Grating-Based Phase-Contrast Imaging of Tumor Angiogenesis in Lung Metastases
Li, Xiangting; Wang, Yujie; Ding, Bei; Shi, Chen; Liu, Huanhuan; Tang, Rongbiao; Sun, Jianqi; Yan, Fuhua; Zhang, Huan
2015-01-01
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases. PMID:25811626
Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy
2016-01-01
Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.
Matsumoto, Takeshi; Goto, Daichi; Sato, Syota
2013-09-01
Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. Using the same drill-hole defect model, its potential use was illustrated by comparison of bone repair between hindlimbs subjected to mechanical unloading (n = 6) and normal weight bearing (n = 6) for 10 days. Following vascular casting with ZrCA, the defect site was scanned with 17.9- and 18.1-keV X-rays. In the latter, image contrast between ZrCA-filled vasculature and bone was enhanced owing to the sharp absorption jump of zirconium dioxide at 18.0 keV (k-edge). The two scan data sets were reconstructed with 2.74-μm voxel resolution, registered by mutual information, and digitally subtracted to extract the contrast-enhanced vascular image. K2HPO4 phantom solutions were scanned at 17.9 keV for quantitative evaluation of bone mineral. Angiogenesis had already started, but new bone formation was not found on DAY3. New bone emerged near the defect boundary on DAY5 and took the form of trabecular-like structure invaded by microvessels on DAY10. Vascular and bone volume fractions, blood vessel and bone thicknesses, and mineralization were higher on DAY10 than on DAY5. All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better understanding the linkage between angiogenesis and bone repair.
Molecular Imaging of Tumor Angiogenesis and Therapeutic Effects with Dual Bioluminescence.
Wang, Ran; Zhang, Kaiyue; Tao, Hongyan; Du, Wei; Wang, Di; Huang, Ziwei; Zhou, Manqian; Xu, Yang; Wang, Yuebing; Liu, Na; Wang, Hui; Li, Zongjin
2017-01-01
Angiogenesis is critical for the growth of tumor by supplying nutrients and oxygen that exacerbates the metastasis and progression of cancer. Noninvasive imaging of angiogenesis during the tumor therapeutic processes may provide novel opportunities for image-guided tumor management. Here, we want to develop a mouse animal model for assessing cancer progression and angiogenesis in the same individuals by molecular imaging. Breast cancer model was developed with mouse breast cancer cell line 4T1 carrying a reporter system encoding a triple fusion (TF) reporter gene consisting of renilla luciferase (Rluc), red fluorescent protein (RFP) and herpes simplex virus truncated thymidine kinase (HSV-ttk) in transgenic mice, which expressed firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc). The mice were subsequently treated with ganciclovir (GCV) and the tumor angiogenesis was tracked by Fluc imaging and the growth status of tumor was monitored by imaging of Rluc simultaneously. Overall, this traceable breast cancer model can simultaneously image the tumor growth and angiogenesis in single individual, which may facilitate a better understanding the mechanisms of angiogenesis in the progression and regression of tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Forsberg, Flemming; Ro, Raymond J.; Fox, Traci B; Liu, Ji-Bin; Chiou, See-Ying; Potoczek, Magdalena; Goldberg, Barry B
2010-01-01
The purpose of this study was to prospectively compare noninvasive, quantitative measures of vascularity obtained from 4 contrast enhanced ultrasound (US) techniques to 4 invasive immunohistochemical markers of tumor angiogenesis in a large group of murine xenografts. Glioma (C6) or breast cancer (NMU) cells were implanted in 144 rats. The contrast agent Optison (GE Healthcare, Princeton, NJ) was injected in a tail vein (dose: 0.4ml/kg). Power Doppler imaging (PDI), pulse-subtraction harmonic imaging (PSHI), flash-echo imaging (FEI), and Microflow imaging (MFI; a technique creating maximum intensity projection images over time) was performed with an Aplio scanner (Toshiba America Medical Systems, Tustin, CA) and a 7.5 MHz linear array. Fractional tumor neovascularity was calculated from digital clips of contrast US, while the relative area stained was calculated from specimens. Results were compared using a factorial, repeated measures ANOVA, linear regression and z-tests. The tortuous morphology of tumor neovessels was visualized better with MFI than with the other US modes. Cell line, implantation method and contrast US imaging technique were significant parameters in the ANOVA model (p<0.05). The strongest correlation determined by linear regression in the C6 model was between PSHI and percent area stained with CD31 (r=0.37, p<0.0001). In the NMU model the strongest correlation was between FEI and COX-2 (r=0.46, p<0.0001). There were no statistically significant differences between correlations obtained with the various US methods (p>0.05). In conclusion, the largest study of contrast US of murine xenografts to date has been conducted and quantitative contrast enhanced US measures of tumor neovascularity in glioma and breast cancer xenograft models appear to provide a noninvasive marker for angiogenesis; although the best method for monitoring angiogenesis was not conclusively established. PMID:21144542
In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis.
Yang, Yunan; Zhang, Yin; Hong, Hao; Liu, Glenn; Leigh, Bryan R; Cai, Weibo
2011-11-01
Angiogenesis is an indispensable process during tumor development. The currently accepted standard method for quantifying tumor angiogenesis is to assess microvessel density (MVD) based on CD105 staining, which is an independent prognostic factor for survival in patients with most solid tumor types. The goal of this study is to evaluate tumor angiogenesis in a mouse model by near-infrared fluorescence (NIRF) imaging of CD105 expression. TRC105, a human/murine chimeric anti-CD105 monoclonal antibody, was conjugated to an NIRF dye (IRDye 800CW; Ex: 778 nm; Em: 806 nm). FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and 800CW-TRC105. In vivo/ex vivo NIRF imaging, blocking studies, and ex vivo histology were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of 800CW-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and 800CW-TRC105, which was further validated by fluorescence microscopy. 800CW conjugation of TRC105 was achieved in excellent yield (> 85%), with an average of 0.4 800CW molecules per TRC105. Serial NIRF imaging after intravenous injection of 800CW-TRC105 revealed that the 4T1 tumor could be clearly visualized as early as 30 min post-injection. Quantitative region of interest (ROI) analysis showed that the tumor uptake peaked at about 16 h post-injection. Based on ex vivo NIRF imaging at 48 h post-injection, tumor uptake of 800CW-TRC105 was higher than most organs, thus providing excellent tumor contrast. Blocking experiments, control studies with 800CW-cetuximab and 800CW, as well as ex vivo histology all confirmed the in vivo target specificity of 800CW-TRC105. This is the first successful NIRF imaging study of CD105 expression in vivo. Fast, prominent, persistent, and CD105-specific uptake of the probe during tumor angiogenesis was observed in a mouse model. 800CW-TRC105 may be used in the clinic for imaging tumor angiogenesis within the lesions close to the skin surface, tissues accessible by endoscopy, or during image-guided surgery.
