed model. Contrast-enhanced cardiac CT scans from two patients were post-processed and produced as 3D printed thoracic aorta models of aortic aneurysm and aortic dissection. The transverse diameter was measured at five anatomical landmarks for both models, compared across three stages: the original contrast-enhanced CT images, the stereolithography (STL) format computerised model prepared for 3D printing and the contrast-enhanced CT of the 3D printed model. For the model with aortic dissection, measurements of the true and false lumen were taken and compared at two points on the descending aorta. Three-dimensional printed models were generated with strong and flexible plastic material with successful replication of anatomical details of aortic structures and pathologies. The mean difference in transverse vessel diameter between the contrast-enhanced CT images before and after 3D printing was 1.0 and 1.2 mm, for the first and second models respectively (standard deviation: 1.0 mm and 0.9 mm). Additionally, for the second model, the mean luminal diameter difference between the 3D printed model and CT images was 0.5 mm. Encouraging results were achieved with regards to reproducing 3D models depicting aortic aneurysm and aortic dissection. Variances in vessel diameter measurement outside a standard deviation of 1 mm tolerance indicate further work is required into the assessment and accuracy of 3D model reproduction. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  11. A predictive model of hospitalization cost after cerebral aneurysm clipping

    PubMed Central

    Bekelis, Kimon; Missios, Symeon; MacKenzie, Todd A.; Labropoulos, Nicos; Roberts, David W.

    2016-01-01

    Background Cost containment is the cornerstone of the Affordable Care Act. Although studies have compared the cost of cerebral aneurysm clipping (CAC) and coiling, they haven’t focused on the identification of drivers of cost after CAC, or the prediction of its magnitude. The objective of the present study was to develop and validate a predictive model of hospitalization cost after CAC. Methods We performed a retrospective study involving CAC patients who were registered in the Nationwide Inpatient Sample (NIS) database from 2005–2010. The two cohorts of ruptured and unruptured aneurysms underwent 1:1 randomization to create derivation and validation subsamples. Regression techniques were used for the creation of a parsimonious predictive model. Results Of the 7,798 patients undergoing CAC, 4,505 (58%) presented with unruptured, and 3,293 (42%) with ruptured aneurysms. The median hospitalization cost was $24,398 (Interquartile Range (IQR), $17,079 – $38,249), and $73,694 (IQR, $46,270 – $115,128) for the two cohorts, respectively. Common drivers of cost identified in the multivariate analyses included: length of stay, number of admission diagnoses and procedures, hospital size and region, and patient income. The models were validated in independent cohorts and demonstrated final R2 very similar to the initial models. The predicted and observed values in the validation cohort demonstrated good correlation. Conclusions This national study identified significant drivers of hospitalization cost after CAC. The presented model can be utilized as an adjunct in the cost containment debate and the creation of data-driven policies. PMID:25583532

  12. Computer-assisted adjuncts for aneurysmal morphologic assessment: toward more precise and accurate approaches

    NASA Astrophysics Data System (ADS)

    Rajabzadeh-Oghaz, Hamidreza; Varble, Nicole; Davies, Jason M.; Mowla, Ashkan; Shakir, Hakeem J.; Sonig, Ashish; Shallwani, Hussain; Snyder, Kenneth V.; Levy, Elad I.; Siddiqui, Adnan H.; Meng, Hui

    2017-03-01

    Neurosurgeons currently base most of their treatment decisions for intracranial aneurysms (IAs) on morphological measurements made manually from 2D angiographic images. These measurements tend to be inaccurate because 2D measurements cannot capture the complex geometry of IAs and because manual measurements are variable depending on the clinician's experience and opinion. Incorrect morphological measurements may lead to inappropriate treatment strategies. In order to improve the accuracy and consistency of morphological analysis of IAs, we have developed an image-based computational tool, AView. In this study, we quantified the accuracy of computer-assisted adjuncts of AView for aneurysmal morphologic assessment by performing measurement on spheres of known size and anatomical IA models. AView has an average morphological error of 0.56% in size and 2.1% in volume measurement. We also investigate the clinical utility of this tool on a retrospective clinical dataset and compare size and neck diameter measurement between 2D manual and 3D computer-assisted measurement. The average error was 22% and 30% in the manual measurement of size and aneurysm neck diameter, respectively. Inaccuracies due to manual measurements could therefore lead to wrong treatment decisions in 44% and inappropriate treatment strategies in 33% of the IAs. Furthermore, computer-assisted analysis of IAs improves the consistency in measurement among clinicians by 62% in size and 82% in neck diameter measurement. We conclude that AView dramatically improves accuracy for morphological analysis. These results illustrate the necessity of a computer-assisted approach for the morphological analysis of IAs.

  13. Quantitation of intracranial aneurysm neck size from diagnostic angiograms based on a biomathematical model.

    PubMed

    Hademenos, G J; Massoud, T F; Viñuela, F

    1995-10-01

    Accurate measurement of the aneurysm neck size from diagnostic angiograms is crucial in the consideration and implementation of interventional embolotherapeutic procedures. Due to inherent problems in angiography, aneurysm morphology and location, and obstruction by overlying structures, accurate measurement of the aneurysm neck size is difficult. We are proposing a method for the angiographic measurement of aneurysm neck size based on a biomathematical model of an aneurysm. A biomathematical model of an intracranial saccular aneurysm was developed based on Laplace's law for a spherical elastic object, given by: Stress = Pressure x Radius/2 x Wall thickness. In addition, another biomechanical parameter used to describe an elastic sphere is the strain: Strain = delta R/Ri = (R-Ri)/Ri where R is the current aneurysm radius and Ri is the initial radius prior to aneurysm development. The stress and strain of an elastic structure are used to describe the elastic modulus, E: E = stress/strain = [PR/2h]/[(R-Ri)/Ri] = [PRRi]/[2hR-2hri]. It is assumed at this point that no additional tissue growth occurs through the developmental course of the aneurysm. The expression for E is now solved for Ri which, in essence, represents the radius of the aneurysm neck: Ri = [2hER]/[PR + 2hE]. Thus, the diameter of the neck, Dn, is given by Dn = 2 + i = 2 ([2hER]/[PR + 2hE]). During diagnostic angiography, the radius, R, and pressure, P, are easily obtained during the examination procedure. However, it is not possible to angiographically determine the elastic modulus, E, and the wall thickness, h. In this case, the following average values are used: E = 1.0 MPa and h = 50 microns. From the diagnostic angiograms and hospital records of 23 patients, the aneurysm neck size was determined using the biomathematical model and compared to the results obtained from the correlative relationship between the measured and accepted ratios of neck size to diameter of parent artery. The neck diameter

  14. Angiographic analysis of animal model aneurysms treated with novel polyurethane asymmetric vascular stent (P-AVS): feasibility study

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Dohatcu, Andreea; Sinelnikov, Andrey; Sherman, Jason; Keleshis, Christos; Paciorek, Ann M.; Hoffmann, K. R.; Bednarek, D. R.; Rudin, S.

    2009-02-01

    Image-guided endovascular intervention (EIGI), using new flow modifying endovascular devices for intracranial aneurysm treatment is an active area of stroke research. The new polyurethane-asymmetric vascular stent (P-AVS), a vascular stent partially covered with a polyurethane-based patch, is used to cover the aneurysm neck, thus occluding flow into the aneurysm. This study involves angiographic imaging of partially covered aneurysm orifices. This particular situation could occur when the vascular geometry does not allow full aneurysm coverage. Four standard in-vivo rabbit-model aneurysms were investigated; two had stent patches placed over the distal region of the aneurysm orifice while the other two had stent patches placed over the proximal region of the aneurysm orifice. Angiographic analysis was used to evaluate aneurysm blood flow before and immediately after stenting and at four-week follow-up. The treatment results were also evaluated using histology on the aneurysm dome and electron microscopy on the aneurysm neck. Post-stenting angiographic flow analysis revealed aneurysmal flow reduction in all cases with faster flow in the distally-covered case and very slow flow and prolonged pooling for proximal-coverage. At follow-up, proximally-covered aneurysms showed full dome occlusion. The electron microscopy showed a remnant neck in both distally-placed stent cases but complete coverage in the proximally-placed stent cases. Thus, direct flow (impingement jet) removal from the aneurysm dome, as indicated by angiograms in the proximally-covered case, was sufficient to cause full aneurysm healing in four weeks; however, aneurysm healing was not complete for the distally-covered case. These results support further investigations into the treatment of aneurysms by flow-modification using partial aneurysm-orifice coverage.

  15. Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: An in vivo study

    NASA Astrophysics Data System (ADS)

    Wang, Wu; Wang, Yong-Li; Chen, Mo; Chen, Liang; Zhang, Jian; Li, Yong-Dong; Li, Ming-Hua; Yuan, Guang-Yin

    2016-11-01

    Magnesium alloy covered stents have rarely been used in the common carotid artery (CCA). We evaluated the long-term efficacy of magnesium alloy covered stents in a lateral aneurysm model in rabbit CCA. Magnesium alloy covered stents (group A, n = 7) or Willis covered stents (group B, n = 5) were inserted in 12 New Zealand White rabbits and they were followed up for 12 months. The long-term feasibility for aneurysm occlusion was studied through angiograms; the changes in vessel area and lumen area were assessed with IVUS. Complete aneurysmal occlusion was achieved in all aneurysms. Angiography showed that the diameter of the stented CCA in group A at 6 and 12 months was significantly greater than the diameter immediately after stent placement. On intravascular ultrasound (IVUS) examination, the mean lumen area of the stented CCA in group A was significantly greater at 6 and 12 months than that immediately after stent placement; the mean lumen area was also significantly greater in group A than in group B at the same time points. The magnesium alloy covered stents proved to be an effective approach for occlusion of lateral aneurysm in the rabbit CCA; it provides distinct advantages that are comparable to that obtained with the Willis covered stent.

  16. Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: An in vivo study

    PubMed Central

    Wang, Wu; Wang, Yong-Li; Chen, Mo; Chen, Liang; Zhang, Jian; Li, Yong-Dong; Li, Ming-Hua; Yuan, Guang-Yin

    2016-01-01

    Magnesium alloy covered stents have rarely been used in the common carotid artery (CCA). We evaluated the long-term efficacy of magnesium alloy covered stents in a lateral aneurysm model in rabbit CCA. Magnesium alloy covered stents (group A, n = 7) or Willis covered stents (group B, n = 5) were inserted in 12 New Zealand White rabbits and they were followed up for 12 months. The long-term feasibility for aneurysm occlusion was studied through angiograms; the changes in vessel area and lumen area were assessed with IVUS. Complete aneurysmal occlusion was achieved in all aneurysms. Angiography showed that the diameter of the stented CCA in group A at 6 and 12 months was significantly greater than the diameter immediately after stent placement. On intravascular ultrasound (IVUS) examination, the mean lumen area of the stented CCA in group A was significantly greater at 6 and 12 months than that immediately after stent placement; the mean lumen area was also significantly greater in group A than in group B at the same time points. The magnesium alloy covered stents proved to be an effective approach for occlusion of lateral aneurysm in the rabbit CCA; it provides distinct advantages that are comparable to that obtained with the Willis covered stent. PMID:27869217

  17. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2015-07-01

    In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.

  18. Concurrent arterial aneurysms in brain arteriovenous malformations with haemorrhagic presentation

    PubMed Central

    Stapf, C; Mohr, J; Pile-Spellman, J; Sciacca, R; Hartmann, A; Schumacher, H; Mast, H

    2002-01-01

    Objective: To assess the effect of concurrent arterial aneurysms on the risk of incident haemorrhage from brain arteriovenous malformations (AVMs). Methods: In a cross sectional study, 463 consecutive, prospectively enrolled patients from the Columbia AVM Databank were analysed. Concurrent arterial aneurysms on brain angiography were classified as feeding artery aneurysms, intranidal aneurysms, and aneurysms unrelated to blood flow to the AVM. Clinical presentation (diagnostic event) was categorised as intracranial haemorrhage proved by imaging or non-haemorrhagic presentation. Univariate and multivariate statistical models were applied to test the effect of age, sex, AVM size, venous drainage pattern, and the three types of aneurysms on the risk of AVM haemorrhage at initial presentation. Results: Arterial aneurysms were found in 117 (25%) patients with AVM (54 had feeding artery aneurysms, 21 had intranidal aneurysms, 18 had unrelated aneurysms, and 24 had more than one aneurysm type). Intracranial haemorrhage was the presenting symptom in 204 (44%) patients with AVM. In the univariate model, the relative risk for haemorrhagic AVM presentation was 2.28 (95% confidence interval (CI) 1.12 to 4.64) for patients with intranidal aneurysms and 1.88 (95% CI 1.14 to 3.08) for those with feeding artery aneurysms. In the multivariate model an independent effect of feeding artery aneurysms (odds ratio 2.11, 95% CI 1.18 to 3.78) on haemorrhagic AVM presentation was found. No significant effect was seen for intranidal and unrelated aneurysms. The attributable risk of feeding artery aneurysms for incident haemorrhage in patients with AVM was 6% (95% CI 1% to 11%). Conclusions: The findings suggest that feeding artery aneurysms are an independent determinant for increased risk of incident AVM haemorrhage. PMID:12185161

  19. Essentials in intraoperative indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutively clipped aneurysms and review of the literature.

    PubMed

    Roessler, Karl; Krawagna, Maximilian; Dörfler, Arnd; Buchfelder, Michael; Ganslandt, Oliver

    2014-02-01

    Indocyanine green (ICG) videoangiography (VA) in cerebral aneurysm surgery allows confirmation of blood flow in parent, branching, and perforating vessels as well as assessment of remnant aneurysm parts after clip application. A retrospective analysis and review of the literature were conducted to determine the current essential advantages of ICG-VA in aneurysm surgery. The authors retrospectively evaluated all aneurysm cases treated with the aid of intraoperative ICG-VA at a single institution between 2007 and 2013. They also analyzed the literature published since the initial description of ICG-VA in 2003. Two hundred forty-six procedures were performed in 232 patients harboring 295 aneurysms. The patients, whose mean age was 54 years, consisted of 159 women and 73 men. One hundred twenty-four surgeries were performed after subarachnoid hemorrhage, and 122 were performed for incidental aneurysms. Single aneurysms were clipped in 185 patients, and multiple aneurysms were clipped in 47 (mean aneurysm diameter 6.9 mm, range 2-40 mm). No complications associated with ICG-VA occurred. Intraoperative microvascular Doppler ultrasonography was performed before ICG-VA in all patients, and postoperative digital subtraction angiography (DSA) studies were available in 121 patients (52.2%) for retrospective comparative analysis. In 22 (9%) of 246 procedures, the clip position was modified intraoperatively as a consequence of ICG-VA. Stenosis of the parent vessels (16 procedures) or occlusion of the perforators (6 procedures), not detected by micro-Doppler ultrasonography, were the most common problems demonstrated on ICG-VA. In another 11 procedures (4.5%), residual perfusion of the aneurysm was observed and one or more additional clips were applied. Vessel stenosis or a compromised perforating artery occurred independent of aneurysm location and was about equally common in middle cerebral artery and anterior communicating artery aneurysms. In 2 procedures (0.8%), aneurysm

  20. Simulation of unsteady laminar flow in models of terminal aneurysm of the basilar artery

    NASA Astrophysics Data System (ADS)

    Valencia, Alvaro

    2005-05-01

    Blood flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, in addition the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. The present numerical investigation describes the hemodynamics in two models of terminal aneurysm of the basilar artery. Aneurysm models with an aspect ratio of 1.0 and 1.67 were studied. Each model was subject to a steady, sinusoidal and physiologically representative waveform of inflow for a mean Reynolds number of 560. Symmetric and asymmetric outflow conditions in the branches were also studied.

  1. Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model

    PubMed Central

    Metaxa, Eleni; Tremmel, Markus; Natarajan, Sabareesh K; Xiang, Jianping; Paluch, Rocco A.; Mandelbaum, Max; Siddiqui, Adnan H.; Kolega, John; Mocco, J; Meng, Hui

    2010-01-01

    Background and Purpose Hemodynamic insult by bilateral common carotid artery (CCA) ligation has been shown to induce aneurysmal remodeling at the basilar terminus in a rabbit model. To characterize critical hemodynamics that initiate this remodeling, we applied a novel hemodynamics-histology co-mapping technique. Methods Eight rabbits received bilateral CCA ligation to increase basilar artery flow. Three underwent sham operations. Hemodynamic insult at the basilar terminus was assessed by computational fluid dynamics. Bifurcation tissue was harvested on day 5; histology was co-mapped with initial postligation hemodynamic fields of wall shear stress (WSS) and WSS gradient (WSSG). Results All bifurcations showed internal elastic lamina (IEL) loss in periapical regions exposed to accelerating flow with high WSS and positive WSSG. IEL damage happened 100% of the time at locations where WSS>122 Pa and WSSG>530 Pa/mm. The degree of destructive remodeling accounting for IEL loss, medial thinning, and luminal bulging correlated with the magnitude of the hemodynamic insult. Conclusions Aneurysmal remodeling initiates when local hemodynamic forces exceed specific limits at the rabbit basilar terminus. A combination of high WSS and positive WSSG represents “dangerous” hemodynamics likely to induce aneurysmal remodeling. PMID:20595660

  2. Aneurysm growth and de novo aneurysms during aneurysm surveillance.

    PubMed

    Serrone, Joseph C; Tackla, Ryan D; Gozal, Yair M; Hanseman, Dennis J; Gogela, Steven L; Vuong, Shawn M; Kosty, Jennifer A; Steiner, Calen A; Krueger, Bryan M; Grossman, Aaron W; Ringer, Andrew J

    2016-12-01

    OBJECTIVE Many low-risk unruptured intracranial aneurysms (UIAs) are followed for growth with surveillance imaging. Growth of UIAs likely increases the risk of rupture. The incidence and risk factors of UIA growth or de novo aneurysm formation require further research. The authors retrospectively identify risk factors and annual risk for UIA growth or de novo aneurysm formation in an aneurysm surveillance protocol. METHODS Over an 11.5-year period, the authors recommended surveillance imaging to 192 patients with 234 UIAs. The incidence of UIA growth and de novo aneurysm formation was assessed. With logistic regression, risk factors for UIA growth or de novo aneurysm formation and patient compliance with the surveillance protocol was assessed. RESULTS During 621 patient-years of follow-up, the incidence of aneurysm growth or de novo aneurysm formation was 5.0%/patient-year. At the 6-month examination, 5.2% of patients had aneurysm growth and 4.3% of aneurysms had grown. Four de novo aneurysms formed (0.64%/patient-year). Over 793 aneurysm-years of follow-up, the annual risk of aneurysm growth was 3.7%. Only initial aneurysm size predicted aneurysm growth (UIA < 5 mm = 1.6% vs UIA ≥ 5 mm = 8.7%, p = 0.002). Patients with growing UIAs were more likely to also have de novo aneurysms (p = 0.01). Patient compliance with this protocol was 65%, with younger age predictive of better compliance (p = 0.01). CONCLUSIONS Observation of low-risk UIAs with surveillance imaging can be implemented safely with good adherence. Aneurysm size is the only predictor of future growth. More frequent (semiannual) surveillance imaging for newly diagnosed UIAs and UIAs ≥ 5 mm is warranted.

  3. Investigation of material modeling in fluid-structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms.

    PubMed

    Simsek, Fatma Gulden; Kwon, Young W

    2015-03-01

    Different material models for an idealized three-layered abdominal aorta are compared using computational techniques to study aneurysm initiation and fully developed aneurysms. The computational model includes fluid-structure interaction (FSI) between the blood vessel and the blood. In order to model aneurysm initiation, the medial region was degenerated to mimic the medial loss occurring in the inception of an aneurysm. Various cases are considered in order to understand their effects on the initiation of an abdominal aortic aneurysm. The layers of the blood vessel were modeled using either linear elastic materials or Mooney-Rivlin (otherwise known as hyperelastic) type materials. The degenerated medial region was also modeled in either linear elastic or hyperelastic-type materials and assumed to be in the shape of an arc with a thin width or a circular ring with different widths. The blood viscosity effect was also considered in the initiation mechanism. In addition, dynamic analysis of the blood vessel was performed without interaction with the blood flow by applying time-dependent pressure inside the lumen in a three-layered abdominal aorta. The stresses, strains, and displacements were compared for a healthy aorta, an initiated aneurysm and a fully developed aneurysm. The study shows that the material modeling of the vessel has a sizable effect on aneurysm initiation and fully developed aneurysms. Different material modeling of degeneration regions also affects the stress-strain response of aneurysm initiation. Additionally, the structural analysis without considering FSI (called noFSI) overestimates the peak von Mises stress by 52% at the interfaces of the layers.

  4. A Thrombus Generation Model Applied to Aneurysms Treated with Shape Memory Polymer Foam and Metal Coils

    NASA Astrophysics Data System (ADS)

    Horn, John; Ortega, Jason; Hartman, Jonathan; Maitland, Duncan

    2015-11-01

    To prevent their rupture, intracranial aneurysms are often treated with endovascular metal coils which fill the aneurysm sac and isolate it from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational model has been developed to predict thrombus formation in blood in response to such cardiovascular implantable devices. The model couples biofluid and biochemical phenomena present as the blood interacts with a device and stimulates thrombus formation. This model is applied to simulations of both metal coil and shape memory polymer foam treatments within an idealized 2D aneurysm geometry. Using the predicted thrombus responses, the performance of these treatments is evaluated and compared. The results suggest that foam-treated aneurysms may fill more quickly and more completely with thrombus than coil-filled aneurysms, potentially leading to improved long-term aneurysm healing. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  6. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease.

    PubMed

    Sengupta, Dibyendu; Kahn, Andrew M; Burns, Jane C; Sankaran, Sethuraman; Shadden, Shawn C; Marsden, Alison L

    2012-07-01

    Kawasaki Disease (KD) is the leading cause of acquired pediatric heart disease. A subset of KD patients develops aneurysms in the coronary arteries, leading to increased risk of thrombosis and myocardial infarction. Currently, there are limited clinical data to guide the management of these patients, and the hemodynamic effects of these aneurysms are unknown. We applied patient-specific modeling to systematically quantify hemodynamics and wall shear stress in coronary arteries with aneurysms caused by KD. We modeled the hemodynamics in the aneurysms using anatomic data obtained by multi-detector computed tomography (CT) in a 10-year-old male subject who suffered KD at age 3 years. The altered hemodynamics were compared to that of a reconstructed normal coronary anatomy using our subject as the model. Computer simulations using a robust finite element framework were used to quantify time-varying shear stresses and particle trajectories in the coronary arteries. We accounted for the cardiac contractility and the microcirculation using physiologic downstream boundary conditions. The presence of aneurysms in the proximal coronary artery leads to flow recirculation, reduced wall shear stress within the aneurysm, and high wall shear stress gradients at the neck of the aneurysm. The wall shear stress in the KD subject (2.95-3.81 dynes/sq cm) was an order of magnitude lower than the normal control model (17.10-27.15 dynes/sq cm). Particle residence times were significantly higher, taking 5 cardiac cycles to fully clear from the aneurysmal regions in the KD subject compared to only 1.3 cardiac cycles from the corresponding regions of the normal model. In this novel quantitative study of hemodynamics in coronary aneurysms caused by KD, we documented markedly abnormal flow patterns that are associated with increased risk of thrombosis. This methodology has the potential to provide further insights into the effects of aneurysms in KD and to help risk stratify patients for

  7. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    PubMed

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms.

    PubMed

    Cha, Kyung Se; Balaras, Elias; Lieber, Baruch B; Sadasivan, Chander; Wakhloo, Ajay K

    2007-12-01

    Aneurysmal recanalization and coil compaction after coil embolization of intracranial aneurysms are seen in as many as 40% of cases. Higher packing density has been suggested to reduce both coil compaction and recanalization. Basilar bifurcation aneurysms remain a challenge due possibly to the hemodynamics of this specific aneurysm/parent vessel architecture, which subjects the coil mass at the aneurysm neck to elevated and repetitive impingement forces. In the present study, we propose a new modeling strategy that facilitates a better understanding of the complex interactions between detachable coils and the local blood flow. In particular, a semiheuristic porous media set of equations used to describe the intra-aneurysmal flow is coupled to the incompressible Navier-Stokes equations governing the dynamics of the flow in the involved vessels. The resulting system of equations is solved in a strongly coupled manner using a finite element formulation. Our results suggest that there is a complex interaction between the local hemodynamics and intra-aneurysmal flow that induces significant forces on the coil mass. Although higher packing densities have previously been advocated to reduce coil compaction, our simulations suggest that lower permeability of the coil mass at a given packing density could also promote faster intra-aneurysmal thrombosis due to increased residence times.

  9. In vivo tissue response following implantation of shape memory polyurethane foam in a porcine aneurysm model

    PubMed Central

    Rodriguez, Jennifer N.; Clubb, Fred J.; Wilson, Thomas S.; Miller, Matthew W.; Fossum, Theresa W.; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J.

    2014-01-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their ability to serve as a stable filler material within an aneurysm. The degree of healing was evaluated via gross observation, histopathology and low vacuum scanning electron microscopy (LV-SEM) imaging after zero, thirty and ninety days. Clotting was initiated within the SMP foam at time zero (less than one hour exposure to blood prior to euthanization), partial healing was observed at thirty days, and almost complete healing had occurred at ninety days in vivo, with minimal inflammatory response. PMID:23650278

  10. Abdominal aortic aneurysm and omega-3 polyunsaturated fatty acids: Mechanisms, animal models, and potential treatment.

    PubMed

    Meital, Lara T; Sandow, Shaun L; Calder, Philip C; Russell, Fraser D

    2017-03-01

    Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with macrophage accumulation in the adventitia, oxidative stress, medial elastin degradation and aortic dilation. Progression of AAA is linked to increased risk of rupture, which carries a high mortality rate. Drug therapies trialled to date lack efficacy and although aneurysm repair is available for patients with large aneurysm, peri-surgical morbidity and mortality have been widely reported. Recent studies using rodent models of AAA suggest that long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) and their metabolites can moderate inflammation and oxidative stress perpetuated by infiltrating macrophages and intervene in the destruction of medial elastin. This review examines evidence from these animal studies and related reports of inhibition of inflammation and arrest of aneurysm development following prophylactic supplementation with LC n-3 PUFAs. The efficacy of LC n-3 PUFAs for management of existing aneurysm is unclear and further investigations involving human clinical trials are warranted.

  11. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model.

    PubMed

    Rodriguez, Jennifer N; Clubb, Fred J; Wilson, Thomas S; Miller, Matthew W; Fossum, Theresa W; Hartman, Jonathan; Tuzun, Egemen; Singhal, Pooja; Maitland, Duncan J

    2014-05-01

    Cerebral aneurysms treated by traditional endovascular methods using platinum coils have a tendency to be unstable, either due to chronic inflammation, compaction of coils, or growth of the aneurysm. We propose to use alternate filling methods for the treatment of intracranial aneurysms using polyurethane-based shape memory polymer (SMP) foams. SMP polyurethane foams were surgically implanted in a porcine aneurysm model to determine biocompatibility, localized thrombogenicity, and their ability to serve as a stable filler material within an aneurysm. The degree of healing was evaluated via gross observation, histopathology, and low vacuum scanning electron microscopy imaging after 0, 30, and 90 days. Clotting was initiated within the SMP foam at time 0 (<1 h exposure to blood before euthanization), partial healing was observed at 30 days, and almost complete healing had occurred at 90 days in vivo, with minimal inflammatory response. Copyright © 2013 Wiley Periodicals, Inc.

  12. Modelling and numerical simulation of the in vivo mechanical response of the ascending aortic aneurysm in Marfan syndrome.

    PubMed

    García-Herrera, Claudio M; Celentano, Diego J; Herrera, Emilio A

    2017-03-01

    Marfan syndrome (MFS) is a genetic disorder that affects connective tissue, impairing cardiovascular structures and function, such as heart valves and aorta. Thus, patients with Marfan disease have a higher risk of developing circulatory problems associated with mitral and aortic valves prolapse, manifested as dilated aorta and aortic aneurysm. However, little is known about the biomechanical characteristics of these structures affected with MFS. This study presents the modelling and simulation of the mechanical response of human ascending aortic aneurysms in MFS under in vivo conditions with intraluminal pressures within normotensive and hypertensive ranges. We obtained ascending aortic segments from five adults with MFS subjected to a vascular prosthesis implantation replacing an aortic aneurysm. We characterised the arterial samples via ex vivo tensile test measurements that enable fitting the material parameters of a hyperelastic isotropic constitutive model. Then, these material parameters were used in a numerical simulation of an ascending aortic aneurysm subjected to in vivo normotensive and hypertensive conditions. In addition, we assessed different constraints related to the movement of the aortic root. Overall, our results provide not only a realistic description of the mechanical behaviour of the vessel, but also useful data about stress/stretch-based criteria to predict vascular rupture. This knowledge may be included in the clinical assessment to determine risk and indicate surgical intervention.

  13. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    PubMed

    Polzer, Stanislav; Gasser, T Christian

    2015-12-06

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach.

  14. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index

    PubMed Central

    Polzer, Stanislav; Gasser, T. Christian

    2015-01-01

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. PMID:26631334

  15. Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature.

    PubMed

    Zeng, Zijing; Kallmes, David F; Durka, Michael J; Ding, Yonghong; Lewis, Debra; Kadirvel, Ramanathan; Robertson, Anne M

    2010-09-01

    Computational fluid dynamics (CFD) studies provide a valuable tool for evaluating the role of hemodynamics in vascular diseases such as cerebral aneurysms and atherosclerosis. However, such models necessarily only include isolated segments of the vasculature. In this work, we evaluate the influence of geometric approximations in vascular anatomy on hemodynamics in elastase induced saccular aneurysms in rabbits. One representative high aspect ratio (AR-height/neck width) aneurysm and one low AR aneurysm were created at the origin of the right common carotid artery in two New Zealand white rabbits. Three-dimensional (3D) reconstructions of the aneurysm and surrounding arteries were created using 3D rotational angiographic data. Five models with varying extents of neighboring vasculature were created for both the high and low AR cases. A reference model included the aneurysm sac, left common carotid artery (LCCA), aortic arch, and downstream trifurcation/quadrification. Three-dimensional, pulsatile CFD studies were performed and streamlines, wall shear stress (WSS), oscillatory shear index, and cross sectional velocity were compared between the models. The influence of the vascular domain on intra-aneurysmal hemodynamics varied between the low and high AR cases. For the high AR case, even a simple model including only the aneurysm, a small section of neighboring vasculature, and simple extensions captured the main features of the steamline and WSS distribution predicted by the reference model. However, the WSS distribution in the low AR case was more strongly influenced by the extent of vasculature. In particular, it was necessary to include the downstream quadrification and upstream LCCA to obtain good predictions of WSS. The findings in this work demonstrate the accuracy of CFD results can be compromised if insufficient neighboring vessels are included in studies of hemodynamics in elastase induced rabbit aneurysms. Consideration of aspect ratio, hemodynamic

  16. In vivo strain assessment of the abdominal aortic aneurysm.

    PubMed

    Satriano, Alessandro; Rivolo, Simone; Martufi, Giampaolo; Finol, Ender A; Di Martino, Elena S

    2015-01-21

    The only criteria currently used to inform surgical decision for abdominal aortic aneurysms are maximum diameter (>5.5 cm) and rate of growth, even though several studies have identified the need for more specific indicators of risk. Patient-specific biomechanical variables likely to affect rupture risk would be a valuable addition to the science of understanding rupture risk and prove to be a life saving benefit for patients. Local deformability of the aorta is related to the local mechanical properties of the wall and may provide indication on the state of weakening of the wall tissue. We propose a 3D image-based approach to compute aortic wall strain maps in vivo. The method is applicable to a variety of imaging modalities that provide sequential images at different phases in the cardiac cycle. We applied the method to a series of abdominal aneurysms imaged using cine-MRI obtaining strain maps at different phases in the cardiac cycle. These maps could be used to evaluate the distensibility of an aneurysm at baseline and at different follow-up times and provide an additional index to clinicians to facilitate decisions on the best course of action for a specific patient.

  17. New ascending aortic aneurysm model in rats reproduces main structural features of degenerative ascending thoracic aortic aneurysms in human beings.

    PubMed

    Radu, Narcis Costin; Gervais, Marianne; Michineau, Stéphanie; Blanc, Raphaël; Fifre, Alexandre; Kirsch, Ernst Wilhelm Matthias; Allaire, Eric

    2013-06-01

    The singularity of the ascending aorta regarding mechanisms driving aneurysm formation requires the development of specific animal models. We investigated if adventitial elastase application results in ascending aorta aneurysms in rats. Adult Lewis rats (n = 26) were anesthetized, their ascending aortas measured by transthoracic ultrasound, and exposed via median sternotomy. Elastase or saline was applied on the ascending aortic adventitia. Ascending aorta diameters were monitored by ultrasound at 10 and 30 days, when the animals were killed. Wall area was measured on orcein stained sections. Matrix metalloproteinase-2 and matrix metalloproteinase-9 levels were quantified on gelatin zymography. Following elastase application, ascending aortic diameter increased at 10 and 30 days follow-up by 38% and 44%, respectively (P = .004). Despite thinning of the media secondary to vascular dilation, standardized medial area was not different between elastase-treated aortas and controls. Standardized total wall area had a significant increase in treated aortas compared with controls. Active matrix metalloproteinase-2 was significantly increased at 30 days in treated aortas, whereas active matrix metalloproteinase-9 was no different from controls. Elastase application on rat ascending aortic adventitia produced aneurysms, creating a reproducible model. Aortic wall remodeling evolved toward an increase in total wall area, reproducing the main structural features of this disease in human beings. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  18. Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system.

    PubMed

    Hassani, Kamran; Navidbakhsh, Mahdi; Rostami, Mostafa

    2007-06-09

    The aortic aneurysm is a dilatation of the aortic wall which occurs in the saccular and fusiform types. The aortic aneurysms can rupture, if left untreated. The renal stenosis occurs when the flow of blood from the arteries leading to the kidneys is constricted by atherosclerotic plaque. This narrowing may lead to the renal failure. Previous works have shown that, modelling is a useful tool for understanding of cardiovascular system functioning and pathophysiology of the system. The present study is concerned with the modelling of aortic aneurysms and renal artery stenosis using the cardiovascular electronic system. The geometrical models of the aortic aneurysms and renal artery stenosis, with different rates, were constructed based on the original anatomical data. The pressure drop of each section due to the aneurysms or stenosis was computed by means of computational fluid dynamics method. The compliance of each section with the aneurysms or stenosis is also calculated using the mathematical method. An electrical system representing the cardiovascular circulation was used to study the effects of these pressure drops and the compliance variations on this system. The results showed the decreasing of pressure along the aorta and renal arteries lengths, due to the aneurysms and stenosis, at the peak systole. The mathematical method demonstrated that compliances of the aorta sections and renal increased with the expansion rate of the aneurysms and stenosis. The results of the modelling, such as electrical pressure graphs, exhibited the features of the pathologies such as hypertension and were compared with the relevant experimental data. We conclude from the study that the aortic aneurysms as well as renal artery stenosis may be the most important determinant of the arteries rupture and failure. Furthermore, these pathologies play important rules in increase of the cardiovascular pulse pressure which leads to the hypertension.

  19. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  20. Assessment of endovascular coil configuration for embolization of intracranial aneurysms using computational fluid dynamics.

    PubMed

    Ohshima, Tomotaka; Miyachi, Shigeru; Takahashi, Ichiro; Ishii, Katsuya

    2015-08-01

    Endovascular coil embolization of arterial aneurysms is often complicated by reduced blood flow to branching arteries. To determine the optimal coil configuration for safe embolization of endovascular aneurysms without compromising blood flow in branching arteries. A 3-dimensional voxel model, built based on an unruptured vertebral artery-posterior inferior cerebellar artery (VA-PICA) aneurysm, predicted to show impairment of flow in the PICA during endovascular coil embolization (Case 0). Six different models of final coil configuration were generated and applied to this aneurysm. Case 1 was a round coil mass. Case 2 was designed with a stent assist. Cases 3, and 4 were designed with a neck remnant and Cases 5 and 6 incorporated a balloon neck remodeling technique. Computational fluid dynamics was used to analyze the flow in the PICA in each model. The average outflow to the PICA was highest in Case 0 and lowest in Case 2 (in descending order, Case 0, 5, 4, 6, 1, 3, and 2). There was better preservation of outflow to the PICA in the balloon neck remodeling models than in the neck remnant models. In a model of endovascular coil embolization, we found considerable differences in outflow to the branching artery with small changes in coil configuration. Careful preoperative planning is important to minimize the risk of thromboembolic events during and after endovascular coil embolization.

  1. Three-band decomposition analysis in multiscale FSI models of abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Nestola, Maria G. C.; Gizzi, Alessio; Cherubini, Christian; Filippi, Simonetta

    2016-07-01

    Computational modeling plays an important role in biology and medicine to assess the effects of hemodynamic alterations in the onset and development of vascular pathologies. Synthetic analytic indices are of primary importance for a reliable and effective a priori identification of the risk. In this scenario, we propose a multiscale fluid-structure interaction (FSI) modeling approach of hemodynamic flows, extending the recently introduced three-band decomposition (TBD) analysis for moving domains. A quantitative comparison is performed with respect to the most common hemodynamic risk indicators in a systematic manner. We demonstrate the reliability of the TBD methodology also for deformable domains by assuming a hyperelastic formulation of the arterial wall and a Newtonian approximation of the blood flow. Numerical simulations are performed for physiologic and pathologic axially symmetric geometry models with particular attention to abdominal aortic aneurysms (AAAs). Risk assessment, limitations and perspectives are finally discussed.

  2. Evaluation of a newly designed flow diverter for the treatment of intracranial aneurysms in an elastase-induced aneurysm model, in New Zealand white rabbits.

    PubMed

    Simgen, Andreas; Ley, Desiree; Roth, Christian; Yilmaz, Umut; Körner, Heiko; Mühl-Benninghaus, Ruben; Kim, Yoo-Jin; Scheller, Bruno; Reith, Wolfgang

    2014-02-01

    In this study, we analyzed angiographic and histologic aneurysm occlusion of a newly designed flow diverting device. Visibility and flexibility, as well as occlusions of side branches and neointimal proliferation were also evaluated. Aneurysms were induced in 18 New Zealand white rabbits and treated with a braided, “closed-loop-designed” device of nitinol. Additional devices were implanted in the abdominal aorta to cover the origin of branch arteries.Angiographic follow-ups were performed immediately after placement of the device, after 3 months (n=9) and 6 months(n =9). The status of aneurysm occlusion (using a five-point scale) and the patency of branch arteries were assessed. Aneurysm occlusion rates were noted as grade 0 in 2 (11 %), grade I in 1 (6 %), grade II in 1 (6 %), grade III in 9(50 %), and grade IV in 5 (28 %) of 18 aneurysms, respectively, indicating a complete or near-complete occlusion of 78 % under double antiplatelet therapy. Aneurysm occlusion was significantly higher at 6 months follow-up (P =0.025). Radiopaque markers provided excellent visibility. Limited device flexibility led to incomplete aneurysm neck coverage and grade 0 occlusion rates in two cases. Distal device occlusions were found in three cases, most likely due to an extremely undersized vessel diameter in the subclavian artery.No case of branch artery occlusion was seen. Intimal proliferation and diameter stenosis were moderate. The tested flow diverter achieved near-complete and complete aneurysm occlusion under double antiplatelet therapy of elastase-induced aneurysms in 78 %, while preserving branch arteries.

  3. Aneurysmal Subarachnoid Hemorrhage Models: Do They Need a Fix?

    PubMed Central

    Sehba, Fatima A.; Pluta, Ryszard M.

    2013-01-01

    The discovery of tissue plasminogen activator to treat acute stroke is a success story of research on preventing brain injury following transient cerebral ischemia (TGI). That this discovery depended upon development of embolic animal model reiterates that proper stroke modeling is the key to develop new treatments. In contrast to TGI, despite extensive research, prevention or treatment of brain injury following aneurysmal subarachnoid hemorrhage (aSAH) has not been achieved. A lack of adequate aSAH disease model may have contributed to this failure. TGI is an important component of aSAH and shares mechanism of injury with it. We hypothesized that modifying aSAH model using experience acquired from TGI modeling may facilitate development of treatment for aSAH and its complications. This review focuses on similarities and dissimilarities between TGI and aSAH, discusses the existing TGI and aSAH animal models, and presents a modified aSAH model which effectively mimics the disease and has a potential of becoming a better resource for studying the brain injury mechanisms and developing a treatment. PMID:23878760

  4. Computed Tomographic Angiography as an Adjunct to Digital Subtraction Angiography for the Pre-Operative Assessment of Cerebral Aneurysms

    PubMed Central

    Farsad, Khashayar; Mamourian, Alexander C; Eskey, Clifford J; Friedman, Jonathan A

    2009-01-01

    Objectives: Computerized tomographic angiography (CTA) has emerged as a valuable diagnostic tool for the management of patients with cerebrovascular disease. The use of CTA in lieu of, or as an adjunct to, conventional cerebral angiography in the management of cerebral aneurysms awaits further experience. In this study, we evaluated the role of CTA specifically for the pre-operative assessment and planning of cerebral aneurysm surgery. Patients and Methods: We reviewed the relevant neuroimaging of all patients treated at Dartmouth Hitchcock Medical Center between January, 2001 and December, 2004 with a diagnosis of cerebral aneurysm and diagnostic evaluation with both CTA and conventional digital subtraction angiography (DSA) using standard imaging protocols. 32 patients underwent both CTA and DSA during the study period for a total of 36 aneurysms. Images were independently re-assesed by two neurosurgeons for information valuable for pre-operative surgical planning. Results: In 26 of 36 aneurysms (72%), the CTA was felt to provide the best image quality in defining the morphology of the aneurysm. In 14 aneurysms (39%), CTA provided clinically valuable anatomic detail not demonstrated on DSA, largely due to better visualization of parent and perforating vessel relationships at the aneurysm neck. There were no instances where a lesion was seen on DSA but missed on CTA. The DSA was of most clinical value in determining flow dynamics, such as the arterial supply of an anterior communicating artery aneurysm and distal anterior cerebral branches via the two A1 segments. Conclusion: CTA with three-dimensional reconstructions is a valuable adjunct to the preoperative evaluation of cerebral aneurysms. We advocate routine use of CTA in all patients in whom surgical aneurysm repair is planned, even when DSA has already been performed. PMID:19452029

  5. Critical roles of macrophages in the formation of intracranial aneurysm

    PubMed Central

    Kanematsu, Yasuhisa; Kanematsu, Miyuki; Kurihara, Chie; Tada, Yoshiteru; Tsou, Tsung-Ling; van Rooijen, Nico; Lawton, Michael T.; Young, William L.; Liang, Elena I.; Nuki, Yoshitsugu; Hashimoto, Tomoki

    2011-01-01

    Background and Purpose Abnormal vascular remodeling triggered by hemodynamic stresses and inflammation is believed to be a key process in the pathophysiology of intracranial aneurysms. Numerous studies have shown infiltration of inflammatory cells, especially macrophages, into intracranial aneurysmal walls in humans. Using a mouse model of intracranial aneurysms, we tested whether macrophages play critical roles in the formation of intracranial aneurysms. Methods Intracranial aneurysms were induced in adult male mice using a combination of a single injection of elastase into the cerebrospinal fluid and angiotensin-II-induced hypertension. Aneurysm formation was assessed three weeks later. Roles of macrophages were assessed utilizing clodronate liposome-induced macrophage depletion. In addition, the incidence of aneurysms was assessed in mice lacking monocyte chemotactic protein-1 (MCP-1, CCL2), and mice lacking matrix metalloproteinase-12 (MMP-12, macrophage elastase). Results Intracranial aneurysms in this model showed leukocyte infiltration into the aneurysmal wall, the majority of leukocytes being macrophages. Mice with macrophage depletion had a significantly reduced incidence of aneurysms compared to control mice (1/10 vs. 6/10; P < 0.05). Similarly, there was a reduced incidence of aneurysms in mice lacking MCP-1, compared to incidence of aneurysms in wild-type mice (2/10 vs. 14/20, P < 0.05). There was no difference in the incidence of aneurysms between mice lacking MMP-12 and wild-type mice. Conclusions These data suggest critical roles of macrophages and proper macrophage functions in the formation of intracranial aneurysms in this model. PMID:21106959

  6. Modeling contrast agent flow in cerebral aneurysms: comparison of CFD with medical imaging

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Vali, Alireza; Sigovan, Monica; Lawton, Michael; Saloner, David; Boussel, Loic

    2016-11-01

    PURPOSE: The flow in cerebral aneurysms is routinely assessed with X-ray angiography, an imaging technique based on a contrast agent injection. In addition to requiring a patient's catheterization and radiation exposure, the X-ray angiography may inaccurately estimate the flow residence time, as the injection alters the native blood flow patterns. Numerical modeling of the contrast transport based on MRI imaging, provides a non-invasive alternative for the flow diagnostics. METHODS: The flow in 3 cerebral aneurysms was measured in vivo with 4D PC-MRI, which provides time-resolved, 3D velocity field. The measured velocities were used to simulate a contrast agent transport by solving the advection-diffusion equation. In addition, the flow in the same patient-specific geometries was simulated with CFD and the velocities obtained from the Navier-Stokes solution were used to model the transport of a virtual contrast. RESULTS: Contrast filling and washout patterns obtained in simulations based on MRI-measured velocities were in agreement with those obtained using the Navier-Stokes solution. Some discrepancies were observed in comparison to the X-ray angiography data, as numerical modeling of the contrast transport is based on the native blood flow unaffected by the contrast injection. NIH HL115267.

  7. A Mathematical Model of Intracranial Saccular Aneurysms: Evidence of Hemodynamic Instability

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Davis, Stephen; Miksis, Michael

    2010-11-01

    Intracranial saccular aneurysms tend to form at the apex of arterial bifurcations and often assume a nominally spherical shape. In certain cases, the aneurysm growth can become unstable and lead to rupture. While the mechanisms of instability are not well understood, hemodynamics almost certainly play an important role. In this talk, a mathematical model of a saccular aneurysm is presented that describes the shape deformations of an initially spherical membrane interacting with a viscous fluid in the interior. The governing equations are derived from the equations of a thin shell supplemented with a constitutive model that is representative of aneurysmal tissue. Among the key findings are that two families of free vibration modes exist and, for certain values of the membrane properties, one family of nonspherical, axisymmetric modes is unstable to small perturbations. In addition, the presence of a vortical interior flow of sufficient strength can excite resonance of the membrane -- an unstable phenomenon that might cause eventual rupture.

  8. Experimental model for coadjuvant treatment with mesenchymal stem cells for aortic aneurysm

    PubMed Central

    Riera del Moral, Luis; Aramburu, Carlota Largo; García, José Ramón Ramírez; de Cubas, Luis Riera; García-Olmo, Damián; García-Arranz, Mariano

    2012-01-01

    Many factors are possibly involved in the inflammatory process which causes the degeneration of the arterial wall in the formation of Abdominal Aortic Aneurysms. During the last years different experimental models have been published to treat this fault of the arterial walls. Parallel the clinical treatment has evolved. With this work we have tried to develop an animal model basing on the clinical current treatment. Finally, we propose a treatment based on mesenchymal cells to disable local immune response, preventing excessive fibrosis, apoptosis, and inducing intrinsic cellular progenitors. Objective: To present a reproducible superior animal model of experimentation, intending to show that mesenchymal stem cells inserted in the sac of an artificial aneurysm are able to survive, so that they can be made accountable for a subsequent beneficial effect upon this condition. Methods: Six Landrace-White pigs, weighing around 25Kg. We generate 2 aneurysms of abdominal aorta (2x1cm) with Dacron’s patches. Later we treat the aneurysms endoscopic with a covered endograft. Finally, in one of the aneurysmal sac we introduce 1cc fibrin sealant and in another 1 cc of fibrin sealant with 10 million MSC. Animals were sacrificed at 24 hs and 1, 3, 5, 7 and 9 weeks. Samples of aneurysms were processed histologically (H&E and Masson). The injected cells were located by immunofluorescence (GFP market). Results: The surgical technique is reproducible and similar to those conducted in common clinical practice. Histological cross-section samples of cases treated with MSC and analyzed by a blind researcher present a lower inflammation reaction, or with longer evolution time than in controls. Immunofluorescence studies have detected cells marked with GFP up to three weeks after treatment. Conclusion: This reproducible animal model is similar to common clinical treatment. MSC can stand alive at least for three weeks since their implantation within an aneurysm sac. This may improve the

  9. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).

    PubMed

    Costalat, V; Sanchez, M; Ambard, D; Thines, L; Lonjon, N; Nicoud, F; Brunel, H; Lejeune, J P; Dufour, H; Bouillot, P; Lhaldky, J P; Kouri, K; Segnarbieux, F; Maurage, C A; Lobotesis, K; Villa-Uriol, M C; Zhang, C; Frangi, A F; Mercier, G; Bonafé, A; Sarry, L; Jourdan, F

    2011-10-13

    Individual rupture risk assessment of intracranial aneurysms is a major issue in the clinical management of asymptomatic aneurysms. Aneurysm rupture occurs when wall tension exceeds the strength limit of the wall tissue. At present, aneurysmal wall mechanics are poorly understood and thus, risk assessment involving mechanical properties is inexistent. Aneurysm computational hemodynamics studies make the assumption of rigid walls, an arguable simplification. We therefore aim to assess mechanical properties of ruptured and unruptured intracranial aneurysms in order to provide the foundation for future patient-specific aneurysmal risk assessment. This work also challenges some of the currently held hypotheses in computational flow hemodynamics research. A specific conservation protocol was applied to aneurysmal tissues following clipping and resection in order to preserve their mechanical properties. Sixteen intracranial aneurysms (11 female, 5 male) underwent mechanical uniaxial stress tests under physiological conditions, temperature, and saline isotonic solution. These represented 11 unruptured and 5 ruptured aneurysms. Stress/strain curves were then obtained for each sample, and a fitting algorithm was applied following a 3-parameter (C(10), C(01), C(11)) Mooney-Rivlin hyperelastic model. Each aneurysm was classified according to its biomechanical properties and (un)rupture status. Tissue testing demonstrated three main tissue classes: Soft, Rigid, and Intermediate. All unruptured aneurysms presented a more Rigid tissue than ruptured or pre-ruptured aneurysms within each gender subgroup. Wall thickness was not correlated to aneurysmal status (ruptured/unruptured). An Intermediate subgroup of unruptured aneurysms with softer tissue characteristic was identified and correlated with multiple documented risk factors of rupture. There is a significant modification in biomechanical properties between ruptured aneurysm, presenting a soft tissue and unruptured aneurysms

  10. Accelerated Aneurysmal Dilation Associated with Apoptosis and Inflammation in a Newly Developed Calcium Phosphate Rodent Abdominal Aortic Aneurysm Model

    PubMed Central

    Yamanouchi, Dai; Morgan, Stephanie; Stair, Colin; Seedial, Stephen; Lengfeld, Justin; Kent, K. Craig; Liu, Bo

    2012-01-01

    Objective The Calcium Chloride (CaCl2) model is a widely accepted rodent model for abdominal aortic aneurysm (AAA). Calcium deposition, mainly consisting of calcium phosphate (CaPO4) crystals, has been reported to exist in both human and experimental aneurysms. CaPO4 crystal has been utilized for in vitro DNA transfection by mixing CaCl2 and Phosphate Buffered Saline (PBS). Here, we describe accelerated aneurysm formation resulting from a modification of the CaCl2 model. Methods The modified CaCl2, the CaPO4 model, was created by applying PBS onto the mouse infrarenal aorta after CaCl2 treatment. Morphological, histological and immunohistochemical analyses were performed on arteries treated with both the CaPO4 model and the conventional CaCl2 model as control. In vitro methods were carried out using a mixture of CaCl2 and PBS to create CaPO4 crystals. CaPO4 induced apoptosis of primary cultured mouse vascular smooth muscle cells (VSMCs) was measured by DNA fragmentation ELISA. Results First, we showed that the CaPO4 model produces AAA, defined as an increase of 50% or greater in the diameter of the aorta; faster than in the CaCl2 model. CaPO4 model showed significantly larger aneurysmal dilation at 7, 28, and 42 days as reflected by a maximum diameter fold change (measured in mm) of 1.69 ± 0.07, 1.99 ± 0.14 and 2.13 ± 0.09 as opposed to 1.22 ± 0.04, 1.48 ± 0.07 and 1.68±0.06 as seen in CaCl2 model, respectively (n=6; P<0.05). A semi-quantitative grading analysis of elastin fiber integrity at 7 days revealed a significant increase in elastin degradation in the CaPO4 model as compared to CaCl2 model (2.7±0.2 vs 1.5±0.2, p<0.05, n=6). Significantly higher level of apoptosis occurred in the CaPO4 model (apoptosis index at 1, 2, and 3 days post-surgery: 0.26 ± 0.14, 0.37± 0.14, and 0.33 ± 0.08 for CaPO4 model and 0.012 ± 0.10, 0.15± 0.02, and 0.12 ± 0.05 for conventional CaCl2 model) (n=3; p<0.05). An enhancement of macrophage infiltration and

  11. Effect of saccular aneurysm and parent artery morphology on hemodynamics of cerebral bifurcation aneurysms.

    PubMed

    Farnoush, A; Qian, Y; Takao, H; Murayama, Y; Avolio, A

    2012-01-01

    Morphological descriptors of aneurysms have been used to assess aneurysm rupture. This study investigated the relation between the morphological parameters and the flow related parameter of energy loss (EL). Four size indices and one shape index were assessed in idealized middle cerebral artery models with various aneurysm morphologies. Four patient-specific aneurysms (2 ruptured, 2 unruptured) were virtually manipulated by removing the aneurysms from their parent arteries and merging them with the idealized bifurcation models. EL was calculated from the energy difference between inflow and outflow. The results indicate that among size indices, EL is mostly dependent on bottleneck factor and less dependent on the aspect ratio. Results also showed that there is a direct relationship between nonsphericity index (NSI) and EL in manipulated models. No specific correlation was found between EL and NSI in patient-specific models.

