Science.gov

Sample records for anfengshan basalts subducted

  1. Melting of subducted basalt at the core-mantle boundary.

    PubMed

    Andrault, Denis; Pesce, Giacomo; Bouhifd, Mohamed Ali; Bolfan-Casanova, Nathalie; Hénot, Jean-Marc; Mezouar, Mohamed

    2014-05-23

    The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge basalt (MORB), which can reach the lowermost mantle after subduction of oceanic crust. At a pressure representative of the core-mantle boundary (135 gigapascals), the onset of melting occurs at ~3800 kelvin, which is ~350 kelvin below the mantle solidus. The SiO2-rich liquid generated either remains trapped in the MORB material or solidifies after reacting with the surrounding MgO-rich mantle, remixing subducted MORB with the lowermost mantle.

  2. H 2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Layne, G. D.

    1993-06-01

    Total dissolved H 2O and major element abundances were measured in basalt and basaltic andesite glass inclusions in olivine phenocrysts from Quaternary eruptions of four subduction-related volcanoes to test the hypothesis that low-MgO high-alumina basalts contain high H 2O at depth [1] and to reveal any petrogenetically significant correlations between arc basalt compositions and H 2O contents. Total dissolved H 2O (combined molecular H 2O and OH groups) measured by ion microprobe in mafic glass inclusions from the 1974 eruption of Fuego, Guatemala, reaches 6.2 wt.%. Dissolved H 2O contents decrease in more evolved Fuego glasses. Correlations of H 2O with MgO, Na 2O, K 2O, S and Cl indicate that aqueous fluid exsolution during magma ascent forced crystallization and differentiation of residual liquids. Low-K 2O magnesian high-alumina basalt glass inclusions from the 3 ka eruption of Black Crater (Medicine Lake volcano, California) have low H 2O contents, near 0.2 wt.%, which are consistent with the MORB-like character of these and other primitive lavas of the Medicine Lake region. Basalt and basaltic andesite glass inclusions from Copco Cone and Goosenest volcano on the Cascade volcanic front north of Mt. Shasta have H 2O contents of up to 3.3 wt.%. The range of H 2O contents in Cascade mafic magmas is too large to have resulted solely from enrichment by crystallization and indicates the participation of an H 2O-rich component in magma generation or crustal-level modification. Whereas fluid-absent melting of amphibole-bearing peridotite can account for the H 2O in most mafic arc liquids, the very high H 2O/alkali ratios of the 1974 Fuego eruptives suggest that an aqueous fluid was involved in the generation of Fuego basalts.

  3. Thermal structure and melting conditions associated with `hot' subduction: Implications from thermobarometry of Garibaldi belt basalts, northern Cascadia Subduction System

    NASA Astrophysics Data System (ADS)

    Green, N. L.

    2005-12-01

    The northern Cascadia margin of North America is the classic example of a "hot" subduction system. The downgoing Juan de Fuca plate decreases in age from ca. 10 m.y. off the central Washington coast to less than 5 m.y. off central Vancouver Island; beneath the Garibaldi volcanic belt (GVB) 250 km east of the convergent margin, inferred age of the oceanic lithosphere decreases northward from ca. 22 m.y to 13 m.y. Primitive and near-primitive mafic lavas, which primarily occur trenchward of the GVB volcanic front, range northward from high-Al olivine tholeiites, Mg-andesites and LILE- and LREE-enriched calc-alkaline basalts at Glacier Peak, through transitional basalts in the Cheakamus Valley to alkali olivine basalts and trachybasalts at Meager Mountain, Salal Glacier and Bridge River. The more northerly GVB basaltic magmas show the least evidence of slab-derived components in their source regions. Application of various olivine-melt and pyroxene-melt thermobarometers to GVB basalts indicates a general increase in magmatic temperatures from 1150-1200 C in Mount Baker and Glacier Peak basalts to 1225-1300 C in Bridge River and Salal Glacier lavas. Fe-Ti oxide thermobarometry suggests that northernmost basalts equilibrated under oxygen fugacities conditions between QFM and NNO, whereas Glacier Peak lavas equilibrated at higher oxygen fugacities (ca. 1 log unit above NNO). Estimated P and T conditions of mantle segregation suggest that GVB basalts ascended from increasingly greater depths northward along the volcanic arc. Similar variation is indicated by calculated P-T of basalt equilibrations with both Mg- and Fe-rich peridotite mineral assemblages, based on diopside and albite activity-composition relations. Estimated mantle equilibration temperatures correlate positively with some HFSE abundances (e.g., Hf), but negatively with those of fluid mobile elements (e.g., Cs and B). These relationships are considered in terms of the influence of slab thermal structure on

  4. Excess pore pressure generation of oceanic basalt by permeabilty evolution at Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Kameda, J.; Yamaguchi, A.; Hamada, Y.; Tadai, O.

    2015-12-01

    Excess pore pressure can be generated along or near interfaces of plate boundary at subduction zones, which is predicted by seismic velocities, and it is a key to understand coseismic slip behaviors during large earthquakes. Evolution of permeability within fault zones and upper sediments during burial and subduction is one of possible mechanisms that generate excess fluid pressure. This evolution process for sediment materials has been reported in previous studies, though the permeability evolution for oceanic crust, which also controls the pore pressure distribution around plate boundary, is not known well. Basalt brocks in the Cretaceous Shimanto accretionary complex of Japan preserve paleo Nankai Subduction structure, and based on vitrinite reflectance, Ro, for neighbor sedimentary rocks, basalt brocks at different areas show different degree of alteration. Therefore, the evolution of fluid transport properties for oceanic basalt at Nankai Subduction zone is estimated by comparing transport properties for various basaltic rocks from the on shore Shimanto belt, South-western Japan. We measured the rock physical properties from Okitsu-Kozurutsu, Kure, Mugi, and Makimine sites in the southeast Japan. Permeability and porosity was measured at room temperature and under confining pressure from 1 to 160 MPa. The steady state gas flow method was applied to evaluate permeability by using nitrogen gas as a pore fluid. Permeability decreases from 10-18 to 10-22 m2 with an increase in the degree of alteration from 1 to 4.5 of Ro (Maximum paleo-temperatures are 80 and 320 oC, respectively). Porosity was also decreased from 5 to 0.5 % with alteration. The relationship between permeability and porosity is described by power law. Our results suggest that based on the evolution curves of permeability and porosity and dehydration rate, porosity reduction in oceanic basalt will contribute to pore pressure generation at shallower subduction zone. On the other hand, clay

  5. Effect of subduction components on production of basalts from Tateshina volcano, central Japan: geochemical calculation of dehydration of subducting oceanic crust and partial melting of overlying sediments, and subsequent fluid-mantle interaction

    NASA Astrophysics Data System (ADS)

    Katoh, Masayasu; Shuto, Kenji

    Effect of subduction components on production of basalts from Tateshina volcano, central Japan: geochemical calculation of dehydration of subducting oceanic crust and partial melting of overlying sediments, and subsequent fluid-mantle interaction

  6. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne

    2016-04-01

    In recent few years, the recycled oceanic slab has been increasingly suggested to be the enriched component in the mantle source of widespread intra-plate small-volume basaltic magmatism in eastern China. The recycled oceanic slab is a mixture of sediment, upper oceanic crust and lower gabbro oceanic crust, and will undergo alteration and dehydration during the recycling progress. The influence of these different components on the mantle source needs to be further constrained. The Chaihe-aershan volcanic field in Northeast China is located close to the surface position of the front edge of the subducted Pacific slab and includes more than 35 small-volume Quaternary basaltic volcanoes, which provides an opportunity to study the evolution of mantle source in detail and the small-scale geochemical heterogeneity of the mantle source. We measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectrometry (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and basaltic melt. The measured δ18O of cpx phenocrysts (4.27 to 8.57) and the calculated H2O content of magmas (0.23-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values within individual samples also display a considerable variation, from 1.28 to 2.31‰ suggesting mixing of magmas or the sustained injection of magmas with different δ18O values during the crystallization. The relationship between the averaged δ18O values of cpx phenocrysts and the H2O/Ce, Ba/Th, Nb/La ratios and Eu anomaly of whole-rocks demonstrates the contribution to three components in the mantle source (hydrothermally altered upper oceanic crust or marine sediments, altered lower gabbroic oceanic crust, ambient mantle). The proportions of these three components varied strongly within a limited period (˜1.27 Ma to

  7. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone

    NASA Astrophysics Data System (ADS)

    Wyman, D. A.; Ayer, J. A.; Devaney, J. R.

    2000-06-01

    Late Archean niobium-enriched basalts from the Central Sturgeon Lake assemblage and Neepawa group of the western Wabigoon subprovince have mantle-normalized Nb/La between 0.8 and 1.3 and Zr/Y between 4 and 7. They are compositionally similar to basalts attributed to adakite metasomatism of mantle wedge regions in Cenozoic subduction zones [Sajona et al., J. Petrol. 37 (1996) 693-726]. In detail, their Sc-REE systematics suggest the Archean basalts were generated above the garnet stability field. An association with adakite-like volcanic rocks, an absence of komatiites and the arc-like attributes of their host sequences suggest a subduction-related origin for the basalts. If current models of adakite and Niobium-enriched basalt genesis are valid, then additional examples of these rocks should be relatively common in other Archean greenstone belts.

  8. Geochemistry of basaltic lavas from the southern Lau Basin suggests input of variable subduction component

    NASA Astrophysics Data System (ADS)

    Yan, Q.; Castillo, P. R.; Shi, X.

    2011-12-01

    New major element, trace element and Sr-Nd-Pb isotope data are presented for 18 volcanic lavas and 6 basaltic glasses collected in situ from the Eastern Lau Spreading center (ELSC) and Valu Fa ridge (VFR) in the southern Lau Basin. All lava samples are aphanitic with rare microlites and microphenocrysts of plagioclase and clinopyroxene. The samples belong to sub-alkaline series and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element composition, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt (IAB) although VFR samples have higher large ion lithophile element/high field strength element (LILE/HFSE) ratios (e.g., Ba/Nb) than ELSC samples. Their Sr-Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr ratios for given 143Nd/144Nd ratios than ELSC samples. Their Pb isotopic compositions indicate a gradual transition from Pacific Ocean-type to Indian Ocean-type mantle source from VFR to ELSC. Our new data, combined with literature data for CLSC, ELSC and VFR, show that the mantle beneath the southern Lau Basin was originally a Pacific Ocean-type both in trace element and isotopic compositions and was displaced by an Indian Ocean-type mantle. The mantle beneath the spreading axies in the southern Lau Basin also receives variable influences of subducted components, mainly fluids released from the altered oceanic crust (AOC) and the influence of the subducted componensts is best seen in the VFR lavas. We suggest that from CLSC via ELSC to VFR, partial melting is the direct, first order controlling factor on the differences in axis depths, and both aqueous fluids and mantle source compositions appear to be the indirect, first order controlling factors. Large degree of partial melting (induced by the addition of aqueous fluids) of depleted mantle source produced shallow spreading axes at VFR and part of ELSC (close to

  9. Origin of co-existing basalts, high-Mg andesites, and adakites in the SW Japan hot subduction system

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Kunikiyo, T.; Osaka, I.; Shimoshioiri, Y.; Katakuse, M.; Kakubuchi, S.; Nagao, T.; Furuyama, K.; Kamei, A.; Nakajima, J.; Stern, R. J.; Gill, J. B.

    2012-12-01

    In response to subduction of the young, hot Shikoku Basin of the Philippine Sea Plate (PSP) slab, arc magmas have been active throughout the late Cenozoic (<13 Ma) in the SW Japan arc. Extremely variable magma types occurred including oceanic island-type basalt (OIB), shoshonitc to mildly alkalic to sub-alkalic basalts with arc signatures, high-Mg andesites (HMAs), and adakitic andesites and dacites. The OIB-type basalts preceded the arc-type magmas. Therefore, the transition from OIB- to arc-types was related to opening of the Japan of Sea back-arc basin and subsequent re-initiation of PSP subduction. However, both the origin and tectonic implications of this magmatism are debated. Consequently, we analyzed the bulk rock geochemistry of 340 lava samples from seven Quaternary volcanoes and investigated their sources and melting conditions using a geochemical mass balance model, Arc Basalt Simulator version 4 (ABS4). Comparison to basement granitoids precludes adakite genesis in the lower crust. Instead, the ABS4 model suggests that the adakites are mostly slab melts plus minor interaction with mantle wedge peridotite (PERID). Increasing involvement of PERID during slab melt-fluxed mantle melting explains fairly well the geochemical variations of the shoshonites, mildly alkalic to sub-alkalic basalts, and HMAs. We propose that the generation of various magma types in the late Cenozoic SW Japan arc originated simply by "slab melt-fluxed mantle melting" with large variations in melting conditions including depth, temperature, degree of melting, and flux fractions. Such volcanism has been continuous from 13 Ma (Setouchi HMA) to the present, so that the hot subduction system, involving subduction of the Shikoku Basin spreading ridge, should be continuous since 13 Ma beneath the SW Japan arc. Our results further suggest that this atypically hot system generated diverse primary arc magmas from various degrees of flux melting even though the slab source components and sub

  10. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    NASA Technical Reports Server (NTRS)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  11. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; He, Zhen-Yu; Li, Zhen; Xu, Xi-Sheng; Chen, Li-Hui

    2016-10-01

    Widespread Late Mesozoic volcanic magmatism in southeastern China is generally thought to represent products in response to the subduction of paleo-Pacific plate; however, it remains unclear when this process began to affect the mantle and the related magmatism. Here we present a systematic study on the source lithology of Late Mesozoic basalts in this area to highlight a link between lithological variations of mantle and subduction process of paleo-Pacific plate. Late Mesozoic basalts can be subdivided into four groups based on their erupted ages: 178 172 Ma, approximately 150 Ma, 137 123 Ma, and 109 64 Ma. The primary source lithology of these rocks is pyroxenite rather than peridotite, and this mafic lithology can be formed by either ancient or young recycled crustal components. Notably, the source lithology of the approximately 150 Ma and 137 123 Ma basalts is primarily SiO2-rich pyroxenite, and the former is carbonated. The discovery of carbonated, SiO2-rich pyroxenite reflects the influence of a recently recycling event in the mantle. The subduction of paleo-Pacific plate is the most appropriate candidate and can be responsible for the mantle-derived magmatism after approximately 150 Ma in southeastern China. Therefore, we suggest a paleo-Pacific slab rollback with increased dip angle as a possible model to control the lithological variations of Late Mesozoic mantle beneath southeastern China.

  12. Sr-Pb isotopic studies of primitive and near-primitive basaltic magmas, Garibaldi volcanic belt, northern Cascadia subduction system

    NASA Astrophysics Data System (ADS)

    Green, N. L.; Sinha, A. K.

    2003-12-01

    The northern Cascadia subduction system is intimately associated with aseismic subduction of extremely young and presumably `hot' oceanic lithosphere beneath northwestern Washington and southwestern British Columbia. Sr and Pb isotopic analyses are presented for primitive and near-primitive (>6.0 wt. % MgO) basalts from a southeast-northwest transect along the Garibaldi volcanic belt (GVB), which overlies subducted oceanic lithosphere that decreases in age from ca. 22 m.y. below Glacier Peak at its southern end to about 13 m.y. beneath the northernmost eruptive centers in the Mosaic (Meager Mountain) and Salal Glacier-Bridge River areas. The basaltic rocks have initial 87Sr/86Sr ratios of 0.70317-0.70426, with minimum observed values in individual lava suites decreasing northward. Values of Pb isotopic ratios for GVB basaltic suites range from 18.22 to 18.97 for 206Pb/204Pb, from 15.51 to 15.59 for 207Pb/204Pb, and from 37.73 to 38.49 for 208Pb/204Pb. Sr isotopic compositions, unsupported by lava Rb contents, show positive correlations with Cs/Rb, La/Nb, Ba/La, Ba/Nb, Ba/Ta, B/La, B/Zr, Sr/Nd, and primitive mantle normalized Sr/P; and negative correlations with high field strength elements (HFSE: Nb, and Ta), FeO and other transition metals (Co and Zn), Ce/Pb,Cr/Ni, Sm/Yb, Ta/Yb, Hf/Yb, K/Ba, K/Sr, and La/Yb. Moderate to strong correlations between 87Sr/86Sr and ratios involving fluid-mobile and less-fluid-mobile elements are compatible with decreased slab input northward along the volcanic front as the subducted plate becomes hotter. The Pb isotopic compositions exhibit only limited variations when examined against position along the volcanic arc, but show uniform to extremely weak positive correlations of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb with 87Sr/86Sr, Ba/La, Sr/Nd, Ba/Nb, Zr/Nb, Mg-Number and SiO2; and similarly weak negative correlation of Ce/Pb with 206Pb/204Pb and 207Pb/204Pb. The isotopic data suggest that GVB basaltic magmas have experienced with

  13. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    PubMed

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-01

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability. PMID:17024091

  14. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    PubMed

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-01

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  15. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yan; Xu, Yi-Gang; Ryan, Jeffrey G.; Huang, Xiao-Long; Ren, Zhong-Yuan; Guo, Hua; Ning, Zhen-Guo

    2016-04-01

    Contributions from fluid and melt inputs from the subducting Pacific slab to the chemical makeup of intraplate basalts erupted on the eastern Eurasian continent have long been suggested but have not thus far been geochemically constrained. To attempt to address this question, we have investigated Cenozoic basaltic rocks from the western Shandong and Bohai Bay Basin, eastern North China Craton (NCC), which preserve coherent relationships among the chemistries of their melt inclusions, their hosting olivines and their bulk rock compositions. Three groups of samples are distinguished: (1) high-Si and (2) moderate-Si basalts (tholeiites, alkali basalts and basanites) which were erupted at ∼23-20 Ma, and (3) low-Si basalts (nephelinites) which were erupted at <9 Ma. The high-Si basalts have lower alkalies, CaO and FeOT contents, lower trace element concentrations, lower La/Yb, Sm/Yb and Ce/Pb but higher Ba/Th ratios, and lower εNd and εHf values than the low-Si basalts. The olivines in the high-Si basalts have higher Ni and lower Mn and Ca at a given Fo value than those crystallizing from peridotite melts, and their corresponding melt inclusions have lower CaO contents than peridotite melts, suggesting a garnet pyroxenitic source. The magmatic olivines from low-Si basalts have lower Ni but higher Mn at a given Fo value than that of the high-Si basalts, suggesting more olivine in its source. The olivine-hosted melt inclusions of the low-Si basalts have major elemental signatures different from melts of normal peridotitic or garnet pyroxenitic mantle sources, pointing to their derivation from a carbonated mantle source consisting of peridotite and garnet pyroxenite. We propose a model involving the differential melting of a subduction-modified mantle source to account for the generation of these three suites of basalts. Asthenospheric mantle beneath the eastern NCC, which entrains garnet pyroxenite with an EM1 isotopic signature, was metasomatized by carbonatitic

  16. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system

    NASA Astrophysics Data System (ADS)

    Green, Nathan L.

    2006-03-01

    Garibaldi volcanic belt (GVB) basalts were erupted above the relatively young (≤ 24 Ma) Juan de Fuca plate, which comprises the subducted oceanic lithosphere that becomes progressively younger (22-13 Ma), and presumably hotter, northward along the northern Cascadia convergent margin. Primitive and near-primitive mafic lavas of the 15-km-wide volcanic belt change from high-alumina olivine tholeiites and magnesian andesites near Glacier Peak, northwestern Washington, through transitional basalts to alkali-olivine basalts and basanites in the Bridge River-Salal Glacier areas, southwestern British Columbia. The distribution of different basalt types is consistent with varied source conditions imposed by differences in the thermal structure of the underlying subducted plate. Significant arc-parallel variations characterize REE and HFSE contents in GVB basalts and suggest that source enrichment processes and melting conditions vary within the mantle wedge as the age and thermal state of the underlying subducted plate changes. More northerly GVB basaltic suites tend to have higher TiO 2, Nb, Ta, total REE, La, Sm / Yb, Nb / Yb, Ti / V, Y / Sc and Zr / Yb and lower Th / U, Zr / Ti and Zr / Nb than their southern counterparts. The basalts have sub-chondritic to chondritic Nb / Ta (6-21) and super-chondritic Zr / Hf (up to 55.90) ratios that exhibit positive correlation. Only Mount Baker and Glacier Peak basalts exhibit the distinctive negative Nb-Ta anomalies associated with arc lavas. Inter-HFSE and REE fractionations (including La / Yb, La / Nb and Ce / Pb) show significant correlations with the inferred age of the underlying subducted plate. Proportions of slab-derived HFSE-REE components (SC) transferred to basalt sources in the Cascadia mantle wedge appear to vary from negligible (Ti, Nb, Ta, Zr, Hf, Y, Sm, Eu and Tb: less than 15% SC) to perceptible (Nd: up to 35% SC) through moderate (La: up to 75% SC) to substantial (U, Th and Pb: up to 95% SC). Arc-parallel HFSE

  17. Three-dimensional stress orientation in the basement basalt at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery (ASR) data , IODP NanTroSEIZE Site C0012

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Lin, W.; Oda, H.; Byrne, T. B.; Yamamoto, Y.; Underwood, M.; Saito, S.; Kubo, Y.; Iodp Expedition 322 Shipboard Scientific Party

    2010-12-01

    Three-dimensional stress orientation in the basement basalt at subduction input was first obtained by anelastic strain recovery (ASR) measurements. IODP Expedition 322 penetrated the sediment-basement boundary and recovered successive cores at Site C0012, the subduction input site in Nankai Subduction Zone. The collected basement samples are composed of alternating beds of pillow basalts and hyaroclastite and were retrieved by rotary core barrel (RCB) drilling system. We collected a whole-round core sample for measurements of ASR from pillow basalt by the same methods of sample preparation and anelastic strain data acquisition conducted in the previous Stage-1 expeditions of the same NanTroSEIZE drilling program (Byrne et al., 2009; GRL, Vol.36, L23310). Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The sample showed coherent strain recovery over a long period more than 1 month. The ASR measurement results in Kumano Forearc Basin obtained from C0002 (Byrne et al., 2009) showed the maximum stress orientation is nearly vertical and a normal stress regime. However, the ASR results in the basement basalt in the subduction input from C0012 show that the maximum principal stress axes was nearly horizontal and oriented NE-SW, almost parallel (or slightly oblique) to the trench axis. On the other hand, the minimum principal stress axis plunges steeply SE. The stress state of the basement basalts suggests strike-slip or thrust (reverse fault) regimes, which is very different from “state at rest” condition, theoretic stress condition on the ocean floor far from subduction zone. The basement basalt in the subduction input at Site C0012 has been experienced trench-parallel shortening. Although there is no logging data from Site C0012, the borehole breakouts in the sedimentary intervals at neighboring Site C0011 show a consistent maximum horizontal principal

  18. Arc Basalt Simulator version 3: Spreadsheet mass balance for exploring on element behavior between subducted slab, mantle wedge, and magma

    NASA Astrophysics Data System (ADS)

    Kimura, J.; Kawabata, H.; Hacker, B. R.; van Keken, P. E.; Gill, J. B.; Stern, R. J.

    2010-12-01

    We have developed the Arc Basalt Simulator version 3 (ABS3), a quantitative calculator to examine the mass balance of (1) slab-dehydration and melting, and (2) slab fluid/melt-fluxed mantle melting, and to quantitatively evaluate magma genesis beneath arcs. Calculation results from the ABS3 model suggest that element re-distribution between the subducted slab and slab-derived liquid controls distinctive trace element signatures found in arc magmas and crust. The slab liquid is derived from various mixtures of fluids and melts from sediment and altered oceanic crust, dependent on the thermal structure of the subducted slab. Slab fluids are mostly generated by slab-dehydration to form the volcanic front (VF) magmas with slab P-T conditions around 3 GPa/ 750°C, whereas slab may melt at 3-6 GPa > 830°C contributing either to the VF or to rear arc (RA) magmas. Compositions of slab fluids and melts are controlled primarily by breakdown of amphibole and lawsonite for VF and phengite for RA slab depths in association with the residual eclogite mineral phases including garnet, clinopyroxenes, and quartz. Temperature dependent partition coefficients and different partition coefficients between melt/fluid and minerals are additional controls. Minor mineral phases such as zircon and titanite also play important roles for certain elements. The slab liquid fluxed melting of depleted mantle wedge peridotite plays additional role to element re-distribution in subduction zone. The degree of partial melting varies between 17-28 % (VF) and 3-22 % (RA), with a slab flux fraction of 2-4.5 % (e.g., VF fluid) to 1-1.5 % (e.g., RA melt), and at melting depths corresponding to 1-2.5 GPa (VF) and 2.4-2.8 GPa (RA). Addition of luid-immobile elements from the mantle contributes 78-98 % of the magma mass and controls certain isotopes such as Nd and Hf in arc magmas. However, element addition from the slab liquid modifies the liquid mobile elements/isotopes in the arc magmas significantly

  19. Effects of Compositional Variation of Basalt on Subducting Slabs over Time

    NASA Astrophysics Data System (ADS)

    Ko, B.; Shim, S. H.

    2015-12-01

    In much of Earth history, basaltic crust has been injected into the mantle due to its high density. In Archean, downwelling basaltic crust is thought to be much more mafic (Mg/Si=0.72) than that of the modern mid-ocean ridge basalt (MORB) (Mg/Si=0.25). This difference in composition may result in different behaviors of basaltic crust in the mantle with time. We have studied the two compositions of ancient basalt: x=0.8 (Mg/Si=0.72) and x=0.4 (Mg/Si=0.54). The former represents a composition at 3.5 Ga. The glass starting materials were mixed with gold (10 wt%) for internal pressure scale and loaded into the laser-heated diamond-anvil cell (LHDAC) together with a Ne or Ar medium. We have conducted in-situ X-ray diffraction at APS up to 34 GPa and 2200 K. The recovered samples have been analyzed using energy-dispersive X-ray spectroscopy (EDS) in aberration-corrected electron microscopy (ACEM) at ASU. The previous study of the modern MORB reported the post-garnet transition occurs at 26-27 GPa and 1800 K. The same transition was observed at a similar pressure range within 2 GPa for both compositions. The post-spinel transition was observed in x=0.8 at 24±2 GPa, while it does not exist in x=0.4 and modern MORB due to the absence of ringwoodite. At 34 GPa and 2200 K, mineralogy of x=0.8 consists of 82% of bridgmanite (bm), 16% of Ca perovskite (CaPv), and 2% of stishovite (stv), while the modern MORB consists of 30% of stv, 26% of CaPv, 23% of bm, and 22% of aluminous phases (in mole fraction). The mineralogy of x=0.4 is similar to x=0.8 with different proportions, but still different from that of modern MORB. The unit-cell volumes of quenched bm at 1 bar and 300 K for x=0.8 and 0.4 were 166.05(5) and 165.69(6) Å3, respectively, which are smaller than bm in modern MORB (170.0(1) Å3). At high pressures, the unit-cell volume of CaPv is greater in the x=0.4 and 0.8 compositions. The compositions of bm and CaPv in x=0.8 show less Al, but more Mg than those found in

  20. No slab-derived CO2 in Mariana Trough back-arc basalts: Implications for carbon subduction and for temporary storage of CO2 beneath slow spreading ridges

    NASA Astrophysics Data System (ADS)

    MacPherson, Colin G.; Hilton, David R.; Hammerschmidt, Konrad

    2010-11-01

    The Southern Mariana Trough is particularly well suited to study mass balance in subduction zones because the flux of material recycled from the subducted slab has been shown to diminish to negligible levels in the southernmost part of the area. We present new He and Ar concentration and isotopic data for 16 back-arc basaltic glasses and combine these with previously published CO2 and H2O concentration and δ13C data to explore the recycling of carbon and light noble gases in the Mariana back arc. Degassing has affected all samples and is particularly extensive in more water-rich samples, i.e., those containing the largest recycled component. The degassing history features three stages: (1) deep degassing which commenced when the melt reached saturation of CO2 and noble gases in the mantle, (2) preeruptive degassing during storage in the crust-mantle transition zone which involved addition of extraneous CO2 to the vapor phase, and (3) eruption. CO2 released during stage 1 was, at least partially, incorporated into wall rock and subsequently remobilized during stage 2 degassing of later magma batches. Reconstructed parental values for 3He/4He, δ13C, CO2/3He, and CO2/40Ar* are indistinguishable from those of mid-ocean ridge basalt. This implies that there is negligible recycling of subducted carbon, helium, or argon into the source of Mariana Trough basalt.

  1. Rare Earth and HFSE Constraints on Basalt Source Regions and Melting Conditions in the Garibaldi Volcanic Belt, Northern Cascadia Subduction System

    NASA Astrophysics Data System (ADS)

    Green, N. L.

    2002-12-01

    Garibaldi belt (GVB) basalts were erupted above the relatively young (<24 Ma) Juan de Fuca plate, subducted oceanic lithosphere that becomes progressively younger (22-13 Ma), and presumably hotter, northward along the Cascadia convergent margin. Mafic lavas of the 15-km-wide volcanic belt range from high-alumina olivine tholeiites and magnesian andesites near Glacier Peak, northwestern Washington, through transitional basalts to alkali-olivine basalts and basanites in the Bridge River-Salal Glacier areas, southwestern British Columbia. Significant strike-parallel variations characterize REE and HFSE contents of these (GVB) basalts and provide insight into the nature of mantle source heterogeneities that may characterize subduction regimes. Lavas of more northerly volcanic suites tend to have (1) somewhat higher Ti, Nb, Ta, Zr, Hf, La, total REE, La/Yb, Sm/Yb, Nb/Y, Zr/Y, Y/Sc and Zr/Yb and (2) lower Th/U, La/Nb, and Th/Yb. The basalts have sub-chondritic to chondritic Na/Tb (6-21) and chondritic to super-chondritic Zr/Hf (up to 55.90) ratios. Only Mount Baker and Glacier Peak basalts exhibit the distinctive negative Na-Ta anomalies associated with arc lavas. REE systematics suggest that the more northerly basaltic suites formed as lower degree melts of mantle sources typically containing 1) garnet + spinel peridotite rather than spinel peridotite and 2) slightly more garnet (4% versus 2%) than in garnet-bearing source regions beneath more southerly eruptive centers. Inverse REE modeling suggests that the Bridge River-Salal Glacier lavas may have been derived from at least two distinct source regions (garnet-bearing and garnet-free). Nb/Ta exhibits slight positive correlations with Nb, Ta, La/Yb, and Th/Yb in some GVB basaltic suites, implying the role of a residual mineral, most likely rutile, in controlling extremely low HFSE partitioning into suduction-related fluids that equilibrated with basalt source regions in the mantle wedge.

  2. Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina

    NASA Astrophysics Data System (ADS)

    Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.

    2016-10-01

    We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc

  3. A Strongly Calc-alkaline Suite in the Midst of the Tholeiitic Columbia River Basalt Province: Implications for Generating the Calc-alkaline Trend Without Subduction Processes

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2012-12-01

    The mid-Miocene lavas of the Strawberry Volcanics (SV), distributed over 3,400 km2 in NE Oregon, comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The volcanic suite is mainly composed of calc-alkaline (CA) basaltic andesite and andesite, yet tholeiitic (TH) lavas of basalt to andesite occur as well. The SV lies in the heart of nearly coeval flood basalts of the Columbia River province of the Pacific Northwest. The unique combination of strongly CA rocks of the SV in a non-subduction setting provide an excellent opportunity to study controls on inducing CA evolution in the midst of a TH province and independent of processes taking places at an active subduction zone. New 40Ar/39Ar ages indicate CA basaltic andesites to andesites of the SV erupted at least from 14.78±0.13 Ma to 12.44±0.12 Ma demonstrating that CA magmatism of the SV was ongoing during the eruptions of the tholeiitic Wanapum Basalt member of the Columbia River Basalt Group (CRBG). This range will likely be extended to even older ages in the future because existent age dates did not include samples from near the base of the SV. Thickness of intermediate lavas flows of the SV range from 15 m to as thin as 2 m and lavas are characterized by mostly phenocryst poor lithologies. When phenocrysts are abundant they are very small suggesting growth late during eruption. Single lava flow sections can include on the order of 30 conformable flows, testifying to a vigorous eruption history. The thickest andesitic sections are located in the glacially carved mountains of the Strawberry Mountain Wilderness (i.e. Strawberry Mountain, High Lake, and Slide Lake) where several vent complexes are exposed, which are delineated by dikes and plugs with finely interlocking plutonic textures, cross-cutting SV lava flows. Dikes generally strike NW-SE. Subtle variations in major and trace element compositions exist between TH and CA lavas of the SV. The CA lavas of the SV are

  4. The effect of anhydrite saturation on the fate of sulfur during fluid-present melting of subducting basaltic crust

    NASA Astrophysics Data System (ADS)

    Jego, S.; Dasgupta, R.

    2012-12-01

    The apparent sulfur enrichment of sub-arc mantle is thought to derive from an oxidized downgoing slab, and it has been suggested that the slab-derived sulfate species is responsible for oxidizing the mantle wedge [1]. However, the conditions and extent of sulfur transfer from the subducting slab to the mantle wedge are poorly understood. In particular, the relative mobility of sulfur as a function of oxygen fugacity (fO2) is unconstrained at sub-arc depths. To add to our recent study on sulfur mobility during fluid-present melting of a sulfide-bearing basaltic crust [2], here we constrain the fate of sulfur during similar melting at relatively oxidizing conditions, i.e., at sulfate saturation. Experiments were performed using a piston cylinder device at P = 2-3 GPa, T = 950-1050 °C. A synthetic MORB + 6.8 wt.% H2O doped with 1 wt% S (added as pyrite) was contained in AuPd inner capsules and hematite-magnetite (HM: ~FMQ+3.9 to +4.6) mixture used as fO2 buffer was housed in Pt outer capsules, following the recently proposed design of ref. [3]. Sulfur concentration in quenched silicate glasses, the major element phase compositions, and fO2 of the experiments based on dissolved Fe contents in AuPd and added Pt sensor [4, 5], were determined using EPMA. All experiments contain silicate melt, cpx, garnet, anhydrite, rutile and/or Ti-magnetite, and are fluid saturated. The partial melt compositions are rhyolitic to rhyodacitic with increasing T and melting degree. Sulfur contents in the melt range from ~700 to 3000 ppm, and increase with increasing P and T, in agreement with published SCAS models [6, 7]. Mass balance calculations show that the proportion of sulfur dissolved in silicate melt can be >13% of the bulk sulfur at 1050 °C. However, at slab surface (<900 °C), the major part of the bulk sulfur present in the slab is dissolved in the aqueous fluid phase, the rest being stored as anhydrite crystals. Moreover, our results suggest that sulfur partition coefficient

  5. Petrogenesis of primitive basalts formed at an early stage of subduction zone evolution: Geochemical characteristics and the origin of high-Mg basalts from the Hahajima Island Group, the Ogasawara (Bonin) Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, K.; Umino, S.; Ishizuka, O.

    2010-12-01

    The Eocene volcanic rocks from the Ogasawara (Bonin) Islands are the products of an incipient stage of the Izu-Ogasawara-Mariana arc, that record how thermal and chemical structures of the wedge mantle varied during the establishment of the subduction zone. Hydrous melting of highly depleted, shallow mantle yielded boninitic magmas broadly below the Ogasawara Ridge in response to the subduction initiation at 48 Ma, which subsequently changed in composition during the following 3 million years. At 44 Ma, volcanism on the Ogasawara Ridge was focused in the vicinity of Hahajima, where high-Mg arc tholeiitic and calc-alkaline basalt magmas were produced by melting of fertile mantle under water-deficient conditions. We present a petrogenetic model for the primitive basalt magmas from the Hahajima Island Group by estimating the primary magma compositions, the degrees of melting, and the source materials for the primary Hahajima basalts. Rock samples from small islands south off Hahajima are slightly lower in FeO*/MgO ratios (0.74-4.19), and slightly higher in LERR/HREE ratios than the Quaternary volcanic front lavas. Hahajima basalts can be divided into high- (2.1) and low-La/Yb (0.8-1.4) types. Two tholeiitic samples belong to high-La/Yb type and the rests are low-La/Yb type. Although basalt samples have 6-16 wt% MgO, magnesian samples with > 8wt% MgO are of olivine cumulative origin judging from Fe-Mg partitioning. In order to estimate the primary magma compositions, we first reproduced the liquid compositions of the primitive basalts with MgO>8 wt% by subtracting accumulated olivine phenocrysts. The primary magma compositions were reproduced by adding equilibrium olivines to the liquid compositions until the liquid compositions can coexist with the upper mantle olivine (Fo88-92). These candidates for the primary magmas are compared with the experimentally produced partial melt compositions of mantle peridotites under dry and wet conditions. Estimated primary magmas

  6. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E

  7. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts

    NASA Astrophysics Data System (ADS)

    Wang, Chengyuan; Liu, Yongsheng; Min, Ning; Zong, Keqing; Hu, Zhaochu; Gao, Shan

    2016-09-01

    In-situ major and trace elements and Sr isotopic compositions of peridotite xenoliths of the Datong Quaternary alkaline basalt were analyzed to evaluate the influences of the southward subduction of the Paleo-Asian oceanic plate (PAOP) on the lithospheric mantle transformation of the North China Craton (NCC). These peridotite xenoliths including spinel harzburgites and lherzolites were classified into three groups. The type 1 peridotites have the lowest temperatures (961-1007 °C). Clinopyroxenes in these peridotites exhibit LREE-depleted REE patterns and have the lowest 87Sr/86Sr ratios of 0.70243-0.70411. The type 2 and 3 peridotites show higher temperatures (1017-1022 °C). Clinopyroxenes in the type 2 peridotite have V-shaped REE patterns and relatively higher 87Sr/86Sr ratios of 0.70418-0.70465. Clinopyroxenes in the type 3 peridotite have concave-downward REE patterns and unusually high 87Sr/86Sr ratios of 0.70769-0.70929. Carbonatitic veinlets are found in the type 1 peridotites. They show steep LREE-enriched REE patterns with enrichment in LILE and depletion in HFSE, and have the highest 87Sr/86Sr ratios of 0.71145-0.71285. The mineral chemistries and modal calculations suggest that the protolith of these peridotites experienced a variable degree of partial melting. The type 2 and 3 peridotites sampled from deeper depth experienced latter cryptic carbonatitic metasomatism. The carbonatitic veinlets have generally consistent trace element patterns and Sr isotopic ratios with the calculated melts equilibrated with clinopyroxenes in the type 3 peridotite, which may represent the percolated carbonatitic melt quickly solidified in the relatively cold and shallow mantle. The remarkable negative Eu anomalies (0.37-0.61) and highly radiogenic Sr isotopic compositions of the calculated metasomatic agents preclude indicate melt derived from carbonated peridotite or carbonated eclogite but point to a crustal sedimentary origin. Considering the tectonic setting and

  8. Effect of Bulk Water Concentration on Mantle Wedge Hybridization by Rhyolitic Sediment Melt - Implications for Generation of K-rich Basalts to Andesites in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.; Nelson, J. M.; Tsuno, K.

    2014-12-01

    Similarities in trace element geochemistry between ocean-floor sediments and arc lavas suggest the involvement of subducted sediments in the mantle source of arc volcanoes. Siliciclastic sediments produce rhyo-dacitic, hydrous partial melts at sub-arc depths, which must react with wedge peridotite during their ascent. In addition to fluids, these sediment melts can be a major carrier of water to the arc source. Here we investigate the effects of bulk water concentration on the phase equilibria of reaction between sediment partial melt and peridotite. Piston-cylinder experiments were performed using Au-Pd capsules, at 2 and 3 GPa, 1050 - 1350 °C with mixtures of 25% rhyolite + 75% lherzolite, bearing bulk water content of 2 (low-water) and 4 wt.% (high-water). Melting degree is higher in high-water experiments at both 2 and 3 GPa with a sharp increase in melt mode from 31 to 53 wt.% at 1250-1300 °C, 2 GPa and 21 to 49 wt.% at 1225-1250 °C, 3 GPa. This sharp increase in melt mode is accompanied by a corresponding abrupt increase in residual olivine to opx ratio at both pressures (0.11 to 0.53 at 1250-1300 °C, 2 GPa and 0 to 0.71 at 1225-1250 °C, 3 GPa). The stability field of phlogopite, clinopyroxene, and garnet are reduced in high-water experiments due to higher degrees of partial melting. Low-water experiments produce basalts with SiO2, on a volatile-free basis, increasing from 49 to 51 wt.% at 2 GPa and 46 to 48 wt.% at 3 GPa. For high-water experiments, melt SiO2 contents at 2 GPa are slightly higher than those in low-water experiments for a given temperature, varying from 51 to 52 wt.%, and, at 3 GPa, the melts trend towards andesitic compositions with SiO2 ~54 wt.%. These compositional characteristics of the melts can be attributed to the effect of increased olivine to opx ratios in the residue as a function of increasing bulk water concentration. Our study shows that a spectrum of ultra-potassic, high-Mg arc lavas (MgO varying from 10-16 wt.%) from

  9. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement

  10. Devonian Nb-enriched basalts and andesites of north-central Tibet: Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Yang, Tiannan; Hou, Zengqian; Bian, Yeke

    2016-07-01

    The early evolution of the Tethyan Ocean in north-central Tibet is currently poorly constrained. A sequence of volcanic rocks ranging from basic to intermediate in composition has been identified in the Zaduo area of the North Qiangtang Block. SHRIMP U-Pb dating of zircons from a sample of Zaduo andesite suggests an eruption age of Late Devonian (~ 380 Ma). The Zaduo volcanic rocks exhibit geochemical characteristics similar to those of typical Nb-enriched basalts, with relatively high Nb, Ta, and Zr contents, resulting in high Nb/La ratios (0.70-1.08) and Nb/U ratios (10.57-34.37). The relative enrichment in high field strength elements, together with positive εNd(t) values of + 4.6 to + 5.8 and low (87Sr/86Sr)i ratios of 0.70367-0.70532, indicates the Zaduo volcanic rocks were derived from a depleted mantle source metasomatized by silicate melts of a subducted oceanic slab. The occurrence of Nb-enriched volcanic rocks in the North Qiangtang Block suggests that the subduction of Paleo-Tethyan oceanic crust was initiated in the Late Devonian. Available geochronological data from ophiolites surrounding the North Qiangtang Block suggest that the subducted slab is most likely the Longmucuo-Shuanghu Paleo-Tethyan oceanic crust.

  11. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Castillo-Carrión, Mercedes; Pérez-Estaún, Andrés

    2014-05-01

    The Lower Cretaceous Puerto Plata ophiolitic complex (PPC) occurs west of the main collisional suture between the Caribbean and North American plates in the northern Dominican Republic, and imposes important constraints on the geochemical and tectonic processes associated with the birth of the Caribbean island-arc. The PPC exposes a tectonically dismembered 3.0-km-thick section of upper mantle harzburgites, lower crustal cumulate gabbroic rocks and upper crustal basaltic pillow lavas, volcanic breccias and pelagic sediments. The harzburgites exhibit a highly depleted signature in terms of their modal compositions, mineral chemistry and whole rock major and trace element contents, suggesting that they are residues after high-degrees of partial melting. Melt modeling suggests that they were similar in trace element characteristics to a boninite. In the crustal sequence, three magmatic episodes have been recognized based on field, mineral and geochemical data. The first phase is composed of the lower layered gabbronorites, which are variably deformed and recrystallized at high-temperature conditions. Trace element modeling suggests that the gabbronorites crystallized from LREE-depleted island-arc tholeiitic (IAT) melts. The second phase is composed of the intermediate layered troctolites (126 Ma), which are undeformed and preserve igneous cumulate textures. Modeling indicates that the troctolites crystallized from boninitic melts. The gabronorite-troctolite substrate was intruded by a third, supra-subduction zone tholeiitic magmatic phase at < 126 Ma, which formed the upper olivine gabbros and gabbronorites. These gabbroic rocks formed from melts similar in composition to the IAT basalts and basaltic andesites of the overlying Los Caños Fm. Contemporaneous Aptian to lower Albian mafic volcanic rocks of the Los Ranchos Fm and Cacheal complex have comparable IAT geochemical and isotopic signatures, suggesting that all of them may have erupted over a single piece of the

  12. Fore-arc mantle peridotites and back-arc basin basalts from the Izu-Bonin-Mariana subduction factory (ODP LEGs 125 and 195): a modern analogue for Mediterranean ophiolites

    NASA Astrophysics Data System (ADS)

    Zanetti, A.; D'Antonio, M.; Vannucci, R.; Raffone, N.; Spadea, P.

    2009-04-01

    occurring in all IBM forearc peridotites (e.g. crystallisation of late cpx, embayment of opx porphyroclasts), and likely marks the accretion of the mantle sequence to the thermal boundary layer. It was accompanied by the devolopment of transient geochemical gradients in the migrating liquids mainly governed by chromatographic-type chemical exchange with the peridotite. The West Philippine Basin (WPB) is a back-arc basin that opened in the Philippine Sea Plate (PSP) between the current position of the Palau-Kyushu Ridge (PKR) and the margin of East Asia. Spreading occurred at the Central Basin Fault (CBF) from 54 to 30 Ma. The PKR was active since ~48 to 35 Ma constituting a single volcanic arc with the Izu-Bonin-Mariana Arc. ODP Leg 195 Site 1201 is located in the WPB, ~100 km west of the PKR, on 49 Ma basaltic crust formed by NE-SW spreading at the CBF. From ~35 to 30 Ma, pelagic sedimentation at Site 1201 was followed by turbidite sedimentation, fed mostly by early Mariana Arc (PKR)-derived volcanic clasts. These volcanics are calc-alkaline, whereas PKR rocks from literature have mostly boninitic and arc tholeiitic affinity; the WPB basement basalts have MORB to arc-like affinity, as expected for a back-arc basin. Sr, Nd, Pb and Hf isotope data highlight the Indian Ocean MORB-like character of WPB basement basalts, suggesting an upper mantle domain distinct from that underlying the Pacific Plate. The geochemical and isotopic features of PKR volcanics reflect higher amounts of subduction-derived components, added mostly as siliceous melts, in the source of arc magmas relative to that of basement basalts. In that respect, Site 1201 PKR volcanics resemble calc-alkaline volcanics of the currently active Mariana Arc. In addition, their calc-alkaline affinity, unradiogenic neodymium, and inferred Middle Oligocene age, suggest they might represent an evolved stage of arc volcanism at Palau-Kyushu Ridge, perhaps shortly before the end of its activity.

  13. Deep mantle subduction flux

    NASA Astrophysics Data System (ADS)

    Porter, Katherine A.; White, William M.

    2009-12-01

    We assess the flux of incompatible trace elements into the deep mantle in the Aleutian, Central America, Izu-Bonin, Kurile, Lesser Antilles, Mariana, Sunda, and Tonga subduction zones. We use a simple mass balance approach in which we assume that all of the material lost from the subducting crust and sediment (the "slab") is incorporated into the magmas erupted above the subduction zone, and we use these assumptions to calculate a residual slab composition. The calculated residual slabs are enriched in incompatible elements compared to mid-ocean ridge basalts and highly enriched compared to primitive or depleted mantle. Almost all of the subducted Nb, Ta, and intermediate and heavy rare earths survive into the deep mantle, as do most of the light rare earths. On average, 73% of Th and Pb, 74% of K, 79% of U, 80% of Rb, 80% of Sr, and 82% of Ba survive into the deep mantle. Pb/Ce ratios are systematically lower, and Nb/U ratios are systematically higher, in the deep mantle flux than they are in the flux of material into the trench. Nevertheless, most residual slabs have Pb/Ce and Nb/U ratios outside the typical mantle range. Changes to U/Pb and Th/U ratios tend to be small and are not systematic. Rb/Sr ratios significantly decrease in some subduction zones but increase in others. In contrast, Sm/Nd ratios increase by small but significant amounts in most arcs. Based on these results, we attempt to predict the Sr, Nd, and Pb composition of anciently recycled material now in the mantle. We find that such material would most resemble enriched mantle II-type oceanic island basalts (OIB). None of our calculated residual slabs would evolve to Sr-Nd-Pb isotopic compositions similar to either high 238U/204Pb or enriched mantle I. The range of Sr and Pb isotope ratios in anciently recycled material is similar to that seen in modern OIB, but Nd isotopic compositions do not range to ɛNd values as low as those in some modern OIB. Neither radiogenic nor unradiogenic Pb isotope

  14. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    USGS Publications Warehouse

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  15. The subduction of young lithosphere

    NASA Astrophysics Data System (ADS)

    Sacks, I. S.

    1983-04-01

    Studies, using a variety of techniques, of the subduction beneath western South America and the southwest Honshu-Kyushu region of Japan indicate that volcano-free segments occur where the subducted and continental lithospheres remain in contact without intervening asthenosphere. The subduction is initiated at normal dip angles, but the plate deforms at some depth (100 km under central Peru) to travel horizontally immediately beneath continental lithosphere. The most plausible reason for this geometry is that the subducted plate is buoyant. A model is developed constrained by age of the plate, bathymetry, and heat flow. Estimates of the density of oceanic plates as a function of age show that younger ocean floor may be less dense than the asthenosphere into which it subducts. If the high-density tranformation of crustal basalt to eclogite is retarded by low temperatures, the plate can remain buoyant to considerable depth for long periods of time. Heat flow data from western South America are consistent with this model.

  16. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.

    PubMed

    Dixon, Jacqueline Eaby; Leist, Loretta; Langmuir, Charles; Schilling, Jean-Guy

    2002-11-28

    A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.

  17. A late-Carboniferous to early early-Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia: Evidence of northward subduction beneath the Siberian paleoplate southern margin

    NASA Astrophysics Data System (ADS)

    Liu, Jianfeng; Li, Jinyi; Chi, Xiaoguo; Qu, Junfeng; Hu, Zhaochu; Fang, Shu; Zhang, Zhong

    2013-09-01

    A subduction-accretion complex is identified from previously defined late-Carboniferous and early-Permian strata in Daqing pasture, southern Xiwuqi, Inner Mongolia. The subduction-accretion complex is composed of a matrix of siltstone and exotic blocks of bioclastic limestone, pillow basalt, foliated basalt, chert and asbestos. The pillow basalt possesses the geochemical characteristics of mid-ocean ridge basalt (N-MORB), whereas the foliated basalt displays the geochemical characteristics of island arc basalt (IAB), indicating that these basalts are of different origins. U-Pb (zircon) dating indicates that the foliated basalt formed in the late-Carboniferous (314.5 to 318.4 Ma) and the bioclastic limestone formed in the early early-Permian. Combined with regional geological data, the subduction-accretion complex and coeval calc-alkaline granitic belt to the north constitute the essential elements of the late-Carboniferous to early early-Permian subduction zone on the southern margin of the Siberian paleoplate. The zircon εHf(t) values of the foliated basalt are positive (+ 14.4 to + 23.9), suggesting that this basalt originated directly from depleted mantle. The temporal-spatial distribution of the subduction-accretion complex and ophiolite belts in southeastern Inner Mongolia indicates that there was significant lateral crustal growth on the southern margin of the Siberian paleoplate in the late Paleozoic.

  18. Evolution of the Archaean crust by delamination and shallow subduction.

    PubMed

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.

  19. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  20. Metamorphic Perspectives of Subduction Zone Volatiles Cycling

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.

    2008-12-01

    Field study of HP/UHP metamorphic rocks provides "ground-truthing" for experimental and theoretical petrologic studies estimating extents of deep volatiles subduction, and provides information regarding devolatilization and deep subduction-zone fluid flow that can be used to reconcile estimates of subduction inputs and arc volcanic outputs for volatiles such as H2O, N, and C. Considerable attention has been paid to H2O subduction in various bulk compositions, and, based on calculated phase assemblages, it is thought that a large fraction of the initially structurally bound H2O is subducted to, and beyond, subarc regions in most modern subduction zones (Hacker, 2008, G-cubed). Field studies of HP/UHP mafic and sedimentary rocks demonstrate the impressive retention of volatiles (and fluid-mobile elements) to depths approaching those beneath arcs. At the slab-mantle interface, high-variance lithologies containing hydrous phases such as mica, amphibole, talc, and chlorite could further stabilize H2O to great depth. Trench hydration in sub-crustal parts of oceanic lithosphere could profoundly increase subduction inputs of particularly H2O, and massive flux of H2O-rich fluids from these regions into the slab-mantle interface could lead to extensive metasomatism. Consideration of sedimentary N concentrations and δ15N at ODP Site 1039 (Li and Bebout, 2005, JGR), together with estimates of the N concentration of subducting altered oceanic crust (AOC), indicates that ~42% of the N subducting beneath Nicaragua is returned in the corresponding volcanic arc (Elkins et al., 2006, GCA). Study of N in HP/UHP sedimentary and basaltic rocks indicates that much of the N initially subducted in these lithologies would be retained to depths approaching 100 km and thus available for addition to arcs. The more altered upper part of subducting oceanic crust most likely to contribute to arcs has sediment-like δ15NAir (0 to +10 per mil; Li et al., 2007, GCA), and study of HP/UHP eclogites

  1. Stability of hydrous phases in subducting oceanic crust

    USGS Publications Warehouse

    Liu, J.; Bohlen, S.R.; Ernst, W.G.

    1996-01-01

    Experiments in the basalt-H2O system at 600-950??C and 0.8-3.0 GPa, demonstrate that breakdown of amphibole represents the final dehydration of subducting oceanic tholeiite at T ??? 650??C; the dehydration H2O occurs as a free fluid or in silicate melt co-existing with an anhydrous eclogite assemblage. In contrast, about 0.5 wt% of H2O is stored in lawsonite at 600??C, 3.0 GPa. Our results suggest that slab melting occurs at depths shallower than 60 km for subducting young oceanic crust; along a subduction zone with an average thermal gradient higher than 7??C/km, H2O stored in hydrated low-potassium, metabasaltic layers cannot be subducted to depths greater than 100 km, then released to generate arc magma.

  2. Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Continental flood basalts have been receiving considerable scientific attention lately. Recent publications have focused on several particular flood-basalt provinces (Brito-Arctic, Karoo, Parana', Deccan, and Columbia Plateau), and much attention has been given to the proposed connection between flood-basalt volcanism, bolide impacts, and mass extinctions. The editor of Continental Flood Basalts, J. D. Macdougall, conceived the book to assemble in a single volume, from a vast and scattered literature, an overview of each major post-Cambrian flood-basalt province.Continental Flood Basalts has 10 chapters; nine treat individual flood-basalt provinces, and a summary chapter compares and contrasts continental flood-basalts and mid-oceanic ridge basalts. Specifically, the chapters address the Columbia River basalt, the northwest United States including the Columbia River basalt, the Ethiopian Province, the North Atlantic Tertiary Province, the Deccan Traps, the Parana' Basin, the Karoo Province, the Siberian Platform, and Cenozoic basaltic rocks in eastern China. Each chapter is written by one or more individuals with an extensive background in the province.