NASA Astrophysics Data System (ADS)
Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo
2017-03-01
Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.
Schalk, Stefan G; Demi, Libertario; Bouhouch, Nabil; Kuenen, Maarten P J; Postema, Arnoud W; de la Rosette, Jean J M C H; Wijkstra, Hessel; Tjalkens, Tjalling J; Mischi, Massimo
2017-03-01
The role of angiogenesis in cancer growth has stimulated research aimed at noninvasive cancer detection by blood perfusion imaging. Recently, contrast ultrasound dispersion imaging was proposed as an alternative method for angiogenesis imaging. After the intravenous injection of an ultrasound-contrast-agent bolus, dispersion can be indirectly estimated from the local similarity between neighboring time-intensity curves (TICs) measured by ultrasound imaging. Up until now, only linear similarity measures have been investigated. Motivated by the promising results of this approach in prostate cancer (PCa), we developed a novel dispersion estimation method based on mutual information, thus including nonlinear similarity, to further improve its ability to localize PCa. First, a simulation study was performed to establish the theoretical link between dispersion and mutual information. Next, the method's ability to localize PCa was validated in vivo in 23 patients (58 datasets) referred for radical prostatectomy by comparison with histology. A monotonic relationship between dispersion and mutual information was demonstrated. The in vivo study resulted in a receiver operating characteristic (ROC) curve area equal to 0.77, which was superior (p = 0.21-0.24) to that obtained by linear similarity measures (0.74-0.75) and (p <; 0.05) to that by conventional perfusion parameters (≤0.70). Mutual information between neighboring time-intensity curves can be used to indirectly estimate contrast dispersion and can lead to more accurate PCa localization. An improved PCa localization method can possibly lead to better grading and staging of tumors, and support focal-treatment guidance. Moreover, future employment of the method in other types of angiogenic cancer can be considered.
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
Charnley, Natalie; Donaldson, Stephanie; Price, Pat
2009-01-01
There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).
Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors
NASA Astrophysics Data System (ADS)
Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.
2002-05-01
The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.
2014-01-01
Background Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. Methods (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. Results A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. Conclusion The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development. PMID:24670127
Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis
Kluza, Ewelina; Van Tilborg, Geralda A. F.; van der Schaft, Daisy W. J.; Griffioen, Arjan W.; Mulder, Willem J. M.; Nicolay, Klaas
2010-01-01
Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy. PMID:20390447
Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.
2015-01-01
Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383
Photoacoustic imaging of angiogenesis in subdermal islet transplant sites
NASA Astrophysics Data System (ADS)
Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James
2016-03-01
Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.
Entropy of Ultrasound-Contrast-Agent Velocity Fields for Angiogenesis Imaging in Prostate Cancer.
van Sloun, Ruud J G; Demi, Libertario; Postema, Arnoud W; Jmch De La Rosette, Jean; Wijkstra, Hessel; Mischi, Massimo
2017-03-01
Prostate cancer care can benefit from accurate and cost-efficient imaging modalities that are able to reveal prognostic indicators for cancer. Angiogenesis is known to play a central role in the growth of tumors towards a metastatic or a lethal phenotype. With the aim of localizing angiogenic activity in a non-invasive manner, Dynamic Contrast Enhanced Ultrasound (DCE-US) has been widely used. Usually, the passage of ultrasound contrast agents thought the organ of interest is analyzed for the assessment of tissue perfusion. However, the heterogeneous nature of blood flow in angiogenic vasculature hampers the diagnostic effectiveness of perfusion parameters. In this regard, quantification of the heterogeneity of flow may provide a relevant additional feature for localizing angiogenesis. Statistics based on flow magnitude as well as its orientation can be exploited for this purpose. In this paper, we estimate the microbubble velocity fields from a standard bolus injection and provide a first statistical characterization by performing a spatial entropy analysis. By testing the method on 24 patients with biopsy-proven prostate cancer, we show that the proposed method can be applied effectively to clinically acquired DCE-US data. The method permits estimation of the in-plane flow vector fields and their local intricacy, and yields promising results (receiver-operating-characteristic curve area of 0.85) for the detection of prostate cancer.
68Ga-NODAGA-RGDyK PET/CT Imaging in Esophageal Cancer: First-in-Human Imaging.
Van Der Gucht, Axel; Pomoni, Anastasia; Jreige, Mario; Allemann, Pierre; Prior, John O
2016-11-01
Ga-NODAGA-RGDyK(cyclic) and FDG PET/CT were performed in a 39-year-old man for the work-up of a moderately differentiated carcinoma of the gastro-esophageal junction within a clinical study protocol. Although FDG PET images showed intense, diffuse hypermetabolic lesion activity, NODAGA-RGDyK illustrated the neo-angiogenesis process with tracer uptake clearly localized in non-FDG-avid perilesional structures. Neo-angiogenesis is characterized by ανβ3 integrin expression at the lesion surface of newly formed vessels. This case supports evidence that angiogenesis imaging might therefore be a crucial step in early disease identification and localization, metastatization potential, and in monitoring the efficacy of antiangiogenic therapies.
Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model
Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang
2017-01-01
Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185
Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron
2015-08-07
Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.
New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases
Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo
2014-01-01
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Sei, Kiguna; Hirasawa, Takeshi; Irisawa, Kaku; Hirota, Kazuhiro; Wada, Takatsugu; Kushibiki, Toshihiro; Furuya, Kenichi; Ishihara, Miya
2017-03-01
For diagnosis of cervical cancer, screening by colposcope and successive biopsy are usually carried out. Colposcope, which is a mesoscope, is used to examine surface of the cervix and to find precancerous lesion grossly. However, the accuracy of colposcopy depends on the skills of the examiner and is inconsistent as a result. Additionally, colposcope lacks depth information. It is known that microvessel density and blood flow in cervical lesion increases associated with angiogenesis. Therefore, photoacoustic imaging (PAI) to detect angiogenesis in cervical lesion has been studied. PAI can diagnose cervical lesion sensitively and provide depth information. The authors have been investigating the efficacy of PAI in the diagnoses of the cervical lesion and cancer by use of the PAI and ultrasonography system with transvaginal probe developed by Fujifilm Corporation. For quantitative diagnosis by use of PAI, it is required to take the light propagation in biological medium into account. The image reconstruction of the absorption coefficient from the PA image of cervix by use of the simulation of light propagation based on finite element method has been tried in this study. Numerical simulation, phantom experiment and in vivo imaging were carried out.
2008-08-01
AD_________________ Award Number: W81XWH-04-1-0697 TITLE: Alpha -v Integrin Targeted PET Imaging of...SUBTITLE 5a. CONTRACT NUMBER Alpha -v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low- Dose Metronomic Anti-Angiogenic...Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer” was published in Eur J Nucl
Review of photoacoustic flow imaging: its current state and its promises
van den Berg, P.J.; Daoudi, K.; Steenbergen, W.