  12. PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model

    NASA Astrophysics Data System (ADS)

    Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.

  13. The aneurysmal arteriovenous fistula - morphological study and assessment of clinical implications. A pilot study.

    PubMed

    Watson, Kenneth R; Gallagher, Maeve; Ross, Rose; Severn, Alison; Nagy, Janos; Cochrane, Lynda; Griffiths, Gareth D

    2015-10-01

    Aneurysmal dilation of arteriovenous fistulae used for haemodialysis is a recognised complication but its clinical significance is a contentious issue. Our aims were to describe aneurysmal fistulae morphologically and clinically.Sixty patients underwent duplex scanning to measure the maximum diameter and skin thickness of their fistula. Haemodialysis function and bleeding risk were assessed clinically.The 75th percentile of maximum diameter was 2.05 cm. In addition to conventional diameter measurement, we describe a novel volume measurement technique which may be of value. No relationship was found between maximum diameter or volume and function, skin thickness or bleeding.Some studies define aneurysm at 2 cm (75th percentile); however, this definition and other arbitrary definitions lack clinical significance. This work suggests that fistula dilation should be considered together with clinical issues when determining the clinical significance of an aneurysm. Our finding that haemodialysis function, skin thickness and bleeding were not associated with diameter needs further study.

  14. Occlusion assessment of intracranial aneurysms treated with the WEB device.

    PubMed

    Caroff, Jildaz; Mihalea, Cristian; Tuilier, Titien; Barreau, Xavier; Cognard, Christophe; Desal, Hubert; Pierot, Laurent; Arnoux, Armelle; Moret, Jacques; Spelle, Laurent

    2016-09-01

    The Woven EndoBridge (WEB) system is an innovative device under evaluation for its capacity to treat wide-neck bifurcation intracranial aneurysms. The purpose of this study is to evaluate the use of the different occlusion scales available in clinical practice. Seven WEB-experienced neurointerventionalists were provided with 30 angiographic follow-up data sets and asked to grade each evaluation point according to the Bicêtre Occlusion Scale Score (BOSS), firstly based on DSA images only then using additional C-Arm VasoCT analysis. This BOSS evaluation was then converted into the WEB Occlusion Scale (WOS) and into a dichotomized scale (complete occlusion or not). To estimate the inter-rater agreement among the seven raters, an overall kappa coefficient [1] and its standard error (SE) were computed. Using the five-grade BOSS, raters showed "moderate" agreement (kappa = 0.56). Using the three-grade WOS, agreement appeared slightly better (kappa = 0.59). Strongest inter-rater agreement was observed with a dichotomized version of the scale (complete occlusion or not), which enabled an "almost perfect" agreement (kappa = 0.88). VasoCT consistently enhanced the agreement particularly with regards depicting intra-WEB residual filling. The WOS is a consistent means to angiographically evaluate the WEB device efficiency. But the five-grade BOSS scale allows to identify aneurysm subgroups with differing risks of recurrence and/or rehemorrhage, which needs to be separated especially at the initial phase of evaluation of this innovative device. The additional use of VasoCT allows better inter-rater agreement in evaluating occlusion and specially in depicting intra-WEB persistent filling.

  15. Pre-Clinical Testing of a Novel Thin Film Nitinol Flow Diversion Stent in a Rabbit Elastase Aneurysm Model

    PubMed Central

    Ding, YongHong; Dai, Daying; Kallmes, David F.; Schroeder, Dana; Kealey, Colin P.; Gupta, Vikas; Johnson, A. David; Kadirvel, Ramanathan

    2015-01-01

    Purpose Thin Film Nitinol (TFN) can be processed to produce a thin microporous sheet with low percent metal coverage (<20%) and high pore density (~70 pores/mm2) for flow diversion. We present in vivo results from treatment of experimental rabbit aneurysms using a TFN-based flow diversion device. Materials and Methods Nineteen aneurysms in the rabbit elastase aneurysm model were treated with a single TFN flow diverter. Devices were also placed over 17 lumbar arteries to model peri-aneurysmal branch arteries of the intracranial circulation. Angiography was performed at 2 weeks (n=7), 1 month (n=8) and 3 months (n=4) immediately before sacrifice. Aneurysm occlusion was graded on a 3-point scale (Grade 1, complete occlusion; Grade 2, near-complete occlusion; Grade 3, incomplete occlusion). Toluidine blue staining was used for histologic evaluation. En face CD31 immunofluorescent staining was performed to quantify neck endothelialization. Results Markedly reduced intra-aneurysmal flow was observed on angiography immediately after device placement in all aneurysms. Grade 1 or 2 occlusion was noted in four (57%) aneurysms at 2-week, in six (75%) aneurysms at 4-week and in three (75%) aneurysms at 12-week follow-up. All 17 lumbar arteries were patent. CD31 staining showed that 75 ± 16% of the aneurysm neck region was endothelialized. Histopathology demonstrated incorporation of the TFN flow diverter into the vessel wall and no evidence of excessive neointimal hyperplasia. Conclusion In this rabbit model, the TFN flow diverter achieved high rates of aneurysm occlusion and promoted tissue in-growth and aneurysm neck healing, even early after implantation. PMID:26494695

  16. Loss of STAT1 is Associated with Increased Aortic Rupture in an Experimental Model of Aortic Dissection and Aneurysm Formation

    PubMed Central

    Eagleton, Matthew J.; Xu, Jun; Liao, Mingfang; Parine, Brittney; Chisolm, Guy M.; Graham, Linda M.

    2009-01-01

    Background Transcription factor signal transducer and activator of transcription (STAT) 1 has been linked to a variety of pathologic states involved with matrix remodeling, but its role in aortic pathology has not been previously described. The current study hypothesizes that STAT1 regulates aneurysmal degeneration and its role will be evaluated in human aortic aneurysms and in a mouse model of aortic dissection. Methods Apolipoprotein E knockout mice (ApoE−/−) or ApoE/STAT1 double knockout mice (ApoE/STAT1−/−) were infused with 1000 ng/kg/min of angiotensin II (Ang II). Systolic blood pressure (SBP) was measured in the rodent tail. At sacrifice, aortic diameters and extent of aneurysm formation were measured by digital microscopy. STAT1 and phosphorylated-STAT1 protein levels were assessed in ApoE−/− mice at 0, 7, 14, and 28 days (n=8/time point) by ELISA. Histology was performed using H&E and Movat stains. Statistical analyses included chi-square test, T-test, and ANOVA. Results STAT1 mRNA and total protein were greater in human AAA compared to non-aneurysmal controls. In addition, aneurysms occurred in 8%, 50%, and 80% of apoE−/− mice at 7, 14, and 28 days respectively. Total STAT1 levels were not altered during the course of Ang II infusion, but phosphorylated STAT1 levels peaked at 7 days with a 1.4-fold increase over baseline (P<0.05). Aneurysms occurred in 0%, 100%, and 100% of apoE/STAT1−/− mice at 3, 5, and 28 days. In mice infused with Ang II for more than 3 days, aortic rupture occurred more frequently in apoE/STAT−/− mice (53% v. 19%, P<0.05) and at earlier time points (4.0±0.5 v. 9.2±0.77 days, P<0.05) compared with apoE−/− mice. SBP did not differ between the groups during Ang II infusion. By 28 days, aneurysms were larger in apoE/STAT1−/− mice compared to apoE−/− mice (2.7±0.4 v. 1.9±0.1 mm, P<0.05), and were more extensive arising at the level of the left subclavian artery and extending to the infrarenal aorta

  17. Assessment of contrast flow modification in aneurysms treated with closed-cell self-deploying asymmetric vascular stents (SAVS)

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Wang, Weiyuan; Bednarek, Daniel R.; Rudin, Stephen

    2010-03-01

    The Asymmetric Vascular Stent (AVS) for intracranial aneurysm (IA) treatment is an experimental device, specially designed for intra-aneurysmal blood flow diversion and thrombosis promotion. The stent has a low-porous patch to cover only the aneurysm neck while the rest of the stent is very porous to avoid blockage of adjacent branches. The latest AVS design is similar to state-of-art, closed-cell, self-expanding, neurovascular stent. The stents were used to treat sixteen rabbit-elastase aneurysm models. The treatment effect was analyzed using normalized-time-density-curves (NTDC) measured by pixel-value integration over a region-of-interest containing the aneurysm. Normalization constant was the total bolus injection determined angiographically. Based on NTDC measurement, five quantities were derived to describe the contrast flow. Two are related to the amount of contrast entering the aneurysm: NTDC peak and NTDC input slope. The other three are related to contrast presence in the aneurysmal dome: time-to-peak (TTP), wash-out-time (WOT) and mean-transit-time (MTT). Flow modification descriptions using the contrast related quantities were expressed as a pre-/post-stented NTDC parameter ratio, while the time related quantities were expressed as a post-/prestented ratio, so that ratios smaller than one indicate a desired effect. Thirteen aneurysms were treated successfully and achieved significant aneurysm occlusion. For these cases, the resulting average parameters were: peak-ratio=0.17+0.21; input-slope-ratio=0.19+/-0.24, TTP-ratio=0.17+0.21, WOT-ratio=0.58+/-0.73 and MTT-ratio=0.65+/-0.97). All the quantities revealed decreased aneurysmal flow due to blood flow diversion using the new self-expanding asymmetrical vascular stent (SAVS). Treatment outcome results and angiographic analysis indicate that the new self-deploying stent design has great potential for clinical implementation.

  18. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, Ch.; Mathioulakis, D. S.; Papaharilaou, Y.; Katsamouris, A.

    2011-06-01

    The velocity field in a patient-specific abdominal aneurysm model including the aorto-iliac bifurcation was measured by 2D PIV. Phase-averaged velocities obtained in 14 planes reveal details of the flow evolution during a cycle. The aneurysm expanding asymmetrically toward the anterior side of the aorta causes the generation of a vortex at its entrance, covering the entire aneurysm bulge progressively before flow peak. The fluid entering the aneurysm impinges on the left side of its distal end, following the axis of the upstream aorta segment, causing an increased flow rate in the left (compared to the right) common iliac artery. High shear stresses appear at the aneurysm inlet and outlet as well as along the posterior wall, varying proportionally to the flow rate. At the same regions, elevated flow disturbances are observed, being intensified at flow peak and during the deceleration phase. Low shear stresses are present in the recirculation region, being two orders of magnitude smaller than the previous ones. At flow peak and during the deceleration phase, a clockwise swirling motion (viewed from the inlet) is present in the aneurysm due to the out of plane curvature of the aorta.

  19. Non-invasive assessment of bleeding pulmonary artery aneurysms due to Behçet disease.

    PubMed

    Greene, R M; Saleh, A; Taylor, A K; Callaghan, M; Addis, B J; Nzewi, O C; van Zyl, W V

    1998-01-01

    Because of its ability to depict intravascular, intramural, and extramural pathology, non-invasive imaging is well suited to assessing life-threatening hemoptysis that may complicate Behçet disease. We made exclusive use of CT angiography supplemented by MR to identify pulmonary thromboembolism, mediastinal lymphadenopathy, and bilateral pulmonary artery aneurysms with signs of previous unilateral rupture. Two-dimensional reformatted CT images provided surgeons with a road map of upstream and downstream vascular relationships prior to aneurysm resection. Imaging findings were confirmed by surgery and pathology. Non-invasive imaging proved to be a useful alternative to standard catheter arteriography in the preoperative assessment of hemoptysis in this patient with Behçet disease.

  20. Progressive alterations in microstructural organization and biomechanical response in the ApoE mouse model of aneurysm

    PubMed Central

    Haskett, Darren; Azhar, Mohamad; Utzinger, Urs; Vande Geest, Jonathan P.

    2013-01-01

    AAA is a complex disease that leads to a localized dilation of the infrarenal aorta that develops over years. Longitudinal information in humans has been difficult to obtain for this disease, therefore mouse models have become increasingly used to study the development of AAAs. The objective of this study was to determine any changes that occur in the biomechanical response and fiber microstructure in the ApoE−/− AngII mouse model of aneurysm during disease progression. Adult ApoE−/− AngII infused mice along with wild-type controls were taken at 14 and 28 d. Aortas were excised and tested simultaneously for biaxial mechanical response and ECM organization. Data sets were fit to a Fung-type constitutive model to give peak strains and stiffness values. Images from two photon microscopy were quantified in order to assess the preferred fiber alignment and degree of fiber orientation. Biomechanical results found significant differences that were present at 14 d had returned to normal by 28 d along with significant changes in fiber orientation and dispersion indicating remodeling occurring within the aneurysmal wall. This return of some of the normal biomechanical function, in addition the continuing changes that occur in the microstructure suggest a restorative response that occurs in the ApoE−/− AngII infused model after the initial aneurysm formation. PMID:23628871

  1. Intradural Procedural Time to Assess Technical Difficulty of Superciliary Keyhole and Pterional Approaches for Unruptured Middle Cerebral Artery Aneurysms

    PubMed Central

    Choi, Yeon-Ju; Son, Wonsoo; Park, Ki-Su

    2016-01-01

    Objective This study used the intradural procedural time to assess the overall technical difficulty involved in surgically clipping an unruptured middle cerebral artery (MCA) aneurysm via a pterional or superciliary approach. The clinical and radiological variables affecting the intradural procedural time were investigated, and the intradural procedural time compared between a superciliary keyhole approach and a pterional approach. Methods During a 5.5-year period, patients with a single MCA aneurysm were enrolled in this retrospective study. The selection criteria for a superciliary keyhole approach included : 1) maximum diameter of the unruptured MCA aneurysm <15 mm, 2) neck diameter of the MCA aneurysm <10 mm, and 3) aneurysm location involving the sphenoidal or horizontal segment of MCA (M1) segment and MCA bifurcation, excluding aneurysms distal to the MCA genu. Meanwhile, the control comparison group included patients with the same selection criteria as for a superciliary approach, yet who preferred a pterional approach to avoid a postoperative facial wound or due to preoperative skin trouble in the supraorbital area. To determine the variables affecting the intradural procedural time, a multiple regression analysis was performed using such data as the patient age and gender, maximum aneurysm diameter, aneurysm neck diameter, and length of the pre-aneurysm M1 segment. In addition, the intradural procedural times were compared between the superciliary and pterional patient groups, along with the other variables. Results A total of 160 patients underwent a superciliary (n=124) or pterional (n=36) approach for an unruptured MCA aneurysm. In the multiple regression analysis, an increase in the diameter of the aneurysm neck (p<0.001) was identified as a statistically significant factor increasing the intradural procedural time. A Pearson correlation analysis also showed a positive correlation (r=0.340) between the neck diameter and the intradural procedural time

  2. Human thoracic and abdominal aortic aneurysmal tissues: Damage experiments, statistical analysis and constitutive modeling.

    PubMed

    Pierce, David M; Maier, Franz; Weisbecker, Hannah; Viertler, Christian; Verbrugghe, Peter; Famaey, Nele; Fourneau, Inge; Herijgers, Paul; Holzapfel, Gerhard A

    2015-01-01

    Development of aortic aneurysms includes significant morphological changes within the tissue: collagen content increases, elastin content reduces and smooth muscle cells degenerate. We seek to quantify the impact of these changes on the passive mechanical response of aneurysms in the supra-physiological loading range via mechanical testing and constitutive modeling. We perform uniaxial extension tests on circumferentially and axially oriented strips from five thoracic (65.6 years ± 13.4, mean ± SD) and eight abdominal (63.9 years ± 11.4) aortic fusiform aneurysms to investigate both continuous and discontinuous softening during supra-physiological loading. We determine the significance of the differences between the fitted model parameters: diseased thoracic versus abdominal tissues, and healthy (Weisbecker et al., J. Mech. Behav. Biomed. Mater. 12, 93-106, 2012) versus diseased tissues. We also test correlations among these parameters and age, Body Mass Index (BMI) and preoperative aneurysm diameter, and investigate histological cuts. Tissue response is anisotropic for all tests and the anisotropic pseudo-elastic damage model fits the data well for both primary loading and discontinuous softening which we interpret as damage. We found statistically relevant differences between model parameters fitted to diseased thoracic versus abdominal tissues, as well as between those fitted to healthy versus diseased tissues. Only BMI correlated with fitted model parameters in abdominal aortic aneurysmal tissues.

  3. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  4. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.

    PubMed

    Vali, Alireza; Abla, Adib A; Lawton, Michael T; Saloner, David; Rayz, Vitaliy L

    2017-01-04

    In vivo measurement of blood velocity fields and flow descriptors remains challenging due to image artifacts and limited resolution of current imaging methods; however, in vivo imaging data can be used to inform and validate patient-specific computational fluid dynamics (CFD) models. Image-based CFD can be particularly useful for planning surgical interventions in complicated cases such as fusiform aneurysms of the basilar artery, where it is crucial to alter pathological hemodynamics while preserving flow to the distal vasculature. In this study, patient-specific CFD modeling was conducted for two basilar aneurysm patients considered for surgical treatment. In addition to velocity fields, transport of contrast agent was simulated for the preoperative and postoperative conditions using two approaches. The transport of a virtual contrast passively following the flow streamlines was simulated to predict post-surgical flow regions prone to thrombus deposition. In addition, the transport of a mixture of blood with an iodine-based contrast agent was modeled to compare and verify the CFD results with X-ray angiograms. The CFD-predicted patterns of contrast flow were qualitatively compared to in vivo X-ray angiograms acquired before and after the intervention. The results suggest that the mixture modeling approach, accounting for the flow rates and properties of the contrast injection, is in better agreement with the X-ray angiography data. The virtual contrast modeling assessed the residence time based on flow patterns unaffected by the injection procedure, which makes the virtual contrast modeling approach better suited for prediction of thrombus deposition, which is not limited to the peri-procedural state.

  5. Preclinical Testing of a Novel Thin Film Nitinol Flow-Diversion Stent in a Rabbit Elastase Aneurysm Model.

    PubMed

    Ding, Y; Dai, D; Kallmes, D F; Schroeder, D; Kealey, C P; Gupta, V; Johnson, A D; Kadirvel, R

    2016-03-01

    Thin film nitinol can be processed to produce a thin microporous sheet with a low percentage of metal coverage (<20%) and high pore attenuation (∼70 pores/mm(2)) for flow diversion. We present in vivo results from the treatment of experimental rabbit aneurysms by using a thin film nitinol-based flow-diversion device. Nineteen aneurysms in the rabbit elastase aneurysm model were treated with a single thin film nitinol flow diverter. Devices were also placed over 17 lumbar arteries to model perianeurysmal branch arteries of the intracranial circulation. Angiography was performed at 2 weeks (n = 7), 1 month (n = 8), and 3 months (n = 4) immediately before sacrifice. Aneurysm occlusion was graded on a 3-point scale (grade I, complete occlusion; grade II, near-complete occlusion; grade III, incomplete occlusion). Toluidine blue staining was used for histologic evaluation. En face CD31 immunofluorescent staining was performed to quantify neck endothelialization. Markedly reduced intra-aneurysmal flow was observed on angiography immediately after device placement in all aneurysms. Grade I or II occlusion was noted in 4 (57%) aneurysms at 2-week, in 6 (75%) aneurysms at 4-week, and in 3 (75%) aneurysms at 12-week follow-up. All 17 lumbar arteries were patent. CD31 staining showed that 75% ± 16% of the aneurysm neck region was endothelialized. Histopathology demonstrated incorporation of the thin film nitinol flow diverter into the vessel wall and no evidence of excessive neointimal hyperplasia. In this rabbit model, the thin film nitinol flow diverter achieved high rates of aneurysm occlusion and promoted tissue in-growth and aneurysm neck healing, even early after implantation. © 2016 by American Journal of Neuroradiology.

  6. A spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms.

    PubMed

    Malaspinas, O; Turjman, A; Ribeiro de Sousa, D; Garcia-Cardena, G; Raes, M; Nguyen, P-T T; Zhang, Y; Courbebaisse, G; Lelubre, C; Zouaoui Boudjeltia, K; Chopard, B

    2016-04-07

    We propose a new numerical model to describe thrombus formation in cerebral aneurysms. This model combines CFD simulations with a set of bio-mechanical processes identified as being the most important to describe the phenomena at a large space and time scales. The hypotheses of the model are based on in vitro experiments and clinical observations. We document that we can reproduce very well the shape and volume of patient specific thrombus segmented in giant aneurysms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review.

    PubMed

    Lysgaard Poulsen, J; Stubbe, J; Lindholt, J S

    2016-10-01

    Experimental animal models have been used to investigate the formation, development, and progression of abdominal aortic aneurysms (AAAs) for decades. New models are constantly being developed to imitate the mechanisms of human AAAs and to identify treatments that are less risky than those used today. However, to the authors' knowledge, there is no model identical to the human AAA. The objective of this systematic review was to assess the different types of animal models used to investigate the development, progression, and treatment of AAA and to highlight their advantages and limitations. A search protocol was used to perform a systematic literature search of PubMed and Embase. A total of 2,830 records were identified. After selection of the relevant articles, 564 papers on animal AAA models were included. The most common models in rodents, including elastase, calcium chloride, angiotensin II, xenograft, and transgenic models, and the most common models in non-rodents, including chemically induced, graft models, and patch models, all have limitations with regard to the pathological interpretation of human AAA. Although findings from animal models of AAAs cannot be directly translated to human AAAs, the identification and awareness of animal models of AAA will provide knowledge for further investigation and insight into human AAA disease. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Risk assessment and risk scores in the management of aortic aneurysms.

    PubMed

    Von Meijenfeldt, Gerdine C I; Van Der Laan, Maarten J; Zeebregts, Clark J; Balm, Ron; Verhagen, Hence J M

    2016-04-01

    The decision whether to operate a patient or not can be challenging for a clinician for both ruptured abdominal aortic aneurysms (AAAs) as well as elective AAAs. Prior to surgical intervention it would be preferable that the clinician exactly knows which clinical variables lower or increase the chances of morbidity and mortality postintervention. To help in the preoperative counselling and shared decision making several clinical variables can be identified as risk factors and with these, risk models can be developed. An ideal risk score for aneurysm repair includes routinely obtained physiological and anatomical variables, has excellent discrimination and calibration, and is validated in different geographical areas. For elective AAA repair, several risk scores are available, for ruptured AAA treatment, these scores are far less well developed. In this manuscript, we describe the designs and results of published risk scores for elective and open repair. Also, suggestions for uniformly reporting of risk factors and their statistical analyses are described. Furthermore, the preliminary results of a new risk model for ruptured aortic aneurysm will be discussed. This score identifies age, hemoglobin, cardiopulmonary resuscitation and preoperative systolic blood pressure as risk factors after multivariate regression analysis. This new risk score can help to identify patients that would not benefit from repair, but it can also potentially identify patients who would benefit and therefore lower turndown rates. The challenge for further research is to expand on validation of already existing promising risk scores in order to come to a risk model with optimal discrimination and calibration.

  9. Deformable Surface Model for the Evaluation of Abdominal Aortic Aneurysms Treated with an Endovascular Sealing System.

    PubMed

    Casciaro, Mariano E; El-Batti, Salma; Chironi, Gilles; Simon, Alain; Mousseaux, Elie; Armentano, Ricardo L; Alsac, Jean-Marc; Craiem, Damian

    2016-05-01

    Rupture of abdominal aortic aneurysms (AAA) is responsible for 1-3% of all deaths among the elderly population in developed countries. A novel endograft proposes an endovascular aneurysm sealing (EVAS) system that isolates the aneurysm wall from blood flow using a polymer-filled endobag that surrounds two balloon-expandable stents. The volume of injected polymer is determined by monitoring the endobag pressure but the final AAA expansion remains unknown. We conceived and developed a fully deformable surface model for the comparison of pre-operative sac lumen size and final endobag size (measured using a follow-up scan) with the volume of injected polymer. Computed tomography images were acquired for eight patients. Aneurysms were manually and automatically segmented twice by the same observer. The injected polymer volume resulted 9% higher than the aneurysm pre-operative lumen size (p < 0.05), and 11% lower than the final follow-up endobag volume (p < 0.01). The automated method required minimal user interaction; it was fast and used a single set of parameters for all subjects. Intra-observer and manual vs. automated variability of measured volumes were 0.35 ± 2.11 and 0.07 ± 3.04 mL, respectively. Deformable surface models were used to quantify AAA size and showed that EVAS system devices tended to expand the sac lumen size.

  10. Virtual coiling of intracranial aneurysms based on dynamic path planning.

    PubMed

    Morales, Hernán G; Larrabide, Ignacio; Kim, Minsuok; Villa-Uriol, Maria-Cruz; Macho, Juan M; Blasco, Jordi; San Roman, Luis; Frangi, Alejandro F

    2011-01-01

    Coiling is possibly the most widespread endovascular treatment for intracranial aneurysms. It consists in the placement of metal wires inside the aneurysm to promote blood coagulation. This work presents a virtual coiling technique for pre-interventional planning and post-operative assessment of coil embolization procedure of aneurysms. The technique uses a dynamic path planning algorithm to mimic coil insertion inside a 3D aneurysm model, which allows to obtain a plausible distribution of coils within a patient-specific anatomy. The technique was tested on two idealized geometries: an sphere and a hexahedron. Subsequently, the proposed technique was applied in 10 realistic aneurysm geometries to show its reliability in anatomical models. The results of the technique was compared to digital substraction angiography images of two aneurysms.

  11. Cyclic transition to turbulence in rigid abdominal aortic aneurysm models

    NASA Astrophysics Data System (ADS)

    Yip, T. H.; Yu, S. C. M.

    2001-08-01

    The hydrodynamic stability of cyclic flows inside rigid abdominal aortic aneurysm (AAA) models was investigated. Rectified sine waveforms were used to simulate aortic flow conditions (Re mean=1600-2100 and α=7.2-12.2). Depending on the bulge geometry ( D/ d and L/ d ratios), AAA flows can be broadly classified into three regimes, namely types A, B and C, respectively. While type A has no vortex formation, type B and C have distinctive laminar vortical structures that are very different from one another. The type of flow regimes would also determine where and when the transition to turbulence would occur and the portion of the cycle at which the flow remains turbulent in the bulge. The stability characteristics of types B and C are obtained from the linear stability analysis performed on the unsteady velocity profiles measured at different phases of a cycle. Based on the linear stability analyses, instability is found to initiate in the bulge for types B and C through the formation of vortical structures. Instability grows progressively during the acceleration phase and transition to turbulence in the bulge occurs shortly after the commencement of the deceleration phase in all cases investigated. The mechanisms of transition to turbulence for types B and C are discussed. Although transition to turbulence appears in all the cases investigated here, fully laminar flows in types B and C are predicted to exist by the linear stability theory under extreme flow conditions. Finally, the in vivo biological implications of the in vitro results were discussed.

  12. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.

    PubMed

    Marzo, Alberto; Singh, Pankaj; Larrabide, Ignacio; Radaelli, Alessandro; Coley, Stuart; Gwilliam, Matt; Wilkinson, Iain D; Lawford, Patricia; Reymond, Philippe; Patel, Umang; Frangi, Alejandro; Hose, D Rod

    2011-02-01

    Modeling of flow in intracranial aneurysms (IAs) requires flow information at the model boundaries. In absence of patient-specific measurements, typical or modeled boundary conditions (BCs) are often used. This study investigates the effects of modeled versus patient-specific BCs on modeled hemodynamics within IAs. Computational fluid dynamics (CFD) models of five IAs were reconstructed from three-dimensional rotational angiography (3DRA). BCs were applied using in turn patient-specific phase-contrast-MR (pc-MR) measurements, a 1D-circulation model, and a physiologically coherent method based on local WSS at inlets. The Navier-Stokes equations were solved using the Ansys®-CFX™ software. Wall shear stress (WSS), oscillatory shear index (OSI), and other hemodynamic indices were computed. Differences in the values obtained with the three methods were analyzed using boxplot diagrams. Qualitative similarities were observed in the flow fields obtained with the three approaches. The quantitative comparison showed smaller discrepancies between pc-MR and 1D-model data, than those observed between pc-MR and WSS-scaled data. Discrepancies were reduced when indices were normalized to mean hemodynamic aneurysmal data. The strong similarities observed for the three BCs models suggest that vessel and aneurysm geometry have the strongest influence on aneurysmal hemodynamics. In absence of patient-specific BCs, a distributed circulation model may represent the best option when CFD is used for large cohort studies.

  13. Hemodynamic performance of coil embolization and stentassisted coil embolization treatments: a numerical comparative study based on subject-specific models of cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Wang, Shengzhang; Zhang, Yisen; Lu, Gang; Yang, Xinjian; Zhang, Xiaolong; Ding, Guanghong

    2011-11-01

    Hemodynamic characteristics such as blood velocity, blood pressure, flow impingement, wall shear stress and oscillatory shear index are considered to play important roles in the initiation, growth, rupture and recurrence of the cerebral aneurysms. Endovascular therapy is widely implemented to treat the cerebral aneurysms by releasing coils into the aneurysm sac for limiting the blood flow to the sac and stent-assisted coil embolization is adopted to occlude the wide-necked or complex aneurysms. Some researchers believe that stents are not only a mechanical device but may act as a biological system and contribute to vessel wall healing. Hemodynamics simulation helps people understand the effect of hemodynamic characteristics on the recurrence of the coiled aneurysm and it also benefits the interventional planning of neurosurgeons. This study constructed the numerical model for a subject-specific ICA aneurysm treated with stent-assisted coil embolization, which combined the coiled model of the aneurysm with a porous stent placement, and simulated the pulsatile blood flow in these aneurysm models. When a stent was placed across the aneurysm orifice in the coiled aneurysm, the high wall shear stress around the distal aneurysm root was reduced more than that of the coiled aneurysm without a stent. The simulated results point to the conclusion that the stent not only protects the parent artery from occlusion due to extension of coils or thrombosis, but may also reduce the recurrence risk of the stent-assisted coiled aneurysm.

  14. Investigation of magnetic nanoparticle targeting in a simplified model of small vessel aneurysm

    NASA Astrophysics Data System (ADS)

    Mirzababaei, S. N.; Gorji, Tahereh B.; Baou, M.; Gorji-Bandpy, M.; Fatouraee, Nasser

    2017-03-01

    An in simulacra study was conducted to investigate the capture efficiency (CE) of magnetic nanoparticles (MNPs) in aneurysm model, under the effect of a bipolar permanent magnetic system positioned at the vicinity of the model vessel. The bipolar magnetic system with an active space of 9 cm was designed by FEMM software. The MNPs were magnetite nanoparticles synthesized by the hydrothermal method which were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and magnetometer measurements. Ferrofluid velocity, magnetic field strength, and aneurysm volume all proved to be important parameters which affect the capturing of MNPs. Overall, the results of this in simulacra study confirmed the effectiveness of magnetic targeting for possible aneurysm embolization.

  15. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.

    2013-12-01

    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  16. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm

    PubMed Central

    2013-01-01

    Background Vascular smooth muscle cells (SMC) are central to arterial structure and function yet their involvement in the progression of abdominal aortic aneurysm (AAA) disease is not well studied. The progressive and silent nature of AAA in man essentially restricts research to the use of “end-stage” tissue recovered during surgical repair. This study aimed to generate an ex vivo model of AAA using protease-treated porcine carotid arteries maintained in a novel bioreactor, and to compare the structural and functional changes in SMC cultured from the recovered vessels with those from human tissue acquired at elective surgical repair. Methods Freshly isolated porcine arteries were pretreated with collagenase and/or elastase before culturing under flow in a bioreactor for 12 days. Human end-stage aneurysmal tissue and saphenous veins from age-matched controls were collected from patients undergoing surgery. SMC were cultured and characterised (immunocytochemistry, measurement of spread cell area) and assessed functionally at the level of proliferation (cell-counting) and matrix-metalloproteinase (MMP) secretion (gelatin zymography). Cellular senescence was investigated using β-galactosidase staining and apoptosis was quantified using a fluorescence-based caspase 3 assay. Results Co-expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain confirmed all cell populations as SMC. Porcine SMC harvested and cultivated after collagenase/elastase pretreatment displayed a prominent “rhomboid” morphology, increased spread area (32%, P < 0.01), impaired proliferation (47% reduction, P < 0.05), increased senescence (52%, P < 0.001), susceptibility to apoptosis and reduced MMP-2 secretion (60% decrease, P < 0.01) compared with SMC from vehicle, collagenase or elastase pre-treated vessels. Notably, these changes were comparable to those observed in human AAA SMC which were 2.4-fold larger than non-aneurysmal SMC (P < 0.001) and

  17. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    PubMed Central

    2015-01-01

    Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367

  18. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models.

    PubMed

    Tsang, Anderson Chun On; Lai, Simon Sui Man; Chung, Wai Choi; Tang, Abraham Yik Sau; Leung, Gilberto Ka Kit; Poon, Alexander Kai Kei; Yu, Alfred Cheuk Hang; Chow, Kwok Wing

    2015-04-01

    The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents.

  19. Ultrasound assessment of the posterior circumflex humeral artery in elite volleyball players: Aneurysm prevalence, anatomy, branching pattern and vessel characteristics.

    PubMed

    van de Pol, Daan; Maas, Mario; Terpstra, Aart; Pannekoek-Hekman, Marja; Alaeikhanehshir, Sena; Kuijer, P Paul F M; Planken, R Nils

    2017-03-01

    To determine the prevalence of posterior circumflex humeral artery (PCHA) aneurysms and vessel characteristics of the PCHA and deep brachial artery (DBA) in elite volleyball players. Two-hundred and eighty players underwent standardized ultrasound assessment of the dominant arm by a vascular technologist. Assessment included determination of PCHA aneurysms (defined as segmental vessel dilatation ≥150 %), PCHA and DBA anatomy, branching pattern, vessel course and diameter. The PCHA and DBA were identified in 100 % and 93 % (260/280) of cases, respectively. The prevalence of PCHA aneurysms was 4.6 % (13/280). All aneurysms were detected in proximal PCHA originating from the axillary artery (AA). The PCHA originated from the AA in 81 % of cases (228/280), and showed a curved course dorsally towards the humeral head in 93 % (211/228). The DBA originated from the AA in 73 % of cases (190/260), and showed a straight course parallel to the AA in 93 % (177/190). PCHA aneurysm prevalence in elite volleyball players is high and associated with a specific branching type: a PCHA that originates from the axillary artery. Radiologists should have a high index of suspicion for this vascular overuse injury. For the first time vessel characteristics and reference values are described to facilitate ultrasound assessment. • Prevalence of PCHA aneurysms is 4.6 % among elite volleyball players. • All aneurysms are in proximal PCHA that originates directly from AA. • Vessel characteristics and reference values are described to facilitate US assessment. • Mean PCHA and DBA diameters can be used as reference values. • Radiologists need a high index of suspicion for this vascular overuse injury.

  20. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms.

    PubMed

    Trabelsi, Olfa; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2016-01-01

    The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT.

  1. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    PubMed

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni

    2017-05-01

    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm(2). The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm(2) (SD, 0.02) and 4.33 cm(2) (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm(2) and 4.66 cm(2), respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    NASA Astrophysics Data System (ADS)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  3. HiFiVS Modeling of Flow Diverter Deployment Enables Hemodynamic Characterization of Complex Intracranial Aneurysm Cases

    PubMed Central

    Xiang, Jianping; Damiano, Robert J.; Lin, Ning; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui

    2016-01-01

    Object Flow diversion via Pipeline Embolization Device (PED) represents the most recent advancement in endovascular therapy of intracranial aneurysms. This exploratory study aims at a proof of concept for an advanced device-modeling tool in conjunction with computational fluid dynamics (CFD) to evaluate flow modification effects by PED in real treatment cases. Methods We performed computational modeling of three PED-treated complex aneurysm cases. Case I had a fusiform vertebral aneurysm treated with a single PED. Case II had a giant internal carotid artery (ICA) aneurysm treated with 2 PEDs. Case III consisted of two tandem ICA aneurysms (a and b) treated by a single PED. Our recently developed high fidelity virtual stenting (HiFiVS) technique was used to recapitulate the clinical deployment process of PEDs in silico for these three cases. Pre- and post-treatment aneurysmal hemodynamics using CFD simulation was analyzed. Changes in aneurysmal flow velocity, inflow rate, and wall shear stress (WSS) (quantifying flow reduction) and turnover time (quantifying stasis) were calculated and compared with clinical outcome. Results In Case I (occluded within the first 3 months), the aneurysm experienced the most drastic aneurysmal flow reduction after PED placement, where the aneurysmal average velocity, inflow rate and average WSS was decreased by 76.3%, 82.5% and 74.0%, respectively, while the turnover time was increased to 572.1% of its pre-treatment value. In Case II (occluded at 6 months), aneurysmal average velocity, inflow rate and average WSS were decreased by 39.4%, 38.6%, and 59.1%, respectively, and turnover time increased to 163.0%. In Case III, Aneurysm III-a (occluded at 6 months) experienced decrease by 38.0%, 28.4%, and 50.9% in aneurysmal average velocity, inflow rate and average WSS, respectively and increase to 139.6% in turnover time, which was quite similar to Aneurysm II. Surprisingly, the adjacent Aneurysm III-b experienced more substantial flow

  4. Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall.

    PubMed

    Basciano, C A; Kleinstreuer, C

    2009-02-01

    The arterial wall is a complex fiber-reinforced composite. Pathological conditions, such as aneurysms, significantly alter the mechanical response of the arterial wall, resulting in a loss of elasticity, enhanced anisotropy, and increased chances of mechanical failure. Invariant-based models of the healthy and aneurysmal abdominal aorta were constructed based on first principles and published experimental data with implementations for several numerical cases, as well as comparisons to current healthy and aneurysmal tissue data. Inherent limitations of a traditional invariant-based methodology are also discussed and compared to the models' ability to accurately reproduce experimental trends. The models capture the nonlinear and anisotropic mechanical responses of the two arterial sections and make reasonable predictions regarding the effects of alterations in healthy and diseased tissue histology. Additionally, the new models exhibit convex and anisotropic monotonically increasing energy contours (suggesting numerical stability) but have potentially the inherent limitations of a covariant theoretical framework. Although the traditional invariant framework exhibits significant covariance, the invariant terms utilized in the new models exhibited limited covariance and are able to accurately reproduce experimental trends. A streamlined implementation is also possible for future numerical investigations of fluid-structure interactions in abdominal aortic aneurysms.

  5. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    PubMed

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  6. Development of a static bioactive stent prototype and dynamic aneurysm-on-a-chip(TM) model for the treatment of aneurysms

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.

    Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. While these procedures can be effective, it would be advantageous to design a biologically active stent, modified with magnetic stent coatings, allowing cells to be manipulated to heal the arterial lining. Further, velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, but the shear force mechanisms effecting wound closure is elusive. Due to these factors, there is a definite need to cultivate a new stent device that will aid in healing an aneurysm in situ. To this end, a static bioactive stent device was synthesized. Additionally, to study aneurysm pathogenesis, a lab-on-a-chip device (a dynamic stent device) is the key to discovering the underlying mechanisms of these lesions. A first step to the reality of a true bioactive stent involves the study of cells that can be tested against the biomaterials that constitute the stent itself. The second step is to test particles/cells in a microfluidic environment. Therefore, biocompatability data was collected against PDMS, bacterial nanocellulose (BNC), and magnetic bacterial nanocellulose (MBNC). Preliminary static bioactive stents were synthesized whereby BNC was grown to cover standard nitinol stents. In an offshoot of the original research, a two-dimensional microfluidic model, the Aneurysm-on-a-ChipTM (AOC), was the logical answer to study particle flow within an aneurysm "sac" - this was the dynamic bioactive stent device. The AOC apparatus can track particles/cells when it is coupled to a particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles/cells. Movies were taken during fluid flow experiments and PIV was utilized to monitor.

  7. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study.

    PubMed

    Szikora, Istvan; Paal, Gyorgy; Ugron, Adam; Nasztanovics, Ferenc; Marosfoi, Miklos; Berentei, Zsolt; Kulcsar, Zsolt; Lee, Wickly; Bojtar, Imre; Nyary, Istvan

    2008-05-01

    This study was performed to assess the effect of aneurysm geometry on parameters that may have an impact on the natural history of intracranial aneurysms, such as intraaneurysmal flow pressure and shear stress. Flow was simulated in 21 randomly selected aneurysms using finite volume modeling. Ten aneurysms were classified as side-wall aneurysms, with either single-sided or circumferential involvement of the parent artery wall, and 11 as bifurcation aneurysms (symmetric or asymmetric), with an axis either perpendicular or parallel to the parent artery. The flow patterns were classified as either jet or vortex types (with regular or irregular vortex flow). Pressures and shear stresses were characterized as evenly or unevenly distributed over the aneurysm wall and neck. All side-wall and four of the bifurcation aneurysms with a perpendicular axis had a vortex type flow pattern and seven bifurcation aneurysms with a parallel axis (four symmetric and two asymmetric) had a jet flow pattern. Jet type flow was associated with an uneven pressure distribution in seven out of seven aneurysms. Vortex type flow resulted in an even pressure distribution in five out of six aneurysms with an irregular flow pattern and six out of eight with a regular flow pattern. No firm relationship could be established between any geometrical type and shear stress distribution. Only 1 of 14 aneurysms with a perpendicular axis, but 4 of 7 aneurysms with a parallel axis, had ruptured. Aneurysm geometry does have an impact on flow conditions. Aneurysms with a main axis parallel to the parent artery have a tendency to have a jet flow pattern and uneven distribution of unsteady pressure. These aneurysms may have a higher rate of rupture as than those with a main axis perpendicular to the parent artery.

  8. 3D rotational fluoroscopy for intraoperative clip control in patients with intracranial aneurysms--assessment of feasibility and image quality.

    PubMed

    Westermaier, Thomas; Linsenmann, Thomas; Homola, György A; Loehr, Mario; Stetter, Christian; Willner, Nadine; Ernestus, Ralf-Ingo; Solymosi, Laszlo; Vince, Giles H

    2016-04-19

    Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. In this series, the image quality and value of intraoperative 3D fluoroscopy with intravenous contrast agent for the evaluation of aneurysm occlusion and vessel patency after clip placement was assessed in patients who underwent surgery for intracranial aneurysms. Twelve patients were included in this retrospective analysis. Prior to surgery, a 360° rotational fluoroscopy scan was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac® workstation, subtracted and reconstructed using OsiriX® free software. The procedure was repeated after clip placement. Both image sets were compared for assessment of aneurysm occlusion and vessel patency. Image acquisition and contrast administration caused no adverse effects. Image quality was sufficient to follow the patency of the vessels distal to the clip. Metal artifacts reduce the assessability of the immediate vicinity of the clip. Precise image subtraction and post-processing can reduce metal artifacts and make the clip-site assessable and depict larger neck-remnants. This technique quickly supplies images at adequate quality to evaluate distal vessel patency after aneurysm clipping. Significant aneurysm remnants may be depicted as well. As it does not require visual control of all vessels that are supposed to be evaluated intraoperatively, this technique may be complementary to other intraoperative tools like indocyanine green videoangiography and micro-Doppler, especially for the assessment of larger aneurysms. At the momentary state of this technology, it cannot replace postoperative conventional angiography. However, 3D fluoroscopy and image post-processing are young technologies. Further technical developments are likely to result in improved image quality.

  9. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.

    PubMed

    Mashiko, Toshihiro; Otani, Keisuke; Kawano, Ryutaro; Konno, Takehiko; Kaneko, Naoki; Ito, Yumiko; Watanabe, Eiju

    2015-03-01

    We developed a method for fabricating a three-dimensional hollow and elastic aneurysm model useful for surgical simulation and surgical training. In this article, we explain the hollow elastic model prototyping method and report on the effects of applying it to presurgical simulation and surgical training. A three-dimensional printer using acrylonitrile-butadiene-styrene as a modeling material was used to produce a vessel model. The prototype was then coated with liquid silicone. After the silicone had hardened, the acrylonitrile-butadiene-styrene was melted with xylene and removed, leaving an outer layer as a hollow elastic model. Simulations using the hollow elastic model were performed in 12 patients. In all patients, the clipping proceeded as scheduled. The surgeon's postoperative assessment was favorable in all cases. This method enables easy fabrication at low cost. Simulation using the hollow elastic model is thought to be useful for understanding of three-dimensional aneurysm structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Characterization of cerebral aneurysms using 3D moment invariants

    NASA Astrophysics Data System (ADS)

    Millan, Raul D.; Hernandez, Monica; Gallardo, Daniel; Cebral, Juan R.; Putman, Christopher; Dempere-Marco, Laura; Frangi, Alejandro F.

    2005-04-01

    The rupture mechanism of intracranial aneurysms is still not fully understood. Although the size of the aneurysm is the shape index most commonly used to predict rupture, some controversy still exists about its adequateness as an aneurysm rupture predictor. In this work, an automatic method to geometrically characterize the shape of cerebral saccular aneurysms using 3D moment invariants is proposed. Geometric moments are efficiently computed via application of the Divergence Theorem over the aneurysm surface using a non-structured mesh. 3D models of the aneurysm and its connected parent vessels have been reconstructed from segmentations of both 3DRA and CTA images. Two alternative approaches have been used for segmentation, the first one based on isosurface deformable models, and the second one based on the level set method. Several experiments were also conducted to both assess the influence of pre-processing steps in the stability of the aneurysm shape descriptors, and to know the robustness of the proposed method. Moment invariants have proved to be a robust technique while providing a reliable way to discriminate between ruptured and unruptured aneurysms (Sensitivity=0.83, Specificity=0.74) on a data set containing 55 aneurysms. Further investigation over larger databases is necessary to establish their adequateness as reliable predictors of rupture risk.

  11. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.

    PubMed

    Hippelheuser, James E; Lauric, Alexandra; Cohen, Alex D; Malek, Adel M

    2014-11-28

    Most computational fluid dynamic (CFD) simulations of aneurysm hemodynamics assume constant (Newtonian) viscosity, even though blood demonstrates shear-thinning (non-Newtonian) behavior. We sought to evaluate the effect of this simplifying assumption on hemodynamic forces within cerebral aneurysms, especially in regions of low wall shear stress, which are associated with rupture. CFD analysis was performed for both viscosity models using 3D rotational angiography volumes obtained for 26 sidewall aneurysms (12 with blebs, 12 ruptured), and parametric models incorporating blebs at different locations (inflow/outflow zone). Mean and lowest 5% values of time averaged wall shear stress (TAWSS) computed over the dome were compared using Wilcoxon rank-sum test. Newtonian modeling not only resulted in higher aneurysmal TAWSS, specifically in areas of low flow and blebs, but also showed no difference between aneurysms with or without blebs. In contrast, for non-Newtonian analysis, bleb-bearing aneurysms showed significantly lower 5% TAWSS compared to those without (p=0.005), despite no significant difference in mean dome TAWSS (p=0.32). Non-Newtonian modeling also accentuated the differences in dome TAWSS between ruptured and unruptured aneurysms (p<0.001). Parametric models further confirmed that realistic non-Newtonian viscosity resulted in lower bleb TAWSS and higher focal viscosity, especially when located in the outflow zone. The results show that adopting shear-thinning non-Newtonian blood viscosity in CFD simulations of intracranial aneurysms uncovered hemodynamic differences induced by bleb presence on aneurysmal surfaces, and significantly improved discriminant statistics used in risk stratification. These findings underline the possible implications of using a realistic model of blood viscosity in predictive computational hemodynamics.

  12. Pulsatile non-Newtonian haemodynamics in a 3D bifurcating abdominal aortic aneurysm model.

    PubMed

    Ma, J; Turan, A

    2011-08-01

    Numerical prediction of non-Newtonian blood flow in a 3D abdominal aortic aneurysm bifurcating model is carried out. The non-Newtonian Carreau model is used to characterise the shear thinning behaviour of the human blood. A physical inlet velocity waveform incorporating a radial velocity distribution reasonably representative of a practical case configuration is employed. Case studies subject to both equal and unequal outlet pressures at iliac bifurcations are presented to display convincingly the downstream pressure influences on the flow behaviour within the aneurysm. Simulations indicate that the non-Newtonian aspects of the blood cannot at all be neglected or given a cursory treatment. The wall shear stress (WSS) is found to change significantly at both the proximal and distal ends of the aneurysm. At the peak systole, the WSS is peak around the bifurcation point, whereas the WSS becomes zero in the bifurcation point. Differential downstream pressure fields display significant effects regarding the flow evolution in the iliac arteries, whereas little or no effects are observed directly on the flow details in the aneurysm.

  13. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation.

    PubMed

    Rayz, V L; Boussel, L; Lawton, M T; Acevedo-Bolton, G; Ge, L; Young, W L; Higashida, R T; Saloner, D

    2008-11-01

    The deposition of intralumenal thrombus in intracranial aneurysms adds a risk of thrombo-embolism over and above that posed by mass effect and rupture. In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the thrombus formation and deposition process. In this study, patient-specific computational fluid dynamics (CFD) models of blood flow were constructed from MRA data for three patients who had fusiform basilar aneurysms that were thrombus free and then proceeded to develop intralumenal thrombus. In order to determine whether features of the flow fields could suggest which regions had an elevated potential for thrombus deposition, the flow was modeled in the baseline, thrombus-free geometries. Pulsatile flow simulations were carried out using patient-specific inlet flow conditions measured with MR velocimetry. Newtonian and non-Newtonian blood behavior was considered. A strong similarity was found between the intra-aneurysmal regions with CFD-predicted slow, recirculating flows and the regions of thrombus deposition observed in vivo in the follow-up MR studies. In two cases with larger aneurysms, the agreement between the low velocity zones and clotted-off regions improved when non-Newtonian blood behavior was taken into account. A similarity was also found between the calculated low shear stress regions and the regions that were later observed to clot.

  14. Optimization of the model of abdominal aortic aneurysm--experiment in an animal model.

    PubMed

    Molácek, Jirí; Treska, Vladislav; Kobr, Jirí; Certík, Bohuslav; Skalický, Tomás; Kuntscher, Vilém; Krízková, Vera

    2009-01-01

    Many studies have been performed in order to model abdominal aortic aneurysm (AAA) in an experimental animal, most commonly in small laboratory animals. In our study, we tried to find the best AAA model in a pig by using various mechanical and enzymatic mechanisms. Twenty-two pigs were operated on. We combined 3 mechanisms of creating an AAA, using an intraluminal infusion of porcine pancreatic elastase into the abdominal aortic segment, application of plastic cuff below the renal arteries causing turbulent blood flow, and inserting a patch into the longitudinal aortotomy. We found different results in different groups according to the mechanisms used. In group A, with a combination of the intraluminal elastase infusion and application of a stenosing cuff, AAA developed in all 7 animals (100%). In this group, we also found the largest histological changes in the abdominal aorta samples. The use of intraluminal pancreatic elastase infusion, together with increased turbulent flow caused by the stenosing cuff, seems to be the best model of AAA in pigs. This model is suitable for further research in the etiopathology of AAA. In fact, it is the first successful approach to a large-caliber native aneurysm model. Copyright 2008 S. Karger AG, Basel.