  3. Subduction of fracture zones

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  4. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NASA Astrophysics Data System (ADS)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-10-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flow force the OP to deform. We present results of 3-D dynamic laboratory models of subduction that include an OP. We introduce new interplate materials comprising homogeneous mixtures of petrolatum and paraffin oil to achieve progressive subduction. The rheology of these mixtures is characterized by measurements using a strain rate controlled rheometer. The results show that the strength of the mixture increases with petrolatum content, which can be used as a proxy for the degree of mechanical coupling along the subduction interface. Results of subduction experiments are presented with different degrees of mechanical coupling and the influence this has on the dynamics and kinematics of subduction. The modelling results show that variations in the degree of mechanical coupling between the plates have a major impact on subduction velocities, slab geometry and the rate of OP deformation. In all experiments the OP is displaced following trench migration and experiences overall extension localized in the plate interior. This suggests that OP deformation is driven primarily by the toroidal component of subduction-related mantle return flow. The subduction rate is always very slow in experiments with medium mechanical coupling, and subduction stops prematurely in experiments with very high coupling. This implies that the shear forces along the plate interface in natural subduction zone systems must be relatively low and do not vary significantly. Otherwise a higher variability in natural subduction velocities should be observed for mature, non-perturbed subduction zones. The required low shear force is likely controlled by the rheology of highly hydrated sedimentary and basaltic rocks.

  5. Evolution of the Archaean crust by delamination and shallow subduction.

    PubMed

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time. PMID:12529633

  6. Role of the subduction filter in mantle recycling

    NASA Astrophysics Data System (ADS)

    Kimura, J. I.; Skora, S. E.; Gill, J.; Van Keken, P. E.

    2015-12-01

    Subduction modifies the descending basaltic and sedimentary oceanic crust and generates felsic arc materials and continental crust. Studies of element mass balances in the subduction zone therefore reveal the evolution of the Earth's two major geochemical reservoirs: the continent crust and mantle. We use the Arc Basalt Simulator ver.4 (ABS4) to model the geochemical mass balance during dehydration by prograde metamorphism and melting of the slab followed by subsequent flux melting of the wedge mantle caused by the addition of slab-derived liquids. The geochemistry of high-Mg andesite or adakite formed in a hot subduction zone is akin to the present-day bulk continental crust and to the Archean (>2 Ga) Tonalite-Trondjhemite-Granodiorite composition. Therefore, the residual slab and the metasomatized mantle wedge at hot subduction zones should be the most plausible sources for materials recycled back into the deep mantle. Model calculations of isotopic growth in the residual slab and mantle formed in hot subduction zones reproduce fairly well the EM1-FOZO-HIMU isotope arrays found in ocean island basalts (OIBs) of deep mantle plume origin, although FOZO with high 3He/4He is not generated by this slab recycling process. The recycled materials are bulk igneous ocean crust for HIMU and metasomatized mantle wedge peridotite for EM1. In contrast, the EM2-FOZO array can be generated in a cold subduction zone with igneous oceanic crust for FOZO and sediment for EM2 sources. Necessary residence time are ~2 Ga to form HIMU-FOZO-EM1 and ~1 Ga to form EM2-FOZO. The subducted oceanic crust (forming HIMU) and mantle wedge peridotite (forming EM1) may have travelled in the mantle together. They then melted together in an upwelling mantle plume to form the EM1-FOZO-HIMU isotopic variations found frequently in OIBs. In contrast, the less frequent EM2-FOZO array suggests a separate source and recycling path. These recycling ages are consistent with the change in the mantle potential

  7. Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines

    USGS Publications Warehouse

    Castillo, P.R.; Newhall, C.G.

    2004-01-01

    Mayon is the most active volcano along the east margin of southern Luzon, Philippines. Petrographic and major element data indicate that Mayon has produced a basaltic to andesitic lava series by fractional crystallization and magma mixing. Trace element data indicate that the parental basalts came from a heterogeneous mantle source. The unmodified composition of the mantle wedge is similar to that beneath the Indian Ocean. To this mantle was added a subduction component consisting of melt from subducted pelagic sediment and aqueous fluid dehydrated from the subducted basaltic crust. Lavas from the highly active Taal Volcano on the west margin of southern Luzon are compositionally more variable than Mayon lavas. Taal lavas also originated from a mantle wedge metasomatized by aqueous fluid dehydrated from the subducted basaltic crust and melt plus fluid derived from the subducted terrigenous sediment. More sediment is involved in the generation of Taal lavas. Lead isotopes argue against crustal contamination. Some heterogeneity of the unmodified mantle wedge and differences in whether the sediment signature is transferred into the lava source through an aqueous fluid or melt phase are needed to explain the regional compositional variation of Philippine arc lavas. ?? Oxford University Press 2004; all rights reserved.

  8. Continental flood basalts derived from the hydrous mantle transition zone

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Ce; Wilde, Simon A.; Li, Qiu-Li; Yang, Ya-Nan

    2015-07-01

    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts.

  9. Continental flood basalts derived from the hydrous mantle transition zone.

    PubMed

    Wang, Xuan-Ce; Wilde, Simon A; Li, Qiu-Li; Yang, Ya-Nan

    2015-07-14

    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts.

  10. Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Brandon, Alan D.; Hooper, Peter R.; Goles, Gordon G.; Lambert, Richard St J.

    1993-09-01

    Crustal contamination of basalts located in the western United States has been generally under-emphasized, and much of their isotopic variation has been ascribed to multiple and heterogeneous mantle sources. Basalts of the Miocene Columbia River Basalt Group in the Pacific Northwest have passed through crust ranging from Precambrian to Tertiary in age. These flows are voluminous, homogenous, and underwent rapid effusion, all of which are disadvantages for crustal contamination while en route to the surface. The Picture Gorge Basalt of the Columbia River Basalt Group erupted through Paleozoic and Mesozoic oceanic accreted terranes in central Oregon, and earlier studies on these basalts provided no isotopic evidence for crustal contamination. New Sr, Nd, Pb, and O isotopic data presented here indicate that the isotopic variation of the Picture Gorge Basalt is very small, 87Sr/86Sr=0.70307 0.70371, ɛNd=+7.7-+4.8, δ18O=+5.6±6.1, and 206Pb/204Pb=18.80 18.91. Evaluation of the Picture Gorge compositional variation supports a model where two isotopic components contributed to Picture Gorge Basalt genesis. The first component (C1) is reflected by low 87Sr/86Sr, high ɛNd, and nonradiogenic Pb isotopic compositions. Basalts with C1 isotopic compositions have large MgO, Ni, and Cr contents and mantle-like δ18O=+5.6. C1 basalts have enrichments in Ba coupled with depletions in Nb and Ta. These characteristics are best explained by derivation from a depleted mantle source which has undergone a recent enrichment by fluids coming from a subducted slab. This C1 mantle component is prevalent throughout the Pacific Northwest. The second isotopic component has higher 87Sr/ 86Sr and δ18O, lower ɛNd, and more radiogenic Pb isotopic compositions than C1. There is a correlation in the Picture Gorge data of Sr, Nd, and Pb isotopes with differentiation indicators such as decreasing Mg#, and increasing K2O/TiO2, Ba, Ba/Zr, Rb/Sr, La/Sm, and La/Yb. Phase equilibrium and mineralogical

  11. Origin of the Grande Ronde Basalts, Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Durand, S. R.; Sen, G.; Reidel, S. P.

    2005-12-01

    at 0.2, 1.0 and 1.5 GPa. Because of the pressure limits with the COMAGMAT software, we could not model this composition at higher pressures. Therefore, we searched for pressures at which our calculated mantle-equilibrated melt would be multiply saturated with mantle minerals using the MELTS software. The best fit forward model converges with the best plausible inverse model in that both indicate that most primitive parent melts related to GR could have been multiply saturated at ~1.5-2.0 GPa. We interpret this result to indicate that the parental melts last equilibrated with a peridotitic mantle at 1.5-2.0 GPa and such partial melts rose to 0.2 GPa where they underwent efficient mixing and fractionation before erupting. Our models suggest that the source rock was not eclogitic but a typical upper mantle peridotite, and that the melts had ~0.5% water. We suggest that the plume that generated the GR basalts intruded and displaced much of the lower lithosphere at ~16.5 Ma, perhaps aided by back-arc extension due to subduction of the Farallon plate. Although the plume may have begun melting at a deeper level, the bulk of the melting (which perhaps overwhelmed the earlier melts) did not occur until the plume reached ~60-45 km.

  12. Subduction related fluids fractionate Nb/Ta

    NASA Astrophysics Data System (ADS)

    Salters, V. J.; Bizimis, M.; Sachi-Kocher, A.; Taylor, R.; Savov, I. P.; Stern, C. R.

    2009-12-01

    Key differences between the chemical composition of terrestrial materials and those of meteorites have led to the suggestion that a `hidden’ high Nb/Ta reservoir exists in the Earth’s mantle. In order to test this hypothesis we must identify the processes that can create such a reservoir. It has been suggested that during subduction Nb is more refractory then Ta resulting in low Nb/Ta in the subducted slab, which then serves as a reservoir for the high Nb/Ta. Here we report high precision HFSE data on products of the subduction processes thought to fractionate Nb from Ta: boninites (hydrous melting), adakites (slab melting), oceanic island arc basalts and supra subduction zone peridotites. We developed a new method for the high precision determination of Nb, Ta, Zr, Hf concentrations based on a modified version of standard addition. All analyses were performed on a single collector ICPMS (ELEMENT 1), using Y and Yb as internal standards to correct for instrumental drift during the unspiked -spiked sample sequence. Concentrations are calculated using a York- type regression that accounts for all measured and propagated errors. Long-term reproducibility (multiple dissolutions and multiple spike solutions) for the standards BHVO-1, BIR-1 AGV-1 and BCR-1 are better than 0.8% (1s) for Nb/Ta and Zr/Hf ratios. The advantages of this method compared to previous methods are fast throughput, no column chemistry and low blanks. While the Zr/Hf ratios in subduction-related volcanics and ocean island basalts vary by less than a factor of two, the Nb/Ta ratio varies by a factor of four. Most of the Nb/Ta variation is observed in subduction related rocks. Samples with the highest Nb/Ta ratio (up to 19.5) are adakites from the Austral Volcanic Zone (Andes) which are thought to represent eclogitic melts from subducted oceanic crust which was most likely dehydrated. The lowest Nb/Ta (5) was found in boninites from Chichi-Jima, Bonin Island. Samples from Chichi-Jima and from the

  13. The Fate of Eclogitized Oceanic Crust During Subduction: Implications for Subduction Zone Dynamics

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Langdon, R.; Waters, D.; Raimbourg, H.; Yamato, P.; Chopin, C.

    2011-12-01

    The Monviso ophiolite is composed of two main tectonic slices: the Monviso Unit (MU) to the west, which overlies the Lago Superiore Unit (LSU). Our PT estimates show that the MU has been subducted down to 480°C-23kbar (~70km) during Alpine subduction while the LSU reached slightly deeper conditions (540°C-26kbar, i.e. ~80km). This ophiolite, which comprises large (10-20km long) ophiolite fragments therefore does not correspond to a serpentinite mélange, and may be the southern extension of the Zermatt-Saas ophiolite (Angiboust et al., 2009; 2011). The well-preserved LSU constitutes an almost continuous upper fragment of oceanic lithosphere subducted between 50 and 40 Ma and later exhumed along the subduction interface. It therefore provides a unique opportunity to study strain partitioning and deep mechanical behaviour of the subducting lithosphere. The LSU comprises (i) several hundred meters of eclogitized basaltic crust (+ minor calcschist lenses) overlying a 100-400m thick metagabbroic body and (ii) a serpentinite sole (c. 1km thick). We herein focus on eclogite-facies shear zones, which are found at the boundary between basalts and gabbros, and between gabbros and serpentinites, i.e. between material with marked rheological contrasts. Eclogite facies blocks within the shear zones display intense fracturation, fragment rotation and dispersion in the serpentinite schists which line up the shear zones. We also report the first finding of eclogite-facies breccias, constituted of rotated eclogite mylonitic clasts cemented within an eclogite-facies matrix. Local fracturation of garnet within these breccias is attested by the presence of numerous fracture networks within garnet, generally healed by a Mg-enriched composition. The shear zones also preserve clear evidence of pervasive and channelized fluid flow (of variable duration) leading to alteration of bulk rock composition, weakening of the rock and widespread crystallization of lawsonite. Our results provide

  14. Metamorphic density controls on early-stage subduction dynamics

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Bousquet, Romain

    2013-04-01

    contribution to the slab pull, where eclogitization does not occur. Thus, the lithospheric mantle acts as additional ballast below the sinking slab shortly after the initiation of subduction. Our calculation shows that the dogma of eclogitized basaltic, oceanic crust as the driving force of slab pull is overestimated during the early stage of subduction. These results improve our understanding of the force budget for slab pull during the intial and early stage of subduction. Therefore, the complex metamorphic structure of a slab and mantle wedge has an important impact on the development and dynamics of subduction zones. Further Reading: Duesterhoeft, Oberhänsli & Bousquet (2013), submitted to Earth and Planetary Science Letters

  15. Melt Inclusions as Windows on Subduction Zone Processes - A Retrospective

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.

    2002-12-01

    A.T. (Fred) Anderson, in a series of papers in the interval 1972-1984, presented evidence from melt inclusions for high dissolved water and Cl concentrations in many subduction zone basalts through andesites. His observations, subsequently shown to be correct, were not widely accepted because (1) phase equilibrium experiments on Paricutin and Mount Hood andesites indicated moderate water concentrations, and some workers reasoned that potentially parental basalts would have been drier still, (2) common basalts lack hydrous phenocrysts, and (3) water content estimates were indirect (water-by-difference) or involved difficult, unfamiliar measurements (single inclusion manometry) and thus were discounted. Subsequent development of techniques for the direct and precise measurement of water and CO2 in melt inclusions (SIMS, FTIR), new hydrous phase-equilibrium studies on arc basalts through rhyolites, and wider appreciation of the diversity of arc magmatic suites changed this situation. Melt inclusion evidence shows that subduction zone basalts can have pre-eruptive dissolved water concentrations as high as ~6 wt% (Sisson and Layne 1993 EPSL; Roggensack et al. 1997 Science), confirming predictions from phase-equilibrium experiments (Sisson and Grove 1993a,b CMP), and supporting the now standard model of water-fluxed melting to drive arc magmatism. An important discovery, presaged in the original Anderson data, is that there is a wide range of pre-eruptive water contents in arc basalts, with some as dry as MORB (Sisson and Bronto 1998 Nature). Nearly dry arc basalts can erupt at the volcanic front (Galunggung, Java) and sporadically along the arc axis over distances of hundreds of km (Cascades, USA), in some cases in proximity to demonstrably water-rich magmatic centers (Mt. Shasta, Crater Lake). To produce dry primitive basalts requires upwelling and pressure-release melting of peridotite in the mantle wedge at temperatures (~1300° C) well above those predicted by

  16. High Mg basalts and basaltic andesites from pyroxenite melts(?) in a continental arc: Tatara-San Pedro, Chilean Andes

    NASA Astrophysics Data System (ADS)

    Jweda, J.; Goldstein, S. L.; Dungan, M. A.; Langmuir, C. H.; Davidson, J. P.

    2011-12-01

    A primary challenge for understanding magma generation at continental arc volcanoes is to distinguish subducted slab and upper mantle contributions from crustal contamination. High-density sampling at the Quaternary frontal arc Tatara-San Pedro complex (TSPC) of the Southern Volcanic Zone (SVZ) in Chile has yielded one of the most complete eruptive chrono-stratigraphies of any arc volcano on Earth, providing a unique opportunity to elucidate magma source heterogeneity and the effects of slab, upper mantle, and crustal inputs. While most TSPC lavas are impacted by crustal contamination, these effects can be distinguished. Beyond them, we have recognized three distinct mantle-derived magma types: (1) the "background SVZ" mantle, which is the subduction-modified depleted mantle wedge, (2) a fluid-rich component derived from fluxing of the "background SVZ" mantle wedge by slab-derived hydrous fluids, and (3) an "enriched mantle" component, with much higher incompatible element and HFSE abundances, LREE/HREE, and Sr isotopes, but lower Nd and Hf isotopes, than the other two endmembers. Lavas containing the "fluid-rich" and "enriched" components are generated in separate regions of the subduction regime, as both lava types show mixing with the "background SVZ" but never with each other. While the loss of fluids from subducted ocean crust and melting of the subduction-modified mantle wedge reflect classic processes associated with convergent plate boundaries, the origin of the "enriched mantle" component is not part of the subduction paradigm. In the SVZ, the presence of the "enriched mantle" was observed in basaltic cones behind the arc front near Villarica by Hickey et al. (1989) and interpreted as either derived from continued input of subduction components into the mantle wedge behind the main frontal arc, or from melting of the subcontinental lithospheric mantle. At TSPC, the inferred parent magmas of basalts and basaltic andesites of the enriched component have

  17. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  18. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  19. Voluminous granitic magmas from common basaltic sources

    USGS Publications Warehouse

    Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F.

    2005-01-01

    Granitic-rhyolitic liquids were produced experimentally from moderately hydrous (1.7-2.3 wt% H2O) medium-to-high K basaltic compositions at 700 MPa and f O2 controlled from Ni-NiO -1.3 to +4. Amount and composition of evolved liquids and coexisting mineral assemblages vary with fO2 and temperature, with melt being more evolved at higher fO2s, where coexisting mineral assemblages are more plagioclase- and Fe-Ti oxide-rich and amphibole-poor. At fO2 of Ni-NiO +1, typical for many silicic magmas, the samples produce 12-25 wt% granitic-rhyolitic liquid, amounts varying with bulk composition. Medium-to-high K basalts are common in subduction-related magmatic arcs, and near-solidus true granite or rhyolite liquids can form widely, and in geologically significant quantities, by advanced crystallization-differentiation or by low-degree partial remelting of mantle-derived basaltic sources. Previously differentiated or weathered materials may be involved in generating specific felsic magmas, but are not required for such magmas to be voluminous or to have the K-rich granitic compositions typical of the upper continental crust. ?? Springer-Verlag 2005.

  20. Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Gill, James B.; Kunikiyo, Tomoyuki; Osaka, Isaku; Shimoshioiri, Yusuke; Katakuse, Maiko; Kakubuchi, Susumu; Nagao, Takashi; Furuyama, Katsuhiko; Kamei, Atsushi; Kawabata, Hiroshi; Nakajima, Junichi; van Keken, Peter E.; Stern, Robert J.

    2014-03-01

    response to the subduction of the young Shikoku Basin of the Philippine Sea Plate, arc magmas erupted in SW Japan throughout the late Cenozoic. Many magma types are present including ocean island basalt (OIB), shoshonite (SHO), arc-type alkali basalt (AB), typical subalkalic arc basalt (SAB), high-Mg andesite (HMA), and adakite (ADK). OIB erupted since the Japan Sea back-arc basin opened, whereas subsequent arc magmas accompanied subduction of the Shikoku Basin. However, there the origin of the magmas in relation to hot subduction is debated. Using new major and trace element and Sr-Nd-Pb-Hf isotope analyses of 324 lava samples from seven Quaternary volcanoes, we investigated the genetic conditions of the magma suites using a geochemical mass balance model, Arc Basalt Simulator version 4 (ABS4), that uses these data to solve for the parameters such as pressure/temperature of slab dehydration/melting and slab flux fraction, pressure, and temperature of mantle melting. The calculations suggest that those magmas originated from slab melts that induced flux melting of mantle peridotite. The suites differ mostly in the mass fraction of slab-melt flux, increasing from SHO through AB, SAB, HMA, to ADK. The pressure and temperature of mantle melting decreases in the same order. The suites differ secondarily in the ratio of altered oceanic crust to sediment in the source of the slab melt. The atypical suites associated with hot subduction result from unusually large mass fractions of slab melt and unusually cool mantle temperatures.

  1. Petrogenesis of pillow basalts from Baolai in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Chun; Yang, Huai-Jen

    2016-04-01

    .9-21.0 versus 26.0-33.5), and Dy/Yb (~2.7 versus 2.97-3.62) with higher Lu/Hf (~0.056 versus ~0.045). Based on model calculations, the eastern Guangdong basalts represent mixtures containing large proportions (> 90%) of melt generated by < 2% melting from a source with residual garnet and small proportions (< 10%) of low degree melts (< 1%) from spinel lherzolite. The Baolai basalts are explained as involving higher proportions (10-20%) of melt from spinel lherzolite by higher degrees (2-3%) of partial melting. The unusually high Nb/La ratio of > 1.6 in the Baolai basalts is best explained as reflecting a component in the recycled dehydrated residues, indicating derivation from asthenospheric mantle source that involves subduction components. It is inferred that the subduction components are associated with the subduction of paleo-Pacific Ocean. If this is the case, a relatively high mantle circulation rate (i.e., 1 cm/yr; Wang et al., 2013) is required. Smith and Lewis (2007), International Geology Review 49, 1-13. Wang et al. (2013), Earth and Planetary Science Letters 377-378, 248-259.

  2. Pliocene Basaltic Volcanism in The East Anatolia Region (EAR), Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet

    2016-04-01

    East Anatolia Region (EAR) is one of the high Plateau which is occurred with north-south compressional regime formed depending on continent-continent collision between Eurasia and Arabia plates (Şengör and Kidd, 1979). Recent studies have revealed that last oceanic lithosphere in the EAR have completely depleted to 20 million years ago based on fission track ages (Okay et al. 2010). Our initial studies suggest that extensively volcanic activity in the EAR peaked in the Pliocene and continued in the same productivity throughout Quaternary. Voluminous basaltic lava plateaus and basaltic lavas from local eruption centers occurred as a result of high production level of volcanism during the Pliocene time interval. In order to better understand the spatial and temporal variations in Pliocene basaltic volcanism and to reveal isotopic composition, age and petrologic evolution of the basaltic volcanism, we have started to study basaltic volcanism in the East Anatolia within the framework of a TUBITAK project (project number:113Y406). Petrologic and geochemical studies carried out on the Pliocene basaltic lavas indicate the presence of subduction component in the mantle source, changing the character of basaltic volcanism from alkaline to subalkaline and increasing the amount of spinel peridotitic melts (contributions of lithospheric mantle?) in the mantle source between 5.5-3.5 Ma. FC, AFC and EC-AFC modelings reveal that the while basaltic lavas were no or slightly influenced by crustal contamination and fractional crystallization, to more evolved lavas such as bazaltictrachyandesite, basalticandesite, trachybasalt might have been important processes. Results of our melting models and isotopic analysis data (Sr, Nd, Pb, Hf, 18O) indicate that the Pliocene basaltic rocks were derived from both shallow and deep mantle sources with different melting degrees ranging between 0.1 - 4 %. The percentage of spinel seems to have increased in the mantle source of the basaltic

  3. Plate Interface Rheology, Mechanical Coupling and Accretion during Subduction Infancy

    NASA Astrophysics Data System (ADS)

    Agard, P.; Yamato, P.; Mathieu, S.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Monie, P.; Chauvet, A.

    2015-12-01

    Understanding subduction rheology in both space and time has been a challenge since the advent of plate tectonics. We herein focus on "subduction infancy", that is the first ~1-5 My immediately following subduction nucleation, when a newly born slab penetrates into the upper plate mantle and heats up. The only remnants of this critical yet elusive geodynamic step are thin metamorphic soles, commonly found beneath pristine, 100-1000 km long portions of oceanic lithosphere emplaced on continents (i.e., ophiolites). Through the (i) worldwide compilation of pressure-temperature conditions of metamorphic sole formation augmented by pseudosection thermodynamic modeling, (ii) calculations of the viscosity of materials along the plate interface and (iii) generic numerical thermal models, we provide a conceptual model of dynamic plate interface processes during subduction infancy (and initiation s.l.). We show in particular how major rheological switches across the subduction interface control slab penetration, and the formation of metamorphic soles. Due to the downward progression of hydration and weakening of the mantle wedge with cooling, the lower plate (basalt, sediment) and the upper plate (mantle wedge) rheologies equalize and switch over a restricted temperature-time-depth interval (e.g., at ~800°C and ~1 GPa, during 0.1-2 My, for high-temperature metamorphic sole formation). These switches result in episodes of maximum interplate mechanical coupling, thereby slicing the top of the slab and welding pieces (basalt, sediment) to the base of the mantle wedge. Similar mechanical processes likely apply for the later, deeper accretion and exhumation of high-temperature oceanic eclogites in serpentinite mélanges, or for the accretion of larger tectonic slices. This model provides constraints on the effective rheologies of the crust and mantle and general understanding, at both rock and plate scale, for accretion processes and early slab dynamics.

  4. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  5. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  6. On the initiation of subduction

    SciTech Connect

    Mueller, S.; Phillips, R.J. )

    1991-01-10

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  7. Continental Basaltic Rocks

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2003-12-01

    During the past few decades, geochemical studies of continental basaltic rocks and their petrologic kin have become mainstays of studies of the continental lithosphere. These igneous rocks have taken on such an important role largely because the chemical and isotopic composition of continental basaltic rocks and their mantle (see Chapter 2.05) and crustal xenoliths (see Chapter 3.01) provide the best proxy record available to earth scientists for the chemical and physical evolution of the deep continental lithosphere and underlying mantle, areas that are otherwise resistant to direct study. Keeping this in mind, the primary goal of this chapter is to illustrate how geochemical data can be used both to assess the origin of these rocks and to study the evolution of the continental lithosphere.A complete overview of continental basaltic rocks will not be attempted here, because continental "basalts" come in too wide a range of compositions, and because of the sheer volume of geochemical data available for such rocks worldwide. The scope of the chapter is limited to a discussion of a select group of ultramafic to mafic composition "intraplate" continental igneous rocks consisting primarily of kimberlites, potassic and sodic alkali basalts, and continental flood basalts. Igneous rocks forming at active continental margins, such as convergent or transform plate margins, are important examples of continental magmatism but are not directly discussed here (convergent margin magmas are discussed in Chapters 2.11, 3.11, and 3.18). The geochemistry of intraplate igneous rocks of the ocean basins are covered in Chapters 2.04 and 3.16. Although basaltic magmatism has occurred throughout the Earths history, the majority of the examples presented here are from Mesozoic and Cenozoic volcanic fields due to the more complete preservation of younger continental mafic igneous rocks. While considerable effort has been expended in studying the chemical differentiation of mafic magmas

  8. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  9. Friction and stress coupling on the subduction interfaces

    NASA Astrophysics Data System (ADS)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  10. Subduction Initiation in Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    Subduction is often reported to be difficult to initiate, yet in the West Pacific and Eastern Indonesia there are many young subduction zones. Few theoretical or modelling studies consider such settings in which subduction commonly began close to boundaries between ocean crust and thickened crust of arc or continental origin. In Eastern Indonesia there are subduction zones at different stages of development. Some young examples such as the Banda Arc developed by propagation of an existing trench into a new area by tearing, probably along an ocean-continent boundary. This 'solves' the problem since the older subducted slab provides the driving force to drag down unsubducted ocean lithosphere. However, similar explanations cannot account for other subduction zones, such as North Sulawesi, nearby examples in which the subducted slab is not yet at 100 km depth, or troughs where subduction appears to be beginning. These examples show that subduction initiated at a point, such as a corner in an ocean basin, where there were very great differences in elevation between land and adjacent ocean floor. Depression of ocean crust by flow of arc/continent crust is associated with granitic magmatism and detachments within the upper crust. Once the oceanic corner reaches depths of c.100 km, eclogite formation may lead to slab pull that causes the new subduction zone to grow in both directions along strike; arc magmatism may or may not begin. The close relationship between subduction and extension in Eastern Indonesia links dramatic elevation of land, exhumation of deep crust, and spectacular subsidence of basins imaged by oil exploration seismic and multibeam data. Exhumed granites and high-grade metamorphic rocks at elevations up to 3 km, separated by Neogene alluvial sediments from carbonate reefs now at depths of 2 kilometres, imply vertical movements of several kilometres in a few million years. These observations raise the question of whether subduction is driving extension

  11. A possible source of water in seismogenic subduction zones

    NASA Astrophysics Data System (ADS)

    Kameda, J.; Yamaguchi, A.; Kimura, G.; Iodp Exp. 322 Scientists

    2010-12-01

    Recent works on the subduction megathrusts have emphasized the mechanical function of fluids contributing dynamic slip-weakening. Basalt-hosting fault zones in on-land accretionary complexes present several textures of seismic slip under fluid-assisted condition such as implosion breccia with carbonate matrix and decrepitation of fluid inclusion. In order to clarify initiation and evolution processes of such fault zones as well as possible source of fluid in the seismogenic subduction zone, we examined a mineralogical/geochemical feature of basaltic basement recovered by IODP Exp. 322 at C0012, that is a reference site for subduction input in the Nankai Trough. A total of 10 samples (about 4 m depth interval from the basement top) were analyzed in this study. XRD analyses indicate that all of the samples contain considerable amount of smectite. The smectite does not appear as a form of interstratified phase with illite or chlorite. Preliminary chemical analyses by EDS in TEM suggest that the smectite is trioctahedral saponite with Ca as a dominant interlayer cation. To determine the saponite content quantitatively, cation exchange capacity (CEC) of bulk samples was measured. The samples show almost similar CEC of around 30 meq/100g, implying that bulk rock contains about 30 wt% of saponite, considering a general CEC of 100 meq/100g for monomineralic saponite. Such abundance of saponite might be a result from intense alteration of oceanic crust due to sea water circulation at low temperature. Previous experimental work suggests that saponite might be highly hydrated (two to three water layer hydration form) at the seismogenic P-T condition. Hence, altered upper oceanic crust is a possible water sink in the seismogenic zone. The water stored in the smectite interlayer region will be expelled via smectite to chlorite transition reaction, that might contribute to the dynamic weakening of the seimogenic plate boundary between the basement basalt and overlying

  12. Slab melting versus slab dehydration in subduction-zone magmatism

    PubMed Central

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N.; Fei, Yingwei; Ono, Shigeaki

    2011-01-01

    The second critical endpoint in the basalt-H2O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones. PMID:21536910

  13. Does subduction zone magmatism produce average continental crust

    NASA Technical Reports Server (NTRS)

    Ellam, R. M.; Hawkesworth, C. J.

    1988-01-01

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  14. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Astrophysics Data System (ADS)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  15. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle

    NASA Astrophysics Data System (ADS)

    Chauvel, Catherine; Marini, Jean-Christophe; Plank, Terry; Ludden, John N.

    2009-01-01

    In subduction zones, two major mass fluxes compete: the input flux of altered oceanic crust and sediments subducted into the mantle and the output flux of magma that forms the volcanic arc. While the composition and the amount of material erupted along volcanic arcs are relatively well known, the chemical and isotopic composition of the subducted material (altered oceanic crust and sediments) is poorly constrained and is an important factor in the mass balance calculation. Ocean Drilling Program Leg 185 in the Western Pacific used systematic sampling of the altered basaltic basement and sediment pile and the creation of composite mixtures to quantify the total chemical flux subducted at the Izu-Mariana margin. Here, we report Hf and Nd isotopic compositions of materials recovered from this Leg. The Hf and Nd isotopic compositions of altered basalts from Hole 801C are indistinguishable from those of recent unaltered Pacific mid-ocean ridge basalt, suggesting that hydrothermal alteration had no effect on either isotopic systems. The complete Site 1149 sedimentary pile has a weighted average ɛNd of -5.9 and ɛHf of +4.4, values similar to those of Fe-Mn crusts and nodules. Therefore, the Hf and Nd isotopic compositions of the sediments collected at Site 1149 indicate minimal contributions from continental detrital material to the rare earth elements and high field strength elements. However, the Hf isotopic budget of the oldest sediments is more influenced by continental material than the younger sediments, despite the large distances to continental masses 130 Ma ago. In the Izu subduction zone, we calculate a sedimentary input of less than about 2% in the volcanic lava source. In contrast, at least 85% of the sedimentary Nd and Hf are recycled into the mantle to affect its general composition. Assuming that sediments have been recycled in a similar manner into the mantle for millions of years, large chemical heterogeneities must be produced in the mantle. In

  16. Elemental responses to subduction-zone metamorphism: Constraints from the North Qilian Mountain, NW China

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanyuan; Niu, Yaoling; Song, Shuguang; Davidson, Jon; Liu, Xiaoming

    2013-02-01

    Subduction zone metamorphism (SZM) and behaviors of chemical elements in response to this process are important for both arc magmatism and mantle compositional heterogeneity. In this paper, we report the results of our petrographic and geochemical studies on blueschist and eclogite facies rocks of sedimentary and basaltic protoliths from two metamorphic sub-belts with different metamorphic histories in the North Qilian Mountain, Northwest China. The protolith of low-grade blueschists is basaltic in composition and is most likely produced in a back-arc setting, while the protoliths of high-grade blueschists/eclogites geochemically resemble the present-day normal and enriched mid-oceanic ridge basalts plus some volcanic arc rocks. The meta-sedimentary rocks, including meta-graywacke, meta-pelite, meta-chert and marble, show geochemical similarity to global oceanic (subducted) sediments. Assuming that high field strength elements (HFSEs) are relatively immobile, the correlated variations of rare earth elements (REEs) and Th with HFSEs suggest that all these elements are probably also immobile, whereas Pb and Sr are mobile in rocks of both basaltic and sedimentary protoliths during SZM. Ba, Cs and Rb are immobile in rocks of sedimentary protoliths and mobile in rocks of basaltic protolith. The apparent mobility of U in rocks of basaltic protolith may be inherited from seafloor alterations rather than caused by SZM. On the basis of in situ mineral compositional analysis (both major and trace elements), the most significant trace element storage minerals in these subduction-zone metamorphic rocks are: lawsonite, pumpellyite, apatite, garnet and epidote group minerals for REEs, white micas (both phengite and paragonite) for large ion lithophile elements, rutile and titanite for HFSEs. The presence and stability of these minerals exert the primary controls on the geochemical behaviors of most of these elements during SZM. The immobility of REEs, Th and U owing to their

  17. Supertoxic Flood Basalts: The CAMP - Siberian Trap Connection

    NASA Astrophysics Data System (ADS)

    Puffer, J. H.

    2007-12-01

    Several diverse magma types are represented throughout the CAMP and Siberian Trap LIPs, however, the main extrusive phase of each province is highly unusual among continental flood basalts. The most widespread extrusions were intermediate titanium (ITi-type) CAMP basalt and the lower portion of the Upper Sequence of Siberian Trap. New and recently published data indicate that the geochemistry and petrology of these basalt suites closely resemble each other and infer similar origins. The basalts are characterized by strong negative Nb- Ta anomalies and unusual island arc-like depletion in high field strength elements, particularly Ti, plotted on spider diagrams. The geochemical data is consistent with significant contributions from subducted slabs into the magma source regions. If contaminated, volatile enriched mantle wedges were trapped beneath thick continental plates during the assembly of Pangea, fertile magma sources would have remained dormant until decompression melting was triggered during failed rift, then early rift stages of continental plate disassembly. The combination of volatile enriched sources and highly extensional tectonism would create rare perfect storms of toxicity. Calculated low viscosities assuming negligible carbon dioxide are consistent with rapid crustal penetration. Resulting aphyric melts extruded at enormous effusive rates as thick sub-parallel flows across wide subareal terrains through fissures extending several hundred km in length. High fountain heights would afford ample opportunity for efficient degassing, perhaps into the stratosphere. When the supply of volatile flux was exhausted magmatism ceased. The mass extinctions that coincide with CAMP and Siberian volcanism contrast with some large plume and superplume events that correlate with expansions of biodiversity. This may be due in part to contrasting magma access to sources of toxic volatiles, particularly sulfur concentrations in anoxic subducted sediments.

  18. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California

    NASA Astrophysics Data System (ADS)

    Cole, Ronald B.; Stewart, Brian W.

    2009-01-01

    Episodes of spreading ridge subduction occurred during late Oligocene to early Miocene time along western California and during late Paleocene to early Eocene time along southern Alaska. In each case, ridge subduction and subsequent slab window formation has had a profound influence on continental margin magmatism. Foremost, in each setting there was a hiatus in arc magmatism following ridge subduction, followed by the onset of volcanism in zones of local extension within arc-front, forearc, and accretionary prism settings. These near-trench volcanic rocks are distinctive from adjacent arc rocks and represent unique episodes of continental margin magmatism. The western California volcanic rocks were erupted into several local extensional basins and form discrete volcanic centers within each basin. The southern Alaska volcanic rocks, which form the Caribou Creek volcanic field, were erupted in a broad zone of extension that trended orthogonally to the continental margin. Basalts from the western California volcanic centers and the Caribou Creek volcanic field are tholeiitic and have depleted Nd and Sr isotope compositions with ɛ Nd( t) as high as + 9.3 and + 10.9 and 87Sr/ 86Sr( t) as low as 0.70258 and 0.70278, respectively. These basalts are unique because they are the most geochemically depleted basalts yet documented along the continental margin of the northern Cordillera. The basalts of each group also have high Ti contents (TiO 2 above 1.5%) and low ratios of fluid-mobile and other large ion lithophile elements compared to high field strength elements. For example, Ba/Ta ratios among the basalts range from about 40 to 600, with most samples below 270, while arc basalts typically have Ba/Ta ratios greater than 450. The basalts also have Th/Yb and Ta/Yb ratios in the range of mid-ocean-ridge basalts and do not exhibit the typical enrichment in Th/Yb that characterizes arc basalts. The basaltic andesites through dacites and rhyolites have more enriched isotope

  19. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    NASA Astrophysics Data System (ADS)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  20. Teaching about Subduction Zone Magmagenesis using MARGINS Subduction Factory Focus Site Geochemical Compilations and ABS3 (Invited)

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Jordan, E.; Raye, U.; Carr, M. J.; Feigenson, M.; Gill, J. B.; Hacker, B. R.; Kimura, J.; Lehnert, K. A.; Tamura, Y.; van Keken, P. E.

    2010-12-01

    Processes and inputs involved in generating arc magmas are reasonably well known but quantitative modeling is often overlooked when teaching about subduction zone magmagenesis. In order to appreciate these complexities, students need to be able to explore subduction zone magmagenetic processes using trace element compositions of igneous rocks. The MARGINS Subduction Factory experiment selected two endmember convergent margins, the Izu-Bonin-Mariana (IBM) arc, which subducts old, cold, dense seafloor, and the Central American (CentAm) arc, which subducts young, hot, buoyant seafloor. We have compiled high-quality trace element and isotopic data for young, fresh lavas from along the magmatic fronts of these endmember arcs, using the EarthChem database. Comparing data for primitive magmas from the two arc systems allows for first-order distinctions, including the greater relative abundances of fluid-mobile elements (e.g., K, Sr, U) in IBM lavas and greater relative abundances of elements requiring sediment melting (e.g., Th, LREE, Zr) in CentAm lavas. These differences can be explored quantitatively using the Arc Basalt Simulator version 3 (ABS3). ABS3 is a free Excel-based spreadsheet forward model that allows the user to control compositions of subducted sediment and altered oceanic crust in tandem with realistic thermal models to predict metamorphic conditions in the subducted slab, using simplified results from Perple_X, and to understand when sediment- and slab-melting is likely (See J.-I. Kimura et al, this meeting "V15 The Subduction Filter" session for more information about ABS3). Prograde metamorphism along with experimentally-determined partition coefficients are used to predict hydrous fluid compositions; experimental results along with mineral-melt distribution coefficients are used to predict slab melt compositions. Hydrous fluid or melt is allowed to rise into and metasomatize overlying mantle, and the modified fluid allowed to trigger mantle melting

  1. Regional Geochemical Trends in Young Basalts Along the Central Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Pickard, M.; Furman, T.; Hanan, B. B.; Kurkcuoglu, B.; Sayit, K.

    2009-12-01

    The regional neotectonics and volcanism along the margins of the Anatolian microplate (Turkey) are broadly well-constrained. The African and Arabian plates currently push Anatolia against the relatively stable Eurasian plate and as a result, Anatolia has had a west-southwest movement for the last 12 Ma in what is called ‘escape tectonics’. The tectonic environments and their associated volcanism include slab rollback in Western Anatolia (post-Miocene alkaline basalts and basanites) and slab detachment in Eastern Anatolia (mid-Miocene calc-alkaline to Quaternary alkaline). However, the situation in Central Anatolia is less clear: extensional forces govern the neo-tectonic environment and Pliocene-Recent basalts through basaltic andesites and dacites form large stratovolcanoes in extensional basins as well as both small and large basalt fields. The geochemistry of these basalts requires contributions from a poorly-defined mantle source lithology that has been enriched by subduction processes. However, available plate reconstructions indicate that the leading edge of the subducted African plate did not reach Central Anatolia, suggesting that the subduction environment could be related to closure of the neo-Tethyan Ocean in Paleozoic time. Geochemical compositions of mafic lavas along the Central Anatolian Fault Zone (CAFZ) provide new clarity on the question of the extent of lithospheric melting and the influence of the subducting slab. Moving southward along the CAFZ, incompatible trace element compositions of Central Anatolian basalts increase systematically in La/Nb concentrations and other incompatible trace element indicators trend from MORB and OIB signatures to more enriched values. Small negative Nb and no Ta anomalies are present in basalts from the northern CAFZ, and increase to larger negative Nb anomalies and Ta anomalies in the north. The incompatible trace element variations along the CAFZ point to an increase in lithospheric or slab involvement

  2. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration. PMID:17784486

  3. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration.

  4. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  5. The Karoo igneous province — A problem area for inferring tectonic setting from basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew R.

    1987-06-01

    Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin. When data for the "southern" Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of "within-plate" basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a "subduction component" has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities. In contrast, the data for "northern" Karoo basalts largely plot in the "within-plate" field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least

  6. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences

  7. Imaging the Subduction Decollement, Hikurangi Subduction Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Bannister, S.; Toulmin, S.; Henrys, S.; Reyners, M.; Barker, D.; Pecher, I.; Sutherland, R.; Uruski, C.; Maslen, G.

    2006-12-01

    Beneath the eastern coastline of North Island, New Zealand, the subducted Pacific plate dips at less than 3 degrees to the northwest and the subduction decollement is at a depth of less than 15-km. The active-source NIGHT and passive-source CNIPSE experiments carried out in 2001 image the shallow dipping decollement down to more than 6 s (twt) at which point it steepens landward, 120 km from the Hikurangi trench. This change in dip appears to be closely associated with the onset of seismogenesis in the subducted plate. Velocity inversion of CNIPSE earthquake times reveals the forearc to be a relatively low Vp (<5.5 km/s), high Vp/Vs (>1.85), high Poisson's ratio (>0.29) region overlying the 12-15 km thick subducted crust. In March-May 2005 a new industry-seismic survey, 05CM, was carried out offshore the east coast, seismically imaging the subducted plate. More than 278000 airgun shots were also recorded by temporary seismometer stations placed along the coastline, out to offsets of more than 100 km. The combined marine and offshore- onshore seismic data highlight an area of more than 400 sq.kms. with higher reflectivity on the subduction decollement up-dip of the up-dip limit of seismogenesis, which we further examine using AVO and finite- difference modelling.

  8. The Sulfur Cycle at Subduction Zones

    NASA Astrophysics Data System (ADS)

    de Moor, M. J.; Fischer, T. P.; Sharp, Z. D.

    2013-12-01

    We present sulfur (S) isotope data for magmatic gases emitted along the Central American (CA) Arc (oxidizing conditions ΔQFM ~+ 1.5) and at the East African Rift (reduced conditions ΔQFM ~0). The results are interpreted through mass balance calculations to characterize the S cycle through subduction zones with implications for the redox conditions of arc magmas. Voluminous gas emissions from Masaya, an open vent basaltic volcano in Nicaragua, represent >20% of the SO2 flux from the CA arc [1]. Samples from the Masaya plume have S isotope compositions of + 4.8 × 0.4 ‰ [2]. Degassing fractionation modeling and assessment of differentiation processes in this oxidized volcano suggest that this value is close to that of the source composition. High T gas samples from other CA volcanoes (Momotombo, Cerro Negro, Poas, Turrialba) range from + 3 ‰ (Cerro Negro) to + 7 ‰ (Poas; [3]). The high δ34S values are attributed to recycling of subducted oxidized sulfur (sulfate ~ + 20 ‰) through the CA arc. The δ34S values of the more reduced samples from East African Rift volcanoes, Erta Ale - 0.5 × 0.6 ‰ [3] and Oldoinyo Lengai -0.7 ‰ to + 1.2 ‰) are far lower and are probably sourced directly from ambient mantle. The subduction of oxidized material at arcs presents a likely explanation for the oxidized nature of arc magmas relative to magmas from spreading centers. We observe no distinguishable change in melt fO2 with S degassing and attribute these differences to tectonic setting. Monte Carlo modeling suggests that subducted crust (sediments, altered oceanic crust, and serpentinized lithospheric mantle) delivers ~7.7 × 2.2 x 1010 mols of S with δ34S of -1.5 × 2.3‰ per year into the subduction zone. The total S output from the arc is estimated to be 3.4 × 1.1 x 1010 mols/yr with a δ34S value similar to that of Masaya gas (+5 × 0.5 ‰). Considering δ34S values for ambient upper mantle (0 ‰ [4]) and slab-derived fluids (+14 ‰ [5]) allows calculation

  9. Very high potassium (VHK) basalt - Complications in mare basalt petrogenesis

    NASA Technical Reports Server (NTRS)

    Shervais, J. W.; Taylor, L. A.; Laul, J. C.; Shih, C.-Y.; Nyquist, L. E.

    1985-01-01

    The first comprehensive report on the petrology and geochemistry of Apollo 14 VHK (Very High Potassium) basalts and their implications for lunar evolution is presented. The reported data are most consistent with the hypothesis that VHK basalts formed through the partial assimilation of granite by a normal low-Ti, high-Al mare basalt magma. Assimilation was preceded by the diffusion-controlled exchange of alkalis and Ba between basalt magma and the low-temperature melt fraction of the granite. Hypotheses involving volatile/nonvolatile fractionations or long-term enrichment of the source regions in K are inconsistent with the suprachondritic Ba/La ratios and low initial Sr-87/Sr-86 ratios of VHK basalt. An important implication of this conclusion is that granite should be a significant component of the lunar crust at the Apollo 14 site.

  10. Global overview of subduction seismicity

    NASA Astrophysics Data System (ADS)

    Funiciello, F.; Presti, D.; Heuret, A.; Piromallo, C.

    2013-12-01

    In the framework of the EURYI Project ';Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', we propose the first global overview of subduction seismicity. Previous studies have been focused on interplate seismicity, intraslab seismicity, upper plate deformation, or relation between interplate and intraslab seismicity, but the three components of subduction seismicity have been never approached in an systematic and exhaustive study. To allow such a study, nodal planes and seismic moments of worldwide subduction-related earthquakes heve been extracted by EHB hypocenter and CMT Harvard catalogues for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the shallow (0-70 km), intermediate (70-300 km) and deep (300-660 km) depth seismicity. Following Heuret et al. (2011), the 505 transects were merged into 62 larger segments that were ideally homogeneous in terms of their

  11. Water and the Oxidation State of Subduction Zone Magmas

    SciTech Connect

    Kelley, K.; Cottrell, E

    2009-01-01

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe{sup 3+}/{Sigma}Fe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H{sub 2}O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe{sup 3+}/{Sigma}Fe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H{sub 2}O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  12. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation

    NASA Astrophysics Data System (ADS)

    Agard, P.; Yamato, P.; Soret, M.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Chauvet, A.; Monié, P.

    2016-10-01

    Subduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure-lithology-pressure-temperature-time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration.

  13. Sulfide Stability of Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Caiazza, C. M.; Righter, K.; Gibson, E. K., Jr.; Chesley, J. T.; Ruiz, J.

    2004-01-01

    The isotopic system, 187Re 187Os, can be used to determine the role of crust and mantle in magma genesis. In order to apply the system to natural samples, we must understand variations in Re/Os concentrations. It is thought that low [Os] and [Re] in basalts can be attributed to sulfide (FeS) saturation, as Re behaves incompatibly to high degrees of evolution until sulfide saturation occurs [1]. Previous work has shown that lunar basalts are sulfide under-saturated, and mid-ocean ridge, ocean-island and Martian (shergottites) basalts are saturated [2,3]. However, little is known about arc basalts. In this study, basaltic rocks were analyzed across the Trans-Mexican Volcanic Belt.

  14. Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, Southern Cascade Range

    SciTech Connect

    Guffanti, M. ); Clynne, M.A.; Smith, J.G.; Muffler, L.J.P.; Bullen, T.D. )

    1990-11-10

    The authors identify 537 volcanic vents younger than 7 Ma, and they classify these into five age intervals and five compositional categories based on SiO{sub 2} content. Maps of vents by age and composition illustrate regionally representative volcanic trends. Most mafic volcanism is calcalkaline basalt and basaltic andesite. However, lesser volume of low-potassium olivine tholeiite (LKOT), a geochemically distinctive basalt type found in the northern Basin and Range province, also has erupted throughout the Lassen segment of the Cascade arc since the Pliocene. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW alignments of these features indicate NNW orientation of maximum horizontal stress (ENE extension), which is similar to the stress regime in the adjacent northwestern Basin and Range and northern Sierra Nevada provinces. They interpret the western limit of the zone of NNW trending normal faults as the western boundary of the Basin and Range province where it overlaps the Lassen segment of the Cascade arc. The Lassen volcanic region occurs above the subducting Gorda North plate but also lies within a broad zone of distributed extension that occurs in the North American lithosphere east and southeast of the present Cascadia subduction zone. The scarcity of volcanic rocks older than 7 Ma suggests that a more compressive lithospheric stress regime prior to the late Miocene extensional episode may have suppressed volcanism, even though subduction probably was occurring beneath the Lassen region.

  15. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  16. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  17. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  18. Subduction initiation: spontaneous and induced

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.

    2004-10-01

    The sinking of lithosphere at subduction zones couples Earth's exterior with its interior, spawns continental crust and powers a tectonic regime that is unique to our planet. In spite of its importance, it is unclear how subduction is initiated. Two general mechanisms are recognized: induced and spontaneous nucleation of subduction zones. Induced nucleation (INSZ) responds to continuing plate convergence following jamming of a subduction zone by buoyant crust. This results in regional compression, uplift and underthrusting that may yield a new subduction zone. Two subclasses of INSZ, transference and polarity reversal, are distinguished. Transference INSZ moves the new subduction zone outboard of the failed one. The Mussau Trench and the continuing development of a plate boundary SW of India in response to Indo-Asian collision are the best Cenozoic examples of transference INSZ processes. Polarity reversal INSZ also follows collision, but continued convergence in this case results in a new subduction zone forming behind the magmatic arc; the response of the Solomon convergent margin following collision with the Ontong Java Plateau is the best example of this mode. Spontaneous nucleation (SNSZ) results from gravitational instability of oceanic lithosphere and is required to begin the modern regime of plate tectonics. Lithospheric collapse initiates SNSZ, either at a passive margin or at a transform/fracture zone, in a fashion similar to lithospheric delamination. The theory of hypothesis predicts that seafloor spreading will occur in the location that becomes the forearc, as asthenosphere wells up to replace sunken lithosphere, and that seafloor spreading predates plate convergence. This is the origin of most boninites and ophiolites. Passive margin collapse is a corollary of the Wilson cycle but no Cenozoic examples are known; furthermore, the expected strength of the lithosphere makes this mode unlikely. Transform collapse SNSZ appears to have engendered new

  19. Subduction initiation: spontaneous and induced

    NASA Astrophysics Data System (ADS)

    2004-10-01

    The sinking of lithosphere at subduction zones couples Earth's exterior with its interior, spawns continental crust and powers a tectonic regime that is unique to our planet. In spite of its importance, it is unclear how subduction is initiated. Two general mechanisms are recognized: induced and spontaneous nucleation of subduction zones. Induced nucleation (INSZ) responds to continuing plate convergence following jamming of a subduction zone by buoyant crust. This results in regional compression, uplift and underthrusting that may yield a new subduction zone. Two subclasses of INSZ, transference and polarity reversal, are distinguished. Transference INSZ moves the new subduction zone outboard of the failed one. The Mussau Trench and the continuing development of a plate boundary SW of India in response to Indo Asian collision are the best Cenozoic examples of transference INSZ processes. Polarity reversal INSZ also follows collision, but continued convergence in this case results in a new subduction zone forming behind the magmatic arc; the response of the Solomon convergent margin following collision with the Ontong Java Plateau is the best example of this mode. Spontaneous nucleation (SNSZ) results from gravitational instability of oceanic lithosphere and is required to begin the modern regime of plate tectonics. Lithospheric collapse initiates SNSZ, either at a passive margin or at a transform/fracture zone, in a fashion similar to lithospheric delamination. The theory of hypothesis predicts that seafloor spreading will occur in the location that becomes the forearc, as asthenosphere wells up to replace sunken lithosphere, and that seafloor spreading predates plate convergence. This is the origin of most boninites and ophiolites. Passive margin collapse is a corollary of the Wilson cycle but no Cenozoic examples are known; furthermore, the expected strength of the lithosphere makes this mode unlikely. Transform collapse SNSZ appears to have engendered new

  20. Low H2O/Ce in Icelandic basalts as evidence for crustal recycling

    NASA Astrophysics Data System (ADS)

    Neave, David; Shorttle, Oliver; Hartley, Margaret; Maclennan, John

    2016-04-01

    The generation of new crust at mid-ocean ridges is balanced by the subduction of partially hydrothermally altered basaltic material back into the mantle. This subducted material may then be recycled and returned via mantle plumes to the Earth's surface at hot spots. Long-identified isotopic and trace element signatures of oceanic crust recycling in ocean island basalts (OIBs) have been recently supplemented by evidence of major element, i.e. lithological, heterogeneity in the melting region. For example, combined major and trace element systematics from Iceland suggest that the mantle source contains at least 5% recycled basalt. Observations of high water (H2O) contents in subglacially quenched basalts from Iceland have previously been attributed to the incorporation of wet recycled material into the mantle source. However, when combined with trace element analyses, recent volatile analyses from the Laki-Grímsvötn and Bárðarbunga-Veiðivötn systems in the Eastern Volcanic Zone (EVZ) of Iceland suggest that the underlying mantle is comparatively depleted in H2O for its degree of major and trace element enrichment. Correlations between H2O and cerium (Ce) within individual mid-ocean ridge basalt (MORB) suites reveal that these elements partition similarly prior to H2O degassing at low pressures; H2O/Ce remains constant during melting and fractionation, and hence reflects the average H2O/Ce of the melting region. MORBs from the Mid-Atlantic Ridge south of Iceland have a mean H2O/Ce value of 304±48 at a mean La/Yb of 2.1±1.5. In contrast, basalts from the EVZ have a lower mean H2O/Ce of 180±20 at a higher mean La/Yb of 3.1±0.5. Thus, despite coming from an enriched section of the Mid-Atlantic ridge in terms of trace element content, basalts from the EVZ have the lowest H2O/Ce values known from the ridge, and are hence comparatively depleted in H2O. Given that H2O/Ce from un-degassed basalts is considered to represent mantle source values, we suggest that low H

  1. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.