2015-01-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages. PMID:26640771
Review of photoacoustic flow imaging: its current state and its promises.
van den Berg, P J; Daoudi, K; Steenbergen, W
2015-09-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.
Xuesong, Du; Wei, Xue; Heng, Liu; Xiao, Chen; Shunan, Wang; Yu, Guo; Weiguo, Zhang
2017-09-01
Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been proved useful in evaluating glioma angiogenesis, but the utility in evaluating neovascularization patterns has not been reported. Purpose To evaluate in vivo real-time glioma neovascularization patterns by measuring glioma perfusion quantitatively using DCE-MRI. Material and Methods Thirty Sprague-Dawley rats were used to establish C6 orthotopic glioma model and underwent MRI and pathology detections. As MRI and pathology were performed at six time points (i.e. 4, 8, 12, 16, 20, and 24 days) post transplantation, neovascularization patterns were evaluated via DCE-MRI. Results Four neovascularization patterns were observed in glioma tissues. Sprout angiogenesis and intussusceptive microvascular growth located inside tumor, while vascular co-option and vascular mimicry were found in the tumor margin and necrotic area, respectively. Sprout angiogenesis and intussusceptive microvascular growth increased with K trans , K ep , and V p inside tumor tissue. In addition, K ep and V p were positively correlated with sprout angiogenesis and intussusceptive microvascular growth. Vascular co-option was decreased at 12 and 16 days post transplantation and correlated negatively with K trans and K ep detected in the glioma margin, respectively. Changes of vascular mimicry showed no significant statistical difference at the six time points. Conclusion Our results indicate that DCE-MRI can evaluate neovascularization patterns in a glioma model. Furthermore, DCE-MRI could be an imaging biomarker for guidance of antiangiogenic treatments in humans in the future.
Velikyan, Irina; Lindhe, Örjan
2018-01-01
Monitoring general disease marker such as angiogenesis may contribute to the development of personalized medicine and improve therapy outcome. Readily availability of positron emitter based imaging agents providing quantification would expand clinical positron emission tomography (PET) applications. Generator produced 68Ga provides PET images of high resolution and the half-life time frame is compatible with the pharmacokinetics of small peptides comprising arginine-glycine-aspartic acid (RGD) sequence specific to αvβ3 integrin receptors. The main objective of this study was to develop a method for 68Ga-labeling of RGD containing bicyclic octapeptide ([68Ga]Ga-DOTA-RGD) with high specific radioactivity and preclinically assess its imaging potential. DOTA-RGD was labeled using generator eluate preconcentration technique and microwave heating. The binding and organ distribution properties of [68Ga]Ga-DOTA-RGD were tested in vitro by autoradiography of frozen tumor sections, and in vivo in mice carrying a Lewis Lung carcinoma graft (LL2), and in non-human primate (NHP). Another peptide with aspartic acid-glycine-phenylalanine sequence was used as a negative control. The full 68Ga radioactivity eluted from two generators was quantitatively incorporated into 3-8 nanomoles of the peptide conjugates. The target binding specificity was confirmed by blocking experiments. The specific uptake in the LL2 mice model was observed in vivo and confirmed in the corresponding ex vivo biodistribution experiments. Increased accumulation of the radioactivity was detected in the wall of the uterus of the female NHP probably indicating neovascularization. [68Ga]Ga-DOTA-RGD demonstrated potential for the imaging of angiogenesis. PMID:29531858
Hyoun Kim, Myoung; Kim, Seul-Gi; Guhn Kim, Chang; Kim, Dae-Weung
2017-03-01
The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wall, Alexander; Persigehl, Thorsten; Hauff, Peter; Licha, Kai; Schirner, Michael; Müller, Silke; von Wallbrunn, Angelika; Matuszewski, Lars; Heindel, Walter; Bremer, Christoph
2008-01-01
Introduction Use of fluorescence imaging in oncology is evolving rapidly, and nontargeted fluorochromes are currently being investigated for clinical application. Here, we investigated whether the degree of tumour angiogenesis can be assessed in vivo by planar and tomographic methods using the perfusion-type cyanine dye SIDAG (1,1'-bis- [4-sulfobutyl]indotricarbocyanine-5,5'-dicarboxylic acid diglucamide monosodium). Method Mice were xenografted with moderately (MCF7, DU4475) or highly vascularized (HT1080, MDA-MB435) tumours and scanned up to 24 hours after intravenous SIDAG injection using fluorescence reflectance imaging. Contrast-to-noise ratio was calculated for all tumours, and fluorochrome accumulation was quantified using fluorescence-mediated tomography. The vascular volume fraction of the xenografts, serving as a surrogate marker for angiogenesis, was measured using magnetic resonance imaging, and blood vessel profile (BVP) density and vascular endothelial growth factor expression were determined. Results SIDAG accumulation correlated well with angiogenic burden, with maximum contrast to noise ratio for MDA-MB435 (P < 0.0001), followed by HT1080, MCF7 and DU4475 tumours. Fluorescence-mediated tomography revealed 4.6-fold higher fluorochrome concentrations in MDA-MB435 than in DU4475 tumours (229 ± 90 nmol/l versus 49 ± 22 nmol/l; P < 0.05). The vascular volume fraction was 4.5-fold (3.58 ± 0.9% versus 0.8 ± 0.53%; P < 0.01), blood vessel profile density 5-fold (399 ± 36 BVPs/mm2 versus 78 ± 16 BVPs/mm2) and vascular endothelial growth factor expression 4-fold higher for MDA-MB435 than for DU4475 tumours. Conclusion Our data suggest that perfusion-type cyanine dyes allow assessment of angiogenesis in vivo using planar or tomographic imaging technology. They may thus facilitate characterization of solid tumours. PMID:18331624
Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients.
Ranieri, Girolamo; Ammendola, Michele; Patruno, Rosa; Celano, Giuseppe; Zito, Francesco Alfredo; Montemurro, Severino; Rella, Addolorata; Di Lecce, Valentina; Gadaleta, Cosmo Damiano; Battista De Sarro, Giovanni; Ribatti, Domenico
2009-07-01
Literature data indicate that mast cells (MCs) are involved in tumor angiogenesis due to the release of several pro-angiogenetic factors among which tryptase, a serine protease stored in MCs granules, is one of the most active. However, no data are available concerning the role of MCs in angiogenesis in primary human breast cancer. In this study, we have evaluated the correlations between the number of MCs positive to tryptase (MCDPT), the area occupied by MCs positive to tryptase (MCAPT) and microvascular density (MVD) and endothelial area (EA) in a series of 88 primary T1-3, N0-2 M0 female breast cancer, by means of immunohistochemistry and image analysis methods. Data demonstrated a significant (r = from 0.78 to 0.89; p-value from 0.001 to 0.002 by Pearson's analysis respectively) correlation between MCDPT, MCAPT, MVD, EA to each other. No correlation concerning MCDPT, MCAPT, MVD, EA and the main clinicopathological features was found. Our results suggest that tryptase-positive MCs play a role in breast cancer angiogenesis. In this context several tryptase inhibitors such as gabexate mesilate and nafamostat mesilate might be evaluated in clinical trials as a new anti-angiogenetic approach.