  15. Effect of Low-Pressurized Perfusion with Different Concentration of Elastase on the Aneurysm Formation Rate in the Abdominal Aortic Aneurysm Model in Rabbits

    PubMed Central

    Nie, Maoxiao; Yan, Yunfeng

    2016-01-01

    Establishing an animal model of abdominal aortic aneurysm (AAA) is the key to study the pathogenesis and the pathophysiological features of AAAs. We investigated the effects of low-pressurized perfusion with different concentrations of elastase on aneurysm formation rate in the AAA model. Fifty male New Zealand white rabbits were randomly divided into A, B, C, D, and E groups. 10 μL of normal saline was perfused into the abdominal aorta in group A and 1 U/mL, 10 U/mL, 100 U/mL, or 200 U/mL of elastase was, respectively, perfused for the other four groups. All the animals were perfused for 7 min. Doppler ultrasound examinations of the abdominal aorta were performed before surgery and on day 14 after surgery. The rabbits were sacrificed and the perfused segment of the abdominal aorta was observed visually and after staining. The aneurysm formation rate of group A, group B, group C, group D, and group E was, respectively, 0%, 0%, 33.3%, 102.5–146.8%, and 241.5–255.2%. The survival rate of five groups was 90%, 90%, 90%, 90%, and 40%, respectively. So, we concluded that low-pressurized perfusion with 100 U/mL of elastase can effectively establish AAAs in rabbits with a high aneurysm formation rate. PMID:27965979

  16. Effect of Low-Pressurized Perfusion with Different Concentration of Elastase on the Aneurysm Formation Rate in the Abdominal Aortic Aneurysm Model in Rabbits.

    PubMed

    Nie, Maoxiao; Yan, Yunfeng; Li, Xinhe; Feng, Tingting; Zhao, Xin; Zhang, Mingduo; Zhao, Quanming

    2016-01-01

    Establishing an animal model of abdominal aortic aneurysm (AAA) is the key to study the pathogenesis and the pathophysiological features of AAAs. We investigated the effects of low-pressurized perfusion with different concentrations of elastase on aneurysm formation rate in the AAA model. Fifty male New Zealand white rabbits were randomly divided into A, B, C, D, and E groups. 10 μL of normal saline was perfused into the abdominal aorta in group A and 1 U/mL, 10 U/mL, 100 U/mL, or 200 U/mL of elastase was, respectively, perfused for the other four groups. All the animals were perfused for 7 min. Doppler ultrasound examinations of the abdominal aorta were performed before surgery and on day 14 after surgery. The rabbits were sacrificed and the perfused segment of the abdominal aorta was observed visually and after staining. The aneurysm formation rate of group A, group B, group C, group D, and group E was, respectively, 0%, 0%, 33.3%, 102.5-146.8%, and 241.5-255.2%. The survival rate of five groups was 90%, 90%, 90%, 90%, and 40%, respectively. So, we concluded that low-pressurized perfusion with 100 U/mL of elastase can effectively establish AAAs in rabbits with a high aneurysm formation rate.

  17. Assessment of contrast flow modification in aneurysms treated with closed-cell self-deploying asymmetric vascular stents (SAVS).

    PubMed

    Ionita, Ciprian N; Wang, Weiyuan; Bednarek, Daniel R; Rudin, Stephen

    2010-01-01

    The Asymmetric Vascular Stent (AVS) for intracranial aneurysm (IA) treatment is an experimental device, specially designed for intra-aneurysmal blood flow diversion and thrombosis promotion. The stent has a low-porous patch to cover only the aneurysm neck while the rest of the stent is very porous to avoid blockage of adjacent branches. The latest AVS design is similar to state-of-art, closed-cell, self-expanding, neurovascular stent. The stents were used to treat sixteen rabbit-elastase aneurysm models. The treatment effect was analyzed using normalized-time-density-curves (NTDC) measured by pixel-value integration over a region-of-interest containing the aneurysm. Normalization constant was the total bolus injection determined angiographically. Based on NTDC measurement, five quantities were derived to describe the contrast flow. Two are related to the amount of contrast entering the aneurysm: NTDC peak and NTDC input slope. The other three are related to contrast presence in the aneurysmal dome: time-to-peak (TTP), wash-out-time (WOT) and mean-transit-time (MTT). Flow modification descriptions using the contrast related quantities were expressed as a pre-/post-stented NTDC parameter ratio, while the time related quantities were expressed as a post-/pre-stented ratio, so that ratios smaller than one indicate a desired effect. Thirteen aneurysms were treated successfully and achieved significant aneurysm occlusion. For these cases, the resulting average parameters were: peak-ratio=0.17±0.21; input-slope-ratio=0.19±0.24, TTP-ratio=0.17±0.21, WOT-ratio=0.58±0.73 and MTT-ratio=0.65±0.97). All the quantities revealed decreased aneurysmal flow due to blood flow diversion using the new self-expanding asymmetrical vascular stent (SAVS). Treatment outcome results and angiographic analysis indicate that the new self-deploying stent design has great potential for clinical implementation.

  18. Flat-detector computed tomography evaluation in an experimental animal aneurysm model after endovascular treatment: A pilot study

    PubMed Central

    Gölitz, Philipp; Adamek, Edyta; Royalty, Kevin; Doerfler, Arnd; Struffert, Tobias

    2015-01-01

    We compared flat-detector computed tomography angiography (FD-CTA) to multislice computed tomography (MS-CTA) and digital subtracted angiography (DSA) for the visualization of experimental aneurysms treated with stents, coils or a combination of both. In 20 rabbits, aneurysms were created using the rabbit elastase aneurysm model. Seven aneurysms were treated with coils, seven with coils and stents, and six with self-expandable stents alone. Imaging was performed by DSA, MS-CTA and FD-CTA immediately after treatment. Multiplanar reconstruction (MPR) was performed and two experienced reviewers compared aneurysm/coil package size, aneurysm occlusion, stent diameters and artifacts for each modality. In aneurysms treated with stents alone, the visualization of the aneurysms was identical in all three imaging modalities. Residual aneurysm perfusion was present in two cases and visible in DSA and FD-CTA but not in MS-CTA. The diameter of coil-packages was overestimated in MS-CT by 56% and only by 16% in FD-CTA compared to DSA (p < 0.05). The diameter of stents was identical for DSA and FD-CTA and was significantly overestimated in MS-CTA (p < 0.05). Beam/metal hardening artifacts impaired image quality more severely in MS-CTA compared to FD-CTA. MS-CTA is impaired by blooming and beam/metal hardening artifacts in the visualization of implanted devices. There was no significant difference between measurements made with noninvasive FD-CTA compared to gold standard of DSA after stenting and after coiling/stent-assisted coiling of aneurysms. FD-CTA may be considered as a non-invasive alternative to the gold standard 2D DSA in selected patients that require follow up imaging after stenting. PMID:26111985

  19. Aortic Aneurysm

    MedlinePlus

    ... chest and abdomen. There are two types of aortic aneurysm: Thoracic aortic aneurysms (TAA) - these occur in the part of the aorta running through the chest Abdominal aortic aneurysms (AAA) - these occur in the part of the ...

  20. Hemodynamic flow modeling through an abdominal aorta aneurysm using data mining tools.

    PubMed

    Filipovic, Nenad; Ivanovic, Milos; Krstajic, Damjan; Kojic, Milos

    2011-03-01

    Geometrical changes of blood vessels, called aneurysm, occur often in humans with possible catastrophic outcome. Then, the blood flow is enormously affected, as well as the blood hemodynamic interaction forces acting on the arterial wall. These forces are the cause of the wall rupture. A mechanical quantity characteristic for the blood-wall interaction is the wall shear stress, which also has direct physiological effects on the endothelial cell behavior. Therefore, it is very important to have an insight into the blood flow and shear stress distribution when an aneurysm is developed in order to help correlating the mechanical conditions with the pathogenesis of pathological changes on the blood vessels. This insight can further help in improving the prevention of cardiovascular diseases evolution. Computational fluid dynamics (CFD) has been used in general as a tool to generate results for the mechanical conditions within blood vessels with and without aneurysms. However, aneurysms are very patient specific and reliable results from CFD analyses can be obtained by a cumbersome and time-consuming process of the computational model generation followed by huge computations. In order to make the CFD analyses efficient and suitable for future everyday clinical practice, we have here employed data mining (DM) techniques. The focus was to combine the CFD and DM methods for the estimation of the wall shear stresses in an abdominal aorta aneurysm (AAA) underprescribed geometrical changes. Additionally, computing on the grid infrastructure was performed to improve efficiency, since thousands of CFD runs were needed for creating machine learning data. We used several DM techniques and found that our DM models provide good prediction of the shear stress at the AAA in comparison with full CFD model results on real patient data.

  1. Neuropsychological assessment after microsurgical clipping or endovascular treatment for anterior communicating artery aneurysm.

    PubMed

    Fontanella, M; Perozzo, P; Ursone, R; Garbossa, D; Bergui, M

    2003-10-01

    After open surgery for ruptured ACoA aneurysms, several patients who have achieved a favourable neurological outcome still exhibit significant cognitive deficits. The aim of this study was to investigate the cognitive performances in patients with ACoA aneurysms submitted to different therapeutic options such as endovascular treatment and surgical clipping. We evaluated 37 consecutive patients in WFNS grade I or II, who underwent an early treatment (within 48 hours) of a bleeding ACoA aneurysm: 20 out of 37 were surgically clipped (group A) and 17 were treated with endovascular coiling (group B). These two groups were compared with 16 patients (group C) with subarachnoid haemorrhage and negative cerebral panangiography and with 18 volunteers (group D) without neurological or psychiatric disorders. All patients were neurologically intact at discharge and were in Glasgow Outcome Scale 1 at 6 months follow-up after SAH. All subjects were tested to assess selective attention, verbal, spatial and logical memory, frontal lobe executive functions, language and intelligence. Depressive symptoms and anxiety were also examined. Selective attention, verbal and spatial memory, and intelligence tests didn't show any significant difference between the patients and the controls. Surgically treated patients showed a significant worse performance on the logical memory and on the frontal lobe executive functions compared to controls, while the endovascular group and the group C (not treated) showed a significant decrease only in the literal fluency score.Moreover, the surgical group showed a significant impairment in using grammatical and syntactical rules to produce sentences. No significant difference was found between the group B, C and controls. Treated patients were not significantly more depressive or anxious than controls. Investigation of neuropsychological deficits can show an impairment, even in patients classified as good outcome by Glasgow Outcome Scale (GOS). The

  2. Medical management of thoracic aortic aneurysm disease.

    PubMed

    Braverman, Alan C

    2013-03-01

    The patient with thoracic aortic aneurysm disease requires careful evaluation and management over his or her lifetime. This includes assessment for the presence of an underlying genetic disorder, such as Marfan syndrome, bicuspid aortic valve disease, or a familial aortic aneurysm syndrome. Screening family members is necessary, inasmuch as up to 20% of first-degree relatives of the patient with a thoracic aortic aneurysm will also have aneurysm disease. Medical therapy is often prescribed, and beta-blocker therapy to reduce the stress on the aortic wall is usually recommended. However, very few clinical trials of pharmacologic therapy in humans with thoracic aortic aneurysm disease have been conducted. Mouse models have led to important discoveries and insight into the pathogenesis of aneurysm syndromes, and there is hope these may lead to effective therapy in people. Several studies are ongoing that examine the role of angiotensin receptor blockers in Marfan syndrome. Lifestyle modification is also important for patients with thoracic aortic aneurysm, including restrictions on physical activity, weight lifting, and recommendations about the management of pregnancy. Long-term surveillance of the aorta, even after successful surgery, is necessary for timing of prophylactic surgery and to evaluate for late complications. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. Fluid-structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures

    NASA Astrophysics Data System (ADS)

    Torii, Ryo; Oshima, Marie; Kobayashi, Toshio; Takagi, Kiyoshi; Tezduyar, Tayfun E.

    2006-09-01

    Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid-structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.

  4. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms.

    PubMed

    Ugron, Adám; Szikora, István; Paál, György

    2014-06-01

    Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations.

  5. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms

    PubMed Central

    Szikora, István; Paál, György

    2014-01-01

    Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations. PMID:24936307

  6. Tissue Responses to Endovascular Stent Grafts for Saccular Abdominal Aortic Aneurysms in a Canine Model

    PubMed Central

    Kim, Hyun Beom; Choi, Young Ho; So, Young Ho; Min, Seung-Kee; Kim, Hyo-Cheol; Kim, Young Il; Park, Jae Hyung

    2012-01-01

    We investigated tissue responses to endoskeleton stent grafts for saccular abdominal aortic aneurysms (AAAs) in canines. Saccular AAAs were made with Dacron patch in 8 dogs, and were excluded by endoskeleton stent grafts composed of nitinol stent and expanded polytetrafluoroethylene graft. Animals were sacrificed at 2 months (Group 1; n = 3) or 6 months (Group 2; n = 5) after the placement, respectively. The aortas embedding stent grafts were excised en bloc for gross inspection and sliced at 5 to 8 mm intervals for histopathologic evaluation. Stent grafts were patent in all except a dog showing a thrombotic occlusion in Group 2. In the 7 dogs with patent lumen, the graft overhanging the saccular aneurysm was covered by thick or thin thrombi with no endothelial layer, and the graft over the aortic wall was completely covered by neointima with an endothelial layer. Transgraft cell migration was less active at an aneurysm than at adjacent normal aorta. In conclusion, endoskeleton stent grafts over saccular aneurysms show no endothelial coverage and poor transgraft cell migration in a canine model. PMID:23091313

  7. Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm.

    PubMed

    Sénémaud, Jean; Caligiuri, Giuseppina; Etienne, Harry; Delbosc, Sandrine; Michel, Jean-Baptiste; Coscas, Raphaël

    2017-03-01

    Human abdominal aortic aneurysm (AAA) pathophysiology is not yet completely understood. In conductance arteries, the insoluble extracellular matrix, synthesized by vascular smooth muscle cells, assumes the function of withstanding the intraluminal arterial blood pressure. Progressive loss of this function through extracellular matrix proteolysis is a main feature of AAAs. As most patients are now treated via endovascular approaches, surgical AAA specimens have become rare. Animal models provide valuable complementary insights into AAA pathophysiology. Current experimental AAA models involve induction of intraluminal dilation (nondissecting AAAs) or a contained intramural rupture (dissecting models). Although the ideal model should reproduce the histological characteristics and natural history of the human disease, none of the currently available animal models perfectly do so. Experimental models try to represent the main pathophysiological determinants of AAAs: genetic or acquired defects in extracellular matrix, loss of vascular smooth muscle cells, and innate or adaptive immune response. Nevertheless, most models are characterized by aneurysmal stabilization and healing after a few weeks because of cessation of the initial stimulus. Recent studies have focused on ways to optimize existing models to allow continuous aneurysmal growth. This review aims to discuss the relevance and recent advances of current animal AAA models. An online visual overview is available for this article. © 2017 American Heart Association, Inc.

  8. Aspirin Inhibits Degenerative Changes of Aneurysmal Wall in a Rat Model.

    PubMed

    Li, Shengjie; Wang, Dehui; Tian, Ye; Wei, Huijie; Zhou, Ziwei; Liu, Li; Wang, Dong; Dong, Jing-Fei; Jiang, Rongcai; Zhang, Jianning

    2015-07-01

    Aneurysmal subarachnoid hemorrhage still has a high mortality and morbidity despite notable advances in surgical approaches to cerebral aneurysm (CA). We examined the role of aspirin in vascular inflammation and degeneration. CA was induced in male Sprague-Dawley rats by ligating left common carotid artery and bilateral posterior renal arteries with or without aspirin treatment. The right anterior cerebral artery/olfactory artery (ACA/OA) bifurcations were stripped and assessed morphologically after Verhoeff's Van Gieson staining. Blood sample was obtained to examine circulating CD34(+) CD133(+) endothelial progenitor cells (EPCs), platelet aggregation and platelet counts. Macrophages infiltration in aneurysmal wall was evaluated by immunohistochemistry. Expression of matrix metalloproteinase-2 and 9 (MMP-2 and 9), nuclear factor kappa B (NF-κB), macrophage chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) was examined by RT-PCR. 2 months after CA induction, surgically treated rats manifested aneurysmal degeneration in ACA/OA bifurcations. Aspirin-treated rats exhibited a significant decrease in degradation of internal elastic lamina (IEL), medial layer thinning, CA size and macrophages infiltration with reduced expression of MMP-2 and 9 compared with rats in the CA group. RT-PCR demonstrated that the upregulation of NF-κB, MCP-1 and VCAM-1 after CA induction was reversed by aspirin treatment. Aspirin treatment following CA induction increased circulating EPCs to near control levels and reduced platelet aggregation without changing platelet counts. The evidence suggested that aspirin significantly reduced degeneration of aneurysm walls by inhibiting macrophages-mediated chronic inflammation and mobilizing EPCs.

  9. Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling.

    PubMed

    Olabarriaga, Silvia D; Rouet, Jean-Michel; Fradkin, Maxim; Breeuwer, Marcel; Niessen, Wiro J

    2005-04-01

    This paper presents a new method for deformable model-based segmentation of lumen and thrombus in abdominal aortic aneurysms from computed tomography (CT) angiography (CTA) scans. First the lumen is segmented based on two positions indicated by the user, and subsequently the resulting surface is used to initialize the automated thrombus segmentation method. For the lumen, the image-derived deformation term is based on a simple grey level model (two thresholds). For the more complex problem of thrombus segmentation, a grey level modeling approach with a nonparametric pattern classification technique is used, namely k-nearest neighbors. The intensity profile sampled along the surface normal is used as classification feature. Manual segmentations are used for training the classifier: samples are collected inside, outside, and at the given boundary positions. The deformation is steered by the most likely class corresponding to the intensity profile at each vertex on the surface. A parameter optimization study is conducted, followed by experiments to assess the overall segmentation quality and the robustness of results against variation in user input. Results obtained in a study of 17 patients show that the agreement with respect to manual segmentations is comparable to previous values reported in the literature, with considerable less user interaction.

  10. Microstructural modelling of cerebral aneurysm evolution through effective stress mediated destructive remodelling.

    PubMed

    Nabaei, Malikeh; Fatouraee, Nasser

    2014-08-07

    Recently, researchers have shown an increased interest in the biomechanical modelling of cerebral aneurysm development. In the present study a fluid-solid-growth model for the formation of a fusiform aneurysm has been presented in an axi-symmetric geometry of the internal carotid artery. This model is the result of two parallel mechanisms: first, defining arterial wall as a living tissue with the ability of degradation, growth and remodelling and second, full coupling of the wall and the blood flow. Here for the first time the degradation of elastin has been defined as a function of vascular wall effective stress to take into account the shear dependent nature of degradation and the mural-cell-mediated destructive activities. The model has been stabilized in size and mechanical properties and is consistent with other computational or clinical studies. Furthermore, the evolving microstructural properties of the wall during the evolution process have been predicted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Measurement with microscopic MRI and simulation of flow in different aneurysm models

    SciTech Connect

    Edelhoff, Daniel Frank, Frauke; Heil, Marvin; Suter, Dieter; Walczak, Lars; Weichert, Frank; Schmitz, Inge

    2015-10-15

    Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The

  12. In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular MRI

    PubMed Central

    Klink, Ahmed; Heynens, Joeri; Herranz, Beatriz; Lobatto, Mark E.; Arias, Teresa; Sanders, Honorius M. H. F.; Strijkers, Gustav J.; Merkx, Maarten; Nicolay, Klaas; Fuster, Valentin; Tedgui, Alain; Mallat, Ziad; Mulder, Willem J.M.; Fayad, Zahi A.

    2014-01-01

    Objectives To use non-invasive conventional and molecular magnetic resonance imaging (MRI) to detect and characterize abdominal aortic aneurysms (AAAs) in vivo. Background Collagen is an essential constituent of aneurysms. Non-invasive MRI of collagen may represent an opportunity to help detect and better characterize AAA and initiate intervention. Methods We used an AAA C57BL/6 mouse model where a combination of angiotensin-II infusion and TGF-β neutralization results in AAA formation with incidence of aortic rupture. High-resolution multi-sequence MRI was performed to characterize the temporal progression of AAA. To allow molecular MRI of collagen, paramagnetic/fluorescent micellar nanoparticles functionalized with a collagen-binding protein (CNA-35) were intravenously administered. In vivo imaging results were corroborated with immunohistochemistry and confocal fluorescence microscopy. Results High-resolution multi-sequence MRI allowed the visualization of the primary fibrotic response in the aortic wall. As the aneurysm progressed, the formation of a secondary channel or dissection was detected. Further analysis revealed a dramatic increase of the aortic diameter. Injection of CNA-35 micelles resulted in a significant higher MR signal enhancement in the aneurysmal wall compared to non-specific micelles. Histological studies demonstrated the presence of collagen in regions of MR signal enhancement and confocal microscopy proved the precise colocalization of CNA-35 micelles with collagen-I. In addition, in a proof of concept experiment, we have shown the potential of CNA-35 micelles to discriminate between stable AAA lesions and aneurysms that were likely to rapidly progress/rupture. Conclusion Multi-sequence MRI allowed longitudinal monitoring of AAA progression while the presence of collagen was visualized by nanoparticle-enhanced MRI. PMID:22133853

  13. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.

    PubMed

    Tierney, Áine P; Callanan, Anthony; McGloughlin, Timothy M

    2012-02-01

    To investigate the use of regional variations in the mechanical properties of abdominal aortic aneurysms (AAA) in finite element (FE) modeling of AAA rupture risk, which has heretofore assumed homogeneous mechanical tissue properties. Electrocardiogram-gated computed tomography scans from 3 male patients with known infrarenal AAA were used to characterize the behavior of the aneurysm in 4 different segments (posterior, anterior, and left and right lateral) at maximum diameter and above the infrarenal aorta. The elasticity of the aneurysm (circumferential cyclic strain, compliance, and the Hudetz incremental modulus) was calculated for each segment and the aneurysm as a whole. The FE analysis inclusive of prestress (pre-existing tensile stress) produced a detailed stress pattern on each of the aneurysm models under pressure loading. The 4 largest areas of stress in each region were considered in conjunction with the local regional properties of the segment to define a specific regional prestress rupture index (RPRI). In terms of elasticity, there were average reductions of 68% in circumferential cyclic strain and 63% in compliance, with a >5-fold increase in incremental modulus, between the healthy and the aneurysmal aorta for each patient. There were also regional variations in all elastic properties in each individual patient. The average difference in total stress inclusive of prestress was 59%, 67%, and 15%, respectively, for the 3 patients. Comparing the strain from FE models with the CT scans revealed an average difference in strain of 1.55% for the segmented models and 3.61% for the homogeneous models, which suggests that the segmented models more accurately reflect in vivo behavior. RPRI values were calculated for each segment for all patients. A greater understanding of the local material properties and their use in FE models is essential for greater accuracy in rupture prediction. Quantifying the regional behavior will yield insight into the changes in

  14. Fluid-Structure Interaction Modeling of Intracranial Aneurysm Hemodynamics: Effects of Different Assumptions

    NASA Astrophysics Data System (ADS)

    Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui

    2015-11-01

    Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).

  15. Volume Changes of Experimental Carotid Sidewall Aneurysms Due to Embolization with Liquid Embolic Agents: A Multidetector CT Angiography Study

    SciTech Connect

    Dudeck, O. Okuducu, A. F.; Jordan, O.; Tesmer, K.; Pech, M.; Weigang, E.; Ruefenacht, D. A.; Doelker, E.; Felix, R.

    2006-12-15

    Iodine-containing polyvinyl alcohol polymer (I-PVAL) is a novel precipitating liquid embolic that allows for artifact-free evaluation of CT angiography (CTA). As accurate aneurysm volumetry can be performed with multidetector CTA, we determined volumes of experimental aneurysms before, immediately after, and 4 weeks after embolization of 14 porcine experimental carotid sidewall aneurysms with this liquid embolic. An automated three-dimensional software measurement tool was used for volumetric analysis of volume-rendering CTA data. Furthermore, intra-aneurysmal pressure changes during liquid embolization were measured in four silicone aneurysms and potential polymer volume changes within 4 weeks were assessed in vitro. Liquid embolic injection was performed during temporary balloon occlusion of the aneurysm neck, resulting in a mean occlusion rate of 98.3%. Aneurysms enlarged significantly during embolization by 61.1 {+-} 28.9%, whereas a significant shrinkage of 5.6 {+-} 2.7% was observed within the follow-up period. Histologic analysis revealed an inflammatory foreign body reaction with partial polymer degradation. In silicone aneurysm models, intra-aneurysmal pressure remained unchanged during liquid embolic injection, whereas balloon inflation resulted in a mean pressure increase of 31.2 {+-} 0.7%. No polymer shrinkage was observed in vitro. The aneurysm enlargement noted was presumably due to pressure elevation after balloon inflation, which resulted in dilatation of the weak venous wall of the newly constructed aneurysm-another shortcoming of this experimental aneurysm model. The volume decrease after 4 weeks expressed partial polymer degradation.

  16. A Computational Model of Biochemomechanical Effects of Intraluminal Thrombus on the Enlargement of Abdominal Aortic Aneurysms

    PubMed Central

    Humphrey, Jay D.; Karšaj, Igor

    2015-01-01

    Abdominal aortic aneurysms (AAAs) typically develop an intraluminal thrombus (ILT), yet most computational models of AAAs have focused on either the mechanics of the wall or the hemodynamics within the lesion, both in the absence of ILT. In the few cases wherein ILT has been modeled directly, as, for example, in static models that focus on the state of stress in the aortic wall and the associated rupture risk, thrombus has been modeled as an inert, homogeneous, load-bearing material. Given the biochemomechanical complexity of an ILT, there is a pressing need to consider its diverse effects on the evolving aneurysmal wall. Herein, we present the first growth and remodeling model that addresses together the biomechanics, mechanobiology, and biochemistry of thrombus-laden AAAs. Whereas it has been shown that aneurysmal enlargement in the absence of ILT depends primarily on the stiffness and turnover of fibrillar collagen, we show that the presence of a thrombus within lesions having otherwise the same initial wall composition and properties can lead to either arrest or rupture depending on the biochemical effects (e.g., release of proteases) and biomechanical properties (e.g., stiffness of fibrin) of the ILT. These computational results suggest that ILT should be accounted for when predicting the potential enlargement or rupture risk of AAAs and highlight specific needs for further experimental and computational research. PMID:26070724

  17. Wall shear stress at the initiation site of cerebral aneurysms.

    PubMed

    Geers, A J; Morales, H G; Larrabide, I; Butakoff, C; Bijlenga, P; Frangi, A F

    2017-02-01

    Hemodynamics are believed to play an important role in the initiation of cerebral aneurysms. In particular, studies have focused on wall shear stress (WSS), which is a key regulator of vascular biology and pathology. In line with the observation that aneurysms predominantly occur at regions of high WSS, such as bifurcation apices or outer walls of vascular bends, correlations have been found between the aneurysm initiation site and high WSS. The aim of our study was to analyze the WSS field at an aneurysm initiation site that was neither a bifurcation apex nor the outer wall of a vascular bend. Ten cases with aneurysms on the A1 segment of the anterior cerebral artery were analyzed and compared with ten controls. Aneurysms were virtually removed from the vascular models of the cases to mimic the pre-aneurysm geometry. Computational fluid dynamics (CFD) simulations were created to assess the magnitude, gradient, multidirectionality, and pulsatility of the WSS. To aid the inter-subject comparison of hemodynamic variables, we mapped the branch surfaces onto a two-dimensional parametric space. This approach made it possible to view the whole branch at once for qualitative evaluation. It also allowed us to empirically define a patch for quantitative analysis, which was consistent among subjects and encapsulated the aneurysm initiation sites in our dataset. To test the sensitivity of our results, CFD simulations were repeated with a second independent observer virtually removing the aneurysms and with a 20 % higher flow rate at the inlet. We found that branches harboring aneurysms were characterized by high WSS and high WSS gradients. Among all assessed variables, the aneurysm initiation site most consistently coincided with peaks of temporal variation in the WSS magnitude.

  18. Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Schjodt, Kathleen; Puntel, Anthony; Kostov, Nikolay; Tezduyar, Tayfun E.

    2012-12-01

    We present the special arterial fluid mechanics techniques we have developed for patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. These techniques are used in conjunction with the core computational technique, which is the space-time version of the variational multiscale (VMS) method and is called "DST/SST-VMST." The special techniques include using NURBS for the spatial representation of the surface over which the stent mesh is built, mesh generation techniques for both the finite- and zero-thickness representations of the stent, techniques for generating refined layers of mesh near the arterial and stent surfaces, and models for representing double stent. We compute the unsteady flow patterns in the aneurysm and investigate how those patterns are influenced by the presence of single and double stents. We also compare the flow patterns obtained with the finite- and zero-thickness representations of the stent.

  19. ACUTE MECHANICAL EFFECTS OF ELASTASE ON THE INFRARENAL MOUSE AORTA: IMPLICATIONS FOR MODELS OF ANEURYSMS

    PubMed Central

    Collins, M.J.; Eberth, J.F.; Wilson, E.; Humphrey, J.D.

    2012-01-01

    Intraluminal exposure of the infrarenal aorta to porcine pancreatic elastase represents one of the most commonly used experimental models of the development and progression of abdominal aortic aneurysms. Morphological and histological effects of elastase on the aortic wall have been well documented in multiple rodent models, but there has been little attention to the associated effects on mechanical properties. In this paper, we present the first biaxial mechanical data on, and associated nonlinear constitutive descriptors of, the effects of elastase on the infrarenal aorta in mice. Quantification of the dramatic, acute effects of elastase on wall behavior in vitro is an essential first step toward understanding the growth and remodeling of aneurysms in vivo, which depends on both the initial changes in the mechanics and the subsequent inflammation-mediated turnover of cells and extracellular matrix that contributes to the evolving mechanics. PMID:22236532

  20. A System for Computer-Assisted Design of Stent-Grafts for Aortic Aneurysms Using 3-D Morphological Models

    SciTech Connect

    Imai, Yasuhiro; Urayama, Shin-ich; Uyama, Chikao; Inoue, Kanji; Ueno, Katsuya; Kuribayashi, Sachio; Takamiya, Makoto; Hamada, Seiki; Hirane, Yoshihisa

    2001-07-15

    A three-dimensional model was constructed from helical CT images for abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA). A stent-graft was designed and positioned endoluminally on the computer. One hundred and nine stent-grafts for 101 patients were designed by this method and deployed well in all patients. The design time was reduced from 4 to 0.5 hr.

  1. The Changes of Flow Characteristics Caused by a Stent in Fusiform Aneurysm Models

    DTIC Science & Technology

    2007-11-02

    human carotid artery. B. Flow Visualization We used a flow visualization method incorporating photochromic dye in order to observe the flow...fields. A photochromic dye shows photochromic behavior by changing its color by the excitation of light of an appropriate wavelength. We used TNSB (1...visualization technique using photochromic dye was applied to the fusiform aneurysm models. The qualitative observation of tracer lines showed

  2. Flow investigation in sidewall aneurysm model using a novel PIV multi-time-lag method

    NASA Astrophysics Data System (ADS)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Mendes Pereira, Vitor; Farhat, Mohamed

    2013-11-01

    The intracranial aneurysm (IA) lesion is one of the main causes of intracranial hemorrhage in productive population. It is well known that the hemodynamic factors have large impact on both the IAs rupture and treatment efficacy based on flow diverter stents. Precise experimental investigations of blood flow in IAs using particle imaging velocimetry (PIV) are therefore strongly required in order to validate clinical treatments based on computational and clinical flow assessment tools. Due to the large variations of flow velocities in IAs, a single PIV measurement with a unique time lag between two consecutive images cannot provide a good level of precision in all the measured volume. In this work, we implement an error analysis based on several PIV measurements with different time lags to ensure an optimal precision in the entire measurement volume. This PIV multi-time-lag method is applied on a sidewall IA model to investigate the effect of the inflow pulsatility. By comparing the flow patterns resulting from steady and unsteady inflows we point out important differences which could be involved in the IAs evolution. In particular, the blood transfer in the IA and the vortical structure are significantly modified when increasing the pulsatility compared to quasi-steady conditions.

  3. Increasing flow diversion for cerebral aneurysm treatment using a single flow diverter.

    PubMed

    Xiang, Jianping; Ma, Ding; Snyder, Kenneth V; Levy, Elad I; Siddiqui, Adnan H; Meng, Hui

    2014-09-01

    A neurovascular flow diverter (FD), aiming at inducing embolic occlusion of cerebral aneurysms through hemodynamic changes, can produce variable mesh densities owing to its flexible mesh structure. To explore whether the hemodynamic outcome would differ by increasing FD local compaction across the aneurysm orifice. We investigated deployment of a single FD using 2 clinical strategies: no compaction (the standard method) and maximum compaction across the aneurysm orifice (an emerging strategy). Using an advanced modeling technique, we simulated these strategies applied to a patient-specific wide-necked aneurysm model, resulting in a relatively uniform mesh with no compaction (C1) and maximum compaction (C2) at the aneurysm orifice. Pre- and posttreatment aneurysmal hemodynamics were analyzed using pulsatile computational fluid dynamics. Flow-stasis parameters and blood shear stress were calculated to assess the potential for aneurysm embolic occlusion. Flow streamlines, isovelocity, and wall shear stress distributions demonstrated enhanced aneurysmal flow reduction with C2. The average intra-aneurysmal flow velocity was 29% of pretreatment with C2 compared with 67% with C1. Aneurysmal flow turnover time was 237% and 134% of pretreatment for C2 and C1, respectively. Vortex core lines and oscillatory shear index distributions indicated that C2 decreased the aneurysmal flow complexity more than C1. Ultrahigh blood shear stress was observed near FD struts in inflow region for both C1 and C2. The emerging strategy of maximum FD compaction can double aneurysmal flow reduction, thereby accelerating aneurysm occlusion. Moreover, ultrahigh blood shear stress was observed through FD pores, which could potentially activate platelets as an additional aneurysmal thrombosis mechanism.

  4. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  5. Global Instability and Transient Growth in a Model Fusifom Aneurysm with Steady Inflow

    NASA Astrophysics Data System (ADS)

    Sheard, Gregory; Blackburn, Hugh

    2010-11-01

    The stability of the flow through a model aneurysm is computed using a global linear stability analysis and a direct transient growth analysis. The geometry consists of sinusoidal expansion in a circular pipe. Dimensions are chosen to represent a human abdominal aortic aneurysm near to the critical bulge size requiring surgical intervention. The bulge length and maximum width are 2.9 and 1.9 times the pipe diameter, respectively. Subject to a steady inflow, the flow is found to be weakly unstable to quasi-periodic global eigenmodes with azimuthal wavenumbers of 4 and 5 at a Reynolds number (based on area-averaged velocity and pipe diameter) of Re 3900. Perturbation structures in these eigenmodes are concentrated in the outer part of the bulge towards its downstream end. A transient growth analysis reveals that the flow is sensitive to transient disturbances beyond Re=33, well below the time-averaged Reynolds numbers of blood flow in the human abdominal aorta.

  6. Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome

    PubMed Central

    Habashi, Jennifer P.; Judge, Daniel P.; Holm, Tammy M.; Cohn, Ronald D.; Loeys, Bart L.; Cooper, Timothy K.; Myers, Loretha; Klein, Erin C.; Liu, Guosheng; Calvi, Carla; Podowski, Megan; Neptune, Enid R.; Halushka, Marc K.; Bedja, Djahida; Gabrielson, Kathleen; Rifkin, Daniel B.; Carta, Luca; Ramirez, Francesco; Huso, David L.; Dietz, Harry C.

    2006-01-01

    Aortic aneurysm and dissection are manifestations of Marfan syndrome (MFS), a disorder caused by mutations in the gene that encodes fibrillin-1. Selected manifestations of MFS reflect excessive signaling by the transforming growth factor–β (TGF-β) family of cytokines. We show that aortic aneurysm in a mouse model of MFS is associated with increased TGF-β signaling and can be prevented by TGF-β antagonists such as TGF-β–neutralizing antibody or the angiotensin II type 1 receptor (AT1) blocker, losartan. AT1 antagonism also partially reversed noncardiovascular manifestations of MFS, including impaired alveolar septation. These data suggest that losartan, a drug already in clinical use for hypertension, merits investigation as a therapeutic strategy for patients with MFS and has the potential to prevent the major life-threatening manifestation of this disorder. PMID:16601194

  7. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.

    PubMed

    Kontopodis, Nikolaos; Metaxa, Eleni; Papaharilaou, Yannis; Tavlas, Emmanouil; Tsetis, Dimitrios; Ioannou, Christos

    2015-02-01

    Abdominal aortic aneurysms are a common health problem and currently the need for surgical intervention is determined based on maximum diameter and growth rate criteria. Since these universal variables often fail to predict accurately every abdominal aortic aneurysms evolution, there is a considerable effort in the literature for other markers to be identified towards individualized rupture risk estimations and growth rate predictions. To this effort, biomechanical tools have been extensively used since abdominal aortic aneurysm rupture is in fact a material failure of the diseased arterial wall to compensate the stress acting on it. The peak wall stress, the role of the unique geometry of every individual abdominal aortic aneurysm as well as the mechanical properties and the local strength of the degenerated aneurysmal wall, all confer to rupture risk. In this review article, the assessment of these variables through mechanical testing, advanced imaging and computational modeling is reviewed and the clinical perspective is discussed.

  8. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.

    PubMed

    Nguyen, V Lai; Kooi, M Eline; Backes, Walter H; van Hoof, Raf H M; Saris, Anne E C M; Wishaupt, Mirthe C J; Hellenthal, Femke A M V I; van der Geest, Rob J; Kessels, Alfons G H; Schurink, Geert Willem H; Leiner, Tim

    2013-01-01

    Increased microvascularization of the abdominal aortic aneurysm (AAA) vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (K(trans) ), which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV). Further, the relationship between K(trans) and AAA size was investigated. DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4) with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for K(trans) based on the Patlak model (17%) were significantly lower compared to the Tofts (37%) and Extended Tofts model (42%) (p<0.001). K(trans) scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22%) was comparable with the Tofts (ICC = 0.61, CV = 23%) and Extended Tofts model (ICC = 0.76, CV = 22%). K(trans) was positively correlated with maximal AAA diameter (Spearman's ρ = 0.38, p = 0.02) using the Patlak model. Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good K(trans) scan-rescan reproducibility.

  9. A microfabricated microfluidic bioMEMS device to model human brain aneurisms: the aneurysm-on-a-chip

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.; Khor, Jian Wei; Thakur, Raviraj; Amin, Ahmed; Wereley, Steven T.; Leary, James F.

    2015-03-01

    Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. There is little information concerning the causes of intracranial aneurysm formation, growth, and rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. Further, the evolution of any aneurysm is assumed to be caused by the remodeling of the affected blood vessel's material constituents (tunica intima, tunica media, or tunica adventitia). Velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, while the shear force mechanisms effecting wound closure are elusive. To study aneurysm pathogenesis, a lab-on-a-chip device is the key to discovering the underlying mechanisms of these lesions. A two-dimensional microfluidic model, the Aneurysm-on-a-Chip™ (AOC), was the logical answer to study particle flow within an aneurysm "sac". The AOC apparatus can track particles/cells when it is coupled to particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles and human aortic smooth muscle cells (HASMC). Images were taken during fluid flow experiments and PIV was utilized to monitor the flow of particles within the "sac" region, as well as particles entering and exiting the device. Quiver plots were generated from fluid flow experiments using standard 7 μm latex particles and fixed HASMC in PBS. PIV analysis shows that the particles flowed nicely from input to output. Wall shear stress provided evidence that there was some back flow at the edges of the "sac" - an indicator of aneurysm development in human patients.

  10. Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models

    PubMed Central

    Humphrey, J.D.; Taylor, C.A.

    2009-01-01

    Intracranial and abdominal aortic aneurysms result from different underlying disease processes and exhibit different rupture potentials, yet they share many histopathological and biomechanical characteristics. Moreover, as in other vascular diseases, hemodynamics and wall mechanics play important roles in the natural history and possible treatment of these two types of lesions. The goals of this review are twofold: first, to contrast the biology and mechanics of intracranial and abdominal aortic aneurysms to emphasize that separate advances in our understanding of each disease can aid in our understanding of the other disease, and second, to suggest that research on the biomechanics of aneurysms must embrace a new paradigm for analysis. That is, past biomechanical studies have provided tremendous insight but have progressed along separate lines, focusing on either the hemodynamics or the wall mechanics. We submit that that there is a pressing need to couple in a new way the separate advances in vascular biology, medical imaging, and computational biofluid and biosolid mechanics to understand better the mechanobiology, pathophysiology, and treatment of these lesions, which continue to be responsible for significant morbidity and mortality. We shall refer to this needed new class of computational tools as Fluid-Solid-Growth (FSG) Models. PMID:18647115

  11. Can aspect ratio be used to categorize intra-aneurysmal hemodynamics?—A study ofelastase induced aneurysms in rabbit

    PubMed Central

    Zeng, Zijing; Durka, Michael J.; Kallmes, David F.; Ding, Yonghong

    2011-01-01

    Clinical studies suggest aneurysm aspect ratio (AR) is an important indicator of rupture likelihood. The importance of AR is hypothesized to arise from its influence on intra-aneurysmal hemodynamics. It has been conjectured that the flow in the domes of high AR sacs is slower than in low AR sacs and some aspect and leads to a cascade of enzymatic activities that weaken the aneurysm wall. However, the connection between AR, hemodynamics and wall weakening has never been proven. Animal models of saccular aneurysms provide a venue for evaluating this conjecture. The focus of this work was to evaluate whether a commonly used elastase induced aneurysm model in rabbits is suitable for a study of this kind from a hemodynamic perspective. In particular, to assess whether hemodynamic factors in low and high AR sacs are statistically different. To achieve this objective, saccular aneurysms were created in 51 rabbits and pulsatile computational fluid dynamics (CFD) studies were performed using rabbit specific inflows. Distinct hemodynamics were found in the low AR (AR<1.8, n=25), and high AR (AR>2.2, n=18) models. A single, stable recirculation zone was present in all low AR aneurysms, whereas a second, transient recirculation zone was also found in the superior aspect of the aneurysm dome for all high AR cases. Aneurysms with AR between 1.8 and 2.2 displayed transitional flow patterns. Differences in values and distributions of hemodynamic parameters were found between low and high AR cases including time averaged wall shear stress, oscillatory shear index, relative residence time and non-dimensional inflow rate. This work lays the foundation for future studies of the dependence of growth and remodeling on AR in the rabbit model and provides a motivation for further studies of the coupling between AR and hemodynamics in human aneurysms. PMID:21925661

  12. Intra-aneurysmal hemodynamics: evaluation of pCONus and pCANvas bifurcation aneurysm devices using DSA optical flow imaging.

    PubMed

    Pérez, Marta Aguilar; Henkes, Hans; Bouillot, Pierre; Brina, Olivier; Slater, Lee-Anne; Pereira, Vitor Mendes

    2016-11-01

    Implantation of self-expanding stents from the parent artery into the sac of a bifurcation aneurysm is regularly used to facilitate endovascular coil occlusion with the so-called waffle cone technique (WCT). Self-expanding aneurysm bridging stents like Solitaire AB, can be used; however, bifurcation devices like pCONus and pCANvas are especially designed for WCT. These devices provide additional support for coil implantation owing to intraluminal nylon fibers (pCONus) or membranes (pCANvas) covering the intracranial aneurysm neck. Assessment of the intra-aneurysmal hemodynamic impact of these three devices: a regular intracranial stent (Solitaire AB) and two bifurcation devices (pCONus and pCANvas). An in vitro experiment was set up using a silicone model of a basilar tip aneurysm filled with blood mimicking fluid under a pulsatile circulation. Solitaire AB, pCONus, and pCANvas were successively implanted in the model for hemodynamic evaluation. High frame rate DSA series were acquired under various conditions. Intra-aneurysmal flow changes, including mean aneurysm flow amplitude ratio (R), were subsequently assessed by the optical flow method, measuring the detector velocity field before and after device implantations. pCONus and Solitaire minimally reduced the intra-aneurysmal flow (R=0.96, p=0.17 and R=0.91, p=0.01, respectively), whereas pCANvas strongly diminished the intra-aneurysmal flow (R=0.41, p=5×10(-12)). Waffle cone deployment of stents and technique-specific devices had no undesirable effect on the intra-aneurysmal flow. In particular, no increased flow was redirected into the aneurysm sac. The intraluminal membrane of the pCANvas strongly reduced the intra-aneurysmal flow, potentially preventing recanalization problems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Cytotoxicity, in vitro models and preliminary in vivo study of dual physical and chemical gels for endovascular embolization of cerebral aneurysms.

    PubMed

    Bearat, Hanin H; Preul, Mark C; Vernon, Brent L

    2013-09-01

    We report the evaluation of dual-gelling poly(N-isopropylacrylamide)-based polymer systems as embolic agents for intracranial aneurysms. These hydrogels undergo gelation physically via temperature-responsiveness of poly(NIPAAm) and chemically through a Michael-addition reaction between thiol and vinyl functional groups on the copolymers. Cytotoxicity studies were performed for biocompatibility of the hydrogels. In vitro glass models were utilized to assess injectability and embolization using the gelling systems and an in vivo swine model was used as proof-of-concept for catheter delivery, injection, and occlusion properties of the hydrogels. Rheology creep tests were conducted for determination of viscoelastic behavior, and degradation of the hydrogels was also investigated. Live/dead and proliferation assays indicated good biocompatibility of the hydrogels. In vitro and in vivo assessment demonstrated that the hydrogels were easily delivered via catheters into the aneurysms. Slight recanalization was observed in vivo, with some adhesion of the gels to the balloon catheter seen in vitro. The materials show creep deformation occurring with time; however, the hydrogels did not degrade over the course of 1.5 year. With the possibility to engineer hydrogels bottom-up for particular applications, these studies show properties that need to be optimized for dual-gelling polymer systems to serve as liquid-to-solid embolic agents for aneurysm treatment.

  14. External validation of a 5-year survival prediction model after elective abdominal aortic aneurysm repair.

    PubMed

    DeMartino, Randall R; Huang, Ying; Mandrekar, Jay; Goodney, Philip P; Oderich, Gustavo S; Kalra, Manju; Bower, Thomas C; Cronenwett, Jack L; Gloviczki, Peter

    2017-08-11

    The benefit of prophylactic repair of abdominal aortic aneurysms (AAAs) is based on the risk of rupture exceeding the risk of death from other comorbidities. The purpose of this study was to validate a 5-year survival prediction model for patients undergoing elective repair of asymptomatic AAA <6.5 cm to assist in optimal selection of patients. All patients undergoing elective repair for asymptomatic AAA <6.5 cm (open or endovascular) from 2002 to 2011 were identified from a single institutional database (validation group). We assessed the ability of a prior published Vascular Study Group of New England (VSGNE) model (derivation group) to predict survival in our cohort. The model was assessed for discrimination (concordance index), calibration (calibration slope and calibration in the large), and goodness of fit (score test). The VSGNE derivation group consisted of 2367 patients (70% endovascular). Major factors associated with survival in the derivation group were age, coronary disease, chronic obstructive pulmonary disease, renal function, and antiplatelet and statin medication use. Our validation group consisted of 1038 patients (59% endovascular). The validation group was slightly older (74 vs 72 years; P < .01) and had a higher proportion of men (76% vs 68%; P < .01). In addition, the derivation group had higher rates of advanced cardiac disease, chronic obstructive pulmonary disease, and baseline creatinine concentration (1.2 vs 1.1 mg/dL; P < .01). Despite slight differences in preoperative patient factors, 5-year survival was similar between validation and derivation groups (75% vs 77%; P = .33). The concordance index of the validation group was identical between derivation and validation groups at 0.659 (95% confidence interval, 0.63-0.69). Our validation calibration in the large value was 1.02 (P = .62, closer to 1 indicating better calibration), calibration slope of 0.84 (95% confidence interval, 0.71-0.97), and score test of P = .57 (>.05

  15. Numerical simulation of aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    MacVicar, Stephen; Huynh, Sophia; Rossmann, Jenn

    2003-11-01

    Rupture of intracranial aneurysms is the leading cause of spontaneous subarachnoid hemorrhage, with high rates of morbidity and mortality. Numerical simulations of flow in a variety of two-dimensional and three-dimensional saccular aneurysm geometries were performed to evaluate possible sites and mechanisms for aneurysm growth and rupture. The governing equations were solved in their finite volume formulation for both steady and pulsatile flows. Recirculation zones and secondary flows were observed in aneurysms and arteries. Regions of elevated and oscillating shear stress were observed, often at the aneurysm's distal shoulder. The influence of several geometric factors, including vessel curvature, branching angle, and aneurysm shape, on flow patterns and fluid mechanical forces was studied, with the goal of assessing the risks posed by given aneurysm geometry.

  16. Role of Kruppel-like Factor 2 in Intracranial Aneurysm of the Rabbit Model.

    PubMed

    Wu, X; Zhang, J; Huang, Q; Yang, P; Chen, J; Liu, J

    2015-11-08

    We investigated expression of Kruppel—like factor 2 (KLF2) and its correlation with basilar artery blood flow rate in the hemodynamically induced aneurysm model built by different methods. New Zealand rabbits were randomly divided into sham—operated group, unilateral ligation of common carotid artery (CCA) group (UL group) and bilateral ligation of CCA group (BL group). Rabbits were cervix—cut to expose the arteries without ligation (sham group), with right—side ligation (UL group) and bilateral ligation (BL group), respectively. Skull Doppler ultrasound was used to measure basilar artery blood flow rate in each group at week 1, 2, 3, or 4 separately (n=6 for each time point). The animals were killed after the measurements. At each time point, 6 basilar artery bifurcates from each group were collected and sent for staining (HE, EVG, Masson and KLF2 immunohistochemistry staining), while another 6 basilar artery bifurcates were processed with KLF2 Western blotting. Results showed that the average blood flow rate did not change significantly among the 4 time points in the Sham group, but it was insignificantly smaller compared to the UL group. The average blood flow rate in the BL group was significantly higher than that in the other two groups. Pathological tests showed that according to the aneurysm evaluation criteria, the basilar arteries in the Sham group had smooth tip lumina, complete endothelial cells, complete internal elastic membranes, but no fracture, thinning or aneurysm formation. Only 1 of 24 rabbits in the UL group had slight bulges in the tip of basilar artery, though not very severe. Twelve rabbits in the BL group had aneurysmal bulges, significantly different from the other two groups. KLF2 protein expression was not changed significantly with time in the Sham group, but increased slightly with time in the UL group. KLF2 protein expression in the BL group increased significantly only after 1 week and then maintained a high level

  17. Model-based segmentation of abdominal aortic aneurysms in CTA images

    NASA Astrophysics Data System (ADS)

    de Bruijne, Marleen; van Ginneken, Bram; Niessen, Wiro J.; Loog, Marco; Viergever, Max A.

    2003-05-01

    Segmentation of thrombus in abdominal aortic aneurysms is complicated by regions of low boundary contrast and by the presence of many neighboring structures in close proximity to the aneurysm wall. We present an automated method that is similar to the well known Active Shape Models (ASM), combining a three-dimensional shape model with a one-dimensional boundary appearance model. Our contribution is twofold: we developed a non-parametric appearance modeling scheme that effectively deals with a highly varying background, and we propose a way of generalizing models of curvilinear structures from small training sets. In contrast with the conventional ASM approach, the new appearance model trains on both true and false examples of boundary profiles. The probability that a given image profile belongs to the boundary is obtained using k nearest neighbor (kNN) probability density estimation. The performance of this scheme is compared to that of original ASMs, which minimize the Mahalanobis distance to the average true profile in the training set. The generalizability of the shape model is improved by modeling the objects axis deformation independent of its cross-sectional deformation. A leave-one-out experiment was performed on 23 datasets. Segmentation using the kNN appearance model significantly outperformed the original ASM scheme; average volume errors were 5.9% and 46% respectively.

  18. Time analysis of aneurysm wall shear stress for both Newtonian and Casson flows from image-based CFD models

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Ahumada Olivares, María. C.; Putman, Christopher M.; Cebral, Juan R.