    2016-07-01

    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  2. Accretion, subduction, and underplating along the southern Alaska continental margin

    SciTech Connect

    Plafker, G.; Ambos, E.L.; Fuis, G.S.; Mooney, W.D.; Nokleberg, W.J.; Campbell, D.L.

    1985-01-01

    In 1984-1985 the Trans Alaska Crustal Transect (TACT) program completed geologic, seismic refraction, gravity, and magnetic studies along a 350-km-long corridor that extends northward from the Gulf of Alaska coast near Cordova to the Denali fault at the Richardson Highway. From south to north, this segment of the transect traverses: 1) part of the Prince William terrance (PWT), composed of an accreted Paleocene and Eocene deep-sea fan complex, oceanic volcanic rocks, and pelagic sediments; 2) the Chugach terrane (CGT) composed of a) accreted Late Cretaceous flysch and oceanic basaltic rocks, b) accreted and subducted (.) Late Jurassic to Early Cretaceous sheared melange, and c) subducted Early (.) Jurassic or older blueschist/greenschist; and 3) Wrangellia-Peninsular terranes (WRT/PET) consisting primarily of late Paleozoic intraoceanic andesitic arc rocks with associated mafic and ultramafic plutonic rocks, an overlying distinctive Triassic sedimentary and volcanic sequence, and superposed intrusive and extrusive magmatic rocks of the Jurassic Talkeetna arc. At the southern margin of both the CGT and WRT/PET, shallow high-velocity zones characterized by positive gravity and magnetic anomalies reflect uplift of mafic and ultramafic basement along these thrusts. The Contact and Border Ranges fault systems appear to merge into a subhorizontal low-velocity zone of uncertain origin that underlies the CGT and southern WRT/PET at 5-9 km depth. A few kilometers beneath the shallow low-velocity zone in a 30-km-thick stack of eight northward-dipping layers of alternating high and low velocity, interpreted as subducted and underplated mantle and oceanic crust rocks. Distribution of earthquake hypocenters suggests that active subduction involves at least the lowest two and possibly the lower four layers.

  3. Potential Fields Illuminate Earthquake Sources in Subduction-Margin Settings

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Wells, R. E.

    2008-05-01

    Potential-field anomalies can be used to map the geologic structure of earthquake source regions in subduction zones and thus provide promise for assessing future earthquake hazards. Satellite free-air gravity anomalies over subduction zones consist of an offshore trench-parallel gravity low and a subparallel coastal gravity high that reflect the topography and structure of the inner trench slope and coast ranges, respectively. Large coseismic slip in shallow megathrust earthquakes correlates with gravity lows centered on large forearc sedimentary basins along the deep sea terrace offshore. The trench-parallel gravity low, the basins, and the earthquakes are all thought to be related to the resistance to slip along the plate boundary, and basin-centered gravity lows in similar settings may be the likely source of asperities in future earthquakes. Landward of the shallow megathrust, magnetic anomalies provide clues to processes occurring within the subducting slab and overlying mantle wedge. In some subduction zones, water released from the transformation of basalt to eclogite hydrates overlying sub-continental mantle, producing serpentinite, and embrittles the downgoing slab, promoting intraslab earthquakes. The 1970 central Peru earthquake (MW 7.5 to 8.0) and the 1949 Olympia, Washington, earthquake (MW 7.1) are recent examples. Thermal models indicate that the hydrated mantle wedge in most subduction zones is below the Curie temperature of magnetite. If serpentinite is sufficiently abundant, hydrated mantle wedges will produce long-wavelength magnetic anomalies observable at the earth's surface. A crust-mantle model of the Cascadia subduction margin based on magnetic, gravity, and seismic data, is consistent with the presence of significant volumes of hydrated mantle. The advent of new global magnetic databases may allow us to map hydrated mantle worldwide. The World Digital Magnetic Anomaly Map and the CHAMP satellite magnetic field, processed to emphasize

  4. Geodynamic models of deep subduction

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich

    2001-12-01

    Numerical and laboratory models that highlight the mechanisms leading to a complex morphology of subducted lithospheric slabs in the mantle transition zone are reviewed. An increase of intrinsic density with depth, an increase of viscosity, or phase transitions with negative Clapeyron slope have an inhibiting influence on deep subduction. The impingement of slabs on a viscosity and density interface has been studied in laboratory tanks using corn syrup. Slab interaction with equilibrium and non-equilibrium phase transitions has been modelled numerically in two dimensions. Both the laboratory and the numerical experiments can reproduce the variety of slab behaviour that is found in tomographic images of subduction zones, including cases of straight penetration into the lower mantle, flattening at the 660-km discontinuity, folding and thickening of slabs, and sinking of slabs into the lower mantle at the endpoint of a flat-lying segment. Aside from the material and phase transition properties, the tectonic conditions play an important role. In particular, the retrograde motion of the point of subduction (trench-rollback) has an influence on slab penetration into the lower mantle. A question that still needs to be clarified is the mutual interaction between plate kinematics and the subduction process through the transition zone.

  5. A discussion of numerical subduction initiation

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  6. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr.

    PubMed

    Turner, Simon; Tonarini, Sonia; Bindeman, Ilya; Leeman, William P; Schaefer, Bruce F

    2007-06-01

    Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that delta(18)O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in delta(11)B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, delta(11)B is negatively correlated with (187)Os/(188)Os ratios, which extend to subchondritic values, constraining the age of the high Nb/B, (11)B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be melt- and fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from approximately 3-Gyr-old melt-enriched basalt. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands approximately 3 Gyr later.

  7. Geochemistry characteristics of Seamounts in the Tonga arc : Influence of subduction component

    NASA Astrophysics Data System (ADS)

    Myeong, B.; Kim, J. H.; Woo, H.; Jang, Y. D.

    2015-12-01

    Located in the southwest Pacific ocean, The seamounts, from TA07 seamount to TA26, in the Tonga arc are located from 20 °S to 25 °S. At 25 °S, the Tonga trench is intersected by the Louisville ridge, a ~4,300-km-long chain of seamounts and the Osbourn trough, a paleo-spreading center. For this reason, magma which created these seamounts may have various origin. Based on this, the seamounts which forming the Tonga arc are divided into three groups; including group 1(region that the earliest Louisville ridge subduction arised, correspond to TA07-12), group 2(region that the second Louisville ridge subduction arised, correspond to TA14-24); and group 3(region that the Louisville ridge and the Osbourn trough are subducting, correspond to TA25-26). These seamounts are mostly stratovolcanoes with caldera. Rocks recovered by dredging have been identified as pumice, dacite, andesite, basaltic andesites and basalts(most abundant). Major element concentrations are constant, trace element concentrations are enriched LILE, depleted HFSE compared with MORB. The Tonga arc is affected by subduction components divided into the shallow and deep subduction components. Related to subduction components, variables include mantle source, AOC(altered oceanic crust), PS(pelagic sediment), LSC(Louisville seamount chain) and OS(Osbourn trough). In the case of shallow subduction component, it tends to have higher contents in group 1, 3 and lower contents in group 2. Thus, comparatively speaking, it seems that group 1, 3 have been heavily influenced by the fluid. However, origin of the fluid seems to be different, since its locations are not continuous. In the case of deep subduction component, it shows similar range in the group 1, 2, and shows a significantly lower ratio in the group 3. The reason why its values are similar is that it is effected by the melt during the Louisville ridge was subducting and the reason why the ratio in the group 3 shown lower is because of the fluid effect

  8. The Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean: Further evidence from the Barleik subduction-related metamorphic complex in the West Junggar region, NW China

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Han, Bao-Fu; Xu, Zhao; Ren, Rong; Zhang, Jin-Rui; Zhou, Jing; Su, Li; Li, Qiu-Li

    2016-06-01

    In this study, we present new evidence from the Barleik subduction-related metamorphic complex in the southern West Junggar region, northwestern China, for the Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean. The Barleik metamorphic complex is mainly composed of blueschist and amphibolite blocks within an ophiolitic mélange and their protoliths are calc-alkaline andesite and alkali and tholeiitic basalts. The calc-alkaline andesite has a zircon U-Pb age of 502 ± 2 Ma, obtained from magmatic cores of zircon grains, and shares geochemical features similar to the 515-485 Ma intra-oceanic arc magmatic rocks in the West Junggar region. By contrast, the alkali and tholeiitic basalts have trace element features similar to ocean island and enriched mid-ocean ridge basalts, respectively. Rutile and sodic-calcic amphibole from the amphibolite have a U-Pb age of 502 ± 25 Ma and a 40Ar/39Ar age of ∼504 Ma, respectively, which are in good agreement within errors with a 40Ar/39Ar age of 492 ± 4 Ma for phengite from the blueschist. These metamorphic ages of ∼500 Ma are interpreted to represent the timing of Pacific-type subduction-related metamorphism and are also compatible with ages of the oldest supra-subduction zone ophiolites (531-512 Ma) and intra-oceanic arc plutons (515-485 Ma) in the southern West Junggar region. Being one of the oldest subduction-related metamorphic complexes (509-490 Ma) in the southern Central Asian Orogenic Belt, the Barleik metamorphic complex, together with the oldest arc plutons, definitely indicate the initial intra-oceanic subduction in the southern Paleo-Asian Ocean at least in the Early Cambrian.

  9. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum: The Subduction Factory

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.

  10. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  11. Osmium Recycling in Subduction Zones

    PubMed

    Brandon; Creaser; Shirey; Carlson

    1996-05-10

    Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge. PMID:8662577

  12. Osmium Recycling in Subduction Zones

    PubMed

    Brandon; Creaser; Shirey; Carlson

    1996-05-10

    Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge.

  13. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  14. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  15. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  16. Flood basalts and mass extinctions

    NASA Technical Reports Server (NTRS)

    Morgan, W. Jason

    1988-01-01

    There appears to be a correlation between the times of flood basalts and mass-extinction events. There is a correlation of flood basalts and hotspot tracks--flood basalts appear to mark the beginning of a new hotspot. Perhaps there is an initial instability in the mantle that bursts forth as a flood basalt but then becomes a steady trickle that persists for many tens of millions of years. Suppose that flood basalts and not impacts cause the environmental changes that lead to mass-extinctions. This is a very testable hypothesis: it predicts that the ages of the flows should agree exactly with the times of extinctions. The Deccan and K-T ages agree with this hypothesis; An iridium anomaly at extinction boundaries apparently can be explained by a scaled-up eruption of the Hawaiian type; the occurrence of shocked-quartz is more of a problem. However if the flood basalts are all well dated and their ages indeed agree with extinction times, then surely some mechanism to appropriately produce shocked-quartz will be found.

  17. Subduction & orogeny: Introduction to the special volume

    NASA Astrophysics Data System (ADS)

    Rolland, Y.; Bosch, D.; Guillot, S.; de Sigoyer, J.; Martinod, J.; Agard, P.; Yamato, P.

    2016-05-01

    Subduction processes play a major role in plate tectonics and the subsequent geological evolution of Earth. This special issue focuses on ongoing research in subduction dynamics to a large extent (oceanic subduction, continental subduction, obduction…) for both past and active subduction zones and into mountain building processes and the early evolution of orogens. It puts together various approaches combining geophysics (imaging of subduction zones), petrology/geochemistry (metamorphic analysis of HP-UHP rocks, fluid geochemistry and magmatic signal, geochronology), seismology and geodesy (present-day evolution of subduction zones, active tectonics), structural geology (structure and evolution of mountain belts), and numerical modelling to provide a full spectrum of tools that can be used to constrain the nature and evolution of subduction processes and orogeny. Studies presented in this special issue range from the long-term (orogenic cycle) to short-term (seismic cycle).

  18. Nickel in high-alumina basalts

    USGS Publications Warehouse

    Hedge, C.E.

    1971-01-01

    New analyses of high-alumina basalts reveal an average nickel content higher than previously indicated. Ni in high-alumina basalts correlates with magnesium in the same way as it does in other basalt types. There is therefore no reason, based on Ni contents, to hypothesize a special origin for high-alumina basalts and it is permissible (based on Ni contents) to form andesites by fractional crystallization from high-alumina basalts. ?? 1971.

  19. Involvement of pore water in the Izu-Ogasawara subduction process: Evidence from argon isotope ratio

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Sumino, H.; Nagao, K.; Notsu, K.; Hirano, N.; Machida, S.; Ishii, T.

    2006-12-01

    The Izu-Ogasawara volcanic arc is located along the boundary between two oceanic plates, the Pacific plate and the Philippine Sea plate, parallel to the Izu-Ogasawara trench. This arc is suitable to investigate the origin of fluid, which is released from the subducting materials, and play an important role in arc magma generation. This is due to the fact that the contribution of continental crustal component in arc magma can be negligible. How noble gases subduct and are recycled to Earth's surface via arc volcanism in the subduction system is an important issue in the understanding of the evolution history of the Earth's interior. Here we report the recycling of noble gases concurrent with the subduction process, based on the different behaviors of different noble gas species, to investigate the volatile behavior in slab-derived fluid during the subduction processes. We measured noble gas isotopic composition of subducting sediments, basalts and gabbros as input materials, serpentine in the Izu-Ogasawara forearc as a mantle wedge material, and volcanic products in this arc as output materials. The volcanic products show 3He/4He ratios of about 8.0 Ra, which are in the range of the MORB value (8±1 Ra). The 40Ar/36Ar ratios of these samples range from 300 to 620, which are significantly lower than that of the MORB source (up to 40000). On the other hand, subducting gabbros show a similar 3He/4He ratio of the MORB value and the 40Ar/36Ar ratios of input materials range from 420 to 800, some of which are higher than that of the volcanic products. These observations revealed that pore water derived atmospheric argon (40Ar/36Ar = 296) in the subducting slab significantly affects the noble gases in arc magma rather than the input materials measured in this study. The serpentine sample also shows an atmospheric argon isotopic feature, suggesting that the serpentine, which is generated by the interaction of pore water related fluids with wedge mantle peridotite, is a

  20. Nature of Subduction Megathrust Faults at the Ryukyu Subduction Zone

    NASA Astrophysics Data System (ADS)

    Arai, R.; Kaiho, Y.; Takahashi, T.; Nakanishi, A.; Fujie, G.; Nakamura, Y.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2015-12-01

    The Ryukyu subduction zone (RSZ) has been intensively examined in terms of seismic coupling along the plate boundary and tsunami potentials. On the contrary to other subduction zones nearby, such as the Nankai Trough and the Japan Trench, the RSZ has lacked clear evidence of great interplate earthquakes (M>8) for the last few hundred years and thus the overall interplate coupling is thought to be weak (Peterson and Seno, 1984). Correspondingly, geodetic observation implies that a possible coupled zone is narrow and limited to a shallow portion of the plate boundary near the trench (Ando et al., 2009). Recent seismic studies show that very low frequency earthquakes (VLFEs) are ubiquitously distributed in the forearc region of the Ryukyu arc, implying a variety of slip behaviors along the subduction faults related to fluid distribution (Nakamura and Sunagawa, 2015). However, these findings were derived from land station network and did not have sufficient resolution near the trench to determine spatial relationship of megathrust faults to the seismic activity. Since 2013 we JAMSTEC have been carrying out marine active- and passive-source seismic experiments in the Ryukyu subduction zone to reveal the fine-scale geometry and nature of subduction faults. Here we present integrated seismological evidence for megathrust fault structure and its relation to VLFEs at the southern Ryukyu Trench. Active-source seismic data consistently reveal that the plate boundary and backstop interface form a 40-km-wide frontal prism where low-velocity sedimentary rocks fill in. We find VLFEs occur around the low-velocity wedge where fluids are distributed as suggested by negative polarity in the reflection data. This forearc structure is also coincident with the source region of Yaeyama earthquake tsunami in 1771 (Nakamura, 2009), the most devastating disaster known in this region. Slow ruptures enhanced by the fluid-rich condition at the plate boundary and/or surrounding faults may be a

  1. Petrogenesis of Mt. Baker basalts (Cascade arc): Constraints from thermobarometry, phase equilibria, trace elements and isotopes

    NASA Astrophysics Data System (ADS)

    Mullen, E. K.; McCallum, I. S.

    2010-12-01

    ± cpx. These conclusions are consistent with the results of simultaneous forward-modeling of Pb isotopes and trace elements. The model predicts the compositions of “slab components” that can be derived from the subducting Juan de Fuca oceanic crust and Cascadia sediment using experimentally determined partition coefficients. Model results indicate that MBVF basalts range from 5% (Sulphur Creek) to 15% (Tarn Plateau) partial melts of DMM (depleted MORB mantle) metasomatized 10-20% by fluid and melt derived from a combination of sediment and altered metabasalt. The residual mantle assemblage grades from harzburgite (higher melt fractions) to lherzolite (lower melt fractions). MBVF basalt compositions form one end member of the compositional spectrum observed in the Garibaldi Belt in which the alkalinity of basalts increases northward, slab contamination from the slab decreases, and the depth of melting increases (Green and Sinha, 2005). We propose that a slab window created by differential subduction rates of the Explorer and Juan de Fuca plates along the Nootka fault has focused upwelling asthenosphere which has migrated southward along the arc and mixed with the mantle wedge, resulting in a compositional gradient in the basalts.

  2. Thrust-type subduction-zone earthquakes and seamount asperites: A physical model for seismic rupture

    SciTech Connect

    Cloos, M. )

    1992-07-01

    A thrust-type subduction-zone earthquake of M{sub W} 7.6 ruptures an area of {approximately}6,000 km{sup 2}, has a seismic slip of {approximately}1 m, and is nucleated by the rupture of an asperity {approximately}25km across. A model for thrust-type subduction-zone seismicity is proposed in which basaltic seamounts jammed against the base of the overriding plate act as strong asperities that rupture by stick-slip faulting. A M{sub W} 7.6 event would correspond to the near-basal rupture of a {approximately}2-km-tall seamount. The base of the seamount is surrounded by a low shear-strength layer composed of subducting sediment that also deforms between seismic events by distributed strain (viscous flow). Planar faults form in this layer as the seismic rupture propagates out of the seamount at speeds of kilometers per second. The faults in the shear zone are disrupted after the event by aseismic, slow viscous flow of the subducting sediment layer. Consequently, the extent of fault rupture varies for different earthquakes nucleated at the same seamount asperity because new fault surfaces form in the surrounding subducting sediment layer during each fast seismic rupture.

  3. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Ce; Wilde, Simon A.; Xu, Bei; Pang, Chong-Jin

    2016-09-01

    Continental basalts generally display enrichment of fluid-mobile elements and depletion of high-field-strength elements, similar to those that evolved in the subduction environment, but different from oceanic basalts. Based on the continental flood basalt database for six large igneous provinces, together with rift-related basalt data from the Basin and Range Province, this study aimed to test the validity of geochemical tectonic discrimination diagrams in distinguishing arc-like intra-continental basalts from arc basalts and to further investigate the role of deep-Earth water cycling in producing arc-like signatures in large-scale intra-continental basalts. Our evaluation shows that arc-like intra-continental basalts can be distinguished from arc basalts by integrating the following factors: (1) the FeO, MgO, and Al2O3 concentrations of the primary melt; (2) Tisbnd V, Zrsbnd Zr/Y, Zrsbnd Ti, and Ti/Vsbnd Zr/Smsbnd Sr/Nd discrimination diagrams; (3) the coexistence of arc-like and OIB-like subtype basalts within the same province; (4) primitive mantle-normalized trace element distribution patterns. The similarity of enrichment in fluid-mobile elements (Ba, Rb, Sr, U, and K) between arc-like and true arc basalts suggests the importance of water flux melting in producing arc-like signatures in continental basalts. Experimentally determined liquid lines of descent (LLD) imply high magma water concentrations for continental flood basalts (CFBs) and the Basin and Range basalts. Furthermore, estimates based on the Al2O3-LLD method indicates 4.0-5.0 wt% pre-eruptive magma H2O concentration for CFBs and the Basin and Range basalts. The tight relationships between H2O/Ce and Ba/La, Ba/Nb and Rb/Nb based on global arc basalt data were further used to estimate the primary H2O concentrations. With the exception of the Emeishan CFBs (mainly containing 4.0-5.6 wt% H2O), all other CFBs investigated have similar estimated primary H2O contents, with values ranging from 1.0 to 2

  4. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    or channel bends that exposes more core lava to cooling than simply that of the shear zones. Thus the channel geometry plays a major role in the thermal history of a flow. As lava flows rarely flow through pre-existing channels of prescribed geometry, we have performed an additional set of analog laboratory experiments to determine the relationship between flow rate, slope, and channel formation in solidifying flows. All flows develop stable uniform channels within solidified levees except when the flow rate is sufficiently low to permit flow front solidification, inflation, and tube formation. On constant slopes, increasing flow rates result in increases in both the rate of flow advance rate and the channel width, and a decrease in levee width. At constant flow rates, both channel width and levee width decrease with increasing slope while flow advance rate increases. Limited data on the geometry of basaltic lava channels indicate that experimental data are consistent with field observations, however, both additional field data and scaling relationships are required to fully utilize the laboratory experiments to predict channel development in basaltic lava flows.

  5. Subduction Zone Processes and Implications for Changing Composition of the Upper and Lower Mantle

    NASA Astrophysics Data System (ADS)

    Morris, J. D.; Ryan, J. G.

    2003-12-01

    With ca. forty thousand kilometers of subduction zones and convergence rates from 30 km Ma-1 to 180 km Ma-1, subduction carries massive amounts of material into seafloor trenches, and beyond. Most of the subducting plate is made of mantle material returning to the depths from which it originated. The hydrated and altered upper oceanic section and the overlying sediments, however, carry a record of low-temperature interaction with the ocean, atmosphere, and continents. Subduction and recycling of these components into the mantle has the potential to change mantle composition in terms of volatile contents, heat-producing elements, radiogenic isotope systematics, and trace element abundances. Enrichments in volatile and potassium, uranium, and thorium contents could change the rheological, thermal, and geodynamical behavior of portions of the mantle. Changing isotope and trace-element systematics provide a means for tracking mantle mixing and the possible subduction modification of the deep mantle. A large number of studies point to possible contributions of subducted sediments and altered oceanic crust (AOC) to the mantle-source region for enriched mantle II (EMII) and high mu (HiMU) enriched oceanic island basalts. Transit through the subduction zone, however, changes the composition of the subducting sediment and AOC from that measured outboard of trenches.This chapter focuses on subduction zone processes and their implications for mantle composition. It examines subduction contributions to the shallow mantle that may be left behind in the wedge following arc magma genesis, as well as the changing composition of the slab as it is processed beneath the fore-arc, volcanic front and rear arc on its way to the deep mantle. Much of this chapter uses boron and the beryllium isotopes as index tracers: boron, because it appears to be completely recycled in volcanic arcs with little to none subducted into the deep mantle, and cosmogenic 10Be, with a 1.5 Ma half

  6. The Banda Arc subduction enigma

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Hall, Robert

    2010-05-01

    The spectacularly curved Banda arc comprises young oceanic crust enclosed by a volcanic inner arc, outer arc islands, and a trough parallel to the Australian continental margin. Seismicity defines a spoon-shaped lithospheric fold in the upper mantle for which there are two contrasting explanations: deformation of a single subducted slab, or two different slabs subducted from north and south. We show that the Banda arc resulted from subduction of a single slab. Based on geology and seismic tomography, we argue that the arc formed since 15 Ma by subduction of a Jurassic oceanic embayment within the Australian plate. Viewed in an Atlantic-Indian hotspot reference frame, the stationary E-W striking Java trench propagated ESE into the Banda embayment by hinge rollback. Extension of the upper plate formed oceanic crust in the present Banda Sea between stretched continental crust of Australian origin. Slab morphology depends primarily on the geometry of the continental margin enclosing the embayment. Our model explains the first order tectonic development of the Banda region and links slab deformation to absolute plate motion.

  7. Building a Subduction Zone Observatory

    USGS Publications Warehouse

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  8. The deep water cycle and origin of cratonic flood basalts: two examples from the Siberian craton

    NASA Astrophysics Data System (ADS)

    Ivanov, A. V.

    2014-12-01

    Cratonic flood basalt volcanism is the most puzzling phenomenon compared to all other types of intraplate volcanism. Cratons are thick and cold; the two parameters which suppress melting of either sublithospheric or lithospheric mantle in dry conditions. Fusible eclogites at hot plume geotherm start to melt in sublithospheric depth (~ 230 km), but geochemical arguments require that, in addition to eclogitic component, significant volume of flood basalts are from peridotitic mantle. Dry peridotitic mantle cannot be melted unless the lithospheric thickness reduced to about 60 km. That is why modern plume models incorporate lithospheric delamination and/or initially thinned lithosphere to explain cratonic flood basalts. However, if lithosphere remained thick, which was the case for the Siberian craton by the time of formation of its Devonian (Vilyui) and Permo-Triassic (Siberian) flood basalt provinces, then plume model is unable to explain the flood basalt volcanism. If mantle is wet, the peridotitic solidus lowered such as it can start to melt at sublithospheric depth (for example, 2 wt. % H2O-bearing peridotite starts to melt at ~320 km depth even at a normal mantle geotherm). In this presentation I will show that fluxing of mantle via the deep water cycle process may explain the Siberian craton flood basalts and many other continental flood basalts. According to the deep water cycle model, water is carried to the mantle transition zone by fast subducting slabs (may be in form of solid ice VII), then water is released from the slabs due to warming to the ambient mantle temperature, then localized hydration creates buoyant wet diapirs (or melt-bearing diapirs), the diapirs raise up to the sublithosheric depth were melt accumulates for the following tectonically triggered flood basalt eruptions.

  9. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China

    NASA Astrophysics Data System (ADS)

    Ho, Kung-suan; Chen, Ju-chin; Juang, Wen-shing

    2000-06-01

    The Leiqiong area, which includes the Leizhou Peninsula and the northern part of the Hainan Island, is the largest province of exposed basalts in southern China. Ar-Ar and K-Ar dating indicates that incipient volcanism in the Leiqiong area may have taken place in late Oligocene time and gradually increased in tempo toward the Miocene and Pliocene Epoch. Volcanic activities were most extensive during Pleistocene, and declined and ended in Holocene. Based on radiometric age dating and geographic distribution, Pliocene and Quaternary volcanism in Hainan Island can be grouped into two stages and six eruptive regions. The early volcanism is dominated by flood type fissure eruption of quartz tholeiites and olivine tholeiites whereas the later phase is dominated by central type eruption of alkali olivine basalts and olivine tholeiites. The systematic decrease of MgO, ΣFeO and TiO 2 with increasing SiO 2 content for basalts from Hainan Island indicates that fractional crystallization of olivine, clinopyroxene and Ti-bearing opaques may have occurred during magmatic evolution. From coexisting Fe-Ti oxide minerals, it is estimated that the equilibrium temperatures range from 895-986°C and oxygen fugacities range from 10 -13.4 to 10 -10.7 atmospheres in the basaltic magmas. The incompatible element ratios and the chondrite-normalized REE patterns of basalts from the Leiqiong area are generally similar to OIB. The Nb/U ratios (less than 37) in most of the tholeiitic rocks and the negative Nb anomaly observed in the spidergram of some basalts indicated that the influence of a paleo-subduction zone derived component can not be excluded in considering the genesis of the basalts from the Leiqiong area. The tholeiites in the Leiqiong area may have mixed with a more enriched lithospheric mantle component as well as undergone relatively larger percentages of partial melting than the alkali basalts.

  10. Saline Fluids in Subduction Channels and Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.

    2015-12-01

    Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.

  11. Influence of subducted components on back-arc melting dynamics in the Manus Basin

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Turner, Simon P.; Sinton, John M.; Gill, James B.

    2010-06-01

    Lavas erupted in back-arc basins afford the opportunity to explore the extent to which decompression and subduction-related components influence partial melting in this setting. We present U-Th-Ra disequilibria data from 24 well-characterized lavas from the Manus Basin behind the New Britain volcanic arc, supplemented by some additional trace element and Sr-Nd-Pb isotope data. The lavas range in composition from 49.6 to 57.7 wt % SiO2 and can be subdivided into those that are broadly like mid-ocean ridge basalts (MORB) with Ba/Nb < 16 and back-arc basin basalts (BABB) that are variably influenced by subduction components and have Ba/Nb > 16. Rifts closest to the arc are dominated by BABB, whereas both lavas types erupt further away at the Manus Spreading Center. The MORB have small 230Th excesses (up to 5%) and are displaced below the global correlation of (230Th/238U) with ridge depth. In most respects the BABB closely resemble lavas erupted along the New Britain arc front, including 238U excesses that reach 26%. The Pb isotope data can be explained by mixing of a subduction component into an Indian MORB mantle source. The Pb in the subduction component is derived from both the subducted sediment (5%) and fluids from the subducting altered Solomon Sea oceanic crust (95%), and these were mixed prior to addition to the mantle wedge. U/Th ratios, Fe3+/ΣFe, and H2O contents all increase with increasing 206Pb/204Pb. A model in which addition of the subduction component to the mantle wedge is followed by 230Th in-growth during decompression and dynamic melting all less than 140 kyr prior to eruption can simulate the data. However, our preferred model is one of dynamic decompression melting in which subduction-modified, more oxidized mantle had DU ≪ DTh leading to 238U excesses in contrast to unmodified mantle that yields 230Th excess. Large 226Ra excesses in some southern rift samples require addition of a fluid <8 kyr ago but elsewhere reflect melting under low

  12. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  13. Mantle upwelling and trench-parallel mantle flow in the northern Cascade arc indicated by basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Mullen, E.; Weis, D.

    2013-12-01

    Cascadia offers a unique perspective on arc magma genesis as an end-member ';hot' subduction zone in which relatively little water may be available to promote mantle melting. The youngest and hottest subducting crust (~5 Myr at the trench) occurs in the Garibaldi Volcanic Belt, at the northern edge of the subducting Juan de Fuca plate [1]. Geochemical data from GVB primitive basalts provide insights on mantle melting where a slab edge coincides with high slab temperatures. In subduction zones worldwide, including the Cascades, basalts are typically calc-alkaline and produced from a depleted mantle wedge modified by slab input. However, basalts from volcanic centers overlying the northern slab edge (Salal Glacier and Bridge River Cones) are alkalic [2] and lack a trace element subduction signature [3]. The mantle source of the alkalic basalts is significantly more enriched in incompatible elements than the slab-modified depleted mantle wedge that produces calc-alkaline basalts in the southern GVB (Mt. Baker and Glacier Peak) [3]. The alkalic basalts are also generated at temperatures and pressures of up to 175°C and 1.5 GPa higher than those of the calc-alkaline basalts [3], consistent with decompression melting of fertile, hot mantle ascending through a gap in the Nootka fault, the boundary between the subducting Juan de Fuca plate and the nearly stagnant Explorer microplate. Mantle upwelling may be related to toroidal mantle flow around the slab edge, which has been identified in southern Cascadia [4]. In the GVB, the upwelling fertile mantle is not confined to the immediate area around the slab edge but has spread southward along the arc axis, its extent gradually diminishing as the slab-modified depleted mantle wedge becomes dominant. Between Salal Glacier/Bridge River and Glacier Peak ~350 km to the south, there are increases in isotopic ratios (ɛHf = 8.3 to13.0, ɛNd = 7.3 to 8.5, and 208Pb*/206*Pb* = 0.914 to 0.928) and trace element indicators of slab

  14. Striking Local Distinctions in Basaltic Melts within Nicaraguan Cross-arc Lineaments

    NASA Astrophysics Data System (ADS)

    Her, X.; Walker, J. A.; Roggensack, K.

    2015-12-01

    The Nejapa-Miraflores (NM) and Granada (G) lineaments which cut across the Central American volcanic front (CAVF) host numerous monogenetic vents which have erupted diverse basaltic magmas (e.g., Walker, 1984). As previously shown by Walker (1984), the basaltic magmas loosely fall into two groups: a high Ti, low K group which are reminiscent of MORB or BABB; and a low Ti, high K group which are more typical of subduction zones worldwide. Major element data obtained from over 200 olivine-hosted melt inclusions found within NM and G tephras from six separate monogenetic vents confirm this unusual compositional dichotomy. Melt inclusions from four of the six monogenetic vents are exclusively high- or low-Ti, while two of the volcanoes have both high- and low-Ti melt inclusions. New volatile and trace element data on over 40 of the NM and G melt inclusions has yielded additional compositional distinctions between the high- and low-Ti groups. Least degassed high-Ti melts tend to have lower water contents than their low-Ti counterparts. The high-Ti Inclusions also have lower concentrations of U, Th, Pb, Ba and Cs and lower La/Yb ratios. In addition, there are subtle HFSE variations between the two types of basalts. The overall geochemical differences between the high- and low-Ti groups suggest that the mantle wedge source of the latter contains a greater slab-derived (hemipelagic) sediment melt component than the former linked to a larger flux of hydrous fluids from deeper in the subducting Cocos plate. What is particularly significant is that the contrasting mafic emanations from these monogenetic volcano lineaments demonstrate that transport of fluids, volatiles and basaltic melts in subduction zones can be quite variable and complex on a very localized scale.

  15. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts

    NASA Astrophysics Data System (ADS)

    Castillo, Paterno R.

    2015-02-01

    Many, and perhaps all, oceanic island basalts (OIB) clearly contain a component of crustal materials that have been returned to the mantle through subduction or other processes. One of the first recycled materials to be identified as a potential source of OIB was mid-ocean ridge basalt (MORB), and this was later fine-tuned as having a long time-integrated (b.y.) high U/Pb ratio or high μ (HIMU) and producing OIB with the most radiogenic Pb isotopic ratios (206Pb/204Pb > 20). However, it is becoming more evident that the compositional connection between subducted MORB and HIMU basalts is problematic. As an alternative hypothesis, a small amount (a few %) of recycled Archaean marine carbonates (primarily CaCO3) is proposed to be the main source of the distinct 206Pb/204Pb, 207Pb/204Pb and 87Sr/86Sr isotopic and major-trace element compositions of classic HIMU and post-Archaean marine carbonates for younger HIMU or the so-called FOZO mantle source. As an extension of the hypothesis, a conceptual model that combines the separate evolutionary histories of ancient oceanic lithosphere, which is the source of OIB, and upper mantle, which is the source of MORB, is also proposed. The model claims that FOZO mainly consists of the lithospheric mantle portion of the ancient metamorphosed oceanic slabs that have accumulated in the deep mantle. Such an ultramafic source is geochemically depleted due to prior extraction of basaltic melt plus removal of the enriched subduction component from the slab through dehydration and metamorphic processes. Combined with other proposed models in the literature, the conceptual model can provide reasonable solutions for the 208Pb/204Pb, 143Nd/144Nd, 176Hf/177Hf, and 3He/4He isotopic paradoxes or complexities of oceanic lavas. Although these simultaneous solutions for individual paradoxes are qualitative and non-unique, these are unified under a single, marine carbonate recycling hypothesis.

  16. The Oman Ophiolite as a Record of Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. J.; MacLeod, C. J.

    2014-12-01

    The Oman ophiolite is the largest and best-known ophiolite in the world. It formed in the Cretaceous (~95 Ma) in the Neotethyan ocean, but its geodynamic setting of formation has been heavily debated for over three decades. Many workers have assumed that it formed in an open ocean setting, consequently utilising the ophiolite as a direct analogue for fast-spreading oceanic crust, whereas others argue that the complex formed in a subduction setting. Here, we make the case that the Oman ophiolite records the evolution of the upper plate of a newly initiated subduction zone. Using a database of >1200 lava and dyke analyses ('OmanDB'), we show that the earliest lava sequence (the Geotimes unit) is systematically different to modern mid-ocean ridge basalt, and that these differences can be explained by the presence of elevated water contents. This rules out a mid-ocean ridge origin, pointing instead to a subduction-related setting. The lavas evolved from the Geotimes 'moist MORB' to island-arc tholeiite and boninite (the Lasail and Alley units); hence, we conclude that the entire ophiolite formed in a subduction zone. The data suggest a progressive addition of water and concomitant depletion of the mantle source. High-precision U-Pb zircon geochronology indicates that this fundamental change in magmatic source occurred within ~2 million years. The spreading structure of the ophiolite is characterized by a series of NW-SE trending propagating rifts that crosscut earlier N-S trending ridge segments. Together with palaeomagnetic evidence, which calls for 30° clockwise rotation between Geotimes and Lasail/Alley, and 120° between Lasail/Alley and the later Salahi lavas, it suggests that construction of the lithosphere was accompanied by significant plate rotation. Combined, the available evidence suggests that the rapid change in magmatic signature to increasingly arc-like compositions was coeval with large-scale rotational disaggregation of young ocean lithosphere and

  17. Geochemical consequences of thermomechanical plumes in subduction zones. Implications for crustal making processes

    NASA Astrophysics Data System (ADS)

    Vogt, K.; Castro, A.; Gerya, T.

    2011-12-01

    Crustal growth rates and geochemical consequences of composite plumes formed in subduction zones have been analysed using a thermo-mechanical numerical model of an oceanic-continental subduction zone. This model includes dehydration of subducted crust, aqueous fluid transport, partial melting and melt emplacement. Subduction of crustal material to sublithospheric depth results in the formation of tectonic rock melanges composed of basalts and sediments, which may trigger Rayleigh-Taylor instabilities atop the slab. Composite plumes are formed that rise through the mantle transporting subducted crustal materials (of varying composition) towards hotter zones of the mantle wedge. We have investigated the composition and the geochemical evolution of liquids derived from composite plumes by analysing the differing proportions of the endmembers in the source, i.e. basalts and sediments. Our results show that the proportions of the components are limited to short range variations over an interval of Xb(basalt/basalt+sediment) = 0.4 - 0.8 that allows for granodioritic melt production [1]. We have further calculated Sr and Nd isotopic initial ratios of the melange at any time during the simulations, based on the fraction of the components in the melange. Liquids derived from composite plumes inherit the geochemical characteristics of the parental magma and show distinct temporal variations of radiogenic isotopes. The decoupling between radiogenic isotopes and major elements is an interesting result, and may explain short range variations observed in some batholiths along the Cordillera. Batholiths formed along active continental margins display homogeneous major element composition but substanstial variation in radiogenic isotopic compositions, suggesting widely varying proportions of mantle and crustal components in their source that may be explained by melts derived from composite plumes. [1] Castro A., Gerya, T., García-Casco, A., Fernández, C., Díaz Alvarado, J

  18. Lithospheric-folding-based understanding on the origin of the back-arc basaltic magmatism beneath Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S.; Shin, Y.; CHOI, K.; Koh, J.; Nakamura, E.; Na, S.

    2012-12-01

    Jeju Island is an intraplate volcanic island located at the eastern margin on the East Asia behind the Ryukyu Trench, the collisional/subduction boundary between the Eurasian plate and Philippine Sea plate. It is a symmetrical shield volcano, having numerous monogenetic cinder cones, over 365, on the Mt. Halla volcanic edifice. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and surface lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on the evidence obtained from volcanic stratigraphy, paleontology, and geochronology, the age of the Jeju basalts ranges from the early Pleistocene to Holocene(Historic). The alkaline and tholeiitic basalts exhibits OIB composition from intraplate volcanism which is not associated with plate subduction, while the basement xenolith contained in the volcanic rock indicates that there were volcanic activities associated with the Mesozoic plate subduction. The Geochemical characteristics have been explained with the plume model, lithospheric mantle origin, and melting of shallow asthenosphere by the rapid change of stress regimes between the collision of the India-Eurasia plates and subduction of the Pacific plate, while there has not been any geophysical investigation to disclose it. Compression near collisional plate boundaries causes lithospheric folding which results in the decrease of pressure beneath the ridge of the fold while the pressure increases beneath trough. The decompression beneath lithosphere is likely to accelerate basaltic magmatism along and below the ridge. We investigate the subsurface structure beneath Jeju volcanic island, South Korea and its vicinity and propose an alternative hypothesis that the basaltic magma beneath the island could be caused by episodic lithospheric folding. Unlike the prevailing hypothesis of the

  19. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  20. Into the subduction plate interface: insights from exhumed terranes (Invited)

    NASA Astrophysics Data System (ADS)

    Agard, P.; Angiboust, S.; Plunder, A.

    2013-12-01

    metasomatic rinds, affected the fragments of mylonitic basaltic eclogites and calcschists dragged and dismembered within serpentinite during eclogite-facies deformation. Detailed petrological and geochemical investigations point to a massive, pulse-like, fluid-mediated element transfer essentially originating from serpentinite. Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached by these eclogites, is regarded as the likely source of this highly focused fluid/rock interaction and element transfer. Such a pulse-like, subduction-parallel fluid migration pathway within the downgoing oceanic lithosphere may have been promoted by transient slip behaviour along the LSZ under eclogite-facies conditions. Bi-phase numerical models allowing for fluid migration (driven by concentrations in the rocks, non-lithostatic pressure gradients and deformation), mantle wedge hydration and mechanical weakening of the plate interface indicate that the detachment of such large-scale oceanic tectonic slices is promoted by fluid circulation along the subduction interface (as well as by subducting a strong and originally discontinuous mafic crust).

  1. The basalts of Mare Frigoris

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Jaiswal, B.; Hawke, B. R.; Öhman, T.; Giguere, T. A.; Johnson, K.

    2015-10-01

    This paper discusses the methodology and results of a detailed investigation of Mare Frigoris using remote sensing data from Clementine, Lunar Prospector, and Lunar Reconnaissance Orbiter, with the objective of mapping and characterizing the compositions and eruptive history of its volcanic units. With the exception of two units in the west, Mare Frigoris and Lacus Mortis are filled with basalts having low-TiO2 to very low TiO2, low-FeO, and high-Al2O3 abundances. These compositions indicate that most of the basalts in Frigoris are high-Al basalts—a potentially undersampled, yet important group in the lunar sample collection for its clues about the heterogeneity of the lunar mantle. Thorium abundances of most of the mare basalts in Frigoris are also low, although much of the mare surface appears elevated due to contamination from impact gardening with the surrounding high-Th Imbrium ejecta. There are, however, a few regional thorium anomalies that are coincident with cryptomare units in the east, the two youngest mare basalt units, and some of the scattered pyroclastic deposits and volcanic constructs. In addition, Mare Frigoris lies directly over the northern extent of the major conduit for a magma plumbing system that fed many of the basalts that filled Oceanus Procellarum, as interpreted by Andrews-Hanna et al. (2014) using data from the Gravity Recovery and Interior Laboratory mission. The relationship between this deep-reaching magma conduit and the largest extent of high-Al basalts on the Moon makes Mare Frigoris an intriguing location for further investigation of the lunar mantle.

  2. Reconciling the shadow of a subduction signature with rift geochemistry and tectonic environment in Eastern Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    LeMasurier, Wesley E.; Choi, Sung Hi; Hart, Stanley R.; Mukasa, Sam; Rogers, Nick

    2016-09-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. Basalts here are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.702535-0.703284) and 143Nd/144Nd (0.512839-0.513008) and a wide range of 206Pb/204Pb (19.357-20.934). Basalts at three MBL volcanoes display two anomalies compared with the above and with all other basalts in West Antarctica. They include 143Nd/144Nd (0.512778-0.512789) values at Mt. Takahe and Mt. Siple that are 2σ lower than other West Antarctic basalts, and Ba/Nb, Ba/La, and Ba/Th values at Mt. Murphy and Mt. Takahe that are 3-8 times higher than normal OIB. Isotope and trace element data do not support crustal and lithospheric mantle contamination, or the presence of residual mantle amphibole or phlogopite as explanations of these anomalies. The apparent coincidence of these anomalies with the site of a pre-Cenozoic convergence zone along the Gondwanaland margin suggests a subduction influence. Major episodes of subduction and granitic plutonism took place in MBL during the Devonian, Permian, and Late Cretaceous. Relicts in the source region, of components from these subducted slabs, provide a credible explanation for the uncoupling of Ba from other large ion lithophile elements (LILE), for its erratic distribution, and for the anomalously low 143Nd/144Nd at Mt. Takahe. The last episode of subduction ended ~ 85 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes seem to have been preserved roughly 61-85 m.y. after subduction ended. New calculations of source melting depth and a new determination of lithospheric thickness suggest that the source of the anomalies resides in a fossil mélange diapir that rose from the Cretaceous subducting slab, became attached to the

  3. Beginning the Modern Regime of Subduction Tectonics in Neoproterozoic time: Inferences from Ophiolites of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Stern, R.

    2003-04-01

    . Boninites are unusual melts of harzburgite that result from asthenospheric upwelling interactng with slab-derived water. This environment is only common during subduction initiation events. Boninites associated with ophiolites have been reported from Egypt, Ethiopia and Eritrea, but most of the geochemical studies of ANS ophiolitic basalts are based on studies that are a decade or more old. The abundance of ANS ophiolites implies an episode of subduction initiation occurred in Neoproterozoic time.

  4. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China)

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Shui; Gao, Jun; Klemd, Reiner; Jiang, Tuo; Zhai, Qing-Guo; Xiao, Xu-Chang; Liang, Xin-Quan

    2015-11-01

    The NE Jiangxi ophiolite in the eastern Jiangnan Orogen is a tectonic mélange that mainly consists of individual tectonic blocks comprising pyroxenite, gabbro, basalt, diorite, granite and chert in a matrix of serpentinite or tuffaceous greywacke. A combined geochemical and geochronological study of the NE Jiangxi ophiolite was undertaken to constrain the timing and tectonic setting of its formation. The basalts were geochemically subdivided into three groups with different FeOt and TiO2 contents. Group 1 basalts have the lowest FeOt (12.17-13.07 wt.%) and TiO2 (1.48-1.62 wt.%) contents and the lowest Nb/Yb (0.80-0.88) and Th/Nb (0.02-0.03) ratios. Furthermore, they have normal mid-ocean ridge basalt (N-MORB)-like trace element patterns, suggesting derivation from an N-MORB-type mantle source without subduction input. Group 2 Fe-Ti basalts have the highest FeOt (15.52-16.30 wt.%) and TiO2 (3.06-3.23 wt.%) contents, Nb/Yb and Th/Nb ratios from 1.75 to 1.89 and from 0.11 to 0.15, respectively, and trace element patterns similar to those of back-arc basin basalts. The geochemical characteristics suggest that Group 2 basalts were derived from a slightly enriched MORB-type mantle source with a minor subduction contribution. In contrast, Group 3 Fe-Ti basalts have moderate FeOt (12.98-13.40 wt.%) and TiO2 (2.37-2.71 wt.%) contents, and Nb/Yb and Th/Nb ratios from 1.28 to 1.45 and from 0.27 to 0.30, respectively. These basalts further display markedly negative Nb-Ta anomalies and show a geochemical affinity to island-arc basalts (IAB), indicating a slightly enriched MORB-type mantle source that was significantly influenced by subduction-derived fluids and/or melts. SIMS zircon U-Pb dating on gabbros gave ages of 995 ± 22 Ma and 993 ± 12 Ma, which are interpreted as the formation age of the NE Jiangxi ophiolite. Positive zircon εHf(t) (+ 8.8 to + 13.8) values for the gabbros and whole-rock εNd(t) (+ 5.5 to + 6.6) values for the basalts indicate that the NE Jiangxi

  5. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  6. Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; van Bergen, M. J.; Foden, J. D.

    2004-01-01

    Pb isotopes in igneous rocks from the Banda-Sunda arc show extreme along-arc variations, which correspond to major lithologic changes in crustal components entering the subduction system. An increase in 206Pb/204Pb ratios toward the zone of collision with the Australian continent reflects input of subducted upper-crustal material; maximum values coincide with anomalously radiogenic 3He/4He ratios that have been earlier attributed to the involvement of the continental margin. The collision zone is further characterized by 208Pb/204Pb ratios that are higher for a given 207Pb/204Pb value than observed in the noncollisional sectors, and in the central part of the collision zone, the 206Pb/204Pb ratios are lower than the most radiogenic values in the adjacent areas. We propose that these Pb isotope signatures reflect input of subducted lower crust, mobilized as a result of slab-window formation during arc-continent collision. Variations in Pb isotopes in the collision zone are solely determined by variations in the nature and proportions of different subducted components. The Pb isotope arrays in the noncollision area may be dominated by slab components as well and could reflect mixing between subducted oceanic crust and entrained sediments, rather than between subarc mantle and subducted sediments. Our new interpretation of the Indonesian Pb isotope data does not call for involvement of ocean-island basalt (OIB) type mantle or Australian subcontinental lithospheric mantle, as has been suggested previously.

  7. Contamination of the Convecting Mantle in Eastern Tethyan 'Subduction Factories'

    NASA Astrophysics Data System (ADS)

    Flower, M. F.; Nguyen, T. H.

    2003-04-01

    As subduction gives way to collision at the end of a Wilson Cycle the associated magmatic activity becomes increasingly enriched in potassium and other large-ion lithophile elements. This is usually attributed to the addition of continental crust-derived material to the convecting mantle wedge. Corresponding depletions in high-field strength elements (Ti and Nb) are more commonly explained in terms of accessory phase buffering or protracted reaction of melts with mantle wallrock. It is increasingly apparent that mantle wedge magmatic sources range from 'fertile' (lherzolitic) to 'refractory' (harzburgitic) although the extent to which this corresponds to the LILE and HFSE variation is unclear. Mantle wedge mass balances clearly hold clues to enrichment-depletion histories of the convecting asthenosphere with respect to both the overriding and subducting plates. With a view to better understanding these effects we have used the MELTS algorithm to calculate hypothetical partial melt compositions as a function of source fertility and H2O content, in the pressure range, 0-1.0 GPa as a basis comparison for natural partial melts. Primitive magmas characterizing the Mariana (western Pacific) and Sunda-Banda (Indonesia) arcs, and the northeastern syntaxis of the India-Asia collision suture (Yunnan) appear to resemble calculated equilibrium melts of refractory (basalt-depleted) peridotite, variably enriched in lithophile and light rare earth elements. These comparisons lead to three observations. 1) HFSE and Fe abundances in primitive MORB, calcalkaline, and boninite magmas, and their respective high-potassium variants are consistent with those implied by phase equilibria associated with partial melting and fractionation, suggesting accessory phases, wall-rock reaction, and slab contamination are probably not important as causes of HFSE depletions. 2) Magmatic sources at convergent and colliding margins are typically refractory (basalt-depleted) compared to those yielding

  8. Genesis of basalt magmas and their derivatives under the Izu Islands, Japan, inferred from Sr/Ca-Ba/Ca systematics

    NASA Astrophysics Data System (ADS)

    Onuma, Naoki; Hirano, Masataka; Isshiki, Naoki

    1983-10-01

    The Sr/Ca-Ba/Ca systematics defined for a series of volcanic rocks provided by volcanoes of the Izu Islands, Japan, have cast a new light on the origin and evolution of basalt magmas and their derivatives: (1) The mantle material in the source region of primary basalt magmas beneath the Izu Islands shows a chondritic value of Sr/Ca and Ba/Ca ratios. (2) Both the tholeiite magma and the high-alumina/calc-alkali basalt magma are primary with higher degrees (15-20% for the former) and lower degrees (8-11% for the latter) of partial melting of a common mantle material. (3) The primary basalt magmas evolve independently via crystal fractionation process in respective magma chambers at shallower depths each providing a series of andesite and dacite magmas corresponding to respective primary basalt magmas. (4) The crystal fractionation process in magma chamber is controlled mainly by plagioclase and clinopyroxene crystallization in terms of the alkaline earth elements. The plagioclase/clinopyroxene ratio decreases during crystal fractionation process. The chemical environments of magma chambers are similar to each other in the tholeiite series and in the high-alumina basalt/calc-alkali rock series. (5) The end products provided by the crystal fractionation process lie within Bowen's petrogeny's residua system, making a thin, silicic crust under the volcanic islands near the Izu Peninsula. The calc-alkali rhyolites in these islands are derived from the thin silicic crust via melting process by the heat of intruded primary basalt magmas. (6) The regional distribution of degree of partial melting indicates variations from 15 to 20% along the volcanic front and from 8 to 11% in the region behind it. The fact suggests that an interaction between the mantle wedge under the Philippine Sea Plate and the subducting slab of the Pacific Plate beneath the Izu Islands is different from place to place, with respect to temperature distribution and/or water supply from the subducting

  9. Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua

    NASA Astrophysics Data System (ADS)

    Janoušek, V.; Erban, V.; Holub, F. V.; Magna, T.; Bellon, H.; Mlčoch, B.; Wiechert, U.; Rapprich, V.

    2010-05-01

    The petrology and chemistry of the Behind the Volcanic Front (BVF) lavas from eastern mainland Nicaragua and the adjacent Great Corn Island in the Caribbean Sea illustrate the complex nature of sources and processes operating in such a tectonic setting. The older, Early Miocene (˜ 17 Ma) group of low-Ti (< 1 wt.%) basalts-andesites is characterized by a strong LILE/HFSE depletion. The low-Ti lavas from El Rama and El Bluff areas are interpreted as relics of Early Miocene volcanic arc, largely analogous to the nowadays extinct Coyol arc further west. However, these rocks differ in some parameters from the modern volcanic front lavas, most notably in having lower δ7Li values, Ba/Yb ratios and lower U contents. The younger high-Ti (Ti > 1.5%) lavas, rich in other HFSE as well, are represented both by alkaline (Quaternary trachybasalts: Volcán Azul and Kukra Hill) and subalkaline (basalts-basaltic andesites: Late Miocene, ˜ 11 Ma Great Corn Island and Quaternary, Pearl Lagoon) volcanic rocks. The Late Miocene and Quaternary high-Ti BVF lavas probably represent small-volume decompression melts of a source similar to that of the OIB-like magmas, most likely upwelling asthenosphere having a strong Galápagos mantle imprint. The positive Sr-Nd isotopic correlation indicates an interaction between this OIB component and a depleted lithospheric mantle modified by a subduction-related influx of Sr and, to a lesser extent, other hydrous fluid-mobile elements. However, the rocks show no recognizable influence of the modern subduction. The feeble trace-element (e.g., slightly elevated Ba, K, and Sr at some localities) and a more pronounced Sr-Li isotopic subduction-related signal stems most likely from the Miocene convergence episode. Subduction of the Galápagos hot-spot tracks in Costa Rica produces magmas that can be readily recognized by their elevated Sr isotopic ratios due to seafloor alteration; the Nd isotopic signature remains unaffected. Such a component with

  10. Radiation shielding concrete made of Basalt aggregates.

    PubMed

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  11. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    NASA Astrophysics Data System (ADS)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  12. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  13. A correlation between mid-ocean-ridge basalt chemistry and distance to continents.