In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion.
Lungu, Gina F; Li, Meng-Lin; Xie, Xueyi; Wang, Lihong V; Stoica, George
2007-01-01
Hypoxia is a critical event in tumor progression and angiogenesis. Hypoxia can be detected noninvasively by a novel spectroscopic photoacoustic tomography technology (SPAT) and this finding is supported by our molecular biology investigation aimed to elucidate the etiopathogenesis of SPAT detected hypoxia and angiogenesis. The present study provides an integrated approach to define oxygen status (hypoxia) of intracranial tumor xenografts using spectroscopic photoacoustic tomography. Brain tumors can be identified based on their distorted vascular architecture and oxygen saturation (SO2) images. Noninvasive in vivo tumor oxygenation imaging using SPAT is based on the spectroscopic absorption differences between oxyhemoglobin (O2Hb) and deoxyhemoblobin (HHb). Sprague-Dawley rats inoculated intracranially with ENU1564, a carcinogen-induced rat mammary adenocarcinoma cell line, were imaged with SPAT three weeks post inoculation. Proteins important for tumor angiogenesis and invasion were detected in hypoxic brain foci identified by SPAT and were elevated compared with control brain. Immunohistochemistry, Western blotting, and semi-quantitative RT-PCR showed that HIF-1 alpha, VEGF-A, and VEGFR2 (Flk-1) protein and mRNA expression levels were significantly higher (P < 0.05) in brain tumor tissues compared to normal brain. Gelatin zymography and RT-PCR demonstrated the upregulation of MMP-9 in tumor foci compared with brain control. Together these results suggest the critical role of hypoxia in driving tumor angiogenesis and invasion through upregulation of target genes important for these functions. Moreover this report validates our hypothesis that a novel noninvasive technology (SPAT) developed in our laboratory is suitable for detection of tumors, hypoxia, and angiogenesis.
Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M
2017-04-01
Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.
Samén, Erik; Lu, Li; Mulder, Jan; Thorell, Jan-Olov; Damberg, Peter; Tegnebratt, Tetyana; Holmgren, Lars; Rundqvist, Helene; Stone-Elander, Sharon
2014-03-26
Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development.
NASA Astrophysics Data System (ADS)
Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe
2017-10-01
Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.
Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions
Winter, P. M.; Caruthers, S. D.; Hughes, M. S.; Hu, Grace; Schmieder, A. H.; Wickline, S. A.
2011-01-01
Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, “molecular imaging” is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the “magic bullet” envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies. PMID:20411320
Contrast agents in dynamic contrast-enhanced magnetic resonance imaging
Yan, Yuling; Sun, Xilin; Shen, Baozhong
2017-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647
Wang, Shiying; Herbst, Elizabeth B.; Mauldin, F. William; Diakova, Galina B.; Klibanov, Alexander L.; Hossack, John A.
2016-01-01
Objectives The objective of this study is to evaluate the minimum microbubble dose for ultrasound molecular imaging to achieve statistically significant detection of angiogenesis in a mouse model. Materials and Methods The pre-burst minus post-burst method was implemented on a Verasonics ultrasound research scanner using a multi-frame compounding pulse inversion imaging sequence. Biotinylated lipid (distearoyl phosphatidylcholine, DSPC-based) microbubbles that were conjugated with anti-vascular endothelial growth factor 2 (VEGFR2) antibody (MBVEGFR2) or isotype control antibody (MBControl) were injected into mice carrying adenocarcinoma xenografts. Different injection doses ranging from 5 × 104 to 1 × 107 microbubbles per mouse were evaluated to determine the minimum diagnostically effective dose. Results The proposed imaging sequence was able to achieve statistically significant detection (p < 0.05, n = 5) of VEGFR2 in tumors with a minimum MBVEGFR2 injection dose of only 5 × 104 microbubbles per mouse (DSPC at 0.053 ng/g mouse body mass). Non-specific adhesion of MBControl at the same injection dose was negligible. Additionally, the targeted contrast ultrasound signal of MBVEGFR2 decreased with lower microbubble doses, while non-specific adhesion of MBControl increased with higher microbubble doses. Conclusions 5 × 104 microbubbles per animal is now the lowest injection dose on record for ultrasound molecular imaging to achieve statistically significant detection of molecular targets in vivo. Findings in this study provide us with further guidance for future developments of clinically translatable ultrasound molecular imaging applications using a lower dose of microbubbles. PMID:27654582
Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model
NASA Astrophysics Data System (ADS)
Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James
2016-06-01
Islet transplantation (IT) is an established clinical therapy for select patients with type-1 diabetes. Clinically, the hepatic portal vein serves as the site for IT. Despite numerous advances in clinical IT, limitations remain, including early islet cell loss posttransplant, procedural complications, and the inability to effectively monitor islet grafts. Hence, alternative sites for IT are currently being explored, with the subcutaneous space as one potential option. When left unmodified, the subcutaneous space routinely fails to promote successful islet engraftment. However, when employing the previously developed subcutaneous "deviceless" technique, a favorable microenvironment for islet survival and function is established. In this technique, an angiocatheter was temporarily implanted subcutaneously, which facilitated angiogenesis to promote subsequent islet engraftment. This technique has been employed in preclinical animal models, providing a sufficient means to develop techniques to monitor functional aspects of the graft such as angiogenesis. Here, we utilize photoacoustic imaging to track angiogenesis during the priming of the subcutaneous site by the implanted catheter at 1 to 4 weeks postcatheter. Quantitative analysis on vessel densities shows gradual growth of vasculature in the implant position. These results demonstrate the ability to track angiogenesis, thus facilitating a means to optimize and assess the pretransplant microenvironment.
Study on the tumor-induced angiogenesis using mathematical models.
Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph
2018-01-01
We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.
Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C
2011-10-01
Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T
2013-05-01
Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.