    2014-03-01

    The optimal management of unruptured aneurysms is controversial, and current decision making is mainly based on aneurysm size and location. Incidentally detected unruptured aneurysms less than 5mm in diameter should be treated conservatively. However, small unruptured aneurysms also bleed. Risk factors based on the hemodynamic forces exerted over the arterial wall have been investigated using image-based computational fluid dynamic (CFD) methodologies during the last decade. Accurate estimation of wall shear stress (WSS) is required to properly study associations between flow features and aneurysm processes. Previous works showed that Newtonian and non-Newtonian (Casson) models produce similar WSS distributions and characterization, with no significant differences. Other authors showed that the WSS distribution computed from time-averaged velocity fields is significantly higher for the Newtonian model where WSS is low. In this work we reconstructed ten patient-specific CFD models from angiography images to investigate the time evolution of WSS at selected locations such as aneurysm blebs (low WSS), and the parent artery close to the aneurysm neck (high WSS). When averaging all cases it is seen that the estimation of the time-averaged WSS, the peak WSS and the minimum WSS value before the systolic peak were all higher when the Casson rheology was considered. However, none of them showed statistically significant differences. At the afferent artery Casson rheology systematically predicted higher WSS values. On the other hand, at the selected blebs either Newtonian or Casson WSS estimations are higher in some phases of the cardiac cycle. Those observations differ among individual cases.

  19. In vitro and in vivo evaluation of a shape memory polymer foam-over-wire embolization device delivered in saccular aneurysm models.

    PubMed

    Boyle, Anthony J; Landsman, Todd L; Wierzbicki, Mark A; Nash, Landon D; Hwang, Wonjun; Miller, Matthew W; Tuzun, Egemen; Hasan, Sayyeda M; Maitland, Duncan J

    2016-10-01

    Current endovascular therapies for intracranial saccular aneurysms result in high recurrence rates due to poor tissue healing, coil compaction, and aneurysm growth. We propose treatment of saccular aneurysms using shape memory polymer (SMP) foam to improve clinical outcomes. SMP foam-over-wire (FOW) embolization devices were delivered to in vitro and in vivo porcine saccular aneurysm models to evaluate device efficacy, aneurysm occlusion, and acute clotting. FOW devices demonstrated effective delivery and stable implantation in vitro. In vivo porcine aneurysms were successfully occluded using FOW devices with theoretical volume occlusion values greater than 72% and rapid, stable thrombus formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1407-1415, 2016. © 2015 Wiley Periodicals, Inc.

  20. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models.

    PubMed

    Castro, Marcelo A; Ahumada Olivares, María C; Putman, Christopher M; Cebral, Juan R

    2014-10-01

    The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.

  1. Flow in glass models of arterial bifurcations and berry aneurysms at low Reynolds numbers.

    PubMed

    Stehbens, W E

    1975-07-01

    Using the dye injection technique, flow at low Reynolds numbers was studied in glass models which simulated arterial bifurcations of varying angles and had varying bluntness of the apex or crotch. Forks bearing small saccular evaginations simulating berry aneurysms were investigated similarly.. At quite low Reynolds numbers in all the models small wave motion was observed at the forks. At higher Reynolds numbers and below the critical values for turbulence, larger Vortices akin to a Kármán vortex street were shed from most of the forks. The disturbances were attributed to boundary layer separation and a jet-edge effect.

  2. Virtual angiography for visualization and validation of computational fluid dynamics models of aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    Ford, Matthew D.; Stuhne, Gordan R.; Nikolov, Hristo N.; Lownie, Stephen P.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    It has recently become possible to simulate aneurysmal blood flow dynamics in a patient-specific manner via the coupling of 3D X-ray angiography and computational fluid dynamics (CFD). Before such image-based CFD models can be used in a predictive capacity, however, it must be shown that they indeed reproduce the in vivo hemodynamic environment. Motivated by the fact that there is currently no technique for measuring complex blood velocity fields in vivo, in this paper we describe how cine X-ray angiograms may be simulated for the purpose of indirectly validating patient-specific CFD models. Mirroring the radiological procedure, a virtual angiogram is constructed by first simulating the time-varying injection of contrast agent into a previously computed patient-specific CFD model. A time-series of images is then constructed by simulating attenuation of X-rays through the simulated 3D contrast-agent flow dynamics. Virtual angiographic images and residence time maps, here derived from an image-based CFD model of a giant aneurysm, are shown to be in excellent agreement with the corresponding clinical images and maps, but only when the interaction between the quasi-steady contrast-agent injection and the pulsatile wash-out are properly accounted for. These virtual angiographic techniques therefore pave the way for validating image-based CFD models against routinely available clinical data, and also provide a means of visualizing complex, 3D blood flow dynamics in a clinically relevant manner. However, they also clearly show how the contrast-agent injection perturbs the normal blood flow dynamics, further highlighting the utility of CFD as a window into the true aneurysmal hemodynamics.

  3. Developing a new endograft for the treatment of juxtarenal aortic aneurysms: definition and experimentation.

    PubMed

    Belczak, Sergio Q; Lanzaiotti, Luiz; Botelho, Yuri; Aun, Ricardo; Silva, Erasmo S da; Puech-Leão, Pedro; Luccia, Nelson de

    2015-06-01

    To analyze angiotomographic parameters of juxtarenal aneurysms to assess the applicability of an endograft model to patients and to create in vitro and in vivo models to assess the new endograft. A total of 49 patients with juxtarenal aneurysms were submitted to angiotomographic evaluation, and parameters such as the aortic diameter, the length of the neck, and the angulations of the celiac trunk, superior mesenteric artery and renal arteries; the distances between them; and anatomic variations were analyzed. Based on these parameters, an endograft model was developed and tested in a newly created in vitro model of juxtarenal aneurysm. An experimental model of juxtarenal aneurysm was then established in six pigs weighing 50-60 kg to assess the new endograft model. The angiotomographic parameters of juxtarenal aneurysm measured in this study were similar to those reported in the literature and allowed the development of an endograft based on the hourglass concept, which was applicable to 85.8% of the patients. The in vitro model of juxtarenal aneurysm evidenced good radiopacity and functionality and permitted adjustments in the new device and technical improvements in the procedures for treating these aneurysms. In addition, the porcine model of juxtarenal aneurysm was successfully created in all six animals using a bovine pericardial patch, and use of the new endograft in three pilot procedures evidenced its feasibility. The Hourglass endograft was rendered applicable to treatment of the majority of patients with juxtarenal aneurysms simply by changing its diameter. Moreover, the new in vitro and in vivo models were shown to be effective for assessing both the presented endograft and experiments assessing the endovascular treatment of juxtarenal aneurysms.

  4. Enhanced caspase activity contributes to aortic wall remodeling and early aneurysm development in a murine model of Marfan syndrome.

    PubMed

    Emrich, Fabian C; Okamura, Homare; Dalal, Alex R; Penov, Kiril; Merk, Denis R; Raaz, Uwe; Hennigs, Jan K; Chin, Jocelyn T; Miller, Miquell O; Pedroza, Albert J; Craig, Juliana K; Koyano, Tiffany K; Blankenberg, Francis G; Connolly, Andrew J; Mohr, Friedrich W; Alvira, Cristina M; Rabinovitch, Marlene; Fischbein, Michael P

    2015-01-01

    Rupture and dissection of aortic root aneurysms remain the leading causes of death in patients with the Marfan syndrome, a hereditary connective tissue disorder that affects 1 in 5000 individuals worldwide. In the present study, we use a Marfan mouse model (Fbn1(C1039G/+)) to investigate the biological importance of apoptosis during aneurysm development in Marfan syndrome. Using in vivo single-photon emission computed tomographic-imaging and ex vivo autoradiography for Tc99m-annexin, we discovered increased apoptosis in the Fbn1(C1039G/+) ascending aorta during early aneurysm development peaking at 4 weeks. Immunofluorescence colocalization studies identified smooth muscle cells (SMCs) as the apoptotic cell population. As biological proof of concept that early aortic wall apoptosis plays a role in aneurysm development in Marfan syndrome, Fbn1(C1039G/+) mice were treated daily from 2 to 6 weeks with either (1) a pan-caspase inhibitor, Q-VD-OPh (20 mg/kg), or (2) vehicle control intraperitoneally. Q-VD-OPh treatment led to a significant reduction in aneurysm size and decreased extracellular matrix degradation in the aortic wall compared with control mice. In vitro studies using Fbn1(C1039G/+) ascending SMCs showed that apoptotic SMCs have increased elastolytic potential compared with viable cells, mostly because of caspase activity. Moreover, in vitro (1) cell membrane isolation, (2) immunofluorescence staining, and (3) scanning electron microscopy studies illustrate that caspases are expressed on the exterior cell surface of apoptotic SMCs. Caspase inhibition attenuates aneurysm development in an Fbn1(C1039G/+) Marfan mouse model. Mechanistically, during apoptosis, caspases are expressed on the cell surface of SMCs and likely contribute to elastin degradation and aneurysm development in Marfan syndrome. © 2014 American Heart Association, Inc.

  5. Cerebral Aneurysms

    MedlinePlus

    ... cerebral aneurysm may be required to restore deteriorating respiration and reduce abnormally high pressure within the brain. ... cerebral aneurysm may be required to restore deteriorating respiration and reduce abnormally high pressure within the brain. ...

  6. Brain Aneurysm

    MedlinePlus

    ... tests don't provide enough information. Screening for brain aneurysms The use of imaging tests to screen ... and occupational therapy to relearn skills. Treating unruptured brain aneurysms Surgical clipping or endovascular coiling can be ...

  7. Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling Techniques.

    PubMed

    Lin, Shengmao; Han, Xinwei; Bi, Yonghua; Ju, Siyeong; Gu, Linxia

    2017-01-01

    In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications.

  8. Fluid-Structure Interaction in Abdominal Aortic Aneurysm: Effect of Modeling Techniques

    PubMed Central

    Lin, Shengmao; Han, Xinwei; Bi, Yonghua; Ju, Siyeong

    2017-01-01

    In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that the accuracy of CSS prediction depends on the applied pressure profile for the aneurysm sac. A large pressure drop across AAA usually led to the underestimation of wall stresses and thus the AAA rupture. Moreover, the assumed isotropic AAA wall properties, compared to the anisotropic one, will aggravate the difference between the simplified models with the FSI approach. The present work demonstrated the importance of modeling techniques on predicting the blood flow dynamics and wall mechanics of the AAA, which could guide the selection of appropriate modeling technique for significant clinical implications. PMID:28321413

  9. Effects of Variations of Flow and Heart Rate on Intra-Aneurysmal Hemodynamics in a Ruptured Internal Carotid Artery Aneurysm During Exercise

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein

    2016-01-01

    Background: Hemodynamics is thought to play an important role in the mechanisms responsible for initiation, growth, and rupture of intracranial aneurysms. Computational fluid dynamic (CFD) analysis is used to assess intra-aneurysmal hemodynamics. Objectives: This study aimed to investigate the effects of variations in heart rate and internal carotid artery (ICA) flow rate on intra-aneurysmal hemodynamics, in an ICA aneurysm, by using computational fluid dynamics. Patients and Methods: Computed tomography angiography (CTA) was performed in a 55 years old female case, with a saccular ICA aneurysm, to create a patient-specific geometrical anatomic model of the aneurysm. The intra-aneurysmal hemodynamic environments for three states with different flow and heart rates were analyzed using patient-specific image-based CFD modeling. Results: Results showed significant changes for the three simulated states. For a proportion of the states examined, results were counterintuitive. Systolic and time-averaged wall shear stress and pressure on the aneurysm wall showed a proportional evolution with the mainstream flow rate. Conclusion: Results reinforced the pivotal role of vascular geometry, with respect to hemodynamics, together with the importance of performing patient-specific CFD analyses, through which the effect of different blood flow conditions on the aneurysm hemodynamics could be evaluated. PMID:27110332

  10. A Systematic Review of Protocols for the Three-Dimensional Morphologic Assessment of Abdominal Aortic Aneurysms Using Computed Tomographic Angiography

    SciTech Connect

    Ghatwary, Tamer M. H.; Patterson, Benjamin O.; Karthikesalingam, Alan; Hinchliffe, Robert J.; Loftus, Ian M.; Morgan, Robert; Thompson, Matt M.; Holt, Peter J. E.

    2013-02-15

    The morphology of infrarenal abdominal aortic aneurysms (AAAs) directly influences the perioperative outcome and long-term durability of endovascular aneurysm repair. A variety of methods have been proposed for the characterization of AAA morphology using reconstructed three-dimensional (3D) computed tomography (CT) images. At present, there is lack of consensus as to which of these methods is most applicable to clinical practice or research. The purpose of this review was to evaluate existing protocols that used 3D CT images in the assessment of various aspects of AAA morphology. An electronic search was performed, from January 1996 to the end of October 2010, using the Embase and Medline databases. The literature review conformed to PRISMA statement standards. The literature search identified 604 articles, of which 31 studies met inclusion criteria. Only 15 of 31 studies objectively assessed reproducibility. Existing published protocols were insufficient to define a single evidence-based methodology for preoperative assessment of AAA morphology. Further development and expert consensus are required to establish a standardized and validated protocol to determine precisely how morphology relates to outcomes after endovascular aneurysm repair.

  11. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

    PubMed

    Evju, Øyvind; Valen-Sendstad, Kristian; Mardal, Kent-André

    2013-11-15

    Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed. This study investigates the effects of 4 different viscosity models, 2 different inflow conditions and 2 different outflow conditions in 12 middle cerebral artery aneurysms. The differences are quantified in terms of 3 different wall shear stress (WSS) metrics, involving maximal WSS, average WSS, and proportion of aneurysm sac area with low WSS. The results were compared with common geometrical metrics such as volume, aspect ratio, size ratio and parent vessel diameter and classifications in terms of sex and aneurysm type. The results demonstrate strong correlations between the different viscosity models and boundary conditions. The correlation between the different WSS metrics range from weak to medium. No strong correlations were found between the different WSS metrics and the geometrical metrics or classifications.

  12. A Novel Thin Film Nitinol Covered Neurovascular Stent Significantly Decreases Intra-Aneurysmal Flow In Vitro

    NASA Astrophysics Data System (ADS)

    Chun, Youngjae; Hur, Soojung; Shayan, Mahdis; Kealey, Colin; Levi, Daniel; Mohanchandra, Kp; di Carlo, Dino; Carman, Gregory

    2013-11-01

    A novel thin film nitinol (TFN) stent has been developed to promote aneurysm quiescence by diminishing flow across the aneurysm's neck. Laboratory aneurysm models were used to assess the flow changes produced by stents covered with different patterns of TFN. Flow diversion stents were constructed by covering Wingspan stents (Boston Scientific, DxL:4x20mm) with TFNs (i.e., 77 and 82 percent porosity). The flow changes that occur after deployment of two different porous TFN covered stent in intracranial aneurysm models were evaluated in vitro. The 82 percent porous TFN covered stent reduced the intra-aneurysmal mean flow velocity by 86.42 percent, while a 77 percent porous TFN covered stent reduced to intra-aneurysmal mean flow velocity to 93.44 percent compared to a nonstented model. Local wall shear rates were also significantly reduced in wide-neck aneurysm model (i.e., 97.52 - 98.92 percent) with TFN stent placement. The results showed that TFN covered stents significantly reduced intra-aneurysmal flow velocity magnitudes and local wall shear rates. This suggests that TFN covered stents with both 77 and 82 percent porosity have great potential to promote thrombosis in both wide-necked and fusiform aneurysm sacs.

  13. Mechanical Properties of Suprarenal and Infrarenal Abdominal Aorta: Implications for Mouse Models of Aneurysms

    PubMed Central

    Collins, M.J.; Bersi, M.; Wilson, E.; Humphrey, J.D.

    2011-01-01

    Multiple mouse models have been developed to increase our understanding of the natural history of abdominal aortic aneurysms. An advantage of such models is that one can quantify the time course of changes in geometry, histology, cell biology, and mechanics as a lesion develops. One of the most commonly used mouse models yields lesions in the suprarenal abdominal aorta whereas most other models target the infrarenal abdominal aorta, consistent with the clinical observation that nearly all abdominal aneurysms in humans occur in the infrarenal aorta. Understanding reasons for similarities and differences between diverse mouse models and human lesions may provide increased insight that would not be possible studying a single situation alone. Toward this end, however, we must first compare directly the native structure and properties of these two portions of the abdominal aorta in the mouse. In this paper, we present the first biaxial mechanical data and nonlinear constitutive descriptors for the suprarenal and infrarenal aorta in mice, which reveals only subtle mechanical differences despite marked morphological and histological differences. Such data promise to increase our ability to understand and model the natural history of these deadly lesions. PMID:21742539

  14. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  15. Morphological and Hemodynamic Parameters for Middle Cerebral Artery Bifurcation Aneurysm Rupture Risk Assessment

    PubMed Central

    Qin, Hao; Yang, Qixia; Zhuang, Qiang; Long, Jianwu; Yang, Fan; Zhang, Hongqi

    2017-01-01

    Objective To investigate the morphological and hemodynamic parameters associated with middle cerebral artery (MCA)bifurcation aneurysm rupture. Methods A retrospective study of 67 consecutive patients was carried out based on 3D digital subtraction angiography data. Morphological and hemodynamic parameters including aneurysm size parameters (dome width, height, and perpendicular height), longest dimension from the aneurysm neck to the dome tip, neck width, aneurysm area, aspect ratio, Longest dimension from the aneurysm neck to the dome tip (Dmax) to dome width, and height-width, Bottleneck factor, as well as wall shear stress (WSS), low WSS area (LSA), percentage of LSA (LSA%) and energy loss (EL) were estimated. Parameters between ruptured and un-ruptured groups were analyzed. Receiver operating characteristics were generated to check prediction performance of all significant variables. Results Sixty-seven patients with MCA bifurcation aneurysm were included (31 unruptured, 36 ruptured). Dmax (p=0.008) was greater in ruptured group than that in un-ruptured group. D/W (p<0.001) and the percentage of the low WSS area (0.09±0.13 vs. 0.01±0.03, p<0.001) were also greater in the ruptured group. Moreover, the EL in ruptured group was higher than that in un-ruptured group (6.39±5.04 vs. 1.53±0.86, p<0.001). Multivariate regression analysis suggested D/W and EL were significant predictors of rupture of MCA bifurcation aneurysms. Correlation analyses revealed the D/W value was positively associated with the EL (R=0.442, p<0.01). Conclusion D/W and EL might be the most two favorable factors to predict rupture risk of MCA bifurcation aneurysms. PMID:28881112

  16. Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm.

    PubMed

    Damiano, Robert J; Ma, Ding; Xiang, Jianping; Siddiqui, Adnan H; Snyder, Kenneth V; Meng, Hui

    2015-09-18

    Endovascular interventions using coil embolization and flow diversion are becoming the mainstream treatment for intracranial aneurysms (IAs). To help assess the effect of intervention strategies on aneurysm hemodynamics and treatment outcome, we have developed a finite-element-method (FEM)-based technique for coil deployment along with our HiFiVS technique for flow diverter (FD) deployment in patient-specific IAs. We tested four clinical intervention strategies: coiling (1-8 coils), single FD, FD with adjunctive coils (1-8 coils), and overlapping FDs. By evaluating post-treatment hemodynamics using computational fluid dynamics (CFD), we compared the flow-modification performance of these strategies. Results show that a single FD provides more reduction in inflow rate than low packing density (PD) coiling, but less reduction in average velocity inside the aneurysm. Adjunctive coils add no additional reduction of inflow rate beyond a single FD until coil PD exceeds 11%. This suggests that the main role of FDs is to divert inflow, while that of coils is to create stasis in the aneurysm. Overlapping FDs decreases inflow rate, average velocity, and average wall shear stress (WSS) in the aneurysm sac, but adding a third FD produces minimal additional reduction. In conclusion, our FEM-based techniques for virtual coiling and flow diversion enable recapitulation of complex endovascular intervention strategies and detailed hemodynamics to identify hemodynamic factors that affect treatment outcome.

  17. Volumetric PIV in Patient-Specific Cerebral Aneurysm

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa; Dickerhoff, Ben; Saloner, David; Rayz, Vitaliy; Vlachos, Pavlos

    2016-11-01

    Cerebral aneurysms impose a unique challenge in which neurosurgeons must assess and decide between the risk of rupture and risk of treatment for each patient. Risk of rupture is often difficult to determine and most commonly assessed using geometric data including the size and shape of the aneurysm and parent vessel. Hemodynamics is thought to play a major role in the growth and rupture of a cerebral aneurysm, but its specific influence is largely unknown due to the inability of in vivo modalities to characterize detailed flow fields and limited in vitro studies. In this work, we use a patient-specific basilar tip aneurysm model and volumetric particle image velocimetry (PIV). In vivo, 4-D PC-MRI measurements were obtained for this aneurysm and the extracted pulsatile waveform was used for the in vitro study. Clinically relevant metrics including wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), 3-D pressure contours, and pressure wave speed were subsequently computed. This is the first study to investigate in vitro 3-D pressure fields within a cerebral aneurysm. The results of this study demonstrate how these metrics influence the biomechanics of the aneurysm and ultimately their affect on the risk of rupture.

  18. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.

    PubMed

    Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2011-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.

  19. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides

  20. [Inflammatory aneurysm of the abdominal aorta: TC assessment of the postoperative course].

    PubMed

    Gigoni, R; Boraschi, P; Cartei, F; Braccini, G; Perri, G

    1996-09-01

    This study was aimed at investigating CT reliability in the postoperative follow-up of inflammatory abdominal aortic aneurysms (IAAA) previously treated with prosthesis positioning. During the last 5 years, 13 male patients operated on for subrenal IAAA with intraluminal prosthesis positioning, were followed-up with CT. All CT images were reviewed by three radiologists to assess prosthesis integrity; the possible presence of intraluminal thrombosis was investigated, together with pre/postprosthetic dilatation and the involvement of inferior vena cava, ureters and third duodenal segment. The prostheses were intact and no signs of intraluminal thrombosis were depicted in all patients; a periprosthetic dilation of abdominal aorta associated with parietal thrombosis was observed in one patient. Nine patients exhibited mild-moderate thickening of the original aortic or iliac walls; the inferior vena cava was involved in 6 of them and the left ureter in one. Contact with the III duodenal segment was found in 3 patients. In conclusion, CT proves to be a reliable technique in the postoperative follow-up of IAAA, yielding accurate information about the prosthesis, the aortoiliac walls and retroperitoneal structures. Moreover, in our experience late postoperative complications were not of major clinical importance.

  1. Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model.

    PubMed

    Kono, Kenichi; Shintani, Aki; Okada, Hideo; Terada, Tomoaki

    2013-01-01

    Silicone models of cerebral aneurysms are used for evaluation of devices, training, or hemodynamic studies. We report preoperative simulations of endovascular treatment for a case with an unruptured wide-neck aneurysm of the anterior communicating artery using a patient-specific silicone model. Using a rapid prototyping system, we created a silicone model based on the vascular image obtained by three-dimensional rotational angiogram. The aneurysm and vessels formed a cavity in the silicone block model. We performed endovascular simulations using several difference devices and attempted possible methods for coil embolization. We designed treatment strategies based on the simulations and performed balloon-assisted coil embolization of the aneurysm. The simulations were especially useful in navigation of a microcatheter by planning the shape of its tip beforehand. There was one significant difference between the silicone model simulations and actual treatment: the shape of the vessel in the silicone block model was not changed by insertion of a catheter or guidewire. This is the first study to describe preoperative endovascular simulations using a patient-specific silicone model. Our methods of creating a patient-specific model are relatively simple and easy. Although this is a single case, we demonstrate that the simulations are feasible and helpful for designing a treatment strategy and safe manipulation of endovascular devices by experiencing their behavior before actual treatment.

  2. Computer-assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling.

    PubMed

    Chang, Herng-Hua; Duckwiler, Gary R; Valentine, Daniel J; Chu, Woei Chyn

    2009-12-01

    Three-dimensional rotational angiography (3DRA) is an evolving imaging procedure from traditional digital subtraction angiography and is gaining much interest for detecting intracranial aneurysms. Computational fluid dynamics (CFD) modeling plays an important role in understanding the biomechanical properties and in facilitating the prediction of aneurysm rupture. A successful computational study relies on an accurate description of the vascular geometry that is obtained from volumetric images. The authors propose a new aneurysm segmentation algorithm to facilitate the study of CFD. This software combines a region-growing segmentation method with the 3D extension of a deformable contour based on a charged fluid model. A charged fluid model essentially consists of a set of charged elements that are governed by the nature of electrostatics. The approach requires no prior knowledge of anatomic structures and automatically segments the vasculature after the end-user selects a vessel section in a plane image. Experimental results on 15 cases indicate that aneurysm structures were effectively segmented and in good agreement with manual delineation outcomes. In comparison with the existing methods, the algorithm provided a much higher overlap index with respect to the ground truth. Furthermore, the outcomes of the proposed approach achieved a clean representation of vascular structures that is advantageous for hemodynamics analyses. A new aneurysm segmentation framework in an attempt to automatically segment vascular structures in 3DRA image volumes has been developed. The proposed algorithm demonstrated promising performance and unique characteristics to adequately segment aneurysms in 3DRA image volumes for further study in computational fluid dynamics.

  3. Computer-assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling.

    PubMed

    Chang, Herng-Hua; Duckwiler, Gary R; Valentino, Daniel J; Chu, Woei Chyn

    2009-12-01

    Three-dimensional rotational angiography (3DRA) is an evolving imaging procedure from traditional digital subtraction angiography and is gaining much interest for detecting intracranial aneurysms. Computational fluid dynamics (CFD) modeling plays an important role in understanding the biomechanical properties and in facilitating the prediction of aneurysm rupture. A successful computational study relies on an accurate description of the vascular geometry that is obtained from volumetric images. The authors propose a new aneurysm segmentation algorithm to facilitate the study of CFD. This software combines a region-growing segmentation method with the 3D extension of a deformable contour based on a charged fluid model. A charged fluid model essentially consists of a set of charged elements that are governed by the nature of electrostatics. The approach requires no prior knowledge of anatomic structures and automatically segments the vasculature after the end-user selects a vessel section in a plane image. Experimental results on 15 cases indicate that aneurysm structures were effectively segmented and in good agreement with manual delineation outcomes. In comparison with the existing methods, the algorithm provided a much higher overlap index with respect to the ground truth. Furthermore, the outcomes of the proposed approach achieved a clean representation of vascular structures that is advantageous for hemodynamics analyses. A new aneurysm segmentation framework in an attempt to automatically segment vascular structures in 3DRA image volumes has been developed. The proposed algorithm demonstrated promising performance and unique characteristics to adequately segment aneurysms in 3DRA image volumes for further study in computational fluid dynamics. © 2009 American Association of Physicists in Medicine.

  4. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.

    PubMed

    Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A

    2016-05-18

    According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the

  5. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling.

    PubMed

    Deplano, Valérie; Knapp, Yannick; Bailly, Lucie; Bertrand, Eric

    2014-04-11

    The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within AAA.

  6. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Perdikaris, Paris; Karniadakis, George Em

    2016-10-01

    We develop efficient numerical methods for fractional order PDEs, and employ them to investigate viscoelastic constitutive laws for arterial wall mechanics. Recent simulations using one-dimensional models [1] have indicated that fractional order models may offer a more powerful alternative for modeling the arterial wall response, exhibiting reduced sensitivity to parametric uncertainties compared with the integer-calculus-based models. Here, we study three-dimensional (3D) fractional PDEs that naturally model the continuous relaxation properties of soft tissue, and for the first time employ them to simulate flow structure interactions for patient-specific brain aneurysms. To deal with the high memory requirements and in order to accelerate the numerical evaluation of hereditary integrals, we employ a fast convolution method [2] that reduces the memory cost to O (log ⁡ (N)) and the computational complexity to O (Nlog ⁡ (N)). Furthermore, we combine the fast convolution with high-order backward differentiation to achieve third-order time integration accuracy. We confirm that in 3D viscoelastic simulations, the integer order models strongly depends on the relaxation parameters, while the fractional order models are less sensitive. As an application to long-time simulations in complex geometries, we also apply the method to modeling fluid-structure interaction of a 3D patient-specific compliant cerebral artery with an aneurysm. Taken together, our findings demonstrate that fractional calculus can be employed effectively in modeling complex behavior of materials in realistic 3D time-dependent problems if properly designed efficient algorithms are employed to overcome the extra memory requirements and computational complexity associated with the non-local character of fractional derivatives.

  7. Effect of Turbulence on the Temporal Variation of Hemodynamic Stresses in Aneurysm Model under Resting and Exercise Conditions

    NASA Astrophysics Data System (ADS)

    Khanafer, Khalil

    2005-11-01

    A numerical model is developed to analyze pulsatile turbulent flow in axisymmetric abdominal aortic aneurysm models (AAM) using realistic physiological resting and exercise waveforms. The transport equations are solved using the finite element formulation based on the Galerkin method of weighted residuals. The κ-ɛ model is used in this work to simulate turbulence characteristics of the convective flow by incorporating Boussinesq eddy-viscosity model. A number of interesting features of the flow field resulting from using realistic physiological waveforms are obtained for various pertinent parameters. Such parameters include Reynolds number, size of aneurysm, flexibility of aneurysm's wall, and the propagation of pressure and flow waves through AAM. The effect of non-Newtonian behavior of blood on hemodynamic stresses and compared with Newtonian behavior through AAM is investigated in the present study. The results of the present work illustrate that maximum turbulent shear stress occurs at the distal end of the AAA model. Furthermore, turbulence is found to have a significant effect on the pressure distribution along AAA wall for both physiological waveforms. This work paves the road for researchers in the area of AAA risk rupture to improve their understanding on the mechanics of aneurysm rupture enhanced by increased flow turbulence.

  8. Assessment of Cerebral Blood Flow with Micro-Doppler Vascular Reduces the Risk of Ischemic Stroke During the Clipping of Intracranial Aneurysms.

    PubMed

    Pereira, Benedito J A; Holanda, Vanessa M; Giudicissi-Filho, Miguel; Borba, Luiz Alencar B; de Holanda, Carlos Vanderlei M; de Oliveira, Jean G

    2015-12-01

    To analyze the impact of the introduction of Micro-Doppler vascular (MDV) as a method of cerebral blood flow analysis during microsurgical clipping of intracranial aneurysms to check the partial occlusion of the aneurysm and the occurrence of stenosis by comparing these results with those provided by the postoperative digital subtraction angiography (DSA) scan as well as the occurrence of ischemic infarction on the postoperative computed tomography (CT) images. We reviewed retrospectively the last 50 patients operated on before the introduction of the MDV (group 1) compared with the first 50 patients operated on using this technique (group 2). Nine (18%) of the 50 patients evaluated in the group 1 showed a new hypodensity in the postoperative CT images, whereas only 2 (4%) patients showed infarction in the group 2 (P = 0.02). In addition, in the group 1, 10 (20%) patients presented unexpected findings on DSA images (residual aneurysms, stenosis, and arterial occlusion), whereas in the group 2, those unexpected DSA findings were observed in only 3 (6%) patients (P = 0.023). MDV is an excellent method for cerebral blood flow assessment during the microsurgical clipping of intracranial aneurysms, reducing the unexpected angiographic results (residual aneurysms, stenosis, and arterial occlusion), as well as reducing the incidence of ischemic infarction on postoperative CT images, evidence of the positive impact of this method in the microsurgical treatment of intracranial aneurysms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Physiologically-relevant measurements of flow through coils and stents: towards improved modeling of endovascular treatment of intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto

    2016-11-01

    The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.

  10. Growth Description for Vessel Wall Adaptation: A Thick-Walled Mixture Model of Abdominal Aortic Aneurysm Evolution.

    PubMed

    Grytsan, Andrii; Eriksson, Thomas S E; Watton, Paul N; Gasser, T Christian

    2017-08-25

    (1) Background: Vascular tissue seems to adapt towards stable homeostatic mechanical conditions, however, failure of reaching homeostasis may result in pathologies. Current vascular tissue adaptation models use many ad hoc assumptions, the implications of which are far from being fully understood; (2) Methods: The present study investigates the plausibility of different growth kinematics in modeling Abdominal Aortic Aneurysm (AAA) evolution in time. A structurally motivated constitutive description for the vessel wall is coupled to multi-constituent tissue growth descriptions; Constituent deposition preserved either the constituent's density or its volume, and Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG), in-Thickness Volume Growth (TVG) and No Volume Growth (NVG) describe the kinematics of the growing vessel wall. The sensitivity of key modeling parameters is explored, and predictions are assessed for their plausibility; (3) Results: AAA development based on TVG and NVG kinematics provided not only quantitatively, but also qualitatively different results compared to IVG and PVG kinematics. Specifically, for IVG and PVG kinematics, increasing collagen mass production accelerated AAA expansion which seems counterintuitive. In addition, TVG and NVG kinematics showed less sensitivity to the initial constituent volume fractions, than predictions based on IVG and PVG; (4) Conclusions: The choice of tissue growth kinematics is of crucial importance when modeling AAA growth. Much more interdisciplinary experimental work is required to develop and validate vascular tissue adaption models, before such models can be of any practical use.

  11. Long-term patency of complex bilobular, bisaccular, and broad-neck aneurysms in the rabbit microsurgical venous pouch bifurcation model.

    PubMed

    Marbacher, Serge; Tastan, Ilhan; Neuschmelting, Volker; Erhardt, Salome; Coluccia, Daniel; Sherif, Camillo; Remonda, Luca; Fandino, Javier

    2012-07-01

    In experimental aneurysm models, long-term patency without spontaneous thrombosis is the most important precondition for analyses of embolization devices. We recently reported the feasibility of creating complex venous pouch bifurcation aneurysms in the rabbit with low morbidity, low mortality, and high short-term aneurysm patency. In order to further evaluate our model, we examined the long-term patency rate. Various sizes of complex bilobular, bisaccular, and broad-neck venous pouch aneurysms were surgically formed at an artificially created bifurcation of both common carotid arteries in 17 rabbits. Early aggressive anticoagulation was continued for 1 month. The rabbits were followed up using contrast-enhanced three-dimensional 1.5-T magnetic resonance angiography (CE-3D-MRA) at 1 month and up to 1 year after creation of the bifurcation. At 1-month follow-up, all but one of the created aneurysms and all parent vessels proved to be patent. Three animals (18%) were lost during follow-up for reasons unrelated to aneurysm surgery. At 1-year follow-up, one animal showed partial and one complete spontaneous aneurysm thrombosis (aneurysm patency rate: 86%). Six out of 42 parent vessels were occluded at that time (vessel patency rate: 86%). Complex bilobular, bisaccular, and broad-neck microsurgical aneurysm formation in the rabbit bifurcation model demonstrates a high long-term patency rate but is complicated by high rates of unrelated procedural mortality and morbidity. There is no need for prolonged (>4 weeks) anticoagulation to achieve good long-term patency in complex venous pouch bifurcation aneurysms.

  12. Experimental validation of numerical simulations on a cerebral aneurysm phantom model

    PubMed Central

    Seshadhri, Santhosh; Janiga, Gábor; Skalej, Martin; Thévenin, Dominique

    2012-01-01

    The treatment of cerebral aneurysms, found in roughly 5% of the population and associated in case of rupture to a high mortality rate, is a major challenge for neurosurgery and neuroradiology due to the complexity of the intervention and to the resulting, high hazard ratio. Improvements are possible but require a better understanding of the associated, unsteady blood flow patterns in complex 3D geometries. It would be very useful to carry out such studies using suitable numerical models, if it is proven that they reproduce accurately enough the real conditions. This validation step is classically based on comparisons with measured data. Since in vivo measurements are extremely difficult and therefore of limited accuracy, complementary model-based investigations considering realistic configurations are essential. In the present study, simulations based on computational fluid dynamics (CFD) have been compared with in situ, laser-Doppler velocimetry (LDV) measurements in the phantom model of a cerebral aneurysm. The employed 1:1 model is made from transparent silicone. A liquid mixture composed of water, glycerin, xanthan gum and sodium chloride has been specifically adapted for the present investigation. It shows physical flow properties similar to real blood and leads to a refraction index perfectly matched to that of the silicone model, allowing accurate optical measurements of the flow velocity. For both experiments and simulations, complex pulsatile flow waveforms and flow rates were accounted for. This finally allows a direct, quantitative comparison between measurements and simulations. In this manner, the accuracy of the employed computational model can be checked. PMID:24265876

  13. Distribution of sac pressure in an experimental aneurysm model after endovascular repair: the effect of endoleak types I and II.

    PubMed

    Xenos, Eleftherios S; Stevens, Scott L; Freeman, Michael B; Pacanowski, John P; Cassada, David C; Goldman, Mitchell H

    2003-06-01

    To study in an experimental aneurysm model the differential distribution of strain/pressure (S/P) on the aneurysm wall before and after endograft exclusion and in the presence of individual type I and type II endoleaks. Two tapered elliptical Gore-Tex patches were sutured to an anterior and posterior longitudinal arteriotomy of an 8-mm Gore-Tex tube graft, thus creating a fusiform aneurysm. Two S/P transducers were placed at the proximal sac adjacent to the proximal neck, 2 at the site of the widest sac diameter, and 2 at the sac adjacent to the distal neck. The aneurysm, which was connected to a pulsatile pump system, was excluded using a 10-mm endograft. Type I and type II endoleaks were created and tested individually. S/P measurements were obtained at systemic systolic pressures (BP) of 80, 110, and 150 mmHg. Thrombosis of the sac contents was induced by injection of thrombin and calcium in the sac. Angiography was used to verify presence or absence of flow in the sac. Aneurysm exclusion resulted in significant S/P reductions at all 3 BP levels versus prior to exclusion (p<0.05). Thrombus in the sac did not alter S/P in the excluded sac (p>0.05 for all 3 BP levels). In the presence of a proximal type I endoleak, S/P distribution was not uniform, and S/P at the proximal neck was close to S/P prior to exclusion (p>0.05 no graft versus type I endoleak for all 3 BP levels). This was also true in the presence of thrombus. With a type II endoleak, S/P was more evenly distributed and was not significantly elevated compared to the pressure without an endoleak (p>0.05, graft versus type II endoleak for all 3 BP levels). Thrombus had no effect on intrasac S/P with a type II endoleak. Intrasac S/P was significantly higher in the presence of a type I endoleak compared to a type II endoleak when BP=150 mmHg (p=0.008). Endovascular exclusion of an aneurysm results in uniform S/P reduction in the aneurysm sac. Type I endoleak, but not type II endoleak, results in

  14. Patient-specific hemodynamics and stress-strain state of cerebral aneurysms.

    PubMed

    Ivanov, Dmitry; Dol, Aleksandr; Polienko, Asel

    2016-01-01

    Approximately 5% of the adult population has one or more cerebral aneurysm. Aneurysms are one of the most dangerous cerebral vascular pathologies. Aneurysm rupture leads to a subarachnoid hemorrhage with a very high mortality rate of 45-50%. Despite the high importance of this disease there are no criteria for assessing the probability of aneurysm rupture. Moreover, mechanisms of aneurysm development and rupture are not fully understood until now. Biomechanical and numerical computer simulations allow us to estimate the behavior of vessels in normal state and under pathological conditions as well as to make a prediction of their postoperative state. Biomechanical studies may help clinicians to find and investigate mechanical factors which are responsible for the initiation, growth and rupture of the cerebral aneurysms. In this work, biomechanical and numerical modeling of healthy and pathological cerebral arteries was conducted. Patient-specific models of the basilar and posterior cerebral arteries and patient-specific boundary conditions at the inlet were used in numerical simulations. A comparative analysis of the three vascular wall models (rigid, perfectly elastic, hyperelastic) was performed. Blood flow and stress-strain state of the two posterior cerebral artery aneurysm models was compared. Numerical simulations revealed that hyperelastic material most adequately and realistically describes the behavior of the cerebral vascular walls. The size and shape of the aneurysm have a significant impact on the blood flow through the affected vessel and on the effective stress distribution in the aneurysm dome. It was shown that large aneurysm is more likely to rupture than small aneurysm.

  15. Finite element and photoelastic modelling of an abdominal aortic aneurysm: a comparative study.

    PubMed

    Callanan, Anthony; Morris, Liam G; McGloughlin, Tim M

    2012-01-01

    Rupture prediction of abdominal aortic aneurysms (AAAs) remains a clinical challenge. Finite element analysis (FEA) may allow for improved identification for intervention timing, but the method needs further substantiation. In this study, experimental photoelastic method and finite element techniques were compared using an idealised AAA geometry. There was good agreement between the numerical and experimental results. At the proximal and distal end of the AAA model, the maximum differences in principle strain for an internal pressure of 120 mmHg had differences ranging from 0.03 to 10.01%. The maximum difference in principle strain for the photoelastic and the finite element model at a pressure of 120 mmHg was 0.167 and 0.158, respectively. The current research strengthens the case for using FEA as an adjunct to the current clinical practice of utilising diameter measurement for intervention timing.

  16. Gene Expression Profiling in Abdominal Aortic Aneurysms After Finite Element Rupture Risk Assessment.

    PubMed

    Erhart, Philipp; Schiele, Sandra; Ginsbach, Philip; Grond-Ginsbach, Caspar; Hakimi, Maani; Böckler, Dittmar; Lorenzo-Bermejo, Justo; Dihlmann, Susanne

    2017-08-01

    To investigate the association between local biomechanical rupture risk calculations from finite element analysis (FEA) and whole-genome profiling of the abdominal aortic aneurysm (AAA) wall to determine if AAA wall regions with highest and lowest estimated rupture risk show different gene expression patterns. Six patients (mean age 74 years; all men) scheduled for open surgery to treat asymptomatic AAAs (mean diameter 55.2±3.5 mm) were recruited for the study. Rupture risk profiles were estimated by FEA from preoperative computed tomography angiography data. During surgery, AAA wall samples of ~10 mm(2) were extracted from the lowest and highest rupture risk locations identified by the FEA. Twelve samples were processed for RNA extraction and subsequent whole genome expression profiling. Expression of single genes and of predefined gene groups were compared between vessel wall areas with highest and lowest predicted rupture risk. Normalized datasets comprised 15,079 gene transcripts with expression above background. In biopsies with high rupture risk, upregulation of 18 and downregulation of 18 genes was detected when compared to the low-risk counterpart. Global analysis of predefined gene groups revealed expression differences in genes associated with extracellular matrix (ECM) degradation (p<0.001), matrix metalloproteinase activity (p<0.001), and chemokine signaling (p<0.001). Increased expression of genes involved in degrading ECM components was present in AAA wall regions with highest biomechanical stress, supporting the thesis of mechanotransduction. More experimental studies with cooperation of multicenter vascular biobanks are necessary to understand AAA etiologies and identify further parameters of FEA model complementation.

  17. Combining two potential causes of metalloproteinase secretion causes abdominal aortic aneurysms in rats: a new experimental model

    PubMed Central

    Mata, Karina M; Prudente, Paula S; Rocha, Fabio S; Prado, Cibele M; Floriano, Elaine M; Elias, Jorge; Rizzi, Elen; Gerlach, Raquel F; Rossi, Marcos A; Ramos, Simone G

    2011-01-01

    Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60–70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process. PMID:21039990

  18. Cardiopulmonary exercise testing in the pre-operative assessment of patients for repair of abdominal aortic aneurysm.

    PubMed

    Nugent, A M; Riley, M; Megarry, J; O'Reilly, M J; MacMahon, J; Lowry, R

    1998-01-01

    We have investigated the value of cardiopulmonary exercise testing in the pre-operative assessment to patients for abdominal aortic aneurysm repair. Thirty-six patients were entered into the study. All had a pre-operative clinical assessment and investigations including chest radiograph, electrocardiograph, spirometry and echocardiogram with measurement of left ventricular ejection fraction. Each patient performed a symptom limited treadmill exercise test using a STEEP protocol with on-line measurement of respiratory gas exchange. Patients were followed up for 12 months post-operatively by review of casenotes. Thirty out of 36 patients had surgical repair of abdominal aortic aneurysm. There was 1 death in the perioperative period and 2 deaths in the following 12 months. Seven other patients suffered post-operative complications. There were no significant differences in left ventricular ejection fraction, spirometry and peak achieved oxygen consumption (PVO2) between those patients who died or who had post-operative complications and those who had not. However, PVO2 < 20 ml/min/kg was found in 70 per cent of patients who had complications compared with 50 per cent of those who had not. Also 4 patients considered medically unfit for surgery all had PVO2 < 20 ml/min/kg. Cardiopulmonary exercise testing with measurement of PVO2 may be helpful in identifying patients more at risk of post-operative complications but should not be used in isolation without through clinical assessment.

  19. Aneurysm permeability following coil embolization: packing density and coil distribution

    PubMed Central

    Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J

    2015-01-01

    Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179

  20. Finite Element Modeling of A Novel Self-Expanding Endovascular Stent Method in Treatment of Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Arokiaraj, Mark C.; Palacios, Igor F.

    2014-01-01

    A novel large self-expanding endovascular stent was designed with strut thickness of 70 μm × 70 μm width. The method was developed and investigated to identify a novel simpler technique in aortic aneurysm therapy. Stage 1 analysis was performed after deploying it in a virtual aneurysm model of 6 cm wide × 6 cm long fusiform hyper-elastic anisotropic design. At cell width of 9 mm, there was no buckling or migration of the stent at 180 Hg. Radial force of the stents was estimated after parametric variations. In stage 2 analysis, a prototype 300 μm × 150 μm stent with a cell width of 9 mm was chosen, and it was evaluated similarly after embedding in the aortic wall, and also with a tissue overgrowth of 1 mm over the stent. The 300/150 μm stent reduced the peak wall stress by 70% in the aneurysm and 50% reduction in compliance after embedding. Stage 3 analysis was performed to study the efficacy of stents with struts (thickness/width) 70/70, 180/100 and 300/150 μm after embedding and tissue overgrowth. The adjacent wall stresses were very minimal in stents with 180/100 and 70/70 μm struts after embedding. There is potential for a novel stent method in aortic aneurysm therapy.

  1. On the Use of Geometric Modeling to Predict Aortic Aneurysm Rupture.

    PubMed

    Muluk, Sruthi L; Muluk, Pallavi D; Shum, Judy; Finol, Ender A

    2017-10-01

    Currently, the risk of abdominal aortic aneurysm (AAA) rupture is determined using the maximum diameter (Dmax) of the aorta. We sought in this study to identify a set of computed tomography (CT)-based geometric parameters that would better predict the risk of rupture than Dmax. We obtained CT scans from 180 patients (90 ruptured AAA and 90 elective AAA repair) and then used automated software to calculate 1- , 2- , and 3-dimensional geometric parameters for each AAA. Linear regression was used to identify univariate correlates of membership in the rupture group. We then used stepwise backward elimination to generate a logistic regression model for prediction of rupture. Linear regression identified 40 correlates of rupture. Following stepwise backward elimination, we developed a multivariate logistic regression model containing 15 geometric parameters, including Dmax. This model was compared with a model containing Dmax alone. The multivariate model correctly classified 98% of all cases, whereas the Dmax-only model correctly classified 72% of cases. Receiver operating characteristic analysis showed that the multivariate model had an area under the curve of 0.995, as compared with 0.770 for the Dmax-only model. This difference was highly significant (P < 0.0001). This study demonstrates that a multivariable model using geometric factors entirely measurable from CT scanning can be a better predictor of AAA rupture than maximum diameter alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Intracranial aneurysms.

    PubMed

    Puskar, G; Ruggieri, P M

    1995-08-01

    MR angiography provides a rapid, accurate, and extremely flexible noninvasive evaluation of intracranial aneurysms without the cost and risk of conventional angiography. TOF and phase contrast techniques each have specific advantages and disadvantages that can be selectively exploited to optimize aneurysm evaluation. Present indications for MR angiography in aneurysm evaluation include: (1) the presence of incidental findings on a CT or MR examination that suggest the possibility of aneurysm (Figs. 7 and 8), (2) when angiography is contraindicated or when the risk is too high, (3) non-invasive follow-up of patients with known aneurysms, (4) patient refusal of contrast angiography, and (5) evaluation of patients with specific clinical symptoms (i.e., third cranial nerve palsy) or patients with non-specific subacute symptoms in whom an aneurysm might explain the clinical presentation. Although MR angiography certainly can detect aneurysms with a high rate of sensitivity and specificity, detailed decision analyses generally have not supported the overall benefit of this type of screening. Future technical advances as well as advances in the overall understanding of aneurysms may one day prove unequivocally the benefit of MR angiography in screening high-risk patient groups. MR angiography has not yet been clinically evaluated as a tool in the evaluation of acute subarachnoid hemorrhage. Potential obstacles to such an evaluation include the clinical instability of SAH patients, limited spatial resolution of the MR angiography acquisitions, the potential for subarachnoid blood or focal intraparenchymal hematomas to obscure or mimic small aneurysms, and the unreliability of MR angiography in demonstrating vasospasm. Currently these factors continue to provide an integral role for contrast angiography in aneurysm evaluation.

  3. Can Surgeons Assess CT Suitability for Endovascular Repair (EVAR) in Ruptured Abdominal Aortic Aneurysm? Implications for a Ruptured EVAR Trial

    SciTech Connect

    Rayt, Harjeet Lambert, Kelly; Bown, Matthew; Fishwick, Guy; Morgan, Robert; McCarthy, Mark; London, Nick; Sayers, Robert

    2008-09-15

    The purpose of this study was to determine whether surgeons without formal radiological training are able to assess suitability of patients with ruptured abdominal aortic aneurysms (AAA) for EVAR. The CT scans of 20 patients with AAA were reviewed under timed conditions by six vascular surgeons. Twenty minutes was allocated per scan. They were asked to determine if each aneurysm would be treatable by EVAR in the emergency setting and, if so, to measure for device selection. The results were then compared with those of a vascular radiologist. Six surgeons agreed on the suitability of endovascular repair in 45% of cases (95% CI, 23.1-68.5%; 9/20 scans; {kappa} = 0.41 [p = 0.01]) and concurred with the radiologist in eight of these. Individually, agreement ranged from 13 to 16 of the 20 scans, 65-80% between surgeons. The kappa value for agreement between all the surgeons and the radiologist was 0.47 (p = 0.01, moderate agreement). For the individual surgeons, this ranged from 0.3 to 0.6 (p = 0.01). In conclusion, while overall agreement was moderate between the surgeons and the radiologist, it is clear that if surgeons are to assess patients for ruptured EVAR in the future, focused training of surgical trainees is required.

  4. External validation of Vascular Study Group of New England risk predictive model of mortality after elective abdominal aorta aneurysm repair in the Vascular Quality Initiative and comparison against established models.

    PubMed

    Eslami, Mohammad H; Rybin, Denis V; Doros, Gheorghe; Siracuse, Jeffrey J; Farber, Alik

    2017-08-11

    The purpose of this study is to externally validate a recently reported Vascular Study Group of New England (VSGNE) risk predictive model of postoperative mortality after elective abdominal aortic aneurysm (AAA) repair and to compare its predictive ability across different patients' risk categories and against the established risk predictive models using the Vascular Quality Initiative (VQI) AAA sample. The VQI AAA database (2010-2015) was queried for patients who underwent elective AAA repair. The VSGNE cases were excluded from the VQI sample. The external validation of a recently published VSGNE AAA risk predictive model, which includes only preoperative variables (age, gender, history of coronary artery disease, chronic obstructive pulmonary disease, cerebrovascular disease, creatinine levels, and aneurysm size) and planned type of repair, was performed using the VQI elective AAA repair sample. The predictive value of the model was assessed via the C-statistic. Hosmer-Lemeshow method was used to assess calibration and goodness of fit. This model was then compared with the Medicare, Vascular Governance Northwest model, and Glasgow Aneurysm Score for predicting mortality in VQI sample. The Vuong test was performed to compare the model fit between the models. Model discrimination was assessed in different risk group VQI quintiles. Data from 4431 cases from the VSGNE sample with the overall mortality rate of 1.4% was used to develop the model. The internally validated VSGNE model showed a very high discriminating ability in predicting mortality (C = 0.822) and good model fit (Hosmer-Lemeshow P = .309) among the VSGNE elective AAA repair sample. External validation on 16,989 VQI cases with an overall 0.9% mortality rate showed very robust predictive ability of mortality (C = 0.802). Vuong tests yielded a significant fit difference favoring the VSGNE over then Medicare model (C = 0.780), Vascular Governance Northwest (0.774), and Glasgow Aneurysm Score (0

  5. Thoracic aortic aneurysm

    MedlinePlus

    Aortic aneurysm - thoracic; Syphilitic aneurysm; Aneurysm - thoracic aortic ... The most common cause of a thoracic aortic aneurysm is hardening of ... high cholesterol, long-term high blood pressure, or who smoke. ...

  6. Brain aneurysm repair

    MedlinePlus

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  7. The value of computed tomography in the assessment of suspected ruptured abdominal aortic aneurysm.