    PubMed

    Humler, Eric; Besse, Jean

    2002-10-10

    To fully understand the structure and dynamics of the Earth's convecting mantle, the origins of temperature variations within the mantle need to be resolved. Different hypotheses have been proposed to account for these temperature variations: for example, heat coming from the decay of radioactive elements or heat flowing out of the Earth's core. In addition, theoretical studies suggest that the thermal properties of continental masses can affect mantle convection, but quantitative data that could allow us to test these models are scarce. To address this latter problem, we have examined the chemistry of mid-ocean-ridge basalt--which reflects the temperature of the source mantle--as a function of the distance of the ridge from the closest continental margin. No correlation is observed for oceanic ridges close to subduction zones or hotspots; subduction zones probably inhibit thermal transfer between the mantle beneath continents and ocean, whereas hotspots influence the major-element chemistry of ridge basalts, which makes their interpretation with respect to mantle temperature more difficult. However, we do observe a significant correlation for mid-oceanic basalts from the Atlantic and Indian oceans. From this, we conclude that the location of continental masses relative to active ridges influences the large-scale thermal structure of the mantle and we estimate that the mantle cools by 0.05 to 0.1 degrees C per kilometre from the continental margins.

  14. The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific

    NASA Astrophysics Data System (ADS)

    Gamble, J. A.; Smith, I. E. M.; McCulloch, M. T.; Graham, I. J.; Kokelaar, B. P.

    1993-01-01

    Basalts from the Taupo Volcanic Zone (TVZ), New Zealand, the Kermadec Island Arc (KA) and its back-arc basin, the Havre Trough show systematic variations in trace-element and isotope geochemistry which are attributed to differences in tectonic setting and source heterogeneity along a more or less continuous plate boundary. Basalts from the Kermadec Arc are characterised by low abundances of high field strength elements (HFSE) such as Ti, Zr, Nb, Ta and Hf and have high ratios of Ti/Zr and low ratios of Ti/Sc and Ti/V relative to typical MORB. Basalts from TVZ also show low abundances of the HFS elements relative to MORB but show lower Ti/Zr, higher Ti/V and Ti/Sc ratios and generally higher Zr abundances than KA most basalts. The Havre Trough basalt is mildly alkaline (< 1% normative nepheline) like many back-arc basin basalts from the Pacific rim, contrasting with the hypersthene normative TVZ and KA rocks. It has higher Zr than most TVZ basalts and all KA basalts. Ratios such as Ti/V, Ti/Sc and Ti/Zr are within the range of TVZ and MORB basalts but distinct from KA basalts. The depleted (relative to MORB) HFSE characteristics of the KA and TVZ basalts are complemented by high abundances of large ion lithophile elements (LIL), such as Ba, Rb and K, when compared to MORB, yielding the distinctive LIL-enriched pattern of subduction related rocks on a normalised multi-element plot. In contrast, the Havre Trough basalt is MORB-like. Chondrite-normalised Rare Earth Element (REE) patterns for the TVZ basalts show a field overlapping with that defined by the southern KA (Rumble Sea Mounts), with light REE enriched patterns (Ce/Yb n = ˜ 1.8-3) and flat heavy REE (Tb-Lu). Basalts from the northern KA are typically light REE depleted (Ce/Yb n = 0.5) or slightly enriched (Ce/Yb n = 1.5). The REE pattern of the Havre Trough basalt is distinctive from both the KA and TVZ fields, being richer in the heavy REE, yet similar to many basalts from back-arc basins. Sr and Nd

  15. Overriding Plate Deformation During Subduction Evolution

    NASA Astrophysics Data System (ADS)

    Davies, J. H.; Garel, F.; Davies, R.; Goes, S. D. B.

    2015-12-01

    Subduction dynamics has been widely studied in free subduction models, which document the important control of the downgoing plate. However, various models have shown how the overriding plate can influence subduction dynamics through its thermal structure, thickness and coupling. Using the code Fluidity we investigate overriding plate deformation in a 2-D thermo-mechanical model of the two-plate subduction system. We use Fluidity's adaptive mesh and free-surface formulation. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We focus on the evolution of the topography and state of stress in the overriding plate during the different phases of the subduction process: early stages of subduction, free-fall sinking in the upper mantle and interaction of the slab with the high-viscosity lower mantle.

  16. Lithological nature of the subduction channel: Insights from the Karabakh suture zone (Lesser Caucasus) and general comparisons

    NASA Astrophysics Data System (ADS)

    Hässig, Marc; Rolland, Yann; Sosson, Marc; Avagyan, Ara

    2016-05-01

    The lithological nature of major interplate boundaries is estimated by a field analysis of a well preserved exhumed subduction channel in the Caucasus Karabakh region. From this field example the subduction channel is a narrow geological object of about 500 m width formed at approximate depth of 10 km along an Andean-type subduction zone. It is comprised by an upper 'sedimentary' channel formed by an upper section of detrital and volcanic rocks thrusted on top of pelagic sediments scrapped off the oceanic floor. This sedimentary mélange is thrusted on top of an intensely deformed tectonic mélange. The tectonic mélange comprises blocks of basalt from the oceanic floor and a focussed deformation zone 50-100 m in width. This zone is mainly formed by mud-supported conglomerates exhibiting a chlorite + carbonate matrix with blocks of basalt, cross-cut by numerous chlorite-carbonate-epidote-albite veins. It overlies an undeformed ocean floor section. Superposed chlorite- and calcite-bearing veins in the mélange evidence high fluid:rock ratios of 0.3-2.3, with varied δ18O and δ13C isotopic ratios (+17 < δ18O < +25‰; -7 < δ13C < +4‰), which agrees with fluid mixing between pelagic sediments and a hydrothermal component at temperatures ranging from 120 to 400 °C, and thus mixing between deep and shallow reservoirs along the subduction interface. These data show that the several fluid reservoirs situated along the interplate boundary could have been connected by high-magnitude co-seismic displacements along the subduction zone. These subduction channel features are confronted to other similar fossil examples and current settings, such as the Andes accretionary prism to propose a reconstructed geometry of the interplate contact zone from the surface to the base of the crust.

  17. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin-Tonga arc system

    NASA Astrophysics Data System (ADS)

    Escrig, S.; BéZos, A.; Goldstein, S. L.; Langmuir, C. H.; Michael, P. J.

    2009-04-01

    New high-density sampling of the Eastern Lau Spreading Center provides constraints on the processes that affect the mantle wedge beneath a back-arc environment, including the effect of the subduction input on basalt petrogenesis and the change in subduction input with distance from the Tonga arc. We obtained trace element and Pb-Sr-Nd isotopic compositions of 64 samples distributed between 20.2°S and 22.3°S with an average spacing of ˜3.6 km. The trace element and isotope variations do not vary simply with distance from the arc and reflect variations in the mantle wedge composition and the presence of multiple components in the subduction input. The mantle wedge composition varies form north to south, owing to the southward migration of Indian-like mantle, progressively replacing the initially Pacific-like mantle wedge. The mantle wedge compositions also require an enriched mid-ocean ridge basalt-like trace element enrichment that has little effect on isotope ratios, suggesting recent low-degree melt enrichment events. The composition of the subduction input added to the mantle wedge is geographically variable and mirrors the changes observed in the Tonga arc island lavas. The combination of the back-arc and arc data allows identification of several components contributing to the subduction input. These are a fluid derived from the altered oceanic crust with a possible sedimentary contribution, a pelagic sediment partial melt, and, in the southern Lau basin, a volcaniclastic sediment partial melt. While on a regional scale, there is a rough decrease in subduction influence with the distance from the arc, on smaller scales, the distribution of the subduction input reflects different mechanisms of the addition of the subduction input to a variable mantle wedge.

  18. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    NASA Astrophysics Data System (ADS)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  19. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  20. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Straub, Susanne M.; Gómez-Tuena, Arturo; Bindeman, Ilya N.; Bolge, Louise L.; Brandl, Philipp A.; Espinasa-Perena, Ramón; Solari, Luigi; Stuart, Finlay M.; Vannucchi, Paola; Zellmer, Georg F.

    2015-10-01

    Recycling of upper plate crust in subduction zones, or 'subduction erosion', is a major mechanism of crustal destruction at convergent margins. However, assessing the impact of eroded crust on arc magmas is difficult owing to the compositional similarity between the eroded crust, trench sediment and arc crustal basement that may all contribute to arc magma formation. Here we compare Sr-Nd-Pb-Hf and trace element data of crustal input material to Sr-Nd-Pb-Hf-He-O isotope chemistry of a well-characterized series of olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 3He/4He = 7-8 Ra and high crustal δ18Omelt = +6.3-8.5‰ implying their host magmas to be near-primary melts from a mantle infiltrated by slab-derived crustal components. Remarkably, their Hf-Nd isotope and Nd/Hf trace element systematics rule out the trench sediment as the recycled crust end member, and imply that the coastal and offshore granodiorites are the dominant recycled crust component. Sr-Nd-Pb-Hf isotope modeling shows that the granodiorites control the highly to moderately incompatible elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust (AOC). Nd-Hf mass balance suggests that the granodiorite exceeds the flux of the trench sediment by at least 9-10 times, corresponding to a flux of ⩾79-88 km3/km/Myr into the subduction zone. At an estimated thickness of 1500-1700 m, the granodiorite may buoyantly rise as bulk 'slab diapirs' into the mantle melt region and impose its trace element signature (e.g., Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep slab melting and local recycling of other slab components such as oceanic seamounts further diversify the MVB magmas by producing rare, strongly fractionated high-La magmas and a minor population of

  1. Genetic interpretation of lead-isotopic data from the Columbia River basalt group, Oregon, Washington, and Idaho.

    USGS Publications Warehouse

    Church, S.E.

    1985-01-01

    Lead-isotopic data for the high-alumina olivine plateau basalts and most of the Colombia River basalt group plot within the Cascade Range mixing array. The data for several of the formations form small, tight clusters and the Nd and Sr isotopic data show discrete variation between these basalt groups. The observed isotopic and trace-element data from most of the Columbia River basalt group can be accounted for by a model which calls for partial melting of the convecting oceanic-type mantle and contamination by fluids derived from continental sediments which were subducted along the trench. These sediments were transported in the low-velocity zone at least 400 km behind the active arc into a back-arc environment represented by the Columbia Plateau province. With time, the zone of melting moved up, resulting in the formation of the Saddle Mt basalt by partial melting of a 2600 m.y.-old sub-continental lithosphere characterized by high Th/U, Th/Pb, Rb/Sr and Nd/Sm ratios and LREE enrichment. Partial melting of old sub-continental lithosphere beneath the continental crust may be an important process in the formation of continental tholeiite flood basalt sequences world-wide. -L.di H.

  2. Thermoluminescence dating of Hawaiian basalt

    USGS Publications Warehouse

    May, Rodd James

    1979-01-01

    The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic

  3. Flood basalts and extinction events

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1993-01-01

    The largest known effusive eruptions during the Cenozoic and Mesozoic Eras, the voluminous flood basalts, have long been suspected as being associated with major extinctions of biotic species. Despite the possible errors attached to the dates in both time series of events, the significance level of the suspected correlation is found here to be 1 percent to 4 percent. Statistically, extinctions lag eruptions by a mean time interval that is indistinguishable from zero, being much less than the average residual derived from the correlation analysis. Oceanic flood basalts, however, must have had a different biological impact, which is still uncertain owing to the small number of known examples and differing physical factors. Although not all continental flood basalts can have produced major extinction events, the noncorrelating eruptions may have led to smaller marine extinction events that terminated at least some of the less catastrophically ending geologic stages. Consequently, the 26 Myr quasi-periodicity seen in major marine extinctions may be only a sampling effect, rather than a manifestation of underlying periodicity.

  4. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  5. Recycling of geochemically heterogenous oceanic crust: Significance for the origin of ocean island basalts

    NASA Astrophysics Data System (ADS)

    Duggen, S.; Hoernle, K.; Hauff, F.; Park, S.-H.; Geldmacher, J.

    2009-04-01

    Explaining the isotopic signature and origin of ocean island basalts (OIBs) is a challenge in Earth sciences. There is general agreement that lithospheric material, recycled into the Earth's mantle, is involved in the mantle sources of OIBs. The relative roles, however, of 1) subducted marine sediments, 2) altered oceanic basaltic crust (AOC), 3) oceanic lithospheric mantle and/or 4) delaminated metasomatised subcontinental lithosphere and continental lower crust, however, are much debated. We present results from geochemical modeling in the Sr-Nd-Pb-isotope space following a new approach that takes into account the trace element and isotope heterogeneity of subducted oceanic crust (sediments + AOC). By means of backward and forward modeling, we examine how a geochemically heterogeneous package of oceanic crust may evolve in terms of Sr-Nd-Pb-isotopic composition through time and compare the results with present day radiogenic isotope ratios of OIBs. Our study suggests that recycling of AOC, modified during the subduction process, and stored in the Earth's mantle for several hundreds of millions of years can explain the Sr-Nd-Pb-isotopic composition of OIBs with relatively high Nd-isotope ratios that form elongated fields along or below the Northern Hemisphere Reference Line (NHRL) in the Pb-isotopic diagrams (e.g. Canaries, Galapagos, Iceland, Madeira). Explaining the origin of OIBs with relatively low Nd-isotope ratios and Pb-isotopic composition above the NHRL, and thus geochemical affinity to enriched mantle (EM) components (e.g. Pitcairn, Tristan, Samoa), however, seems to also require recycling of other lithospheric material such as subducted sediments, lower continental crust and/or subcontinental lithosphere.

  6. Tethyan subducted slabs under India

    NASA Astrophysics Data System (ADS)

    Van der Voo, Rob; Spakman, Wim; Bijwaard, Harmen

    1999-08-01

    Tomographic imaging of the mantle under Tibet, India and the adjacent Indian Ocean reveals several zones of relatively high P-wave velocities at various depths. Under the Hindu Kush region in northeastern Afghanistan and southern Tajikistan, a regional northward-dipping slab is seen in the entire upper 600 km of the mantle and is apparently still attached to the lithosphere of the Indian plate. Under northern Pakistan this same slab shows a roll-over structure with the deeper portion overturned and dipping southward, as can also be seen in the distribution of earthquake hypocenters. Farther east-southeast (e.g., in the vicinity of Nepal), a well-resolved anomaly below 450 km depth is connected to the slab under the Hindu Kush, but seems to be separated from the lithosphere above 350 km. These upper-mantle anomalies are interpreted as the remnants of delaminated sub-continental lithosphere that went down when Greater India continued to converge northward with Asia after ˜45 Ma. The deeper high-velocity anomalies under the Indian sub-continent appear clearly separated from the shallower ones as well as from each other, and are inferred to represent remnants of oceanic lithospheric slabs that have sunk into the lower mantle and were subsequently overridden by the Indian plate. They occur at depths between 1000 and 2300 km and occasionally descend down to the core-mantle boundary. The anomalies form three parallel WNW-ESE striking zones. We interpret the two southern zones as remnants of oceanic lithosphere that was subducted when the Neo-Tethys Ocean closed between India and Tibet in the Cretaceous and earliest Tertiary. The northern deep-mantle zone under northern Afghanistan, the Himalayas and the Lhasa block in southern Tibet may represent the last-subducted remnant of the Paleo-Tethys Ocean, which is thought to have closed before the Hauterivian stage of the Early Cretaceous. The middle zone continues southeastward as a rather straight high-velocity zone towards

  7. Initiation of Subduction at Relic Arcs

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Leng, W.

    2014-12-01

    Plate tectonics have been well established for tens of years, but how subduction initiates over tectonic history remains obscure. It has been proposed that passive margins may be a possible place for subduction initiation, but there is no obvious Cenozoic example of such a scenario, including along the passive margins of the Atlantic Ocean. With a computational method that follows the deformation of a visco-elasto-plastic medium, here we show that a favourable locale for subduction initiation is the juxtaposition of an old oceanic plate adjacent to a young, but relic arc. The probable enrichment of quartz in the middle to lower arc crust leads to two major factors which may have induced subduction initiation. One is the compositional density difference between the relic arc crust and the oceanic lithospheric mantle; the other is the significantly weakened lithosphere strength due to the rheology of wet quartz. With such a setup, we observe spontaneous subduction initiation within a few million years. The evidence that Izu-Bonin-Mariana and Tonga-Kermedec subduction zones both initiate adjacent to relic island arcs supports our conclusions. Our results provide an explanation for the rarity of subduction initiation at the passive margins. The continental lithosphere is typically old and cold. Consequently, the thermal effects cancel the compositional buoyancy contrast between the continental crust and the oceanic lithospheric mantle, making subduction initiation difficult at passive margins.

  8. Variability of South Pacific Tropical Water Subduction

    NASA Astrophysics Data System (ADS)

    Lu, X.; Fine, R. A.; Qu, T.

    2014-12-01

    Collection of Argo data provides an opportunity to carefully examine South Pacific Tropical Water (SPTW) subduction rate variability. SPTW is characterized by a vertical salinity maximum exceeding 36.2 psu centered at 20°S and 120°W and lying in the upper thermocline between 24.0 and 25.0 σθ. Subduction rates for SPTW for two different periods are calculated using two methods. Monthly one degree by one degree Argo data covering the South Pacific are used to calculate subduction rates from September 2005 to August 2013, also lateral induction and vertical pumping are calculated. There are two spatial subduction maxima, and the lateral induction process dominates in both maxima. Subduction rates from Argo data vary from 15 to 26 m/yr +/- 7.5% during the 8 year period. Subduction rates are shown to be positively and highly correlated with Southern Oscillation Index. Additionally, using CFC-12 data from the 1990s World Ocean Circulation Experiment, average subduction rate is calculated to be 35 +/- 16.5 m/yr. Some of the difference between Argo and tracer rates is due to a difference in the methods, and some difference may be due to decadal variability. Thus, SPTW subduction rates are shown to vary on interannual and possible decadal time scales.

  9. Three-Dimensional Numerical Models of Subduction and Subduction-Induced Mantle Flow

    NASA Astrophysics Data System (ADS)

    Freeman, J.; Stegman, D. R.; Schellart, W. P.; Moresi, L.; May, D. A.; Turnbull, R.

    2004-12-01

    The kinematics of subduction and its influence on mantle convection and plate-scale deformation have been the focus of numerous geodynamic studies [e.g. Garfunkel et al., 1986; Gurnis and Hager, 1988; Zhong and Gurnis, 1995; Christensen, 1996; Olbertz et al., 1997; Conrad and Hager, 1999; Eberle et al., 2002]. Most geodynamic models have considered only two-dimensional aspects of subduction dynamics by incorporating the assumption that subduction zones are infinite in trench-parallel extent. However, natural subduction zones are intrinsically three-dimensional, due in part to their limited lateral extent. Lateral length scales of natural subduction zones vary from only a few hundred kilometres (e.g. the Calabrian, Hellenic and Scotia slabs) to several thousand kilometres (e.g. the Aleutian, Indonesian, Northwest Pacific and South American slabs). Here, we present results from three-dimensional numerical experiments that simulate lithospheric subduction and subduction induced mantle flow for slabs with a varying lateral extent.

  10. Flood Basalts and Neoproterozoic Glaciation

    NASA Astrophysics Data System (ADS)

    Halverson, G. P.; Cox, G. M.; Kunzmann, M.; Strauss, J. V.; Macdonald, F. A.

    2014-12-01

    Large igneous provinces (LIPs), which are commonly associated with supercontinental break-up, are the product of the emplacement of >106 km3 of mafic rocks in less than a few million years. LIP magmatism, in particular continental flood basalt (CFB) volcanism, perturbs global climate on shorter time scales through the radiative effects of degassed SO2 and CO2. On longer time scales, CFBs alter climate through the effect of the high weatherabilty of mafic rocks (5-10 times greater than average continental crust) on global silicate weathering. A link between flood basalt weathering, Rodinia break-up, and Neoproterozoic snowball glaciation has been postulated. Here we present a new compilation of Nd isotope data on Neoproterozoic mudstones from Laurentia, Australia, and South China along with a new seawater strontium isotope record from well preserved carbonates that support this hypothesis. These datasets are consistent with an outsized role of basalt weathering on the global silicate weathering budget during the second half of the Tonian period (~850 to 725 Ma). Along with Os isotope data, they also suggest that an additional pulse of basalt weathering at the end of the Tonian may have initiated the Sturtian snowball glaciation. CFBs have relatively high concentrations of phosphorous. Hence, the drawdown in atmospheric CO2 required to trigger the Sturtian snowball Earth was likely accomplished through a combination of increased silicate weathering rates and enhanced biological productivity driven by greater nutrient supply to the oceans. CFBs were also the likely source of the iron in Neoproterozoic iron formation (IF), all significant occurrences of which are restricted to Sturtian-aged glacial successions. Dramatic declines in ɛNd following the Cryogenian snowball glaciations are mirrored by stepwise increases in 87Sr/86Sr, reflecting the scouring of the continents by global ice sheets. This continental resurfacing removed the extensive basalt carapace as well as

  11. Filamentous microbial fossil from low-grade metamorphosed basalt in northern Chichibu belt, central Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Sakakibara, M.; Sugawara, H.; Tsuji, T.; Ikehara, M.

    2014-05-01

    The past two decades have seen the reporting of microbial fossils within ancient oceanic basalts that could be identical to microbes within modern basalts. Here, we present new petrographic, mineralogical, and stable isotopic data for metabasalts containing filamentous structures in a Jurassic accretionary complex within the northern Chichibu Belt of the Yanadani area of central Shikoku, Japan. Mineralized filaments within these rocks are present in interstitial domains filled with calcite, pumpellyite, or quartz, and consist of iron oxide, phengite, and pumpellyite. δ13CPDB values for filament-bearing calcite within these metabasalts vary from -2.49‰ to 0.67‰. A biogenic origin for these filamentous structures is indicated by (1) the geological context of the Yanadani metabasalt, (2) the morphology of the filaments, (3) the carbon isotope composition of carbonates that host the filaments, and (4) the timing of formation of these filaments relative to the timing of low-grade metamorphism in a subduction zone. The putative microorganisms that formed these filaments thrived between eruption (Late Paleozoic) and accretion (Early Jurassic) of the basalt. The data presented here indicate that cryptoendolithic life was present within water-filled vesicles in pre-Jurassic intraplate basalts. The mineralogy of the filaments reflects the low-grade metamorphic recrystallization of authigenic microbial clays similar to those formed by the encrustation of prokaryotes in modern iron-rich environments. These findings suggest that a previously unusual niche for life is present within intraplate volcanic rocks in accretionary complexes.

  12. Flat Subduction and Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Dávila, F. M.; Eakin, C. M.; Crameri, F.

    2014-12-01

    Mantle dynamics manifests at the surface via the horizontal motions of plates and the vertical deflections that influence topography and the non-hydrostatic geoid. The pioneering work of Mitrovica et al. (1989) and Gurnis (1990) on this dynamic topography revolutionized our understanding of sedimentary basin formation, sea level changes and continental flooding. The temporal evolution of subduction can explain the migration of basins and even the drainage reversal of the Amazon (Shephard et al., 2012; Eakin et al., 2014). Until recently, flat subduction has been seen as enhancing downward deflection of the overriding plate and increasing flooding. However, this interpretation depends crucially on the details of the morphology and density structure of the slab, which controls the loci and amplitude of the deflection. We tend to ignore morphological details in mantle dynamics because flow can smooth out short wavelength variations. We have shown instead that details matter! Using South America as a natural laboratory because of the large changes in morphology of the Nazca slab along strike, we show that downward deflection of the overriding plate and hence basin formation, do not occur over flat segments but at the leading edge, where slabs plunge back into the mantle. This is true in both Argentina and Peru. The temporal evolution from a 'normally' dipplng slab to a flat slab leads to uplift over flat segments rather than enhanced subsidence. Critical for this result is the use of a detailed morphological model of the present-day Nazca slab with a spatial resolution of 50-100 km and based on relocated seismicity and magnetotelluric results. The density structure of the slab, due to age and the presence of overthickened crust from aseismic ridge subduction is essential. Overthickened crust leads to buoyant slabs. We reproduce formation and deposition of the Acres-Solimoes basin and the evolution of the Amazon drainage basin in Peru as well as the Mar Chiquita

  13. Petrogenesis of Luna 16 aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Nielsen, R. L.; Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Bulk compositions, petrology and mineralogy of Luna 16 aluminous mare basalt particles of less than 0.5 mm are described. The data rule out any close genetic relationships between Luna 16 and other major types of lunar mare basalts. Compared to high-Ti mare basalts, the Luna 16 basalts contain lower TiO2 and Ta and higher Al2O3 and REE abundances, suggesting that the Luna 16 source rocks crystallized later than (i.e. stratigraphically above) the ilmenite-bearing high-Ti basalt cumulate source rocks. The REE pattern for the Luna 16 basalts requires that the source material from which they were derived crystallized from a light REE enriched magma.

  14. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.

  15. Foundering lithosphere triggers transient basins and backarc magmatism at subduction zones?

    NASA Astrophysics Data System (ADS)

    Wang, H.; Currie, C. A.; DeCelles, P. G.

    2015-12-01

    Many upper-plate processes at subduction zones cannot be directly explained by traditional subduction mechanisms. In the Central Andes, the crust is shortened and thickened by the subduction of Nazca plate, but the lower lithosphere is anomalously thin at present. Within the plateau, localized, transient basins have formed since the Miocene. These basins have experienced subsidence, internal shortening, and then inversion. One hypothesis is these basins are related to the formation and foundering of dense eclogite rocks in the lithosphere. Along the eastern plateau, there are sites of basaltic magmatism which show a gradual westward migration. Geochemistry studies suggest that these magmas are mainly caused by upwelling asthenosphere, indicating lithosphere thinning beneath this area. However, the magmas are landward of the basins, and therefore the formation and removal of the dense anomaly is spatially and temporally offset from the region of lithosphere thinning. In this study, 2D numerical models are used to investigate lithosphere removal within a subduction zone. A dense root is placed in lower crust of the upper plate to simulate the eclogitization process and initiate gravitational removal. The model evolves in three phases: 1) As the root becomes denser, the overlying surface subsides and a basin forms; 2) once the root is denser than mantle, it sinks and decouples from the upper plate. During this period, the basin inverts and uplifts. 3) Meanwhile, the mantle lithosphere landward of the root is sheared by the corner flow in the mantle wedge. As the lithosphere is carried trenchward, a gap forms at the landside of plateau which widens over time. Hot asthenosphere upwells to fill the gap and undergoes decompression melting. The model results are consistent with observations from the Central Andes and could have implications for other subduction regions with enigmatic transient basins and backarc magmatism, such as those in North America and Eastern China.

  16. A complex, young subduction zone imaged by three-dimensional seismic velocity, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Reyners, Martin

    2001-09-01

    The Fiordland subduction zone, where subduction developed in the late Miocene, has been imaged with P and S-P arrival-time data from 311 earthquakes in a simultaneous inversion for hypocentres and 3-D VP and VP/VS models. The three-month microearthquake survey, recorded with 24 portable seismographs, provides excellent coverage, and, since earthquakes to depths of 130km are included, parts of the model are well-resolved to depths of 100km. The crustal features are generally consistent with geology. The low velocity in the upper 10km is associated with the Te Anau and Waiau basins. The Western Fiordland Orthogneiss is associated with a prominent feature from near-surface to over 40km depth, which includes the residue from the basaltic source rocks. It is defined by high VP (7.4kms-1 at 15km depth) and slightly low VP/VS, and has distinct boundaries on its southern and eastern margins. Adjacent to the deepest earthquakes, there is high-velocity Pacific mantle below 80km depth, inferred to be the mantle expression of ongoing shortening since the early Miocene. As the subducting slab moves down and northeast, it is hindered by the high-velocity body and bends to near-vertical. Bending is accommodated by distributed fracturing evidenced by high VP/VS and persistent deep earthquake activity. Buckling of the subducted plate pushes up the Western Fiordland Orthogneiss. In the transition to the Alpine fault in northern Fiordland, a prominent low-velocity crustal root is consistent with ductile thickening in combination with downwarp of the subducted plate.

  17. Characterization of reference Umtanum and Cohassett basalt

    SciTech Connect

    Allen, C.C.; Johnston, R.G.; Strope, M.B.

    1985-02-01

    The Basalt Waste Isolation Project (BWIP) Materials Testing Group (MTG) provides large quantities of reference basalt for testing waste package materials under repository conditions, site sorption characteristics and other experimental purposes. This document describes the reference rock materials currently used in testing, namely entablature and colonnade basalt from the Umtanum and Cohassett flows. The data include sampling locations, bulk chemical composition, modal percentages of major phases, and the chemical and mineralogical compositions of these phases. 8 refs., 17 figs., 15 tabs.

  18. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    SciTech Connect

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  19. Continental subduction induced tremor activity?

    NASA Astrophysics Data System (ADS)

    Tai, H. J.; Chen, K. H.; Ide, S.; Mouyen, M.; Byrne, T. B.

    2015-12-01

    Southern Central Range of Taiwan, a place where deep-seated tectonic tremors (a proxy of slow slip) and earthquake swarms are closely located in space and highly correlated in time, provides rare opportunity towards the understanding of physical mechanisms governing different style of slip. To identify tremor events, we used the identification scheme similar to Ide et al. (2015) but applied slightly different techniques: (1) Higher waveform cross-correlation coefficient (>0.6) (2) careful visual inspection for excluding local earthquakes and short-lasted event (duration < 60 s) (3) Signal to noise ratio higher than 1.2 and lower than 30 (4) No spatio-temporal clustering technique used. During the study period of 2007-2012, we identified 2320 tremor events with duration ranging from 60 s to 1550 s. They are located underneath southern Central Range, forming a NS-striking and SE-dipping pipe-like structure at a depth of 20-40 km. The up-dip extension of this tremor structure reaches an aseismic zone under the western flank of Central Range at shallow depths, where is an area characterized by high heat flow, low Vp and Vs anomaly. Such seismic gap was explained by the buoyancy induced crust detachment during continental subduction of Eurasian Plate. This detachment may open a new channel for hot and ductile material ascending to shallow depth, producing high temperatures along the way. This provides a common mechanism for down-dip tremor and up-dip shallow seismic gap along the same eastern dipping channel. In addition, the tremor events are found to be mostly occurred in high tides and exhibit higher correlation with tide data from west coast of Taiwan. This may again imply the association between tremor activity and subduction of Eurasian Plate.

  20. Mantle Heterogeneities and Crustal Processes of the Cascade Arc Represented by Basalts of the Poison Lake Chain, Lassen Volcanic Center, California

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Teasdale, R.; Hiebing, M. S.; Lenz, Q. A.; Kroeninger, K.

    2013-12-01

    Basalts in the Poison Lake chain (PLC) include eight chemically distinct groups of primitive calc-alkaline basalts (defined by major element geochemistry and mineralogy). Located east of the Lassen Volcanic Center, PLC primitive basalts span the range of basalt compositions exposed throughout the entire Cascade arc (e.g. Ba: 100-1000 ppm; (Sr/P)n: 1.3 - 3.8; La/Yb: 4-26). PLC groups have trace-element and isotope ratios that show little evidence of direct genetic relationships among groups or a common source. Major, trace element and isotope ratios show evidence of contributions from multiple mantle sources including MORB, fluid rich subduction component and subduction-related sediment. Some groups record compositional variations from multiple mantle sources with minimal crustal processing. Similarly, preliminary probe data for olivine-spinel pairs suggest that some PLC groups are derived from heterogeneous mantle sources. Geochemical evidence indicates that other groups have petrogenetic histories that include crustal processes such as fractional crystallization, mixing or crustal contamination. Isotope ratios, major and trace element compositions and crystal compositions provide insights into the extent of source heterogeneities versus the degree of crustal processing. The broad range of compositional variations in basalts of PLC provides the opportunity to examine the extent of mantle heterogeneities and crustal processing in a small geographic area (50km2) for rocks that are nearly the same age (100-110 ka). The diverse primitive compositions erupted in the constrained time and space of the Poison Lake chain and the lack of genetic relationship among groups make it the ideal place to investigate the small scale nature of mantle domains and the roles of subduction and modification processes in the generation of basaltic compositions in arcs such as the Cascades, Mexico, Japan.

  1. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  2. Subseafloor basalts as fungal habitats

    NASA Astrophysics Data System (ADS)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  3. Origin and Role of Recycled Crust in Flood Basalt Magmatism: Case Study of the Central East Greenland Rifted Margin

    NASA Astrophysics Data System (ADS)

    Brown, E.; Lesher, C. E.

    2015-12-01

    Continental flood basalts (CFB) are extreme manifestations of mantle melting derived from chemically/isotopically heterogeneous mantle. Much of this heterogeneity comes from lithospheric material recycled into the convecting mantle by a range of mechanisms (e.g. subduction, delamination). The abundance and petrogenetic origins of these lithologies thus provide important constraints on the geodynamical origins of CFB magmatism, and the timescales of lithospheric recycling in the mantle. Basalt geochemistry has long been used to constrain the compositions and mean ages of recycled lithologies in the mantle. Typically, this work assumes the isotopic compositions of the basalts are the same as their mantle source(s). However, because basalts are mixtures of melts derived from different sources (having different fusibilities) generated over ranges of P and T, their isotopic compositions only indirectly represent the isotopic compositions of their mantle sources[1]. Thus, relating basalts compositions to mantle source compositions requires information about the melting process itself. To investigate the nature of lithologic source heterogeneity while accounting for the effects of melting during CFB magmatism, we utilize the REEBOX PRO forward melting model[2], which simulates adiabatic decompression melting in lithologically heterogeneous mantle. We apply the model to constrain the origins and abundance of mantle heterogeneity associated with Paleogene flood basalts erupted during the rift-to-drift transition of Pangea breakup along the Central East Greenland rifted margin of the North Atlantic igneous province. We show that these basalts were derived by melting of a hot, lithologically heterogeneous source containing depleted, subduction-modified lithospheric mantle, and <10% recycled oceanic crust. The Paleozoic mean age we calculate for this recycled crust is consistent with an origin in the region's prior subduction history, and with estimates for the mean age of

  4. Petrology of the Basalt of Summit Creek: A [Slab] Window into Pacific Northwest Tectonics during the Eocene

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Tepper, J. H.; Nelson, B. K.

    2012-12-01

    Variation in composition of basalts within the Cascade arc reflects the regional effects of subducting slab windows. The earliest preserved Tertiary manifestation of this process is the 55-44 Ma Basalt of Summit Creek (BSC), located southeast of Mount Rainier. At the base of this steeply dipping 2000 m section of subaerial lavas are basalts / diabases with arc traits (e.g., HFSE depletions, 1.0-1.2 wt. % K2O) and isotopic compositions (207Pb/204Pb > 15.58; ɛNd = +5.8 to +6.7) that overlap those of modern Cascade arc rocks. Conformably overlying these arc rocks (and separated by ~35m of shale, sandstone and conglomerate) are tholeiitic basalts with OIB affinities (<0.4 wt. % K2O, Y/Nb = 1.1-2.3, concave spidergram profiles) and isotopic signatures of a more depleted mantle source (207Pb/204Pb < 15.56; ɛNd = +7.1 to +7.8). In major element, trace element, and isotopic composition the upper BSC lavas are broadly similar to the voluminous Crescent Formation basalts on the Olympic Peninsula, which are coeval with the BSC but located ~100 km farther west. Compositional diversity within the upper BSC section (Mg# 66-30) appears to reflect both fractional crystallization and source heterogeneity. Modeling with MELTS (Ghiroso and Sack, 1995) indicates that differentiation dominated by removal of clinopyroxene and plagioclase took place at mid crustal depths (P = 5 kbar) and that the parent magma had <0.2 wt. % water. However, this process cannot account for all incompatible element data, which indicate the existence of two distinct magma series that differ most notably in Sr, Zr, and K2O contents. Arc basalts of the lower BSC may represent the southernmost extension of the Cretaceous-Tertiary North Cascades arc (Miller et al., 2009); however, basalts higher in the section have OIB traits and reflect a different tectonic setting. We propose that the transition from arc to OIB magmatism in the BSC records the arrival beneath the arc of a slab window produced by subduction

  5. Origin and dynamics of depositionary subduction margins

    NASA Astrophysics Data System (ADS)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli A.; Kluesner, Jared W.

    2016-06-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a "depositionary forearc," a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  6. Origin and dynamics of depositionary subduction margins

    USGS Publications Warehouse

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared

    2016-01-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  7. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc

  8. Late Cenozoic volcanism, subduction, and extension in the Lassen region of California, southern Cascade Range

    USGS Publications Warehouse

    Guffanti, M.; Clynne, M.A.; Smith, James G.; Muffler, L.J.P.; Bullen, T.D.

    1990-01-01

    Some 537 volcanic vents younger than 7 Ma are identified and these are classified into five age intervals and five compositional categories based on SiO2 content. Maps of vents by age and composition illustrate regionally representative volcanic trends. By 2 Ma, the eastern limit of volcanism had contracted westward toward the late Quaternary arc. Late Quaternary volcanism is concentrated around and north of the silicic Lassen volcanic center. The belt of most recent volcanism (25-0 ka) has been active since at least 2 Ma. Most mafic volcanism is calcalkaline basalt and basaltic andesite. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW orientation of maximum horizontal stress is indicated. The Lassen volcanic region is thought to occur above the subducting Gorda North plate but also within a broad zone of distributed extension that occurs in the North American lithosphere east and southeast of the present Cascadia subduction zone. The scarcity of volcanic rocks older than 7 Ma suggests that a more compressive lithospheric stress regime prior to the late Miocene extensional episode may have suppressed volcanism. -from Authors

  9. Seismic anisotropy above a subducting plate

    SciTech Connect

    Shih, X.R.; Meyer, R.P. ); Schneider, J.F. )

    1991-08-01

    Shear-wave splitting observed in northeastern Colombia has provided evidence of seismic anisotropy in a shear zone immediately above a subducting plate. In an upper mantle composed mainly of olivine (57%) and orthopyroxene (17%), the splitting can be interpreted by wave propagation in an anisotropic medium of orthorhombic symmetry that results from alignment of these intrinsically anisotropic minerals. The mechanism of alignment is most likely the shearing associated with the subduction, aided by fluids migrating from the subducting plate when the plate exceeds 100 km in depth.

  10. Reconciling the Shadow of a Subduction Signature with Rift Geochemistry and Tectonic Environment in Eastern Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    LeMasurier, W. E.; Choi, S.

    2013-12-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. In the province as a whole, the basalts are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.70254 - 0.70368) and 143Nd/144Nd (0.51286 - 0.51368) and a wide range of 206Pb/204Pb (19.50 - 20.69). Basalts at three volcanoes in central and eastern MBL, of Miocene and Quaternary age, display a variety of geochemical anomalies compared with the above. These include low 143Nd/144Nd (0.51276 - 0.51281), very high Ba (e.g. 1398ppm) associated with low K and low Th, slightly depressed Nb and Ta, and elevated EM2 signatures. These are only erratically displayed, from one volcano to another, and even from one sample locality to another in the same volcano. In some cases, anomalous sample localities lie above or below sample localities with relatively 'normal' characteristics. Furthermore, the whole complement of anomalies is rarely displayed in a single sample. These characteristics suggest a subduction influence, but one that seems to have been filtered, or partly masked. Major episodes of subduction and granite plutonism in MBL took place in the late Devonian, Permian, and late Cretaceous. The last of these ended ~90 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes may have been acquired 80-90 m.y. after subduction ended, and following the subsequent tectonic reorganization to a rift environment. We suspect that the sublithospheric source was heterogeneously and incompletely metasomatized by fluids that originated with slab dewatering during the subduction episodes. Interestingly, pelagic rocks, probably similar to those that were subducted, have geochemical characteristics that seem to be reflected in the geochemical anomalies of the

  11. Modeling Central American basalts using the Arc Basalt Simulator

    NASA Astrophysics Data System (ADS)

    Feigenson, M.; Carr, M. J.

    2011-12-01

    We have used the Arc Basalt Simulator (ABS), developed by JI Kimura, to explore the conditions and components of melting beneath the Central American volcanic front. ABS is a comprehensive forward model that incorporates slab dehydration and melting and mantle wedge fluxing and melting using realistic P-T conditions and experimentally determined phase relations. We have applied ABS versions 3 and 4 to model representative magma types in Nicaragua, which span a broad geochemical range including proximal high- and low-Ti lavas in Nicaragua. Sr-Nd-Pb data require appropriate selection of previously identified sources, including: separate carbonate and hemipelagic sediments, DMM, an enriched mantle isotopically similar to the alkaline basalts of Yojoa, a Himu-influenced mantle derived from Galapagos material and altered oceanic crust (AOC) derived from both MORB and Galapagos seamounts. Following the dry solidus, the dominant arc basalts, exemplified by Cerro Negro lavas, can be generated at about 80-90 km where lawsonite and zoisite break down, releasing LILEs into a hydrous fluid that travels into the wedge. The fluid-triggered melting occurs just above the garnet stability field in the wedge to fit the HREEs. Below 90 Km, slab melting begins and the AOC component dominates, generating a fluid with little or no HFSE depletions, consistent with the unusual high-Ti lavas found in Nicaragua. However, the isotopic data require a much lower sediment input for the high-Ti lavas (consistent with 10Be results on the high-Ti lavas) and an enriched component for the AOC and/or mantle wedge. Following the wet solidus, fits to the Cerro Negro magma only occur in the absence of phengite in the AOC and with the presence of HFSE attracting minerals, rutile, zircon and allanite. The depth of the best fit is 135 km, consistent with current best estimates of the depth to the seismic zone beneath Cerro Negro. Below 150 km, the high-Ti lavas can be generated if the HFSE retaining

  12. Carbonate Mineralization of Volcanic Province Basalts

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested in single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the

  13. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  14. Postcollisional mafic igneous rocks record recycling of noble gases by deep subduction of the continental crust

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Yong-Fei; He, Huai-Yu; Zhao, Zi-Fu

    2016-05-01

    Recycling of noble gases from crustal rocks into the mantle is indicated not only by oceanic basalts and mantle xenoliths, but also by ultrahigh-pressure metamorphic rocks in collisional orogens. It is intriguing whether noble gases in continental crust were recycled into the mantle by deep subduction of the continental crust to mantle depths. Here we firstly report the He, Ne and Ar isotopic compositions of pyroxene from postcollisional mafic igneous rocks in the Dabie orogen, China. The results show that the pyroxene separates from the mafic rocks have low 3He/4He ratios of 0.002 to 1.8 Ra and air-like Ne isotope compositions. Furthermore, the pyroxene exhibits low 40Ar/36Ar ratios of 393.6 to 1599.8, close to those of the air. In combination with whole-rock geochemistry it is found that pyroxene 3He/4He ratios are correlated with whole-rock (La/Yb)N and Sr/Y ratios, εNd(t) values and MgO contents. These observations demonstrate the mass transfer from the deeply subducted continental crust to the overlying mantle wedge, recording the source mixing between the crust-derived melt and the mantle peridotite in the continental subduction zone. A direct addition of the crustal He via crust-derived melt to the mantle leads to the extremely low 3He/4He ratios in the orogenic lithospheric mantle, and the dissolved atmospheric Ar and Ne in the subducted supracrustal rocks results in the air-like Ar and Ne isotope ratios. Therefore, the noble gas isotopic signatures of supracrustal rocks were carried into the mantle by the continental deep subduction to subarc depths and then transferred to the postcollisional mafic igneous rocks via the melt-peridotite reaction at the slab-mantle interface in a continental subduction channel. Our finding firstly establishes the slab-mantle interaction model for recycling of supracrustal noble gases in the continental subduction zone.

  15. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust

    NASA Astrophysics Data System (ADS)

    Tomkins, Andrew G.; Evans, Katy A.

    2015-10-01

    Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (∼450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate

  16. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  17. Density model of the Cascadia subduction zone

    USGS Publications Warehouse

    Romanyuk, T.V.; Mooney, W.D.; Blakely, R.J.

    2001-01-01

    The main goal of this work is to construct self-consistent density models along two profiles crossing the northern and central Cascadia subduction zone that have been comprehensively studied on the basis of geological, geophysical, etc. data.

  18. Volcanogenic trace element volatiles in basalts

    SciTech Connect

    Jovanovic, S.; Reed, G.W. Jr.

    1984-03-01

    Br, Hg, As, Se, Sb, Zn, and Cu were measured in samples of mid-ocean ridge (MOR) and ocean island basalt. To assess sea-water effects glassy rinds and crystalline interiors of pillow basalts were measured as was subaerial glass from Kilauea volcano. Preliminary results are reported. 6 references, 3 figures. (ACR)

  19. Th isotope and U-series studies of subduction-related volcanic rocks

    NASA Astrophysics Data System (ADS)

    Gill, James B.; Williams, Ross W.

    1990-05-01

    The activities of 6-7 radionuclides measured by alpha spectrometry are reported for 35 samples of recent volcanic rocks from 24 volcanoes in 9 arcs. These include continental margins (Cascades, Alaska, Costa Rica), island arcs (the Sunda, Banda, and Sangihe arcs of Indonesia, Marianas, Japan, Aleutians, Antilles, Tonga), and a backarc basin (Lau Basin). Enrichment of 238U over 230Th is more common (over 2/5 of the samples) and greater (up to 59%) in these subduction-related volcanics than in those from other tectonic environments. 230Th /232Th ratios also extend to higher values, both in absolute numbers and relative to other isotope ratios. Enrichment of 210Po and 226Ra over 230Th is widespread and is more common and greater in island arcs than continental margins. The level of Po or Ra enrichment (50-300% in island arcs, 10-50% at continental margins) is similar to that in ocean island and ridge basalts and decreases with differentiation. The differences in Th-U systematics between subduction-related and other volcanic rocks are attributed to variations in the process of melt extraction, changes in bulk partition coefficients within the mantle wedge, or preferential addition of U from subducted lithosphere. Ra enrichments are attributed to partial melting processes which are similar to those at ocean ridges. Smaller excesses at continental margins are attributed either to slower ascent or to differences in the process of melt formation beneath continents.

  20. Slab pull and the seismotectonics of subducting lithosphere.

    USGS Publications Warehouse

    Spence, W.

    1987-01-01

    This synthesis links many seismic and tectonic processes at subduction zones, including great subduction earthquakes, to the sinking of subducted plate. Earthquake data and tectonic modeling for subduction zones indicate that the slab pull force is much larger than the ridge push force. Interactions between the forces that drive and resist plate motions cause spatially and temporally localized stress that lead to characteristic earthquake activity, providing details on how subduction occurs.-from Author

  1. Incorporation of island-arc rocks into a Caribbean subduction channel: Geochemical constraints from eclogite boulders and greenschist rocks, Guajira region, Colombia

    NASA Astrophysics Data System (ADS)

    Weber, M.; Cardona, A.; Altenberger, U.; Garcia-Casco, A.; Valencia, V.; Tobón, M.; Zapata, S.

    2009-12-01

    Characterization of the protoliths of a subduction-accretion complex can provide major insights into the dynamics of the subduction channel. Geochemistry of eclogites found as boulders in a Tertiary conglomerate from the Guajira Peninsula, Colombia, indicate that these rocks are mainly metamorphosed basalts. A negative Nb-anomaly and flat to enriched REE patterns suggest that the eclogite protoliths evolved in a subduction related tectonic setting, with island arc affinities. The geochemical characteristics are similar to low-grade greenschists from the nearby Etpana Formation, which is interpreted as part of a Cretaceous intra-oceanic arc. This further supports evidence that the deposition and metamorphism of these units record the ongoing Late Cretaceous continental subduction of the South American margin beneath the advancing Caribbean arc. This gave way to an arc-continent collision between the Caribbean and the South American plates. Arc-rocks were incorporated into the subduction channel and the accretionary wedge, either though influx of tectonically eroded arc material (subduction erosion) or incorporation into the accretionary wedge during arc-continent collision.

  2. Shock metamorphism of lunar and terrestrial basalts

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.

    1977-01-01

    Lonar Crater (India) basalt and lunar basalt 75035 were shock loaded under controlled laboratory conditions up to 1000 kbar, generally in a CO/CO2 (1:1) environment evacuated to 10 to the minus seventh power torr. The Kieffer et al. (1976) classification scheme of progressive shock metamorphism is found to apply to lunar basalts. The major shock features of the five classes that span the range 0 to 1000 kbar are described. Only three out of 152 basalt specimens show shock effects in their natural state as severe as Class 2 features. The scarcity of shocked basalt hand samples in contrast to the abundance of shock-produced agglutinates and homogeneous glass spheres in the lunar regolith indicates the dominant role of micrometeorite impact in the evolution of the lunar regolith. The overall glass content in asteroidal and Mercurian regoliths is considered.

  3. Cenozoic alkali basalts from Jingpohu, NE China: The role of lithosphere asthenosphere interaction

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zhao, Jian-Xin

    2008-06-01

    The geochemistry of Late Cenozoic volcanic rocks from Jingpohu, NE China, provides important constraints on the petrogenesis of continental alkali basalts and lithospheric evolution in the eastern Central Asian Orogenic Belt (CAOB). Miocene-Pleistocene and Holocene basalts from Jingpohu show alkali affinities and are characterized by Ocean Island Basalt (OIB)-like REE and trace element patterns somehow resembling Holocene potassic rocks from Wudalianchi which are considered to be derived from ancient enriched lithospheric mantle. These basalts show depleted Sr-Nd isotopic compositions ( 87Sr/ 86Sr = 0.7039-0.7046, ɛNd = 1.3-6.0) and Dupal-like but unradiogenic Pb isotopic signatures ( 206Pb/ 204Pb = 17.54-17.94, 207Pb/ 204Pb = 15.45-15.54, 208Pb/ 204Pb = 37.71-38.07), comparable to the OIB. The combined geochemical and isotopic signatures are consistent with magma source mixing between a Focal Zone (FOZO)-like asthenospheric mantle component (characterized by enriched Pb and depleted Sr-Nd isotopic compositions) and an isotopically enriched EM1-type subcontinental lithospheric mantle component. Lithospheric thickness inferred from alkali basalts from different regions implies a progressive thinning from west to east in the CAOB, which may be caused by lithosphere-asthenosphere interaction. We propose that upwelling of the asthenosphere and subsequent mechanical and chemical erosion beneath lithospheric mantle induced by subduction of the Pacific plate might have been responsible for the lithospheric thinning in the eastern CAOB. The lithospheric thinning has proceeded in a dischronous way in the western North China Craton, near the Daxinganling-Taihangshan gravity lineament, but this event did not take place in the corresponding area of the CAOB. The lithospheric thinning shows different styles both spatially and temporally in the two tectonic units.

  4. Subduction in eastern Indonesia: how many slabs?

    NASA Astrophysics Data System (ADS)

    Milsom, John

    2001-08-01

    Seismicity associated with arc-continent collision in eastern Indonesia testifies to past north-directed subduction of Indian Ocean lithosphere beneath the Banda Sea. The complex patterns of deep seismicity have been cited as evidence for simultaneous south-directed subduction at the northern margin of the sea but this interpretation has not been universally accepted. Recently available recomputations of hypocentre locations have provided increased resolution of eastern Indonesian Wadati-Benioff Zones (WBZs). Shallow to intermediate depth seismic activity around the Banda Arc appears to support models involving subduction of two separate and distinct lithospheric slabs, but between 150 and 500 km the WBZ has a continuous 'shoehorn' shape. This shape confirms the presence of subducted lithosphere beneath Seram, in the north, as well as beneath Timor, in the south, is incompatible with independent subduction of two unconnected plates and implies rapid eastwards retreat of the subduction trace across a now vanished northern spur of the Indian Ocean. This 'roll-back' is unlikely to have been driven by local gravitational forces alone and may have been sustained by injection behind the Banda slab of asthenospheric material escaping from the Molucca Sea arc-arc collision.

  5. Interplate coupling at oblique subduction zones: influence on upper plate erosion.

    NASA Astrophysics Data System (ADS)

    Malatesta, Cristina; Gerya, Taras; Crispini, Laura; Federico, Laura; Scambelluri, Marco; Capponi, Giovanni

    2014-05-01

    In active subduction zones, when the converging plates cannot slip freely past each other, "plate coupling" occurs. The moving subducting slab and therefore the coupling/decoupling relationship between plates control both short- and long-term deformation of the upper plate. Short-term deformation is dominantly elastic, occurs at human timescales and can be directly associated with earthquakes. Long-term deformation is cumulative, permanent and prevails at the geological timescale (Hoffman-Rothe et al., 2006, Springer Berlin Heidelberg). Here we used 3D numerical simulations to test oblique subduction zones and to investigate: 1) how long-term deformation and coupling relationship vary along the trench-axis; 2) how this relationship influences erosion and down-drag of upper plate material. Our models are based on thermo-mechanical equations solved with finite differences method and marker-in-cell techniques combined with a multigrid approach (Gerya, 2010, Cambridge Univ. Press). The reference model simulates an intraoceanic subduction close to the continental margin (Malatesta et al., 2013, Nature Communications, 4:2456 DOI:10.1038/ncomms3456). The oceanic crust is layered with a 5-km-thick layer of gabbro overlain by a 3-km-thick layer of basalt. The ocean floor is covered by 1-km-thick sediments. Plates move with a total velocity of 3.15 cm/yr; the oblique convergence is obtained using velocity vectors that form an angle of 45° with the initial starting point of subduction (weak zone in the lithosphere). After initiation of plate convergence, part of sediments on top of the incoming plate enters the subduction zone and is buried; another part is suddenly transferred along strike at shallow depths and along the subducting slab according to the direction of the along-trench velocity component of subduction. The lateral migration of sediment causes the evolution of the trench along its strike from sediment-poor to sediment-rich. As soon as subduction starts, where

  6. Heterogeneity in titaniferous lunar basalts

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Hays, J. F.

    1976-01-01

    Small but real chemical differences exist between subsamples of fine-grained quench-textured titaniferous lunar basalts. The existence of different textural domains with different chemistries is thought to account for most of this variation. In addition to the textural domains, lunar sample 74275 has a population of olivine 'megacrysts' as well as dunite fragments. These materials are thought to be extraneous and to compromise the primary nature of 74275. Recognition of the small chemical variations present may aid in understanding some discrepancies in the experimental-petrology literature. However, these small variations have a distressing petrogenetic significance since they severely limit resolution in recognizing the number and depth of origin of primary magmas.