Ma, Wenhui; Li, Guoquan; Wang, Jing; Yang, Weidong; Zhang, Yingqi; Conti, Peter S; Chen, Kai
2014-12-01
Pathological angiogenesis is crucial in tumor growth, invasion and metastasis. Previous studies demonstrated that the vascular endothelial growth inhibitor (VEGI), a member of the tumor necrosis factor superfamily, can be used as a potent endogenous inhibitor of tumor angiogenesis. Molecular probes containing the asparagine-glycine-arginine (NGR) sequence can specifically bind to CD13 receptor which is overexpressed on neovasculature and several tumor cells. Near-infrared fluorescence (NIRF) optical imaging for targeting tumor vasculature offers a noninvasive method for early detection of tumor angiogenesis and efficient monitoring of response to anti-tumor vasculature therapy. The aim of this study was to develop a new NIRF imaging probe on the basis of an NGR-VEGI protein for the visualization of tumor vasculature. The NGR-VEGI fusion protein was prepared from prokaryotic expression, and its function was characterized in vitro. The NGR-VEGI protein was then labeled with a Cy5.5 fluorophore to afford Cy5.5-NGR-VEGI probe. Using the NIRF imaging technique, we visualized and quantified the specific delivery of Cy5.5-NGR-VEGI protein to subcutaneous HT-1080 fibrosarcoma tumors in mouse xenografts. The Cy5.5-NGR-VEGI probe exhibited rapid HT-1080 tumor targeting, and highest tumor-to-background contrast at 8 h post-injection (pi). Tumor specificity of Cy5.5-NGR-VEGI was confirmed by effective blocking of tumor uptake in the presence of unlabeled NGR-VEGI (20 mg/kg). Ex vivo NIRF imaging further confirmed in vivo imaging findings, demonstrating that Cy5.5-NGR-VEGI displayed an excellent tumor-to-muscle ratio (18.93 ± 2.88) at 8 h pi for the non-blocking group and significantly reduced ratio (4.92 ± 0.75) for the blocking group. In conclusion, Cy5.5-NGR-VEGI provided highly sensitive, target-specific, and longitudinal imaging of HT-1080 tumors. As a novel theranostic protein, Cy5.5-NGR-VEGI has the potential to improve cancer treatment by targeting tumor vasculature.
Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth.
Mischi, Massimo; Turco, Simona; Lavini, Cristina; Kompatsiari, Kyveli; de la Rosette, Jean J M C H; Breeuwer, Marcel; Wijkstra, Hessel
2014-08-01
Cancer angiogenesis can be imaged by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pharmacokinetic modeling can be used to assess vascular perfusion and permeability, but the assessment of angiogenic changes in the microvascular architecture remains challenging. This article presents 2 models enabling the characterization of the microvascular architecture by DCE-MRI. The microvascular architecture is reflected in the dispersion coefficient according to the convective dispersion equation. A solution of this equation, combined with the Tofts model, permits defining a dispersion model for magnetic resonance imaging. A reduced dispersion model is also presented. The proposed models were evaluated for prostate cancer diagnosis. Dynamic contrast-enhanced magnetic resonance imaging was performed, and concentration-time curves were calculated in each voxel. The simultaneous generation of parametric maps related to permeability and dispersion was obtained through model fitting. A preliminary validation was carried out through comparison with the histology in 15 patients referred for radical prostatectomy. Cancer localization was accurate with both dispersion models, with an area under the receiver operating characteristic curve greater than 0.8. None of the compared parameters, aimed at assessing vascular permeability and perfusion, showed better results. A new DCE-MRI method is proposed to characterize the microvascular architecture through the assessment of intravascular dispersion, without the need for separate arterial-input-function estimation. The results are promising and encourage further research.
Ronald, James; Nixon, Andrew B; Marin, Daniele; Gupta, Rajan T; Janas, Gemini; Chen, Willa; Suhocki, Paul V; Pabon-Ramos, Waleska; Sopko, David R; Starr, Mark D; Brady, John C; Hurwitz, Herbert I; Kim, Charles Y
2017-10-01
Purpose To identify changes in a broad panel of circulating angiogenesis factors after bland transcatheter arterial embolization (TAE), a purely ischemic treatment for hepatocellular carcinoma (HCC). Materials and Methods This prospective HIPAA-compliant study was approved by the institutional review board. Informed written consent was obtained from all participants prior to entry into the study. Twenty-five patients (21 men; mean age, 61 years; range, 30-81 years) with Liver Imaging Reporting and Data System category 5 or biopsy-proven HCC and who were undergoing TAE were enrolled from October 15, 2014, through December 2, 2015. Nineteen plasma angiogenesis factors (angiopoietin 2; hepatocyte growth factor; platelet-derived growth factor AA and BB; placental growth factor; vascular endothelial growth factor A and D; vascular endothelial growth factor receptor 1, 2, and 3; osteopontin; transforming growth factor β1 and β2; thrombospondin 2; intercellular adhesion molecule 1; interleukin 6 [IL-6]; stromal cell-derived factor 1; tissue inhibitor of metalloproteinases 1; and vascular cell adhesion molecule 1 [VCAM-1]) were measured by using enzyme-linked immunosorbent assays at 1 day, 2 weeks, and 5 weeks after TAE and were compared with baseline levels by using paired Wilcoxon tests. Tumor response was assessed according to modified Response Evaluation Criteria in Solid Tumors (mRECIST). Angiogenesis factor levels were compared between responders and nonresponders by mRECIST criteria by using unpaired Wilcoxon tests. Results All procedures were technically successful with no complications. Fourteen angiogenesis factors showed statistically significant changes following TAE, but most changes were transient. IL-6 was upregulated only 1 day after the procedure, but showed the largest increases of any factor. Osteopontin and VCAM-1 demonstrated sustained upregulation at all time points following TAE. At 3-month follow-up imaging, 11 patients had responses to TAE (complete response, n = 6; partial response, n = 5) and 11 patients were nonresponders (stable disease, n = 9; progressive disease, n = 2). In nonresponders, the percent change in IL-6 on the day after TAE (P = .033) and the mean percent change in osteopontin after TAE (P = .024) were significantly greater compared with those of responders. Conclusion Multiple angiogenesis factors demonstrated significant upregulation after TAE. VCAM-1 and osteopontin demonstrated sustained upregulation, whereas the rest were transient. IL-6 and osteopontin correlated significantly with radiologic response after TAE. © RSNA, 2017.
Clinical biomarkers of angiogenesis inhibition
Brown, Aaron P.; Citrin, Deborah E.; Camphausen, Kevin A.