    PubMed

    Adam, D J; Bradbury, A W; Stuart, W P; Woodburn, K R; Murie, J A; Jenkins, A M; Ruckley, C V

    1998-03-01

    The objective of this study was to determine the diagnostic value of computed tomography (CT) in patients with suspected ruptured abdominal aortic aneurysm. The study was an interrogation of a prospectively gathered computerized database. The study was performed at a regional vascular surgery unit. Six hundred fifty-two consecutive patients were admitted to this unit with suspected ruptured abdominal aortic aneurysm between January 1, 1989, and December 31, 1996. Seventy-four patients (11.3%) in whom the diagnosis was in doubt on clinical grounds alone underwent urgent CT. A total of 47 men and 27 women with a median age of 73 years (range, 52 to 86 years) were evaluated. CT and operative findings were compared. CT correctly diagnosed rupture in 22 of 28 patients who underwent operation and correctly excluded rupture in 30 of 39 patients who underwent operation. The sensitivity and specificity of CT when compared with operative findings were therefore 79% and 77%, respectively. These data indicate that CT has little additional diagnostic value. If in the opinion of an experienced vascular surgeon rupture cannot be excluded on clinical grounds alone, and the patient has no medical contraindications to abdominal aortic aneurysm repair, then the patient should be taken directly to the operating department.

  8. Aortic aneurysm: construction of a life-size model by rapid prototyping.

    PubMed

    Lermusiaux, P; Leroux, C; Tasse, J C; Castellani, L; Martinez, R

    2001-03-01

    Development of new endovascular techniques for repair of abdominal aortic aneurysm (AAA) requires the use of experimental models. Stereolithography is a rapid prototyping technique used in industry to prototype parts during the design phase. A stereolithography apparatus (STL) employs laser technology to build a digital model layer by layer with photopolymer resin. The purpose of this study was to use this technology to produce a life-size AAA model. Data were acquired by CT scan and stored in DICOM 3 format. Specifically designed software was used for 3-D imaging and conversion of data to a standard STL format. Two replicas were made: one to scale and the other 3 mm larger. The final model was made by pouring silicone rubber or polyurethane into the mold over the life-size model so as to obtain a sturdy, life-size, soft, transparent plastic casting. Arterial models made for living subjects with these rapid prototyping techniques can be used to simulate surgical procedures, calibrate imaging modalities, and design new stent grafts.

  9. A computational model based on fibrin accumulation for the prediction of stasis thrombosis following flow-diverting treatment in cerebral aneurysms.

    PubMed

    Ou, Chubin; Huang, Wei; Yuen, Matthew Ming-Fai

    2017-01-01

    Flow diverters, the specially designed low porosity stents, have been used to redirect blood flow from entering aneurysm, which induces flow stasis in aneurysm and promote thrombosis for repairing aneurysm. However, it is not clear how thrombus develops following flow-diversion treatment. Our objective was to develop a computation model for the prediction of stasis-induced thrombosis following flow-diversion treatment in cerebral aneurysms. We proposed a hypothesis to initiate coagulation following flow-diversion treatment. An experimental model was used by ligating rat's right common carotid artery (RCCA) to create flow-stasis environment. Thrombus formed in RCCA as a result of flow stasis. The fibrin distributions in different sections along the axial length of RCCA were measured. The fibrin distribution predicted by our computational model displayed a trend of increase from the proximal neck to the distal tip, consistent with the experimental results on rats. The model was applied on a saccular aneurysm treated with flow diverter to investigate thrombus development following flow diversion. Thrombus was predicted to form inside the sac, and the aneurysm was occluded with only a small remnant neck remained. Our model can serve as a tool to evaluate flow-diversion treatment outcome and optimize the design of flow diverters.

  10. Contrast-Enhanced and Time-of-Flight MR Angiographic Assessment of Endovascular Coiled Intracranial Aneurysms at 1.5 T

    PubMed Central

    Levent, Akin; Yuce, Ihsan; Eren, Suat; Ozyigit, Omer; Kantarci, Mecit

    2014-01-01

    Summary This study evaluated contrast-enhanced magnetic resonance angiography (CE-MRA) and three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) through comparisons with digital subtraction angiography (DSA) for the follow-up of intracranial aneurysms treated with detachable coils. Sixty-seven patients with 79 aneurysms underwent 3D-TOF-MRA, CE-MRA, and catheter angiography one year after coiling. Two independent observers classified recanalization status on images as neck or body remnant or no recanalization. For 3D-TOF-MRA and CE-MRA, the intermodality agreement, interobserver agreement, and correlation with angiography were assessed. Sixty-seven patients with 79 coiled aneurysms agreed to participate in the study. Three aneurysms could not be detected on 3D-TOF-MRA, so they were excluded from this study. Interobserver agreement was very good for 3D-TOF-MRA and CE-MRA (kappa (κ): 0.87, 0.94, respectively). Correlation of TOF-MRA with angiography was good (κ: 0.76). Correlation of CE-MRA with angiography was excellent (κ: 0.91). The sensitivity and specificity of TOF-MRA were 92% and 98%, respectively. The sensitivity and specificity of CE-MRA were 96% and 98%, respectively. After selective embolization of intracranial aneurysms, CE-MRA is useful and comparable to DSA in the assessment of aneurysmal recanalization. Agreement with the gold standard is stronger with CE-MRA than with 3D-TOF-MRA. PMID:25496678

  11. Pathological Analysis of the Ruptured Vascular Wall of Hypoperfusion-induced Abdominal Aortic Aneurysm Animal Model.

    PubMed

    Kugo, Hirona; Zaima, Nobuhiro; Tanaka, Hiroki; Hashimoto, Keisuke; Miyamoto, Chie; Sawaragi, Ayaka; Urano, Tetsumei; Unno, Naoki; Moriyama, Tatsuya

    2017-04-04

    Abdominal aortic aneurysm (AAA) is a vascular disease that results in the gradual dilation of the abdominal aorta and has a high rupture-related mortality rate. However, the mechanism of AAA rupture remains unknown. In our previous study, we established a novel AAA animal model (hypoperfusion-induced AAA rat model) with spontaneous AAA rupture. Using the hypoperfusion-induced AAA rat model, we demonstrated that the abnormal appearance of adipocytes in the vascular wall is associated with AAA rupture. However, pathological analysis of the rupture area has not been performed because it is particularly difficult to identify the rupture point. In this study, we succeeded in obtaining samples from the rupture point and performed a histological analysis of the ruptured area in the vascular wall in the hypoperfusion-induced AAA rat model. Adipocytes were observed along the AAA-ruptured area of the vascular wall. In the areas around the adipocytes, macrophage infiltration and protein levels of matrix metalloproteinases 2 and 9 were significantly increased and collagen-positive areas were significantly decreased, as compared with areas without adipocytes. The AAA diameter was correlated with the number of adipocytes in the vascular wall of the hypoperfusion-induced AAA rat model. On the other hand, serum triglyceride levels and serum total cholesterol levels were not correlated with the number of adipocytes in the vascular wall. These results suggest that local adipocyte accumulation in the vascular wall, not serum lipids, has an important role in AAA rupture.

  12. Unruptured cerebral aneurysms presenting with ischemic events.

    PubMed

    McLaughlin, Nancy; Bojanowski, Michel W

    2008-11-01

    Patients harboring an unruptured cerebral aneurysm may present with ischemic events. The goal of this study is to assess the clinical and radiological characteristics and the outcome following treatment of these patients. The study population included 463 patients with unruptured cerebral aneurysms treated between January 2000 and November 2006. Patients with aneurysms manifesting with ischemic events were included. Outcome was assessed 12 months following aneurysm treatment using the modified Rankin scale. Eleven patients were included in this series. An acute ischemic lesion in the symptomatic territory was demonstrated in six patients. The aneurysms were located on the internal carotid artery (n=4), middle cerebral artery (n=4), superior cerebellar artery (n=2) and basilar artery (n=1). They measured 10 mm or less (n=7); 11-20 mm (n=2); more than 21 mm (n=2). Five aneurysms were partially thrombosed on imaging. Five patients were referred for coiling. Of these, one patient had an unsuccessful coiling attempt, one had a residual neck, and three presented an aneurysm recurrence. Six patients were treated surgically. Symptomatic thromboembolism occurred after surgery in three patients. Complete aneurysm exclusion was documented in five of six operated patients. Nine of the ten treated patients had a favorable outcome. Even though aneurysms presenting with ischemic events are often small and located on the anterior circulation, in this series the risk of thromboembolic events following aneurysm treatment is noteworthy. This information is relevant given the possible benign natural history in terms of stroke and risk of bleeding for some of these aneurysms.

  13. Aneurysm Repair

    MedlinePlus

    ... repair of abdominal aortic aneurysms Cardiologists at the Texas Heart Institute were among the first to use ... comments. Terms of Use and Privacy Policy © Copyright Texas Heart Institute All rights reserved.

  14. Predictive models for mortality after ruptured aortic aneurysm repair do not predict futility and are not useful for clinical decision making.

    PubMed

    Thompson, Patrick C; Dalman, Ronald L; Harris, E John; Chandra, Venita; Lee, Jason T; Mell, Matthew W

    2016-12-01

    The clinical decision-making utility of scoring algorithms for predicting mortality after ruptured abdominal aortic aneurysms (rAAAs) remains unknown. We sought to determine the clinical utility of the algorithms compared with our clinical decision making and outcomes for management of rAAA during a 10-year period. Patients admitted with a diagnosis rAAA at a large university hospital were identified from 2005 to 2014. The Glasgow Aneurysm Score, Hardman Index, Vancouver Score, Edinburgh Ruptured Aneurysm Score, University of Washington Ruptured Aneurysm Score, Vascular Study Group of New England rAAA Risk Score, and the Artificial Neural Network Score were analyzed for accuracy in predicting mortality. Among patients quantified into the highest-risk group (predicted mortality >80%-85%), we compared the predicted with the actual outcome to determine how well these scores predicted futility. The cohort comprised 64 patients. Of those, 24 (38%) underwent open repair, 36 (56%) underwent endovascular repair, and 4 (6%) received only comfort care. Overall mortality was 30% (open repair, 26%; endovascular repair, 24%; no repair, 100%). As assessed by the scoring systems, 5% to 35% of patients were categorized as high-mortality risk. Intersystem agreement was poor, with κ values ranging from 0.06 to 0.79. Actual mortality was lower than the predicted mortality (50%-70% vs 78%-100%) for all scoring systems, with each scoring system overestimating mortality by 10% to 50%. Mortality rates for patients not designated into the high-risk cohort were dramatically lower, ranging from 7% to 29%. Futility, defined as 100% mortality, was predicted in five of 63 patients with the Hardman Index and in two of 63 of the University of Washington score. Of these, surgery was not offered to one of five and one of two patients, respectively. If one of these two models were used to withhold operative intervention, the mortality of these patients would have been 100%. The actual mortality

  15. Development of a Novel Rabbit Model of Abdominal Aortic Aneurysm via a Combination of Periaortic Calcium Chloride and Elastase Incubation

    PubMed Central

    Xu, Ke; Zhang, Zhen; Qi, Xun; Xia, Yonghui; Ren, Ling

    2013-01-01

    Background The purpose of this study was to introduce a novel, simple and effective technique for creating a reliable rabbit model of abdominal aortic aneurysm (AAA) via a combination of periaortic calcium chloride (CaCl2) and elastase incubation. Methods Forty-eight New Zealand white rabbits were divided into four groups. The AAA model was developed via a 20-minute periaortic incubation of CaCl2 (0.5 mol/L) and elastase (1 Unit/µL) in a 1.5-cm aortic segment (Group CE). A single incubation of CaCl2 (Group C) or elastase (Group E) and a sham operation group (Sham Group) were used for the controls. Diameter was measured by serial digital subtraction angiography imaging on days 5, 15 and 30. Animals were sacrificed on day 5 and day 30 for histopathological and immunohistochemical studies. Results All animals in Group CE developed aneurysm, with an average dilation ratio of 65.3%±8.9% on day 5, 86.5%±28.7% on day 15 and 203.6%±39.1% on day 30. No aneurysm was found in Group C, and only one aneurysm was seen on day 5 in Group E. Group CE exhibited less intima-media thickness, endothelial recovery, elastin and smooth muscle cell (SMC) content, but stronger expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and RAM11 compared to the controls. Conclusions The novel rabbit model of AAA created by using a combination of periaortic CaCl2 and elastase incubation is simple and effective to perform and is valuable for elucidating AAA mechanisms and therapeutic interventions in experimental studies. PMID:23844207

  16. Low-dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment

    PubMed Central

    Simard, J. Marc; Aldrich, E. Francois; Schreibman, David; James, Robert F.; Polifka, Adam; Beaty, Narlin

    2015-01-01

    Object Aneurysmal subarachnoid hemorrhage (aSAH) predisposes to delayed neurological deficits, including stroke and cognitive and neuropsychological abnormalities. Heparin is a pleiotropic drug that antagonizes many of the pathophysiological mechanisms implicated in secondary brain injury after aSAH. Methods The authors performed a retrospective analysis in 86 consecutive patients with Fisher Grade 3 aSAH due to rupture of a supratentorial aneurysm who presented within 36 hours and were treated by surgical clipping within 48 hours of their ictus. Forty-three patients were managed postoperatively with a low-dose intravenous heparin infusion (Maryland low-dose intravenous heparin infusion protocol: 8 U/kg/hr progressing over 36 hours to 10 U/kg/hr) beginning 12 hours after surgery and continuing until Day 14 after the ictus. Forty-three control patients received conventional subcutaneous heparin twice daily as deep vein thrombosis prophylaxis. Results Patients in the 2 groups were balanced in terms of baseline characteristics. In the heparin group, activated partial thromboplastin times were normal to mildly elevated; no clinically significant hemorrhages or instances of heparin-induced thrombocytopenia or deep vein thrombosis were encountered. In the control group, the incidence of clinical vasospasm requiring rescue therapy (induced hypertension, selective intraarterial verapamil, and angioplasty) was 20 (47%) of 43 patients, and 9 (21%) of 43 patients experienced a delayed infarct on CT scanning. In the heparin group, the incidence of clinical vasospasm requiring rescue therapy was 9% (4 of 43, p = 0.0002), and no patient suffered a delayed infarct (p = 0.003). Conclusions In patients with Fisher Grade 3 aSAH whose aneurysm is secured, postprocedure use of a low-dose intravenous heparin infusion may be safe and beneficial. PMID:24032706

  17. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    PubMed Central

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  18. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

    PubMed

    Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.

  19. Measurement of quantifiable parameters by time-density curves in the elastase-induced aneurysm model: first results in the comparison of a flow diverter and a conventional aneurysm stent.

    PubMed

    Struffert, Tobias; Ott, Sabine; Kowarschik, Markus; Bender, Frederik; Adamek, Edyta; Engelhorn, Tobias; Gölitz, Philipp; Lang, Stefan; Strother, Charles M; Doerfler, Arnd

    2013-02-01

    Quantifiable parameters to evaluate the effectiveness of flow diverters (FDs) are desirable. We measured time-density curves (TDCs) and calculated quantifiable parameters in the rabbit elastase-induced aneurysm model after stent (Neuroform [NF]) and FD (Pipeline embolisation device [PED]) treatment. Sixteen rabbit elastase-induced aneurysms were treated with FD (n = 9) or NF (n = 5). Angiography was performed before and after treatment and TDCs were created. The time to peak (TTP), the full width at half maximum (FWHM) and the average slope of the curve which represent the inflow (IF) and outflow (OF) were calculated. Mean values before treatment were TTP = 0.8 s, FWHM = 1.2 s, IF = 153.5 and OF = -54.9. After PED treatment, the TTP of 1.8 s and FWHM of 47.8 s were extended. The IF was 31.2 and the OF was -11.5 and therefore delayed. The values after NF treatment (TTP = 1.1 s, FWHM = 1.8 s, IF = 152.9, OF = -33.2) changed only slightly. It was feasible to create TDCs in the rabbit aneurysm model. Parameters describing the haemodynamic effect of PED and NF were calculated and were different according to the type of device used. These parameters could possibly serve as predictive markers for aneurysm occlusion.

  20. Endovascular coil embolization of segmental arteries prevents paraplegia after subsequent thoracoabdominal aneurysm repair: an experimental model.

    PubMed

    Geisbüsch, Sarah; Stefanovic, Angelina; Koruth, Jacob S; Lin, Hung-Mo; Morgello, Susan; Weisz, Donald J; Griepp, Randall B; Di Luozzo, Gabriele

    2014-01-01

    To test a strategy for minimizing ischemic spinal cord injury after extensive thoracoabdominal aneurysm (TAAA) repair, we occluded a small number of segmental arteries (SAs) endovascularly 1 week before simulated aneurysm repair in an experimental model. Thirty juvenile Yorkshire pigs (25.2 ± 1.7 kg) were randomized into 3 groups. All SAs, both intercostal and lumbar, were killed by a combination of surgical ligation of the lumbar SAs and occlusion of intercostal SAs with thoracic endovascular stent grafting. Seven to 10 days before this simulated TAAA replacement, SAs in the lower thoracic/upper lumbar region were occluded using embolization coils: 1.5 ± 0.5 SAs in group 1 (T13/L1), and 4.5 ± 0.5 SAs in group 2 (T11-L3). No SAs were coiled in the controls. Hind limb function was evaluated blindly from daily videotapes using a modified Tarlov score (0 = paraplegia, 9 = full recovery). After death, each segment of spinal cord was graded histologically using the 9-point Kleinman score (0 = normal, 8 = complete necrosis). Hind limb function remained normal after coil embolization. After simulated TAAA repair, paraplegia occurred in 6 of 10 control pigs, but in only 2 of 10 pigs in group 1; no pigs in group 2 had a spinal cord injury. Tarlov scores were significantly better in group 2 (control vs group 1, P = .06; control vs group 2, P = .0002; group 1 vs group 2, P = .05). A dramatic reduction in histologic damage, most prominently in the coiled region, was seen when SAs were embolized before simulated TAAA repair. Endovascular coiling of 2 to 4 SAs prevented paraplegia in an experimental model of extensive hybrid TAAA repair, and helped protect the spinal cord from ischemic histopathologic injury. A clinical trial in a selected patient population at high risk for postoperative spinal cord injury may be appropriate. Copyright © 2014 The American Association for Thoracic Surgery. All rights reserved.

  1. A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models

    PubMed Central

    Shum, Judy; Xu, Amber; Chatnuntawech, Itthi; Finol, Ender A.

    2011-01-01

    Patient-specific abdominal aortic aneurysms (AAAs) are characterized by local curvature changes, which we assess using a feature-based approach on topologies representative of the AAA outer wall surface. The application of image segmentation methods yields 3D reconstructed surface polygons that contain low-quality elements, unrealistic sharp corners, and surface irregularities. To optimize the quality of the surface topology, an iterative algorithm was developed to perform interpolation of the AAA geometry, topology refinement, and smoothing. Triangular surface topologies are generated based on a Delaunay triangulation algorithm, which is adapted for AAA segmented masks. The boundary of the AAA wall is represented using a signed distance function prior to triangulation. The irregularities on the surface are minimized by an interpolation scheme and the initial coarse triangulation is refined by forcing nodes into equilibrium positions. A surface smoothing algorithm based on a low-pass filter is applied to remove sharp corners. The optimal number of iterations needed for polygon refinement and smoothing is determined by imposing a minimum average element quality index with no significant AAA sac volume change. This framework automatically generates high-quality triangular surface topologies that can be used to characterize local curvature changes of the AAA wall. PMID:20853025

  2. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT.

    PubMed

    Soudah, Eduardo; Ng, E Y K; Loong, T H; Bordone, Maurizio; Pua, Uei; Narayanan, Sriram

    2013-01-01

    The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA) geometric parameters, wall stress shear (WSS), abdominal flow patterns, intraluminal thrombus (ILT), and AAA arterial wall rupture using computational fluid dynamics (CFD). Real AAA 3D models were created by three-dimensional (3D) reconstruction of in vivo acquired computed tomography (CT) images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m(3) and a kinematic viscosity of 4 × 10(-3) Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index ( β ), saccular index ( γ ), deformation diameter ratio ( χ ), and tortuosity index ( ε )) and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.

  3. The pressure reduction coefficient: A new parameter to assess aneurysmal blood stasis induced by flow diverters/disruptors.

    PubMed

    Gascou, Gregory; Ferrara, Riccardo; Ambard, Dominique; Sanchez, Mathieu; Lobotesis, Kyriakos; Jourdan, Franck; Costalat, Vincent

    2017-02-01

    Background and purpose Pore density (PD), surface metal coverage (SMC) and the number of wires are all different parameters which can influence the efficacy of a flow disruptor/diverter. Nevertheless, the relative importance of a parameter to induce intra-aneurysmal blood stasis is still poorly evaluated. Therefore, comparison between devices based on a unique value is not reliable. The aim of this study was to propose a new bench top parameter (the pressure reduction coefficient (PRC; ξ)) in order to assess the global haemodynamic effect of each flow diverter/disruptor to slow flow. Methods Eight devices were tested in vitro during three different flow conditions. For the eight devices, the PRC was computed at different volumetric flow rates to characterise flow reduction. Comparison was made with SMC, PD and the number of wires. Results The PRC obtained for flow disruptors was on average 1.5 times more efficient in reducing flow compared to flow diverters. PD (mm(2)) ranged from 24 to 38 for flow diverters and did not independently correlate with the PRC. The SMC of flow diverters ranged from 25% to 70%, and ranged from 20% to 100% for flow disruptors, without independent correlation to the PRC. The number of wires ranged from 48 to 96 for the flow diverters and did not correlate independently to the PRC. Conclusion There were no direct correlations between individual device characteristics and the PRC, suggesting a multifaceted and interrelating association of the overall design of each implant. Hence, the PRC could be used as a simple, reliable parameter to assess the overall capacity of flow disruptors/diverters to induce intra-aneurysmal blood stasis.

  4. Elastase-induced intracranial aneurysms in hypertensive mice

    PubMed Central

    Nuki, Yoshitsugu; Tsou, Tsung-Ling; Kurihara, Chie; Kanematsu, Miyuki; Kanematsu, Yasuhisa; Hashimoto, Tomoki

    2009-01-01

    Mechanisms of formation and growth of intracranial aneurysms are poorly understood. To investigate the pathophysiology of intracranial aneurysms, an animal model of intracranial aneurysm yielding high incidence of large aneurysm formation within a short incubation period is needed. We combined two well-known clinical factors associated with human intracranial aneurysms—hypertension and the degeneration of elastic lamina— to induce intracranial aneurysm formation in mice. Roles of matrix metalloproteinases (MMPs) in this model were investigated utilizing doxycycline, a broad-spectrum MMP inhibitor, and MMP knockout mice. Hypertension was induced by continuous infusion of angiotensin-II for two weeks. The disruption of elastic lamina was achieved by a single stereotaxic injection of elastase into the cerebrospinal fluid at the right basal cistern. 77% of the mice that received 35 milli-units of elastase and 1000 ng/kg/min angiotensin-II developed intracranial aneurysms in two weeks. There were dose-dependent effects of elastase and angiotensin-II on the incidence of aneurysms. Histologically, intracranial aneurysms observed in this model closely resembled human intracranial aneurysms. Doxycycline, a broad-spectrum MMP inhibitor, reduced the incidence of aneurysm to 10%. MMP-9 knockout mice, but not MMP-2 knockout mice, had reduced the incidence of intracranial aneurysms. In summary, a stereotaxic injection of elastase into the basal cistern in hypertensive mice resulted in intracranial aneurysms that closely resembled human intracranial aneurysms. The intracranial aneurysm formation in this model appeared to be dependent on MMP activation. PMID:19884566

  5. Determining rural risk for aneurysmal subarachnoid hemorrhages: A structural equation modeling approach.

    PubMed

    Nichols, Linda Jayne; Gall, Seana; Stirling, Christine

    2016-01-01

    An aneurysmal subarachnoid hemorrhage (aSAH) carries a high disability burden. The true impact of rurality as a predictor of outcome severity is unknown. Our aim is to clarify the relationship between the proposed explanations of regional and rural health disparities linked to severity of outcome following an aSAH. An initial literature search identified limited data directly linking geographical location, rurality, rural vulnerability, and aSAH. A further search noting parallels with ischemic stroke and acute myocardial infarct literature presented a number of diverse and interrelated predictors. This a priori knowledge informed the development of a conceptual framework that proposes the relationship between rurality and severity of outcome following an aSAH utilizing structural equation modeling. The presented conceptual framework explores a number of system, environmental, and modifiable risk factors. Socioeconomic characteristics, modifiable risk factors, and timely treatment that were identified as predictors of severity of outcome following an aSAH and within each of these defined predictors a number of contributing specific individual predictors are proposed. There are considerable gaps in the current knowledge pertaining to the impact of rurality on the severity of outcome following an aSAH. Absent from the literature is any investigation of the cumulative impact and multiplicity of risk factors associated with rurality. The proposed conceptual framework hypothesizes a number of relationships between both individual level and system level predictors, acknowledging that intervening predictors may mediate the effect of one variable on another.

  6. Determining rural risk for aneurysmal subarachnoid hemorrhages: A structural equation modeling approach

    PubMed Central

    Nichols, Linda Jayne; Gall, Seana; Stirling, Christine

    2016-01-01

    An aneurysmal subarachnoid hemorrhage (aSAH) carries a high disability burden. The true impact of rurality as a predictor of outcome severity is unknown. Our aim is to clarify the relationship between the proposed explanations of regional and rural health disparities linked to severity of outcome following an aSAH. An initial literature search identified limited data directly linking geographical location, rurality, rural vulnerability, and aSAH. A further search noting parallels with ischemic stroke and acute myocardial infarct literature presented a number of diverse and interrelated predictors. This a priori knowledge informed the development of a conceptual framework that proposes the relationship between rurality and severity of outcome following an aSAH utilizing structural equation modeling. The presented conceptual framework explores a number of system, environmental, and modifiable risk factors. Socioeconomic characteristics, modifiable risk factors, and timely treatment that were identified as predictors of severity of outcome following an aSAH and within each of these defined predictors a number of contributing specific individual predictors are proposed. There are considerable gaps in the current knowledge pertaining to the impact of rurality on the severity of outcome following an aSAH. Absent from the literature is any investigation of the cumulative impact and multiplicity of risk factors associated with rurality. The proposed conceptual framework hypothesizes a number of relationships between both individual level and system level predictors, acknowledging that intervening predictors may mediate the effect of one variable on another. PMID:27695237

  7. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice

    PubMed Central

    Shimada, Kenji; Furukawa, Hajime; Wada, Kosuke; Wei, Yuan; Tada, Yoshiteru; Kuwabara, Atsushi; Shikata, Fumiaki; Kanematsu, Yasuhisa; Lawton, Michael T; Kitazato, Keiko T; Nagahiro, Shinji; Hashimoto, Tomoki

    2015-01-01

    Angiotensin-(1-7) (Ang-(1-7)) can regulate vascular inflammation and remodeling, which are processes that have important roles in the pathophysiology of intracranial aneurysms. In this study, we assessed the effects of Ang-(1-7) in the development of intracranial aneurysm rupture using a mouse model of intracranial aneurysms in which aneurysmal rupture (i.e., aneurysmal subarachnoid hemorrhage) occurs spontaneously and causes neurologic symptoms. Treatment with Ang-(1-7) (0.5 mg/kg/day), Mas receptor antagonist (A779 0.5 mg/kg/day or 2.5 mg/kg/day), or angiotensin II type 2 receptor (AT2R) antagonist (PD 123319, 10 mg/kg/day) was started 6 days after aneurysm induction and continued for 2 weeks. Angiotensin-(1-7) significantly reduced the rupture rate of intracranial aneurysms without affecting the overall incidence of aneurysms. The protective effect of Ang-(1-7) was blocked by the AT2R antagonist, but not by the Mas receptor antagonist. In AT2R knockout mice, the protective effect of Ang-(1-7) was absent. While AT2R mRNA was abundantly expressed in the cerebral arteries and aneurysms, Mas receptor mRNA expression was very scarce in these tissues. Angiotensin-(1-7) reduced the expression of tumor necrosis factor-α and interleukin-1β in cerebral arteries. These findings indicate that Ang-(1-7) can protect against the development of aneurysmal rupture in an AT2R-dependent manner. PMID:25757758

  8. Virtual stenting of intracranial aneurysms: application of hemodynamic modification analysis.

    PubMed

    Song, Yunsun; Choe, Jooae; Liu, Hairi; Park, Kye Jin; Yu, HyungBin; Lim, Ok Kyun; Kim, Hyoweon; Park, Darlene; Ge, Jiajia; Suh, Dae Chul

    2016-08-01

    Practical application of hemodynamic modification analysis based on computational fluid dynamics (CFD) in intracranial aneurysms is still under study. To determine the clinical applicability of virtual stenting of aneurysms by comparing the simulated results with clinical outcome of real stenting. Three-dimensional (3D) digital subtraction angiography (DSA) images were imported to a dedicated integrated prototypic CFD platform (Siemens Healthcare GmbH) which allows all necessary steps of 3D models for CFD analysis. The results of CFD simulation with virtual implantation of a stent can be visualized in the same platform for qualitative comparisons on a color-coded volume visualization window. Five small intracranial aneurysms with and without virtual stenting were analyzed and assessed on a qualitative level. Expert rating were performed for evaluating the simulated results, and comparing those to the long-term follow-up outcomes of real stenting. CFD simulation after virtual stenting was feasible in five differently located aneurysms and corresponded to the long-term changes of stented aneurysms by showing alteration in flow pattern. There was no significant difference (P = 0.5) between the simulated hemodynamic changes after virtual stenting and the angiographic changes after stenting in four aneurysms except one. There was good agreement regarding the assessment of the changes by two raters (kappa = 0.657). CFD analysis using patient-specific virtual stenting of the CFD platform may be used as a simple and less time-consuming test tool predicting the involution of aneurysms after stent placement by analyzing the vector visualization of the flow changes. © The Foundation Acta Radiologica 2015.

  9. Hemodynamics in growing and stable cerebral aneurysms.

    PubMed

    Sforza, Daniel M; Kono, Kenichi; Tateshima, Satoshi; Viñuela, Fernando; Putman, Christopher; Cebral, Juan R

    2016-04-01

    The detailed mechanisms of cerebral aneurysm evolution are poorly understood but are important for objective aneurysm evaluation and improved patient management. The purpose of this study was to identify hemodynamic conditions that may predispose aneurysms to growth. A total of 33 intracranial unruptured aneurysms longitudinally followed with three-dimensional imaging were studied. Patient-specific computational fluid dynamics models were constructed and used to quantitatively characterize the hemodynamic environments of these aneurysms. Hemodynamic characteristics of growing (n=16) and stable (n=17) aneurysms were compared. Logistic regression statistical models were constructed to test the predictability of aneurysm growth by hemodynamic features. Growing aneurysms had significantly smaller shear rate ratios (p=0.01), higher concentration of wall shear stress (p=0.03), smaller vorticity ratios (p=0.01), and smaller viscous dissipation ratios (p=0.01) than stable aneurysms. They also tended to have larger areas under low wall shear stress (p=0.06) and larger aspect ratios (p=0.18), but these trends were not significant. Mean wall shear stress was not significantly different between growing and stable aneurysms. Logistic regression models based on hemodynamic variables were able to discriminate between growing and stable aneurysms with a high degree of accuracy (94-100%). Growing aneurysms tend to have complex intrasaccular flow patterns that induce non-uniform wall shear stress distributions with areas of concentrated high wall shear stress and large areas of low wall shear stress. Statistical models based on hemodynamic features seem capable of discriminating between growing and stable aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Effects of stent porosity on hemodynamics in a sidewall aneurysm model.

    PubMed

    Liou, Tong-Miin; Li, Yi-Chen

    2008-01-01

    Computation and experiment have been complementarily performed to study the fluid flow inside a stented lateral aneurysm anchored on the straight parent vessel. The implicit solver was based on the time-dependent incompressible Navier-Stokes equations of laminar flow. Solutions were generated by a cell-center finite-volume method that used second-order upwind and second-order center flux difference splitting for the convection and diffusion term, respectively. The second-order Crank-Nicolson method was used in the time integration term. Experimental techniques used were flow visualization (FV) and particle tracking velocimetry (PTV). Experimentally, the straight afferent vessel had an inner diameter 10mm. The diameters of the aneurysmal orifice, neck, and fundus were 14, 10, and 15 mm, respectively, and the distance between the orifice and dome measured 20mm. A 30 mm long helix-shaped stent was tested. Four stent porosities of 100%, 70%, 50%, and 25% were examined. Volume-flow rate waveform of a cerebral artery was considered with a maximum Reynolds number of 250 and Womersley number of 3.9. Results are presented in terms of the pulsatile main and secondary flow velocity vector fields, the volume inflow rates into the aneurysm, and the wall shear stress (WSS) and wall pressure at the aneurysm dome. Some comparisons of computed results with the present FV and PTV results and with the data available from the literature are also made. The maximum flow velocity inside the aneurysm ostium and the WSS in the dome region at the peak flow can, respectively, be suppressed to less than 5% of the parent vessel bulk velocity (or 20% of the unstented case) and 8% of the unstented case if the stent porosity is smaller than 40% (about the porosity of the two-layer stents). In general, the three-layer stents seem not as effective as the two-layer stents in reducing the magnitude of aneurysm inflow rate and WSS.

  11. Is aspect ratio a reliable predictor of intracranial aneurysm rupture?

    PubMed

    Nader-Sepahi, Ali; Casimiro, Miguel; Sen, Jon; Kitchen, Neil D

    2004-06-01

    This study was undertaken to assess the reliability of the aspect ratio (AR) (i.e., aneurysm depth to aneurysm neck) in predicting aneurysm rupture. It has been shown that the AR is a key factor in predicting intraaneurysmal blood flow and aneurysm rupture. Seventy-five patients with subarachnoid hemorrhage and multiple aneurysms were studied. The sizes of the aneurysms and their ARs were determined by examining the angiographic films. By comparing the difference between ruptured and unruptured aneurysms in the same individual, each patient in effect served as his or her own control. Each ruptured aneurysm was confirmed during surgery. There were 75 ruptured and 107 unruptured aneurysms. The mean AR was 2.70 for ruptured aneurysms, compared with 1.8 for unruptured aneurysms. This difference between the ARs was statistically significant (P < 0.001). The difference in aneurysm sizes in the two groups also was significant (P < 0.001). AR on its own is as reliable a variable as the size of the aneurysm for predicting aneurysm rupture.

  12. Computational fluid dynamics in brain aneurysms

    PubMed Central

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan R.

    2013-01-01

    SUMMARY Because of its ability to deal with any geometry, image-based computational fluid dynamics (CFD) has been progressively used to investigate the role of hemodynamics in the underlying mechanisms governing the natural history of cerebral aneurysms. Despite great progress in methodological developments and many studies using patient-specific data, there are still significant controversies about the precise governing processes and divergent conclusions from apparently contradictory results. Sorting out these issues requires a global vision of the state of the art and a unified approach to solving this important scientific problem. Towards this end, this paper reviews the contributions made using patient-specific CFD models to further the understanding of these mechanisms, and highlights the great potential of patient-specific computational models for clinical use in the assessment of aneurysm rupture risk and patient management. PMID:25364852

  13. Endovascular image-guided treatment of in-vivo model aneurysms with asymmetric vascular stents (AVS): evaluation with time-density curve angiographic analysis and histology

    NASA Astrophysics Data System (ADS)

    Dohatcu, A.; Ionita, C. N.; Paciorek, A.; Bednarek, D. R.; Hoffmann, K. R.; Rudin, S.

    2008-03-01

    In this study, we compare the results obtained from Time-Density Curve (TDC) analysis of angiographic imaging sequences with histological evaluation for a rabbit aneurysm model treated with standard stents and new asymmetric vascular stents (AVS) placed by image-guided endovascular deployment. AVSs are stents having a low-porosity patch region designed to cover the aneurysm neck and occlude blood flow inside. To evaluate the AVSs, rabbits with elastase-induced aneurysm models (n=20) were divided into three groups: the first (n=10) was treated with an AVS, the second (n=5) with a non-patch standard coronary stent, and third was untreated as a control (n=5). We used TDC analysis to measure how much contrast media entered the aneurysm before and after treatment. TDCs track contrast-media-density changes as a function of time over the region of interest in x-ray DSA cine-sequences. After 28 days, the animals were sacrificed and the explanted specimens were histologically evaluated. The first group showed an average reduction of contrast flow into the aneurysm of 95% after treatment with an AVS with fully developed thrombus at 28 days follow-up. The rabbits treated with standard stents showed an increase in TDC residency time after treatment and partial-thrombogenesis. The untreated control aneurysms displayed no reduction in flow and were still patent at follow-up. The quantitative TDC analysis findings were confirmed by histological evaluation suggesting that the new AVS has great potential as a definitive treatment for cerebro-vascular aneurysms and that angiographic TDC analysis can provide in-vivo verification.

  14. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  15. Improving the efficiency of abdominal aortic aneurysm wall stress computations.

    PubMed

    Zelaya, Jaime E; Goenezen, Sevan; Dargon, Phong T; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses.

  16. Efficacy of skull plain films in follow-up evaluation of cerebral aneurysms treated with detachable coils: quantitative assessment of coil mass.

    PubMed

    Ahn, S J; Kim, B M; Jung, W S; Suh, S H

    2015-02-01

    Skull plain films of coiled aneurysms have been used in a limited role, including morphologic comparison of the coil mass. We aimed to evaluate the efficacy of skull plain films in patients treated with detachable coils by using quantitative assessment. In this retrospective study, 78 pairs of the initial and follow-up skull anteroposterior and lateral images were reviewed independently by 2 neuroradiologists. The largest diameter, the perpendicular diameter, and area of the coil mass were measured separately on plain film, and quantitative changes of parameters were compared between subgroups, which were determined by consensus, depending on the need for retreatment. Subgroup analysis was also performed according to aneurysm size, packing attenuation, and ruptured status. On skull lateral images, mean quantitative changes of the largest diameter (0.53 ± 0.43 mm versus 1.17 ± 0.91 mm, P < .01), the perpendicular diameter (0.56 ± 0.48 mm versus 1.20 ± 1.05 mm, P < .01), and the area of the coil mass (5.21 ± 7.51 mm(2) versus 10.55 ± 10.93 mm(2), P < .02) differed significantly between subgroups. Receiver operating characteristic analysis showed quantitative change of the largest diameter (>1.1 mm; sensitivity, 50.0%; specificity, 90.3%), the perpendicular diameter (>.9 mm; sensitivity, 62.5%; specificity, 85.5%), and the area (>8.5 mm(2); sensitivity, 50.0%; specificity, 83.9%) on skull lateral films to be indicative of aneurysm recurrence, and the diagnostic accuracy of these parameters increased significantly in the high-packing-attenuation group. Quantitative measurement of the coil mass by using skull plain lateral images has the potential to predict aneurysm recurrence in follow-up evaluations of intracranial aneurysms with coiling. © 2015 by American Journal of Neuroradiology.

  17. Intrinsic Pathway-Mediated Apoptosis in Elastase-Induced Aneurysms in Rabbits

    PubMed Central

    Kadirvel, Ramanathan; Ding, Yong Hong; Dai, Daying; Lewis, Debra A; Kallmes, David F

    2009-01-01

    Background and Objectives The pathophysiology of saccular aneurysms is complex and multifactorial. The aim of the present study was to understand the mechanism of apoptosis in elastase-induced model aneurysms in rabbits. Methods Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery in 20 rabbits. Aneurysm samples were harvested at 2 and 12 weeks after creation. Expression of apoptosis-associated proteins, including caspases and Bcl-2 proteins, were assessed by Western blot analysis (n=5 at both time points). TUNEL staining, which indicates the presence of apoptosis, was performed in tissue sections (n=5 at both time points). The unoperated, contralateral common carotid artery was used as a control. Results Expression of active caspase-3, the final executioner of apoptosis, and caspase-9, the mediator of the intrinsic mitochondrial pathway, was observed in aneurysms at 2 weeks, whereas the expression of activated caspase-8, the mediator of the extrinsic death receptor pathway, was absent at both time points. Expression of anti-apoptotic proteins, Bcl-2 and phospho-Bad, was down-regulated in aneurysms as compared to controls at 2 weeks. None of these proteins was differentially expressed at 12 weeks. These results were confirmed by the presence of TUNEL positive cells in some aneurysms at the early time point. Conclusion In this study of elastase induced aneurysms in a rabbit model, activation of apoptosis in elastase-induced model aneurysms is mediated predominantly by the Bcl-2 mediated-intrinsic pathway through the activation of caspase-9. PMID:19749227

  18. False-negative indocyanine green videoangiography among complex unruptured middle cerebral artery aneurysms: the importance of further aneurysm inspection.

    PubMed

    Kulwin, Charles; Cohen-Gadol, Aaron A

    2014-10-01

    Successful surgical treatment of cerebral aneurysms requires complete occlusion of the aneurysm lumen while maintaining patency of the adjacent branching and perforating arteries. Intraoperative flow assessment allows aneurysm clip repositioning in the event these requirements are not met, avoiding the risk of postoperative rehemorrhage or infarction. A number of modalities have been proposed for primarily intraoperative qualitative blood flow assessment, including microdoppler ultrasonography, intraoperative digital subtraction angiography (DSA), and more recently noninvasive fluorescent angiography including indocyanine green (ICG) fluorescent imaging. Puncture of the aneurysm dome to exclude aneurysm sac filling may also assess the efficacy of clip placement. Although a high concordance between ICG and DSA has been reported, there remains an important subset of aneurysms for which negative ICG study may erroneously suggest aneurysm occlusion. A high-risk situation for such a false-negative study is an atherosclerotic middle cerebral artery (MCA) aneurysm in which vessel wall plaque interferes with the ICG signal. Furthermore, a decreased flow within the aneurysm may not allow enough emission light for detection under the current technology. In this report, we describe our experience with cases of MCA aneurysms with false-negative ICG-VA studies requiring clip adjustment for optimal surgical treatment and discuss two illustrative cases of MCA aneurysms with intraoperative fluorescence studies that were falsely negative, requiring puncture of the aneurysm to correctly identify incomplete aneurysm occlusion.

  19. Aortic aneurysm repair - endovascular

    MedlinePlus

    ... Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... leaking or bleeding. You may have an abdominal aortic aneurysm that is not causing any symptoms or problems. ...

  20. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms.

    PubMed

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard

    2014-12-01

    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented.

  1. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique.

    PubMed

    Ortega, Jason; Maitland, Duncan; Wilson, Tom; Tsai, William; Savaş, Omer; Saloner, David

    2007-11-01

    The vascular dynamics of a shape memory polymer foam aneurysm treatment technique are assessed through the simulated treatment of a generic basilar aneurysm using coupled fluid dynamics and heat transfer calculations. The shape memory polymer foam, which expands to fill the aneurysm when heated, is modeled at three discrete stages of the treatment procedure. To estimate an upper bound for the maximum amount of thermal damage due to foam heating, a steady velocity is specified through the basilar artery, corresponding to a minimum physiological flow velocity over a cardiac cycle. During expansion, the foam alters the flow patterns within the aneurysm by shielding the aneurysm dome from a confined jet that issues from the basilar artery. The time scales for thermal damage to the artery walls and surrounding blood flow are computed from the temperature field. The flow through the post-treatment bifurcation is comprised of two counter-rotating vortex tubes that are located beneath the aneurysm neck and extend downstream into the outlet arteries. Beneath the aneurysm neck, a marked increase in the wall shear stress is observed due to the close proximity of the counter-rotating vortex tubes to the artery wall.

  2. Hemodynamic Changes in Treated Cerebral Aneurysms and Correlations with Long-Term Outcomes

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Barbour, Michael; Levitt, Michael; Kim, Louis; Aliseda, Alberto

    2014-11-01

    The hemodynamic conditions in patients with cerebral aneurysms undergoing treatment, e.g. flow diverting stents or coil embolization, are investigated via computational simulations. Patient-specific 3D models of the vasculature are derived from rotational angiography. Patient-specific flow and pressure boundary conditions are prescribed utilizing intravascular pressure and velocity measurements. Pre-treatment and immediate post-treatment hemodynamics are studied in eight cases so as to ascertain the effect of the treatment on the intra-aneurysmal flow and wall shear stress. We hypothesize that larger reductions in intra-aneurysmal inflow and wall shear stress after treatment are correlated with an increased likelihood of aneurysmal occlusion and treatment success. Results indicate reductions of the intra-aneurysmal inflow and wall shear stress in all cases. Preliminary clinical six-month follow-up data, assessing if the treatment has been successful, shows that the cases with a persistent aneurysm had a smaller reduction in inflow and wall shear stress magnitude in the immediate post-treatment conditions. This suggests that CFD can be used to quantify a treatment's probability of success by computing the change in pre-and-post-treatment hemodynamics in cerebral aneurysms. NIH-NINDS.

  3. The Roles of Endoscope in Aneurysmal Surgery

    PubMed Central

    YOSHIOKA, Hideyuki; KINOUCHI, Hiroyuki

    The neuroendoscope, with its higher magnification, better observation, and additional illumination, can provide us information that may not be available with the microscope in aneurysm surgery. Furthermore, recent advancement of the holding systems for the endoscope allows surgeons to perform microsurgical manipulation using both hands under the simultaneous endoscopic and microscopic monitoring. With this procedure, surgeons can inspect hidden structures, dissect perforators at the back of the aneurysm, identify important vessel segments without retraction of the aneurysm or arteries, and check for completion of clipping. In addition, we have recently applied endoscopic indocyanine green video angiography to aneurysm surgery. This newly developed technique can offer real-time assessment of the blood flow of vasculatures in the dead angles of the microscope, and will reduce operative morbidity related to vascular occlusion, improve the durability of aneurysm surgery by reducing incomplete clipping, and thus promote the outcome of aneurysm surgery. PMID:26041623

  4. Is aspect ratio sufficient to classify intra-aneurysmal hemodynamics- a parametric approach

    NASA Astrophysics Data System (ADS)

    Durka, Michael; Robertson, Anne

    2013-11-01

    Intracranial aneurysms are a vascular pathology in which a localized bulge is formed in the arterial wall, most often in a saccular shape. It is believed that the blood flow field within the aneurysm plays a critical role in the degradation of the wall. Aneurysm rupture has a high mortality risk. Since only a small fracture of aneurysms rupture, and common treatments have their own risks, it is desirable to identify a useful means of assessing rupture risk. Therefore, numerous groups have endeavored to identify a correlation between rupture risk and sac geometry or flow dynamics. However, no clinically useful parameters have been identified to date. Prior work has suggested that the aspect ratio (sac height/neck) could be useful for risk stratification due to its influence on the sac hemodynamics. In this work, we make of a previously developed parametric model of the aneurysm geometry to evaluate the influence of aspect ratio (sac height/sac neck) on flow dynamics, using computational fluid dynamics. In particular, we assess the influence of aspect ratio on the number of vortices in the aneurysm sac over a wide range of sac geometries. The conclusions obtained for the parametric model are then assessed in 20 clinical cases.

  5. Comparable mid-term survival in patients undergoing elective fenestrated endovascular aneurysm repair and endovascular aneurysm repair for abdominal aortic aneurysm

    PubMed Central

    Gottsäter, Anders; Acosta, Stefan

    2014-01-01

    Objective: To evaluate mid-term survival in patients undergoing elective fenestrated endovascular aneurysm repair and standard endovascular aneurysm repair for abdominal aortic aneurysm. Methods: Consecutive patients treated from 2007 to 2011 with elective fenestrated endovascular aneurysm repair (n = 81) and endovascular aneurysm repair (n = 201) were evaluated concerning age, cardiovascular medication, comorbidities, and mid-term mortality. Results: Patients in the elective fenestrated endovascular aneurysm repair group were younger than the endovascular aneurysm repair group (p = 0.006). In comparison with the endovascular aneurysm repair group, a lower proportion of patients in the elective fenestrated endovascular aneurysm repair group had diabetes (p = 0.013) and anemia (p = 0.003), and a higher proportion had arterial hypertension (p = 0.009). When entering age, endovascular aneurysm repair or fenestrated endovascular aneurysm repair operation, diabetes, anemia, and hypertension in a Cox regression model, only age (hazard ratio: 1.07; 95% confidence interval: 1.03–1.11; p < 0.001) was a risk factor for mid-term mortality. Conclusion: Careful patient selection and medical optimization resulted in comparable mid-term survival in patients undergoing elective fenestrated endovascular aneurysm repair and endovascular aneurysm repair. PMID:26770700

  6. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms.

    PubMed

    Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian

    2012-01-01

    Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.

  7. Morphology of elastase-induced cerebral aneurysm model in rabbit and rapid prototyping of elastomeric transparent replicas.

    PubMed

    Seong, Jaehoon; Sadasivan, Chander; Onizuka, Masanari; Gounis, Matthew J; Christian, Fletcher; Miskolczi, Laszlo; Wakhloo, Ajay K; Lieber, Baruch B

    2005-01-01

    In this work, we describe a methodology to fabricate transparent elastomeric vascular replicas using rapid prototyping techniques. First, the three-dimensional morphology of an elastase-induced aneurysm model in rabbit is acquired. The morphology is reconstructed from in vivo rotational angiography and it is compared with three-dimensional reconstructions obtained by computerized tomography and magnetic resonance imaging of an intraluminal arterial cast that was obtained from the same animal at sacrifice. Results show that resolution of the imaging modality strongly influences the level of detail, such as small side branches, in the final reconstruction. We developed an average morphology model for elastase-induced aneurysms in rabbits including the surrounding vasculature and describe a method for rapid prototyping of vascular models from the three-dimensional morphology. Our replicas can be manufactured in a short period of time and the final product is optically clear. In addition, the elasticity of the models can be controlled to represent arterial elasticity, which makes them ideal for optical investigations of detailed flow dynamics using measurement tools such as particle image velocimetry.

  8. Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.

    PubMed

    Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra

    2017-07-01

    Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o2max) and tapering off at a higher intensity of exercise (85% V̇o2max). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients.NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for

  9. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms.

    PubMed

    Bijlenga, Philippe; Ebeling, Christian; Jaegersberg, Max; Summers, Paul; Rogers, Alister; Waterworth, Alan; Iavindrasana, Jimison; Macho, Juan; Pereira, Vitor Mendes; Bukovics, Peter; Vivas, Elio; Sturkenboom, Miriam C J M; Wright, Jessica; Friedrich, Christoph M; Frangi, Alejandro; Byrne, James; Schaller, Karl; Rufenacht, Daniel

    2013-11-01

    According to the International Study of Unruptured Intracranial Aneurysms (ISUIA), anterior circulation (AC) aneurysms of <7 mm in diameter have a minimal risk of rupture. It is general experience, however, that anterior communicating artery (AcoA) aneurysms are frequent and mostly rupture at <7 mm. The aim of the study was to assess whether AcoA aneurysms behave differently from other AC aneurysms. Information about 932 patients newly diagnosed with intracranial aneurysms between November 1, 2006, and March 31, 2012, including aneurysm status at diagnosis, its location, size, and risk factors, was collected during the multicenter @neurIST project. For each location or location and size subgroup, the odds ratio (OR) of aneurysms being ruptured at diagnosis was calculated. The OR for aneurysms to be discovered ruptured was significantly higher for AcoA (OR, 3.5 [95% confidence interval, 2.6-4.5]) and posterior circulation (OR, 2.6 [95% confidence interval, 2.1-3.3]) than for AC excluding AcoA (OR, 0.5 [95% confidence interval, 0.4-0.6]). Although a threshold of 7 mm has been suggested by ISUIA as a threshold for aggressive treatment, AcoA aneurysms <7 mm were more frequently found ruptured (OR, 2.0 [95% confidence interval, 1.3-3.0]) than AC aneurysms of 7 to 12 mm diameter as defined in ISUIA. We found that AC aneurysms are not a homogenous group. Aneurysms between 4 and 7 mm located in AcoA or distal anterior cerebral artery present similar rupture odds to posterior circulation aneurysms. Intervention should be recommended for this high-risk lesion group.