  7. Origin of magmas in subduction zones: a review of experimental studies.

    PubMed

    Kushiro, Ikuo

    2007-02-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno's original model(1)) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10-25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle. PMID:24019580

  8. Origin of magmas in subduction zones: a review of experimental studies

    PubMed Central

    Kushiro, Ikuo

    2007-01-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno’s original model1) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10–25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle. PMID:24019580

  9. Origin of magmas in subduction zones: a review of experimental studies.

    PubMed

    Kushiro, Ikuo

    2007-02-01

    Studies of the origin of magmas in subduction zones, particularly in the Japanese island arc, have been significantly advanced by petrological, geochemical, geophysical and experimental studies during last 50 years. Kuno's original model(1)) for magma generation in the Japanese island arc, that tholeiite magmas are formed at relatively shallow levels in the mantle on the Pacific Ocean side whereas alkali basalt magmas are formed in deeper levels on the Japan Sea side, stimulated subsequent studies, particularly high-pressure experimental studies in which the author participated. Recent seismic tomographic studies of regions beneath the Japanese island arc demonstrate that seismic low-velocity zones where primary magmas are formed have finger-like shapes and rise obliquely from the Japan Sea side toward the Pacific Ocean side. Based on experimental studies, it is suggested that the compositions of primary magmas depend mainly on the H2O content and degree of melting in the melting zones, and that primary tholeiite magmas are formed by 10-25% melting of the source mantle containing less than 0.2 wt.% H2O. High-alumina basalt and alkali basalt magmas are formed by smaller degrees of melting of similar mantle, whereas primary boninite magmas are formed by more than 20% melting of the source mantle with more than 0.2 wt.% H2O, and finally, high-magnesia andesite magmas are formed by smaller degrees of melting of similar mantle.

  10. Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran

    NASA Astrophysics Data System (ADS)

    Saadat, Saeed; Stern, Charles R.

    2011-07-01

    Small monogenetic Quaternary parasitic cones around Bazman stratovolcano, located at the western edge of the Makran arc, southeastern Iran, erupted low-Ti subalkaline olivine basalts with MgO (3.8-8.6 wt.%) and Al2O3 (16.5-18.6 wt.%). Positive correlation of decreasing MgO, Ni and Cr indicates that formation of low MgO basalts involved limited crystal-liquid fractionation of olivine and clinopyroxene, the common phenocrysts. The basalts have variable 87Sr/86Sr (0.704177-0.705139) and 143Nd/144Nd (0.512689-0.512830) ratios, within the range of OIB-like intra-plate alkaline basalts erupted in eastern Iran north of the Makran arc. This, and the lack of correlation between Sr content and Sr-isotopic ratio, suggest that upper crustal contamination was not significant in their formation, consistent with the relatively thin crust (≤ 40 km) in the area. Enrichment of large-ion-lithophile elements (LILE) relative to light rare-earth-elements (LREE; Ba/La = 9-25), and depletions in Nb relatively to LILE (Ba/Nb = 12-35; La/Nb = 0.8-2.1), are similar in most cases to other convergent plate boundary arc basalts, suggesting that the Bazman basalts formed by melting of subcontinental mantle modified by dehydration of subducted Oman Sea oceanic lithosphere. Pb isotopic ratios of the basalts define a linear trend above the Northern Hemisphere Line, consistent with their derivation from mantle contaminated by Pb derived from subducted sediment. Trace element contents and ratios (LaN = 10-25; YbN = 3-6; (La/Yb)N = 3-8) suggest that these basalts formed as a result of low (~ 10%) degrees of partial melting of subarc mantle modified only moderately by subducted components. Relatively low Ba/Nb < 15, La/Nb < 1.5 and Ba/La < 15 ratios for some basalts confirm only limited contamination of the source of these samples, consistent with observations in other arcs that parasitic cones tap sources less affected by slab-derived fluids than the larger stratovolcanoes they surround. Comparison

  11. Basalt of Summit Creek: Eocene Magmatism Associated with Farallon Slab Break Off

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Tepper, J. H.; Eddy, M. P.

    2015-12-01

    In the Pacific Northwest the Early-Middle Eocene was a time of widespread magmatism and tectonic reorganization that included accretion of the Siletzia terrane, Challis volcanism, and establishment of the modern Cascade arc. Although individual events are well documented our knowledge of the underlying tectonic framework is incomplete. To better understand the tectonic changes that occurred during this interval we studied the ~48 Ma Basalt of Summit Creek (BSC), a 1500m section of lavas located south of Mt. Rainier that erupted during the critical time period between the docking of Siletzia and the initiation of the modern Cascade arc. The BSC consists mainly of tholeiitic basalts (wt. % SiO2 = 45.54-63.45, Mg# = 0.68-0.30) with EMORB traits (La/YbN = 1.2-5.9; 206Pb/204Pb = 19.005-19.102; 207Pb/204Pb = 15.538-15.593; 208Pb/204Pb = 38.560-38.714). These lavas lack arc signatures (e.g., HFSE depletions) but overlap in elemental and isotopic composition with oceanic basalts of the Crescent Formation (part of Siletzia) located ~100 km to the west. We suggest that emplacement of lavas that lack arc traits in what was the forearc was a response to break off of the Farallon slab, which occurred as a result of the accretion of Siletzia at ~49 Ma (Wells et al., 2014). Break off opened a gap in the subducted slab, allowing upwelling and subsequent decompression melting. BSC lavas are consistent in age, location and composition with this model. After break off subduction resumed outboard of Siletzia, initiating the Cascade arc. Thus, BSC provides evidence of Farallon slab break off and furthers our understanding of the tectonic transition from widespread magmatism of the Early-Middle Eocene to the Cascade arc.

  12. Process Based Explanations for Correlations Between the Structural and Seismic Segmentation of the Cascadia Subduction Wedge

    NASA Astrophysics Data System (ADS)

    Fuller, C. W.; Brandon, M. T.; Willett, S. D.

    2006-12-01

    Variations in the geological and geophysical characteristics of the Cascadia subduction wedge, the region between the trench and arc, result in along-strike wedge segmentation. We focus on explaining the large-scale structural segmentation and how processes causing this segmentation influence segmentation with respect to the seismic behavior of the wedge and subduction thrust. The relationships we develop illustrate the fundamental interplay of processes controlling long-term structure and short-term seismic behavior. Our conclusions are based on the results of numerical models designed to simulate the growth and evolution of the Cascadia subduction wedge through the accretion of a thin layer of sediment to the basaltic Coast Range Terrane (CRT) of the Cascadia margin. Two aspects of wedge structural segmentation are of interest: (1) segmentation with respect to the location or absence of large, continental shelf, forearc basins, and (2) segmentation with respect to the Coastal Range (CR) structural high. Our models illustrate that the form of the submarine portion of the Cascadia wedge, including the basins or lack thereof, is a consequence of the frictional behavior of this region of wedge, subduction thrust strength, wedge strength, and dip thrust. We propose that basin segments have stronger wedge material, a weaker thrust, or a steeper thrust than basin free segments. The presence of basins is significant because they stabilize the margin and prevent subduction and accretion related deformation. This stabilization allows the thrust to preferentially support thermally induced, fluid overpressures and undergo fault healing thus increasing the likelihood of large coseismic slip within basin segments. While no historical earthquake data supporting this argument exists for Cascadia, such behavior has been observed in many margins (Song and Simons, 2003; Wells et al., 2003). It is reasonable to assume that large earthquakes in Cascadia will have the same association

  13. Basalt CO2 Sequestration: Using Wireline Logs to Identify Subsurface Continental Flood Basalt Lithofacies

    NASA Astrophysics Data System (ADS)

    Sullivan, E. C.; Finn, S.; Davis, K. N.; Segovia, A. I.

    2010-12-01

    The flows of the Miocene Columbia River Basalt Group (CRBG) of the northwest United States are an important example of reactive flood basalts that are attractive targets for sequestration of anthropogenic carbon dioxide. Brecciated flow tops and dense flow interiors form layered regional aquifer systems in the Columbia Basin that have the potential to sequester gigatons of supercritical CO2 where they contain non-potable water and are at depths of greater than 800m. The demonstrated chemical reactivity of these continental flood basalts with supercritical CO2 in laboratory experiments suggests that part of the sequestered CO2 will be permanently entombed as carbonate minerals. Here we report on the use of conventional wire-line log data, along with full waveform sonic and resistivity-based image logs to identify subsurface basalt stratigraphy and lithofacies relevant to CO2 sequestration. We compare borehole data from the 2009 Big Sky Carbon Sequestration Partnership basalt pilot well near Wallula, Washington U.S.A. with regional outcrop analogs to determine patterns for recognizing basalt lithofacies in the subsurface. We examine quick-look techniques recently proposed for hydrocarbon exploration in basalt terranes and show that rescaled shear and compressional sonic log curves, which reflect changes in bulk modulus, appear to provide a robust tool for the identification of subsurface CRBG basalt lithofacies Resistivity-based Image Log of Vesicular Basalt and Fractures From the Wallula Basalt Pilot Well

  14. Oceanic asthenosphere subduction and its geological implications

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2014-12-01

    We investigate the evolution of oceanic asthenosphere during subduction by exploring various scenarios including plate kinematics and plausible values of asthenosphere viscosity and density. We find that the oceanic asthenosphere will always subduct with the down-going slab as long as its average viscosity value is no smaller than 1×1018 Pa s. In order to allow slabs to subduct into the deep upper mantle, a maximum oceanic asthenosphere density reduction relative to the underlying mantle should be no larger than 0.7%, assuming a 200-km-thick asthenosphere channel. We find that a significant portion of the asthenosphere buoyancy should result from its excess temperature from the long-term thermal evolution of mantle convection. Our results are in contrast to an earlier suggestion that negligible amount (<30 km thick) of asthenosphere could get subducted, which is likely due to over-simplicity of subduction geometry and model boundary conditions. The recycling of a weak and hot asthenosphere provides a novel mechanism for the formation of slow seismic anomalies within the deep mantle. This, in turn, questions the commonly believed deep mantle plume origin of intra-plate volcanism, with a typical example being the Yellowstone volcanic system. Our current results suggest that a buoyant asthenosphere can be dragged down into the lower mantle and then moves upward due to its buoyancy when the overlying slab barrier is removed. To further test our hypothesis, we construct a 4D subduction model for western North America during the Cenozoic. We use data assimilation techniques to incorporate plate kinematics and sea floor ages as boundary conditions, and seismic anomalies converted density structure as internal buoyancy source. The subduction history is calibrated through a hybrid of forward and adjoint simulations satisfying multiple observational constraints. Some preliminary results will be presented.

  15. Mid mantle seismic anisotropy around subduction zones

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2014-02-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modelling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating

  16. The Interdependence of Plate Coupling Processes, Subduction Rate, and Asthenospheric Pressure Drop across Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Royden, L.; Holt, A.; Becker, T. W.

    2015-12-01

    One advantage of analytical models, in which analytic expressions are used for the various components of the subduction system, is the efficient exploration of parameter space and identification of the physical mechanisms controlling a wide breadth of slab kinematics. We show that, despite subtle differences in how plate interfaces and boundary conditions are implemented, results for single subduction from a 3-D semi-analytical model for subduction FAST (Royden & Husson, 2006; Jagoutz et al., 2015) and from the numerical finite-element model CitcomCU (Moresi & Gurnis, 1996, Zhong et al., 2006) are in excellent agreement when plate coupling (via shear stress on the plate interface) takes place in the FAST without the development of topographic relief at the plate boundary. Results from the two models are consistent across a variety of geometries, with fixed upper plate, fixed lower plate, and stress-free plate ends. When the analytical model is modified to include the development of topography above the subduction boundary, subduction rates are greatly increased, indicating a strong sensitivity of subduction to the mode of plate coupling. Rates of subduction also correlate strongly with the asthenospheric pressure drop across the subducting slab, which drives toroidal flow of the asthenosphere around the slab. When the lower plate is fixed, subduction is relatively slow and the pressure drop from below to above the slab is large, inhibiting subduction and slab roll-back. When the upper plate is fixed and when the plate ends are stress-free, subduction rates are approximately 50% faster and the corresponding asthenospheric pressure drop from below to above the slab is small, facilitating rapid subduction. This qualitative correlation between plate coupling processes, asthenospheric pressure drop, and rates of subduction can be extended to systems with more than one subduction zone (Holt et al., 2015 AGU Fall Abstract). Jagoutz, O., Royden, L., Holt, A. & Becker, T. W

  17. Three-dimensional numerical modeling of temperature and mantle flow fields associated with subduction of the Philippine Sea plate, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ji, Yingfeng; Yoshioka, Shoichi; Matsumoto, Takumi

    2016-06-01

    We investigated temperature and mantle flow distributions associated with subduction of the Philippine Sea (PHS) plate beneath southwest Japan, by constructing a three-dimensional parallelepiped model incorporating a past clockwise rotation, the bathymetry of the Philippine Sea plate, and distribution of the subducting velocity within its slab. The geometry of the subducting plate was inferred from contemporary seismic studies and was used as a slab guide integrated with historical plate rotation into the 3-D simulation. Using the model, we estimated a realistic and high-resolution temperature field on the subduction plate interface, which was constrained by a large number of heat flow data, and attempted to clarify its relationship with occurrences of megathrust earthquakes, long-term slow slip events (L-SSEs), and nonvolcanic low-frequency earthquakes (LFEs). Results showed that the oblique subduction coupled with the 3-D geometry of subducting PHS plate was a key factor affecting the interplate and intraplate temperature distributions, leading to a cold anomaly in the plate interface beneath western Shikoku, the Bungo Channel, and the Kii Peninsula. Temperatures in the slab core in these regions at a depth near the continental Moho were nearly 200°C lower than that in eastern Shikoku, indicating a high thermal lateral heterogeneity within the subducting plate. The geothermal control of the LFEs beneath western Shikoku was estimated to be within a range from 400 to 700°C, and the interplate temperature for the L-SSEs with a slip larger than 15 cm beneath the Bungo Channel was estimated to be approximately 350-500°C. A large horizontal temperature gradient of 2.5 ~ °C/km was present where the LFEs occurred repeatedly. The steep temperature change was likely to be related to the metamorphic phase transformation from lawsonite or blueschist to amphibolite of hydrous minerals of the mid-ocean ridge basalt of the subducting PHS plate.

  18. Carbonate-Iron Interaction: Kinetic Approach for Carbonate Subduction Down to the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Martirosyan, N.; Yoshino, T.; Shatskiy, A.; Litasov, K. D.; Chanyshev, A.

    2015-12-01

    One of the principal redox exchange reactions at the slab-mantle interface during subduction is CaCO3-Fe0 interaction. Using uniaxial press multianvil apparatus, we investigate this reaction at temperatures from 650 to 1400 °C, and pressures from 4 to 16 GPa. These conditions are representative for the PT path of the slab from the surface to the mantle transition zone. Based on our results, redox reaction can be written as: 3 CaCO3 (aragonite) + 13 Fe0 (metal) = Fe7C3 (carbide) + 3 CaFe2O3 (Ca-wüstite). It is a diffusion-controlled process with the reaction rate constant (k) being log-linear in 1/T. The experimental results allow to calculate the length scale over which the reaction kinetics between aragonite and metallic iron is likely effective. Using relatively simple relationship between the characteristic distance of diffusion as a function of k and duration of the process, we estimate the length scale of the reaction for time scales 4-16 Myr, which corresponds to subduction rates of 2-8 cm/year from 250 km (metal-saturation boundary) to 470 km, for different slab PT-profiles. Assuming that carbonates are in a direct contact with iron, the maximum degree of carbonate reduction can be evaluated using the results of our study and the data on CO2 distribution in altered oceanic basalts. The estimates suggest that up to 0.5, 12, and 20 vol. % of carbonates can be reduced in such case during subduction down to the mantle transition zone at the conditions of cold, medium and hot geotherms, respectively. The sluggish kinetics of established CaCO3-Fe0 interaction suggests that even over the entire history of the Earth, carbonates could survive during subduction from metal saturation boundary near 250 km depth, down to the transition zone, and presumably to the lower mantle.

  19. Melt Inclusion Evidence for Subduction-modified Mantle Beneath the Woodlark Spreading Center, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, J.; Turner, A.; Collins, E.

    2015-12-01

    The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.

  20. Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China

    NASA Astrophysics Data System (ADS)

    Fan, Qi-Cheng; Chen, Sheng-Sheng; Zhao, Yong-Wei; Zou, Hai-Bo; Li, Ni; Sui, Jian-Li

    2014-10-01

    The origin of alkali basalts in eastern China has been the subject of considerable debate. Here we focus on the Wulanhada basalts located in the western block of North China Craton to provide new insights into recent deep mantle dynamics. The Wulanhada volcanic group has 30 volcanic cones with variable volumes, consisting of scoria cone (cinder cone + spatter cone) and lava. The Wulanhada volcanoes exhibit Strombolian eruption activities during late Pleistocene epoch and Holocene. The Wulanhada basalts are strongly alkaline rocks (tephrite). According to the characteristics of trace elements and Sr-Nd-Pb-Hf isotopic compositions, the Wulanhada magmas were mainly derived from garnet-bearing peridotite within the asthenosphere and underwent fractional crystallization of olivine and clinopyroxene without significant crustal contamination. Their elevated values of Na, Al, Sr/Sm, Sm/Hf, Zr/Hf, and Nb/Ta, positive Ba, K, Pb, and Sr anomalies and negative Zr, Hf anomalies, combined with a negative correlation between 176Hf/177Hf and 143Nd/144Nd and relatively low 87Sr/86Sr, suggest that the magma source may be a mixture of garnet peridotites and carbonated melts. The presence of carbonated melts is likely associated with the sediments or fluids carried by the subducted or stagnant Pacific Plate.

  1. Subduction obliquity as a prime indicator for geotherm in subduction zone

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  2. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief

    NASA Astrophysics Data System (ADS)

    Bassett, Dan; Watts, Anthony B.

    2015-05-01

    An ensemble averaging technique is used to remove the long-wavelength topography and gravity field from subduction zones. >200 residual bathymetric and gravimetric anomalies are interpreted within fore arcs, many of which are attributed to the tectonic structure of the subducting plate. The residual-gravimetric expression of subducting fracture zones extends >200 km landward of the trench axis. The bathymetric expression of subducting seamounts with height ≥1 km and area ≥500 km2 (N=36), and aseismic ridges (N>10), is largest near the trench (within 70 km) and above shallow subducting slab depths (SLAB1.0 <17 km). Subducting seamounts are similar in wavelength, amplitude, and morphology to unsubducted seamounts. Morphology, spatial distributions, and reduced levels of seismicity are considered inconsistent with mechanical models proposing wholesale decapitation, and the association of subducting seamounts with large-earthquakes. Subducting aseismic ridges are associated with uplift and steepening of the outer fore arc, a gradual reduction in residual bathymetric expression across the inner fore arc, and a local increase in the width and elevation of the volcanic-arc/orogen. These contrasting expressions reflect the influence of margin-normal variations in rigidity on where and how the upper plate deforms, both to accommodate subducting relief and in response to stresses transmitted across the plate interface. The outer fore arc and arc have lower rigidity due to fracturing and thermal weakening, respectively. Similar associations with complex earthquakes and fault creep suggest aseismic ridge subduction may also be accommodated by the development and evolution of a broad fracture network, the geometrical strength of which may exceed the locking strength of a smooth fault.

  3. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    in the behaviors of subducting plate and the trace of crustal materials between the models under dry and wet conditions. Under wet conditions, the weaker and denser crustal materials are fed into the WFZs and the subducting plate tends to stagnate with a maximum lateral extent of over 1000 km, and is segmented by crustal materials. Under wet condition the crustal layer of garnetite is advected faster than the peridotite body due to the rheology and density contrasts in the MTZ, resulting in its separation from the main body subducting plate. The viscosity contrast between the crustal material and the peridotite permits the separation of the crustal layer from the bulk peridotite and then, crustal materials gradually sink into the lower mantle along with the penetration of the subducting slab main body. As a deep mantle cycling of basaltic oceanic crust is suggested by mineralogy recently [Walter et al., 2011], this numerical result may suggest to re-examine the fate of subducted oceanic crust in the deep mantle.

  4. Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts

    NASA Technical Reports Server (NTRS)

    Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.

    2010-01-01

    Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future

  5. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  6. Anaglyph: Basalt Cliffs, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Basalt cliffs along the northwest edge of the Meseta de Somuncura plateau near Sierra Colorada, Argentina show an unusual and striking pattern of erosion. Stereoscopic observation helps to clarify the landform changing processes active here. Many of the cliffs appear to be rock staircases that have the same color as the plateau's basaltic cap rock. Are these the edges of lower layers in the basalt or are they a train of slivers that are breaking off from, then sliding downslope and away from, the cap rock. They appear to be the latter. Close inspection shows that each stair step is too laterally irregular to be a continuous sheet of bedrock like the cap rock. Also, the steps are not flat but instead are little ridges, as one might expect from broken, tilted, and sliding slices of the cap rock. Stream erosion has cut some gullies into the cliffs and vegetation (appears bright in this infrared image) shows that water springs from and flows down some channels, but land sliding is clearly a major agent of erosion here.

    This anaglyph was generated by first draping a Landsat Thematic Mapper image over a topographic map from the Shuttle Radar Topography Mission, then producing the two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and the right eye with a blue filter.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center,Sioux Falls, South Dakota.

    Elevation data used in this

  7. Crustal Accretion at Subduction Initiation Along Izu-Bonin-Mariana Arc and the Link to SSZ Ophiolites

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Tani, K.; Reagan, M. K.; Kanayama, K.; Umino, S.; Harigane, Y.; Sakamoto, I.

    2014-12-01

    The Izu-Bonin-Mariana (IBM) forearc preserves the earliest arc magmatic history from subduction initiation to the establishment of the arc. Recent investigations have established a bottom to top igneous stratigraphy of: 1) mantle peridotite, 2) gabbroic rocks, 3) a sheeted dyke complex, 4) basaltic pillow lavas (forearc basalts: FAB), 5) boninites and magnesian andesites, 6) tholeiites and calcalkaline arc lavas. This stratigraphy has many similarities to supra-subduction zone (SSZ) ophiolites. One of the most important common characteristics between the SSZ ophiolites and the forearc crust is the occurrence of MORB-like basaltic lavas underlying or accompanying boninites and early arc volcanic suites. A key observation from the IBM forearc is that FAB differs from nearby back-arc lavas in chemical characteristics, including a depletion in moderately incompatible elements. This indicates that FAB is not a pre-existing oceanic basement of the arc, but the first magmatic product after subduction initiation. Sheeted dikes of FAB composition imply that this magmatism was associated with seafloor spreading, possibly triggered by onset of slab sinking. Recognition of lavas with transitional geochemical characteristics between the FAB and the boninites strongly implies genetic linkage between these two magma types. The close similarity of the igneous stratigraphy of SSZ ophiolites to the IBM forearc section strongly implies a common magmatic evolutionary path, i.e., decompressional melting of a depleted MORB-type mantle is followed by melting of an even more depleted mantle with the addition of slab-derived fluid/melt to produce boninite magma. Similarity of magmatic process between IBM forearc and Tethyan ophiolites appears to be reflected on common characteristics of upper mantle section. Peridotite from both sections show more depleted characteristics compared to upper mantle rocks from mid-ocean ridges. Age determinations reveal that first magmatism at the IBM arc

  8. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  9. Experimental Hydrous Partial Melting of Natural Pristine and Altered MORB Beneath Subduction Zones

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Skora, S. E.; Blundy, J.

    2012-12-01

    Experimental determination of the hydrous phase relations and trace element partitioning behaviour of Mid-Ocean Ridge Basalt (MORB) constrains the conditions for melting of subducted oceanic crust. This study utilises natural pristine MORB (from the Kolbeinsey ridge, north of Iceland) and altered MORB from the altered oceanic crust (AOC, from the DSDP leg 46, Mid Atlantic, ~20°N), hydrated with about 15wt% water, in experiments using piston-cylinder apparatus to simulate pressures and temperatures equivalent to about 100 km depth (3.0 GPa, 800-1000°C). Our motivation of (re-)studying the melting behaviour of undoped subducted basalt is two-fold. First, previous studies that focused on the trace element behaviour 'doped' their starting materials with trace elements to facilitate analysis and positive identification of accessory phases. Only by applying the 'doping' method has it been found that allanite may exert a key control on the light rare earth element (approx. La-Sm) budget in subducted basalt. However, it is still a matter of debate whether the ubiquitous presence of allanite in these experimental studies is solely due to doping of La-Sm. In addition, bulk fluid-solid partition coefficients so obtained may not be uncritically applied to model the trace element transfer in nature because of the enhanced proportions of accessory phases in the experimental solid residue. Second, there appears to be a clear difference in the melting behaviour of K-free and K-bearing MORB (and sediment), even if K2O only appears in minor concentrations. These differences are difficult to quantify, as the various studies were carried out at differing P-T-XH2O conditions. In agreement with earlier studies, we find that the vapour-saturated solidus is shifted toward higher temperatures at 3 GPa in pristine MORB (800°C < Tsolidus < 850°C), because it is virtually K-free (approx. 0.03 wt% K2O), in contrast to altered MORB where melting starts at T < 800°C (approx. 0.26 wt% K2O

  10. Basaltic Crater in Color IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 6, 2004 This image shows two representations of the same infra-red image near Nili Fosse in the the Isidis region of Mars. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations. In many cases craters trap sand in their topographic depressions, interrupting the sand's migration across the Martian surface. This image is particularly interesting because there appears to be more than 1 type of sand in the bottom of this crater and in the hummocky terrain near the bottom of the image. The pink/magenta areas are characteristic of a basaltic composition, but there are also orange areas that are likely caused by the presence of andesite. These two compositions, basalt and andesite, are some of the most common found on Mars.

    Image information: IR instrument. Latitude 24, Longitude 80.7 East (297.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  11. Demise of Flat-slab Subduction at the end of the Laramide Orogeny (Invited)

    NASA Astrophysics Data System (ADS)

    Humphreys, E.

    2013-12-01

    absence of major change in California subduction presumably indicates that while the flat slab fell off of North America east of California, it remained at the base of California. More recently, the arrival of Yellowstone beneath S. Oregon triggered a delamination of the flat slab remaining beneath N. Oregon, drawing flood basalt activity north.

  12. Numerical simulation of earthquake rupture sequences on the Manila thrust fault: Effects of seamount subduction

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, Y.; Ning, J.; He, C.; Zhang, L.

    2015-12-01

    The Manila subduction zone is located at the convergent boundary between the Philippine Sea Plate and the Sunda/Eurasian Plate from offshore Taiwan to northern Luzon of Philippines, where only infrequent M7 earthquakes were observed in modern seismological instrumentation history. The lack of great events (M8+) indicates the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a great earthquake. Here we conduct numerical simulations of earthquake rupture sequences in the framework of rate-state-friction along the 15-19.5ºN segment of the 3D plate boundary with subducted seamounts. Rate-state frictional properties are constrained by laboratory friction experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples from the basaltic basement rock under 100ºC - 600ºC, effective normal stress of 50 MPa and pore pressure of 100 MPa. During the modeled 2000-year period, the maximum magnitude of earthquakes is Mw7. Each sequence repeats every ~200 years and is consisted of three sub-events, event 1 (Mw7) that can overcome the barrier, where dip angle changes most rapidly along the strike, to rupture the entire fault. Events 2 (Mw 6.4) and 3 (Mw 5.7) are of smaller magnitudes and result in north-south segmented rupture pattern. We further quantify the potential of earthquake nucleation by the S-ratio (lower S ratio means the initial stress is closer to peak strength, hence more likely to nucleate an earthquake). The subducted seamount shows higher S-ratios than its surroundings mostly, implying an unlikely nucleate area. Our results are qualitatively similar to 2D subduction earthquake modeling by Herrendörfer et al. (2015, 2-3 events per supercycle and median long-term S is 0.5-1). Finally, we plan to use our coseismic rupture model results as inputs for a tsunami propagation model in SCS. Compared to the kinematic seafloor deformation input, our physics-based earthquake source model and its

  13. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    NASA Technical Reports Server (NTRS)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  14. Shock metamorphism of granulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Thompson, T. D.; Hoerz, F.; Bauer, J. F.

    1979-01-01

    The paper deals with an extensive series of shock-recovery experiments performed on both nonporous crystalline basalt and its granulated and sieved counterpart to study the role of porosity and grain size in shock motomorphic effects under otherwise identical conditions. Shocked samples are compared with unshocked starting material in terms of textural and mineralogical modifications attributable to shock. A comparative petrographic and chemical characterization is presented of pulverized and sieved lunar basalt 75035 shocked between 6 and 75 GPa in comparison with holocrystalline disks of the same basalts shocked in 10 earlier experiments. Specifically, a petrographic classification of shock features is given, along with an estimation of relative amounts of shock glasses and a chemical characterization of shock glasses in each shocked granular basalt.

  15. Basalts Dredged from the Northeastern Pacific Ocean.

    PubMed

    Engel, C G; Engel, A E

    1963-06-21

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. In addition, aluminous basalts and diabasic theoleiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. The distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  16. Naming Lunar Mare Basalts: Quo Vadimus Redux

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1999-01-01

    Nearly a decade ago, I noted that the nomenclature of lunar mare basalts was inconsistent, complicated, and arcane. I suggested that this reflected both the limitations of our understanding of the basalts, and the piecemeal progression made in lunar science by the nature of the Apollo missions. Although the word "classification" is commonly attached to various schemes of mare basalt nomenclature, there is still no classification of mare basalts that has any fundamental grounding. We remain basically at a classification of the first kind in the terms of Shand; that is, things have names. Quoting John Stuart Mill, Shand discussed classification of the second kind: "The ends of scientific classification are best answered when the objects are formed into groups respecting which a greater number of propositions can be made, and those propositions more important than could be made respecting any other groups into which the same things could be distributed." Here I repeat some of the main contents of my discussion from a decade ago, and add a further discussion based on events of the last decade. A necessary first step of sample studies that aims to understand lunar mare basalt processes is to associate samples with one another as members of the same igneous event, such as a single eruption lava flow, or differentiation event. This has been fairly successful, and discrete suites have been identified at all mare sites, members that are eruptively related to each other but not to members of other suites. These eruptive members have been given site-specific labels, e.g., Luna24 VLT, Apollo 11 hi-K, A12 olivine basalts, and Apollo 15 Green Glass C. This is classification of the first kind, but is not a useful classification of any other kind. At a minimum, a classification is inclusive (all objects have a place) and exclusive (all objects have only one place). The answer to "How should rocks be classified?" is far from trivial, for it demands a fundamental choice about nature

  17. Basalts Dredged from the Northeastern Pacific Ocean.

    PubMed

    Engel, C G; Engel, A E

    1963-06-21

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. In addition, aluminous basalts and diabasic theoleiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. The distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope. PMID:17802173

  18. Basalts dredged from the northeastern Pacific Ocean

    USGS Publications Warehouse

    Engel, C.G.; Engel, A.E.J.

    1963-01-01

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. in addition, aluminous basalts and diabasic tholeiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. the distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  19. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  20. Geochemical and Sr-Nd isotope variations within Cretaceous continental flood-basalt suites of the Canadian High Arctic, with a focus on the Hassel Formation basalts of northeast Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Estrada, Solveig

    2015-11-01

    Early- to mid-Cretaceous flood-basalt suites of the northeast Canadian High Arctic assigned to a High Arctic Large Igneous Province (HALIP) were studied for their whole-rock geochemistry and Sr-Nd isotopes. Data from basalt flows within the upper Albian to lower Cenomanian Hassel Formation of northeast Ellesmere Island are compared with former published data and new inductively coupled plasma mass spectrometry data of the stratigraphic equivalent Strand Fiord basalts and the older, late Hauterivian to Aptian Isachsen basalts from Axel Heiberg Island. The transitional to mildly alkaline aphyric Hassel basalts, with ocean island basalt (OIB)-like geochemical signatures in parts, have an Ar-Ar whole-rock age of on average 96.4 ± 1.6 Ma. They represent two geochemically different flow units without a fractional crystallization relationship: the high-phosphorous (HP) and low-phosphorous (LP) basalts. The Hassel HP basalts differ from the LP basalts by additionally higher Ba, K, Rb, Th and LREE contents, a pronounced positive Eu anomaly (Eu/Eu* = 1.74-1.76), as well as lower Ta, Nb, Zr and Hf concentrations. The Nd and Sr isotope ratios of the Hassel HP basalts [ ɛ Nd( t) of -1.3 to -1.4, 87Sr/86Sr( t) of 0.70706-0.70707] and the LP basalts [ ɛ Nd( t) of 4.5-4.9, 87Sr/86Sr( t) of 0.7038-0.7040] indicate an origin from different mantle sources. The geochemically similar tholeiitic Isachsen (ca. 130-113 Ma) and Strand Fiord basalts (ca. 105-95 Ma) are also incompatible element enriched relative to the primitive mantle, however, with negative Sr-P anomalies as well as partially negative K, Ta and Nb anomalies. In terms of incompatible element ratios (Zr/Nb, Nb/Th), several mantle components are involved in the formation of the flood-basalt suites: a component with primitive mantle composition, an OIB-like component (probably subducted and recycled oceanic crust) and an enriched lithospheric component. The latter component, probably metasomatized subcontinental

  1. Basaltic Soil of Gale Crater: Crystalline Component Compared to Martian Basalts and Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Schmidt, M.; Downs, R. T.; Stolper, E. M.; Blake, D. F.; Vaniman, D. T.; Achilles, C. N.; Chipera, S. J.; Bristow, T. F.; Crisp, J. A.; Farmer, J. A.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P.; Yen, A. S.; Anderosn, R. C.; DesMarais, D. J.; Spanovich, N.

    2013-01-01

    A significant portion of the soil of the Rocknest dune is crystalline and is consistent with derivation from unweathered basalt. Minerals and their compositions are identified by X-ray diffraction (XRD) data from the CheMin instrument on MSL Curiosity. Basalt minerals in the soil include plagioclase, olivine, low- and high-calcium pyroxenes, magnetite, ilmenite, and quartz. The only minerals unlikely to have formed in an unaltered basalt are hematite and anhydrite. The mineral proportions and compositions of the Rocknest soil are nearly identical to those of the Adirondack-class basalts of Gusev Crater, Mars, inferred from their bulk composition as analyzed by the MER Spirit rover.

  2. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio < 1.7) with disequilibrium textures and low Ba/Sr ratios while Population Two is elongate (aspect ratio > 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic

  3. Subduction, collision and initiation of hominin dispersal

    NASA Astrophysics Data System (ADS)

    Schattner, Uri; Lazar, Michael

    2009-09-01

    Subduction is the main driving force of plate tectonics controlling the physiography of the Earth. The northward subduction of the Sinai plate was interrupted during the Early Pleistocene when the Eratosthenes Seamount began to collide with the Cyprian arc. A series of synchronous structural deformations was triggered across the entire eastern Mediterranean, and local topography was drastically accentuation along the Levantine corridor - one of the main pathways of hominin dispersal out of Africa. However, the choice of this preferred pathway and timing of dispersal has not been resolved. Though causes for dispersal out of Africa are in debate, we show that the transition from subduction to collision in the eastern Mediterranean set the route.

  4. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China)

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Wyman, Derek A.; Wang, Qiang; Li, Jie; Li, Zheng-Xiang; Zhao, Zhen-Hua; Sun, Wei-Dong

    2012-05-01

    Tholeiites occur in a variety of geological settings, e.g., mid-ocean ridge, back-arc basin, ocean island, island arc and intra-continent, and their geochemical and isotopic characteristics vary according to the corresponding geodynamic environments. Here we investigated the Hatu tholeiitic basalts and basaltic andesites of the western Junggar region, Central Asian Orogenic Belt (CAOB). LA-ICPMS zircon U-Pb analyses indicate that the Hatu tholeiites were generated in the Late Carboniferous (~ 315 Ma). All the studied rock samples are characterized by flat rare earth elements pattern on chondrite-normalized plot, and negligible Nb, Ta and Ti anomalies on mid-ocean-ridge basalt normalized plots. They are also characterized by moderate positive ɛNd(t) (+ 5.25 to + 5.94), ɛHf(t) (+ 13.24 to + 14.89), highly radiogenic Os isotope compositions (187Os/188Os315Ma = 0.1338-0.3547), and relatively low (87Sr/86Sr)i ratios (0.7044 to 0.7048). Taking into account their geological characteristics, the occurrence of nearby ophiolites and the types of contemporaneous magmatic rocks found in the western Junggar region, we propose that the Hatu basalts were generated by slab window-related processes following a spreading ridge subduction beneath the Keramay intra-oceanic island arc. During this process, deep and enriched asthenospheric mantle rose to the edge of the subducted oceanic lithosphere, its melts infiltrating the subducted oceanic lithosphere and reacting with peridotites. Therefore, the Hatu tholeiites are interpreted as a result of melting of a mixed mantle source consisting of subducted depleted oceanic lithosphere and a deep, enriched upwelling asthenospheric mantle. Incongruent dynamic melting modeling of trace element compositions indicates that the Hatu basalts could have been derived from large degrees of melting (~ 10%) of such a mixed mantle source. This newly recognized mechanism is a natural consequence of the diversity of contemporaneous potential mantle

  5. Starch columns: Analog model for basalt columns

    NASA Astrophysics Data System (ADS)

    Müller, Gerhard

    1998-07-01

    Desiccation of starch-water mixtures produces tensile-crack patterns which appear to be interesting, but largely unknown study objects for fracture mechanics, structural geology, and volcanology. This paper concentrates on columnar jointing and on columns in starch. Starch columns have polygonal cross sections and are very similar to basalt columns. They are produced by lamp drying starch specimens with dimensions of several centimeters and have diameters in the millimeter range. The columns develop behind a crack front which propagates from the surface into the interior. The experiments, supported by X ray tomograms, show that polygonal regularity of the crack pattern is not present at the surface but develops during penetration. This transition is steered by a minimum-fracture-energy principle. The analogy between basalt cooling and starch desiccation is far reaching: water concentration in starch is analogous to temperature in basalt, both quantities obey diffusion equations, water loss is equivalent to heat loss, the resulting contraction stresses have similar dependences on depth and time, and in both cases the material strength is exceeded. The starch experiments show that column diameters are controlled by the depth gradient of water concentration at the crack front. High (low) gradients are connected with thin (thick) columns. By analogy, a similar relation with the temperature gradient exists for basalt columns. The (normalized) starch gradients are about 3 orders of magnitude larger than the (normalized) gradients in basalt. This explains why starch columns are much thinner than basalt columns. The gradients are so different, because the crack front speeds differ by a factor of about 10: after 3 days the speed is about 10 mm/d in starch but about 100 mm/d in basalt [Peck, 1978]. The speed difference, in turn, results from the difference of the diffusion constants: the hydraulic diffusivity of starch is 2 orders of magnitude lower than the thermal

  6. Varying Structure and Physical Properties of the Lithosphere Subducting Beneath Indonesia, Consequences on the Subduction

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Dyment, J.

    2013-12-01

    We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in

  7. Predicting the Isotopic Composition of Subduction-Filtered Subducted Oceanic Crust and Sediment

    NASA Astrophysics Data System (ADS)

    White, W. M.

    2010-12-01

    The chemical and isotopic character of mantle plumes, which produce oceanic island volcanoes, are widely thought to reflect the presence of recycled oceanic crust and sediment. Isotopic systematics suggest the “cycle time” for this process is 1 Ga or longer, but it should be possible to use a simple mass balance approach to discern how the presently operating subduction zone filter affects the ratios of radioactive parent to radiogenic daughter isotopes. Simple uniformitarian assumptions can then be used to predict the present isotopic composition of anciently subducted lithosphere. Our underlying assumption in deciphering the subduction zone filter is that the flux of an element into the deep mantle is simply equal to the flux of element into the subduction zone less the flux of that element into subduction zone magmas. The former is readily calculated from published data. The latter can be calculated by estimating parental magma compositions, arc accretion rates, and the assumption that arc magma compositions differ from MORB only because of material derived from subducting crust and sediment. Using this approach for 8 intra-oceanic subduction zones, we find 73% of Th and Pb, 79% of U, 80% of Rb and Sr, 93% of Nd and 98% of Sm survive the subduction zone filter. The subduction zone filter systematically increases Sm/Nd ratios in all subduction zones, but the effect is small, with a weighted mean increase of 1.5%. The effect of subduction is to decrease the Sm/Nd of the mantle, but only slightly. The effect of subduction is to increase the Rb/Sr of the mantle, but the subduction zone filter does not have a systematic effect on Rb/Sr ratios: it significantly increases in Rb/Sr in 3 subduction zones and significantly decreases it in one; the weighted mean shows no significant change. The effect of the subduction zone filter on U/Pb is also not systematic. U/Pb ratios in the mantle fluxes are bimodal, with values equal to or lower than the bulk Earth value in 4

  8. Tomographic search for missing link between the ancient Farallon subduction and the present Cocos subduction

    NASA Astrophysics Data System (ADS)

    Gorbatov, Alexei; Fukao, Yoshio

    2005-03-01

    A striking feature of the tomographic images of the Earth's mid-mantle is the long, high-velocity belt extending in a north-south direction under the North and South American continents, which is believed to be the remnant subduction of the Farallon Plate. In the Oligocene epoch the North Farallon Plate subduction terminated off Baja California and the South Farallon Plate broke into the Cocos and Nazca plates. This important period of the Farallon subduction history is not clearly understood, due in part to the lack of high-resolution tomographic images. Our P-wave tomographic image of the mantle below Mexico indicates that the currently subducting slab of the Cocos Plate is torn apart from the already subducted slab of the ancient Farallon Plate in a region behind the slab window or slab gap off Baja California. We suggest that the southeastward advance of this slab tearing was synchronous with the counter-clockwise rotation of the Cocos Plate against the eastward to northeastward subduction of the ancient Farallon Plate. The Cocos slab torn apart from the deeper Farallon slab dips to the north to northeast with its strike oblique to the trench axis. This slab configuration delineates well with the intermediate-depth earthquake activity and the volcanic activity known as the Trans Mexican Volcanic Belt. Further to the south of the slab tearing of the subducted slab continues from the deeper Farallon part to the shallower Cocos part but with considerable distortion in the shallower part.

  9. Subduction trench migration since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Williams, S.; Flament, N. E.; Müller, D.; Butterworth, N. P.

    2015-12-01

    Much of our knowledge about subduction zone processes is derived from analyzing present-day Earth. Several studies of contemporary plate motions have investigated the balance between retreating and advancing trenches and shown that subduction zone kinematics are sensitive to the choice of Absolute Plate Motion (APM) model (or "reference frame"). For past times, the absolute motions of the lithospheric plates relative to the Earth's deep interior over tens of millions of years are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. APM models derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Here we quantitatively compare the subduction zone kinematics, net lithospheric rotation and fit to hotspot trails derived the last 130 Myr for a range of alternative reference frames and a single relative plate motion model. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the period between 130 and 70 Ma, when hotspot trails become scarce, hotspot reference frames yield a much more dispersed distribution of slab advance and retreat velocities, which is considered geodynamically less plausible. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation

  10. Petrology of basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea

    NASA Technical Reports Server (NTRS)

    Thy, P.

    1992-01-01

    The basaltic sills from ocean drilling program sites 794 and 797 in the Yamato Basin of the Japan Sea are characterized petrographically on the basis of a detailed study of the composition of relict phenocryst and groundmass phases. The systematic variation in the rock compositions is discussed. Results of 1-atm melting experiments on a relatively primitive basalt from site 797 are reported. The sills are found to constitute two distinct groups of suites: primitive, olivine-bearing suites with low potassium and primitive olivine-bearing to evolved, olivine-free suites with relatively high potassium. A pseudoinvariant reaction relationship between olivine and augite and magnetite is inferred. Complex magmatic and tectonic evolutions in the region, perhaps reflecting a transitional stage between subduction zone activity and back arc spreading, are suggested.

  11. How was the Iapetus infected with subduction

    NASA Astrophysics Data System (ADS)

    Waldron, John; Schofield, David; Brendan Murphy, J.; Thomas, Chris

    2015-04-01

    The history of the Iapetus Ocean is the archetype for the "Wilson cycle". The most poorly understood part of the Wilson cycle is the transition between ocean opening and ocean closing. It is often assumed that subduction is initiated by subsidence of old, cold ocean floor at passive margins. However, in the best modern analogue, Atlantic margins formed at ~180 Ma are still passive, suggesting that some other mechanism is required to initiate subduction. In most tectonic reconstructions of the Appalachian-Caledonide orogen, the continental blocks (Laurentia, Baltica, and Amazonia - West Africa), which separated to form the Iapetus during the breakup of Rodinia, are the same three continents that subsequently collided during closure, making the Iapetus a test case for models of subduction initiation. The margin of Laurentia underwent protracted rifting from ~615 Ma to at least 550 Ma, and perhaps later. The earliest "drift" successions on the Newfoundland margin are as young as ~515 Ma. Subduction, recorded by arc volcanics preserved in the orogen, began relatively early in the history of the new ocean at ~515-505 Ma, and the earliest collisional events are recorded almost simultaneously in peri-Laurentian and peri-Gondwanan microcontinents around 490-480 Ma. However, the stable passive margin of Laurentia survived until after 470 Ma before being converted to an active margin. Closure of the ocean between Avalonia and Laurentia was complete by ~425 Ma. These relationships are difficult to reconcile with a classic Wilson cycle in which subduction is initiated by inversion of an extensional margin. It is much more likely that closure was initiated at a subduction zone migrating westward into the Iapetus, analogous to the eastward Mesozoic-Cenozoic entry of the Caribbean and Scotia plates into the Atlantic realm. This process was probably initiated at a transform boundary between the "internal" ocean formed during the breakup of Rodinia, and "external" Panthalassan

  12. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active

  13. Are the Regional Variations in Central American Arc Lavas due to Differing Basaltic vs. Peridotitic Slab Fluxing Sources ?

    NASA Astrophysics Data System (ADS)

    Rüpke, L. H.; Morgan, J. P.; Hort, M.

    2001-12-01

    Arc magmas at subduction zones show systematic along-arc trends in melt chemistry that are well described, but poorly understood. For example, along the Central American arc between Nicaragua and Costa Rica, over the distance of a few hundred kilometers there is a progressive change in the Ba/La ratios of the arc lavas from high-end to near low-end global values. The mantle wedge melts to produce these lavas; melting is triggered by the upward flux of hydrous fluids from the subducting slab which are released from its crustal and mantle portions at different P-T conditions. Here, we investigate arc melting with a new, self-consistent, chemo-thermo-dynamical model for mantle flow, melting, and fluid release. Since the relevant water-releasing reactions consume latent heat, for internal consistency we include these cooling effects within the temperature solution. Tracer particles advect to track the changing slab chemistry. What happens depends highly upon the initial slab petrology. Both the crustal thickness and the amount of chemically bound water in the downgoing slab are likely to vary significantly between different subduction zones, as do the processes that hydrate the slab. The basaltic oceanic crust hydrates at mid-ocean ridges as it forms. The underlying mantle, if hydrated (serpentinized), can potentially store even more chemically bound water than the crust. To hydrate mantle rocks, however, water must flow through the already hydrated, low permeability crust. When the lithosphere faults at the outer rise, these new cracks cross through the crust into the mantle, providing a path for seawater to penetrate into and serpentinize it. Since the depth-interval and intensity of fluid release from hydrated basalts and hydrated peridotites vary as a function of the initial slab petrology, the trigger mechanism for melting, fluid fluxing from the slab, will also vary. When the primary source of the released fluids changes from hydrated basalt to hydrated

  14. Seismic Characterization of the Transition from Continental to Oceanic Subduction along the western Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Pearce, F. D.; Rondenay, S.; Zhang, H.; Sachpazi, M.; Charalampakis, M.; Royden, L.

    2010-12-01

    The Hellenic subduction zone is located in the east-central Mediterranean region and exhibits large variations in convergence rate along its western edge. Differences in the lithosphere entering the subduction zone are believed to drive the different rates of convergence. While seismic reflection data has shown a transition from continental to oceanic lithosphere along the foreland, no detailed images of the mantle-wedge structure have been available to test this hypothesis. Here, we use high-resolution seismic images across northern and southern Greece to investigate differences in the subducted crust along the western Hellenic subduction zone. We deployed 40 broadband seismometers from the IRIS PASSCAL pool across Greece in a northern line (NL, across Northern Greece) and southern line (SL, across Peloponnesus, Attica, and Evia), each roughly perpendicular to the trench axis. We recorded over 50 high-quality teleseismic events with good azimuthal coverage from each line. We processed them using a 2D teleseismic migration algorithm based on the Generalized Radon Transform and a 3D receiver function algorithm that includes dipping interfaces. In addition, we constructed a 3D velocity model by applying double-difference tomography to ~5000 local earthquakes. The 3D velocity model was used to construct an optimal background model for the teleseismic imaging. Migration and RF images reveal N60E dipping low-velocity layers beneath both NL and SL. From high-resolution migration images, we interpret an ~8 km thick low-velocity layer beneath SL as subducted oceanic crust and a ~20 km thick low-velocity layer beneath NL as subducted continental crust. Relocated earthquakes show that the NL subducted crust is seismically active near the foreland down to 50 km depth presumably as a result of slab flexure. Beyond this region, the subducted crust is aseismic until its signal disappears at ~70 km depth. In contrast, the SL subducted crust is marked by seismicity that extends

  15. Tomographically-imaged subducted slabs and magmatic history of Caribbean and Pacific subduction beneath Colombia

    NASA Astrophysics Data System (ADS)

    Bernal-Olaya, R.; Mann, P.; Vargas, C. A.; Koulakov, I.

    2013-12-01

    We define the length and geometry of eastward and southeastward-subducting slabs beneath northwestern South America in Colombia using ~100,000 earthquake events recorded by the Colombian National Seismic Network from 1993 to 2012. Methods include: hypocenter relocation, compilation of focal mechanisms, and P and S wave tomographic calculations performed using LOTOS and Seisan. The margins of Colombia include four distinct subduction zones based on slab dip: 1) in northern Colombia, 12-16-km-thick oceanic crust subducts at a modern GPS rate of 20 mm/yr in a direction of 110 degrees at a shallow angle of 8 degrees; as a result of its low dip, Pliocene-Pleistocene volcanic rocks are present 400 km from the frontal thrust; magmatic arc migration to the east records 800 km of subduction since 58 Ma ago (Paleocene) with shallow subduction of the Caribbean oceanic plateau starting ~24-33 Ma (Miocene); at depths of 90-150 km, the slab exhibits a negative velocity anomaly we associate with pervasive fracturing; 2) in the central Colombia-Panama area, we define an area of 30-km-thick crust of the Panama arc colliding/subducting at a modern 30/mm in a direction of 95 degrees; the length of this slab shows subduction/collision initiated after 20 Ma (Middle Miocene); we call this feature the Panama indenter since it has produced a V-shaped indentation of the Colombian margin and responsible for widespread crustal deformation and topographic uplift in Colombia; an incipient subduction area is forming near the Panama border with intermediate earthquakes at an eastward dip of 70 degrees to depths of ~150 km; this zone is not visible on tomographic images; 3) a 250-km-wide zone of Miocene oceanic crust of the Nazca plate flanking the Panama indenter subducts at a rate of 25 mm/yr in a direction of 55 degrees and at a normal dip of 40 degrees; the length of this slab suggests subduction began at ~5 Ma; 4) the Caldas tear defines a major dip change to the south where a 35 degrees

  16. Subduction and exhumation of continental crust: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bialas, Robert W.; Funiciello, Francesca; Faccenna, Claudio

    2011-01-01

    When slivers of continental crust and sediment overlying oceanic lithosphere enter a subduction zone, they may be scraped off at shallow levels, subducted to depths of up to 100-200 km and then exhumed as high pressure (HP) and ultra-high pressure (UHP) rocks, or subducted and recycled in the mantle. To investigate the factors that influence the behaviour of subducting slivers of continental material, we use 3-D dynamically consistent laboratory models. A laboratory analogue of a slab-upper mantle system is set up with two linearly viscous layers of silicone putty and glucose syrup in a tank. A sliver of continental material, also composed of silicone putty, overlies the subducting lithosphere, separated by a syrup detachment. The density of the sliver, viscosity of the detachment, geometry of the subducting system (attached plate versus free ridge) and dimensions of the sliver are varied in 34 experiments. By varying the density of the sliver and viscosity of the detachment, we can reproduce a range of sliver behaviour, including subduction, subduction and exhumation from various depths and offscraping. Sliver subduction and exhumation requires sufficient sliver buoyancy and a detachment that is strong enough to hold the sliver during initial subduction, but weak enough to allow adequate sliver displacement or detachment for exhumation. Changes to the system geometry alter the slab dip, subduction velocity, pattern of mantle flow and amount of rollback. Shallower slab dips with more trench rollback produce a mantle flow pattern that aids exhumation. Steeper slab dips allow more buoyancy force to be directed in the up-dip direction of the plane of the plate, and aide exhumation of subducted slivers. Slower subduction can also aide exhumation, but if slab dip is too steep or subduction too slow, the sliver will subduct to only shallow levels and not exhume. Smaller slivers are most easily subducted and exhumed and influenced by the mantle flow.

  17. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

    NASA Astrophysics Data System (ADS)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.

    2012-02-01

    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  18. Rare-earth element geochemistry and the origin of andesites and basalts of the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Cole, J.W.; Cashman, K.V.; Rankin, P.C.

    1983-01-01

    Two types of basalt (a high-Al basalt associated with the rhyolitic centres north of Taupo and a "low-Al" basalt erupted from Red Crater, Tongariro Volcanic Centre) and five types of andesite (labradorite andesite, labradorite-pyroxene andesite, hornblende andesite, pyroxene low-Si andesite and olivine andesite/low-Si andesite) occur in the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Rare-earth abundances for both basalts and andesites are particularly enriched in light rare-earth elements. High-Al basalts are more enriched than the "low-Al" basalt and have values comparable to the andesites. Labradorite and labradorite-pyroxene andesites all have negative Eu anomalies and hornblende andesites all have negative Ce anomalies. The former is probably due to changing plagioclase composition during fractionation and the latter to late-stage hydration of the magma. Least-squares mixing models indicate that neither high-Al nor "low-Al" basalts are likely sources for labradorite/labradorite-pyroxene andesites. High-Al basalts are considered to result from fractionation of olivine and clinopyroxene from a garnet-free peridotite at the top of the mantle wedge. Labradorite/labradorite-pyroxene andesites are mainly associated with an older NW-trending arc. The source is likely to be garnet-free but it is not certain whether the andesites result from partial melting of the top of the subducting plate or a hydrated lower portion of the mantle wedge. Pyroxene low-Si andesites probably result from cumulation of pyroxene and calcic plagioclase within labradorite-pyroxene andesites, and hornblende andesites by late-stage hydration of labradorite-pyroxene andesite magma. Olivine andesites, low-Si andesites and "low-Al" basalts are related to the NNE-trending Taupo-Hikurangi arc structure. Although the initial source material is different for these lavas they have probably undergone a similar history to the labradorite/labradorite-pyroxene andesites. All lavas show evidence

  19. Subduction of the South Chile active spreading ridge: A 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina)

    NASA Astrophysics Data System (ADS)

    Boutonnet, E.; Arnaud, N.; Guivel, C.; Lagabrielle, Y.; Scalabrino, B.; Espinoza, F.