2009-01-01
Introduction An expanding understanding of the importance of angiogenesis in oncology and the development of numerous angiogenesis inhibitors are driving the search for biomarkers of angiogenesis. We review currently available candidate biomarkers and surrogate markers of anti-angiogenic agent effect. Discussion A number of invasive, minimally invasive, and non-invasive tools are described with their potential benefits and limitations. Diverse markers can evaluate tumor tissue or biological fluids, or specialized imaging modalities. Conclusions The inclusion of these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, prediction of individual response to an agent, insight into the interaction of chemotherapy and radiation following exposure to these agents, and perhaps most importantly, a better understanding of the complex nature of angiogenesis in human tumors. While many markers have potential for clinical use, it is not yet clear which marker or combination of markers will prove most useful. PMID:18414993
NASA Astrophysics Data System (ADS)
Kopeć, Monika; Abramczyk, Halina
2018-06-01
Combined micro-Raman imaging and AFM imaging are efficient methods for analyzing human tissue due to their high spatial and spectral resolution as well as sensitivity to subtle chemical, structural and topographical changes. The aim of this study was to determine biochemical composition and mechanical topography around blood vessels in the tumor mass of human breast tissue. Significant alterations of the chemical composition and structural architecture around the blood vessel were found compared to the normal breast tissue. A pronounced increase of collagen-fibroblast-glycocalyx network, as well as enhanced lactic acid, and glycogen activity in patients affected by breast cancer were reported.
Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K
2012-09-01
To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.
Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay.
Lazarovici, Philip; Lahiani, Adi; Gincberg, Galit; Haham, Dikla; Fluksman, Arnon; Benny, Ofra; Marcinkiewicz, Cezary; Lelkes, Peter I
2018-01-01
Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.
ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.
2010-01-01
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308
Johnson, Lynne L; Schofield, Lorraine; Donahay, Tammy; Bouchard, Mark; Poppas, Athena; Haubner, Roland
2008-07-01
Our aim was to image angiogenesis produced by endomyocardial injection of phVEGF165 in a swine model of hibernating myocardium using [123I]Gluco-arginine-glycine-aspartic acid (RGD) targeting the alphavbeta3 integrins. A noninvasive test to monitor the efficacy of therapy inducing angiogenesis is needed. The interaction between extracellular matrix and endothelial cells in sprouting capillaries is effected primarily by alphavbeta3 integrins that bind through RGD motifs. At 21 +/- 4 days, after left circumflex coronary artery ameroid constrictor placement, 8 swine received endomyocardial injection of 1.2 mg phVEGF165 divided into 6 sites and 6 swine received saline (S) using nonfluoroscopic 3-dimensional endocardial mapping system (Noga)-guided delivery. After 20 +/- 6 days, 13 animals were injected with 6.4 +/- 1.7 mCi [123I]Gluco-RGD, 1 VEGF (vascular endothelial growth factor)-injected animal with I-123-labeled peptide control, and all animals with 2.5 +/- 0.4 mCi of Tl-201 and underwent single-photon emission computed tomography imaging. Blood flow and echocardiographic measurements were made at both time points and tissue analyzed for fibrosis and capillary density by lectin staining. Hibernating myocardium in the ameroid constrictor territory at time of injections was documented by reduced wall thickening compared with remote. Ratio of myocardial blood flow in left circumflex coronary artery/left anterior descending coronary artery territories increased by 15 +/- 11% in the VEGF animals and fell 13 +/- 12% in S-injected (p < 0.01). There was a small increase in wall thickening in constrictor territory after VEGF (8 +/- 17%) while in S-injected animals wall thickening fell by 23 +/- 31% (p = 0.01 vs. VEGF). Lectin staining as percent positive tissue staining for ameroid territory was higher in VEGF-injected compared with S-injected animals (2.5 +/- 1.5% vs. 0.87 +/- 0.52%, p = 0.01). Focal uptake of [123I]Gluco-RGD corresponding to Tl-201 defects was seen in VEGF-injected but not in S-injected animals. [123I]Gluco-RGD uptake in the ameroid territory as percent injected dose correlated with lectin staining (R2 = 0.80, p = 0.002). These data suggest that single-photon emission computed tomography imaging of radiolabeled RGD peptides may be a useful noninvasive method to monitor therapy that induces angiogenesis in the heart.
Molecular Imaging of Ovarian Carcinoma Angiogenesis
2007-03-01
peptides have also been labeled with 18F through electrophilic substitution method (71). The direct fluorination strategy resulted in multiple side...ligand with integrin αvβ3. Substitution of the amino acid in position 4 (D-Phe in lead structure) with tyrosine allows electrophilic radiohalogenation...Hamacher K, Stoecklin G. A comparative study of n.c.a. fluorine -18 labeling of proteins via acylation and photochemical conjugation. Nucl Med Biol. 1996;23
Heterozygous deficiency of δ-catenin impairs pathological angiogenesis | Center for Cancer Research
About the Cover: DeBusk et al. find that δ-catenin expression in vascular endothelial cells is boosted by inflammatory cytokines, and that δ-catenin deficiency impairs tumor angiogenesis in mice. The original immunofluorescence image (right) shows the endothelial marker CD31 (green) in tumor tissue sections from mice injected subcutaneously with Lewis lung carcinoma cells.
NASA Astrophysics Data System (ADS)
Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.
2016-12-01
Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M
2017-03-04
We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G 2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.
2017-01-01
ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464
Extracellular nonmitogenic angiogenesis factor and method of isolation thereof from wound fluid
Banda, Michael J.; Werb, Zena; Knighton, David R.; Hunt, Thomas K.
1985-01-01
A nonmitogenic angiogenesis factor is isolated from wound fluid by dialysis to include materials in the molecular size range of 2,000 to 14,000, lyophilization, and chromatography. The nonmitogenic angiogenesis factor is identified by activity by corneal implant assay and by cell migration assay. The angiogenesis factor is also characterized by inactivity by mitogenesis assay.
Extracellular nonmitogenic angiogenesis factor and method of isolation thereof from wound fluid
Banda, M.J.; Werb, Z.; Knighton, D.R.; Hunt, T.K.
1985-03-05
A nonmitogenic angiogenesis factor is isolated from wound fluid by dialysis to include materials in the molecular size range of 2,000 to 14,000, lyophilization, and chromatography. The nonmitogenic angiogenesis factor is identified by activity by corneal implant assay and by cell migration assay. The angiogenesis factor is also characterized by inactivity by mitogenesis assay. 3 figs.
Chen, Chiao-Chi V; Chen, Yu-Chen; Hsiao, Han-Yun; Chang, Chen; Chern, Yijuang
2013-07-05
The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.
Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro
2015-09-04
The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide.
Nicosia, R. F.; Bonanno, E.