  10. Correlation Between Aneurysm Size and Hemodynamics in One Individual with Multiple Small Intracranial Aneurysms

    PubMed Central

    Britz, Gavin

    2016-01-01

    Objective A large number of cases are needed in the patient-specific modeling of intracranial aneurysms to establish the statistical significance due to individual variation of risk factors that are difficult to account for. However, these risk factors are critical in hemorrhage risk as demonstrated in large clinical studies. Rupture risks for aneurysms in an individual are easier to compare because these aneurysms are under the same physiological environment, and their only differences are the local hemodynamic factors associated with their anatomic locations. Methods Eight small aneurysms (< 7 mm) from one individual were analyzed using patient-specific hemodynamic modeling. Four scenarios with different perfusion assumptions were performed to account for the flow rate at two smaller communicating arteries. Wall shear stresses (WSS) at these aneurysms were compared to determine their relationship with the aneurysm size. Results Each of the three largest aneurysms is either the most proximal or distal aneurysm in a given artery so that blood pressure does not have a direct influence on aneurysm size. No wall shear stress-derived hemodynamic variables are found to be related to aneurysm size. Discussion A study of multiple aneurysms from one individual offers a unique opportunity to examine various hemodynamic factors without selection biases. Aneurysms greater than 4 mm (Group 1) have a higher product of maximum WSS and area of low WSS; aneurysms smaller than 4 mm (Group 2) have a lower product of maximum WSS and area of low WSS. In addition, aneurysm size is linearly correlated with the flow rate at the parent artery in each group. PMID:27555981

  11. Correlation Between Aneurysm Size and Hemodynamics in One Individual with Multiple Small Intracranial Aneurysms.

    PubMed

    Jou, Liangder; Britz, Gavin

    2016-07-12

    Objective A large number of cases are needed in the patient-specific modeling of intracranial aneurysms to establish the statistical significance due to individual variation of risk factors that are difficult to account for. However, these risk factors are critical in hemorrhage risk as demonstrated in large clinical studies. Rupture risks for aneurysms in an individual are easier to compare because these aneurysms are under the same physiological environment, and their only differences are the local hemodynamic factors associated with their anatomic locations. Methods Eight small aneurysms (< 7 mm) from one individual were analyzed using patient-specific hemodynamic modeling. Four scenarios with different perfusion assumptions were performed to account for the flow rate at two smaller communicating arteries. Wall shear stresses (WSS) at these aneurysms were compared to determine their relationship with the aneurysm size. Results Each of the three largest aneurysms is either the most proximal or distal aneurysm in a given artery so that blood pressure does not have a direct influence on aneurysm size. No wall shear stress-derived hemodynamic variables are found to be related to aneurysm size. Discussion A study of multiple aneurysms from one individual offers a unique opportunity to examine various hemodynamic factors without selection biases. Aneurysms greater than 4 mm (Group 1) have a higher product of maximum WSS and area of low WSS; aneurysms smaller than 4 mm (Group 2) have a lower product of maximum WSS and area of low WSS. In addition, aneurysm size is linearly correlated with the flow rate at the parent artery in each group.

  12. Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model.

    PubMed

    Miyamoto, Takeshi; Kung, David K; Kitazato, Keiko T; Yagi, Kenji; Shimada, Kenji; Tada, Yoshiteru; Korai, Masaaki; Kurashiki, Yoshitaka; Kinouchi, Tomoya; Kanematsu, Yasuhisa; Satomi, Junichiro; Hashimoto, Tomoki; Nagahiro, Shinji

    2017-08-01

    The pathogenesis of subarachnoid hemorrhage remains unclear. No models of cerebral aneurysms elicited solely by surgical procedures and diet have been established. Elsewhere we reported that only few rats in our original rat aneurysm model manifested rupture at the anterior and posterior Willis circle and that many harbored unruptured aneurysms at the anterior cerebral artery-olfactory artery bifurcation. This suggests that rupture was site-specific. To test our hypothesis that a site-specific response to hemodynamic changes is associated with aneurysmal rupture, we modified our original aneurysm model by altering the hemodynamics. During 90-day observation, the incidence of ruptured aneurysms at the anterior and posterior Willis circle was significantly increased and the high incidence of unruptured aneurysms at the anterior cerebral artery-olfactory artery persisted. This phenomenon was associated with an increase in the blood flow volume. Notably, the level of matrix metalloproteinase-9 associated with interleukin-1β was augmented by the increase in the blood flow volume, suggesting that these molecules exacerbated the vulnerability of the aneurysmal wall. The current study first demonstrates that a site-specific increase in interleukin-1β and matrix metalloproteinase-9 elicited by hemodynamic changes is associated with rupture. Our novel rat model of rupture may help to develop pharmaceutical approaches to prevent rupture.

  13. Neuroimaging characteristics of ruptured aneurysm as predictors of outcome after aneurysmal subarachnoid hemorrhage: pooled analyses of the SAHIT cohort.

    PubMed

    Jaja, Blessing N R; Lingsma, Hester; Steyerberg, Ewout W; Schweizer, Tom A; Thorpe, Kevin E; Macdonald, R Loch

    2016-06-01

    OBJECT Neuroimaging characteristics of ruptured aneurysms are important to guide treatment selection, and they have been studied for their value as outcome predictors following aneurysmal subarachnoid hemorrhage (SAH). Despite multiple studies, the prognostic value of aneurysm diameter, location, and extravasated SAH clot on computed tomography scan remains debatable. The authors aimed to more precisely ascertain the relation of these factors to outcome. METHODS The data sets of studies included in the Subarachnoid Hemorrhage International Trialists (SAHIT) repository were analyzed including data on ruptured aneurysm location and diameter (7 studies, n = 9125) and on subarachnoid clot graded on the Fisher scale (8 studies; n = 9452) for the relation to outcome on the Glasgow Outcome Scale (GOS) at 3 months. Prognostic strength was quantified by fitting proportional odds logistic regression models. Univariable odds ratios (ORs) were pooled across studies using random effects models. Multivariable analyses were adjusted for fixed effect of study, age, neurological status on admission, other neuroimaging factors, and treatment modality. The neuroimaging predictors were assessed for their added incremental predictive value measured as partial R(2). RESULTS Spline plots indicated outcomes were worse at extremes of aneurysm size, i.e., less than 4 or greater than 9 mm. In between, aneurysm size had no effect on outcome (OR 1.03, 95% CI 0.98-1.09 for 9 mm vs 4 mm, i.e., 75th vs 25th percentile), except in those who were treated conservatively (OR 1.17, 95% CI 1.02-1.35). Compared with anterior cerebral artery aneurysms, posterior circulation aneurysms tended to result in slightly poorer outcome in patients who underwent endovascular coil embolization (OR 1.13, 95% CI 0.82-1.57) or surgical clipping (OR 1.32, 95% CI 1.10-1.57); the relation was statistically significant only in the latter. Fisher CT subarachnoid clot burden was related to outcome in a gradient manner. Each

  14. Impact of the moon on cerebral aneurysm rupture.

    PubMed

    Kamp, Marcel A; Dibué, Maxine; Slotty, Philipp; Steiger, Hans-Jakob; Hänggi, Daniel

    2013-08-01

    Several external and internal risk factors for cerebral aneurysm rupture have been identified to date. Recently, it has been reported that moon phases correlate with the incidence of aneurysmal subarachnoid hemorrhage (SAH), however, another author found no such association. Therefore, the present study investigates the influence of the lunar cycle on the incidence of aneurysmal rupture, the initial clinical presentation, and the amount of subarachnoid blood. Lunar phase and the particular day of the lunar cycle were correlated to the date of aneurysm rupture, aneurysm location, initial clinical presentation, and amount of subarachnoid blood assessed from CT scans of all patients treated for basal SAH in our department from 2003 to 2010. We found no correlation between incidence of aneurysmal SAH, location of the aneurysm, initial clinical presentation, or amount of subarachnoid blood and the lunar cycle. The moon influences neither the incidence of aneurysmal SAH nor the grade of initial neurological deterioration or amount of subarachnoid blood.

  15. The interactions between bloodstream and vascular structure on aortic dissecting aneurysmal model: A numerical study

    NASA Astrophysics Data System (ADS)

    Chen, Zeng-Sheng; Fan, Zhan-Ming; Zhang, Xi-Wen

    2013-06-01

    Stent-graft implantation is an important means of clinical treatment for aortic dissecting aneurysm (ADA). However, researches on fluid dynamics effects of stent were rare. Computer simulation was used to investigate the interactions between bloodstream and vascular structure in a stented ADA, which endures the periodic pulse velocity and pressure. We obtained and analyzed the flow velocity distribution, the wall displacement and wall stress in the ADA. By comparing the different results between a non-stented and a stented ADA, we found that the insertion of a vascular graft can make the location of maximum stress and displacement move from the aneurysm lumen wall to the artery wall, accompanied with a greatly decrease in value. These results imply that the placement of a stent-graft of any kind to occlude ADA will result in a decreased chance of rupture.

  16. Tirilazad for aneurysmal subarachnoid haemorrhage.

    PubMed

    Zhang, Shihong; Wang, Lichun; Liu, Ming; Wu, Bo

    2010-02-17

    Delayed cerebral ischaemia is a significant contributor to poor outcome (death or disability) in patients with aneurysmal subarachnoid haemorrhage (SAH). Tirilazad is considered to have neuroprotective properties in animal models of acute cerebral ischaemia. To assess the efficacy and safety of tirilazad in patients with aneurysmal SAH. We searched the Cochrane Stroke Group Trials Register (last searched October 2009); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 2, 2009); MEDLINE (1966 to October 2009); EMBASE (1980 to October 2009); and the Stroke Trials Directory, the National Center for Complementary and Alternative Medicine, and the National Institute of Health Clinical Trials Database (searched October 2009). We handsearched 10 Chinese journals, searched the reference lists of relevant publications, and contacted the manufacturers of tirilazad. Randomised trials of tirilazad started within four days of SAH onset, compared with placebo or open control in patients with aneurysmal SAH documented by angiography and computerised tomography (CT) scan or cerebrospinal fluid examination, or both. We extracted data relating to case fatality, poor outcome (death, vegetative state, or severe disability), delayed cerebral ischaemia (or symptomatic vasospasm), cerebral infarction and adverse events of treatments. We pooled the data using the Peto fixed-effect method for dichotomous data. We included five double-blind, placebo-controlled trials involving 3821 patients; there was no significant heterogeneity. Oral or intravenous nimodipine was used routinely as a background treatment in both groups in all trials. There was no significant difference between the two groups at the end of follow up for the primary outcome, death (odds ratio (OR) 0.89, 95% confidence interval (CI) 0.74 to 1.06), or in poor outcome (death, vegetative state or severe disability) (OR 1.04, 95% CI 0.90 to 1.21). During the treatment period, fewer patients

  17. Hemodynamic Intervention of Cerebral Aneurysms

    NASA Astrophysics Data System (ADS)

    Meng, Hui

    2005-11-01

    Cerebral aneurysm is a pathological vascular response to hemodynamic stimuli. Endovascular treatment of cerebral aneurysms essentially alters the blood flow to stop them from continued growth and eventual rupture. Compared to surgical clipping, endovascular methods are minimally invasive and hence rapidly gaining popularity. However, they are not always effective with risks of aneurysm regrowth and various complications. We aim at developing a Virtual Intervention (VI) platform that allows: patient-specific flow calculation and risk prediction as well as recommendation of tailored intervention based on quantitative analysis. This is a lofty goal requiring advancement in three areas of research: (1). Advancement of image-based CFD; (2) Understanding the biological/pathological responses of tissue to hemodynamic factors in the context of cerebral aneurysms; and (3) Capability of designing and testing patient-specific endovascular devices. We have established CFD methodologies based on anatomical geometry obtained from 3D angiographic or CT images. To study the effect of hemodynamics on aneurysm development, we have created a canine model of a vascular bifurcation anastomosis to provide the hemodynamic environment similar to those in CA. Vascular remodeling was studied using histology and compared against the flow fields obtained from CFD. It was found that an intimal pad, similar to those frequently seen clinically, developed at the flow impingement site, bordering with an area of `groove' characteristic of an early stage of aneurysm, where the micro environment exhibits an elevated wall shear stresses. To further address the molecular mechanisms of the flow-mediated aneurysm pathology, we are also developing in vitro cell culture systems to complement the in vivo study. Our current effort in endovascular device development focuses on novel stents that alters the aneurysmal flow to promote thrombotic occlusion as well as favorable remodeling. Realization of an

  18. Comparison of Montreal Cognitive Assessment and Mini-Mental State Examination in Evaluating Cognitive Domain Deficit Following Aneurysmal Subarachnoid Haemorrhage

    PubMed Central

    Wong, George Kwok Chu; Lam, Sandy Wai; Wong, Adrian; Ngai, Karine; Poon, Wai Sang; Mok, Vincent

    2013-01-01

    Objective Cognitive deficits are common after aneurysmal subarachnoid haemorrhage (aSAH), and clinical evaluation is important for their management. Our hypothesis was that the Montreal Cognitive Assessment (MoCa) is superior to the Mini-Mental State Examination (MMSE) in screening for cognitive domain deficit in aSAH patients. Methods We carried out a prospective observational and diagnostic accuracy study on Hong Kong aSAH patients aged 21 to 75 years who had been admitted within 96 hours of ictus. The domain-specific neuropsychological assessment battery, the MoCA and MMSE were administered 2–4 weeks and 1 year after ictus. A cognitive domain deficit was defined as a cognitive domain z score <−1.65 (below the fifth percentile). Cognitive impairment was defined as two or more cognitive domain deficits. The study is registered at ClinicalTrials.gov of the US National Institutes of Health (NCT01038193). Results Both the MoCA and the MMSE were successful in differentiating between patients with and without cognitive domain deficits and cognitive impairment at both assessment periods. At 1 year post-ictus, the MoCA produced higher area under the curve scores for cognitive impairment than the MMSE (MoCA, 0.92; 95% CI, 0.83 to 0.97 versus MMSE, 0.77; 95% CI, 0.66 to 0.83, p = 0.009). Interpretation Cognitive domain deficits and cognitive impairment in patients with aSAH can be screened with the MoCA in both the subacute and chronic phases. PMID:23573223

  19. In Vivo High-Frequency Ultrasound for the Characterization of Thrombi Associated with Aortic Aneurysms in an Experimental Mouse Model.

    PubMed

    Jansen, Christian H P; Brangsch, Julia; Reimann, Carolin; Adams, Lisa; Hamm, Bernd; Botnar, Rene M; Makowski, Marcus R

    2017-09-28

    The development of abdominal aortic aneurysm (AAA) associated thrombi plays an important role during the onset and progression of AAAs. The aim of this study was to evaluate the potential of high-frequency ultrasound for characterization of AAA associated thrombi in an apolipoprotein-E-deficient mouse-model. Ultrasound measurements were performed using a high-resolution ultrasound system (Vevo770, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) with a 30 MHz linear-array transducer (RMV707 B). Magnetic resonance imaging with a 3 Tesla scanner (Achieva MR system, Philips Healthcare, Best, The Netherlands) and a single-loop microscopy coil was performed as a reference standard. All stages of aneurysm development were evaluated by histologic analyses. The "signal-thrombus-matrix" to "signal-blood" ratio on high-frequency ultrasound measurements showed a strong correlation (R(2) = 0.81, p <0.05) with the state of extracellular matrix remodeling. Furthermore, size measurements derived from the high-frequency ultrasound correlated well with magnetic resonance imaging and histology. This study demonstrated that high-frequency ultrasound enables the reliable in vivo quantification of extracellular matrix remodeling at various stages of thrombus development, based on the thrombus echogenicity. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Time evolution and hemodynamics of cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Sforza, Daniel M.; Putman, Christopher; Tateshima, Satoshi; Viñuela, Fernando; Cebral, Juan

    2011-03-01

    Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because they are being more frequently diagnosed before rupture and the prognosis of subarachnoid hemorrhage is poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately, the processes of aneurysm initiation, growth and rupture are not well understood. Multiple factors associated to these processes have been identified. Our goal is to investigate two of them, arterial hemodynamics (using computational fluid dynamics) and the peri-aneurysmal environment, by studying a group of growing cerebral aneurysms that are followed longitudinally in time. Six patients with unruptured untreated brain aneurysms which exhibited growth during the observation period were selected for the study. Vascular models of each aneurysm at each observation time were constructed from the corresponding computed tomography angiography (CTA) images. Subsequently, models were aligned, and geometrical differences quantified. Blood flow was modeled with the 3D unsteady incompressible Navier-Stokes equation for a Newtonian fluid, and wall shear stress distribution and flow patterns were calculated and visualized. Analysis of the simulations and changes in geometry revealed asymmetric growth patterns and suggests that areas subject to vigorous flows, i.e. relative high wall shear stress and concentrated streamlines patterns; correspond to regions of aneurysm growth. Furthermore, in some cases the geometrical evolution of aneurysms is clearly affected by contacts with bone structures and calcifications in the wall, and as a consequence the hemodynamics is greatly modified. Thus, in these cases the peri-aneurysmal environment must be considered when analyzing aneurysm evolution.

  1. Structured assessment of hypopituitarism after traumatic brain injury and aneurysmal subarachnoid hemorrhage in 1242 patients: the German interdisciplinary database.

    PubMed

    Schneider, Harald J; Schneider, Manfred; Kreitschmann-Andermahr, Ilonka; Tuschy, Ulrich; Wallaschofski, Henri; Fleck, Steffen; Faust, Michael; Renner, Caroline I E; Kopczak, Anna; Saller, Bernhard; Buchfelder, Michael; Jordan, Martina; Stalla, Günter K

    2011-09-01

    Clinical studies have demonstrated that traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage (SAH) are frequent causes of long-term disturbances of hypothalamo-pituitary function. This study aimed to assess the prevalence and associated factors of post-traumatic hypopituitarism in a large national registry of patients with TBI and SAH. Data were collected from 14 centers in Germany and Austria treating patients for TBI or SAH and performing endocrine assessments. Data were collected using a structured, internet-based study sheet, obtaining information on clinical, radiological, and hormonal parameters. A total of 1242 patients (825 TBI, age 43.5±19.7 years; 417 SAH, age 49.7±11.8 years) were included. We studied the prevalence of hypopituitarism reported based on different definitions of laboratory values and stimulation tests. Stimulation tests for the corticotropic and somatotropic axes were performed in 26% and 22% of the patients, respectively. The prevalence of hypopituitarism in the chronic phase (at least 5 months after the event) by laboratory values, physician diagnoses, and stimulation tests, was 35%, 36%, and 70%, respectively. Hypopituitarism was less common in the acute phase. According to the frequency of endocrine dysfunction, pituitary hormone secretion was impaired in the following sequence: ACTH, LH/FSH, GH, and TSH. TBI patients with abnormal stimulation tests had suffered from more severe TBI than patients with normal stimulation tests. In conclusion, our data confirm that hypopituitarism is a common complication of TBI and SAH. It is possible that patients with a higher likelihood of hypopituitarism were selected for endocrine stimulation tests.

  2. How Is an Aneurysm Treated?

    MedlinePlus

    ... NHLBI on Twitter. How Is an Aneurysm Treated? Aortic aneurysms are treated with medicines and surgery. Small aneurysms ... doing your normal daily activities Treatment for an aortic aneurysm is based on its size. Your doctor may ...

  3. Intracranial aneurysm growth quantification in CTA

    NASA Astrophysics Data System (ADS)

    Firouzian, Azadeh; Manniesing, Rashindra; Metz, Coert T.; Klein, Stefan; Velthuis, Birgitta K.; Rinkel, Gabriel J. E.; van der Lugt, Aad; Niessen, Wiro J.

    2012-02-01

    Next to aneurysm size, aneurysm growth over time is an important indicator for aneurysm rupture risk. Manual assessment of aneurysm growth is a cumbersome procedure, prone to inter-observer and intra-observer variability. In clinical practice, mainly qualitative assessment and/or diameter measurement are routinely performed. In this paper a semi-automated method for quantifying aneurysm volume growth over time in CTA data is presented. The method treats a series of longitudinal images as a 4D dataset. Using a 4D groupwise non-rigid registration method, deformations with respect to the baseline scan are determined. Combined with 3D aneurysm segmentation in the baseline scan, volume change is assessed using the deformation field at the aneurysm wall. For ten patients, the results of the method are compared with reports from expert clinicians, showing that the quantitative results of the method are in line with the assessment in the radiology reports. The method is also compared to an alternative method in which the volume is segmented in each 3D scan individually, showing that the 4D groupwise registration method agrees better with manual assessment.

  4. Middle cerebral artery bifurcation aneurysms: an anatomic classification scheme for planning optimal surgical strategies.

    PubMed

    Washington, Chad W; Ju, Tao; Zipfel, Gregory J; Dacey, Ralph G

    2014-03-01

    Changing landscapes in neurosurgical training and increasing use of endovascular therapy have led to decreasing exposure in open cerebrovascular neurosurgery. To ensure the effective transition of medical students into competent practitioners, new training paradigms must be developed. Using principles of pattern recognition, we created a classification scheme for middle cerebral artery (MCA) bifurcation aneurysms that allows their categorization into a small number of shape pattern groups. Angiographic data from patients with MCA aneurysms between 1995 and 2012 were used to construct 3-dimensional models. Models were then analyzed and compared objectively by assessing the relationship between the aneurysm sac, parent vessel, and branch vessels. Aneurysms were then grouped on the basis of the similarity of their shape patterns in such a way that the in-class similarities were maximized while the total number of categories was minimized. For each category, a proposed clip strategy was developed. From the analysis of 61 MCA bifurcation aneurysms, 4 shape pattern categories were created that allowed the classification of 56 aneurysms (91.8%). The number of aneurysms allotted to each shape cluster was 10 (16.4%) in category 1, 24 (39.3%) in category 2, 7 (11.5%) in category 3, and 15 (24.6%) in category 4. This study demonstrates that through the use of anatomic visual cues, MCA bifurcation aneurysms can be grouped into a small number of shape patterns with an associated clip solution. Implementing these principles within current neurosurgery training paradigms can provide a tool that allows more efficient transition from novice to cerebrovascular expert.

  5. In vitro investigation of contrast flow jet timing in patient-specific intracranial aneurysms

    PubMed Central

    Desai, Virendra R.; Britz, Garvin W.

    2016-01-01

    Background The direction and magnitude of intra-aneurysmal flow jet are significant risk factors of subarachnoid hemorrhage, and the change of flow jet during an endovascular procedure has been used for prediction of aneurysm occlusion or whether an additional flow diverter (FD) is warranted. However, evaluation of flow jets is often unreliable due to a large variation of flow jet on the digital subtraction angiograms, and this flow pattern variation may result in incorrect clinical diagnosis Therefore, factors contributing to the variation in flow jet are examined at an in vitro setting, and the findings can help us to understand the nature of flow jet and devise a better plan to quantify the aneurysmal hemodynamics accurately. Methods Intra-aneurysmal flows in three patient-specific aneurysms between 11 and 25 mm were investigated in vitro, and a FD was deployed in each aneurysm model. X-ray imaging of these models were performed at injection rates between 0.2 and 2 mL/s. Pulsatile blood pump and aneurysm model were imaged together to determine the timing of flow jet. Results The contrast bolus arrives at the aneurysm early at high contrast injection rates. The flow patterns with slow injection rates exhibit strong inertia that is associated with the systole flow. Flow jets arrive at the aneurysms at the peak systole when the bolus is injected at 0.2 mL/s. The contrast-to-signal ratio is the highest at the injection rate of 0.5 mL/s. Effect of flow diversion can only be assessed at an injection rate greater than 0.5 mL/s. Conclusions Intra-aneurysmal flow jet is highly dependent on the injection rate of the contrast agent. For the internal carotid artery (ICA) aneurysms, the systolic flows can be visualized at slow injection rates (<0.5 mL/s), while the diastolic flow jets are visible at higher injection rates (>1 mL/s). Dependence of flow jet on the contrast injection rate has serious clinical implications and needs to be considered during diagnostic procedures

  6. [Popliteal aneurysms].

    PubMed

    Vaquero Morillo, F; Zorita Calvo, A; Fernández-Samos Gutiérrez, R; García Vázquez, J; Ortega Martín, J M; Fernández Morán, C

    1992-01-01

    We presented the review of 22 cases of popliteal aneurysms with a follow-time of three years. One case was a woman and 5 cases were bilaterals. The most part of cases begun as a latter acute ischemia. Sixteen cases were treated surgically, with a null rate of mortality, 2 amputations, 4 cases of residual intermittent claudication and 10 no-symptomatic patients, with present distal pulses. Etiology, clinical presentation, diagnosis, technics and results are presented and a comparison with other authors is made. Our experience support an interventionist attitude in cases of elderly nonsymptomatic patients, performed by internal way and saphenous vein substitution.

  7. [Aortic aneurysm].

    PubMed

    Villar, Fernando; Pedro-Botet, Juan; Vila, Ramón; Lahoz, Carlos

    2013-01-01

    Aortic aneurysm is one important cause of death in our country. The prevalence of abdominal aortic aneurism (AAA) is around 5% for men older than 50 years of age. Some factors are associated with increased risk for AAA: age, hypertension, hypercholesterolemia, cardiovascular disease and, in particular, smoking. The medical management of patients with an AAA includes cardiovascular risk treatment, particularly smoking cessation. Most of major societies guidelines recommend ultrasonography screening for AAA in men aged 65 to 75 years who have ever smoked because it leads to decreased AAA-specific mortality. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  8. The Genetic Basis of Aortic Aneurysm

    PubMed Central

    Lindsay, Mark E.; Dietz, Harry C.

    2014-01-01

    Gene identification in human aortic aneurysm conditions is proceeding at a rapid pace and the integration of pathogenesis-based management strategies in clinical practice is an emerging reality. Human genetic alterations causing aneurysm involve diverse gene products including constituents of the extracellular matrix, cell surface receptors, intracellular signaling molecules, and elements of the contractile cytoskeleton. Animal modeling experiments and human genetic discoveries have extensively implicated the transforming growth factor-β (TGF-β) cytokine-signaling cascade in aneurysm progression, but mechanistic links between many gene products remain obscure. This chapter will integrate human genetic alterations associated with aortic aneurysm with current basic research findings in an attempt to form a reconciling if not unifying model for hereditary aortic aneurysm. PMID:25183854

  9. Non-invasive assessment of vasospasm following aneurysmal SAH using C-arm FDCT parenchymal blood volume measurement in the neuro-interventional suite: Technical feasibility

    PubMed Central

    Downer, Jonathan; Corkill, Rufus; Byrne, James V

    2015-01-01

    Introduction Cerebral vasospasm is the leading cause of morbidity and mortality in patients with aneurysmal subarachnoid haemorrhage (SAH) surviving the initial ictus. Commonly used techniques for vasospasm assessment are digital subtraction angiography and transcranial Doppler sonography. These techniques can reliably identify only the major vessel spasm and fail to estimate its haemodynamic significance. To overcome these issues and to enable comprehensive non-invasive assessment of vasospasm inside the interventional suite, a novel protocol involving measurement of parenchymal blood volume (PBV) using C-arm flat detector computed tomography (FDCT) was implemented. Materials and methods Patients from the neuro-intensive treatment unit (ITU) with suspected vasospasm following aneurysmal SAH were scanned with a biplane C-arm angiography system using an intravenous contrast injection protocol. The PBV maps were generated using prototype software. Contemporaneous clinically indicated MR scan including the diffusion- and perfusion-weighted sequences was performed. C-arm PBV maps were compared against the MR perfusion maps. Results Distribution of haemodynamic impairment on C-arm PBV maps closely matched the pattern of abnormality on MR perfusion maps. On visual comparison between the two techniques, the extent of abnormality indicated PBV to be both cerebral blood flow and cerebral blood volume weighted. Conclusion C-arm FDCT PBV measurements allow an objective assessment of the severity and localisation of cerebral hypoperfusion resulting from vasospasm. The technique has proved feasible and useful in very sick patients after aneurysmal SAH. The promise shown in this early study indicates that it deserves further evaluation both for post-SAH vasospasm and in other relevant clinical settings. PMID:26017197

  10. Ultrasound Screening for Abdominal Aortic Aneurysm

    PubMed Central

    2006-01-01

    Executive Summary Objective The aim of this review was to assess the effectiveness of ultrasound screening for asymptomatic abdominal aortic aneurysm (AAA). Clinical Need Abdominal aortic aneurysm is a localized abnormal dilatation of the aorta greater than 3 cm. In community surveys, the prevalence of AAA is reported to be between 2% and 5.4%. Abdominal aortic aneurysms are found in 4% to 8% of older men and in 0.5% to 1.5% of women aged 65 years and older. Abdominal aortic aneurysms are largely asymptomatic. If left untreated, the continuing extension and thinning of the vessel wall may eventually result in rupture of the AAA. Often rupture may occur without warning, causing acute pain. Rupture is always life threatening and requires emergency surgical repair of the ruptured aorta. The risk of death from ruptured AAA is 80% to 90%. Over one-half of all deaths attributed to a ruptured aneurysm take place before the patient reaches hospital. In comparison, the rate of death in people undergoing elective surgery is 5% to 7%; however, symptoms of AAA rarely occur before rupture. Given that ultrasound can reliably visualize the aorta in 99% of the population, and its sensitivity and specificity for diagnosing AAA approaches 100%, screening for aneurysms is worth considering as it may reduce the incidence of ruptured aneurysms and hence reduce unnecessary deaths caused by AAA-attributable mortality. Review Strategy The Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases to determine the effectiveness of ultrasound screening for abdominal aortic aneurysms. Case reports, letters, editorials, nonsystematic reviews, non-human studies, and comments were excluded. Questions asked: Is population-based AAA screening effective in improving health outcomes in asymptomatic populations? Is AAA screening acceptable to the population? Does this affect the

  11. Assessment of hemodynamics of intracranial aneurysms using Doppler optical coherence tomography in patient specific phantoms: preliminary results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramjist, Joel M.; Jivraj, Jamil; Barrows, Dexter; Vuong, Barry; Wong, Ronnie; Yang, Victor X. D.

    2017-02-01

    Intracranial aneurysms affect a large number of individuals every year. Changes to hemodynamics are thought to be a crucial factor in the initial formation and enlargement of intracranial aneurysms. Previously, surgical clipping - an open an invasive procedure, was the standard of care. More recently, minimally invasive, catheter based therapies, specifically stenting and coiling, has been employed for treatment as it is less invasive and poses fewer overall risks. However, these treatments can further alter hemodynamic patterns of patients, affecting efficacy and prognosis. Doppler optical coherence tomography (DOCT) has shown to be useful for the evaluation of changes to hemodynamic patterns in various vascular pathologies, and intravascular DOCT may provide useful insight in the evaluation and changes to hemodynamic patterns before and during the treatment of aneurysms. In this study, we present preliminary results of DOCT imaging used in three patient-specific aneurysm phantoms located within the Circle of Willis both pre and post-treatment. These results are compared with computational fluid dynamics (CFD) simulations and high-speed camera imaging for further interpretation and validation of results.

  12. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models.

    PubMed

    Milewicz, Dianna M; Prakash, Siddharth K; Ramirez, Francesco

    2017-01-14

    Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.

  13. Flow characteristics in a canine aneurysm model: A comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations

    PubMed Central

    Jiang, Jingfeng; Johnson, Kevin; Valen-Sendstad, Kristian; Mardal, Kent-Andre; Wieben, Oliver; Strother, Charles

    2011-01-01

    Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using “subject-specific” pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. Results: PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%–20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). Conclusions: In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms. PMID:22047395

  14. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture.

    PubMed

    Sweeting, Michael J; Thompson, Simon G

    2011-09-01

    Shared random effects joint models are becoming increasingly popular for investigating the relationship between longitudinal and time-to-event data. Although appealing, such complex models are computationally intensive, and quick, approximate methods may provide a reasonable alternative. In this paper, we first compare the shared random effects model with two approximate approaches: a naïve proportional hazards model with time-dependent covariate and a two-stage joint model, which uses plug-in estimates of the fitted values from a longitudinal analysis as covariates in a survival model. We show that the approximate approaches should be avoided since they can severely underestimate any association between the current underlying longitudinal value and the event hazard. We present classical and Bayesian implementations of the shared random effects model and highlight the advantages of the latter for making predictions. We then apply the models described to a study of abdominal aortic aneurysms (AAA) to investigate the association between AAA diameter and the hazard of AAA rupture. Out-of-sample predictions of future AAA growth and hazard of rupture are derived from Bayesian posterior predictive distributions, which are easily calculated within an MCMC framework. Finally, using a multivariate survival sub-model we show that underlying diameter rather than the rate of growth is the most important predictor of AAA rupture.

  15. Overuse Injury Assessment Model

    DTIC Science & Technology

    2005-03-01

    2.1 Model Framework It is well established that training is needed to increase performance, but overtraining is detrimental and can cause injury ...DAMD17-02-C-0073 TITLE: Overuse Injury Assessment Model PRINCIPAL INVESTIGATOR: James H. Stuhmiller, Ph.D...2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DAMD17-02-C-0073 Overuse Injury Assessment Model 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  16. Analysis and Comparison of 2-D Hemodynamic Numerical Simulation of Elastic Aneurysm and Rigid Aneurysm

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Ding, G. H.; Yin, W. Y.; Yang, X. J.; Shi, W. C.; Zhang, X. L.

    The objective of this study is to investigate the effect of hemodynamic parameters on the formation, growth and rupture of an aneurysm. Our simulation of the elastic and rigid aneurysm is based on a DSA or other clinic image. The simulatied results are that there are great differences in the distribution of velocity magnitude at some sections which are predicted by the two models. For the elastic wall model, the distribution of velocity magnitude of one outlet is obviously off-center, which influences the distribution of wall shear stress (WSS) and exchange of substance through the vessel wall. The currents of the distributions of WSS along the wall of aneurysm for the two models are similar. But there are obvious differences between the two models in the values especially at the neck of aneurysm. This study demonstrates obviously that the elastic wall model suits the simulation for growth and rupture of an aneurysm better.

  17. Coil Embolization for Intracranial Aneurysms

    PubMed Central

    2006-01-01

    , resulting in a subarachnoid hemorrhage (SAH), the mortality rate can be 40% to 50%, with severe morbidity of 10% to 20%. The reported overall risk of rupture is 1.9% per year and is higher for women, cigarette smokers, and cocaine users, and in aneurysms that are symptomatic, greater than 10 mm in diameter, or located in the posterior circulation. If left untreated, there is a considerable risk of repeat hemorrhage in a ruptured aneurysm that results in increased mortality. In Ontario, intracranial aneurysms occur in about 1% to 4% of the population, and the annual incidence of SAH is about 10 cases per 100,000 people. In 2004-2005, about 660 intracranial aneurysm repairs were performed in Ontario. Treatment of Intracranial Aneurysms Treatment of an unruptured aneurysm attempts to prevent the aneurysm from rupturing. The treatment of a ruptured intracranial aneurysm aims to prevent further hemorrhage. There are 3 approaches to treating an intracranial aneurysm. Small, asymptomatic aneurysms less than 10 mm in diameter may be monitored without any intervention other than treatment for underlying risk factors such as hypertension. Open surgical clipping, involves craniotomy, brain retraction, and placement of a silver clip across the neck of the aneurysm while a patient is under general anesthesia. This procedure is associated with surgical risks and neurological deficits. Endovascular coil embolization, introduced in the 1990s, is the health technology under review. Literature Review Methods The Medical Advisory Secretariat searched the International Health Technology Assessment (INAHTA) Database and the Cochrane Database of Systematic Reviews to identify relevant systematic reviews. OVID Medline, Medline In-Process and Other Non-Indexed Citations, and Embase were searched for English-language journal articles that reported primary data on the effectiveness or cost-effectiveness of treatments for intracranial aneurysms, obtained in a clinical setting or analyses of primary

  18. Aneurysm Characteristics Associated with the Rupture Risk of Intracranial Aneurysms: A Self-Controlled Study.

    PubMed

    Kang, Huibin; Ji, Wenjun; Qian, Zenghui; Li, Youxiang; Jiang, Chuhan; Wu, Zhongxue; Wen, Xiaolong; Xu, Wenjuan; Liu, Aihua

    2015-01-01

    This study analyzed the rupture risk of intracranial aneurysms (IAs) according to aneurysm characteristics by comparing the differences between two aneurysms in different locations within the same patient. We utilized this self-controlled model to exclude potential interference from all demographic factors to study the risk factors related to IA rupture. A total of 103 patients were diagnosed with IAs between January 2011 and April 2015 and were enrolled in this study. All enrolled patients had two IAs. One IA (the case) was ruptured, and the other (the control) was unruptured. Aneurysm characteristics, including the presence of a daughter sac, the aneurysm neck, the parent artery diameter, the maximum aneurysm height, the maximum aneurysm width, the location, the aspect ratio (AR, maximum perpendicular height/average neck diameter), the size ratio (SR, maximum aneurysm height/average parent diameter) and the width/height ratio (WH ratio, maximum aneurysm width/maximum aneurysm height), were collected and analyzed to evaluate the rupture risks of the two IAs within each patient and to identify the independent risk factors associated with IA rupture. Multivariate, conditional, backward, stepwise logistic regression analysis was performed to identify the independent risk factors associated with IA rupture. The multivariate analysis identified the presence of a daughter sac (odds ratio [OR], 13.80; 95% confidence interval [CI], 1.65-115.87), a maximum aneurysm height ≥7 mm (OR, 4.80; 95% CI, 1.21-18.98), location on the posterior communicating artery (PCOM) or anterior communicating artery (ACOM; OR, 3.09; 95% CI, 1.34-7.11) and SR (OR, 2.13; 95% CI, 1.16-3.91) as factors that were significantly associated with IA rupture. The presence of a daughter sac, the maximum aneurysm height, PCOM or ACOM locations and SR (>1.5±0.7) of unruptured IAs were significantly associated with IA rupture.

  19. Single-session Coil Embolization of Multiple Intracranial Aneurysms

    PubMed Central

    Oh, Keun

    2013-01-01

    Objective There is no clear treatment strategy for the management of multiple intracranial aneurysms because of variable anatomical distribution, difficult identification of the aneurysm ruptured, and poor overall outcomes. The purpose of this study was to assess the efficacy and safety of single-session coil embolization for multiple intracranial aneurysms. Methods Between September 2008 and December 2012, 209 aneurysms in 117 patients were treated at our institute. Twenty eight among the 117 patients had multiple aneurysms with a total of 71, and 60 of the 71 aneurysms underwent coil embolization in a single-session. Results A total of 60 aneurysms were treated with a single-session coil embolization, of which the most frequent locations were in the posterior communicating artery, followed by the middle cerebral artery. Immediate post-embolization angiographies showed total occlusion in 49 (81.7%) aneurysms, remnant neck in 6 (10%), and body-filling in 5 (8.3%). Procedure-related complications had developed in 2 (3.3%) of the 60 embolized aneurysms: an asymptomatic thromboembolic event, and a partial coil protrusion without a subsequent thromboembolic complication. Conclusion With careful evaluation of individual aneurysm characteristics and configuration, multiple intracranial aneurysms previously thought to require multimodality therapy can be safely treated in a single-session coil embolization. PMID:24167798

  20. Abdominal aortic aneurysm

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000162.htm Abdominal aortic aneurysm To use the sharing features on this page, ... to the abdomen, pelvis, and legs. An abdominal aortic aneurysm occurs when an area of the aorta becomes ...

  1. Aneurysm in the brain

    MedlinePlus

    ... small number of these aneurysms cause symptoms or rupture. Risk factors include: Family history of cerebral aneurysms ... could be a warning sign of a future rupture that may occur days to weeks after the ...

  2. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis or plaque buildup causes the ... weak and bulge outward like a balloon. An AAA develops slowly over time and has few noticeable ...

  3. Cerebral aneurysm (image)

    MedlinePlus

    ... loss of nerve function may indicate that an aneurysm may be causing pressure on adjacent brain tissue. ... changes or other neurological changes can indicate the aneurysm has ruptured and is bleeding into the brain. ...

  4. Measurement of pulsatile haemodynamic forces in a model of a bifurcated stent graft for abdominal aortic aneurysm repair.

    PubMed

    Zhou, S N; How, T V; Black, R A; Vallabhaneni, S R; McWilliams, R; Brennan, J A

    2008-05-01

    The longitudinal haemodynamic force (LF) acting on a bifurcated stent graft for abdominal aortic aneurysm repair has been estimated previously using a simple one-dimensional analytical model based on the momentum equation which assumes steady flow of an inviscid fluid. Using an instrumented stent-graft model an experimental technique was developed to measure the LF under pulsatile flow conditions. The physical stent-graft model, with main trunk diameter of 30mm and limb diameters of 12 mm, was fabricated from aluminium. Strain gauges were bonded on to the main trunk to determine the longitudinal strain which is related to the LF. After calibration, the model was placed in a pulsatile flow system with 40 per cent aqueous glycerol solution as the circulating fluid. The LF was determined using a Wheatstone bridge signal-conditioning circuit. The signals were averaged over 590 cardiac cycles and saved to a personal computer for subsequent processing. The LF was strongly dependent on the pressure but less so on the flowrate. The measured forces were higher than those predicted by the simplified mathematical model by about 6-18 per cent during the cardiac cycle. The excess measured forces are due to the viscous drag and the effect of pulsatile flow. The peak measured LF in this model of 30 mm diameter may exceed the fixation force of some current clinical endovascular stent grafts.

  5. A patient-specific intracranial aneurysm model with endothelial lining: a novel in vitro approach to bridge the gap between biology and flow dynamics.

    PubMed

    Kaneko, Naoki; Mashiko, Toshihiro; Namba, Katsunari; Tateshima, Satoshi; Watanabe, Eiju; Kawai, Kensuke

    2017-06-26

    To develop an in vitro model for studying the biological effect of complex-flow stress on endothelial cells in three-dimensional (3D) patient-specific vascular geometry. A vessel replica was fabricated with polydimethylsiloxanes using 3D printing technology from vascular image data acquired by rotational angiography. The vascular model was coated with fibronectin and immersed in a tube filled with a cell suspension of endothelium, and then cultured while being slowly rotated in three dimensions. Culture medium with viscosity was perfused in the circulation with the endothelialized vascular model. A computational fluid dynamics (CFD) study was conducted using perfusion conditions used in the flow experiment. The morphology of endothelial cells was observed under a confocal microscope. The CFD study showed low wall shear stress and circulating flow in the apex of the basilar tip aneurysm, with linear flow in the parent artery. Confocal imaging demonstrated that the inner surface of the vascular model was evenly covered with monolayer endothelial cells. After 24 h of flow circulation, endothelial cells in the parent artery exhibited a spindle shape and aligned with the flow direction. In contrast, endothelial cells in the aneurysmal apex were irregular in shape and size. A geometrically realistic intracranial aneurysm model with live endothelial lining was successfully developed. This in vitro model enables a new research approach combining study of the biological impact of complex flow on endothelial cells with CFD analysis and patient information, including the presence of aneurysmal growth or rupture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. 3D visualization of strain in abdominal aortic aneurysms based on navigated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brekken, Reidar; Kaspersen, Jon Harald; Tangen, Geir Arne; Dahl, Torbjørn; Hernes, Toril A. N.; Myhre, Hans Olav

    2007-03-01

    The criterion for recommending treatment of an abdominal aortic aneurysm is that the diameter exceeds 50-55 mm or shows a rapid increase. Our hypothesis is that a more accurate prediction of aneurysm rupture is obtained by estimating arterial wall strain from patient specific measurements. Measuring strain in specific parts of the aneurysm reveals differences in load or tissue properties. We have previously presented a method for in vivo estimation of circumferential strain by ultrasound. In the present work, a position sensor attached to the ultrasound probe was used for combining several 2D ultrasound sectors into a 3D model. The ultrasound was registered to a computed-tomography scan (CT), and the strain values were mapped onto a model segmented from these CT data. This gave an intuitive coupling between anatomy and strain, which may benefit both data acquisition and the interpretation of strain. In addition to potentially provide information relevant for assessing the rupture risk of the aneurysm in itself, this model could be used for validating simulations of fluid-structure interactions. Further, the measurements could be integrated with the simulations in order to increase the amount of patient specific information, thus producing a more reliable and accurate model of the biomechanics of the individual aneurysm. This approach makes it possible to extract several parameters potentially relevant for predicting rupture risk, and may therefore extend the basis for clinical decision making.

  7. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.

    PubMed

    Ryan, Justin R; Almefty, Kaith K; Nakaji, Peter; Frakes, David H

    2016-04-01

    Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience. The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing. Design of the model focused on reproducibility as well as adaptability to new patient geometry. A modular, reproducible, and patient-derived medical simulacrum was developed for medical learners to practice aneurysmal clipping procedures. Various forms of 3D printing were used to develop a geometrically accurate cranium and vascular tree featuring 9 patient-derived aneurysms. 3D printing in conjunction with elastomeric casting was leveraged to achieve a patient-derived brain model with tactile properties not yet available from commercial 3D printing technology. An educational pilot study was performed to gauge simulation efficacy. Through the novel manufacturing process, a patient-derived simulacrum was developed for neurovascular surgical simulation. A follow-up qualitative study suggests potential to enhance current educational programs; assessments support the efficacy of the simulacrum. The proposed aneurysm clipping simulator has the potential to improve learning experiences in surgical environment. 3D printing and elastomeric casting can produce patient-derived models for a dynamic learning environment that add value to surgical training and preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Thoracic Aortic Aneurysm Growth: Role of Sex and Aneurysm Etiology.

    PubMed

    Cheung, Katie; Boodhwani, Munir; Chan, Kwan-Leung; Beauchesne, Luc; Dick, Alexander; Coutinho, Thais

    2017-02-03

    Thoracic aortic aneurysm (TAA) outcomes are worse in women than men, although reasons for sex differences are unknown. Because faster TAA growth is a risk factor for acute aortic syndromes, we sought to determine the role of sex and aneurysm etiology on TAA growth. Eighty-two consecutive unoperated subjects with TAA who had serial aneurysm measurements were recruited. In multivariable linear regression the association of female sex with aneurysm growth rate was assessed after adjustment for potential confounders. We also tested the interaction term sex×aneurysm etiology in the prediction of TAA growth. Seventy-four percent of subjects were men; mean±SD age was 62.4±11.9 years in men and 67.7±10.7 years in women (P=0.06). Forty-seven (57%) subjects had degenerative TAAs, and the remainder had heritable TAAs. Absolute baseline aneurysm size and follow-up time were not different between men and women. Aneurysm growth rate was 1.19±1.15 mm/y in women and 0.59±0.66 mm/y in men (P=0.02). Female sex remained significantly associated with greater aneurysm growth in multivariable analyses (β±SE: 0.35±0.12, P=0.005). In addition, female sex was associated with faster TAA growth only among those with degenerative TAA (β±SE: 0.33±0.08, P=0.0002) and not among those with heritable TAA (P=0.79), with a significant sex×etiology interaction (P=0.001). TAA growth rates are greater in women than men, and this difference is specific to women with degenerative TAAs. Our findings may explain sex differences in TAA outcomes and provide a foundation for future investigations of this topic. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Endovascular coil embolization of aneurysm neck for the treatment of ruptured intracranial aneurysm with bleb formation

    PubMed Central

    Wan, Jun; Gu, Weijin; Zhang, Xiaolong; Geng, Daoying; Lu, Gang; Huang, Lei; Zhang, Lei; Ge, Liang; Ji, Lihua

    2014-01-01

    Background Ruptured intracranial aneurysm (ICA) with bleb formation (RICABF) is a special type of ruptured ICA. However, the exact role and effectiveness of endovascular coil embolization (ECE) in RICABF is unknown. We aimed to investigate the effectiveness and safety of ECE of aneurysm neck for RICABF treatment. Material/Methods We retrospectively assessed consecutive patients who were hospitalized in our endovascular intervention center between October 2004 and May 2012. Overall, 86 patients underwent ECE of aneurysm neck for 86 RICABF. Treatments outcomes included secondary rupture/bleeding rate, aneurysm neck embolization rate, residual/recurrent aneurysm, intraoperative incidents, and post-embolization complications, as well as improvements in the Glasgow outcome scale (extended) (GOS-E). Results Complete occlusion was achieved in 72 aneurysms (72/86, 83.7%), while 12 aneurysms (12/86, 14.0%) had a residual neck, and 2 aneurysms (2/86, 2.3%) had a residual aneurysm. The postoperative GOS-E was 3 in 3 patients (3.5%), 4 in 10 patients (11.6%), and 5 in 73 patients (84.9%). Follow-up angiography was performed in all patients (mean 9.0 months, interquartile range of 9.0). Recurrence was found in 3 patients (3/86, 3.5%). No aneurysm rupture or bleeding was reported. Conclusions Our mid-term follow-up study showed that ECE of aneurysm neck was an effective and safe treatment modality for RICABF. The long-term effectiveness and safety of this interventional radiology technique need to be investigated in prospective and comparative studies. PMID:24986761

  10. Three-year audit and cost assessment of open abdominal aortic aneurysm repair in a district general hospital.

    PubMed

    El Kafsi, J; Wake, J; Lintott, P; Northeast, A; McLaren, A

    2009-11-01

    The aims of this study were to audit the outcome of elective open abdominal aortic aneurysm (AAA) repair in a district general hospital, as well as investigate the true costs for this procedure in relation to the national tariff. A database is maintained on AAA surgery in the trust. Data were supplemented by drawing information from blood bank and clinical notes. Patients with symptomatic or emergency aneurysms were excluded. Data from January 2005 to December 2007 were obtained on demographics, morbidity, 30-day mortality and blood usage. Costs were obtained from the trust finance department. Between January 2005 and December 2007, 79 elective AAA procedures were undertaken. Median age was 75 years (range, 52-85 years), median aneurysm size was 63 mm (range, 42-105 mm) and median ITU stay was 3 days (range, 1-41 days). Major morbidity rate was 20.3% (16 of 79 patients) and 30-day mortality overall was 5.1% (4 of 79 patients). Average cost per case was pound15,012.91 (range, pound4,040.03- pound82,158.00), when National Tariff is pound6,722.00 ( pound5,649.00 x local Market Forces Factor of 1.19). Loss per case for our trust was pound8,290.91 with a total annual loss of pound218,299.56. Morbidity and mortality in this district general hospital compare well with national studies; however, the total cost is far in excess of the national tariff.

  11. Changes in the intra-aneurysmal hemodynamics due to stent placement in sidewall and bifurcating cerebrovascular aneurysms

    NASA Astrophysics Data System (ADS)

    Cantón, Gádor; Levy, David I.; Lasheras, Juan C.

    2003-11-01

    We report on an in-vitro study of the alterations in the flow characteristics in saccular aneurysm resulting from very-high-porosity stenting (Neuroform^TM) across the aneurysmal neck. Two different silicone flexible models were considered representing two characteristic shapes and locations of intracranial aneurysms. A Digital Particle Image Velocimetry (DPIV) system was used to measure the in-vitro pulsatile velocity field within the aneurysm, at the aneurysm neck-parent artery interface, and within the parent artery. A programmable pulsatile pump is used to supply the parent artery with the waveform corresponding to the flow in the internal carotid artery. In the case of the sidewall aneurysms, three stents were placed and measurements inside the aneurysmal pouch were taken after the deployment of each stent. Two crossing stents were placed in a Y configuration in the case of the bifurcating aneurysm and measurements were taken after deployment of both of them. Placing stents across the aneurysmal neck of sidewall and bifurcating cerebrovascular aneurysms does not modify the general features of the flow (a persistent three-dimensional swirling motion), but results in a small but measurable reduction in the magnitude of the peak velocity inside the aneurysmal pouch (7-8%). In the sidewall case, the reduction in the peak velocity is shown to be enhanced to 15-20% after placing the three stents.

  12. Long-term outcome of 114 children with cerebral aneurysms.

    PubMed

    Koroknay-Pál, Päivi; Lehto, Hanna; Niemelä, Mika; Kivisaari, Riku; Hernesniemi, Juha

    2012-06-01

    Population-based data on pediatric patients with aneurysms are limited. The aim of this study is to clarify the characteristics and long-term outcomes of pediatric patients with aneurysms. All pediatric patients (≤ 18 years old) with aneurysms among the 8996 aneurysm patients treated at the Department of Neurosurgery in Helsinki from 1937 to 2009 were followed from admission to the end of 2010. There were 114 pediatric patients with 130 total aneurysms during the study period. The mean patient age was 14.5 years (range 3 months to 18 years). The male:female ratio was 3:2. Eighty-nine patients (78%) presented with subarachnoid hemorrhage. The majority of the aneurysms (116 [89%]) were in the anterior circulation, and the most common location was the internal carotid artery bifurcation (36 [28%]). The average aneurysm diameter was 11 mm (range 2-55 mm) with 16 giant aneurysms (12%). Eighty aneurysms (62%) were treated microsurgically, and 37 (28%) were treated conservatively due to poor medical and neurological status of the patient or due to technical reasons during the early years of the patient series. No connective tissue disorders common to pediatric aneurysm patients were diagnosed in this series, with the exception of 1 patient with tuberous sclerosis complex. The mean follow-up duration was 24.8 years (range 0-55.8 years). At the end of follow-up, 71 patients (62%) had a good outcome, 3 (3%) were dependent, and 40 (35%) had died. Twenty-seven deaths (68%) were assessed to be aneurysm-related. Factors correlating with a favorable long-term outcome were good neurological condition of the patient on admission, aneurysm location in the anterior circulation, complete aneurysm closure, and absence of vasospasm. Six patients developed symptomatic de novo aneurysms after a median of 25 years (range 11-37 years). Fourteen patients (12%) had a family history of aneurysms. There was no increased incidence for cardiovascular diseases in long-term follow-up. Most

  13. Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin?