    2010-01-01

    The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/ 39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4-3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.

  20. Nickel and Cobalt Partitioning Between Spinel and Basaltic Melt: Applications to Planetary Basalt Suites

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2002-01-01

    New experimental spinel/melt partition coefficients for Ni and Co have been measured in basalt samples with natural levels of Ni and Co, are lower than previous high doping experiments, and are applied to several planetary basalt suites. Additional information is contained in the original extended abstract.

  1. Are flood basalt eruptions monogenetic or polygenetic?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Cañón-Tapia, Edgardo

    2015-11-01

    A fundamental classification of volcanoes divides them into "monogenetic" and "polygenetic." We discuss whether flood basalt fields, the largest volcanic provinces, are monogenetic or polygenetic. A polygenetic volcano, whether a shield volcano or a stratovolcano, erupts from the same dominant conduit for millions of years (excepting volumetrically small flank eruptions). A flood basalt province, built from different eruptive fissures dispersed over wide areas, can be considered a polygenetic volcano without any dominant vent. However, in the same characteristic, a flood basalt province resembles a monogenetic volcanic field, with only the difference that individual eruptions in the latter are much smaller. This leads to the question how a flood basalt province can be two very different phenomena at the same time. Individual flood basalt eruptions have previously been considered monogenetic, contrasted by only their high magma output (and lava fluidity) with typical "small-volume monogenetic" volcanoes. Field data from Hawaiian shield volcanoes, Iceland, and the Deccan Traps show that whereas many feeder dykes were single magma injections, and the eruptions can be considered "large monogenetic" eruptions, multiple dykes are equally abundant. They indicate that the same dyke fissure repeatedly transported separate magma batches, feeding an eruption which was thus polygenetic by even the restricted definition (the same magma conduit). This recognition helps in understanding the volcanological, stratigraphic, and geochemical complexity of flood basalts. The need for clear concepts and terminology is, however, strong. We give reasons for replacing "monogenetic volcanic fields" with "diffuse volcanic fields" and for dropping the term "polygenetic" and describing such volcanoes simply and specifically as "shield volcanoes," "stratovolcanoes," and "flood basalt fields."

  2. Stress orientations in subduction zones and the strength of subduction megathrust faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2015-01-01

    Subduction zone megathrust faults produce most of the world’s largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making a 45°-60° angle to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface.

  3. Earth's oldest mantle fabrics indicate Eoarchaean subduction.

    PubMed

    Kaczmarek, Mary-Alix; Reddy, Steven M; Nutman, Allen P; Friend, Clark R L; Bennett, Vickie C

    2016-01-01

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics. PMID:26879892

  4. Earth's oldest mantle fabrics indicate Eoarchaean subduction

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Mary-Alix; Reddy, Steven M.; Nutman, Allen P.; Friend, Clark R. L.; Bennett, Vickie C.

    2016-02-01

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

  5. Subduction and volatile recycling in Earth's mantle

    NASA Technical Reports Server (NTRS)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  6. The Seismic Coupling of Subduction Zones Revisited

    NASA Astrophysics Data System (ADS)

    Scholz, C.; Campos, J.

    2012-04-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the results using the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos [1995]. Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  7. The seismic coupling of subduction zones revisited

    NASA Astrophysics Data System (ADS)

    Scholz, Christopher H.; Campos, Jaime

    2012-05-01

    The nature of seismic coupling for many of the world's subduction zones has been reevaluated. Geodetic estimates of seismic coupling obtained from GPS measurements of upper plate deformation during the interseismic period are summarized. We compared those with new estimates of seismic coupling obtained from seismological data. The results show that with a few notable exceptions the two methods agree to within about 10%. The seismological estimates have been greatly improved over those made 20-30 years ago because of an abundance of paleoseismological data that greatly extend the temporal record of great subduction earthquakes and by the occurrence, in the intervening years, of an unusual number of great and giant earthquakes that have filled in some of the most critical holes in the seismic record. The data also, again with a few notable exceptions, support the frictional instability theory of seismic coupling, and in particular, the test of that theory made by Scholz and Campos (1995). Overall, the results support their prediction that high coupling occurs for subduction zones subjected to high normal forces with a switch to low coupling occurring fairly abruptly as the normal force decreases below a critical value. There is also considerable variation of coupling within individual subduction zones. Earthquake asperities correlate with areas of high coupling and hence have a semblance of permanence, but the rupture zones and asperity distributions of great earthquakes may differ greatly between seismic cycles because of differences in the phase of seismic flux accumulation.

  8. Earth's oldest mantle fabrics indicate Eoarchaean subduction

    PubMed Central

    Kaczmarek, Mary-Alix; Reddy, Steven M.; Nutman, Allen P.; Friend, Clark R. L.; Bennett, Vickie C.

    2016-01-01

    The extension of subduction processes into the Eoarchaean era (4.0–3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics. PMID:26879892

  9. The petrogenesis of island arc basalts from Gunung Slamet volcano, Indonesia: Trace element and 87Sr /86Sr contraints

    NASA Astrophysics Data System (ADS)

    Vukadinovic, Danilo; Nicholls, Ian A.

    1989-09-01

    Selected major and trace elements, rare earth element (REE) and 87Sr /86Sr data are presented for arc basalts from Gunung Slamet volcano, Java, Indonesia. On the basis of stratigraphy, trace element content, Zr/Nb, and 87Sr /86Sr ratios, Slamet basalts can be broadly categorized into high abundance magma (HAM) and low abundance magma (LAM) types. Provided the quantities of 'immobile' trace elements (in aqueous systems) such as Nb, Hf and Zr in the mantle wedge and ensuing magmas are unaffected by additions from subducted lithosphere or overlying arc crust, a model may be developed whereby LAM are generated by higher degrees of melting in the mantle wedge (13%) compared to HAM (7%). Hf/Nb or Zr/Nb ratio systematics indicate that prior to metasomatism by the underlying lithosphere, the Slamet mantle wedge was similar in chemical character to transitional-MORB source mantle. Conversely, examination of immobile/mobile incompatible trace element ratios (IMITER) provide clues to the nature of the metasomatizing agent, most likely derived from the subducted slab (basalts and sediments). HAM have constant IMITER ( e.g.Nb/U, Zr/K), whereas LAM show a negative correlation between IMITER and 87Sr /86Sr . Metasomatism of the mantle wedge was modelled by interaction with either a slab-derived-melt or -aqueous fluid. Yb/Sr and 87Sr /86Sr ratios from Slamet basalts and oceanic sediments suggest that 'bulk' mixing of the latter into the mantle wedge is unlikely. Instead, sediments probably interact with overlying mantle in the same way that subducted basalts do-either as melts or fluids. In the case of slab-derived melts mixing with 'pristine' mantle, good agreement with back-calculated values for HAM and LAM sources can be achieved only if a residual phase such as rutile persists in the subducting lithosphere. In the case of fluids, excellent agreement with back-calculated values is obtained for all elements except heavy REE. It is tentatively suggested that aqueous slab

  10. Subduction Initiation at Oceanic Detachment Faults and the Origin of Supra-subduction Ophiolites

    NASA Astrophysics Data System (ADS)

    Maffione, M.; Thieulot, C.; Van Hinsbergen, D. J. J.; Morris, A.; Spakman, W.; Plümper, O.

    2015-12-01

    Subduction initiation is a critical link in the plate tectonic cycle. Intra-oceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g. the Neotethys Ocean during the Jurassic, remains a matter of debate. In recent years, extensional detachment faults have been widely documented adjacent to slow- and ultraslow-spreading ridges where they cut across the oceanic lithosphere. These structures are extremely weak due to widespread occurrence of serpentine and talc resulting from hydrothermal alteration, and can therefore effectively localize deformation. Here, we show geochemical, tectonic, and paleomagnetic evidence from the Jurassic ophiolites of Albania and Greece for a subduction zone formed in the western Neotethys parallel to a spreading ridge along an oceanic detachment fault. With 2-D numerical modeling exploring the evolution of a detachment-ridge system experiencing compression, we show that serpentinized detachments are always weaker than spreading ridges. We conclude that, owing to their extreme weakness, oceanic detachments can effectively localize deformation under perpendicular far-field forcing, providing ideal conditions to nucleate new subduction zones parallel and close to (or at) spreading ridges. Direct implication of this, is that resumed magmatic activity in the forearc during subduction initiation can yield widespread accretion of supra-subduction zone ophiolites at or close to the paleoridge. Our new model casts the enigmatic origin of regionally extensive ophiolite belts in a novel geodynamic context, and calls for future research on three-dimensional modeling of subduction initiation and how upper plate extension is associated with that.

  11. Volatiles in Submarine HIMU Basalts from the Austral Islands, South Pacific

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Hanyu, T.; Shimizu, K.; Dosso, L.

    2014-12-01

    Submarine basalts have been collected from the slopes of Rurutu and Tubuai in the Austral Islands, South Pacific with the manned submersible Shinkai 6500. Previous work on the bulk radiogenic isotope and trace element chemistry of these samples suggests that the basalts were generated from a HIMU reservoir derived from an ancient subducted slab that was entrained and mixed with the depleted asthenospheric mantle. Olivines and glasses from the submarine basalts show lower 3He/4He than MORB, similar to subaerial basalts from these islands. Sixteen glass chips from the same submarine samples have now undergone in-situ analysis for major elements (including S and Cl) by EPMA, trace elements by LA-ICP-MS, H2O and CO2 by FTIR, and bulk volatile analysis (S, Cl, F) by ion chromatography combined with pyrohydrolysis. H2O ranges from 0.62-2.44 wt%, while CO2 is below detection (<20 ppm). S measured by EPMA ranges from 612-1889 ppm and by bulk analysis from 582-1301 ppm and, with the exception of one sample, concentrations agree well. Cl measured by EPMA ranges from 151-538 ppm, and by bulk analysis from 188-980 ppm. The higher values suggest that the bulk samples may be contaminated by seawater; otherwise Cl correlates strongly with incompatible elements. F measured in the bulk samples ranges from 221-1243 ppm. S correlates positively with FeO and Cu, but not with incompatible elements, suggesting sulfide saturation. While the highest H2O contents may reflect late-stage hydration and are oversaturated at the depth of collection, the low H2O contents (11 samples with 0.62-0.96 wt%) are undersaturated, and there is a positive correlation between the H2O contents of all chips and their incompatible element concentrations. This suggests that H2O/Ce and Cl/Ce filtered for shallow level processes may reflect source compositions, providing constraints on volatiles in the sources of Rurutu and Tubuai, and indications about the efficiency of subduction-related volatile-loss in the

  12. Lu-Hf constraints on the evolution of lunar basalts

    SciTech Connect

    Fujimaki, H.; Tatsumoto, M.

    1984-02-15

    Very low Ti basalts andd green glass samples from the moon show high Lu/Hf ratios and low Hf concentrations. Low-Ti lunar basalts show high and variable Lu/Hf ratios and higher Hf concentrations, whereas high-Ti lunar basalts show low Lu/Hf ratios and high Hf concentrations. KREEP basalts have constant Lu/Hf ratios and high but variable Hf concentrations. Using the Lu-Hf behavior as a constraint, we propose a model for the mare basalts evolution. This constraint requires extensive crystallization of the primary lunar magma ocean prior to formation of the lunar mare basalt sources and the KREEP basalts. Mare basalts are produced by the melting of the cumulate rocks, and KREEP basalts represent the residual liquid of the magma ocean.

  13. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  14. Geochemical diversity of shergottite basalts: Mixing and fractionation, and their relation to Mars surface basalts

    NASA Astrophysics Data System (ADS)

    Treiman, Allan H.; Filiberto, Justin

    2015-04-01

    The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high-Al basalts (Al > 5% wt) are distinct from low-Al basalts and olivine-phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine-phyric and low-Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High-Al shergottites deviate from these trends consistent with silicate mineral fractionation. The "depleted" component is similar to the Yamato-980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The "enriched" component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.

  15. Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Raimbourg, H.; Yamato, P.; Huet, B.

    2011-11-01

    The Monviso ophiolite Lago Superiore Unit constitutes a well-preserved, almost continuous upper fragment of oceanic lithosphere subducted at c. 80 km depth, thereby providing a unique opportunity to study mechanical coupling processes and meter-scale fluid-rock interactions occurring at such depths in present-day subduction zones. It is made of (i) a variably thick (50-500 m) section of eclogitized basaltic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body and of (ii) a c. 1 km thick serpentinite sole. We herein focus on the three major eclogite-facies shear zones found at the top of the unit, at the boundary between basalts and gabbros, and between gabbros and serpentinites, respectively. Strain localization occurred at lithological interfaces, irrespective of material strength. While ductile deformation dominates along the shear zones, local brittle behavior is demonstrated by the existence of numerous eclogite breccias of Fe-Ti metagabbros and widespread garnet fractures, possibly linked with intermediate-depth eclogite-facies (micro)seismicity. These m- to hm-sized fragments of Fe-Ti metagabbros were later sheared and disseminated within serpentinite schists along the gabbro-serpentinite boundary (Lower Shear zone; LSZ). Pervasive and focused fluid flow is attested in the LSZ by significant alteration of bulk rock compositions, weakening of the rocks and widespread crystallization of hydrous parageneses. By contrast, the Intermediate Shear zone (ISZ) shows evidence for more restricted, short-range fluid flow. The activity of both the ISZ and LSZ ceased during early lawsonite eclogite-facies exhumation, when deformation localized deeper within the serpentinite sole, allowing for the detachment (and preservation) of this large ophiolitic fragment.

  16. Oxygen consumption in subseafloor basaltic crust

    NASA Astrophysics Data System (ADS)

    Orcutt, B. N.; Wheat, C. G.; Hulme, S.; Edwards, K. J.; Bach, W.

    2012-12-01

    Oceanic crust is the largest potential habitat for life on Earth and may contain a significant fraction of Earth's total microbial biomass, yet little is known about the form and function of life in this vast subseafloor realm that covers nearly two-thirds of the Earth's surface. A deep biosphere hosted in subseafloor basalts has been suggested from several lines of evidence; yet, empirical analysis of metabolic reaction rates in basaltic crust is lacking. Here we report the first measure of oxygen consumption in young (~ 8 Ma) and cool (<25 degrees C) basaltic crust, calculated from modeling oxygen and strontium profiles in basal sediments collected during Integrated Ocean Drilling Program (IODP) Expedition 336 to 'North Pond', a sediment 'pond' on the western flank of the Mid-Atlantic Ridge (MAR), where vigorous fluid circulation within basaltic crust occurs. Dissolved oxygen concentrations increased towards the sediment-basement interface, indicating an upward diffusional supply from oxic fluids circulating within the crust. A parametric reaction-transport model suggests oxygen consumption rates on the order of 0.5-500 nmol per cubic centimeter fluid per day in young and cool basaltic crust, providing sufficient energy to support a subsurface crustal biosphere.

  17. Finding Basalt Chips from Distant Maria

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2006-04-01

    The Apollo 16 landing site is in the lunar highlands, over 200 kilometers away from the nearest maria. Nevertheless, the Apollo 16 regolith contains a small percentage (<1%) of tiny fragments thrown to the site from distant maria. Ryan Zeigler, his colleagues at Washington University in St. Louis: Randy Korotev, Brad Jolliff, and the late Larry Haskin, and Jeffrey Gillis-Davis (University of Hawaii) made a detailed study of the chemical composition and mineralogy of fragments (only 2-4 millimeters across) of mare basalts. The basalts vary in composition, but are similar to other types identified previously. The team matched the compositions of the fragments to compositions of mare surfaces in the Apollo 16 region using remote sensing data from the Clementine mission. This blending of cosmochemical and remote sensing analyses allowed them to make educated guesses about where each of the basalt fragments may have originated. We now have a fuller understanding of the range of compositions of mare basalts and, because basalts record a wealth of information about planetary interiors, this research enlightens us about the diversity of rock compositions in the lunar mantle.

  18. Can we identify source lithology of basalt?

    PubMed

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  19. Can we identify source lithology of basalt?

    PubMed Central

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered. PMID:23676779

  20. Lithoautotrophic microbial ecosystems in deep basalt aquifers

    SciTech Connect

    Stevens, T.O.; McKinley, J.P.

    1995-10-20

    Bacterial communities were detected in deep crystalline rock aquifers within the Columbia River Basalt Group (CRB). CRB ground waters contained up to 60 {mu}M dissolved H{sub 2} and autotrophic microorganisms outnumbered heterotrophs. Stable carbon isotope measurements implied that autotrophic methanogenesis dominated this ecosystem and was coupled to the depletion of dissolved inorganic carbon. In laboratory experiments, H{sub 2} a potential energy source for bacteria, was produced by reactions between crushed basalt and anaerobic water. Microcosms containing only crushed basalt and ground water supported microbial growth. These results suggest that the CRB contains a lithoautotrophic microbial ecosystem that is independent of photosynthetic primary production. 38 refs., 4 figs., 3 tabs.

  1. Slab and sediment melting during subduction initiation: granitoid dykes from the mantle section of the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Rollinson, Hugh

    2015-09-01

    New geochemical data are presented for a suite of tonalites, granodiorites, trondhjemites and granites intrusive into depleted mantle harzburgites of the Oman-UAE ophiolite. A detailed field, petrological and geochemical examination suggests that these `mantle granitoids' are the product of three processes: (a) the mixing of melts derived from both mafic and metasedimentary sources, (b) interaction with the mantle harzburgite host and (c) the fractional crystallisation of plagioclase, hornblende ± accessory phases. Geochemical data are used to characterise the identity of the protolith(s) by first screening the data for those samples which have experienced fractional crystallisation during emplacement. The resultant `reduced' data set has moderately fractionated REE, with small negative Eu anomalies and fractionated primitive mantle-normalised trace element patterns with high concentrations of fluid mobile elements and lower concentrations of HFS elements and with positive peaks for Rb and Pb and negative troughs for Ba, Nb, Sr and Ti. The character of the protolith was quantified using a melting model based upon a MORB-type basalt similar in composition to the Oman Geotimes lavas and a model using the MUQ (MUd from Queensland) global sediment composition (Kamber et al. Geochim Cosmochim Acta 69:1041-1058, 2005) both with an amphibolite/granulite facies mineralogy. The two compositions bracket the mantle granitoid data set with partial melts of the MORB source yielding trace element compositions lower than the granitoids, whereas melts of the MUQ source yield melts with compositions higher than the granitoids. Mixing of the calculated melt compositions indicates that the measured granitoid compositions represent between 10 and 30 % mixing of a metasedimentary melt into the melt of a mafic source. Current petrological, structural and geochronological data suggest a model for the origin of the Oman ophiolite in which it is formed by spreading above a subduction zone

  2. Exsolution kinetics of majoritic garnet from clinopyroxene in subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Nishi, Masayuki; Kubo, Tomoaki; Kato, Takumi; Tominaga, Aiko; Funakoshi, Ken-ichi; Higo, Yuji

    2011-11-01

    Mechanisms and kinetics of exsolution of majoritic garnet from Ca-Tschermak-rich clinopyroxene were examined at 14.0-15.6 GPa, 1250-1590 °C, and H 2O-undersaturated conditions (800-1170 wt. ppm H 2O) by time-resolved in situ synchrotron X-ray diffraction measurements. Textural observations of recovered samples revealed that majoritic garnet had exsolved along the grain boundaries of parent clinopyroxene. Analyses of the kinetic data obtained indicate that exsolved majoritic garnet grew by diffusion-controlled growth, and the growth kinetics can be described by k2 (m 2/s) = 7.4 × 10 -5 exp[-389(kJ mol -1)/ RT]. The exsolution of majoritic garnet from clinopyroxene would be kinetically inhibited at temperatures below ˜800 °C in geological time scales (10 5-10 6 years) when the parent grain size is larger than 1 mm. We constructed possible phase relations of subducting mid-ocean ridge basalt (MORB) taking the exsolution kinetics into consideration. When the effect of reaction kinetics is considered, the density contrast between the MORB component of a subducting slab and surrounding mantle becomes significantly reduced relative to that calculated for the equilibrium MORB assemblage.

  3. Mid-mantle anisotropy: Elasticity of aluminous phases in subducted MORB

    NASA Astrophysics Data System (ADS)

    Mookherjee, Mainak

    2011-07-01

    Aluminous phase with the calcium ferrite and calcium titanate structure constitutes around 20% by volume of the subducted mid ocean ridge basalt (MORB) at lower mantle depths. Using first principle simulations, we calculate the equation of state and elasticity of NaAlSiO4 (NaCF) and MgAl2O4 (MgCF and MgCT) up to >150 GPa, encompassing the full range over which NaCF, MgCF and MgCT has been observed experimentally. We calculate the isotropically averaged elastic wave velocities and the anisotropy from our single crystal elastic constants. The elasticity of these phases is sensitive to the chemistry. The bulk modulus decreases with MgAlNa-1Si-1 substitution with a ∂K0/∂x ˜ -15 GPa, whereas the shear modulus stiffens with a ∂G0/∂x ˜ 10 GPa. At lower mantle conditions, the temperature derivative of bulk, ∂K/∂T and shear ∂G/∂T modulus are -0.006 and -0.013 GPa K-1, respectively. The chemistry is likely to have significant influence on the elasticity of these phases. Slab penetrating the lower mantle often develops significant anisotropy. The full elastic constant tensor of these aluminous phases reveal significant anisotropy and are likely candidates to account for the large delay times observed in the Tonga-Kermadec subduction zones.

  4. Basaltic Volcanism and Ancient Planetary Crusts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.

    1993-01-01

    The purpose of this project is to decipher the origin of rocks which form the ancient lunar crust. Our goal is to better understand how the moon evolved chemically and, more generally, the processes involved in the chemical fractionation of terrestrial planetoids. This research has implications for other planetary bodies besides the Moon, especially smaller planetoids which evolved early in the history of the solar system and are now thermally stable. The three main areas focused on in our work (lunar mare basalts, KREEP basalts, and plutonic rocks of the lunar highlands) provide complementary information on the lunar interior and the processes that formed it.

  5. Behavior of Fluid Mobile Elements Across hot Subduction Zone: Insights from Along-Strike B, As, Sb and Cs Systematics in Mafic Lavas from the Garibaldi Volcanic Belt, Northern Cascadia Subduction System.

    NASA Astrophysics Data System (ADS)

    Savov, I. P.; Green, N. L.; Price, R.

    2005-12-01

    We explore the consequences of "hot" subduction zone thermal structure for the recycling of fluid mobile elements across convergent margins. We selected the Late Cenozoic Garibaldi Volcanic Belt (GVB) of the Northern Cascadia Subduction System because it is associated with the subduction of extremely young (< 23 Ma) and "hot" oceanic lithosphere. The volcanic belt is ~ 15 km wide and consists of near primitive high-Al tholeiites and Mg-andesites (near Glacier Peak in NW Washington) through transitional basalts to alkali olivine basalts and basanites (near Bridge River- Salal Glacier area in SW British Columbia). The age of the subducted lithosphere decreases northward (latitude range 48 to 51 North) by almost 10 Ma, and thus the thermal structure of the convergent margin must be hotter in the northern part of GVB. The average B (3.3 ppm), As (0.2 ppm), Sb (0.1 ppm) and Cs (0.2 ppm) contents of the GVB mafic lavas are much lower compared to those reported from other convergent margins (Noll et al., 1996, Geochimica et Cosmochimica Acta, v. 60, No. 4, pp. 587-611). As expected the B/La (range = 0.003- 0.63; ave. ~ 0.2), Cs/La (range = 0-0.032; ave. ~ 0.01) and Sb/Ce (range = 0.001-0.013; ave. ~ 0.003) ratios show progressively lower values with transition from volcanic centers sampling old (19-23 Ma) (colder) slabs (Glacier Peak and Mount Baker areas) toward volcanic centers sampling young (15-17) (hot) slabs (Meager-Elaho, Helm Creek, Cheakamus, Bridge River and Salal Glacier areas). Surprisingly, the As/Ce (range = 0.001-0.015; ave. ~ 0.005) increases with decreasing slab age. Fluid mobile elements are extremely enriched in all members of the subducted slab inventory (to extremes in the serpentinized mantle wedge) and are depleted in slab melts (adakites), OIBs and MORBs. Their enrichment-depletion patterns could potentially be used to trace the extent of slab devolatilization and to test models about the mantle structure beneath volcanic arc fronts.

  6. Hydrogeological responses to incoming materials at the erosional subduction margin, offshore Osa Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Harris, Robert N.; Shimizu, Mayuko; Ujiie, Kohtaro; Tsutsumi, Akito; Ikehara, Minoru; Uno, Masaoki; Yamaguchi, Asuka; Hamada, Yohei; Namiki, Yuka; Kimura, Gaku

    2015-09-01

    Bulk mineral assemblages of sediments and igneous basement rocks on the incoming Cocos Plate at the Costa Rica subduction zone are examined by X-ray diffraction analyses on core samples. These samples are from Integrated Ocean Drilling Program Expedition 334 reference Site U1381, ˜ 5 km seaward of the trench. Drilling recovered approximately 100 m of sediment and 70 m of igneous oceanic basement. The sediment includes two lithologic units: hemipelagic clayey mud and siliceous to calcareous pelagic ooze. The hemipelagic unit is composed of clay minerals (˜50 wt.%), quartz (˜5 wt.%), plagioclase (˜5 wt.%), calcite (˜15 wt.%) and ˜30 wt.% of amorphous materials, while the pelagic unit is mostly made up of biogenic amorphous silica (˜50 wt.%) and calcite (˜50 wt.%). The igneous basement rock consists of plagioclase (˜50-60 wt.%), clinopyroxene (˜>25 wt.%), and saponite (˜15-40 wt.%). Saponite is more abundant in pillow basalt than in the massive section, reflecting the variable intensity of alteration. We estimate the total water influx of the sedimentary package is 6.9 m3/yr per m of trench length. Fluid expulsion models indicate that sediment compaction during shallow subduction causes the release of pore water while peak mineral dehydration occurs at temperatures of approximately ˜100°C, 40-30 km landward of the trench. This region is landward of the observed updip extent of seismicity. We posit that in this region the presence of subducting bathymetric relief capped by velocity weakening nannofossil chalk is more important in influencing the updip extent of seismicity than the thermal regime.

  7. Geochemical and petrologic investigation of the Ola Plateau-basalts from the Okhotsk-Chukotka Volcanic Belt (NE Russia)

    NASA Astrophysics Data System (ADS)

    Leitner, Jürgen; Ntaflos, Theodoros; Akinin, Vyacheslav; Tschegg, Cornelius

    2010-05-01

    The Okhotsk-Chukotka volcanic belt to a large degree consists of coeval Cretaceous and Early Tertiary volcanic and plutonic rocks that occur along the continental margin in northeast Russia. These igneous-arc related rocks build up an Andean-style magmatic arc sequence that occurs for about 3.500 km along the entire length of the Eurasian continent, from Chukotka Peninsula in the north down to north-east China. The rocks of the Okhotsk-Chukotka Volcanic Belt (OCVB) comprise Late Cretaceous, andesitic basalts, andesites, dacites, rhyolites, tuffs, rare beds of nonmarine clastic rocks with conglomerates and sandstones in the base and locally Paleocene gently dipping basalts. The duration of the magmatic activity in the Okhotsk-Chukotka volcanic belt is still in debate but generally it has been estimated from middle of Albian to Campanian. The studied area, the Ola Plateau Basalts (OPB) and the Hypotetica Basalts (HB), comprise basaltic andesites, trachy- basalts, basaltic trachy- andesite and rhyolitic dykes, belongs to the Okhotsk-Cukotka volcanic belt and represents the last volcanic activity related to the subduction of the palaeo-Pacific plate in this region. The exposed lavas have a thickness of 0.5 km and the estimated volume is about 222 km³. Fine grained 4 m thick rhyolitic dykes represent the very last event of the studied sequence. According to Ar/Ar and U/Pb dating (Hourigan, Akinin, 2004;), the average age of the OPB/ HB is 78.8 to 74 Ma. The basaltic rocks that build up the Ola Plateau are mainly fine grained calc- alkaline basalts with clinopyroxene, plagioclase and strongly to moderately altered olivine phenocrysts with spinel inclusions. The Mg# of the calc- alkaline basalts vary from 0.35 to 0.57 and the TiO2 from 1.2 to 2.2 wt% whereas CaO correlates positive with MgO contents. The OPB and HB lavas, according to their primitive mantle normalized trace elements, can be divided into three groups: Group (I) is characterized by positive Sr anomaly with

  8. Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Worthington, Timothy J.; Price, Richard C.; Stewart, Robert B.; Maas, R.

    2006-09-01

    Raoul Volcano in the northern Kermadec arc is typical of volcanoes in oceanic subduction systems in that it is composed mainly of low-K high-Al basalts and basaltic andesite. However, during the last 4 ka Raoul Volcano has produced mainly dacite magma in pyroclastic eruptions associated with caldera formation. The rocks produced in these episodes are almost aphyric containing only sparse crystals of plagioclase, clinopyroxene, orthopyroxene and magnetite. These apparent phenocrysts have chemical compositions that suggest that they did not crystallise from melts with the chemical composition of their host rocks. Rather they are xenocrysts and only their rims show evidence for crystallisation from their host melt. Chemical compositions of samples of the dacites show that each eruption has tapped a distinct magma batch. Compositional variations through the analysed suite cannot be accommodated in any reasonable model of fractional crystallisation from likely parental magma compositions. The hypothesis that best fits the petrology of Raoul Island dacites is one of crustal anatexis. This model requires heating of the lower crust by a magma flux to the point where dehydration melting associated with amphibole breakdown produces magma from a preconditioned source. It is suggested that Raoul is passing through an adolescent stage of development in which siliceous melts are part of an open system in which felsic and mafic magmas coexist.

  9. Modeling the effects of geological heterogeneity and metamorphic dehydration on slow slip and shallow deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Skarbek, Robert M.

    Slow slip and tectonic tremor in subduction zones take place at depths (˜20 - 50 km) where there is abundant evidence for distributed shear over broad zones (˜10 - 103 m) composed of rocks with marked differences in mechanical properties and for near lithostatic pore pressures along the plate interface where the main source of fluids must be attributed to chemical dehydration reactions. In Chapter II, I model quasi-dynamic rupture along faults composed of material mixtures characterized by different rate-and-state-dependent frictional properties to determine the parameter regime capable of producing slow slip in an idealized subduction zone setting. Keeping other parameters fixed, the relative proportions of velocity-weakening (VW) and velocity-strengthening (VS) materials control the sliding character (stable, slow, or dynamic) along the fault. The stability boundary between slow and dynamic is accurately described by linear analysis of a double spring-slider system with VW and VS blocks. In Chapter III, I model viscoelastic compaction of material subducting through the slow slip and tremor zone in the presence of pressure and temperature-dependent dehydration reactions. A dehydration fluid source is included using 1) a generalized basalt dehydration reaction in subducting oceanic crust or 2) a general nonlinear kinetic reaction rate law parameterized for an antigorite dehydration reaction. Pore pressures in excess of lithostatic values are a robust feature of simulations that employ parameters consistent with the geometry of the Cascadia subduction margin. Simulations that include viscous deformation uniformly generate traveling porosity waves that transport increased fluid pressures within the slow slip region. Slow slip and tremor also occur in shallow (< 10 km depth) accretionary prism sections of subduction zones. In Chapter IV, I examine how geologic heterogeneities affect the mechanics of accretionary prisms in subduction zones by showing how spatial

  10. Temperature Models for the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Kostoglodov, V.; Currie, C.; Manea, M.; Wang, K.

    2002-12-01

    It is well known that the temperature is one of the major factors which controls the seismogenic zone. The Mexican subduction zone is characterized by a very shallow flat subducting interplate in its central part (Acapulco, Oaxaca), and deeper subduction slabs northern (Jalisco) and southern (Chiapas). It has been proposed that the seismogenic zone is controlled, among other factors, by a temperature. Therefore, we have developed four two-dimensional steady state thermal models for Jalisco, Guerrero, Oaxaca and Chiapas. The updip limit of the seismogenic zone is taken between 100 §C and 150 §C, while the downdip limit is thought to be at 350 §C because of the transition from stick-slip to stable-sliding. The shape of the subducting plate is inferred from gravity and seismicity. The convergence velocity between oceanic and continental lithospheric plates is taken as the following: 5 cm/yr for Jalisco profile, 5.5 for Guerrero profile, 5.8 for Oaxaca profile, and 7.8 for Chiapas profile. The age of the subducting plates, since they are young, and provides the primary control on the forearc thermal structure, are as the following: 11 My for Jalisco profile, 14.5 My for Guerrero profile, 15 My for Oaxaca profile, and 28 My for Chiapas profile. We also introduced in the models a small quantity of frictional heating (pore pressure ratio 0.98). The value of 0.98 for pore pressure ratio was obtained for the Guerrero profile, in order to fit the intersection between the 350 §C isotherm and the subducting plate at 200 Km from trench. The value of 200 km coupling zone from trench is inferred from GPS data for the steady interseismic period and also for the last slow aseismic slip that occurred in Guerrero in 2002. We have used this value of pore pressure ratio (0.98) for all the other profiles. For the others three profiles we obtained the following coupling extents: Jalisco - 100 km, Oaxaca - 170 km and Chiapas - 125 km (from the trench). Independent constrains of the

  11. Subduction zone earthquakes and stress in slabs

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  12. A new P wave velocity model beneath East Asia: insights on the relationship between intraplate volcanism and Pacific subduction

    NASA Astrophysics Data System (ADS)

    Huang, T.; Niu, F.; Obayashi, M.

    2013-12-01

    The Pacific plate subducted beneath the East China since the Middle Mesozoic and it went through several different stages of subduction. Knowing its detailed configuration in the mantle can help better understand the geological events happened in the East Asia. Here we combine P-wave traveltime data from the EHB (Engdahl, van der Hilst, and Buland 1998) catalog of 1964-2007, and manually picks from the regional networks of the China Earthquake Administration (CEArray) consisting of more than one thousand stations from 2007 to 2010 as well as the NorthEast China Extended Array (NECESSArray) with 127 broadband stations from 2009 to 2011 in order to produce a global P-wave velocity model with a focus on the velocity structure beneath the East Asia. The mantle is parameterized into irregular blocks and the size of each block depends on the number of the rays penetrating the block. The minimum block size is 1.25°x1.25°. The large dataset and the adaptive block size yield a high-resolution 3D P-wave velocity model beneath Asia. Our tomographic model shows high velocity roots under Archean cratons, such as the Ordos and the Sichuan basin. Our model also displays low velocity anomalies at a depth from 50km to 350km beneath the Changbaishan and Datong volcanoes. Massive basaltic volcanism occurred in these places in the Cenozoic. There is also a pronounced slow anomaly that extends to the transition zone beneath the South China block, but it is only limited in the upper mantle. The Cenozoic basaltic magmatism in Hainan Island might be related with this slow anomaly. Our model also shows clear segments of slabs inside the transition zone, which could be imaged as flat slabs with insufficient data sampling. Different segments also appear to have different intensity and may correspond to different episodes of the Pacific subduction. The fragmented nature of the subducted Pacific plate also implies that several slab detachment events may have occurred during the subduction

  13. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    USGS Publications Warehouse

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, U.S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2??-7?? to 12?? where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35-45 km deep) beneath the Cascade Range, with thinner crust (30-35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ???25 km depth beneath the coastline to perhaps as far west as the deformation front ???120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  14. Eocene to Quaternary mafic-intermediate volcanism in San Luis Potosí, central Mexico: The transition from Farallon plate subduction to intra-plate continental magmatism

    NASA Astrophysics Data System (ADS)

    Aguillón-Robles, Alfredo; Tristán-González, Margarito; de Jesús Aguirre-Díaz, Gerardo; López-Doncel, Rubén A.; Bellon, Hervé; Martínez-Esparza, Gilberto

    2014-04-01

    The San Luis Potosí Volcanic Field (SLPVF) of central Mexico includes volcanic sequences of felsic, intermediate and basic compositions that were erupted as discrete episodes from the Eocene to the Pleistocene. Volcanism was dominated by widespread and voluminous rhyolitic ignimbrites of the mid-Tertiary Ignimbrite Flare-up. However, the complete volcanic history must consider basaltic and andesitic Eocene-Pleistocene volcanic successions that provide key evidence for understanding the geochemical evolution of the volcanism in the SLPVF during this time span. Five sequences are recognized according to their geochemical characteristics, each comprising a volcano-tectonic episode. The first episode comprises basaltic andesites and andesites erupted during three intervals, 45-42 Ma, 36-31 Ma, and 31-30 Ma. The oldest was derived from subduction magmatism, whereas the youngest has an intra-plate magmatic signature and this represents the transition from the end of a long lasting subduction regime of the Farallon plate to the initiation of intra-plate continental extension in the North American plate. The second episode, at 29.5-28 Ma, comprises a bimodal succession of high-silica rhyolites and alkaline basalts (hawaiites) that are interpreted as magmatism generated in an intra-plate continental extension regime during the Basin and Range faulting. The third episode, at 21 Ma, is characterized by trachybasalts and trachyandesites that represent mantle basaltic melts that were contaminated through assimilation of the lower crust during advanced stage of intra-plate extension that started at Oligocene. The fourth episode includes 12 Ma alkaline basalts and andesites that were erupted from fissures. These mantle derived magmas evolved to andesites by crustal anatexis and crystal fractionation within a continued, extensional, intra-plate regime. Lastly, the fifth episode comprises 5.0 to 0.6 Ma alkaline basalts (basanites) containing mantle xenoliths, that were erupted

  15. Diamond Growth in the Subduction Factory

    NASA Astrophysics Data System (ADS)

    Bureau, H.; Frost, D. J.; Bolfan-Casanova, N.; Leroy, C.; Estève, I.

    2014-12-01

    Natural diamonds are fabulous probes of the deep Earth Interior. They are the evidence of the deep storage of volatile elements, carbon at first, but also hydrogen and chlorine trapped as hydrous fluids in inclusions. The study of diamond growth processes in the lithosphere and mantle helps for our understanding of volatile elements cycling between deep reservoirs. We know now that inclusion-bearing diamonds similar to diamonds found in nature (i.e. polycrystalline, fibrous and coated diamonds) can grow in hydrous fluids or melts (Bureau et al., GCA 77, 202-214, 2012). Therefore, we propose that the best environment to promote such diamonds is the subduction factory, where highly hydrous fluids or melts are present. When oceanic plates are subducted in the lithosphere, they carry an oceanic crust soaked with seawater. While the slabs are traveling en route to the mantle, dehydration processes generate saline fluids highly concentrated in NaCl. In the present study we have experimentally shown that diamonds can grow from the saline fluids (up to 30 g/l NaCl in water) generated in subducted slabs. We have performed multi-anvil press experiments at 6-7 GPa and from 1300 to 1400°C during 6:00 hours to 30:00 hours. We observed large areas of new diamond grown in epitaxy on pure diamond seeds in salty hydrous carbonated melts, forming coated gems. The new rims are containing multi-component primary inclusions. Detailed characterizations of the diamonds and their inclusions have been performed and will be presented. These experimental results suggest that multi-component salty fluids of supercritical nature migrate with the slabs, down to the deep mantle. Such fluids may insure the first stage of the deep Earth's volatiles cycling (C, H, halogen elements) en route to the transition zone and the lower mantle. We suggest that the subduction factory may also be a diamond factory.

  16. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  17. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  18. Geochemical evolution of Monowai volcanic center: New insights into the northern Kermadec arc subduction system, SW Pacific

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Graham, Ian J.; de Ronde, Cornel E. J.; Leybourne, Matthew I.; Woodhead, Jon

    2011-08-01

    We present trace element and Sr-Nd-Pb isotope data on volcanic rocks recovered from the submarine Monowai volcanic center, which marks the midpoint of the ˜2500 km long Tonga-Kermadec arc. The center consists of a large (12 × 9 km) partly hydrothermally active caldera and a 12 km diameter ˜1500 m high volcanically and hydrothermally active stratovolcano. The stratovolcano lavas are tholeiitic basalts, which show variable evidence for plagioclase (±pyroxene) accumulation. The caldera lavas range from basalt to andesite, with the compositional variation being consistent with fractional crystallization as the dominant process. The mafic Monowai magmas were generated by relatively high degrees (12%-20%) of partial melting of a previously depleted MORB-type spinel-peridotitic mantle, metasomatized by slab-derived fluids. Strongly fluid mobile 87Sr/86Sr and 207Pb/204Pb ratios of the Monowai basaltic lavas are similar to those from the Putoto, Raoul, and Macauley volcanic centers 200-400 km to the south, suggesting derivation largely from subducted sediment. In contrast, variably fluid immobile 143Nd/144Nd ratios suggest an isotopically heterogeneous mantle along this segment of the arc. Higher 206Pb/204Pb in Monowai lavas imply some influence from the nearby subducting Louisville seamounts in melt generation. The formation of one of the Earth's largest submarine mafic calderas can best be explained through drainage of a single magma reservoir and subsequent collapse caused by trench-perpendicular extension, probably via southward progressive rifting of the northern Havre Trough.

  19. Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle

    NASA Astrophysics Data System (ADS)

    Tian, Liyan; Castillo, Paterno R.; Hawkins, James W.; Hilton, David R.; Hanan, Barry B.; Pietruszka, Aaron J.

    2008-12-01

    New major and trace element and Sr-Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/ 86Sr ratios, combined with relatively low 143Nd/ 144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr - Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.

  20. Segmentation of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Shepherd, J. B.

    1984-12-01

    Precise hypocentral locations of earthquakes recorded on local seismic networks from 1978 to 1984 have established the configuration of the Benioff zone beneath the Lesser Antilles island arc. There are two distinct segments to the zone: one to the north of Martinique which trends NNW and one to the south of St. Lucia which trends NNE. The northern zone dips at 60-50°. The southern zone has a dip of 50-45° in the north but is vertical in the south. Pleistocene volcanoes are aligned in distinct segments which closely mirror the kink in the Benioff zone. Mid-Miocene swarms of dykes in Martinique and St. Lucia have NW and NE azimuthal modes respectively. We interpret this to mean that this kink in the subduction zone existed as long ago as the Miocene. The kink may represent the deformation of a single subducting plate or two separate North and South American plates subducting beneath the Caribbean plate with a triple junction in the region of Martinique-St. Lucia.

  1. Continental aggregation, subduction initiation, and plume generation

    NASA Astrophysics Data System (ADS)

    Heron, P. J.; Lowman, J. P.

    2013-12-01

    Several processes unfold during the supercontinent cycle, more than one of which might result in an elevation in subcontinental mantle temperatures through the generation of mantle plumes. Paleogeographic plate reconstructions have indicated that sub-continental mantle upwellings appear below large continents that are extensively ringed by subduction zones. Moreover, several numerical simulations of supercontinent formation and dispersal attribute the genesis of sub-continental plumes to the generation of subduction zones on the edges of the supercontinent, rather than resulting from continental insulation. However, the role of the location of downwellings in producing a return-flow upwelling, and on increasing sub-continental mantle temperatures, is not fully understood. In this mantle convection study, we examine the evolution of mantle dynamics after supercontinent accretion over a subduction zone (analogous to the formation of Pangea) for a range of continental coverage. We present 2D and 3D Cartesian geometry mantle convection simulations, featuring geotherm- and pressure-dependent viscosity with thermally and mechanically distinct oceanic and continental plates. Through changing the size of the continent we are able to analyze the factors involved in the generation of mantle plumes in purely thermal convection. Furthermore, we change the upper and lower mantle viscosity to determine their relation to plume formation in vigorous mantle convection simulations. Elevated sub-continental temperatures are analyzed in relation to continental coverage to further understand the influence of continental tectonics on the thermal evolution of the mantle.

  2. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.

    1989-01-01

    The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction zones. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction zone have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction zones. In the Catalina Schist, a subduction-zone metamorphic terrane of southern California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction zone or a portion of a shear zone closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments

  3. Intra-slab Fluid Flow and Eclogite-facies Metasomatism in Subducted Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Pettke, Thomas; Agard, Philippe; De Hoog, Cees-Jan; Collins, Nathan; Oncken, Onno

    2013-04-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and calcschists were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) magnesite-bearing talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray maps of garnet demonstrate that (i) these samples underwent significant Cr, Mg, Ni enrichment and Fe, Al, V depletion during eclogitic metasomatism and (ii) garnet composition show strong variation from core to rim. These compositional patterns point to a massive, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with possible contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached by these eclogites, could have provided significant amounts of fluid promoting extensive fluid

  4. Equilibration of Leachants with Basalt Rock for Repository Simulation Tests

    SciTech Connect

    Jantzen, C.M.

    2001-07-02

    In a nuclear waste repository in basalt, the groundwater will have a low redox potential (Eh) which may affect the leach rate of SRP waste glass. Accurate laboratory simulations of conditions in a basalt reposition must maintain low Eh values throughout the course of the experiment. In this report, important parameters affecting the ability of basalt to maintain appropriate Eh-pH conditions are examined, in particular basalt type and groundwater simulation.

  5. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  6. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  7. Slab Detachment, Flat Subduction and Slab Rollback in Central Mexico: Fitting the Neogene Evolution of the Trans-Mexican Volcanic Belt into the History and Dynamics of Subduction

    NASA Astrophysics Data System (ADS)

    Ferrari, L.

    2001-12-01

    seismic slab is short. The slab detached from the Gulf of California toward the ESE from ~12 to 7.5 Ma producing a migrating mafic pulse along the propagating tear. Once deprived by its deeper part the slab started to decrease its dip, due to the buoyancy of the young crust. This is the most likely cause for flat subduction of the Cocos plate. No oceanic plateau is obvious on the mirror image on the Pacific plate and the absence of a subducted thickened crust explains why there is no seismic coupling between the two plates and no shortening occurred in the upper plate. The ~9 to 3.5 to volcanic gap in the central TMVB marks the period of flat subduction of the Cocos plate. Indeed, Pacific-Cocos relative motion decrease by 70% after 10 Ma. Flat subduction delays the basalt/gabbro to eclogite transition for some Ma. However the resuming of volcanism in late Pliocene indicate that the leading edge of the Cocos plate completed its transformation to eclogite and started to rollback. The slab rollback enhances the advection of geochemically enriched material into the mantle wedge, which is the most likely cause for the occurrence of intraplate-type volcanism in the TMVB.

  8. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  9. Pressure grouting of fractured basalt flows

    SciTech Connect

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  10. Thermal models for basaltic volcanism on Io

    USGS Publications Warehouse

    Keszthelyil, L.; McEwen, A.

    1997-01-01

    We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.

  11. The biological consequences of flood basalt volcanism

    NASA Astrophysics Data System (ADS)

    Clapham, M.

    2012-12-01

    Flood basalt eruptions are among the largest environmental perturbations of the Phanerozoic. The rapid release of CO2 from a large igneous province would have triggered a chain of events that can include climate warming, ocean acidification, reduced seawater carbonate saturation, and expanded oceanic anoxia. Those stressors have widely negative impacts on marine organisms, especially on calcified taxa, by affecting their respiratory physiology and reducing energy available for growth and reproduction. Many Phanerozoic extinctions, most notably the end-Permian and end-Triassic mass extinctions, coincided with flood basalt eruptions and shared distinctive patterns of taxonomic and ecological selectivity. In these extinctions, highly active organisms were more likely to survive because they possess physiological adaptations for maintaining internal pH during activity, which also proves useful when buffering pH against ocean acidification. In contrast, species that did not move and had low metabolic rates, such as brachiopods and sponges, suffered considerable losses during these extinctions. Heavily-calcified organisms, especially corals, were particularly vulnerable; as a result, ocean acidification and saturation state changes from flood basalt eruptions often triggered crises in reef ecosystems. This characteristic pattern of selectivity during "physiological" extinctions that closely coincided with flood basalts provides a template for assessing the causes of other extinction events. Because these crises also provide deep time analogues for the ongoing anthropogenic crisis of warming, ocean acidification, and expanded anoxia, the selectivity patterns can also help constrain "winners" and "losers" over upcoming decades.

  12. Global Oceanic Basalt Geochemistry From EarthChem Databases

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Sarbas, B.; Jochum, K. P.; Stracke, A.

    2004-12-01

    For the past 21 years, global trace element systematics in oceanic basalts have been systematically developed, using mass spectrometry, by the MPI geochemistry department in Mainz, starting with Ba-Rb-Cs, and continuing with K-U-Th, Nb-U-Th, Pb-Ce, Pr-Mo, Nb-Ta, Sn-REE, Sb-REE, and Y-Ho relations. These were complemented by other groups, contributing e.g. Sr-REE relationships and more refined Nb-Ta systematics. Goal of these investigations was to establish relative trace element compatibilities during mantle melting, the corresponding enrichment and depletion patterns in MORB, OIB, subduction-related volcanics and the continental crust, and the relationships to Bulk Silicate Earth abundances through comparisons with element abundances in meteorites and in the continental crust (see e.g. [1]). Most of these studies were initially based on extremely limited data sets, often fewer than 100 analyses, because routine analytical techniques such as XRF and INAA were inadequate, either in sensitivity or accuracy or both, for many of the elements of interest. The advent of ICPMS technology has increased the volume of available, useable data enormously. The most recent development of laser source ICPMS is accelerating the acquisition of comprehensive trace element data even more dramatically. Although the general quality of recent trace element analyses has improved significantly, there remain large differences in reliability between published data because of varying analytical uncertainties and sample alteration. Thus, quality assurance remains an enormous task. In any case, now and in the foreseeable future, it will be impossible to assess global geochemical data without the use of comprehensive databases. Such databases are now available under http://www.earthchem.org/, comprising http://beta.petdb.ciesin.columbia.edu/; http://georoc.mpch-mainz.gwdg.de/, and http://navdat.geo.ku.edu/ . Unfortunately, the use of such databases is not without pitfalls. Often, appropriate

  13. Hydrogen isotope systematics of submarine basalts

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  14. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Haldar, Dhanapati

    2006-01-01

    Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ˜2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ˜400 km 3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ˜1.3 km 3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994-1995. A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994-1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb-Ta and enrichments of K-Rb-Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile. BI basalts and basaltic andesites have variable abundances of phenocrystic-microphenocrystic olivine plus Cr-Al-Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of

  15. Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.

    2007-01-01

    Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe

  16. A new integrated tectonic model for the Mesozoic-Early Cenozoic subduction, spreading, accretion and collision history of Tethys adjacent to the southern margin of Eurasia (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Parlak, Osman; Ustaömer, Timur; Taslı, Kemal; İnan, Nurdan; Dumitrica, Paulian; Karaoǧlan, Fatih

    2014-05-01

    A major Tethyan suture zone (İzmir-Ankara-Erzincan-Kars Suture Zone) borders the southern margin of Eurasia throughout the Pontides. In eastern Turkey the suture zone includes a range of redeposited terrigenous and volcanogenic sedimentary rocks, pelagic sedimentary rocks and also igneous/metamorphic rocks. The igneous rocks are mostly basaltic blocks and thrust sheets within melange, plus relatively intact, to dismembered, ophiolitic rocks (oceanic crust). Two alternative hypotheses have been developed and tested during this work: 1. The suture zone preserves a single Andean-type active continental margin associated with northward subduction, accretion and arc magmatism during Mesozoic-early Cenozoic time; 2. The suture zone preserves the remnants of two different subduction zones, namely a continental margin subduction zone (as above) and an intra-ocean subduction zone (preferred model). To determine the age of the oceanic crust, relevant to both hypotheses, zircons were extracted from basic ophiolitic rocks (both intact and dismembered) and dated by the U/Pb method (U238/U236) using an ion probe at Edinburgh University. This yielded the following results for the intact ophiolites (Ma): plagiogranite cutting sheeted dykes of the Refahiye ophiolite (east of Erzincan), 183.6±1.7 (2σ); isotropic gabbro from the Karadaǧ ophiolite (northeast of Erzurum), 179.4±1.7 (2σ). In addition, dismembered ophiolites gave the following ages: gabbro cumulate (Bayburt area), 186.2±1.4 (2σ), gabbro cumulate (N of Horasan), 178.1±1.8 (2σ). Furthermore, two samples from a kilometre-sized (arc-related) tonalite body, mapped as cutting a thrust sheet of ophiolitic isotropic gabbro in the Kırdaǧ area, yielded ages of 182.1±3.2 (2σ) and 185.1±3.0 (2σ) Ma. We infer that the ophiolitic and related magmatic arc rocks formed by spreading in a supra-subduction zone setting during the late Early Jurassic (Pliensbachian-Toarcian). This amends former assumptions of a Late

  17. Production of mildly alkaline basalts at complex ocean ridge settings: Perspectives from basalts emitted during the 2010 eruption at the Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Nicotra, Eugenio; Urso, Salvatore

    2015-11-01

    The early phase of the 2010 eruption at the Eyjafjallajökull volcano (Iceland) produced poorly evolved mildly alkaline basalts that have a signature more enriched with respect to the typically depleted basalts emitted at ocean ridges. The whole rock geochemistry of these basaltic magmas offers a great opportunity to investigate the mantle source characteristics and reasons leading to this enriched fingerprint in proximity of the ocean ridge system. Some basaltic products of Katla volcano, ∼25 km east of Eyjafjallajökull, have been chosen from the literature, as they display a similar mildly alkaline signature and can be therefore useful to explore the same target. Major and trace element variations of the whole rock suggest a very limited evolutionary degree for the 2010 Eyjafjallajökull products and the selected Katla magmas, highlighting the minor role played by differentiation processes such as fractional crystallization. Nevertheless, effects of the limited fractionation have been erased through re-equilibration of the major and trace element abundances at primary conditions. Concentrations of Th after re-equilibration have been assumed as indexes of the partial melting degree, given the high incompatibility of the element, and enrichment ratios calculated for each trace element. Especially for LILE (Rb, Ba, K, Sr), the pattern of resulting enrichment ratios well matches that obtained from fractional melting of peridotite bearing hydrous phases (amphibole/phlogopite). This put forward the idea that magmas have been generated through partial melting of enriched mantle domains where hydrous minerals have been stabilized as a consequence of metasomatic processes. Refertilization of the mantle has been attributed to intrusion of hydrous silicate melts and fractional crystallization of hydrous cumulates. These refertilizing melts, inherited from an ancient subducted oceanic crust, intruded into a depleted oceanic lithosphere that remained stored for a long time

  18. Subduction zone guided waves in Northern Chile

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate

  19. Seismicity of the eastern Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Bruestle, A.; Kueperkoch, L.; Rische, M.; Meier, T.; Friederich, W.; Egelados Working Group

    2012-04-01

    The Hellenic Subduction Zone (HSZ) is the seismically most active region of Europe. The African plate is subducting beneath the Aegean lithosphere with a relative velocity of 4 cm per year. A detailed picture of the microseismicity of the eastern HSZ was obtained by the recordings of the temporary networks CYCNET (September 2002 - September 2005) and EGELADOS (October 2005 - March 2007). In total, nearly 7000 earthquakes were located with a location uncertainty of less than 20 km. The SE Aegean is dominated by (1) shallow intraplate seismicity within the Aegean plate, by (2) interplate seismicity at the plate contact and by (3) intermediate deep seismicity along the subducting African slab. Strong shallow seismicity in the upper plate is observed along the Ptolemy graben south of Crete extending towards the Karpathos Basin, indicating intense recent deformation of the forearc. In contrary, low shallow seismicity around Rhodes indicates only minor seismic crustal deformation of the upper plate. An almost NS-striking zone of microseismicity has been located, running from the Karpathos basin via the Nisyros volcanic complex towards the EW striking Gökova graben. In the SE Aegean the geometry of the Wadati-Benioff-Zone (WBZ) within the subducting African plate is revealed in detail by the observed microseismicity. Between about 50 to 100 km depth a continuous band of intermediate deep seismicity describes the strongly curved geometry of the slab. From the central to the eastern margin of the HSZ, the dip direction of the WBZ changes from N to NW with a strong increase of the dip angle beneath the eastern Cretan Sea. The margin of the dipping African slab is marked by an abrupt end of the observed WBZ beneath SW Anatolia. Below 100 km depth, the WBZ of the eastern HSZ is dominated by an isolated cluster of intense intermediate deep seismicity (at 100-180 km depth) beneath the Nisyros volcanic complex. It has an extension of about 100x80 km and is build up of 3 parallel

  20. Magnesium Isotopic Composition of Subducting Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  1. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    SciTech Connect

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T.