1991-01-01
This study was designed to evaluate the effect of the synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) on angiogenesis in serum-free collagen gel culture of rat aorta. The GRGDS peptide contains the amino acid sequence Arg-Gly-Asp (RGD), which has been implicated as a recognition site in interactions between extracellular matrix (ECM) molecules and cell membrane receptors. RGD-containing synthetic peptides are known to inhibit attachment of endothelial cells to substrates, but their effect on angiogenesis has not been fully characterized. Aortic explants embedded in collagen gel in the absence of GRGDS generated branching microvessels through a process of endothelial migration and proliferation. Addition of GRGDS to the culture medium caused a marked inhibition of angiogenesis. In contrast, GRGES, a control peptide lacking the RGD sequence, failed to inhibit angiogenesis. The inhibitory effect of GRGDS was nontoxic and reversible. The angiogenic activity of aortic explants previously inhibited with GRGDS could be restored by incubating the cultures in GRGDS-free medium. These findings suggest that angiogenesis is an anchorage-dependent process that can be inhibited by interfering with the attachment of endothelial cells to the ECM. It also indicates that synthetic peptides can be used as probes to study the mechanisms by which the ECM regulates angiogenesis. Images Figure 1 PMID:1707235
Kopeć, Monika; Abramczyk, Halina
2018-06-05
Combined micro-Raman imaging and AFM imaging are efficient methods for analyzing human tissue due to their high spatial and spectral resolution as well as sensitivity to subtle chemical, structural and topographical changes. The aim of this study was to determine biochemical composition and mechanical topography around blood vessels in the tumor mass of human breast tissue. Significant alterations of the chemical composition and structural architecture around the blood vessel were found compared to the normal breast tissue. A pronounced increase of collagen-fibroblast-glycocalyx network, as well as enhanced lactic acid, and glycogen activity in patients affected by breast cancer were reported. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Elliott, Katherine E.; Farr, Andrew G.; Radhakrishnan, Krishnan; Clark, John I.; Sage, E. Helene
2000-01-01
Quantitative analysis of vascular generational branching demonstrated that transforming growth factor-beta1 (TGF-beta1), a multifunctional cytokine and angiogenic regulator, strongly inhibited angiogenesis in the arterial tree of the developing quail chorioallantoic membrane (CAM) by inhibition of the normal increase in the number of new, small vessels. The cytokine was applied uniformly in solution at embryonic day 7 (E7) to the CAMs of quail embryos cultured in petri dishes. After 24 h the rate of arterial growth was inhibited by as much as 105% as a function of increasing TGF-beta1 concentration. Inhibition of the rate of angiogenesis in the arterial tree by TGF-beta1 relative to controls was measured in digital images by three well-correlated, computerized methods. The first computerized method, direct measurement by the computer code VESGEN of vascular morphological parameters according to branching generations G(sub 1) through G(sub greater than or equal to 5), revealed that TGF-beta1 selectively inhibited the increase in the number density of small vessels, N(sub v greater than or equal to 5), (382 plus or minus 85 per square centimeter) for specimens treated with 1 microgram TGF-beta1/CAM for 24 h, compared to 583 plus or minus 99 per square centimeter for controls), but did not significantly affect other parameters such as average vessel length or vessel diameter. The second and third methods, the fractal dimension (D(sub f)) and grid intersection (rho (sub v)), are statistical descriptors of spatial pattern and density. According to D(sub f) and rho(sub v), arterial density increased in control specimens from 1.382 plus or minus 0.007 and 662 plus or minus 52 per square centimeters at E7 (0 h) to 1.439 plus or minus 0.013 and 884 plus or minus 55 per square centimeters at E8 (24 h), compared to 1.379 plus or minus 0.039 and 650 plus or minus 111 per square centimeter for specimens treated with 1 microgram TGF-beta1/CAM for 24 h. TGF-beta1 therefore regulates vascular pattern and the rate of angiogenesis in a unique fingerprint manner, as do other major angiogenic regulators that include VEGF, FGF-2 (bFGF), and angiostatin. TGF-beta1 did not stimulate angiogenesis significantly at low cytokine concentrations, which suggests that this quail CAM model of angiogenesis is not associated with an inflammatory response.
NASA Technical Reports Server (NTRS)
Smith, Genee S.
2004-01-01
Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.
Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo
2015-01-01
For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death. PMID:26703586
Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo
2015-12-22
For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.
Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor
Brar, Rondeep; West, Robert; Witten, Daniela; Raman, Bhargav; Jacobs, Charlotte; Ganjoo, Kristen
2009-01-01
Purpose Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy. PMID:20737044
PET imaging of tumor angiogenesis in mice with VEGF-A targeted 86Y-CHX-A″-DTPA-bevacizumab
Nayak, Tapan K.; Garmestani, Kayhan; Baidoo, Kwamena E.; Milenic, Diane E.; Brechbiel, Martin W.
2010-01-01
Bevacizumab is a humanized monoclonal antibody that binds to tumor-secreted VEGF-A and inhibits tumor angiogenesis. In 2004, the antibody was approved by the United States FDA for the treatment of metastatic colorectal carcinoma in combination with chemotherapy. This report describes the preclinical evaluation of a radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for potential use in PET imaging of VEGF-A tumor angiogenesis and as a surrogate marker for 90Y based radioimmunotherapy. Bevacizumab was conjugated to CHX-A″-DTPA and radiolabeled with 86Y. In vivo biodistribution and PET imaging studies were performed on mice bearing VEGF-A secreting human colorectal (LS-174T), human ovarian (SKOV-3) and VEGF-A negative human mesothelioma (MSTO-211H) xenografts. Biodistribution and PET imaging studies demonstrated high specific tumor uptake of the radioimmunoconjugate. In mice bearing VEGF-A secreting LS-174T, SKOV-3 and VEGF-A negative MSTO-211H tumors, the tumor uptake at 3 d post-injection (p.i) was 13.6 ± 1.5, 17.4 ± 1.7 and 6.8 ± 0.7 % ID/g, respectively. The corresponding tumor uptake in mice co-injected with 0.05 mg cold bevacizumab were 5.8 ± 1.3, 8.9 ± 1.9 and 7.4 ± 1.0 % ID/g, respectively at the same time point, demonstrating specific blockage of the target in VEGF-A secreting tumors. The LS-174T and SKOV3 tumors were clearly visualized by PET imaging after injecting 1.8–2.0 MBq 86Y-CHX-A″-DTPA-bevacizumab. Organ uptake quantified by PET closely correlated (r2=0.87, p=0.64, n=18) to values determined by biodistribution studies. This preclinical study demonstrates the potential of the radioimmunoconjugate, 86Y-CHX-A″-DTPA-bevacizumab, for non-invasive assessment of the VEGF-A tumor angiogenesis status and as a surrogate marker for 90Y-CHX-A″-DTPA-bevacizumab radioimmunotherapy. PMID:20473899
Boles, Kent S.; Schmieder, Anne H.; Koch, Alexander W.; Carano, Richard A. D.; Wu, Yan; Caruthers, Shelton D.; Tong, Raymond K.; Stawicki, Scott; Hu, Grace; Scott, Michael J.; Zhang, Huiying; Reynolds, Benton A.; Wickline, Samuel A.; Lanza, Gregory M.