    PubMed

    Valen-Sendstad, Kristian; Piccinelli, Marina; KrishnankuttyRema, Resmi; Steinman, David A

    2015-06-01

    Patient-specific flow rates are rarely available for image-based computational fluid dynamics models. Instead, flow rates are often assumed to scale according to the diameters of the arteries of interest. Our goal was to determine how choice of inlet location and scaling law affect such model-based estimation of inflow rates. We focused on 37 internal carotid artery (ICA) aneurysm cases from the Aneurisk cohort. An average ICA flow rate of 245 mL min(-1) was assumed from the literature, and then rescaled for each case according to its inlet diameter squared (assuming a fixed velocity) or cubed (assuming a fixed wall shear stress). Scaling was based on diameters measured at various consistent anatomical locations along the models. Choice of location introduced a modest 17% average uncertainty in model-based flow rate, but within individual cases estimated flow rates could vary by >100 mL min(-1). A square law was found to be more consistent with physiological flow rates than a cube law. Although impact of parent artery truncation on downstream flow patterns is well studied, our study highlights a more insidious and potentially equal impact of truncation site and scaling law on the uncertainty of assumed inlet flow rates and thus, potentially, downstream flow patterns.

  14. CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm

    PubMed Central

    Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M.; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R.

    2011-01-01

    Hemodynamics is thought to be a fundamental factor in the formation, progression and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography (CTA) images acquired at one-year intervals. Physical silicone models were constructed from the CTA images using rapid prototyping techniques and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures, and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms. PMID:22548127

  15. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm.

    PubMed

    Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R

    2012-02-01

    Hemodynamics is thought to be a fundamental factor in the formation, progression, and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study, we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography images acquired at 1-y intervals. Physical silicone models were constructed from the computed tomography angiography images using rapid prototyping techniques, and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region, and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms.

  16. Evaluation of flow with dynamic x-ray imaging for aneurysms

    NASA Astrophysics Data System (ADS)

    Dohatcu, Andreea Cristina

    The main goal of this thesis is to evaluate blood flow inside cerebrovascular aneurysms using dynamic x-ray imaging. X-ray contrast substance (dye) was auto injected in elastomer aneurysm models placed in a flow loop (for in-vitro studies) to trace flow passing through aneurysms. More specifically, an improved Time-Density Curves (TDC) Roentgen-videodensitometric tracking technique, that included looking to designated regions (R) within an aneurysm rather than focusing on the entire aneurysm, was employed to get information about blood flow using cine-angiographic sequences. It is the first time R-TDC technique has been used. In complex real-time interventions on patients, 2D/3D angiographic analysis of contrast media flow is the only reliable and rapid source of information that we have in order to assess the seriousness of the disease, suggest the treatment, and verify the result of the treatment. The present study focused on finding a "correlation metric" to quantitatively describe the flow behavior within the aneurysms and examine the hemodynamic implications of several treatments using flow modulating devices applied to saccular and bifurcation geometries aneurysms. The main idea in treatment of an aneurysm is rapid reduction of the risk of rupture. This is usually done endovascularly now by totally occluding the aneurysm by packing it with mechanical or chemical agents. Our research, however, involves a new method of blocking the neck using various types of asymmetric vascular stents (AVS). We proposed and analyzed, using R-TDCs, the feasibility of a new modified endovascular method of treatment based on alteration of blood flow through the aneurysm by partial occlusion only. In-vitro studies using aneurysm phantoms with patient-specific aneurysm models were performed. Also, for the first time the new methods were used in in-vivo studies as well, on rabbit-model experimental data, in an attempt to correlate thrombogenic response of a living organism to flow

  17. Hemodynamics before and after bleb formation in cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Cebral, Juan R.; Radaelli, Alessandro; Frangi, Alejandro; Putman, Christopher M.

    2007-03-01

    We investigate whether blebs in cerebral aneurysms form in regions of low or high wall shear stress (WSS), and how the intraaneurysmal hemodynamic pattern changes after bleb formation. Seven intracranial aneurysms harboring well defined blebs were selected from our database and subject-specific computational models were constructed from 3D rotational angiography. For each patient, a second anatomical model representing the aneurysm before bleb formation was constructed by smoothing out the bleb. Computational fluid dynamics simulations were performed under pulsatile flow conditions for both models of each aneurysm. In six of the seven aneurysms, the blebs formed in a region of elevated WSS associated to the inflow jet impaction zone. In one, the bleb formed in a region of low WSS associated to the outflow zone. In this case, the inflow jet maintained a fairly concentrated structure all the way to the outflow zone, while in the other six aneurysms it dispersed after impacting the aneurysm wall. In all aneurysms, once the blebs formed, new flow recirculation regions were formed inside the blebs and the blebs progressed to a state of low WSS. Assuming that blebs form due to a focally damaged arterial wall, these results seem to indicate that the localized injury of the vessel wall may be caused by elevated WSS associated with the inflow jet. However, the final shape of the aneurysm is probably also influenced by the peri-aneurysmal environment that can provide extra structural support via contact with structures such as bone or dura matter.

  18. A method for semi-automatic segmentation and evaluation of intracranial aneurysms in bone-subtraction computed tomography angiography (BSCTA) images

    NASA Astrophysics Data System (ADS)

    Krämer, Susanne; Ditt, Hendrik; Biermann, Christina; Lell, Michael; Keller, Jörg

    2009-02-01

    The rupture of an intracranial aneurysm has dramatic consequences for the patient. Hence early detection of unruptured aneurysms is of paramount importance. Bone-subtraction computed tomography angiography (BSCTA) has proven to be a powerful tool for detection of aneurysms in particular those located close to the skull base. Most aneurysms though are chance findings in BSCTA scans performed for other reasons. Therefore it is highly desirable to have techniques operating on standard BSCTA scans available which assist radiologists and surgeons in evaluation of intracranial aneurysms. In this paper we present a semi-automatic method for segmentation and assessment of intracranial aneurysms. The only user-interaction required is placement of a marker into the vascular malformation. Termination ensues automatically as soon as the segmentation reaches the vessels which feed the aneurysm. The algorithm is derived from an adaptive region-growing which employs a growth gradient as criterion for termination. Based on this segmentation values of high clinical and prognostic significance, such as volume, minimum and maximum diameter as well as surface of the aneurysm, are calculated automatically. the segmentation itself as well as the calculated diameters are visualised. Further segmentation of the adjoining vessels provides the means for visualisation of the topographical situation of vascular structures associated to the aneurysm. A stereolithographic mesh (STL) can be derived from the surface of the segmented volume. STL together with parameters like the resiliency of vascular wall tissue provide for an accurate wall model of the aneurysm and its associated vascular structures. Consequently the haemodynamic situation in the aneurysm itself and close to it can be assessed by flow modelling. Significant values of haemodynamics such as pressure onto the vascular wall, wall shear stress or pathlines of the blood flow can be computed. Additionally a dynamic flow model can be

  19. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.

  20. Endoscope-assisted microsurgery for intracranial aneurysms.

    PubMed

    Kalavakonda, Chandrasekar; Sekhar, Laligam N; Ramachandran, Pranatartiharan; Hechl, Peter

    2002-11-01

    We discuss the role of the endoscope in the microsurgical treatment of intracranial aneurysms, analyzing its benefits, risks, and disadvantages. This was a prospective study of 55 patients with 79 aneurysms, treated between July 1998 and June 2001, for whom the endoscope was used as an adjunct in the microsurgical treatment of their lesions. Seventy-one aneurysms were located in the anterior circulation, and eight were located in the posterior circulation. Thirty-seven patients presented with subarachnoid hemorrhage. Eighteen patients had unruptured aneurysms, of whom 5 presented with mass effect, 2 presented with transient ischemic attacks, and 11 were without symptoms. In all cases, the endoscope was used in addition to microsurgical dissection and clipping (sometimes before clipping, sometimes during clipping, and always after clipping), for observation of the neck anatomic features and perforators and verification of the optimal clip position. Intraoperative angiography was performed for all patients after aneurysm clipping. In the majority of cases, the endoscope was very useful for the assessment of regional anatomic features. It allowed better observation of anatomic features, compared with the microscope, for 26 aneurysms; in 15 cases, pertinent anatomic information could be obtained only with the endoscope. The duration of temporary clipping of the parent artery was significantly reduced for two patients. The clip was repositioned because of a residual neck or inclusion of the parent vessel during aneurysm clipping in six cases, and the clip position was readjusted because of compression of the optic nerve in one case. One patient experienced a small aneurysm rupture that was directly related to use of the endoscope, but this was easily controlled, with no sequelae. For many patients, the combination of the neuro-endoscope and the micro-Doppler probe made intraoperative angiography redundant. "Endoscope-assisted microsurgery" is a major advance in the

  1. Vascular Anomalies and the Risk of Multiple Aneurysms Development and Bleeding

    PubMed Central

    Mazighi, M.; Porter, P. J.; Rodesch, G.; Alvarez, H.; Aghakhani, N.; Lasjaunias, P.

    2002-01-01

    Summary The pathogenesis of aneurysmal subarachnoid hemorrhage is still debated and the prognosis remains severe, especially in multiple aneurysms, where the therapeutic management is complex. The aim of this study was to look for vascular anomalies and assess their relationship with aneurysm formation and bleeding in patients with multiple intracranial aneurysms. A prospective angiographical review was performed on 141 patients with multiple intracranial aneurysms seen from 1992 to 2000. Three hundred and fifty three aneurysms were studied. In 88% of the patients vascular anomalies were found. The most common were: asymmetric caudal basilar fusion (43.2%), variations of the anterior communicating artery (AcoA) complex (31.2%), symmetric caudal basilar fusion (26.2%), antero-inferior cerebellar artery-postero-inferior cerebellar artery (AICA-PICA) (15.6%), extradural origin of the PICA (10.6%), cavernous origin of the ophthalmic artery or dorsal ophthalmic artery (dOPH) (3.5%). Some aneurysm locations were associated with a high rate of vascular anomalies, e.g.: posterior cerebral aneurysm with asymmetric caudal fusion, AcoA aneurysm with AcoA complex variation, basilar tip aneurysm with extradural PICA or symmetric caudal fusion, PI-CA aneurysm with AICA-PICA, para-ophthalmic aneurysm with dOPH. These aneurysm locations bled proportionally more frequently when associated with the related vascular anomaly. In conclusion, these results suggest that vascular anomalies are associated with aneurysm development and bleeding. PMID:20594507

  2. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    PubMed Central

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  3. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction.

    PubMed

    Xu, Jinyu; Deng, Benqiang; Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment.

  4. Cervical artery tortuosity is associated with intracranial aneurysm.

    PubMed

    Labeyrie, Paul-Emile; Braud, Florent; Gakuba, Clément; Gaberel, Thomas; Orset, Cyrille; Goulay, Romain; Emery, Evelyne; Courthéoux, Patrick; Touzé, Emmanuel

    2017-01-01

    Background Intracranial aneurysms may be associated with an underlying arteriopathy, leading to arterial wall fragility. Arterial tortuosity is a major characteristic of some connective tissue disease. Aim To determine whether intracranial aneurysm is associated with an underlying arteriopathy. Methods Using a case-control design, from May 2012 to May 2013, we selected intracranial aneurysm cases and controls from consecutive patients who had conventional cerebral angiography in our center. Cases were patients with newly diagnosed intracranial aneurysm. Controls were patients who had diagnostic cerebral angiography and free of aneurysm. The prevalence of tortuosity, retrospectively assessed according to standard definitions, was compared between cases and controls and, association between tortuosity and some aneurysm characteristics was examined, in cases only. Results About 659 arteries from 233 patients (112 cases and 121 controls) were examined. Tortuosity was found in 57 (51%) cases and 31 (26%) controls (adjusted OR = 2.71; 95%CI, 1.53-4.80). The same trend was found when looking at each tortuosity subtype (simple tortuosity, coil, kink) or at carotid or vertebral territory separately. In contrast, no association between tortuosity and rupture status, aneurysm number or neck size was found. Conclusions Cervical artery tortuosity is significantly associated with intracranial aneurysm, although not related to main aneurysm characteristics. Our results support the presence of an underlying diffuse arteriopathy in intracranial aneurysm patients.

  5. Patient-specific models of wall stress in abdominal aortic aneurysm: a comparison between MR and CT

    NASA Astrophysics Data System (ADS)

    de Putter, Sander; Breeuwer, Marcel; van de Vosse, Frans N.; Kose, Ursula; Gerritsen, Frans A.

    2006-03-01

    Finite element method based patient-specific wall stress in abdominal aortic aneurysm (AAA) may provide a more accurate rupture risk predictor than the currently used maximum transverse diameter. In this study, we have investigated the sensitivity of the wall stress in AAA with respect to geometrical variations. We have acquired MR and CT images for four patients with AAA. Three individual users have delineated the AAA vessel wall contours on the image slices. These contours were used to generate synthetic feature images for a deformable model based segmentation method. We investigated the reproducibility and the influence of the user variability on the wall stress. For sufficiently smooth models of the AAA wall, the peak wall stress is reproducible for three out of the four AAA geometries. The 0.99 percentiles of the wall stress show excellent reproducibility for all four AAAs. The variations induced by user variability are larger than the errors caused by the segmentation variability. The influence of the user variability appears to be similar for MR and CT. We conclude that the peak wall stress in AAA is sensitive to small geometrical variations. To increase reproducibility it appears to be best not to allow too much geometrical detail in the simulations. This could be achieved either by using a sufficiently smooth geometry representation or by using a more robust statistical parameter derived from the wall stress distribution.

  6. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.

    PubMed

    Chang, Gary Han; Schirmer, Clemens M; Modarres-Sadeghi, Yahya

    2017-03-21

    In this paper, we introduce a method to construct a Reduced-Order Model (ROM) to study the physiological flow and the Wall Shear Stress (WSS) conditions in Abdominal Aortic Aneurysms (AAA). We start the process by running a training case using Computational Fluid Dynamics (CFD) simulations with time-varying flow parameters, such that these parameters cover the range of parameters that we would like to consider in our ROM. We use the inflow angle as the variable parameter in the current study. Then we use the snapshot Proper Orthogonal Decomposition (POD) to construct the reduced-order bases, which are subsequently enhanced using a QR-factorization technique to satisfy the relevant fluid boundary conditions. The resulting ROM enables us to study the flow pattern and the WSS distribution over a range of system parameters computationally very efficiently. We have used this method to show how the WSS varies significantly for an AAA with a simplified geometry, over a range of inflow angles usually considered mild in clinical terms. We have validated the ROM results with CFD results. This approach enables comprehensive analysis of the model system across a range of inflow angles and frequencies without the need to re-compute the simulation for small changes.

  7. Dorsal variant blister aneurysm repair.

    PubMed

    Couldwell, William T; Chamoun, Roukoz

    2012-01-01

    Dorsal variant proximal carotid blister aneurysms are treacherous lesions to manage. It is important to recognize this variant on preoperative angiographic imaging, in anticipation of surgical strategies for their treatment. Strategies include trapping the involved segment and revascularization if necessary. Other options include repair of the aneurysm rupture site directly. Given that these are not true berry aneurysms, repair of the rupture site involves wrapping or clip-grafting techniques. The case presented here was a young woman with a subarachnoid hemorrhage from a ruptured dorsal variant blister aneurysm. The technique used is demonstrated in the video and is a modified clip-wrap technique using woven polyester graft material. The patient was given aspirin preoperatively as preparation for the clip-wrap technique. It is the authors' current protocol to attempt a direct repair with clip-wrapping and leaving artery sacrifice with or without bypass as a salvage therapy if direct repair is not possible. Assessment of vessel patency after repair is performed by intraoperative Doppler and indocyanine green angiography. Intraoperative somatosensory and motor evoked potential monitoring is performed in all cases. The video can be found here: http://youtu.be/crUreWGQdGo.

  8. The Strategic Assessment Model.

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    This book presents six papers focusing on the application of the strategic assessment model (SAM) to the management of higher education facilities. The papers are part of an ongoing effort by the Association of Higher Education Facilities Officers to provide comparative cost and staffing information and to develop a benchmarking process. The…

  9. The Strategic Assessment Model.

    ERIC Educational Resources Information Center

    Glazner, Steve, Ed.

    This book presents six papers focusing on the application of the strategic assessment model (SAM) to the management of higher education facilities. The papers are part of an ongoing effort by the Association of Higher Education Facilities Officers to provide comparative cost and staffing information and to develop a benchmarking process. The…

  10. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    PubMed Central

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  11. How Is an Aneurysm Diagnosed?

    MedlinePlus

    ... Is an Aneurysm Diagnosed? If you have an aortic aneurysm but no symptoms, your doctor may find it ... or abdominal pain. If you have an abdominal aortic aneurysm (AAA), your doctor may feel a throbbing mass ...

  12. Brain Aneurysm Statistics and Facts

    MedlinePlus

    ... Statistics and Facts A- A A+ Brain Aneurysm Statistics and Facts An estimated 6 million people in ... Understanding the Brain Warning Signs/ Symptoms Brain Aneurysm Statistics and Facts Seeking Medical Attention Risk Factors Aneurysm ...

  13. Management of Splenic Artery Aneurysms and False Aneurysms with Endovascular Treatment in 12 Patients

    SciTech Connect

    Guillon, R.; Garcier, J.M.; Abergel, A.; Mofid, R.; Garcia, V.; Chahid, T.; Ravel, A.; Pezet, D.; Boyer, L.

    2003-06-15

    Purpose: To assess the endovascular treatment of splenic artery aneurysms and false aneurysms. Methods: Twelve patients (mean age 59 years, range 47-75 years) with splenic artery aneurysm (n = 10) or false aneurysm (n = 2) were treated. The lesion was asymptomatic in 11 patients; hemobilia was observed in one patient. The lesion was juxta-ostial in one case, located on the intermediate segment of the splenic artery in four, near the splenic hilus in six,and affected the whole length of the artery in one patient. In 10 cases, the maximum lesion diameter was greater than 2 cm; in one case 30% growth of an aneurysm 18 mm in diameter had occurred in 6 months;in the last case, two distal aneurysms were associated (17 and 18 mm in diameter). In one case, stent-grafting was attempted; one detachable balloon occlusion was performed; the 10 other patients were treated with coils. Results: Endovascular treatment was possible in 11 patients (92%) (one failure: stenting attempt). In four cases among 11, the initial treatment was not successful (residual perfusion of aneurysm); surgical treatment was carried out in one case, and a second embolization in two. Thus in nine cases (75%) endovascular treatment was successful: complete and persistent exclusion of the aneurysm but with spleen perfusion persisting at the end of follow-upon CT scans (mean 13 months). An early and transient elevation of pancreatic enzymes was observed in four cases. Conclusion: Ultrasound and CT have made the diagnosis of splenic artery aneurysm or false aneurysm more frequent. Endovascular treatment, the morbidity of which is low, is effective and spares the spleen.

  14. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm.

    PubMed

    Liu, Zhenjie; Morgan, Stephanie; Ren, Jun; Wang, Qiwei; Annis, Douglas S; Mosher, Deane F; Zhang, Jing; Sorenson, Christine M; Sheibani, Nader; Liu, Bo

    2015-07-03

    Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development. © 2015 American Heart Association, Inc.

  15. Thrombus Volume Change Visualization after Endovascular Abdominal Aortic Aneurysm Repair

    NASA Astrophysics Data System (ADS)

    Maiora, Josu; García, Guillermo; Macía, Iván; Legarreta, Jon Haitz; Boto, Fernando; Paloc, Céline; Graña, Manuel; Abuín, Javier Sanchez

    A surgical technique currently used in the treatment of Abdominal Aortic Aneurysms (AAA) is the Endovascular Aneurysm Repair (EVAR). This minimally invasive procedure involves inserting a prosthesis in the aortic vessel that excludes the aneurysm from the bloodstream. The stent, once in place acts as a false lumen for the blood current to travel down, and not into the surrounding aneurysm sac. This procedure, therefore, immediately takes the pressure off the aneurysm, which thromboses itself after some time. Nevertheless, in a long term perspective, different complications such as prosthesis displacement or bloodstream leaks into or from the aneurysmatic bulge (endoleaks) could appear causing a pressure elevation and, as a result, increasing the danger of rupture. The purpose of this work is to explore the application of image registration techniques to the visual detection of changes in the thrombus in order to assess the evolution of the aneurysm. Prior to registration, both the lumen and the thrombus are segmented

  16. The supraorbital endoscopic approach for aneurysms.

    PubMed

    Reisch, Robert; Fischer, Gerrit; Stadie, Axel; Kockro, Ralf; Cesnulis, Evaldas; Hopf, Nikolai

    2014-12-01

    To review our surgical experience in minimally invasive transcranial endoscope-assisted microsurgical treatment of intracranial aneurysms, using the supraorbital keyhole craniotomy. The supraorbital keyhole approach was performed through an eyebrow skin incision in 793 cases for treatment of 989 intracranial aneurysms. Of patients, 474 were operated on after subarachnoid hemorrhage, and 319 were operated on under elective conditions. After lateral frontobasal burr hole trephination, a limited subfrontal craniotomy was created. To achieve adequate intraoperative exposure through the limited approach, endoscopes were used routinely. Surgical outcome was assessed using the modified Rankin scale. The transcranial endoscope-assisted microneurosurgery technique was used routinely via a supraorbital approach. In 152 operations (19.1%), the endoscope provided important visual information in the vicinity of the aneurysm, revealing subsequent clip repositioning. The results of incidental aneurysms were excellent with a modified Rankin scale score ≤2 in 96.52%. The overall outcome of ruptured aneurysms was good with a modified Rankin scale score ≤2 in 72.2% of patients. There were no approach-related intraoperative or postoperative complications. The minimally invasive supraorbital keyhole approach allowed safe surgical treatment of intracranial aneurysms, including after subarachnoid hemorrhage. The markedly improved endoscopic visualization increased the assessment of clip placement with ideal control of surrounding vessels including perforators for identification of incorrect clip position. Copyright © 2014. Published by Elsevier Inc.

  17. Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models

    PubMed Central

    Ameku, Tomonaga; Taura, Daisuke; Sone, Masakatsu; Numata, Tomohiro; Nakamura, Masahiro; Shiota, Fumihiko; Toyoda, Taro; Matsui, Satoshi; Araoka, Toshikazu; Yasuno, Tetsuhiko; Mae, Shin-Ichi; Kobayashi, Hatasu; Kondo, Naoya; Kitaoka, Fumiyo; Amano, Naoki; Arai, Sayaka; Ichisaka, Tomoko; Matsuura, Norio; Inoue, Sumiko; Yamamoto, Takuya; Takahashi, Kazutoshi; Asaka, Isao; Yamada, Yasuhiro; Ubara, Yoshifumi; Muso, Eri; Fukatsu, Atsushi; Watanabe, Akira; Sato, Yasunori; Nakahata, Tatsutoshi; Mori, Yasuo; Koizumi, Akio; Nakao, Kazuwa; Yamanaka, Shinya; Osafune, Kenji

    2016-01-01

    Cardiovascular complications are the leading cause of death in autosomal dominant polycystic kidney disease (ADPKD), and intracranial aneurysm (ICA) causing subarachnoid hemorrhage is among the most serious complications. The diagnostic and therapeutic strategies for ICAs in ADPKD have not been fully established. We here generated induced pluripotent stem cells (iPSCs) from seven ADPKD patients, including four with ICAs. The vascular cells differentiated from ADPKD-iPSCs showed altered Ca2+ entry and gene expression profiles compared with those of iPSCs from non-ADPKD subjects. We found that the expression level of a metalloenzyme gene, matrix metalloproteinase (MMP) 1, was specifically elevated in iPSC-derived endothelia from ADPKD patients with ICAs. Furthermore, we confirmed the correlation between the serum MMP1 levels and the development of ICAs in 354 ADPKD patients, indicating that high serum MMP1 levels may be a novel risk factor. These results suggest that cellular disease models with ADPKD-specific iPSCs can be used to study the disease mechanisms and to identify novel disease-related molecules or risk factors. PMID:27418197

  18. Risk Factors for the Rupture of Middle Cerebral Artery Bifurcation Aneurysms Using CT Angiography

    PubMed Central

    Wang, Guang-xian; Yu, Jiao-yan; Wen, Li; Zhang, Lei; Mou, Ke-jie; Zhang, Dong

    2016-01-01

    Background and Purpose To investigate the clinical and morphological characteristics associated with risk factors for the rupture of bifurcation-type middle cerebral artery aneurysms (MCAAs). Methods A total of 169 consecutive patients with 177 bifurcation-type MCAAs were reviewed from August 2011 to January 2016. Based on the clinical and morphologic characteristics findings, the risk factors of aneurysm rupture were assessed using statistical methods. Results Age, cerebral atherosclerosis, no hypertension, hypertension grade 2 and coronary artery disease (CAD) were negatively correlated with aneurysm rupture. The mean diameter (MD) of the parent and two daughter arteries was negatively correlated with rupture. Aneurysms with irregularity, depth, width, maximum size, aspect ratio, depth-to-width ratio, bottleneck factor, and size ratio were positively correlated with rupture. The multivariate logistic regression model revealed that irregular shape (odds ratio (OR) 2.697) and aspect ratio (OR 3.723) were significantly and positively correlated with rupture, while cerebral atherosclerosis (OR 0.033), CAD (OR 0.080), and MD (OR 0.201) were negatively correlated with rupture. Receiver operating characteristic analysis revealed that the threshold value of the aspect ratio and MD were 0.96 and 2.43 mm, respectively. Conclusions Cerebral atherosclerosis and CAD are protective factors against rupture. Morphological characteristics such as an aneurysm with an irregular shape, a high aspect ratio (>0.96) and a small MD (<2.43 mm) are likely better predictors of rupture. PMID:27977691

  19. Feasibility and methodology of optical coherence tomography imaging of human intracranial aneurysms: ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Sun, Cuiru; Khiel, Tim-Rasmus; Gardecki, Joseph A.; Standish, Beau A.; da Costa, Leodante; de Morais, Josaphat; Tearney, Guillermo J.; Yang, Victor X. D.

    2012-02-01

    Rupture of intracranial aneurysm is a common cause of subarachnoid hemorrhage. An aneurysm may undergo microscopic morphological changes or remodeling of the vessel wall prior to rupture, which could potentially be imaged. In this study we present methods of tissue sample preparation of intracranial aneurysms and correlation between optical coherence tomography imaging and routine histology. OCT has a potential future in the assessment of microscopic features of aneurysms, which may correlate to the risk of rupture.

  20. Endovascular Repair of Abdominal Aortic Aneurysm

    PubMed Central

    2002-01-01

    EXECUTIVE SUMMARY The Medical Advisory Secretariat conducted a systematic review of the evidence on the effectiveness and cost-effectiveness of endovascular repair of abdominal aortic aneurysm in comparison to open surgical repair. An abdominal aortic aneurysm [AAA] is the enlargement and weakening of the aorta (major blood artery) that may rupture and result in stroke and death. Endovascular abdominal aortic aneurysm repair [EVAR] is a procedure for repairing abdominal aortic aneurysms from within the blood vessel without open surgery. In this procedure, an aneurysm is excluded from blood circulation by an endograft (a device) delivered to the site of the aneurysm via a catheter inserted into an artery in the groin. The Medical Advisory Secretariat conducted a review of the evidence on the effectiveness and cost-effectiveness of this technology. The review included 44 eligible articles out of 489 citations identified through a systematic literature search. Most of the research evidence is based on non-randomized comparative studies and case series. In the short-term, EVAR appears to be safe and comparable to open surgical repair in terms of survival. It is associated with less severe hemodynamic changes, less blood transfusion and shorter stay in the intensive care and hospital. However, there is concern about a high incidence of endoleak, requiring secondary interventions, and in some cases, conversion to open surgical repair. Current evidence does not support the use of EVAR in all patients. EVAR might benefit individuals who are not fit for surgical repair of abdominal aortic aneurysm and whose risk of rupture of the aneurysm outweighs the risk of death from EVAR. The long-term effectiveness and cost-effectiveness of EVAR cannot be determined at this time. Further evaluation of this technology is required. OBJECTIVE The objective of this health technology policy assessment was to determine the effectiveness and cost-effectiveness of endovascular repair of

  1. Palmar artery aneurysm

    PubMed Central

    Shutze, Ryan A.; Liechty, Joseph

    2017-01-01

    Aneurysms of the hand are rarely encountered and more rarely reported. The least common locations of these aneurysms are the palmar and digital arteries. The etiologies of these entities are quite varied, although they usually present as a pulsatile mass. Following a thorough evaluation, including arterial anatomic imaging, they should be repaired. The reported results following repair have been good. Herein we report a girl with a spontaneous palmar artery aneurysm and its management. PMID:28127131

  2. TGFβ (Transforming Growth Factor-β) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm.

    PubMed

    Lareyre, Fabien; Clément, Marc; Raffort, Juliette; Pohlod, Stefanie; Patel, Meghana; Esposito, Bruno; Master, Leanne; Finigan, Alison; Vandestienne, Marie; Stergiopulos, Nikolaos; Taleb, Soraya; Trachet, Bram; Mallat, Ziad

    2017-09-14

    Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFβ (transforming growth factor-β) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture. Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGFβ using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGFβ blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1β or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1β after disease initiation has no effect on AAA progression to rupture. Endogenous TGFβ activity is required for the healing of AAA. TGFβ blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets. © 2017 American Heart Association, Inc.

  3. Design and biocompatibility of endovascular aneurysm filling devices

    PubMed Central

    Rodriguez, Jennifer N.; Hwang, Wonjun; Horn, John; Landsman, Todd L.; Boyle, Anthony; Wierzbicki, Mark A.; Hasan, Sayyeda M.; Follmer, Douglas; Bryant, Jesse; Small, Ward; Maitland, Duncan J.

    2014-01-01

    The rupture of an intracranial aneurysm, which can result in severe mental disabilities or death, affects approximately 30,000 people in the United States annually. The traditional surgical method of treating these arterial malformations involves a full craniotomy procedure, wherein a clip is placed around the aneurysm neck. In recent decades, research and device development have focused on new endovascular treatment methods to occlude the aneurysm void space. These methods, some of which are currently in clinical use, utilize metal, polymeric, or hybrid devices delivered via catheter to the aneurysm site. In this review, we present several such devices, including those that have been approved for clinical use, and some that are currently in development. We present several design requirements for a successful aneurysm filling device and discuss the success or failure of current and past technologies. We also present novel polymeric based aneurysm filling methods that are currently being tested in animal models that could result in superior healing. PMID:25044644

  4. Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification.

    PubMed

    Toczek, Jakub; Meadows, Judith L; Sadeghi, Mehran M

    2016-01-01

    Selection of patients for abdominal aortic aneurysm repair is currently based on aneurysm size, growth rate, and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, for example, inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in abdominal aortic aneurysm morbidity and mortality. (18)F-fluorodeoxyglucose-positron emission tomography and ultrasmall superparamagnetic particles of iron oxide magnetic resonance imaging are 2 novel approaches to abdominal aortic aneurysm imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (eg, integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of abdominal aortic aneurysm and show great potential for clinical translation.

  5. Computational Hemodynamic Analysis for the Diagnosis of Atherosclerotic Changes in Intracranial Aneurysms: A Proof-of-Concept Study Using 3 Cases Harboring Atherosclerotic and Nonatherosclerotic Aneurysms Simultaneously

    PubMed Central

    Endo, Hidenori; Niizuma, Kuniyasu; Endo, Toshiki; Funamoto, Kenichi; Ohta, Makoto; Tominaga, Teiji

    2016-01-01

    This was a proof-of-concept computational fluid dynamics (CFD) study designed to identify atherosclerotic changes in intracranial aneurysms. We selected 3 patients with multiple unruptured aneurysms including at least one with atherosclerotic changes and investigated whether an image-based CFD study could provide useful information for discriminating the atherosclerotic aneurysms. Patient-specific geometries were constructed from three-dimensional data obtained using rotational angiography. Transient simulations were conducted under patient-specific inlet flow rates measured by phase-contrast magnetic resonance velocimetry. In the postanalyses, we calculated time-averaged wall shear stress (WSS), oscillatory shear index, and relative residence time (RRT). The volume of blood flow entering aneurysms through the neck and the mean velocity of blood flow inside aneurysms were examined. We applied the age-of-fluid method to quantitatively assess the residence of blood inside aneurysms. Atherosclerotic changes coincided with regions exposed to disturbed blood flow, as indicated by low WSS and long RRT. Blood entered aneurysms in phase with inlet flow rates. The mean velocities of blood inside atherosclerotic aneurysms were lower than those inside nonatherosclerotic aneurysms. Blood in atherosclerotic aneurysms was older than that in nonatherosclerotic aneurysms, especially near the wall. This proof-of-concept study demonstrated that CFD analysis provided detailed information on the exchange and residence of blood that is useful for the diagnosis of atherosclerotic changes in intracranial aneurysms. PMID:27703491

  6. Vein of Galen Aneurysms

    PubMed Central

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yamanaka, K.; Iwai, Y.; Yasui, T.; Morikawa, T.; Kitano, S.; Sakamoto, H.; Nishio, A.

    2001-01-01

    Summary Eleven patients with so-called “vein of Galen aneurysms ” are reported, six of whom presented with vein of Galen aneurysmal malformations (four with choroidal type and two with mural type malformations). The remaining five patients presented with vein of Galen aneurysmal dilatations secondarily due to an arteriovenous malformation in one patient, an arteriovenous fistula in another, dural arteriovenous fistulas in two patients, and a varix in another. Treatments for these patients were individualised with consideration given to the clinical manifestations and the angioarchitecture of their lesions. Endovascular intervention played a critical role in the treatment of these vein of Galen aneurysms. PMID:20663385

  7. Distribution of Wall Stress in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Lasheras, Juan

    2005-11-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. Therefore, knowledge of the AAA wall stress distribution could be useful in assessing its risk of rupture. In our research, a finite element analysis was used to determine the wall stresses both in idealized models and in a real clinical model in which the aorta was considered isotropic with nonlinear material properties and was loaded with a given pressure. In the idealized models, both maximum diameter and asymmetry were found to have substantial influence on the distribution of the wall stress. The thrombus inside the AAA was also found to help protecting the walls from high stresses. Using CT scans of the AAA, the actual geometry of the aneurysm was reconstructed and we found that wall tension increases on the flatter surface (typically corresponds to the posterior surface) and at the inflection points of the bulge. In addition to the static analysis, we also performed simulations of the effect of unsteady pressure wave propagation inside the aneurysm.

  8. Intracranial Aneurysms of Neuro-Ophthalmologic Relevance.

    PubMed

    Micieli, Jonathan A; Newman, Nancy J; Barrow, Daniel L; Biousse, Valérie

    2017-06-29

    Intracranial saccular aneurysms are acquired lesions that often present with neuro-ophthalmologic symptoms and signs. Recent advances in neurosurgical techniques, endovascular treatments, and neurocritical care have improved the optimal management of symptomatic unruptured aneurysms, but whether the chosen treatment has an impact on neuro-ophthalmologic outcomes remains debated. A review of the literature focused on neuro-ophthalmic manifestations and treatment of intracranial aneurysms with specific relevance to neuro-ophthalmologic outcomes was conducted using Ovid MEDLINE and EMBASE databases. Cavernous sinus aneurysms were not included in this review. Surgical clipping vs endovascular coiling for aneurysms causing third nerve palsies was compared in 13 retrospective studies representing 447 patients. Complete recovery was achieved in 78% of surgical patients compared with 44% of patients treated with endovascular coiling. However, the complication rate, hospital costs, and days spent in intensive care were reported as higher in surgically treated patients. Retrospective reviews of surgical clipping and endovascular coiling for all ocular motor nerve palsies (third, fourth, or sixth cranial nerves) revealed similar results of complete resolution in 76% and 49%, respectively. Improvement in visual deficits related to aneurysmal compression of the anterior visual pathways was also better among patients treated with clipping than with coiling. The time to treatment from onset of visual symptoms was a predictive factor of visual recovery in several studies. Few reports have specifically assessed the improvement of visual deficits after treatment with flow diverters. Decisions regarding the choice of therapy for intracranial aneurysms causing neuro-ophthalmologic signs ideally should be made at high-volume centers with access to both surgical and endovascular treatments. The status of the patient, location of the aneurysm, and experience of the treating physicians

  9. Integrated Assessment Model Evaluation

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  10. Management of Aneurysms of the Proximal (A1) Segment of the Anterior Cerebral Artery

    PubMed Central

    Park, Hyun-Seok; Choi, Jae-Hyung; Kang, Myongjin

    2013-01-01

    Objective Aneurysms originating from the proximal segment (A1) of the anterior cerebral artery are rare; however, because of their small size, the risk of injury of perforating arteries, and the location of the aneurysm in the surgical field, they are challenging to treat. We report on 15 patients with A1 aneurysms and review surgical views according to the direction of aneurysms. Methods Fifteen patients were diagnosed with A1 aneurysms and underwent surgical clipping or endovascular coiling at our institution between January 2006 and March 2012. We conducted a retrospective review of clinical and radiological features of all patients with A1 aneurysms. Results Nine patients underwent surgical clipping, and six patients received endovascular coiling. Six patients (40%) had multiple aneurysms. A1 aneurysms ranged in size from 1.5 to 8.2 mm, with an average size of 3.26 mm. Most A1 aneurysms (73%) had a posterior direction. In the surgical view, A1 aneurysms projecting posteriorly were located behind the A1 trunk. The A1 aneurysm projecting posteroinferiorly was completely eclipsed by the parent artery. In A1 aneurysms with a posterosuperior or superior direction, finding and clipping the aneurysm neck was relatively easy. Thirteen patients (87%) had an excellent outcome, one had moderate disability, and one died. Conclusion A1 aneurysms have certain characteristics; small size, multiple aneurysms, and, usually, a posterior direction. A1 aneurysms with a posterosuperior or superior direction are relatively easy to assess, however, clipping of A1 aneurysms with a posterior or posteroinferior direction is more difficult. Endovascular coiling is an alternative therapeutic option when surgical clipping is expected to be difficult. PMID:23593600

  11. Extracranial arterial aneurysms: a cause of crescendo transient ischaemic attacks.

    PubMed

    Paterson, H M; Holdsworth, R J

    2000-12-01

    Crescendo transient ischaemic attacks (TIAs) should be regarded as a medical emergency. Patients require hospitalisation with urgent assessment and symptom control with anticoagulant therapy. We report on three patients, all of whom had atherosclerotic aneurysmal disease of the extracranial arterial circulation who presented with crescendo TIAs. The possibility of extracranial aneurysmal disease should always be considered and excluded.

  12. Lessons on the pathogenesis of aneurysm from heritable conditions

    PubMed Central

    Lindsay, Mark E.; Dietz, Harry C.

    2013-01-01

    Aortic aneurysm is common, accounting for 1–2% of all deaths in industrialized countries. Early theories of the causes of human aneurysm mostly focused on inherited or acquired defects in components of the extracellular matrix in the aorta. Although several mutations in the genes encoding extracellular matrix proteins have been recognized, more recent discoveries have shown important perturbations in cytokine signalling cascades and intracellular components of the smooth muscle contractile apparatus. The modelling of single-gene heritable aneurysm disorders in mice has shown unexpected involvement of the transforming growth factor-β cytokine pathway in aortic aneurysm, highlighting the potential for new therapeutic strategies. PMID:21593863

  13. Computational analysis of anterior communicating artery aneurysm shear stress before and after aneurysm formation

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Putman, Christopher M.; Cebral, Juan R.

    2011-12-01

    It is widely accepted that complexity in the flow pattern at the anterior communicating artery (AComA) is associated with the high rate of aneurysm formation at that location observed in large studies. The purpose of this work is to study associations between hemodynamic patterns, and AComA aneurysm initiation by comparing hemodynamics in the aneurysm and the normal model where the aneurysm was computationally removed. Vascular models of both right and left circulation were independently reconstructed from three-dimensional rotational angiography images using deformable models after image registration of both images, and fused using a surface merging algorithm. The geometric models were then used to generate high-quality volumetric finite element grids of tetrahedra with an advancing front technique. For each patient, the second anatomical model was created by digitally removing the aneurysm. It was iteratively achieved by applying a Laplacian smoothing filter and remeshing the surface. Finite element blood flow numerical simulations were performed for both the pathological and normal models under the same personalized pulsatile flow conditions imposed at the inlets of both models. The Navier-Stokes equations were numerically integrated by using a finite-element formulation. It was observed that aneurysms initiated in regions of high and moderate WSS in the counterpart normal models. Adjacent or close to those regions, low WSS portions of the arterial wall were not affected by the disease. These results are in line with previous observations at other vascular locations.

  14. Bronchial Aneurysms Mimicking Aortic Aneurysms: Endovascular Treatment in Two Patients

    SciTech Connect

    Vernhet, Helene; Bousquet, Claudine; Jean, Betty; Lesnik, Alvian; Durand, Gerard; Giron, Jacques; Senac, Jean Paul

    1999-05-15

    Bronchial artery dilatation and aneurysm formation is a potential complication of local inflammation, especially in bronchiectasis. When the bronchial artery has an ectopic origin from the inferior segment of the aortic arch, aneurysms may mimick aortic aneurysms. Despite this particular location, endovascular treatment is possible. We report two such aneurysms that were successfully embolized with steel coils.

  15. Pediatric nonaortic arterial aneurysms.

    PubMed

    Davis, Frank M; Eliason, Jonathan L; Ganesh, Santhi K; Blatt, Neal B; Stanley, James C; Coleman, Dawn M

    2016-02-01

    Pediatric arterial aneurysms are extremely uncommon. Indications for intervention remain poorly defined and treatments vary. The impetus for this study was to better define the contemporary surgical management of pediatric nonaortic arterial aneurysms. A retrospective analysis was conducted of 41 children with 61 aneurysms who underwent surgical treatment from 1983 to 2015 at the University of Michigan. Arteries affected included: renal (n = 26), femoral (n = 7), iliac (n = 7), superior mesenteric (n = 4), brachial (n = 3), carotid (n = 3), popliteal (n = 3), axillary (n = 2), celiac (n = 2), ulnar (n = 2), common hepatic (n = 1), and temporal (n = 1). Intracranial aneurysms and aortic aneurysms treated during the same time period were not included in this study. Primary outcomes analyzed were postoperative complications, mortality, and freedom from reintervention. The study included 27 boys and 14 girls, with a median age of 9.8 years (range, 2 months-18 years) and a weight of 31.0 kg (range, 3.8-71 kg). Multiple aneurysms existed in 14 children. Obvious factors that contributed to aneurysmal formation included: proximal juxta-aneurysmal stenoses (n = 14), trauma (n = 12), Kawasaki disease (n = 4), Ehlers-Danlos type IV syndrome (n = 1), and infection (n = 1). Preoperative diagnoses were established using arteriography (n = 23), magnetic resonance angiography (n = 6), computed tomographic arteriography (n = 5), or ultrasonography (n = 7), and confirmed during surgery. Indications for surgery included risk of expansion and rupture, potential thrombosis or embolization of aneurysmal thrombus, local soft tissue and nerve compression, and secondary hypertension in the case of renal artery aneurysms. Primary surgical techniques included: aneurysm resection with reanastomsis, reimplantation, or angioplastic closure (n = 16), interposition (n = 10) or bypass grafts (n = 2), ligation (n = 9), plication (n = 8), endovascular occlusion (n = 3), and nephrectomy (n = 4) in

  16. The association of simple renal cysts with abdominal aortic aneurysms and their impact on renal function after endovascular aneurysm repair.

    PubMed

    Spanos, Konstantinos; Rountas, Christos; Saleptsis, Vasileios; Athanasoulas, Athanasios; Fezoulidis, Ioannis; Giannoukas, Athanasios D

    2016-04-01

    We validated the association of simple renal cysts with abdominal aortic aneurysm and other cardiovascular factors and assessed simple renal cysts' impact on renal function before and after endovascular abdominal aortic aneurysm repair. A retrospective analysis of prospectively collected data was conducted. Computed tomography angiograms of 100 consecutive male patients with abdominal aortic aneurysm who underwent endovascular abdominal aortic aneurysm repair (Group 1) were reviewed and compared with 100 computed tomography angiogram of aged-matched male patients without abdominal aortic aneurysm (Group 2). Patients' demographic data, risk factors, abdominal aortic aneurysm diameter, the presence of simple renal cyst and laboratory tests were recorded. No difference was observed between the two groups in respect to other cardiovascular risk factors except hyperlipidemia with higher prevalence in Group 1 (p < 0.05). Presence of simple renal cysts was independently associated with age (p < 0.05) and abdominal aortic aneurysm (p = 0.0157). There was no correlation between simple renal cysts and abdominal aortic aneurysm size or pre-operative creatinine and urea levels. No difference was observed in post-operative creatinine and urea levels either immediately after endovascular abdominal aortic aneurysm repair or in 12-month follow-up. In male patients, the presence of simple renal cysts is associated with abdominal aortic aneurysm and is increasing with age. However, their presence is neither associated with impaired renal function pre-endovascular abdominal aortic aneurysm repair and post-endovascular abdominal aortic aneurysm repair nor after 12-month follow-up.

  17. Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Schjodt, Kathleen; Puntel, Anthony; Kostov, Nikolay; Tezduyar, Tayfun E.

    2013-06-01

    We present a patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. The analysis is based on four different arterial models extracted form medical images, and the stent is placed across the neck of the aneurysm to reduce the flow circulation in the aneurysm. The core computational technique used in the analysis is the space-time (ST) version of the variational multiscale (VMS) method and is called "DSD/SST-VMST". The special techniques developed for this class of cardiovascular fluid mechanics computations are used in conjunction with the DSD/SST-VMST technique. The special techniques include NURBS representation of the surface over which the stent model and mesh are built, mesh generation with a reasonable resolution across the width of the stent wire and with refined layers of mesh near the arterial and stent surfaces, modeling the double-stent case, and quantitative assessment of the flow circulation in the aneurysm. We provide a brief overview of the special techniques, compute the unsteady flow patterns in the aneurysm for the four arterial models, and investigate in each case how those patterns are influenced by the presence of single and double stents.

  18. Aneurysm rebleeding after poor-grade aneurysmal subarachnoid hemorrhage: Predictors and impact on clinical outcomes.

    PubMed

    Zhao, Bing; Fan, Yilin; Xiong, Ye; Yin, Rong; Zheng, Kuang; Li, Zequn; Tan, Xianxi; Yang, Hua; Zhong, Ming

    2016-12-15

    Aneurysm rebleeding is a major cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH) and more often occurs in patients with poor-grade aSAH. Limited data on predictors of rebleeding in these patients are available. To investigate predictors of aneurysm rebleeding after poor-grade aSAH and the association of rebleeding with clinical outcomes. A multicenter poor-grade aneurysm study was a prospective and observational registry of consecutive patients who presented with poor-grade aSAH defined as a World Federation of Neurosurgical Societies (WFNS) grade of IV or V. Rebleeding was defined as a new hemorrhage on computed tomography scan. Clinical outcomes were assessed with modified Rankin score. Multivariate logistic regression analyses were used to determine independent predictors of rebleeding and association between the rebleeding and clinical outcomes at 12months. Of the 297 patients included in this study, 30 (10.1%) patients experienced rebleeding. Most rebleeding occurred within 24h after ictus. 22 (73.3%) patients died at discharge. Aneurysm rebleeding was independently associated with poor outcome (odds ratio [OR] 36.37, p<0.001) and associated with mortality (OR 25.03, p<0.001) at 12months. The multivariate analysis showed that a lower Fisher grade (OR 0.49, 95% CI 0.31-0.77; p=0.002), ruptured anterior cerebral artery aneurysms (OR 4.26, 95% CI 1.07-16.90; p=0.039), external ventricular drainage (OR 4.62, 95% CI 1.46-14.59; p=0.009) were independently associated with aneurysm rebleeding. The outcome of aneurysm rebleeding remains very poor. A lower Fisher grade, ruptured anterior cerebral artery aneurysms, external ventricular drainage were associated with increased risk of rebleeding. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biosafety Risk Assessment Model

    SciTech Connect

    Daniel Bowen, Susan Caskey

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft's .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivity analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.

  20. Biosafety Risk Assessment Model

    SciTech Connect

    Daniel Bowen, Susan Caskey

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft’s .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivity analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.

  1. Preclinical evaluation of RYM1, a novel MMP-targeted tracer for imaging aneurysm.

    PubMed

    Toczek, Jakub; Ye, Yunpeng; Gona, Kiran; Kim, Hye-Yeong; Han, Jinah; Razavian, Mahmoud; Golestani, Reza; Zhang, Jiasheng; Wu, Terence; Jung, Jae-Joon; Sadeghi, Mehran

    2017-03-30

    Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, based on which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1 was synthesized and labeled with Tc-99m. Radiochemical stability of (99m)Tc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with (99m)Tc-RP805 in C57BL/6J mice (n = 10). (99m)Tc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE-/-) mice with CaCl2-induced carotid aneurysm (n = 11). Angiotensin II (Ang II)-infused apoE-/- (n = 16) were used for micro-single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging. Aortic tissue MMP activity and macrophage marker, CD68 expression were assessed by zymography and reverse transcription-polymerase chain reaction Results: RYM1 showed nanomolar range inhibition constants for several MMPs. (99m)Tc-RYM1 was radiochemically stable in mouse blood for 5 hours, and demonstrated rapid renal clearance and lower blood levels in vivo compared to (99m)Tc-RP805. (99m)Tc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Ang II infusion in apoE-/- mice for 4 weeks resulted in AAA formation in 36 % (4/11) of surviving animals. In vivo

  2. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  3. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  4. What Is an Aneurysm?

    MedlinePlus

    ... Aneurysm? An aneurysm (AN-u-rism) is a balloon-like bulge in an artery. Arteries are blood vessels that carry oxygen-rich blood to your body. Arteries have thick walls to withstand normal blood pressure. However, certain medical problems, genetic conditions, and trauma can damage or ...

  5. Dysphagia and thoracoabdominal aneurysm

    PubMed Central

    Taylor, C; Sinha, A; Nightingale, J

    2001-01-01

    Two elderly patients who presented with gradually progressive dysphagia are described. Investigations excluded an intraluminal obstruction and showed extrinsic compression of the oesophagus by an aneurysmal aorta. Surgery was not performed and they were successfully managed with a liquid diet.


Keywords: dysphagia; aortic aneurysm; vascular compression PMID:11264491

  6. Pediatric intracranial aneurysms: new and enlarging aneurysms after index aneurysm treatment or observation.

    PubMed

    Hetts, S W; English, J D; Dowd, C F; Higashida, R T; Scanlon, J T; Halbach, V V

    2011-12-01

    Children with brain aneurysms may be at higher risk than adults to develop new or enlarging aneurysms in a relatively short time. We sought to identify comorbidities and angiographic features in children that predict new aneurysm formation or enlargement of untreated aneurysms. Retrospective analysis of the University of California-San Francisco Pediatric Aneurysm Cohort data base including medical records and imaging studies was performed. Of 83 patients harboring 114 intracranial aneurysms not associated with brain arteriovenous malformations or intracranial arteriovenous fistulas, 9 (8.4%) developed new or enlarging brain aneurysms an average of 4.2 years after initial presentation. Comorbidities that may be related to aneurysm formation were significantly higher in patients who developed new aneurysms (89%) as opposed to patients who did not develop new or enlarging aneurysms (41%; RR, 9.5; 95% CI, 1.9%-48%; P = .0099). Patients with multiple aneurysms at initial presentation were more likely than patients with a single aneurysm at presentation to develop a new or enlarging aneurysm (RR, 6.2; 95% CI, 2.1%-185; P = .0058). Patients who initially presented with at least 1 fusiform aneurysm were more likely to develop a new or enlarging aneurysm than patients who did not present with a fusiform aneurysm (RR, 22; 95% CI, 3.6%-68%; P = .00050). Index aneurysm treatment with parent artery occlusion also was associated with higher risk of new aneurysm formation (RR, 4.2; 95% CI, 1.3%-13%; P = .024). New aneurysms did not necessarily arise near index aneurysms. The only fatality in the series was due to subarachnoid hemorrhage from a new posterior circulation aneurysm arising 20 months after index anterior circulation aneurysm treatment in an immunosuppressed patient. Patients who presented with a fusiform aneurysm had a significantly greater incidence of developing a new aneurysm or enlargement of an index aneurysm than did those who presented with a saccular aneurysm

  7. Pediatric isolated bilateral iliac aneurysm.

    PubMed

    Chithra, R; Sundar, R Ajai; Velladuraichi, B; Sritharan, N; Amalorpavanathan, J; Vidyasagaran, T

    2013-07-01

    Aneurysms are rare in children. Isolated iliac artery aneurysms are very rare, especially bilateral aneurysms. Pediatric aneurysms are usually secondary to connective tissue disorders, arteritis, or mycotic causes. We present a case of a 3-year-old child with bilateral idiopathic common iliac aneurysms that were successfully repaired with autogenous vein grafts. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  8. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms.