    2008-10-08

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product

  2. Sulfur isotope homogeneity of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    Wing, Boswell A.; Farquhar, James

    2015-12-01

    We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.

  3. High water contents in basaltic melt inclusions from Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Wade, J. A.; Plank, T.; Hauri, E. H.; Melson, W. G.; Soto, G. J.

    2004-12-01

    Despite the importance of water to arc magma genesis, fractionation and eruption, few quantitative constraints exist on the water content of Arenal magmas. Early estimates, by electron microprobe sum deficit, suggested up to 4 wt% H2O in olivine-hosted basaltic andesite melt inclusions (MI) from pre-historic ET-6 tephra (Melson, 1982), and up to 7 wt% H2O in plagioclase and orthopyroxene-hosted dacitic MI from 1968 lapilli (Anderson, 1979). These high water contents are consistent with abundant hornblende phenocrysts in Arenal volcanics, but inconsistent with geochemical tracers such as 10Be and Ba/La that suggest a low flux of recycled material (and presumably water) from the subduction zone. In order to test these ideas, and provide the first direct measurements of water in mafic Arenal magmas, we have studied olivine-hosted MI from the prehistoric (900 yBP; Soto et al., 1998) ET3 tephra layer. MI range from andesitic (> 58% SiO2) to basaltic compositions (< 50% SiO2), the latter of which are similar to the most primitive whole rocks analyzed from Arenal. SIMS analyses yield up to 4 wt% H2O in the basaltic MI, and water declines systematically (to 1-2 wt%) with increasing silica content. Water also correlates strongly with sulfur (up to 2500 ppm S) and CO2 (up to 300 ppm). H2O and CO2 in the MI define a closed-system degassing path that begins at 2 kb. Chlorine ( ˜ 2000 ppm) and fluorine ( ˜ 400 ppm) show less variation, as expected from their higher solubilities in these melts. The high sulfur contents ( ˜ 2000 ppm on average for basaltic MI) would provide more than enough "petrologic" sulfur to balance recent (1982, 1995, and 1996; Williams-Jones et al., 2001) COSPEC measurements. Although host olivines are quite evolved (< Fo76), the high CO2 and sulfur contents indicate that their inclusions are not highly degassed. The high water contents (> 4 wt%) found here for Arenal basaltic MI support the semi-quantitative data from earlier studies, but are somewhat

  4. Oligocene and Miocene arc volcanism in northeastern California: evidence for post-Eocene segmentation of the subducting Farallon plate

    USGS Publications Warehouse

    Colgan, J.P.; Egger, A.E.; John, D.A.; Cousens, B.; Fleck, R.J.; Henry, C.D.

    2011-01-01

    The Warner Range in northeastern California exposes a section of Tertiary rocks over 3 km thick, offering a unique opportunity to study the long-term history of Cascade arc volcanism in an area otherwise covered by younger volcanic rocks. The oldest locally sourced volcanic rocks in the Warner Range are Oligocene (28–24 Ma) and include a sequence of basalt and basaltic andesite lava flows overlain by hornblende and pyroxene andesite pyroclastic flows and minor lava flows. Both sequences vary in thickness (0–2 km) along strike and are inferred to be the erosional remnants of one or more large, partly overlapping composite volcanoes. No volcanic rocks were erupted in the Warner Range between ca. 24 and 16 Ma, although minor distally sourced silicic tuffs were deposited during this time. Arc volcanism resumed ca. 16 Ma with eruption of basalt and basaltic andesite lavas sourced from eruptive centers 5–10 km south of the relict Oligocene centers. Post–16 Ma arc volcanism continued until ca. 8 Ma, forming numerous eroded but well-preserved shield volcanoes to the south of the Warner Range. Oligocene to Late Miocene volcanic rocks in and around the Warner Range are calc-alkaline basalts to andesites (48%–61% SiO2) that display negative Ti, Nb, and Ta anomalies in trace element spider diagrams, consistent with an arc setting. Middle Miocene lavas in the Warner Range are distinctly different in age, composition, and eruptive style from the nearby Steens Basalt, with which they were previously correlated. Middle to Late Miocene shield volcanoes south of the Warner Range consist of homogeneous basaltic andesites (53%–57% SiO2) that are compositionally similar to Oligocene rocks in the Warner Range. They are distinctly different from younger (Late Miocene to Pliocene) high-Al, low-K olivine tholeiites, which are more mafic (46%–49% SiO2), did not build large edifices, and are thought to be related to backarc extension. The Warner Range is ∼100 km east of the

  5. Velocities of Subducted Sediments and Continents

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab

  6. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Xu, Yi-Gang; Chen, Yi-Bing; Luo, Zhen-Yu; Hong, Lu-Bing; Ma, Liang; Liu, Hai-Quan

    2016-07-01

    Considerable debate persists as to the tectonic setting of the Tianshan Orogen during the Late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools. With aims of providing constraints on this issue, geochronological and geochemical analyses have been carried out on the Late Carboniferous high-Al basaltic lava (HAB) from the Bogda Mountains. These lavas, in conformable contact with the felsic rocks, belong to the Upper Carboniferous Liushugou Group. Zircon SHRIMP U-Pb dating of two felsic ignimbrites further suggest that they were mainly erupted during 315-319 Ma. The Bogda basaltic lava is classified as HAB given their high Al contents > 16% and their chemical resemblance to those from modern arcs such as Aleutian and Kamchatka. They are characterized by strong enrichment in large ion lithophile elements (LILE), strong negative Nb-Ta and Ti anomalies, and distinct positive Pb anomalies. Hence, they are significantly different from the mantle plume-related basalts, as exemplified by those from Siberian, Emeishan, and Tarim large igneous provinces. Instead, their MORB-like Nd-Hf-Pb isotopes and arc-like trace elements indicate that the Bogda HABs may have been generated from a mantle wedge metasomatized by sediment-derived melts. The sector and oscillatory zoning in clinopyroxene phenocrysts in the Bogda HABs is attributable to rapid dynamic crystallization during magma ascent. High Al content is due to delayed plagioclase nucleation likely by the high crystallization pressure rather than water content. Collectively, our data lend support to an island arc environment during the Late Paleozoic, probably related to southward subduction of the Paleo-Tianshan Ocean.

  7. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes

    NASA Astrophysics Data System (ADS)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng

    2016-02-01

    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  8. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab.

    PubMed

    Liu, Lijun; Stegman, Dave R

    2012-02-15

    The origin of the Steens-Columbia River (SCR) flood basalts, which is presumed to be the onset of Yellowstone volcanism, has remained controversial, with the proposed conceptual models involving either a mantle plume or back-arc processes. Recent tomographic inversions based on the USArray data reveal unprecedented detail of upper-mantle structures of the western USA and tightly constrain geodynamic models simulating Farallon subduction, which has been proposed to influence the Yellowstone volcanism. Here we show that the best-fitting geodynamic model depicts an episode of slab tearing about 17 million years ago under eastern Oregon, where an associated sub-slab asthenospheric upwelling thermally erodes the Farallon slab, leading to formation of a slab gap at shallow depth. Driven by a gradient of dynamic pressure, the tear ruptured quickly north and south and within about two million years covering a distance of around 900 kilometres along all of eastern Oregon and northern Nevada. This tear would be consistent with the occurrence of major volcanic dikes during the SCR-Northern Nevada Rift flood basalt event both in space and time. The model predicts a petrogenetic sequence for the flood basalt with sources of melt starting from the base of the slab, at first remelting oceanic lithosphere and then evolving upwards, ending with remelting of oceanic crust. Such a progression helps to reconcile the existing controversies on the interpretation of SCR geochemistry and the involvement of the putative Yellowstone plume. Our study suggests a new mechanism for the formation of large igneous provinces.

  9. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim

    2015-12-01

    The fate of crustal material recycled into the convecting mantle by plate tectonics is important for understanding the chemical and physical evolution of the planet. Marked isotopic variability of Mo at the Earth's surface offers the promise of providing distinctive signatures of such recycled material. However, characterisation of the behaviour of Mo during subduction is needed to assess the potential of Mo isotope ratios as tracers for global geochemical cycles. Here we present Mo isotope data for input and output components of the archetypical Mariana arc: Mariana arc lavas, sediments from ODP Sites 800, 801 and 802 near the Mariana trench and the altered mafic, oceanic crust (AOC), from ODP Site 801, together with samples of the deeper oceanic crust from ODP Site 1256. We also report new high precision Pb isotope data for the Mariana arc lavas and a dataset of Pb isotope ratios from sediments from ODP Sites 800, 801 and 802. The Mariana arc lavas are enriched in Mo compared to elements of similar incompatibility during upper mantle melting, and have distinct, isotopically heavy Mo (high 98Mo/95Mo) relative to the upper mantle, by up to 0.3 parts per thousand. In contrast, the various subducting sediment lithologies dominantly host isotopically light Mo. Coupled Pb and Mo enrichment in the Mariana arc lavas suggests a common source for these elements and we further use Pb isotopes to identify the origin of the isotopically heavy Mo. We infer that an aqueous fluid component with elevated [Mo], [Pb], high 98Mo/95Mo and unradiogenic Pb is derived from the subducting, mafic oceanic crust. Although the top few hundred metres of the subducting, mafic crust have a high 98Mo/95Mo, as a result of seawater alteration, tightly defined Pb isotope arrays of the Mariana arc lavas extrapolate to a fluid component akin to fresh Pacific mid-ocean ridge basalts. This argues against a flux dominantly derived from the highly altered, uppermost mafic crust or indeed from an Indian

  10. Porous fluid flow enables oceanic subduction initiation on Earth

    NASA Astrophysics Data System (ADS)

    Dymkova, D.; Gerya, T.

    2013-11-01

    Although most of the presently active intra-oceanic subduction zones are relatively young and initiated during the Cenozoic, subduction initiation process remains poorly understood. Previous models of subduction initiation assumed excessive weakening of tectonic plate boundaries that does not reconcile with laboratory rock strength measurements. The weakening was assumed to be caused by fluids present along tectonic fractures; however no self-consistent solid-fluid model of subduction initiation has been developed so far. Here we present new numerical hydro-thermo-mechanical model of spontaneous intra-oceanic subduction initiation where solid rock deformation and fluid percolation are fully coupled. Based on 2-D numerical experiments, we demonstrate that although subduction fails to initiate under fluid-absent conditions, it can naturally start when porous fluid is present inside oceanic crust and along the plate boundaries. Fluid percolation is localized along spontaneously forming faults where high fluid pressure compensates lithostatic pressure, thus dramatically decreasing friction along the incipient subduction zone. Through the parametric study, we conclude that the most important parameter for subduction initiation is the solid matrix permeability. Paradoxical at first, lowering the permeability indeed favors subduction initiation by maintaining high fluid pressure and thus decreasing friction along active faults.

  11. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  12. Lower mantle seismic scatterers below the subducting Tonga slab: Evidence for slab entrainment of transition zone materials

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2013-09-01

    We show evidence that materials with significantly different elastic properties are juxtaposed in the lower mantle immediately below the subducting Tonga slab (depths ⩽1000 km), like the anomalies preferentially located beneath the lower mantle slabs at other Pacific subduction zones (Kaneshima, 2009). Array analyses of wave form data of short period seismic networks at western United States and Japan for deep earthquakes at the Tonga slab reveal S-to-P scatterers with a size less than the wavelengths (˜10 km). The scatterers are located mostly outside of the slab by several tens of kilometers. Assuming a locally planar interface for the geometry of the scatterers, the amplitudes and polarities of the S-to-P waves are modeled to constrain the properties of the scatterers. We find that the scatterers are steeply dipping, the Vs increases oceanward across the interface, and the Vs contrasts are at least comparable to that associated with the post-spinel transformation (⩾6%). It is unclear at this stage what these subslab scatterers represent, so we discuss about three mechanisms which seem plausible from mantle dynamics viewpoints: (1) they may represent basaltic rocks which were emplaced by partial melting immediately beneath the former oceanic lithosphere-asthenosphere boundary (LAB) before the slab started subducting; (2) alternatively the elastic anomalies of the scatterers may be caused by localized presence of dehydrated water; or (3) the scatterers may correspond to a sharp boundary between fine-grained isotropic rocks in the immediate vicinity of the slab and coarse grained anisotropic rocks more distant from the slab. The presence of pronounced and localized elastic anomalies preferentially beneath the slabs in the shallow lower mantle, whatever its mechanism is, implies that a geophysically observable amount of transition zone material is entrained by the subducting slabs into the lower mantle.

  13. Additive Construction using Basalt Regolith Fines

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Lippitt, Thomas C.; Mantovani, James G.; Nugent, Matthew W.; Townsend, Ivan I.

    2014-01-01

    Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity of craters. Regolith composition also varies with location, reflecting the local bedrock geology and the nature and efficiency of the micrometeorite-impact processes. In the lowland mare areas (suitable for habitation), the regolith is composed of small granules (20 - 100 microns average size) of mare basalt and volcanic glass. Impacting micrometeorites may cause local melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass. Studies of lunar regolith are traditionally conducted with lunar regolith simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The NASA Kennedy Space Center (KSC) Granular Mechanics & Regolith Operations (GMRO) lab has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1). It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds. This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and comparative work with lunar basalt simulant JSC-1A as a building material for robotic additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder additives, we focused this work on in-situ processing of regolith for construction in a single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals), producing basaltic glass with high durability and low abrasive wear. Most Lunar simulants melt at temperatures above 1100 C, although melt processing of terrestrial regolith at 1500 C is not

  14. Project Hotspot: Mineral chemistry of high-MgO basalts from the Kimama core, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Christiansen, E. H.; Dorais, M. J.; Potter, K. E.; Shervais, J. W.

    2011-12-01

    Plain basalts contains a subducted oceanic crustal component as suggested by Sobolev et al. (2005) and Herzberg (2011). The olivines in the Kimama core have Mn, Fe/Mn, and Ca concentrations that are similar to Hawaiian shield-building basalts, and are consistent with derivation of their parent magmas from pyroxenite sources, such as those hypothesized for some mantle plumes. However, Ni concentrations (500-1500 ppm) in olivines from Kimama are relatively low, and the olivines are too evolved (Fo <81) to be definitive with regard to the presence or absence of pyroxenite in the source.

  15. Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle

    NASA Astrophysics Data System (ADS)

    Shorttle, Oliver; Moussallam, Yves; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Murton, Bramley J.

    2015-10-01

    The cycling of material from Earth's surface environment into its interior can couple mantle oxidation state to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the ridge into the deep mantle for long-term storage. Recycled oceanic crust may be entrained into mantle upwellings and melt under ocean islands, creating the potential for basalt chemistry to constrain solid Earth-hydrosphere redox coupling. Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal component, making it an ideal locality to investigate links between redox proxies and geochemical indices of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical and geochemical tracers of plume influence vary dramatically, with the basalts recording both long- and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES measurements of Fe3+ / ∑ Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit positive correlations between Fe3+ / ∑ Fe and trace element and isotopic signals of enrichment, and become progressively oxidised towards Iceland: fractionation-corrected Fe3+ / ∑ Fe increases by ∼0.015 and ΔQFM by ∼0.2 log units. We rule out a role for sulfur degassing in creating this trend, and by considering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of the oxidised signal. To determine the ferric iron content of the recycled component ([Fe2O

  16. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?). PMID:17731364

  17. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).

  18. Some data on Cenozoic intraplate and subduction-related events in west Baluchistan, Mid East

    NASA Astrophysics Data System (ADS)

    Romanko, Alexander

    2010-05-01

    We present some data on the Alpine intraplate, and subduction-related rocks of the West Baluchestan Mid East, received by a group led by known regional specialists Dr. E. Romanko (Russia), Dr. A. Hushmandzadeh, and Dr. M.A.A. Nogol Sadat (Iran). Some important features on the intraplate rocks studied are as follows: mainly subalkaline affinity with the Middle-K, not very High-Ti, lower 87Sr/86Sr (ISr) = 0.7039 +/-2 and 0.70489 +/-1.8; also calc-alkaline basalts- dacites, Bazman volcano - 0.70456 +/-0.5 (all data by GIN RAS) alongside the ISr=0.7049 on a ‘volcanite' (Camp & Griffis, 1982). Then, we have a LREE-enrichment with a high LREE/HREE, and a characteristical Eu/Eu* more than 1.1; up to high - 1/3 of CaO and 0.45% of differently correlated Sr in the basic trachyandesites (meaning the real carbonatites of Hanneshin, ca 200 km to the east, Afghanistan), complex correlation of some characteristical elements; then High-Ti (rhutile, Ti-hornblende) and High-Ca phases (Ca-ceolite, clinozoisite), replacement of primary minerals due to a strong rock-fluid interaction etc. North-East tectonic-magmatic +/- metallogenic (economic regional Cu-Au +/- Pb, Zn, poor Ag, PGE, As, Hg, Bi etc. - e.x., Anarak deposits (E. Romanko, 1984) zonation. Latter is related to the famous subduction of the Arabian plate, exists, e.x. (subduction-related /1/ - generally more younger? intraplate /2/ rocks ): 1: Eocene shoshonites - Paleocene-Oligocene calc-alkaline intrusives - Miocene-Recent calc-alkaline volcanic (-plutonic) rocks and 2: Paleogene? (Lut block)-Neogene subalkaline rocks - Quaternary Afghanistan carbonatites etc. Alpine compression on the moderate subductional depths up to 200 km (in a theory - Trubitsyn et al., 2004) in the Central Iran, at least, partly compensated, as proposed, by a contemporaneous or younger (Pg?-N-Q) extensional intraplate magmatism of Eastern Iran, Afghanistan and nearby area. Metallogeny of West Baluchistan is mainly controlled by a Cretaceous

  19. Magmatism of the Shuteen Complex and Carboniferous subduction of the Gurvansaikhan terrane, South Mongolia

    NASA Astrophysics Data System (ADS)

    Batkhishig, Bayaraa; Noriyoshi, Tsuchiya; Greg, Bignall

    2010-03-01

    The Carboniferous Shuteen Complex, a volcano-plutonic ring complex associated with Cu-Au porphyry mineralization, is located in the Gurvansaikhan island arc terrane of South Mongolia. This paper presents new data on the petrography, major and trace element chemistry, and Sr-Nd isotopic chemistry of the Shuteen Complex. We discuss the relationship between volcanic and plutonic rocks of the complex, and consider their similarity to high-Al 2O 3 trondhjemite-tonalite-granodiorite and adakites. We also consider the origin, magma source, and dynamic processes of the Shuteen Complex; propose a petrogenetic model; and investigate the composition of the subducting slab and the features of arc volcanism at the time. We assess some of the magmatic processes likely to have occurred within the Shuteen Complex, such as Carboniferous slab subduction and partial melting, and examine their influence on magma composition. The Shuteen Complex is geochemically similar to adakite-type rocks. The complex is silica-saturated (SiO 2 ⩾ 56%), rich in Al 2O 3 (⩾15%), MgO (<6%), Y (⩽18 ppm), and Yb (⩽1.9 ppm), depleted in heavy rare earth elements, rich in Sr (>400 ppm), and depleted in high field strength elements. It also has a high Sr/Y value, and ( 87Sr/ 86Sr) I < 0.7040. The Shuteen Pluton yields a well-defined isochron age of 321 ± 9 Ma, whereas the age of the Shuteen andesites is 336 ± 24 Ma. The Shuteen Complex formed within an island arc setting, and partial melting was the dominant process during petrogenesis. The primary Shuteen magma had an adakitic composition and was probably derived from the partial melting of subducting oceanic crust, possibly with minor local interaction with mantle material. The results of quantitative modelling of mass balance and partial melt equilibrium for the magma source indicate that the subducting slab contained oceanic basalt and a minor component of oceanic sediment, which together with a restite eclogite phase formed the source of the

  20. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Zhang, Li-Yun; Kapp, Paul; Pullen, Alex; Yue, Ya-Hui

    2016-10-01

    The Gangdese belt is dominantly composed of igneous rocks that formed during the northward subduction of Neo-Tethyan oceanic lithosphere beneath the Lhasa terrane and has played a crucial role in understanding the pre-collisional evolution of southern Tibet. This paper presents new geochronological and geochemical (whole-rock major and trace element and Sr-Nd and zircon Hf isotope) data for recently identified volcanic rocks exposed in Changguo area, southernmost part of the Lhasa terrane. Zircon U-Pb dating from six samples yields consistent ages of 237.1 ± 1.1 Ma to 211.7 ± 1.5 Ma for magma emplacement through volcanic eruption, showing the Middle-Late Triassic magmatic activity in the southernmost Gangdese Belt. The Changguo volcanic rocks are mainly composed of basaltic and andesitic rocks and exhibit LILE enrichment and HFSE depletion. They also exhibit relatively uniform Nd-Hf isotopic compositions (εNd(t) = + 5.20 to + 7.74 and εHf(t)zircon = + 10.2 to + 15.9). The basaltic magmas were likely sourced from partial melting of sub-arc mantle wedge that was metasomatized by not only the aqueous fluid derived from subducting altered oceanic crust but also hydrous melt derived from subducting seafloor sediments, and subsequently experienced fractional crystallization and juvenile crustal contamination during ascent. The andesitic magmas were generated by partial melting of mafic-ultramafic metasomes through melt/fluid-peridotite reaction at slab-mantle interface. Taking into account the temporal and spatial distribution of the Early Mesozoic magmatic rocks and regional detrital zircon data, we further propose that the northward subduction of Neo-Tethyan oceanic lithosphere beneath the Lhasa terrane commenced by Middle Triassic.

  1. Effects of subduction parameters on geothermal gradients in forearcs with an application to Franciscan subduction in California

    SciTech Connect

    Dumitru, T.A. )

    1991-01-10

    Geothermal gradients in forearcs are often suppressed below normal values because of the cooling effect of the relatively cold downgoing plate. In this paper, finite difference thermal modeling is used to evaluate the influence on forearc gradients of variations in six potentially important subduction zone parameters: radiogenic heat production; thermal conductivity of forearc rocks; subduction angle; subduction rate; frictional heat production; and presubduction geothermal gradients. Pressure-temperature conditions of blueschist-facies metamorphism in the Franciscan subduction complex of California are easily explained with typical subduction rates and slab ages with plate contact shear stresses of the order of 10 MPa, but stresses within the range zero to a few tens of megapascals are probably permitted by the thermal constraints. Speculative application of the modeling results assuming a shear stress of 4% of lithostatic pressure to plate motion reconstructions for the Franciscan forearc suggests that forearc gradients were about 8C/km around 85 Ma when the subducting slab was perhaps 145 m.y. old and the subduction rate was perhaps 95 km/m.y. Gradients increased moderately through the latest Cretaceous to middle Tertiary as subduction became slower and the subducting slab became younger, reaching about 16C/km at 28 Ma when the slab age was about 11 m.y. and the subduction rate was about 48 km/m.y. The slab age, subduction rate, and forearc gradient then remained fairly constant until 5 Ma, when subduction slowed to about 32 km/m.y. and the slab age decreased to about 8 m.y., causing gradients to rise to about 20C/km.

  2. Subduction zone tectonic studies to develop concepts for the occurrence of sediment subduction (Phase I). Final technical report

    SciTech Connect

    Hilde, T.W.C.

    1984-08-01

    The objective was to determine the fate of sediments at convergent lithospheric plate boundaries. The study focuses on the structures of the Circum-Pacific trenches and shallow portions of the associated subduction zones. Sediment distribution and the nature of sediment deformation was defined through the various stages of plate convergence to determine if the sediments are subducted or accreted. The controlling factors for sediment subduction and/or accretion were determined. 50 figs. (ACR)

  3. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins

    NASA Astrophysics Data System (ADS)

    Kendrick, Mark A.; Arculus, Richard J.; Danyushevsky, Leonid V.; Kamenetsky, Vadim S.; Woodhead, Jon D.; Honda, Masahiko

    2014-08-01

    Submarine magmatic glasses from the Manus, Woodlark, North Fiji and Lau backarc basins in the Southwest Pacific, and Volcano A on the volcanic front of the Tonga Arc adjacent to the Lau Basin, were investigated to characterise the Cl, Br and I elemental budgets in subduction systems. In particular we seek to determine the extent of variability in the Br/Cl and I/Cl ratios of backarc basin basalts (BABB) and evaluate if these ratios could improve constraints on the source of subducted volatile components in backarc basins worldwide. The selected glasses represent variably evolved melts of boninite, basalt, basaltic-andesite, dacite and rhyolite composition and were selected from spreading centres and seamounts located at varying distances from the associated arcs. In general the strongest subduction signatures (e.g. Ba/Nb of 100-370) occur in the samples closest to the arcs and lower more MORB-like Ba/Nb of <16 are found in the more distal samples. The glasses investigated have extremely variable halogen concentrations (e.g. 3-4200 ppm Cl), with the highest concentrations in enriched glasses with the most evolved compositions. As observed in previous studies, the K/Cl, Br/Cl and I/Cl ratios of glasses from individual settings do not vary as a function of MgO and are considered representative of the magma sources because these ratios are not easily altered by partial melting or fractional crystallisation. Systematic variations in these ratios between basins can therefore be related to mixing of halogens from different sources including: (i) the mantle wedge which has MORB-like Br/Cl and I/Cl; (ii) a subduction-derived slab fluid with estimated salinity of ∼4-10 wt% salts and variable I/Cl; and (iii) brines characterised by salinities of 55±15 wt% salts and Br/Cl slightly higher than seawater, that are sometimes assimilated in crustal magma chambers. The slab fluids enriching the Woodlark Basin, North Fiji Basin and the Fonualei Spreading Centre of the Lau Basin

  4. The Deep Mantle Subduction Flux and its Implications for Mantle Th/U and Pb/Ce Ratios

    NASA Astrophysics Data System (ADS)

    Porter, K. A.; White, W.

    2003-12-01

    subducting slabs generally have Th/U ratios similar to modern depleted mantle ( ˜2.6 vs. ˜2.55). Furthermore, the similarities between the Th/U ratio of the slab component of island arc volcanics and the depleted mantle indicate that Th and U are not strongly fractionated beneath island arcs. Consequently, the average Th/U ratio of the deep mantle subduction flux (2.57 +/- 0.71) is similar to the Th/U ratio of depleted mantle. If this is true, then incorporation of altered crust into the mantle cannot be solely responsible for the low Th/U ratio of the modern mantle, i.e., it cannot be the solution to the kappa conundrum. The Pb/Ce ratio has been used as a sensitive indicator of recycled material in the mantle because of the large contrast in crust and mantle values (0.30 vs. 0.035). Most oceanic island basalts have Pb/Ce ratios similar to those of MORB (roughly 0.04). This observation is apparently inconsistent with the idea that mantle plumes, which are thought to produce oceanic island basalts, contain recycled crustal material. We find, however, that the processes occurring beneath island arcs strongly fractionate Pb from Ce. In three of the six arcs examined so far, the Pb/Ce ratio in the residual slab lies in the range 0.03-0.05 (i.e., identical to the mantle value), while in the other three it is in the range of 0.1 to 0.26. Thus, low Pb/Ce ratios in oceanic island basalts do not preclude the presence of subducted sediment in their sources. Higher Pb/Ce ratios in some slabs might explain why some oceanic islands (e.g., the Society Islands) do have elevated Pb/Ce ratios.

  5. The Subduction Factory of Hydrocarbon Formation

    NASA Astrophysics Data System (ADS)

    Kleschev, K. A.

    2003-04-01

    THE SUBDUCTION FACTORY OF HYDROCARBON FORMATION K. A. Kleschev VNIGNI, Moscow, Russia balanyuk@sio.rssi.ru In the zones of collision of continental lithospheric plates, the subducting plates drive down great amounts of sediments formed at the former passive margins. This sedimentary layer, enclosed between two plates, contains significant quantities of hydrocarbons and occurs under the effect of strong shear deformations and special thermodynamic conditions. As the mass of the sediments passing through this zone is rather great, there are favorable conditions for occurrence of numerous hydrocarbon fields of industrial importance, including fields giants. Combined consideration of geodynamic and fluidodynamic aspects in a model of lithospheric plates collision enables to understand the influence of P T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration in the lithosphere up to the formation of deposits. Such model would allow one not only to describe and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. Enormous volumes of sediments accumulated over continental slopes and shelves are involved into the subduction zones in the course of overthrusting of island arcs onto continental margins. The weight of the overthrusting island arc substantially accelerates the subsiding of the continental margin. Crustal ground waters and hydrocarbons, capable to migration, begin to be squeezed out from the sedimentary material delivered to the waveguide zone under the island arc. The waters from the waveguide zone and the thermal water, released through dehydration of sediments and rocks of the former ocean crust and supplied from the deeper parts of the subduction zone, favor this process. Although the major portion of hydrocarbons is discharged and lost still in the body of the island arc itself

  6. Biogenic Mn-Oxides in Subseafloor Basalts

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G.

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  7. Lead isotope studies of mare basalt 70017

    NASA Technical Reports Server (NTRS)

    Mattinson, J. M.; Tilton, G. R.; Todt, W.; Chen, J. H.

    1977-01-01

    Uranium, thorium, and isotopic lead data for components of basalt 70017 are reported, and it is found that the whole rock, pyroxene, and ilmenite points in a concordia diagram plot along a chord intersecting the curve at 3.7 and 4.33 eons. The plagioclase data do not seem to lie on this line. The data for 70017 appear to plot along a distinctly different chord in a concordia diagram than do the data for 75055 and 75035, two other Apollo 17 mare basalts. The lead data are in accord with Sm-Nd results. A 3.7 eon crystallization age for 70017 would be consistent with the same kind of parentless lead that is indicated by previous studies of soils and soil breccias from stations at Taurus-Littrow. The Th/U ratio in ilmenite is 2.2, and the concentrations of these two elements are approximately twice those in pyroxene.

  8. Biogenic Mn-Oxides in Subseafloor Basalts.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Gustafsson, Håkan; Holm, Nils G

    2015-01-01

    The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments. PMID:26107948

  9. Northwest Africa 5298: A Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John

    2009-01-01

    NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.

  10. Total nitrogen content of deep sea basalts

    NASA Technical Reports Server (NTRS)

    Norris, T. L.; Schaeffer, O. A.

    1982-01-01

    An estimate of the total nitrogen content of the earth's mantle, aimed at furnishing a further constraint for earth atmosphere origin and evolution models, was attempted through thermal neutron activation analysis via N-14(n,p)C-14 for the case of deep sea basalt glasses from the East Pacific Rise, the Mid-Atlantic Rift, and the Juan de Fuca Ridge. The increased nitrogen abundance of matrix material from the same samples as the glasses may be due to the incorporation of chemically-bound nitrogen from sea water, rather than dissolved molecular nitrogen. A discussion is presented of factors affecting observed basalt nitrogen content and its interpretation in terms of mantle nitrogen abundance. A 2 ppm N lower limit is estimated for the mantle.

  11. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-03-01

    We performed 3D seismic tomography of the Hyuga-nada region, western Nankai subduction zone, to investigate the relationship of the subducted part of Kyushu-Palau Ridge (KPR) to coseismic rupture propagation, seismicity, and shallow very low frequency earthquakes. Combining active-source and passive-source data recorded both onshore and offshore, we imaged the deep slab from near the trough axis to the coastal area. Our results show the subducted KPR as a low-velocity belt oriented NW-SE extending down the plate boundary to around 30 km depth. At this depth, we suggest that the subducted KPR detaches from the slab and becomes underplated on the overriding continental plate. As the coseismic slip areas of past large earthquakes do not extend into the subducted KPR, we suggest that it may inhibit rupture propagation. The interior of the subducted KPR shows active intraslab seismicity with a wide depth distribution. Shallow very low frequency earthquakes are continuously active above the location of the subducted KPR, whereas they are intermittent to the northeast of the subducted KPR. Thus, the subducted KPR appears to be an important factor in coseismic rupture propagation and seismic phenomena in this region.

  12. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Guo, Pengyuan; Niu, Yaoling; Sun, Pu; Ye, Lei; Liu, Jinju; Zhang, Yu; Feng, Yue-xing; Zhao, Jian-xin

    2016-01-01

    We present new major element, trace element and Sr-Nd-Hf isotope data on Cenozoic basalts from central Inner Mongolia (CIM) in eastern China to study the origin of the incompatible-element enriched component in these basalts by testing whether or not the paleo-Pacific plate lying in the mantle transition zone beneath eastern China is the immediate cause. The Cenozoic CIM basalts have a large variation in major element, trace element and isotope compositions. Fractional crystallization of olivine and clinopyroxene can readily explain much of the major element compositional variation, while trace element and isotope ratio variation largely reflect source heterogeneities and source histories. The variably low 87Sr/86Sr, high εNd, high εHf and elevated ratios of high field strength element over large ion lithophile element (HFSE/LILE, e.g., Nb/U, Nb/La) indicate that the CIM basalts are of asthenospheric origin, which is characterized by mixing between DMM and EM1. However, the CIM basalts are enriched in incompatible elements and enriched in the progressively more incompatible elements (e.g., variably high [La/Sm]N = 1.66-3.38), suggesting that the magma source(s) must have been enriched prior to the major episode of the magmatism. Participation of subducted ocean crust in the mantle source region of these basalts is recognized, but cannot be the major source material because the subducted ocean crust is expectedly too depleted in incompatible elements (e.g., [La/Sm]N ≪ 1) to produce magmas highly enriched in incompatible elements with [La/Sm]N ≫ 1. With the new data, we consider that low mass fraction (low-F) melt metasomatism in the seismic low velocity zone (LVZ) beneath eastern China as the most likely process to generate incompatible-element enriched source(s) for mantle melts parental to the Cenozoic CIM basalts. The low-F metasomatic agent most likely resulted from dehydration melting of the transition-zone paleo-Pacific slab, which has been taking place

  13. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.

  14. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. PMID:26551199

  15. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  16. The Origin of Alkali and Ocean Island Basalts: Contradictions and Solutions

    NASA Astrophysics Data System (ADS)

    Donnelly, K.; Langmuir, C. H.; Goldstein, S. L.; Lagatta, A.

    2001-12-01

    element ratios because F is as low as D. Low F melts would transport volatiles and have them be incorporated into the source. Therefore a low F melt source solves the OIB problem in ways that recycled ocean crust cannot. There is then the geological question of where the source is created. It could be created above subduction zones where slabs are hot enough to melt subducted crust at depths greater than the volcanic front. Large contiguous volumes of melt-metasomatized mantle could be created in this way. In this environment, the fertilized mantle wedge overlying the slab could be carried to depth in the mantle where it acquires a high 3He signature and rises to form plumes. Minor amounts of volatile-depleted eclogite could also be involved directly in some cases (e,g, perhaps Hawaiian tholeiites). But what we find striking about ocean island geochemistry is the rarity of the eclogite signature. Koolau is an outlier, not a paradigm. Similar alkali basalt source compositions could be created from any eclogite that reaches shallow levels in the mantle, because the eclogite has so much lower a solidus temperature than does peridotote. Given the mantle thermal structure, this process allows alkali basalt sources to be created throughout the upper mantle as an inevitable consequence of mantle convection. The uniform character of the OIB magma type then comes from the relative partition coefficients of trace elements in garnet and pyroxene, which imparts a commonality to low F melts in diverse environments. This model accounts for the petrological and geochemical features of OIB, and also permits the ubiquity of their geographical occurrence.

  17. Deep view of the Subduction-Transform Edge Propagator (STEP) fault in the Calabrian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco Emanuele; Tiberti, Mara Monica; Basili, Roberto

    2016-04-01

    The Calabrian Subduction Zone plays a key role in the evolution of the central Mediterranean in the framework of the convergence between Africa and Europe. Here, the remnants of the World's oldest oceanic crust form a narrow NW-dipping slab passively subducting beneath the Calabrian Arc. Recently published high-resolution seismic profiles and bathymetric data of the western Ionian Sea highlight the presence of a NNW-SSE faulting system connected with a series of Plio-Pleistocene syn-tectonic basins. These features are correlated with the recent activity of a major NNW-SSE deformation zone confining the active subduction to the SW and interpreted as a Subduction-Transform Edge Propagator (STEP) fault. The goal of this work is to jointly reconstruct the geometry of the STEP fault and the subduction interface in its surroundings. We use multichannel seismic profiles acquired in the southwestern part of the Calabrian accretionary wedge to focus on the STEP fault geometry at depth and to analyse its relationships with shallow deformation features. The quantitative analysis and enhancement of seismic data provided an accurate image of the internal structure of the accretionary wedge at various depths, showing growth strata in the Plio-Pleistocene succession and major discontinuities in the lower crust. Our results depict a main subvertical, slightly east-dipping, lithospheric fault cutting the oceanic crust down to the Moho, and a rich set of associated secondary synthetic and antithetic faults. This picture also provides new insights on the STEP fault propagation mechanism. In addition, the tridimensional correlation of the STEP fault occurrences in various seismic profiles provides a preliminary scheme of its segmentation and highlights the relationships of this master fault with other main structural elements of the Calabrian Arc and Eastern Sicily, including some of the faults deemed to be responsible for major historical earthquakes in the area.

  18. Subduction initiation adjacent to a relic island arc

    NASA Astrophysics Data System (ADS)

    Leng, W.; Gurnis, M.

    2013-12-01

    Although plate tectonics is well established, how subduction initiates over tectonic history has remained obscure. It has been proposed that passive margins may be a possible place for subduction initiation, but there is no obvious Cenozoic example of such a scenario, including along the passive margins of the Atlantic Ocean. With a computational method that follows the deformation of a visco-elasto-plastic medium, here we show that a favourable locale for subduction initiation is the juxtaposition of an old oceanic plate adjacent to a young, but relic arc. Significant density anomalies leading to subduction initiation arise from two major factors. One is the compositional difference between the relic arc crust and the oceanic lithospheric mantle; the other is the thermal difference due to the age offset between the two plates. With such a setup, we observe spontaneous subduction initiation if the oceanic crust is significantly weakened by pore fluid pressure. If the oceanic crust is relatively strong, a small amount of plate convergence is required to induce subduction. The evidence that Izu-Bonin-Mariana and Tonga-Kermedec subduction zones both initiate adjacent to a relic island arc support our conclusions. The initiation of both subduction zones at 51-52 Ma with commensurate compression on their respective overriding plates support a causal link between both subduction initiation events through a change in Pacific Plate motion. Our results provide an explanation for the rarity of subduction initiation at the passive margins. The continental lithosphere is typically old and cold. Consequently, the thermal effects cancel the compositional buoyancy contrast between the continental crust and the oceanic lithospheric mantle, making subduction initiation difficult at passive margins.

  19. How thick are lunar mare basalts

    NASA Technical Reports Server (NTRS)

    Hoerz, F.

    1978-01-01

    It is argued that De Hon's estimates of the thickness of lunar mare basalts, made by analyzing 'ghost' craters on mare surfaces, were inflated as the result of the crater morphometric data of Pike (1977) to reconstruct rim heights of degraded craters. Crater rim heights of 82 randomly selected highland craters of various states of degradation were determined, and median rim height was compared to that of corresponding fresh impact structures. Results indicate that the thickness estimates of De Hon may be reduced by a factor of 2, and that the total volume of mare basalt produced throughout lunar history could be as little as 1-2 million cubic kilometers. A survey of geochemical and petrographic evidence indicates that lateral transport of regolith components over distances of much greater than 10 km is relatively inefficient; it is suggested that vertical mixing of a highland substrate underlying the basaltic fill may have had a primordial role in generating the observed mare width distributions and high concentrations of exotic components in intrabasin regoliths.

  20. Lunar sample studies. [breccias basalts, and anorthosites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility.

  1. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite

    NASA Astrophysics Data System (ADS)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.

    2012-07-01

    then descended as magmatism died out. Variation within Burro Mesa Rhyolite is best explained by fractional crystallization of a mix of alkali feldspar, fayalite and Fe-Ti oxide. Comendite of the Burro Mesa Rhyolite evolved from trachyte as batches in relatively small independent magma systems, as suggested by widespread occurrence of trachytic magma enclaves within Burro Mesa lava and results of fractionation modeling. Trachyte may have been derived by fractional crystallization of intermediate magma similar to that erupted as part of Bee Mountain Basalt. ɛNdt values of trachyte lava (0.745) and two samples of Burro Mesa Rhyolite (- 0.52 and 1.52) are consistent with the above models. In all, ~ 5 wt.% comendite may be produced from 100 parts of parental trachybasalt. Negative Nb anomalies in some Bee Mountain, Tule Mountain Trachyte and Burro Mesa incompatible element plots may have been inherited from lithospheric mantle rather than from a descending plate associated with subduction. Late phase basalts lack such a Nb anomaly, as do all of our Alamo Creek analyses but one. Even if some slab fluids partially metasomatized lithospheric mantle, these igneous rocks are much more typical of continental rifts than continental arcs. We relate Big Bend magmatism to asthenospheric mantle upwelling accompanying foundering of the subducted Farallon slab as the convergence rate between the North American and the Farallon plates decreased beginning about 50 Ma. Upwelling asthenosphere heated the base of the continental lithosphere, producing the Alamo Creek series; magmatism climaxed with main phase magmatism generated within middle continental lithosphere, and then, accompanying regional extension, gradually died out by 18 Ma.

  2. Isotopic variations within upper oceanic crust at IODP Site 1256: Implications for crustal recycling and the formation of ocean island basalts

    NASA Astrophysics Data System (ADS)

    Duggen, S.; Hoernle, K.; Geldmacher, J.; Hauff, F.

    2007-12-01

    The origin of ocean island basalts (OIBs) is a fundamental question facing Earth scientists. It is commonly agreed that lithospheric material recycled in the mantle is involved in the magma source of OIBs. The relative importance of 1) subducted altered oceanic basaltic crust (AOC), 2) subducted marine sediments and/or 3) delaminated metasomatised subcontinental lithosphere and continental lower crust remains to be resolved. We examine the geochemical composition of a complete in situ section of oceanic crust drilled at Site 1256 during IODP Expeditions 309 and 312. It includes the extrusive layer, sheeted dikes and gabbros of ca. 15 Ma old oceanic crust of the Cocos Plate formed during a period of superfast spreading at the East Pacific Rise. Modeling in the Sr-Nd-Pb-isotope space and comparison with present day radiogenic isotope ratios of OIBs provides constraints on the significance of recycled oceanic crust in the OIB mantle source(s). Our study shows that the generation of sulphides during low- and high-temperature alteration of oceanic crust has a strong influence on U/Pb and Th/Pb ratios and whether an AOC domain evolves relatively low or high Pb-isotope ratios over geological timescales. The model suggests that AOC as the sole precursor material, modified during the subduction process, and after relatively low to moderate recycling ages of ca. 300-800 Ma, is sufficient to explain the Sr-Nd-Pb-isotopic composition of OIBs with Pb-isotopic compositions along or below the Northern Hemisphere Reference Line (NHRL) and relatively high Nd-isotope ratios (e.g. Canaries, Galapagos, Iceland, Madeira). This indicates that additional EM-components, potentially associated with recycled lithospheric material such as subducted sediments, lower continental crust or subcontinental lithosphere, are not required for an array of OIBs, but are only necessary to explain OIBs with Pb-isotope ratios above the NHRL and relatively low Nd- isotope ratios (e.g. Pitcairn, Tristan

  3. Earthquake nucleation in weak subducted carbonates

    NASA Astrophysics Data System (ADS)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Christopher J.; Behrmann, Jan H.

    2016-09-01

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests performed on simulated fault gouges prepared from ocean-floor carbonates and clays, cored during IODP drilling offshore Costa Rica. Clay-rich gouges show internal friction coefficients (that is, the slope of linearized shear stress versus normal stress data) of μint = 0.44 - 0.56, irrespective of temperature and pore-fluid pressure (Pf). By contrast, μint for the carbonate gouge strongly depends on temperature and pore-fluid pressure, with μint decreasing dramatically from 0.84 at room temperature and Pf = 20 MPa to 0.27 at T = 140 °C and Pf = 120 MPa. This effect provides a fundamental mechanism of shear localization and earthquake generation in subduction zones, and makes carbonates likely nucleation sites for plate-boundary earthquakes. Our results imply that rupture nucleation is prompted by a combination of temperature-controlled frictional instability and temperature- and pore-pressure-dependent weakening of calcareous fault gouges.

  4. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  5. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  6. Channelized Fluid Flow and Metasomatism in Subducted Oceanic Lithosphere recorded in an Eclogite-facies Shear Zone (Monviso Ophiolite, Italy)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Pettke, T.

    2012-04-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone: ISZ), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and marbles were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation [Angiboust et al., Lithos, 2011]. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray Cr/Mg maps of garnet demonstrate that (i) these samples underwent significant B, Cr, Mg, Ni and Co enrichment and Fe, V and As depletion during eclogite-facies metamorphism (while Li and Pb behaved inconsistently) and (ii) garnet composition and chemistry of inclusions show extreme variation from core to rim. These compositional patterns point to a massive, pulse-like, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 10 km deeper than the maximum depth

  7. Identification of Mineral Phases on Basalt Surfaces by Imaging SIMS.

    PubMed

    Ingram, J C; Groenewold, G S; Olson, J E; Gianotto, A K; McCurry, M O

    1999-05-01

    A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined by interrogating the intact basalt (heterogeneous mix of mineral phases) as well as mineral phases that have been separated from the basalt samples. Mineral separates from the basalt were used to establish reference spectra for the specific mineral phases. Electron microprobe and X-ray photoelectron spectroscopy were used as supplemental techniques for providing additional characterization of the basalt. Mineral phases that make up the composition of the basalt were identified from single-ion images which were statistically grouped. The statistical grouping is performed by utilizing a program that employs a generalized learning vector quantization technique. Identification of the mineral phases on the basalt surface is achieved by comparing the mass spectra from the statistically grouped regions of the basalt to the mass spectral results from the mineral separates. The results of this work illustrate the potential for using imaging SIMS to study adsorption chemistry at the top surface of heterogeneous mineral samples.

  8. Viscous Dissipation and Criticality of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  9. Viscous Dissipation and Criticality of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ ‑h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  10. Dehydration History of Subducted Lithologies, Sifnos, Greece

    NASA Astrophysics Data System (ADS)

    Dragovic, B.; Baxter, E. F.; Caddick, M. J.

    2011-12-01

    Garnet-forming reactions in subduction zones may be linked directly to dehydration. When coupled with precise zoned garnet geochronology, this permits quantification of H2O release rates and evaluation of models for progressive metamorphism (and thus dehydration) in subduction zones. Here, an integrated geochronologic and thermodynamic analysis seeks to determine the devolatization history of subducted lithologies from Sifnos, Greece, in the Attic Cycladic Blueschist Belt. Based on major element zoning, microsampling and Sm-Nd dating of chemically zoned garnets (greater than 1cm in diameter) from various lithologies, we constrain the rates and duration of garnet growth. Combined with bulk garnet analyses on several other samples where crystals were not sufficiently large for age zoning work, a chronology of garnet growth across all lithologies was constructed. After the slow initiation of garnet growth recorded by one 5cm crystal from a quartzofeldspathic gneiss (the innermost 1cm, radially, grew from 52.7 ± 3.3Ma to 47.19 ± 0.21 Ma), relatively rapid growth prevailed from 45.92 ± 0.18 Ma to 45.63 ± 0.22 Ma for the outermost 0.9 cm of the crystal. This equates to acceleration in volumetric growth rate of two orders of magnitude. In addition, garnet ages from six intermediate to mafic garnet-bearing lithologies span 46.48 ± 0.82 Ma to 43.90 ± 1.92 Ma, at least one of which (a mafic blueschist) indicates growth spanning just hundreds of thousands of years. Analysis of the garnet-forming reaction(s) provides information on the stoichiometric ratio between garnet produced and water released. For a range of bulk rock compositions, we find that garnet:water molar production ratios vary from approximately 0.4:1 to 1.2:1, depending mostly on the portion of the P-T path over which reaction occurs, the bulk composition, and the hydrous phases from which garnet forms. Hydrous phases contributing to garnet growth and water release typically include chloritoid, lawsonite

  11. Effects of Two Subducting Slabs on the Temperature Distribution Along the Subduction Faults in the Kanto Region, Japan

    NASA Astrophysics Data System (ADS)

    Wada, I.; He, J.

    2015-12-01

    In this study, we investigate the thermal effects of subduction of two oceanic plates in the Kanto region of Japan, using a 3-D numerical thermal model. The Kanto region lies in the forearc of a subduction system, where the Pacific (PAC) plate and the Philippine Sea (PHS) plate subduct beneath the North American (NA) plate. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, and the flow brings in hot mantle from the backarc towards the forearc. In the Kanto region, however, the presence of the PHS plate between the overlying NA plate and the subducting PAC plate prevents a typical mantle flow pattern. We developed a 3-D thermal model for the Kanto region to simulate the pattern of mantle wedge flow and to quantify its effect on the thermal structure. The model incorporates realistic slab geometries that were delineated from seismological studies. Mantle wedge flow between the PHS slab and the overlying NA plate is expected to be subdued due to the small space and the relatively slow subduction of the PHS slab. We simplify the model by incorporating the results of a 2-D thermal modeling for the subduction of the PHS slab as part of boundary conditions in the 3-D model to approximate the effect of the subdued mantle wedge flow and the subduction of the PHS slab. We use geophysical observations as constraints for the 3-D thermal model and estimate the temperature distributions along the subduction plate interfaces. The model predicts a particularly cold condition in the central part of the Kanto region where the PAC and PHS slabs are in contact with one another, consistent with the observed deeper extent of seismicity along the subduction faults compared to the neighboring regions.

  12. Seamount, ridge, and transform subduction in southern Central America

    NASA Astrophysics Data System (ADS)

    Morell, Kristin D.

    2016-02-01

    Understanding the factors that control subduction zone processes is a first-order goal in the study of convergent margins. In southern Central America, a growing body of research reveals strong links between the character of the subducting slab and the mechanics of important processes that include subduction erosion, fluid flow, deformation, and seismogenesis. In this paper, I evaluate the role that seamount, ridge, and transform subduction have in the development of upper plate deformation and volcanism by summarizing previous work across a >500 km long region of Central America where each of these three scenarios are present along strike. The data show that the subduction of short-wavelength bathymetry (e.g., seamounts and faults on the seafloor) produces short-wavelength deformation that persists for relatively short timescales (104-105 years), whereas the subduction of longer-wavelength bathymetry (e.g., the aseismic Cocos Ridge) results in longer-wavelength deformation that endures over a longer time scale (106 years). The timing and distribution of upper plate deformation are consistent with subhorizontal Cocos Ridge subduction driving upper plate deformation, and the increased crustal thickness (>20 km) of the subducting Cocos Ridge is likely one of the most important factors in the production of upper plate contraction and crustal thickening. The data illustrate a fundamental connection between lower plate properties and upper plate deformation and highlight the profound influence that bathymetry and crustal thickness have in the localization and kinematics of upper plate strain and volcanism in Middle America.

  13. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  14. Isotopic and REE studies of lunar basalt 12038 - Implications for petrogenesis of aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Wooden, J. L.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1981-01-01

    Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts, are reported. The evolution of the Sr and Nd isotopic compositions and the rare earth element (REE) abundances is successfully modeled within the framework of the model developed by Nyquist et al. (1977, 1979) for Apollo 12 olivine-pigeonite and ilmenite basalts. It is pointed out that the isotopic and trace element features of 12038 can by modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb is equal to 2.2 for this hypothetical magma ocean pattern.

  15. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  16. H2O release in cold subduction zones: eclogitization vs. lawsonite stability

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, A.; Groppo, C.; Hetényi, G.; Compagnoni, R.

    2012-04-01

    Transition from blueschist to eclogite facies is considered as a major step of dehydration during subduction of oceanic crust. In cold subduction zones, this critical transitional field is characterized by the stability of lawsonite, which represents the major H2O carrier in HP basaltic rocks. Lawsonite-bearing eclogites are commonly associated with lawsonite-blueschist [1]. This association is commonly referred to prograde (i.e. from blueschist- to eclogite-facies conditions) or retrograde (i.e. from eclogite- to blueschist-facies conditions) incomplete re-equilibration. However, field, microstructural and petrological data indicate that the two assemblages can coexist over a wide PT field. In Alpine Corsica (France), deeply subducted metabasalts are well preserved as lawsonite-bearing eclogite (Law-Ecl) and lawsonite-bearing blueschist (Law-Bs), providing a unique access to these rocks rarely preserved elsewhere. The Corsican Law-Ecl, consisting of omphacite + lawsonite + garnet + phengite + titanite, commonly occur as single undeformed metabasaltic pillows surrounded by Law-Bs. Law-Bs are found as variably deformed metabasaltic pillows locally cross-cut by eclogitic veins and consist of glaucophane + actinolite + lawsonite + garnet + phengite + titanite. Field evidence and microstructures reveal that both Law-Ecl and Law-Bs are stable at the metamorphic peak in the lawsonite-eclogite stability field. Isochemical phase diagrams (pseudosections) calculated in the system MnNKCFMASH for representative Law-Ecl and Law-Bs samples indicate that both lithologies equilibrated at the same conditions of 520 ± 20 °C and 2.3 ± 0.1 GPa, in response of primary differences in the bulk rock compositions, probably acquired during igneous or seafloor metasomatic processes [2]. These PT estimates are comparable with and therefore representative of common PT values registered and preserved by exhumed rocks in HP orogenic belts. Despite the two rocks are omphacite-free (i.e. Law

  17. Lau Basin basalts (LBB): trace element and Sr sbnd Nd isotopic evidence for heterogeneity in backarc basin mantle

    NASA Astrophysics Data System (ADS)

    Volpe, Alan M.; Douglas Macdougall, J.; Hawkins, James W.

    1988-10-01

    Diverse 87Sr/ 86Sr and 143Nd/ 144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB ( 87/Sr 86Sr ⩽ 0.70366; 143Nd/ 144Nd ⩾ 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher 87Sr/ 86Sr ( ⩾ 0.7038) and lower 143Nd/ 144Nd ( ⩽ 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB. Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high 87Sr/ 86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( ɛ Nd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have Sr sbnd Nd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.

  18. Global correlation of lower mantle structure and past subduction

    NASA Astrophysics Data System (ADS)

    Domeier, Mathew; Doubrovine, Pavel V.; Torsvik, Trond H.; Spakman, Wim; Bull, Abigail L.

    2016-05-01

    Advances in global seismic tomography have increasingly motivated identification of subducted lithosphere in Earth's deep mantle, creating novel opportunities to link plate tectonics and mantle evolution. Chief among those is the quest for a robust subduction reference frame, wherein the mantle assemblage of subducted lithosphere is used to reconstruct past surface tectonics in an absolute framework anchored in the deep Earth. However, the associations heretofore drawn between lower mantle structure and past subduction have been qualitative and conflicting, so the very assumption of a correlation has yet to be quantitatively corroborated. Here we show that a significant, time-depth progressive correlation can be drawn between reconstructed subduction zones of the last 130 Myr and positive S wave velocity anomalies at 600-2300 km depth, but that further correlation between greater times and depths is not presently demonstrable. This correlation suggests that lower mantle slab sinking rates average between 1.1 and 1.9 cm yr-1.

  19. Re-Os Isotopes Distinguish Crust vs. Slab Inputs to Northern Cascade Arc Basalts

    NASA Astrophysics Data System (ADS)

    Mullen, E.; Gannoun, A.; Nauret, F.; Schiano, P.; Weis, D.

    2015-12-01

    Delineating the relative contributions of mantle, slab, and crust to arc magmas is particularly challenging in the Cascades where the continental crust is juvenile and contrasts little with magmas in traditional radiogenic isotope systems (Sr-Nd-Hf-Pb). The Re-Os isotope system offers a sensitive technique for evaluating these contributions because even young crust has significantly higher Os ratios than the mantle. We analyzed Re-Os isotope ratios in 33 primitive basalts from 9 volcanic centers of the northern Cascade Arc (Garibaldi Volcanic Belt, GVB). Although GVB basalts have mantle-like Sr-Pb-Nd-Hf ratios (Mullen & Weis, 2015, EPSL), the range in 187Os/188Os is very large (0.13-0.99) with [Os] of <1 to 17 ppt. Ten samples of subducting Cascadia Basin sediment and altered Juan de Fuca MORB are associated with high 187Os/188Os (0.68-0.92) and [Os] = 25-132 ppt. The GVB basalts define two groups: Group 1 (Cinder Cone/Mt. Garibaldi, Salal Glacier, Mt. Meager, Indian Pass/Glacier Peak) has low Os isotopic ratios (0.13-0.19), only slightly elevated relative to global mantle wedge peridotites (≤0.16), indicating minimal crustal contamination. Group 1 samples lie on Os-Sr isotope mixing curves indicating variable sediment input to the mantle. Os ratios of Group 2 basalts (Silverthrone, Bridge River, Elaho, Cheakamus, Mt. Baker, Glacier Peak) extend to extremely high values, up to 0.99, and lie on different Os-Sr mixing curves indicating addition of a crustal contaminant. Sr-Nd-Hf-Pb isotopic ratios cannot be used to identify this crustal input because Groups 1 and 2 are identical in these isotope systems. Interaction with a mafic underplate from older Cenozoic or accreted Mesozoic arcs is likely, and Re-Os analyses of basement samples (in progress) will provide a test of this hypothesis. This study reveals that most primitive magmas in the Cascades have suffered variable crustal contamination, but only the Re-Os isotope system has the potential to delineate the

  20. Arc Evolution in Response to the Subduction of Buoyant Features

    NASA Astrophysics Data System (ADS)

    Jenkins, Luke; Fourel, Loic; Goes, Saskia; Morra, Gabriele

    2015-04-01

    The subduction of buoyant features such as aseismic ridges or oceanic plateaux has been invoked to explain arc deformation, flat subduction and increase in seismic coupling. Other studies have challenged these ideas, attributing a larger role to the overriding plate. However, many open questions remain about the dynamics of the relative simple case of a single freely subducting plate. How big does a plateau need to be to change the arc shape? What is the control of plate's strength on the impact of buoyant features? How do the velocities adapt to the subduction of less dense material? In the present study, we propose a systematic approach in order to tackle these questions. We use a new 3-D coupled fluid-solid subduction model where the interaction between the slab and the isoviscous mantle is only calculated on the slab surface, significantly increasing computational efficiency. The oceanic plate rheology is visco-elasto-plastic and its top surface is free. We find that arc shape is significantly altered by the subduction of buoyant plateaux. Along the subduction plane through the plateau and depending on its size, the dip angle and the retreat velocity significantly decrease. Flat subduction is obtained in the case of large and strongly buoyant plateau/ridge. An interesting feature is that retreat velocity increases right after the plateau or ridge has finished subducting in order to catch up with the rest of the plate. The gradient in retreat velocity obtained along the trench may cause the slab to have a heterogeneous response to ridge push, eventually leading to slab advance where buoyant material is present. We apply our models to the Izu-Bonin-Marianas (IBM) trench and propose that subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.

  1. The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume-related magmatism of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Joubert, Marc; Abad, Manuel; Pérez-Valera, Fernando; Gabites, Janet

    2016-06-01

    The basaltic volcanism of the Dumisseau Fm in the Sierra de Bahoruco, SW Dominican Republic, offers the opportunity to study, on land, the volcanism of the Caribbean Large Igneous Province (CLIP). It consists of an at least 1.5 km-thick sequence of submarine basaltic flows and pyroclastic deposits, intruded by doleritic dykes and sills. Three geochemical groups have been identified: low-Ti tholeiites (group I); high-Ti transitional basalts (group II); and high-Ti and LREE-enriched alkaline basalts (group III). These geochemical signatures indicate a plume source for all groups of basalts, which are compositionally similar to the volcanic rocks that make up various CLIP fragments in the northern region of the Caribbean Plate. Trace element modelling indicates that group I magmas are products of 8-20% melting of spinel lherzolite, group II magmas result 4-10% melting of a mixture of spinel and garnet lherzolite, and group III basalts are derived by low degrees (0.05-4%) of melting of garnet lherzolite. Dynamic melting models suggest that basalts represent aggregate melts produced by progressive decompression melting in a mantle plume. There is no compositional evidence for the involvement of a Caribbean supra-subduction zone mantle or crust in the generation of the basalts. Two 40Ar/39Ar whole-rock ages reflect the crystallisation of group II magmas at least in the late Campanian (~ 74 Ma) and the lower Eocene (~ 53 Ma). All data suggest that the Dumisseau Fm is an emerged fragment of the CLIP, which continues southward through the Beata Ridge

  2. Thermal modeling of the southern Alaska subduction zone: Insight into the petrology of the subducting slab and overlying mantle wedge

    SciTech Connect

    Ponko, S.C.; Peacock, S.M.

    1995-11-10

    This report discusses a two-dimensional thermal model of the southern Alaska subduction zone. This model allows specfic predictions to be made about the pressure-temperature conditions and mineralogy of the subducting oceanic crust and the mantle wedge and assess different petrologic models for the generation of Alaskan arc magmas.

  3. Inside the subduction factory: Modeling fluid mobile element enrichment in the mantle wedge above a subduction zone

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Jean, Marlon M.

    2012-10-01

    Enrichment of the mantle wedge above subduction zones with fluid mobile elements is thought to represent a fundamental process in the origin of arc magmas. This "subduction factory" is typically modeled as a mass balance of inputs (from the subducted slab) and outputs (arc volcanics). We present here a new method to model fluid mobile elements, based on the composition of peridotites associated with supra-subduction ophiolites, which form by melt extraction and fluid enrichment in the mantle wedge above nascent subduction zones. The Coast Range ophiolite (CRO), California, is a Jurassic supra-subduction zone ophiolite that preserves mantle lithologies formed in response to hydrous melting. We use high-precision laser ablation ICP-MS analyses of relic pyroxenes from these peridotites to document fluid-mobile element (FME) concentrations, along with a suite of non-fluid mobile elements that includes rare earth and high-field strength elements. In the CRO, fluid-mobile elements are enriched by factors of up to 100× DMM, whereas fluid immobile elements are progressively depleted by melt extraction. The high concentrations of fluid mobile elements in supra-subduction peridotite pyroxene can be attributed to a flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab. To model this enrichment, we derive a new algorithm that calculates the concentration of fluid mobile elements added to the source: C=[C/[[D/(D-PF)]∗[1-(PF/D)

  4. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-01

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean. PMID:17741173

  5. Trace element composition of Luna 24 Crisium VLT basalt

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.

    1978-01-01

    The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.

  6. Hotspots, basalts, and the evolution of the mantle.

    PubMed

    Anderson, D L

    1981-07-01

    The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.

  7. Subduction of the South-Chile active spreading ridge: a 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires, Argentina)

    NASA Astrophysics Data System (ADS)

    Boutonnet, Emmanuelle; Arnaud, Nicolas; Guivel, Christèle; Lagabrielle, Yves; Scalabrino, Bruno; Espinoza, Felipe

    2010-05-01

    The Chile Triple Junction is a natural laboratory to study the interactions between magmatism and tectonics during the subduction of an active spreading ridge beneath a continent. The MLBA plateau (Meseta del Lago Buenos Aires) is one of the Neogene alkali basaltic plateaus located in the back-arc region of the Andean Cordillera at the latitude of the current Chile Triple Junction. The genesis of MLBA can be related with successive opening of slabs windows beneath Patagonia: within the subducting Nazca Plate itself and between the Nazca and Antarctic plates. Detailed 40Ar/39Ar dating and geochemical analysis of bimodal magmatism from the western flank of the MLBA show major changes in the back-arc magmatism which occurred between 14.5 Ma and 12.5 Ma with the transition from calc-alkaline lavas (Cerro Plomo) to alkaline lavas (MLBA) in relation with slab window opening. In a second step, at 4- 3 Ma, alkaline felsic intrusions were emplaced in the western flank of the MLBA coevally with the MLBA basalts with which they are genetically related. These late OIB-like alkaline to transitional basalts were generated by partial melting of the subslab asthenosphere of the subducting Nazca plate during the opening of the South Chile spreading ridge-related slab window. These basalts differentiated with small amounts of assimilation in shallow magma chambers emplaced along transtensional to extensional zones. The close association of bimodal magmatism with extensional tectonic features in the western MLBA is a strong support to the model of Patagonian collapse event proposed to have taken place between 5 and 3 Ma as a consequence of the presence of the asthenospheric window (SCR-1 segment of South Chile Ridge) below the MLBA area.

  8. Mapping Yakutat Subduction with Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Wech, A.

    2015-12-01

    Subduction of the Yakutat microplate (YAK) in south-central Alaska may be responsible for regional high topography, large slip during the 1964 earthquake, and the anomalous gap in arc volcanism, but the exact geodynamics and its relationship with the underlying Pacific Plate (PP) are not fully understood. Refraction data support distinct subducting layers, and both GPS and body wave tomography suggest the YAK extends from the Cook Inlet volcanoes in the west to the Wrangell volcanic field in the east. Earthquakes, however, are limited to normal faulting within the PP with an abrupt eastern boundary 80 km west of the inferred YAK edge, and more recent active source seismic data suggest subduction of one homogenous thickened oceanic plateau. Here, I perform a search for tectonic tremor to investigate the role of tremor and slow slip in the system. I scan continuous waveforms from 2007-2015 using all available data from permanent and campaign seismic stations in south-central Alaska. Using envelope cross-correlation, I detect and locate ~9,000 tectonic tremor epicenters, providing a map of the transition zone downdip of the 1964 earthquake. Tremor epicenters occur downdip of discrete slow slip events, and tremor rates do not correlate temporally with slow slip behavior. Depth resolution is poor, but horizontal locations are well constrained and spatially correlate with the velocity images of the YAK. Likewise, tremor extends 80 km further east than intraslab seismicity. Tremor swarms occur intermittently and manifest as ambient tremor. I interpret tremor to mark slow, semi-continuous slip occurring at the boundary between the YAK and North American plates, whose interface continues beyond the eastern edge of the PP. In this model, the YAK is welded to the underlying PP in the west, but extends past the eastern terminus of the PP. This geometry explains the correlation between tremor and the YAK, the discrepancy between deep seismicity and tremor, and the paucity of

  9. Numerical Models of Subduction Beneath Non-Uniform Overriding Plates. Implications for Subduction Velocity and Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J.; Billen, M. I.; Negredo, A. M.

    2015-12-01

    Subduction zones show significant along-strike variations of different subduction features. In particular there is a good correlation between variations of overriding plate thickness and variations of slab dip, seismic anisotropy and subduction velocity. Previous numerical models have shown that overriding plate thermal state influences the slab dip and variations in slab dip can cause trench-parallel flow above the slab. This suggests a causal link between overriding plate structure, slab geometry and mantle flow in subduction zones. Models also show that interplate coupling is stronger for colder overriding plates, which might lead to lower subduction velocities. We implement generic numerical models to study the effect of the overriding plate structure on the evolution of slab geometry, induced mantle flow and subduction velocity. We solve the 3D, time dependent thermo-mechanical equations with a non-linear rheology to simulate buoyancy driven subduction processes. We find that along-strike variations in thermal thickness of the overriding plate cause increased hydrodynamic suction and shallower slab dip beneath the colder portion of the overriding plate; the variation in slab geometry drives strong trench-parallel flow beneath the slab and a complex flow pattern above the slab. Induced mantle flow varies significantly with time, suggesting that the global variability in seismic anisotropy observations in subduction zones is in part due to the non-steady-state behavior of these systems. This new mechanism for driving trench-parallel flow provides a good explanation for seismic anisotropy observations from the Middle and South America subduction zones. Our results also show that increased interplate coupling beneath a colder portion of the overriding plate leads to a reduction of the subduction velocity in the region, leading to along-strike variations subduction velocity. These results provide a good explanation of the observed present-day variations in

  10. Deformation and faulting of subduction overriding plate caused by a subducted seamount

    NASA Astrophysics Data System (ADS)

    Ding, Min; Lin, Jian

    2016-09-01

    We conducted numerical experiments to simulate elastoplastic deformation of the overriding plate caused by a subducted seamount. Calculations revealed development of a distinct pair of fault-like shear zones, including a landward dipping forethrust fault initiated from the seamount top and a seaward dipping backthrust fault from the landward base of the seamount. Significant dome-shaped surface uplift was predicted above the thrust faults. Lesser-developed seaward dipping backthrust faults were calculated to develop under certain conditions. The overriding plate was calculated to deform in two stages: In Stage I, elastic deformation leads to the formation of fault-like shear zones. After major faults have cut through the entire plate, plastic deformation on faults dominates Stage II. On the subduction interface, compressional normal stress was calculated to increase on the landward leading flank of the seamount and decrease on the seaward trailing flank. These changes, together with associated stress singularities at seamount edges, could affect earthquake processes.

  11. Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction

    NASA Astrophysics Data System (ADS)

    Rose-Koga, Estelle F.; Koga, Kenneth T.; Hamada, Morihisa; Hélouis, Thomas; Whitehouse, Martin J.; Shimizu, Nobumichi

    2014-12-01

    Investigation of olivine-hosted melt inclusions provides information about the abundance of volatile elements that are often lost during subaerial eruptions of lavas. We have measured the abundances of H2O, CO2, F, Cl, and S as well as Pb isotopes in 29 melt inclusions in the scoria of the 1686 eruption of the Iwate volcano, a frontal-arc volcano in the northeast Japan arc. Pb Isotope compositions identify that Iwate magma is derived from a mixture of depleted mantle, subducted basalt, and sediment. Systematics of F in comparison to MORB and other arc magma indicates that (1) the slab surface temperature must be among the lowest on Earth and (2) hydrous minerals, such as amphibole, humites, and/or mica, must be present as residual phases during the dehydration of the slab.

  12. Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure

    NASA Astrophysics Data System (ADS)

    Ellis, Susan; Fagereng, Åke; Barker, Dan; Henrys, Stuart; Saffer, Demian; Wallace, Laura; Williams, Charles; Harris, Rob

    2015-07-01

    We estimate fluid sources around a subducted seamount along the northern Hikurangi subduction margin of New Zealand, using thermomechanical numerical modelling informed by wedge structure and porosities from multichannel seismic data. Calculated fluid sources are input into an independent fluid-flow model to explore the key controls on overpressure generation to depths of 12 km. In the thermomechanical models, sediment transport through and beneath the wedge is calculated assuming a pressure-sensitive frictional rheology. The change in porosity, pressure and temperature with calculated rock advection is used to compute fluid release from compaction and dehydration. Our calculations yield more precise information about source locations in time and space than previous averaged estimates for the Hikurangi margin. The volume of fluid release in the wedge is smaller than previously estimated from margin-averaged calculations (˜14 m3 yr-1 m-1), and is exceeded by fluid release from underlying (subducting) sediment (˜16 m3 yr-1 m-1). Clay dehydration contributes only a small quantity of fluid by volume (˜2 m3 yr-1 m-1 from subducted sediment), but the integrated effect is still significant landward of the seamount. Fluid source terms are used to estimate fluid pressures around a subducting seamount in the fluid-flow models, using subducted sediment permeability derived from porosity, and testing two end-members for décollement permeability. Models in which the décollement acts as a fluid conduit predict only moderate fluid overpressure in the wedge and subducting sediment. However, if the subduction interface becomes impermeable with depth, significant fluid overpressure develops in subducting sediment landward of the seamount. The location of predicted fluid overpressure and associated dehydration reactions is consistent with the idea that short duration, shallow, slow slip events (SSEs) landward of the seamount are caused by anomalous fluid pressures; alternatively

  13. The mean composition of ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Gale, Allison; Dalton, Colleen A.; Langmuir, Charles H.; Su, Yongjun; Schilling, Jean-Guy

    2013-03-01

    mean composition of mid-ocean ridge basalts (MORB) is determined using a global data set of major elements, trace elements, and isotopes compiled from new and previously published data. A global catalog of 771 ridge segments, including their mean depth, length, and spreading rate enables calculation of average compositions for each segment. Segment averages allow weighting by segment length and spreading rate and reduce the bias introduced by uneven sampling. A bootstrapping statistical technique provides rigorous error estimates. Based on the characteristics of the data, we suggest a revised nomenclature for MORB. "ALL MORB" is the total composition of the crust apart from back-arc basins, N-MORB the most likely basalt composition encountered along the ridge >500 km from hot spots, and D-MORB the depleted end-member. ALL MORB and N-MORB are substantially more enriched than early estimates of normal ridge basalts. The mean composition of back-arc spreading centers requires higher extents of melting and greater concentrations of fluid-mobile elements, reflecting the influence of water on back-arc petrogenesis. The average data permit a re-evaluation of several problems of global geochemistry. The K/U ratio reported here (12,340 ± 840) is in accord with previous estimates, much lower than the estimate of Arevalo et al. (2009). The low Sm/Nd and 143Nd/144Nd ratio of ALL MORB and N-MORB provide constraints on the hypothesis that Earth has a non-chondritic primitive mantle. Either Earth is chondritic in Sm/Nd and the hypothesis is incorrect or MORB preferentially sample an enriched reservoir, requiring a large depleted reservoir in the deep mantle.

  14. Nontronite Mineralization in Columbia River Basalts

    NASA Astrophysics Data System (ADS)

    Baker, L.

    2015-12-01

    The ferric smectite nontronite is one of the first minerals formed by secondary weathering of Columbia River Basalts (CRB). Although nontronite is a common weathering product of CRB, it is not ubiquitous; field relations in near-surface flows suggest it only forms where sufficient water is available. In near-surface flows that are above the water table, nontronite is found filling cracks or vesicles, or in association with paleosols now preserved between flows in many localities. Field relations strongly suggest that porosity and permeability at the millimeter to meter scale control the supply of water for weathering and are key to the chemical composition of secondary clays and to the overall abundance of individual secondary weathering minerals. Weathering in the basalts initiates in void spaces that hold water, where high-Fe nontronite forms radiating acicular sprays. Small void spaces fill completely with nontronite of uniform composition, which penetrates the walls and replaces surrounding glass and ferromagnesian minerals. This process produces a relatively limited quantity of high-purity ferric nontronite. In large void spaces where water is limiting, nontronite lines the interior of vesicles but does not fill them; vermicular clay strands grow into the space from nucleation sites at the vesicle wall. Nontronitic cores are coated by layers of Mg- and Al-rich clays, and Mn oxides coat the exteriors. Thus, weathering under water-limited conditions appears to produce more compositionally complex mineral assemblages. In more extensively weathered basalts, nontronite is not present except in isolated, enclosed spaces. Results of this study may be useful in interpreting remotely sensed mineralogical data on Mars. The compositions of ferromagnesian smectites and spatial relationships between different clays on Mars may hold clues to the original conditions of water-rock interaction.

  15. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and

  16. Trace Element Diffusion in Basaltic Melt

    NASA Astrophysics Data System (ADS)

    Holycross, M.; Watson, E. B.

    2015-12-01

    We conducted high pressure, high temperature experiments to determine simultaneously the diffusivities of 24 trace elements (Sc, V, Rb, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Th, U) in liquids of basaltic composition. Pre-synthesis runs were conducted in graphite capsules in a piston-cylinder apparatus to create two glasses having relatively high and low trace element contents. These glasses were then powdered and paired in diffusion couples by repacking in graphite capsules. All diffusion experiments were executed in a piston cylinder apparatus at 1 GPa pressure and temperatures ranging from 1250-1500º C. Concentration gradients that developed in the glasses were characterized using a laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Diffusion coefficients were determined from concentration profiles and show Arrhenian behavior within experimental error. Errors were assigned based on the linear fit of five time series experiments conducted over 500-9000 s to accurately represent the total experimental reproducibility of our results. Data show the highest activation energies are obtained for high field strength elements. Values for the pre-exponential factor, D0, also peak for the high field strength elements. We suggest that trace element diffusion in basaltic melts follows the compensation law (Winchell, 1969), with log D0 exhibiting linear dependence on activation energy. Calculated diffusivities indicate that transport through basaltic melt could be an effective mechanism for fractionating high field strength elements over geologically relevant time scales. Winchell (1969) High Temp. Sci. 1: 200-215

  17. Strain accumulation along the Cascadia subduction zone

    USGS Publications Warehouse

    Murray, M.H.; Lisowski, M.

    2000-01-01

    We combine triangulation, trilateration, and GPS observations to determine horizontal strain rates along the Cascadia subduction zone from Cape Mendocino to the Strait of Juan de Fuca. Shear-strain rates are significantly greater than zero (95% confidence) in all forearc regions (26-167 nanoradians/yr), and are not significant in the arc and backarc regions. The deformation is primarily uniaxial contraction nearly parallel to Juan de Fuca-North America plate convergence (N55??-80??E). The strain rates are consistent with an elastic dislocation model for interseismic slip with a shallow 100-km wide locked zone and a deeper 75-km transition zone along the entire megathrust, except along the central Oregon coast where relatively lower strain rates are consistent with 30-40 km wide locked and transition zones.

  18. Viscosity of Fluids in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Audétat, Andreas; Keppler, Hans

    2004-01-01

    The viscosities of aqueous fluids with 10 to 80 weight percent dissolved silicates have been measured at 600° to 950°C and 1.0 to 2.0 gigapascals by in situ observation of falling spheres in the diamond anvil cell. The viscosities at 800°C range from 10-4 to 100.5 pascal seconds. The combination of low viscosities with a favorable wetting angle makes silicate-rich fluid an efficient agent for material transport at low-volume fractions. Our results therefore suggest that there may be a direct relationship between the position of the volcanic front and the onset of complete miscibility between water and silicate melt in the subducting slab.

  19. Viscosity of fluids in subduction zones.

    PubMed

    Audétat, Andreas; Keppler, Hans

    2004-01-23

    The viscosities of aqueous fluids with 10 to 80 weight percent dissolved silicates have been measured at 600 degrees to 950 degrees C and 1.0 to 2.0 gigapascals by in situ observation of falling spheres in the diamond anvil cell. The viscosities at 800 degrees C range from 10(-4) to 10(0.5) pascal seconds. The combination of low viscosities with a favorable wetting angle makes silicate-rich fluid an efficient agent for material transport at low-volume fractions. Our results therefore suggest that there may be a direct relationship between the position of the volcanic front and the onset of complete miscibility between water and silicate melt in the subducting slab. PMID:14739456

  20. Sound velocity of δ-AlOOH up to core-mantle boundary pressures: Implications for the seismic anomalies induced by hydrated sediment in subducting slabs

    NASA Astrophysics Data System (ADS)

    Mashino, I.; Murakami, M.; Ohtani, E.

    2014-12-01

    Recent seismic tomography studies indicate that some of the subducting slabs stagnate at the mantle transition zone. Subducting slabs generally comprise lithological layers of sediments, mid-ocean ridge basalt and peridotite. Some amount of water is believed to exist as hydrous minerals in sediments. Therefore, it is essential to understand the effect of hydrous minerals in sediments on global circulation of hydrogen in deep earth. Many hydrous minerals are not stable under the pressure-temperature conditions of the lower mantle. However, recent studies show that δ-AlOOH, which exists in a sediment layer of subducting slabs below 600 km depth, is stable up to the base of the lowermost mantle. This phase is a possible carrier and reservoir of water in cold slabs subducting into the deep mantle. We have conducted high pressure acoustic wave velocity measurements of δ-AlOOH using Brillouin spectroscopy and also we explored the chemical bonding of δ-AlOOH by Raman spectroscopy at high pressure in a diamond anvil cell up to 134 GPa. The result shows that δ-AlOOH becomes harder at pressures above 6 GPa due to the hydrogen bonding symmetrization and has a higher VS compared to those of the major minerals in the transition zone, such as wadsleyite, ringwoodite, and majorite. Therefore, the existence of δ-AlOOH phase might account for the positive Vs anomaly at 600 km depth beneath northwest Pacific subduction zone. In some stagnated slabs, VS at 600 km depth is 2 % faster than that of PREM. If sediments stagnate in the transition zone, the positive Vs anomaly at 600 km depth would be accounted for by the stagnated sediments containing δ-AlOOH in the transition zone.

  1. Mare basalt genesis - Modeling trace elements and isotopic ratios

    NASA Astrophysics Data System (ADS)

    Binder, A. B.

    1985-11-01

    Various types of mare basalt data have been synthesized, leading to the production of an internally consistent model of the mare basalt source region and mare basalt genesis. The model accounts for the mineralogical, major oxide, compatible siderophile trace element, incompatible trace element, and isotopic characteristics of most of the mare basalt units and of all the pyroclastic glass units for which reliable data are available. Initial tests of the model show that it also reproduces the mineralogy and incompatible trace element characteristics of the complementary highland anorthosite suite of rocks and, in a general way, those of the lunar granite suite of rocks.

  2. An estimate of the juvenile sulfur content of basalt

    USGS Publications Warehouse

    Moore, J.G.; Fabbi, Brent P.

    1971-01-01

    Sulfur analyses by X-ray fluorescence give an average content of 107 ppm for 9 samples of fresh subaerially-erupted oceanic basalt and 680 ppm for 38 samples of submarine erupted basalt. This difference is the result of retention of sulfur in basalt quenched on the sea floor and loss of sulfur in basalt by degassing at the surface. The outer glassy part of submarine erupted basalt contains 800??150 ppm sulfur, and this amount is regarded as an estimate of the juvenile sulfur content of the basalt melt from the mantle. The slower cooled interiors of basalt pillows are depleted relative to the rims owing to degassing and escape through surface fractures. Available samples of deep-sea basalts do not indicate a difference in original sulfur content between low-K tholeiite, Hawaiian tholeiite, and alkali basalt. The H2O/S ratio of analyzed volcanic gases is generally lower than the H2O/S ratio of gases presumed lost from surface lavas as determined by chemical differences between pillow rims and surface lavas. This enrichment of volcanic gases in sulfur relative to water may result from a greater degassing of sulfur relative to water from shallow intrusive bodies beneath the volcano. ?? 1971 Springer-Verlag.

  3. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  4. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  5. Gravity and Flexure Modelling of Subducting Plates

    NASA Astrophysics Data System (ADS)

    Hunter, J. A.; Watts, A. B.; SO 215 Shipboard Scientific Party

    2012-04-01

    The long-term strength of the lithosphere is determined by its flexural rigidity, which is commonly expressed through the effective elastic thickness, Te. Flexure studies have revealed a dependence of Te on thermal age. In the oceans, loads formed on young (70 Ma) seafloor. In the continents, loads on young (1000 Ma) lithosphere. Recent studies have questioned the relationship of Te with age, especially at subduction zones, where oceanic and continental lithosphere are flexed downwards by up to ~6 km over horizontal distances of up to ~350 km. We have therefore used free-air gravity anomaly and topography profile data, combined with forward and inverse modelling techniques, to re-assess Te in these settings. Preliminary inverse modelling results from the Tonga-Kermadec Trench - Outer Rise system, where the Pacific plate is subducting beneath the Indo-Australian plate, show large spatial variations in Te that are unrelated to age. In contrast to the southern end of the system, where Te is determined by the depth to the 600° C and 900° C isotherms, the northern end of the system shows a reduction in strength. Results also suggest a reduction in Te trenchward of the outer rise that is coincident with a region of pervasive extensional faulting visible in swath bathymetry data. In a continental setting, the Ganges foreland basin has formed by flexure of the Indo-Australian plate in front of the migrating loads of the Himalaya. Preliminary forward modelling results, using the Himalaya as a known surface topographic load, suggest that Te is high - consistent with the great age of Indian cratonic lithosphere. However, results from inverse modelling that solves for unknown loads (vertical shear force and bending moment) show significant scatter and display trade-offs between Te and these driving loads.

  6. Evidence for Active Subduction Beneath Gibraltar

    NASA Astrophysics Data System (ADS)

    Gutscher, M.; Malod, J. A.; Rehault, J.; Contrucci, I. M.; Klingelhoefer, F.; Victor, L. M.; Spakman, W.

    2002-12-01

    The Gibraltar arc encompasses the Betic - Rif mountain belts with outward directed thrusting, surrounding a zone of strong Neogene subsidence and crustal thinning in the Western Alboran Sea. The SISMAR marine seismic survey conducted in April 2001 acquired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), completely spanning the actively deforming region between the margins of Portugal and northwest Morocco. We report on results from this seismic survey which reveal a thick chaotic sedimentary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decollement. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives compressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered. Active subduction beneath Gibraltar should be considered as a possible candidate for the source of the destructive Lisbon great earthquake (M 8.5-9) and tsunami of 1755 which ravaged the coast of the Gulf of Cadiz.

  7. Microbial colonization and alteration of basaltic glass

    NASA Astrophysics Data System (ADS)

    Einen, J.; Kruber, C.; Øvreås, L.; Thorseth, I. H.; Torsvik, T.

    2006-03-01

    Microorganisms have been reported to be associated with the alteration of the glassy margin of seafloor pillow basalts (Thorseth et al., 2001, 2003; Lysnes et al., 2004). The amount of iron and other biological important elements present in basalts and the vast abundance of basaltic glass in the earth's crust, make glass alteration an important process in global element cycling. To gain further insight into microbial communities associated with glass alteration, five microcosm experiments mimicking seafloor conditions were inoculated with seafloor basalt and incubated for one year. Mineral precipitations, microbial attachment to the glass and glass alteration were visualized by scanning electron microscopy (SEM), and the bacterial community composition was fingerprinted by PCR and denaturing gradient gel electrophoresis (DGGE) in combination with sequencing. SEM analysis revealed a microbial community with low morphological diversity of mainly biofilm associated and prosthecate microorganisms. Approximately 30 nm thick alteration rims developed on the glass in all microcosms after one year of incubation; this however was also seen in non inoculated controls. Calcium carbonate precipitates showed parallel, columnar and filamentous crystallization habits in the microcosms as well as in the sterile controls. DGGE analysis showed an alteration in bacterial community profiles in the five different microcosms, as a response to the different energy and redox regimes and time. In all microcosms a reduction in number of DGGE bands, in combination with an increase in cell abundance were recorded during the experiment. Sequence analysis showed that the microcosms were dominated by four groups of organisms with phylogenetic affiliation to four taxa: The Rhodospirillaceae, a family containing phototrophic marine organisms, in which some members are capable of heterotrophic growth in darkness and N2 fixation; the family Hyphomicrobiaceae, a group of prosthecate oligotrophic

  8. The nomenclature of polymict basaltic achondrites

    NASA Technical Reports Server (NTRS)

    Delaney, J. S.; Prinz, M.; Harlow, G. E.; Takeda, H.; Nehru, C. E.

    1983-01-01

    The system of nomenclature for basaltic achondrite meteorites is discussed, and new classification criteria are proposed. Under the new system, all achondrites are divided intno the broad groupings 'monomict' and 'polymict' by the number of lithologies present. The monomicts are classified structurally as brecciated or unbreccciated and as eucrites, diogenites, or cumulate eucrites. The polymicts are classified using an arbitrary mineral-chemical standard based on the percentage content of diogenite (magnesium orthopyroxenite): diogenites have more than 90 percent, eucrites have less than 10 percent, and all other polymicts area howardites. Tables listing all known achondrites by classification are provided.

  9. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  10. Thermal Infrared Spectra of Experimentally Shocked Basalt

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Horz, F.

    2003-12-01

    We acquired thermal infrared (3-40 microns) emissivity and hemispherical reflectance spectra of experimentally shocked samples of a fine-grained basalt from Grand Falls, AZ to document the spectral effects of shock as a function of increasing shock pressures (17-57 GPa). This sample contains 25% pyroxene, 20% olivine, and 45% feldspar, making it a suitable analog to the Surface Type 1 (basalt) observed in Thermal Emission Spectrometer (TES) data of Mars. Reflectance data (3-14 microns) were acquired using a Nexus 470 FTIR spectrometer at the HIGP, University of Hawaii, and emission spectra (5-40 microns) were acquired using a Nicolet Nexus 670 emission spectrometer at Arizona State University. These data complement similar previous measurements of experimentally shocked plagioclase and pyroxene relevant to interpreting spectra provided by TES. The samples were shocked using the 25-mm barrel gun at Johnson Space Center and provided ~400 mg per sample. Large (2-10 mm) chips of recovered material were separated from the samples and washed to remove clinging fines, and the residual was powdered to provide a consistent grain size ( ˜20 microns). Spectra were obtained of both the chips and the powder samples. Results for the chips show a shift in band positions in the 900-1200 wavenumber (wn) region compared to unshocked samples, consistent with the structural degradation of feldspar and subsequent formation of maskelynite and glass. The development of a band near 460 wn at high pressures is also consistent with glass formation in feldspars. Conversely, absorptions related to pyroxene remain present even at high pressures, consistent with previous work. Results for the powders show little variations with increasing pressure except for the loss of minor transparency features in the 800-900 wn region. Additional visible/near-infrared (0.35-2.50 microns) measurements of the powdered basalt samples also will be acquired at the RELAB facility. Future work will include

  11. Vesiculation of basaltic magma during eruption

    USGS Publications Warehouse

    Mangan, M.T.; Cashman, K.V.; Newman, S.

    1993-01-01

    Vesicle size distributions in vent lavas from the Pu'u "O'o-Kupaianaha eruption of Kilauea volcano are used to estimate nucleation and growth rates of H2O-rich gas bubbles in basaltic magma nearing the earth's surface (???120 m depth). By using well-constrained estimates for the depth of volatile exsolution and magma ascent rate, nucleation rates of 35.9 events.cm-3.s-1 and growth rates of 3.2 ?? 10-4cm/s are determined directly from size-distribution data. The results are consistent with diffusion-controlled growth as predicted by a parabolic growth law. -from Authors

  12. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    USGS Publications Warehouse

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  13. Carbonate-fluxed Melting of Silica-excess, MORB-like Pyroxenite and Genesis of Alkalic Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Gerbode, C. N.; Dasgupta, R.

    2009-12-01

    Trace element and isotopic compositions of ocean island basalts (OIBs) call for chemical heterogeneity of mantle source regions. However, the major element compositions of OIBs that show the strongest isotopic signature of crustal recycling (e.g., HIMU basalts) are not produced by laboratory partial melting experiments of putative mantle lithologies1. Subducted oceanic crust is frequently invoked as a source of mantle heterogeneity and identified as a HIMU component2, but partial melting of MORB-like eclogite, under nominally volatile-free mantle conditions, produces silica-rich, basaltic to dacitic melt3,4 and are not similar to the silica-poor, alkalic HIMU basalts. Here we test whether subducted ocean crust, when carbonated, can generate alkalic OIBs similar to the HIMU basalts. We present partial melting experiments on a nominally anhydrous, silica-excess, MORB-like pyroxenite, to which 5 wt.% CO2 was added as a mixture of Ca-Mg-Fe-Na-K carbonates such that the introduction of CO2 to the bulk composition (G2C) mimics the process of carbonate precipitation into ocean floor basalts. All experiments were performed at a single pressure of 3 GPa at 1050-1500 °C using a piston cylinder apparatus. The solidus is located below 1050°C, and the immediate super-solidus phase assemblage is cpx+garnet+rutile+carbonatitic melt (1050-1200 °C). Rutile disappears between 1200 and 1275 °C, and both cpx and garnet persist to the liquidus (1450-1475 °C). Carbonated silicate melt appears between 1200 and 1275 °C and its composition evolves systematically as a function of temperature, with SiO2 and Al2O3 varying on a CO2-free basis from ~44 to 48 wt.% and ~13.5 to 14.7 wt.% respectively. MgO and CaO concentrations of the partial melt increase (from ~4.4 to 8 wt.% and ~8 to 13 wt.% respectively) and those of FeO*, TiO2 and Na2O decrease (from ~15 to 12 wt.%, ~4 to 2.5 wt.% and ~6.7 to 3.5 wt.% respectively) with increasing temperature from 1275 to 1450 °C. We demonstrate that

  14. Crystal Stratigraphy of Two Basalts from Apollo 16: Unique Crystallization of Picritic Basalt 606063,10-16 and Very-Low-Titanium Basalt 65703,9-13

    NASA Technical Reports Server (NTRS)

    Donohue, P. H.; Neal, C. R.; Stevens, R. E.; Zeigler, R. A.

    2014-01-01

    A geochemical survey of Apollo 16 regolith fragments found five basaltic samples from among hundreds of 2-4 mm regolith fragments of the Apollo 16 site. These included a high-Ti vitrophyric basalt (60603,10-16) and one very-low-titanium (VLT) crystalline basalt (65703,9-13). Apollo 16 was the only highlands sample return mission distant from the maria (approx. 200 km). Identification of basaltic samples at the site not from the ancient regolith breccia indicates input of material via lateral transport by post-basin impacts. The presence of basaltic rocklets and glass at the site is not unprecedented and is required to satisfy mass-balance constraints of regolith compositions. However, preliminary characterization of olivine and plagioclase crystal size distributions indicated the sample textures were distinct from other known mare basalts, and instead had affinities to impact melt textures. Impact melt textures can appear qualitatively similar to pristine basalts, and quantitative analysis is required to distinguish between the two in thin section. The crystal stratigraphy method is a powerful tool in studying of igneous systems, utilizing geochemical analyses across minerals and textural analyses of phases. In particular, trace element signatures can aid in determining the ultimate origin of these samples and variations document subtle changes occurring during their petrogenesis.

  15. Relamination of mafic subducting crust throughout Earth's history

    NASA Astrophysics Data System (ADS)

    Maunder, Ben; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2016-09-01

    Earth has likely cooled by several hundred degrees over its history, which has probably affected subduction dynamics and associated magmatism. Today, the process of compositional buoyancy driven upwelling, and subsequent underplating, of subducted materials (commonly referred to as "relamination") is thought to play a role in the formation of continental crust. Given that Archean continental crust formation is best explained by the involvement of mafic material, we investigate the feasibility of mafic crust relamination under a wide range of conditions applicable to modern and early Earth subduction zones, to assess if such a process might have been viable in an early Earth setting. Our numerical parametric study illustrates that the hotter, thicker-crust conditions of the early Earth favour the upward relamination of mafic subducting crust. The amount of relaminating subducting crust is observed to vary significantly, with subduction convergence rate having the strongest control on the volume of relaminated material. Indeed, removal of the entire mafic crust from the subducting slab is possible for slow subduction (∼2 cm/yr) under Archean conditions. We also observe great variability in the depth at which this separation occurs (80-120 km), with events corresponding to shallower detachment being more voluminous, and that relaminating material has to remain metastably buoyant until this separation depth, which is supported by geological, geophysical and geodynamical observations. Furthermore, this relamination behaviour is commonly episodic with a typical repeat time of approximately 10 Myrs, similar to timescales of episodicity observed in the Archean rock record. We demonstrate that this relamination process can result in the heating of considerable quantities of mafic material (to temperatures in excess of 900 °C), which is then emplaced below the over-riding lithosphere. As such, our results have implications for Archean subduction zone magmatism, for

  16. Stress distribution and subduction of aseismic ridges in the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lefevre, L. Victoria; McNally, Karen C.

    1985-05-01

    The regional distribution of stresses associated with the subduction of the Cocos plate is inferred from a synthesis of 190 earthquake focal mechanisms, body and surface wave analyses of large earthquakes, and seismicity distributions. Broad patterns of consistent behavior are found across the region, from the Rivera Plate boundary in the northwest to the Guatemala/El Salvador border in the southeast, and are used as a framework to evaluate evidence for variations in local stresses due to the subduction of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone. Information which bears on the seismic potential at locations of aseismic ridge subduction is particularly important in that no large (Ms ≥ 7.5) earthquakes have occurred historically. We identify three major zones with consistent patterns in focal mechanisms and hypocentral distributions of seismicity. The first, closest to the trench and reflecting the mechanical interaction of the converging plates, is a zone of shallow thrust earthquakes extending 100-150 km inland from the trench. The second is a zone of normal faulting, beginning at about 200 km inland from the trench, h ≥ 60 km, which extends continuously along the entire length of the descending plate throughout the region. The third distinct zone exhibits a relatively low level of activity and separates the zones of thrust and normal faulting at about 150-200 km inland from the trench. This zone extends from the Rivera plate boundary in the northwest to the Guatamala region in the southeast. At this point, the quiet region pinches out, and the thrust and normal faulting zones abut and overlap. Superimposed on this overall pattern, we find locally only minor changes in areas of aseismic ridge subduction, aside from the prominent seismic slip gaps. Furthermore, on October 25, 1981, the Playa Azul earthquake (Ms = 7.3) occurred in the midregion of the Orozco Fracture Zone. Body and surface wave analyses of this event show a simple

  17. Evaluation of late Permian mafic magmatism in the central Tibetan Plateau as a response to plume-subduction interaction

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Ma, Chang-Qian; Guo, Pan; Sun, Yang; Gao, Ke; Guo, Yu-Heng

    2016-11-01

    An integrated study of the geochronology, mineralogy, geochemistry and Sr-Nd isotope compositions of the upper Permian Yushu mafic rocks in the central Tibetan Plateau (CTP) was conducted to evaluate the interaction between the Emeishan mantle plume and the Paleo-Tethyan subduction system. These mafic rocks can be geochemically subdivided into three groups. Group 1 rocks yielded a weighted mean 206Pb/238U age of 258 ± 2 Ma. They have relatively high TiO2, FeOt, Nb/Y and high εNd(t) values and display oceanic island basalts (OIB)-like rare earth and trace element patterns, with obvious enrichment of Nb and Ta. Group 2 and 3 rocks yield weighted mean 206Pb/238U ages of 258 ± 1 Ma and 257 ± 1 Ma, respectively. Both have relatively low TiO2, FeOt, Nb/Y and εNd(t) values and island arc tholeiites (IAT)-like rare earth and trace element patterns with obvious depletion of Nb and Ta. However, the Group 2 rocks have relatively low FeOt/MgO ratios, but high MgO, Mg#, Cr and Ni contents, resembling primitive magmas. They have lower light rare earth element (LREE), Nb, Ti and Zr contents and higher εNd(t) values than the Group 1 rocks. The geochemical and isotopic variations suggest that the Group 1 rocks might be derived from a plume-related mantle source, whereas Group 2 and Group 3 rocks originated from subduction-modified asthenospheric mantle and lithospheric mantle. Moderate degrees of olivine and clinopyroxene fractionation under low oxygen fugacities (fO2) appear to be responsible for the Fe-Ti enrichment in the Group 1 rocks. We propose a model involving plume-subduction interaction to explain the geodynamics and generation of the late Permian mafic magmatism in the CTP. The study region was rifted by the Emeishan mantle plume activity in association with rollback of Longmuco-Shuanghu oceanic lithosphere in late Permian times. Deep melting of the plume source led to the generation of the Group 1 plume-related magmas, whereas shallower melting of the subduction

  18. Volatiles and subduction-recycled lithologies in the petrogenesis of Cenozoic alkaline magmatism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Fahnestock, M. F.

    2015-12-01

    In the West Antarctic Rift System (WARS), the failure of both passive and active models of decompression melting to explain unusually voluminous Cenozoic volcanism has prompted debate about the roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by ~500 Ma of subduction along the paleo-Pacific margin of Gondwana[1], a process capable of generating easily fusible, volatile-rich lithologies and producing the broad seismic low-velocity anomaly imaged beneath the Southern Ocean[2]. We present new geochemical information from submarine lavas in the Ross Sea and subaerial lavas from Franklin Island, Beaufort Island, and Mt. Melbourne in Northern Victoria Land (NVL) supportive of an evolving fluxed mantle source. Lavas exhibit ocean island basalt (OIB)-like trace element signatures and isotopic affinities for the C/FOZO mantle endmember consistent with subduction processing of recycled ocean lithosphere. Lava major-oxide compositions suggest multiple recycled source components, including pyroxenite (associated with older lavas), amphibole-rich metasomes, and volatilized peridotite (associated with the youngest lavas). In-situ analyses of olivine-hosted melt inclusions (MIs) from a subset of host lavas confirm high H2O and CO2 ranging up to 2.94 wt % and 4657 ppm, respectively. MIs exhibit OIB-like trace element compositions and Ba/Rb and Rb/Sr consistent with melting in the presence of hydrated, amphibole-bearing lithosphere[3,4]. We interpret these observations as evidence that ongoing tectonomagmatic activity in the WARS is facilitated by melting of subduction-modified mantle generated by 550 - 100 Ma Gondwana subduction. Following radiogenic ingrowth in high-µ (U/Pb) domains, Cenozoic extension triggered decompression melting of easily fusible, hydrated metasomes and volatilized mantle. This multistage magma model attempts to reconcile geochemical observations with increasing geophysical evidence that the seismic

  19. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Li, Hongxia; Fan, Weiming; Li, Jingyan; Zhao, Liang; Huang, Miwei

    2016-09-01

    This paper presents petrology, mineralogy, zircon U-Pb ages, and whole-rock major, trace element and Sr-Nd-Hf isotopic compositions of four Permian (273-253 Ma) subduction-related mafic intrusions (including the Qinggoushan and Qianshan gabbros, and the Wangqing and Shuguang diorites) from the Yanbian region, NE China, with aims to understand the role of subducted sediment flux in generation of arc mafic cumulates. These intrusions have mineral assemblages crystallized in water-saturated parental magmas and show variable degrees of crystal accumulation as observed in mafic cumulates in subduction zones. Mass-balance consideration indicates that their parental magmas were calc-alkaline with arc-type trace element features (enrichments in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depletions in Nb-Ta). They also have Sr-Nd-Hf isotopic compositions, i.e., 87Sr/86Sr(i) = 0.7029-0.7047, εNd(t) = + 0.9 ~ + 6.8, εHf(t) = + 5.6 ~ + 14.6, similar to modern arc basalts. The parental magmas were likely derived from a mantle wedge variably metasomatized by sediment melt and fluid from the subducting paleo-Asian Oceanic slab. Combined trace elemental and isotopic modeling results suggest that the parental magma of Qinggoushan gabbro was formed through 5-20% melting of the mantle wedge with 1% and 1.5% additions of sediment fluid and sediment melt, respectively; 5-10% melting of the mantle wedge through inputs of 1% sediment fluid and 2% sediment melt produced the Qianshan gabbro; 10-20% melting of the mantle wedge with additions of 1% sediment fluid and 3% sediment melt formed the Wangqing diorite; whereas 5-20% melting of the mantle wedge through an input of 1.5% sediment melt produced the Shuguang diorite. The Hf-Nd isotopic array of the Yanbian Permian mafic intrusions reflected the existence of an Indian Ocean-type mantle, which was isotopically distinct from the Pacific-type mantle during early Paleozoic in the Central Asian Orogenic

  20. Constraints on Subduction Zone Temperatures and Chemical Fluxes from Accessory Phase Saturation in Subducted Sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Blundy, J.; Skora, S.

    2009-12-01

    A global correlation between the incompatible trace element chemistry of subducted sediments and that of magmas erupted through the overlying plate testifies to the important role that sediments play in controlling magmagenesis. We report new experimental data on the high pressure (3 GPa) and temperature (700-1300 °C) phase relations of hydrous red clay to evaluate the role of residual accessory phases in controlling the incompatible trace element chemistry of sediment-derived fluids. A particular focus is monazite, which preferentially incorporates LREE and Th, exerting a powerful control on the fluid Th/LREE ratio. Given that arc magmas appear to inherit the Th/LREE ratio of the associated subducting sediment, understanding monazite solubility and stability has the potential to provide new constraints on temperature at the slab surface, a parameter that is notoriously hard to pin down by other means. Experiments on red clay with H2O structurally bound in hydrous minerals (<2 wt%) produced negligible melt fractions for any reasonable temperatures. Experiments with 7-15 wt% added H2O produced copious melting at temperatures only 50-100°C above the solidus (c. 720 °C), e.g. with 15 wt% added H2O, the red clay is >50% molten at 800 °C. Irrespective of the amount of added H2O the residual assemblage comprised garnet and kyanite up to the liquidus (1250 °C with 7 wt% H2O). Phengite is present ≤800 °C; ilmenite and rutile persist to c. 1000 °C; quartz/coesite-out temperature decreases from 1000 °C with 7 wt% H2O to 800 °C with 15%. Monazite was stable to 950 °C in the Th- and LREE-doped starting materials that we used. The trace element contents of the residual melts in equilibrium with monazite-thorite solid solutions were used, in conjunction with published data, to develop a thermodynamic model of LREE and Th solubility in sediment-derived fluids. These models were used to calculate the stability of monazite in a red clay with natural LREE and Th levels

  1. The initiation of subduction: criticality by addition of water?

    PubMed

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  2. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    PubMed

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  3. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  4. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  5. Identifying recycled ash in basaltic eruptions

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These `recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  6. Emplacement of Columbia River flood basalt

    SciTech Connect

    Reidel, Stephen P. )

    1997-11-01

    Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.

  7. Hafnium isotope variations in oceanic basalts.

    USGS Publications Warehouse

    Patchett, P.J.; Tatsumoto, M.

    1980-01-01

    Routine low-blank chemistry and 0.01-0.04% precision on the ratio 176Hf/177Hf allows study of Hf isotopic variations, generated by beta --decay of 176Lu, in volcanic rocks derived from the suboceanic mantle. Normalized to 176Hf/177Hf = 0.7325, 176Hf/177Hf ranges 0.2828-0.2835, based on 24 basalt samples. 176Hf/177Hf is positively correlated with 143Nd/144Nd, and negatively correlated with 87Sr/86Sr and 206Pb/204Pb. Along the Iceland-Reykjanes ridge traverse, 176Hf/177Hf increases southwards. The coherence of Hf, Nd and Sr isotopes in the oceanic mantle allows an approximate bulk Earth 176Hf/177Hf of 0.28295 to be inferred from the bulk Earth 143Nd/144Nd. This requires the bulk Earth Lu/Hf to be 0.25, similar to that of the Juvinas eucrite. 60% of the Hf isotopic variation in oceanic basalts occurs among mid-ocean ridge samples. Lu-Hf fractionation probably decouples from Sm-Nd and Rb-Sr fractionation in very depleted source regions, with high Lu/Hf, and consequent high 176Hf/177Hf ratios developing in mantle residual from partial melting. (Authors' abstract) -T.R.

  8. Identifying recycled ash in basaltic eruptions.

    PubMed

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-28

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These 'recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  9. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  10. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  11. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  12. Post-Eocene Subduction Dynamics and Mantle Flow beneath Western U.S.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhou, Q.; Leonard, T.

    2015-12-01

    Both surface geology and mantle seismic images suggest a complex late Cenozoic history of mantle dynamics over western U.S. We try to understand this history by simulating the Farallon subduction since 40 Ma. Forward subduction models assimilating time dependent seafloor ages, plate kinematics and evolving plate boundaries suggest that the present-day 3D distribution of fast seismic anomalies below western U.S. mostly represent late Cenozoic slabs, which experienced multiple phases of segmentation during subduction because of their young age and small mechanical strength (Liu & Stegman, 2011). A major slab segmentation event occurred around mid-Miocene, with the resulting slab tear and induced asthenosphere upwelling correlating with the Steens-Columbia River flood basalts (SCRB) eruption both in space and in time (Liu & Stegman, 2012). This suggests that a mantle plume is not required for the formation of the SCRB. Segmentation