    PubMed

    Robertson, Anne M; Duan, Xinjie; Aziz, Khaled M; Hill, Michael R; Watkins, Simon C; Cebral, Juan R

    2015-07-01

    Intracranial aneurysms are pathological enlargements of brain arteries that are believed to arise from progressive wall degeneration and remodeling. Earlier work using classical histological approaches identified variability in cerebral aneurysm mural content, ranging from layered walls with intact endothelium and aligned smooth muscle cells, to thin, hypocellular walls. Here, we take advantage of recent advances in multiphoton microscopy, to provide novel results for collagen fiber architecture in 15 human aneurysm domes without staining or fixation as well as in 12 control cerebral arteries. For all aneurysm samples, the elastic lamina was absent and the abluminal collagen fibers had similar diameters to control arteries. In contrast, the collagen fibers on the luminal side showed great variability in both diameter and architecture ranging from dense fiber layers to sparse fiber constructs suggestive of ineffective remodeling efforts. The mechanical integrity of eight aneurysm samples was assessed using uniaxial experiments, revealing two sub-classes (i) vulnerable unruptured aneurysms (low failure stress and failure pressure), and (ii) strong unruptured aneurysms (high failure stress and failure pressure). These results suggest a need to refine the end-point of risk assessment studies that currently do not distinguish risk levels among unruptured aneurysms. We propose that a measure of wall integrity that identifies this vulnerable wall subpopulation will be useful for interpreting future biological and structural data.

  9. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms

    PubMed Central

    Robertson, Anne M.; Duan, Xinjie; Aziz, Khaled M.; Hill, Michael R.; Watkins, Simon C.; Cebral, Juan R.

    2015-01-01

    Intracranial aneurysms are pathological enlargements of brain arteries that are believed to arise from progressive wall degeneration and remodeling. Earlier work using classical histological approaches identified variability in cerebral aneurysm mural content, ranging from layered walls with intact endothelium and aligned smooth muscle cells, to thin, hypocellular walls. Here, we take advantage of recent advances in multiphoton microscopy, to provide novel results for collagen fiber architecture in 15 human aneurysm domes without staining or fixation as well as in 12 control cerebral arteries. For all aneurysm samples, the elastic lamina was absent and the abluminal collagen fibers had similar diameters to control arteries. In contrast, the collagen fibers on the luminal side showed great variability in both diameter and architecture ranging from dense fiber layers to sparse fiber constructs suggestive of ineffective remodeling efforts. The mechanical integrity of eight aneurysm samples was assessed using uniaxial experiments, revealing two sub-classes (i) vulnerable unruptured aneurysms (low failure stress and failure pressure), and (ii) strong unruptured aneurysms (high failure stress and failure pressure). These results suggest a need to refine the end-point of risk assessment studies that currently do not distinguish risk levels among unruptured aneurysms. We propose that a measure of wall integrity that identifies this vulnerable wall subpopulation will be useful for interpreting future biological and structural data. PMID:25632891

  10. Hemodynamic characterization of geometric cerebral aneurysm templates.

    PubMed

    Nair, Priya; Chong, Brian W; Indahlastari, Aprinda; Lindsay, James; DeJeu, David; Parthasarathy, Varsha; Ryan, Justin; Babiker, Haithem; Workman, Christopher; Gonzalez, L Fernando; Frakes, David

    2016-07-26

    Hemodynamics are currently considered to a lesser degree than geometry in clinical practices for evaluating cerebral aneurysm (CA) risk and planning CA treatment. This study establishes fundamental relationships between three clinically recognized CA geometric factors and four clinically relevant hemodynamic responses. The goal of the study is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Flows within eight idealized template geometries were simulated using computational fluid dynamics and measured using particle image velocimetry under both steady and pulsatile flow conditions. The geometric factor main effects were then analyzed to quantify contributions made by the geometric factors (aneurysmal dome size (DS), dome-to-neck ratio (DNR), and parent-vessel contact angle (PV-CA)) to effects on the hemodynamic responses (aneurysmal and neck-plane root-mean-square velocity magnitude (Vrms), aneurysmal wall shear stress (WSS), and cross-neck flow (CNF)). Two anatomical aneurysm models were also examined to investigate how well the idealized findings would translate to more realistic CA geometries. DNR made the greatest contributions to effects on hemodynamics including a 75.05% contribution to aneurysmal Vrms and greater than 35% contributions to all responses. DS made the next greatest contributions, including a 43.94% contribution to CNF and greater than 20% contributions to all responses. PV-CA and several factor interactions also made contributions of greater than 10%. The anatomical aneurysm models and the most similar idealized templates demonstrated consistent hemodynamic response patterns. This study demonstrates how individual geometric factors, and combinations thereof, influence CA hemodynamics. Bridging the gap between geometry and flow in this quantitative yet practical way may have potential to improve CA evaluation and treatment criteria. Agreement among results from idealized and anatomical models further

  11. In Vivo Quantification of Flow Dynamics in Intracranial Aneurysms Using Intra-Operative Contrast-Specific Ultrasound and PIV Techniques

    NASA Astrophysics Data System (ADS)

    CantÓN, G.Á.}Dor

    2005-11-01

    The goal of this study is to assess in vivo the hemodynamics of intracranial aneurysms using ultrasound and Digital Particle Imaging Velocimetry (DPIV) techniques. An ultrasound machine, equipped with an intra-operative transducer, was used to visualize the flow features inside an aneurysm with the aid of microbubbles as ultrasound contrast agent. The ultrasound studies were done using a Phase Inversion technique. Operating in the Doppler mode, the flow velocities in the afferent and the downstream vascular segments as well as inside the aneurysm were recorded and assessed. We analyzed the ultrasound data sets with a DPIV technique using backscattered signals from the microbubbles. The spatial and temporal distribution of velocity, vorticity, and stress fields was measured. These quantities were also measured in an in vitro aneurysmal model using the DPIV system. Our study shows that an advanced contrast-specific ultrasound technique in combination with a DPIV technique can be used to quantify in real time the flow-mechanical patterns inside the aneurysm.

  12. Thoracic aortic aneurysm: reading the enemy's playbook.

    PubMed

    Elefteriades, John A

    2008-05-01

    molecular level. 8 Matrix metalloproteinase overactivity participates in the destructive processes that degrade an aorta in individuals genetically preprogrammed to develop aneurysms. 9 Most dissections are brought on via presumed momentary hypertensive crises by severe exercise or emotion. We look forward to a future in which the aneurysm diathesis can be determined by a genetic test (RNA or DNA based), in which matrix metalloproteinases can be specifically antagonized by medications, in which exercise and emotion can be modulated in susceptible patients, and in which mechanical properties of the aorta (in addition to simple dimension) can be assessed serially to guide the timing of operation more precisely. Genetic-based therapies (eg, development of drugs on the basis of discovered molecular proteomics) will likely become possible to prevent susceptible patients from forming aneurysms over the long term.

  13. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  14. Embolization of Brain Aneurysms and Fistulas

    MedlinePlus

    ... Resources Professions Site Index A-Z Embolization of Brain Aneurysms and Arteriovenous Malformations/Fistulas Embolization of brain ... Brain Aneurysms and Fistulas? What is Embolization of Brain Aneurysms and Fistulas? Embolization of brain aneurysms and ...

  15. Increased 18F-FDG Uptake Is Predictive of Rupture in a Novel Rat Abdominal Aortic Aneurysm Rupture Model

    PubMed Central

    English, Sean J.; Piert, Morand R.; Diaz, Jose A.; Gordon, David; Ghosh, Abhijit; D'Alecy, Louis G.; Whitesall, Steven E.; Sharma, Ashish K.; DeRoo, Elise P.; Watt, Tessa; Su, Gang; Henke, Peter K.; Eliason, Jonathan L.; Ailawadi, Gorav; Upchurch, Gilbert R.

    2015-01-01

    Objective To determine whether 18F-fluorodeoxyglucose (18F-FDG) micro–positron emission tomography (micro-PET) can predict abdominal aortic aneurysm (AAA) rupture. Background An infrarenal AAA model is needed to study inflammatory mechanisms that drive rupture. 18F-FDG PET can detect vascular inflammation in animal models and patients. Methods After exposing Sprague-Dawley rats to intra-aortic porcine pancreatic elastase (PPE) (12 U/mL), AAA rupture was induced by daily, subcutaneous, β-aminopropionitrile (BAPN, 300 mg/kg, N = 24) administration. Negative control AAA animals (N = 15) underwent daily saline subcutaneous injection after PPE exposure. BAPN-exposed animals that did not rupture served as positive controls [nonruptured AAA (NRAAA) 14d, N = 9]. Rupture was witnessed using radiotelemetry. Maximum standard uptakes for 18F-FDG micro-PET studies were determined. Aortic wall PAI-1, uPA, and tPA concentrations were determined by western blot analyses. Interleukin (IL)-1β, IL-6, IL-10, and MIP-2 were determined by Bio-Plex bead array. Neutrophil and macrophage populations per high-power field were quantified. Matrix metalloproteinase (MMP) activities were determined by zymography. Results When comparing ruptured AAA (RAAA) to NRAAA 14d animals, increased focal 18F-FDG uptakes were detected at subsequent sites of rupture (P = 0.03). PAI-1 expression was significantly less in RAAA tissue (P = 0.01), with comparable uPA and decreased tPA levels (P = 0.02). IL-1β (P = 0.04), IL-6 (P = 0.001), IL-10 (P = 0.04), and MIP-2 (P = 0.02)expression, neutrophil (P = 0.02) and macrophage presence (P = 0.002), and MMP9 (P < 0.0001) activity were increased in RAAA tissue. Conclusions With this AAA rupture model, increased prerupture 18F-FDG uptake on micro-PET imaging was associated with increased inflammation in the ruptured AAA wall. 18F-FDG PET imaging may be used to monitor inflammatory changes before AAA rupture. PMID:24651130

  16. Popliteal artery aneurysms.

    PubMed

    Davidovic, L B; Lotina, S I; Kostic, D M; Cinara, I S; Cvetkovic, S D; Markovic, D M; Vojnovic, B R

    1998-08-01

    Altogether 59 patients with 76 popliteal artery aneurysms were treated during the last 36 years. There were 50 (85%) male and 9 (15%) female patients with an average age of 61 years. Nineteen (32%) patients had bilateral aneurysms. The clinical manifestations of the aneurysms included ruptures 4 (5.3%); deep venous thrombosis 4 (5.3%); sciatic nerve compression 1 (1.3%); leg ischemia 52 (68.4%), and asymptomatic pulsatile masses 15 (19.7%). Seventy (92%) aneurysms were atherosclerotic, one (1.3%) mycotic, and four (5.3%) traumatic; one (1.3%) developed owing to fibromuscular displasia. Seven (9.2%) small, asymptomatic aneurysms were not operated on. Reconstructive procedures end-to-end anastomosis, graft interposition, bypass) after aneurysmal resection or exclusion using a medial or posterior approach were done in 59 cases. An autologous saphenous vein graft was used in 49 cases, polytetrafluoroethylene (PTFE) in 5, and heterograft in 2 cases. The in-hospital mortality rate was 2.9%, the early patency rate 93.3%, and limb salvage 95%. The long-term patency rate after a mean follow-up of 4 years was 78% and long-term limb salvage 89%. The total limb salvage was 73%, and the total amputation rate was 27%. The dangerous complications associated with popliteal artery aneurysms and the good results after elective procedures suggest that operative treatment is appropriate.

  17. Renal aneurysms and pseudoaneurysms.

    PubMed

    Cura, Marco; Elmerhi, Fadi; Bugnogne, Alejandro; Palacios, Raul; Suri, Rajeev; Dalsaso, Timothy

    2011-01-01

    Pseudoaneurysms and aneurysms are abnormal dilatations of the vessel lumen. Pseudoaneurysm is a perfused hematoma contained by the adventitia and perivascular tissues that is in communication with the lumen of an adjacent artery or vein. Aneurysm is a dilatation of the vessel lumen involving all three layers of the blood vessel wall. Renal artery aneurysms (RAA) are uncommon but the widespread use of cross-sectional imaging and incidental detection of RAA may result in an increasing number of cases diagnosed. Renal artery pseudoaneurysms are suspected in bleeding patients after penetrating renal trauma. Imaging plays a major role in the detection of renal pseudoaneurysms and aneurysms and diagnoses aneurysm rupture and active bleeding. Computed tomography (CT), magnetic resonance imaging, and digital subtraction angiography can characterize lesion size, shape, and location and identify other aneurysms and pseudoaneurysms, helping to narrow the differential diagnosis and to understand the vascular anatomy for guiding proper treatment. Endovascular treatments have contributed considerably in the management of renal pseudoaneurysms and aneurysms. The use of coil embolization or covered stent placement prevents the mortality and mobility of surgery. The article describes imaging features and the endovascular therapies to treat these vascular processes and their possible complications. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Inflammatory abdominal aortic aneurysm.

    PubMed

    Savarese, R P; Rosenfeld, J C; DeLaurentis, D A

    1986-05-01

    Between January 1976 and December 1982, 181 patients with abdominal aortic aneurysms were treated surgically, and in 13 patients the aneurysms were found to be inflammatory. Inflammatory aneurysms of the abdominal aorta (IAAA) share important characteristics with typical atherosclerotic abdominal aortic aneurysms. Diagnosis and surgical management of IAAA are distinctive which suggests that IAAA should be considered separately, as a varient of typical abdominal aortic aneurysms. IAAA occur predominantly in males. The presenting symptoms are often idiosyncratic and include severe abdominal or back pain, or both, and ureteral obstruction; the diagnosis of IAAA should be considered when these symptoms are present. Although grossly and microscopically, the perianeurysmal fibrosis resembles idiopathic retroperitoneal fibrosis, the two conditions can be differentiated. At the present time, ultrasonography and computed tomography appear to offer reliable means for diagnosing IAAA. The presence of IAAA, whether established preoperatively or discovered unexpectedly at operation, necessitate certain modifications in the surgical approach, in order to avoid injuring the duodenum and the venous structures. Most patients can be successfully treated by resection and graft replacement. Rupture of the aneurysm in IAAA appears to be less frequent than in typical atherosclerotic abdominal aortic aneurysm.

  19. The influence of atmospheric pressure on aortic aneurysm rupture--is the diameter of the aneurysm important?

    PubMed

    Urbanek, Tomasz; Juśko, Maciej; Niewiem, Alfred; Kuczmik, Wacław; Ziaja, Damian; Ziaja, Krzysztof

    2015-01-01

    The rate of aortic aneurysm rupture correlates with the aneurysm's diameter, and a higher rate of rupture is observed in patients with larger aneurysms. According to the literature, contradictory results concerning the relationship between atmospheric pressure and aneurysm size have been reported. In this paper, we assessed the influence of changes in atmospheric pressure on abdominal aneurysm ruptures in relationship to the aneurysm's size. The records of 223 patients with ruptured abdominal aneurysms were evaluated. All of the patients had been admitted to the department in the period 1997-2007 from the Silesia region. The atmospheric pressures on the day of the rupture and on the days both before the rupture and between the rupture events were compared. The size of the aneurysm was also considered in the analysis. There were no statistically significant differences in pressure between the days of rupture and the remainder of the days within an analysed period. The highest frequency of the admission of patients with a ruptured aortic aneurysm was observed during periods of winter and spring, when the highest mean values of atmospheric pressure were observed; however, this observation was not statistically confirmed. A statistically non-significant trend towards the higher rupture of large aneurysms (> 7 cm) was observed in the cases where the pressure increased between the day before the rupture and the day of the rupture. This trend was particularly pronounced in patients suffering from hypertension (p = 0.1). The results of this study do not support the hypothesis that there is a direct link between atmospheric pressure values and abdominal aortic aneurysm ruptures.

  20. Relationship of A1 segment hypoplasia to anterior communicating artery aneurysm morphology and risk factors for aneurysm formation.

    PubMed

    Rinaldo, Lorenzo; McCutcheon, Brandon A; Murphy, Meghan E; Bydon, Mohamad; Rabinstein, Alejandro A; Lanzino, Giuseppe

    2016-09-30

    OBJECTIVE Hypoplasia of the A1 segment of the anterior cerebral artery is frequently observed in patients with anterior communicating artery (ACoA) aneurysms. The effect of this anatomical variant on ACoA aneurysm morphology is not well understood. METHODS Digital subtraction angiography images were reviewed for 204 patients presenting to the authors' institution with either a ruptured or an unruptured ACoA aneurysm. The ratio of the width of the larger A1 segment to the smaller A1 segment was calculated. Patients with an A1 ratio greater than 2 were categorized as having A1 segment hypoplasia. The relationship of A1 segment hypoplasia to both patient and aneurysm characteristics was then assessed. RESULTS Of 204 patients that presented with an ACoA aneurysm, 34 (16.7%) were found to have a hypoplastic A1. Patients with A1 segment hypoplasia were less likely to have a history of smoking (44.1% vs 62.9%, p = 0.0410). ACoA aneurysms occurring in the setting of a hypoplastic A1 were also found to have a larger maximum diameter (mean 7.7 vs 6.0 mm, p = 0.0084). When considered as a continuous variable, increasing A1 ratio was associated with decreasing aneurysm dome-to-neck ratio (p = 0.0289). There was no significant difference in the prevalence of A1 segment hypoplasia between ruptured and unruptured aneurysms (18.9% vs 10.7%; p = 0.1605). CONCLUSIONS Our results suggest that a hypoplastic A1 may affect the morphology of ACoA aneurysms. In addition, the relative lack of traditional risk factors for aneurysm formation in patients with A1 segment hypoplasia argues for the importance of hemodynamic factors in the formation of ACoA aneurysms in this anatomical setting.

  1. Evaluating smooth muscle cells from CaCl2-induced rat aortal expansions as a surrogate culture model for study of elastogenic induction of human aneurysmal cells.

    PubMed

    Gacchina, Carmen; Brothers, Thomas; Ramamurthi, Anand

    2011-08-01

    Regression of abdominal aortic aneurysms (AAAs) via regeneration of new elastic matrix is constrained by poor elastin synthesis by adult vascular cells and absence of methods to stimulate the same. We recently showed hyaluronan oligomers (HA-o) and TGF-β1 (termed elastogenic factors) to enhance elastin synthesis and matrix formation by healthy rat aortic smooth muscle cells (RASMCs). We also determined that these factors could likewise elastogenically induce aneurysmal RASMCs isolated from periadventitial CaCl(2)-injury induced rat AAAs (aRASMCs). However, the factor doses should be increased for these diseased cell types, as even when induced, elastic matrix amounts are roughly one order of magnitude lower than those produced by healthy RASMCs. We presently investigate the dose-specific elastogenic effects of HA-o (0-20  μg/mL) and TGF-β1 (0-10  ng/mL) factors on aRASMCs and compare their phenotype and elastogenic responses to those of human AAA-derived SMCs (aHASMCs); we seek to determine whether aRASMCs are appropriate surrogate cell types to study in the context of inducing elastic matrix regeneration within human AAAs. The periadventitial CaCl(2)-injury model of AAAs exhibits many of the pathological characteristics of human AAAs, including similarities in terms of decreased SMC contractile activity, enhanced proliferation, and reduced elastogenic capacity of aneurysmal SMCs (relative to healthy SMCs) when isolated and expanded in culture. Both aRASMCs and aHASMCs can be elastogenically stimulated by HA-o and TGF-β1 and show broadly similar trends in their dose-specific responses to these factors. However, compared with aHASMCs, aRASMCs appear to be far less elastogenically inducible. This may be due to differences in maturity of the AAAs studied, with the CaCl(2)-injury induced aortal expansion barely qualifying as an aneurysm and the human AAA representing a more well-developed condition. Further study of SMCs from stage-matched CaCl(2)-injury

  2. Feasibility of Quantification of Intracranial Aneurysm Pulsation with 4D CTA with Manual and Computer-Aided Post-Processing

    PubMed Central

    Illies, Till; Saering, Dennis; Kinoshita, Manabu; Fujinaka, Toshiyuki; Bester, Maxim; Fiehler, Jens; Tomiyama, Noriyuki; Watanabe, Yoshiyuki

    2016-01-01

    Background and Purpose The analysis of the pulsation of unruptured intracranial aneurysms might improve the assessment of their stability and risk of rupture. Pulsations can easily be concealed due to the small movements of the aneurysm wall, making post-processing highly demanding. We hypothesized that the quantification of aneurysm pulsation is technically feasible and can be improved by computer-aided post-processing. Materials and Methods Images of 14 cerebral aneurysms were acquired with an ECG-triggered 4D CTA. Aneurysms were post-processed manually and computer-aided on a 3D model. Volume curves and random noise-curves were compared with the arterial pulse wave and volume curves were compared between both post-processing modalities. Results The aneurysm volume curves showed higher similarity with the pulse wave than the random curves (Hausdorff-distances 0.12 vs 0.25, p<0.01). Both post-processing methods did not differ in intra- (r = 0.45 vs r = 0.54, p>0.05) and inter-observer (r = 0.45 vs r = 0.54, p>0.05) reliability. Time needed for segmentation was significantly reduced in the computer-aided group (3.9 ± 1.8 min vs 20.8 ± 7.8 min, p<0.01). Conclusion Our results show pulsatile changes in a subset of the studied aneurysms with the final prove of underlying volume changes remaining unsettled. Semi-automatic post-processing significantly reduces post-processing time but cannot yet replace manual segmentation. PMID:27880805

  3. Renal artery aneurysms.

    PubMed

    González, J; Esteban, M; Andrés, G; Linares, E; Martínez-Salamanca, J I

    2014-01-01

    A renal artery aneurysm is defined as a dilated segment of renal artery that exceeds twice the diameter of a normal renal artery. Although rare, the diagnosis and incidence of this entity have been steadily increasing due to the routine use of cross-sectional imaging. In certain cases, renal artery aneurysms may be clinically important and potentially lethal. However, knowledge of their occurrence, their natural history, and their prognosis with or without treatment is still limited. This article aims to review the recent literature concerning renal artery aneurysms, with special consideration given to physiopathology, indications for treatment, different technical options, post-procedure complications and treatment outcomes.

  4. Ruptured visceral artery aneurysms.

    PubMed

    Chiaradia, M; Novelli, L; Deux, J-F; Tacher, V; Mayer, J; You, K; Djabbari, M; Luciani, A; Rahmouni, A; Kobeiter, H

    2015-01-01

    Visceral artery aneurysms are rare but their estimated mortality due to rupture ranges between 25 and 70%. Treatment of visceral artery aneurysm rupture is usually managed by interventional radiology. Specific embolization techniques depend on the location, affected organ, locoregional arterial anatomy, and interventional radiologist skill. The success rate following treatment by interventional radiology is greater than 90%. The main complication is recanalization of the aneurysm, showing the importance of post-therapeutic monitoring, which should preferably be performed using MR imaging. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. Pediatric cerebral aneurysms.

    PubMed

    Gemmete, Joseph J; Toma, Ahmed K; Davagnanam, Indran; Robertson, Fergus; Brew, Stefan

    2013-11-01

    Childhood intracranial aneurysms differ from those in the adult population in incidence and gender prevalence, cause, location, and clinical presentation. Endovascular treatment of pediatric aneurysms is the suggested approach because it offers both reconstructive and deconstructive techniques and a better clinical outcome compared with surgery; however, the long-term durability of endovascular treatment is still questionable, therefore long-term clinical and imaging follow-up is necessary. The clinical presentation, diagnosis, and treatment of intracranial aneurysms in children are discussed, and data from endovascular treatments are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Endovascular Aneurysm Sealing for the Treatment of Ruptured Abdominal Aortic Aneurysms

    PubMed Central

    Brownrigg, Jack R. W.; Karthikesalingam, Alan; Patterson, Benjamin O.; Holt, Peter J. E.; Hinchliffe, Robert J.; Morgan, Robert A.; Loftus, Ian M.; Thompson, Matthew M.

    2015-01-01

    Purpose: To assess the feasibility and report preliminary results of ruptured abdominal aortic aneurysm (rAAA) repair with endovascular aneurysm sealing (EVAS), a novel therapeutic alternative whose feasibility has not been established in rAAAs due to the unknown effects of the rupture site on the ability to achieve sealing. Case Report: Between December 2013 and April 2014, 5 patients (median age 71 years, range 57–90; 3 men) with rAAAs were treated with the Nellix EVAS system at a single institution. Median aneurysm diameter was 70 mm (range 67–91). Aneurysm morphology in 4 of the 5 patients was noncompliant with instructions for use (IFU) for both EVAS and standard stent-grafts; the remaining patient was outside the IFU for standard stent-grafts but treated with EVAS under standard IFU for the Nellix system. Median Hardman index was 2 (range 0–3). Two patients died of multiorgan failure after re-laparotomy and intraoperative cardiac arrest, respectively. Among survivors, all devices were patent with no signs of endoleak or failed aneurysm sac sealing at 6 months (median follow-up 9.2 months). Conclusion: EVAS for the management of infrarenal rAAAs appears feasible. The use of EVAS in emergency repairs may broaden the selection criteria of the current endovascular strategy to include patients with more complex aneurysm morphology. PMID:25904491

  7. Alterations of blood flow pattern after triple stent endovascular treatment of saccular abdominal aortic aneurysm: a porcine model.

    PubMed

    Oliveira, Jahir Richard DE; Aquino, Maurício DE Amorim; Barros, Svetlana; Pitta, Guilherme Benjamin Brandão; Pereira, Adamastor Humberto

    2016-01-01

    to determine the blood flow pattern changes after endovascular treatment of saccular abdominal aortic aneurysm with triple stent. we conducted a hemodynamic study of seven Landrace and Large White pigs with saccular aneurysms of the infrarenal abdominal aorta artificially produced according to the technique described. The animals were subjected to triple stenting for endovascular aneurysm. We evaluated the pattern of blood flow by duplex scan before and after stent implantation. We used the non-paired Mann-Whitney test for statistical analysis. there was a significant decrease in the average systolic velocity, from 127.4cm/s in the pre-stent period to 69.81cm/s in the post-stent phase. There was also change in the flow pattern from turbulent in the aneurysmal sac to laminate intra-stent. there were changes in the blood flow pattern of saccular abdominal aortic aneurysm after endovascular treatment with triple stent. determinar as alterações do padrão do fluxo sanguíneo após tratamento endovascular do aneurisma sacular de aorta abdominal com triplo stent. estudo hemodinâmico de sete suínos das raças Landrace e Large White portadores de aneurismas saculares de aorta abdominal infrarrenal artificialmente produzidos segundo técnica descrita. Os animais foram submetidos a implante de triplo stent para correção endovascular do aneurisma e reavaliados por duplex scan quanto ao padrão do fluxo sanguíneo antes e após o implante dos stents. A análise estatística foi realizada com o teste Mann-Whitney não pareado. verificou-se uma queda significativa da velocidade sistólica média de 127,4cm/s na fase pré-stent para 69,81cm/s na fase pós-stent. Houve ainda mudança no padrão do fluxo de turbilhonar no saco aneurismático para laminar intrastent. o estudo demonstrou alterações do padrão do fluxo sanguíneo do aneurisma sacular de aorta abdominal após tratamento endovascular com triplo stent.

  8. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    PubMed Central

    Hoffmann, T.; Beuing, O.; Jachau, K.; Thévenin, D.; Janiga, G.; Berg, P.

    2016-01-01

    Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI) simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations. PMID:27721898

  9. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness.

    PubMed

    Voß, S; Glaßer, S; Hoffmann, T; Beuing, O; Weigand, S; Jachau, K; Preim, B; Thévenin, D; Janiga, G; Berg, P

    2016-01-01

    Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI) simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches-when averaged over the complete aneurysm sac-are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  10. Endovascular treatment of distal intracranial aneurysms with Onyx 18/34.

    PubMed

    Chalouhi, Nohra; Tjoumakaris, Stavropoula; Gonzalez, L Fernando; Hasan, David; Alkhalili, Kenan; Dumont, Aaron S; Rosenwasser, Robert; Jabbour, Pascal

    2013-12-01

    Surgical clipping and coil embolization of distally located intracranial aneurysms can be challenging. The goal of this study was to assess the feasibility, safety and efficacy of treatment of distal aneurysms with the liquid embolic agent Onyx 18/34. Sixteen patients were treated with Onyx 18/34 for distally located aneurysms in our institution between March 2009 and September 2012. The technique consists of occluding the aneurysm as well as the parent vessel at the level of aneurysm with Onyx 18 or 34. Candidates for this treatment were patients with distal aneurysms including mycotic aneurysms, dissecting aneurysms, and pseudoaneurysms in which coiling was considered impossible. Of the 16 patients, 12 presented with subarachnoid and/or intracerebral hemorrhage. Median aneurysm size was 4.6mm. Aneurysm locations were as follows: Posterior inferior cerebellar artery (n=5), distal anterior inferior cerebellar artery (n=3), distal pericallosal (n=3), distal anterior cerebral artery (n=3), lenticulostriate artery (n=1), and anterior ethmoidal artery (n=1). There were 4 mycotic aneurysms. Complete aneurysm obliteration was achieved in all 6 patients with available angiographic follow-up. There was only 1 (6.3%) symptomatic complication in the series. There were no instances of reflux or accidental migration of embolic material. Favorable outcomes were noted in 82% of patients at discharge. Two patients with mycotic aneurysms died from cardiac complications of endocarditis. No aneurysm recanalization or rehemorrhage were seen. Parent vessel trapping with Onyx 18/34 offers a simple, safe, and effective means of achieving obliteration of distal challenging aneurysms. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Models for Pesticide Risk Assessment

    EPA Pesticide Factsheets

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  12. Prenatal diagnosis of ductus arteriosus aneurysm

    PubMed Central

    Hutchinson, DP; Sampson, AJ

    2015-01-01

    The ductus arteriosus holds major functional importance within the fetal circulation, and anomalies within the ductus arteriosus may interfere with the integrity of the fetal circulation. Ductus arteriosus aneurysm, previously considered a rare lesion, is now a well-reported finding in infancy with some reports describing this finding in the prenatal period. Postnatally, most ductus arteriosus aneurysms resolve spontaneously; however, a small group of infants show complications such as connective-tissue disorders, thrombo-embolism, compression of surrounding thoracic structures and life-threatening spontaneous rupture requiring surgical correction. As such, postnatal assessment in this group is recommended. PMID:27433265

  13. Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Bobkova, M. S.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper a computer simulation of a blood flow in cerebral vessels with a giant saccular aneurysm at the bifurcation of the basilar artery is performed. The modelling is based on patient-specific clinical data (both flow domain geometry and boundary conditions for the inlets and outlets). The hydrodynamic and mechanical parameters are calculated in the frameworks of three models: rigid-wall assumption, one-way FSI approach, and full (two-way) hydroelastic model. A comparison of the numerical solutions shows that mutual fluid- solid interaction can result in qualitative changes in the structure of the fluid flow. Other characteristics of the flow (pressure, stress, strain and displacement) qualitatively agree with each other in different approaches. However, the quantitative comparison shows that accounting for the flow-vessel interaction, in general, decreases the absolute values of these parameters. Solving of the hydroelasticity problem gives a more detailed solution at a cost of highly increased computational time.

  14. Aortic Aneurysm Statistics

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... to Prevent and Control Chronic Diseases Million Hearts® Web Sites with More Information About Aortic Aneurysm For ...

  15. Brain aneurysm repair - discharge

    MedlinePlus

    ... gov/pubmed/22556195 . Szeder V, Tateshima S, Duckwiler GR. Intracranial aneurysms and subarachnoid hemorrhage. In: Daroff RB, Jankovic ... used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed ...

  16. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Caregiver Education » Fact Sheets Cerebral Aneurysms Fact Sheet Table of Contents (click to jump to sections) What ... Information Page NINDS Epilepsy Information Page NINDS Familial Periodic Paralyses Information Page NINDS Farber's Disease Information Page ...

  17. Ruptured jejunal artery aneurysm

    PubMed Central

    Costa, Sílvia; Costa, Alexandre; Pereira, Tiago; Maciel, Jorge

    2013-01-01

    Visceral artery aneurysms (VAAs), unlike aortic aneurysms, are very rare, but are also a potentially lethal vascular disease. Jejunal artery aneurysms only account for less than 3% of VAAs, but have a 30% risk of rupture, with 20% death rate, presenting with only few and vague symptoms. We report the case of a 76-year-old man presenting at the emergency department (ED) with a crampy epigastric pain and vomiting. An ultrasound performed diagnosed free abdominal fluid and immediate CT scan diagnosed jejunal artery aneurysm spontaneously rupturing, followed by hypovolaemic shock. Emergent surgery was undertaken, and aneurysmectomy, followed by partial enterectomy with primary anastomosis were performed, because of segmentary jejunal ischaemia. The patient's recovery was unremarkable. High level of suspicion, rapid diagnosis capability and prompt surgical or endovascular intervention, as well as an effective teamwork in the ED are critical to avoid the devastating consequences of ruptured VAAs. PMID:23771962

  18. Brain Aneurysm Foundation

    MedlinePlus

    ... material, online resources and webinars. Learn More Raise Awareness Raise Awareness We work with the medical communities to provide ... In this role, Kevan, 29, will help raise awareness about brain aneurysms through attendance at select BAF ...

  19. [Aneurysmal subarachnoid hemorrhage].

    PubMed

    Chiriac, A; Poeată, I; Baldauf, J; Schroeder, H W

    2010-01-01

    Nontraumatic subarachnoid hemorrhage is a neurosurgical emergency characterized by the extravasation of blood into the spaces covering the central nervous system that are filled with cerebrospinal fluid. The leading cause of nontraumatic subarachnoid hemorrhage is rupture of an intracranial aneurysm, which accounts for about 80 percent of cases and has a high rate of death and complications. The management of aneurysmal SAH has changed significantly over the past few years. This change is mostly due to the demonstration of the superiority of early diagnosis, surgical clipping or endovascular embolization of ruptured aneurysms. This superiority derives from the relative safety of early aneurysm occlusion and the major threat of early rebleeding (approximately 25% in three weeks after SAH).

  20. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... US) : Ultrasound is a highly accurate way to measure the size of an aneurysm. A physician may also use a special technique called Doppler ultrasound to examine blood flow through the aorta. Occasionally the aorta may not ...

  1. [Inflammatory abdominal aortic aneurysm].

    PubMed

    Mikami, Y; Kyogoku, M

    1994-08-01

    Inflammatory abdominal aortic aneurysm (IAAA) is a distinct clinicopathological entity, characterized by: (1) clinical presentation, such as back pain, weight loss, and increased ESR, (2) patchy and/or diffuse lymphoplasmacytic infiltration, and (3) marked periaortic fibrosis resulting in thickening of the aneurysmal wall and occasional retroperitoneal fibrosis. Its pathogenesis is unknown, but some authors support the theory that IAAA is a subtype of atherosclerotic abdominal aortic aneurysm because of close relationship between IAAA and atherosclerotic change. In this article, we describe clinical and histological features of IAAA on the basis of the literature and our review of 6 cases of IAAA, emphasizing the similarity and difference between IAAA and atherosclerotic abdominal aortic aneurysm. Our review supports that marked lamellar fibrosis completely replacing the media and adventitia, patchy lymphocytic infiltration (mostly B cells) and endarteritis obliterans are characteristic features of IAAA.

  2. Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    2015-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) is a worldwide health burden with high fatality and permanent disability rates. The overall prognosis depends on the volume of the initial bleed, rebleeding, and degree of delayed cerebral ischemia (DCI). Cardiac manifestations and neurogenic pulmonary edema indicate the severity of SAH. The International Subarachnoid Aneurysm Trial (ISAT) reported a favorable neurological outcome with the endovascular coiling procedure compared with surgical clipping at the end of 1 year. The ISAT trial recruits were primarily neurologically good grade patients with smaller anterior circulation aneurysms, and therefore the results cannot be reliably extrapolated to larger aneurysms, posterior circulation aneurysms, patients presenting with complex aneurysm morphology, and poor neurological grades. The role of hypothermia is not proven to be neuroprotective according to a large randomized controlled trial, Intraoperative Hypothermia for Aneurysms Surgery Trial (IHAST II), which recruited patients with good neurological grades. Patients in this trial were subjected to slow cooling and inadequate cooling time and were rewarmed rapidly. This methodology would have reduced the beneficial effects of hypothermia. Adenosine is found to be beneficial for transient induced hypotension in 2 retrospective analyses, without increasing the risk for cardiac and neurological morbidity. The neurological benefit of pharmacological neuroprotection and neuromonitoring is not proven in patients undergoing clipping of aneurysms. DCI is an important cause of morbidity and mortality following SAH, and the pathophysiology is likely multifactorial and not yet understood. At present, oral nimodipine has an established role in the management of DCI, along with maintenance of euvolemia and induced hypertension. Following SAH, hypernatremia, although less common than hyponatremia, is a predictor of poor neurological outcome. PMID:25272066

  3. Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    D'Souza, Stanlies

    2015-07-01

    Aneurysmal subarachnoid hemorrhage (SAH) is a worldwide health burden with high fatality and permanent disability rates. The overall prognosis depends on the volume of the initial bleed, rebleeding, and degree of delayed cerebral ischemia (DCI). Cardiac manifestations and neurogenic pulmonary edema indicate the severity of SAH. The International Subarachnoid Aneurysm Trial (ISAT) reported a favorable neurological outcome with the endovascular coiling procedure compared with surgical clipping at the end of 1 year. The ISAT trial recruits were primarily neurologically good grade patients with smaller anterior circulation aneurysms, and therefore the results cannot be reliably extrapolated to larger aneurysms, posterior circulation aneurysms, patients presenting with complex aneurysm morphology, and poor neurological grades. The role of hypothermia is not proven to be neuroprotective according to a large randomized controlled trial, Intraoperative Hypothermia for Aneurysms Surgery Trial (IHAST II), which recruited patients with good neurological grades. Patients in this trial were subjected to slow cooling and inadequate cooling time and were rewarmed rapidly. This methodology would have reduced the beneficial effects of hypothermia. Adenosine is found to be beneficial for transient induced hypotension in 2 retrospective analyses, without increasing the risk for cardiac and neurological morbidity. The neurological benefit of pharmacological neuroprotection and neuromonitoring is not proven in patients undergoing clipping of aneurysms. DCI is an important cause of morbidity and mortality following SAH, and the pathophysiology is likely multifactorial and not yet understood. At present, oral nimodipine has an established role in the management of DCI, along with maintenance of euvolemia and induced hypertension. Following SAH, hypernatremia, although less common than hyponatremia, is a predictor of poor neurological outcome.

  4. Splenic artery aneurysm.

    PubMed

    Tcbc-Rj, Rui Antônio Ferreira; Ferreira, Myriam Christina Lopes; Ferreira, Daniel Antônio Lopes; Ferreira, André Gustavo Lopes; Ramos, Flávia Oliveira

    2016-01-01

    Splenic artery aneurysms - the most common visceral artery aneurysms - are found most often in multiparous women and in patients with portal hypertension. Indications for treatment of splenic artery aneurysm or pseudoaneurysm include specific symptoms, female gender and childbearing age, presence of portal hypertension, planned liver transplantation, a pseudoaneurysm of any size, and an aneurysm with a diameter of more than 2.5cm. Historically, the treatment of splenic artery aneurysm has been surgical ligation of the splenic artery, ligation of the aneurysm, or aneurysmectomy with or without splenectomy, depending on the aneurysm location. There are other percutaneous interventional techniques. The authors present a case of a splenic artery aneurysm in a 51-year-old woman, detected incidentally. RESUMO Aneurismas da artéria esplênica - os aneurismas arteriais viscerais mais comuns - são encontrados mais frequentemente em mulheres multíparas e em pacientes com hipertensão portal. As indicações para o seu tratamento incluem sintomas específicos, sexo feminino e idade fértil, presença de hipertensão portal, paciente em fila de transplante hepático, um pseudoaneurisma de qualquer tamanho, e um aneurisma com um diâmetro superior a 2,5cm. Historicamente, o tratamento do aneurisma da artéria esplênica tem sido a ligadura cirúrgica da artéria esplênica, a ligadura do aneurisma ou a aneurismectomia, com ou sem esplenectomia, dependendo do local do aneurisma. Existem outras técnicas intervencionistas percutâneas. Os autores apresentam o caso de um aneurisma de artéria esplênica em uma mulher de 51 anos de idade, diagnosticado incidentalmente.

  5. Pipeline Embolization Device for small paraophthalmic artery aneurysms with an emphasis on the anatomical relationship of ophthalmic artery origin and aneurysm.

    PubMed

    Griessenauer, Christoph J; Ogilvy, Christopher S; Foreman, Paul M; Chua, Michelle H; Harrigan, Mark R; Stapleton, Christopher J; Patel, Aman B; He, Lucy; Fusco, Matthew R; Mocco, J; Winkler, Peter A; Patel, Apar S; Thomas, Ajith J

    2016-12-01

    OBJECTIVE Contemporary treatment for paraophthalmic artery aneurysms includes flow diversion utilizing the Pipeline Embolization Device (PED). Little is known, however, about the potential implications of the anatomical relationship of the ophthalmic artery (OA) origin and aneurysm, especially in smaller aneurysms. METHODS Four major academic institutions in the United States provided data on small paraophthalmic aneurysms (≤ 7 mm) that were treated with PED between 2009 and 2015. The anatomical relationship of OA origin and aneurysm, radiographic outcomes of aneurysm occlusion, and patency of the OA were assessed using digital subtraction angiography. OA origin was classified as follows: Type 1, OA separate from the aneurysm; Type 2, OA from the aneurysm neck; and Type 3, OA from the aneurysm dome. Clinical outcome was assessed using the modified Rankin Scale, and visual deficits were categorized as transient or permanent. RESULTS The cumulative number of small paraophthalmic aneurysms treated with PED between 2009 and 2015 at the 4 participating institutions was 69 in 52 patients (54.1 ± 13.7 years of age) with a male-to-female ratio of 1:12. The distribution of OA origin was 72.5% for Type 1, 17.4% for Type 2, and 10.1% for Type 3. Radiographic outcome at the last follow-up (median 11.5 months) was available for 54 aneurysms (78.3%) with complete, near-complete, and incomplete occlusion rates of 81.5%, 5.6%, and 12.9%, respectively. Two aneurysms (3%) resulted in transient visual deficits, and no patient experienced a permanent visual deficit. At the last follow-up, the OA was patent in 96.8% of treated aneurysms. Type 3 OA origin was associated with a lower rate of complete aneurysm occlusion (p = 0.0297), demonstrating a trend toward visual deficits (p = 0.0797) and a lower rate of OA patency (p = 0.0783). CONCLUSIONS Pipeline embolization treatment of small paraophthalmic aneurysms is safe and effective. An aneurysm where the OA arises from the aneurysm

  6. Gender differences in experimental aortic aneurysm formation.

    PubMed

    Ailawadi, Gorav; Eliason, Jonathan L; Roelofs, Karen J; Sinha, Indranil; Hannawa, Kevin K; Kaldjian, Eric P; Lu, Guanyi; Henke, Peter K; Stanley, James C; Weiss, Stephen J; Thompson, Robert W; Upchurch, Gilbert R

    2004-11-01

    It is hypothesized that a male predominance, similar to that in humans, persists in a rodent model of experimental abdominal aortic aneurysm (AAA) via alterations in matrix metalloproteinases (MMPs). Group I experiments were as follows: elastase perfusion of the infrarenal aorta was performed in male (M) and female (F) rats. At 14 days, aortas were harvested for immunohistochemistry, real-time polymerase chain reaction (PCR), and zymography. Group II experiments were the following: abdominal aorta was transplanted from F or M donors into F or M recipients. At 14 days, rodents that had undergone transplantation underwent elastase perfusion. In group III, male rats were given estradiol or sham 5 days before elastase perfusion. In group I, M rats had larger AAAs with higher frequency than did F rats. M rat aortas had more significant macrophage infiltrates and increased matrix metalloproteinase (MMP)-9 production and activity. In group II, M-to-M aortic transplants uniformly developed aneurysms after elastase perfusion, whereas F-to-F aortic transplants remained resistant to aneurysm formation. F aortas transplanted into M recipients, however, lost aneurysm resistance. In group III, estradiol-treated rats demonstrated smaller aneurysms and less macrophage infiltrate and MMP-9 compared with M controls after elastase. These data provide evidence of gender-related differences in AAA development, which may reflect an estrogen-mediated reduction in macrophage MMP-9 production.

  7. Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18F]-fluorodeoxyglucose-PET/CT.

    PubMed

    Maier, Andreas; Essler, Markus; Gee, Michael W; Eckstein, Hans-Henning; Wall, Wolfgang A; Reeps, Christian

    2012-04-01

    Mechanobiological interactions are essential for the adaption of the cardiovascular system to altered environmental and internal conditions, but are poorly understood with regard to abdominal aortic aneurysm (AAA) pathogenesis, growth and rupture. In the present study, we therefore calculated mechanical AAA quantities using nonlinear finite element methods and correlated these to [18F]-fluorodeoxyglucose (FDG)-metabolic activity in the AAA wall detected by positron emission tomography/computed tomography (PET/CT). The interplay between mechanics and FDG-metabolic activity was analyzed in terms of maximum values and the three-dimensional spatial relationship, respectively. Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) data sets of n = 18 AAA patients were studied. Maximum FDG-uptake (SUV max ) in the AAA wall varied from 1.32 to 4.60 (average SUV max 3.31 ± 0.87). Maximum wall stresses and strains ranged from 10.0 to 64.0 N∕cm(2) (38.2 ± 13.8  N∕cm(2)) and from 0.190 to 0.260 (0.222 ± 0.023), respectively. SUV max was significantly correlated to maximum wall stress and strain (SUV max to stress: r = 0.71, p = 0.0005; SUV max to strain: r = 0.66, p = 0.0013). To evaluate the three-dimensional spatial interaction between FDG-uptake and acting wall stress, element-wise correlations were performed. In all but 2 AAAs, positive element-wise correlation of FDG-uptake to wall stress was obtained, with the Pearson's correlation coefficient ranging from -0.168 to 0.738 ( 0.372 ± 0.263). The results indicate that mechanical stresses are correlated quantitatively and spatially to FDG-uptake in the AAA wall. It is hypothesized that unphysiologically increased loading in the AAA wall triggers biological tissue reaction, such as inflammation or regenerative processes, causing elevated FDG-metabolic activity. These findings strongly support experimental hypotheses of mechanotransduction mechanisms in vivo.

  8. A combination of genetic, molecular and haemodynamic risk factors contributes to the formation, enlargement and rupture of brain aneurysms.

    PubMed

    Francis, Sheila E; Tu, Jian; Qian, Yi; Avolio, Alberto P

    2013-07-01

    Many people carry cerebral aneurysms but are generally unaware of their presence until they rupture, resulting in high morbidity or mortality. The pathogenesis and aetiology of aneurysms are largely unknown; however, a greater understanding, by analysing the genetic, molecular and haemodynamic risk factors involved in the initiation, enlargement, and rupture of aneurysms, could lead to effective prevention, early diagnosis and more effective treatment. The risk of aneurysm is increased by a family history of aneurysms, and amongst certain populations, namely in Japan and Finland. Several other risk factors are documented, including hypertension, smoking, alcohol consumption, and female sex. Studies indicate a higher occurrence of cerebral aneurysms in females compared to males. Oestrogen protects several components within the artery wall, and inhibits some of the inflammatory molecules that could cause aneurysms. At menopause, the oestrogen level decreases and the incidence of aneurysm increases. Haemodynamic stresses have been shown to be involved in the formation, growth and rupture of aneurysms. This is often associated with hypertension, which also increases the risk of aneurysm rupture. When an unruptured aneurysm is detected the decision to treat can be complicated, since only 1-2% of aneurysms eventually rupture. Haemodynamic simulation software offers an effective tool for the consideration of treatment options for patients who carry unruptured aneurysms. The assessment must consider the risks of interventional treatments versus non-interventional management options, such as controlling blood pressure.

  9. Hemodynamic Alterations after Stent Implantation in 15 Cases of Intracranial Aneurysms

    PubMed Central

    Wang, Chao; Tian, Zhongbin; Liu, Jian; Jing, Linkai; Paliwal, Nikhil; Wang, Shengzhang; Zhang, Ying; Xiang, Jianping; Siddiqui, Adnan H; Meng, Hui; Yang, Xinjian

    2016-01-01

    Background Stent-assisted coiling technology has been widely used in the treatment of intracranial aneurysms. In current study, we investigated the intra-aneurysmal hemodynamic alterations after stent implantation and its association with aneurysm location. Methods We first retrospectively studied 15 aneurysm cases (8 internal carotid artery-ophthalmic artery (ICA-OphA) aneurysms and 7 posterior communicating artery (PcoA) aneurysms) treated with Enterprise stents and coils. Then based on patient-specific geometries before and after stenting, we built virtual stenting computational fluid dynamics (CFD) simulation models. Results Before and after stent deployment, the average Wall Shear Stress (WSS) on the aneurysmal sac at systolic peak changed from 7.04 Pa (4.14 Pa, 15.77 Pa) to 6.04 Pa (3.86 Pa, 11.13 Pa), P = 0.001; and the spatially averaged value of flow velocity in the perpendicular plane of aneurysm dropped from 0.5 m/s (0.28 m/s, 0.7 m/s) to 0.33 m/s (0.25 m/s, 0.49 m/s), P = 0.001, respectively. Post-stent implantation, WSS in ICA-OphA aneurysms and PcoA aneurysms decreased by 14.4% (P = 0.012) and 16.6% (P = 0.018) respectively, and flow velocity also reduced by 10.3% (P = 0.029) and 10.5% (P = 0.013), respectively. Changes in WSS, flow velocity, and pressure were not significantly different between ICA-OphA aneurysms and PcoA aneurysms (P > 0.05). Stent implantation did not significantly change the peak systolic pressure in both aneurysm types. Conclusion After stent implantation, intra-aneurysmal flow velocity and WSS decreased independent of aneurysm type (ICA-OphA and PcoA). Little change was observed on peak systolic pressure. PMID:26746828

  10. Effectiveness of open versus endovascular abdominal aortic aneurysm repair in population settings: A systematic review of statewide databases.

    PubMed

    Williams, Christopher R; Brooke, Benjamin S

    2017-10-01

    large, randomized, controlled trials. Moreover, these analyses have allowed us to assess the effect of endovascular aortic aneurysm repair adoption on population outcomes and patient case mix over time. Published by Elsevier Inc.

  11. Abdominal aortic aneurysm repair - open

    MedlinePlus

    AAA - open; Repair - aortic aneurysm - open ... Open surgery to repair an AAA is sometimes done as an emergency procedure when there is bleeding inside your body from the aneurysm. You may have an ...

  12. 4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo

    2016-11-01

    Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.

  13. Internet search volumes in brain aneurysms and subarachnoid hemorrhage: Is there evidence of seasonality?

    PubMed

    Ku, Jerry C; Alotaibi, Naif M; Wang, Justin; Ibrahim, George M; Schweizer, Tom A; Macdonald, R Loch

    2017-07-01

    Results of previous studies examining seasonal variation in the incidence of aneurysmal subarachnoid hemorrhage (SAH) are conflicting. The aim of this brief report is to investigate whether there is a seasonal effect in online search queries for SAH that may reflect an association between meteorological factors and aneurysm rupture. We used the Google Trends data service to analyze the volume of internet queries for SAH on Google's search engine from January 1, 2004 to November 2016. We used comprehensive search terms and collected data from: USA, Canada, and countries known for their high prevalence of SAH (Finland, and Japan), as well as worldwide search volume. Potential seasonal variations in the data were assessed by comparative non-parametric tests and curve-fit regression model. Our analyses revealed that USA had the highest median value in