2010-01-01
The primary objective of this study was to utilize MR molecular imaging to compare the 3-dimensional spatial distribution of Robo4 and αVβ3-integrin as biosignatures of angiogenesis, in a rapidly growing, syngeneic tumor. B16-F10 melanoma-bearing mice were imaged with magnetic resonance (MR; 3.0 T) 11 d postimplantation before and after intravenous administration of either Robo4- or αVβ3-targeted paramagnetic nanoparticles. The percentage of MR signal-enhanced voxels throughout the tumor volume was low and increased in animals receiving αVβ3- and Robo4-targeted nanoparticles. Neovascular signal enhancement was predominantly associated with the tumor periphery (i.e., outer 50% of volume). Microscopic examination of tumors coexposed to the Robo4- and αVβ3-targeted nanoparticles corroborated the MR angiogenesis mapping results and further revealed that Robo4 expression generally colocalized with αVβ3-integrin. Robo4- and αVβ3-targeted nanoparticles were compared to irrelevant or nontargeted control groups in all modalities. These results suggest that αVβ3-integrin and Robo4 are useful biomarkers for noninvasive MR molecular imaging in syngeneic mouse tumors, but αVβ3-integrin expression was more detectable by MR at 3.0 T than Robo4. Noninvasive, neovascular assessments of the MR signal of Robo4, particularly combined with αVβ3-integrin expression, may help define tumor character prior to and following cancer therapy.—Boles, K. S., Schmieder, A. H., Koch, A. W., Carano, R. A. D., Wu, Y., Caruthers, S. D., Tong, R. K., Stawicki, S., Hu, G., Scott, M. J., Zhang, H., Reynolds, B. A., Wickline, S. A., and Lanza, G. M. MR angiogenesis imaging with Robo4- vs. αVβ3-targeted nanoparticles in a B16/F10 mouse melanoma model. PMID:20585027
Fantin, Alessandro; Vieira, Joaquim M; Plein, Alice; Maden, Charlotte H; Ruhrberg, Christiana
2013-02-01
The mouse embryo hindbrain is a robust and adaptable model for studying sprouting angiogenesis. It permits the spatiotemporal analysis of organ vascularization in normal mice and in mouse strains with genetic mutations that result in late embryonic or perinatal lethality. Unlike postnatal models such as retinal angiogenesis or Matrigel implants, there is no requirement for the breeding of conditional knockout mice. The unique architecture of the hindbrain vasculature allows whole-mount immunolabeling of blood vessels and high-resolution imaging, as well as easy quantification of angiogenic sprouting, network density and vessel caliber. The hindbrain model also permits the visualization of ligand binding to blood vessels in situ and the analysis of blood vessel growth within a natural multicellular microenvironment in which endothelial cells (ECs) interact with non-ECs to refine the 3D organ architecture. The entire procedure, from embryo isolation to imaging and through to results analysis, takes approximately 4 d.
Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours
Thompson, G; Mills, S J; Coope, D J; O’connor, J P B; Jackson, A
2011-01-01
Conventional contrast-enhanced CT and MRI are now in routine clinical use for the diagnosis, treatment and monitoring of diseases in the brain. The presence of contrast enhancement is a proxy for the pathological changes that occur in the normally highly regulated brain vasculature and blood-brain barrier. With recognition of the limitations of these techniques, and a greater appreciation for the nuanced mechanisms of microvascular change in a variety of pathological processes, novel techniques are under investigation for their utility in further interrogating the microvasculature of the brain. This is particularly important in tumours, where the reliance on angiogenesis (new vessel formation) is crucial for tumour growth, and the resulting microvascular configuration and derangement has profound implications for diagnosis, treatment and monitoring. In addition, novel therapeutic approaches that seek to directly modify the microvasculature require more sensitive and specific biological markers of baseline tumour behaviour and response. The currently used imaging biomarkers of angiogenesis and brain tumour microvascular environment are reviewed. PMID:22433824
NASA Astrophysics Data System (ADS)
Hu, Fangyao; Morhard, Robert; Liu, Heather; Murphy, Helen; Farsiu, Sina; Ramanujam, Nimmi
2016-03-01
Inducing angiogenesis is one hallmark of cancer. Tumor induced neovasculature is often characterized as leaky, tortuous and chaotic, unlike a highly organized normal vasculature. Additionally, in the course of carcinogenesis, angiogenesis precedes a visible lesion. Tumor cannot grow beyond 1-2 mm in diameter without inducing angiogenesis. Therefore, capturing the event of angiogenesis may aid early detection of pre-cancer -important for better treatment prognoses in regions that lack the resources to manage invasive cancer. In this study, we imaged the neovascularization in vivo in a spontaneous hamster cheek pouch carcinogen model using a, non-invasive, label-free, high resolution, reflected-light spectral darkfield microscope. Hamsters' cheek pouches were painted with 7,12-Dimethylbenz[a]anthracene (DMBA) to induce pre-cancerous to cancerous changes, or mineral oil as control. High resolution spectral darkfield images were obtained over the course of pre-cancer development and in control cheek pouches. The vasculature was segmented with a multi-scale Gabor filter with an 85% accuracy compared with manually traced masks. Highly tortuous vasculature was observed only in the DMBA treated cheek pouches as early as 6 weeks of treatment. In addition, the highly tortuous vessels could be identified before a visible lesion occurred later during the treatment. The vessel patterns as determined by the tortuosity index were significantly different from that of the control cheek pouch. This preliminary study suggests that high-resolution darkfield microscopy is promising tool for pre-cancer and early cancer detection in low resource settings.
75 FR 77885 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... of federally-funded research and development. Foreign patent applications are filed on selected... applications. Software System for Quantitative Assessment of Vasculature in Three Dimensional Images... three dimensional vascular networks from medical and basic research images. Deregulation of angiogenesis...
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. Copyright © 2014 Elsevier Inc. All rights reserved.
Salavati, Hooman; Soltani, M; Amanpour, Saeid
2018-05-06
The mechanisms involved in tumor growth mainly occur at the microenvironment, where the interactions between the intracellular, intercellular and extracellular scales mediate the dynamics of tumor. In this work, we present a multi-scale model of solid tumor dynamics to simulate the avascular and vascular growth as well as tumor-induced angiogenesis. The extracellular and intercellular scales are modeled using partial differential equations and cellular Potts model, respectively. Also, few biochemical and biophysical rules control the dynamics of intracellular level. On the other hand, the growth of melanoma tumors is modeled in an animal in-vivo study to evaluate the simulation. The simulation shows that the model successfully reproduces a completed image of processes involved in tumor growth such as avascular and vascular growth as well as angiogenesis. The model incorporates the phenotypes of cancerous cells including proliferating, quiescent and necrotic cells, as well as endothelial cells during angiogenesis. The results clearly demonstrate the pivotal effect of angiogenesis on the progression of cancerous cells. Also, the model exhibits important events in tumor-induced angiogenesis like anastomosis. Moreover, the computational trend of tumor growth closely follows the observations in the experimental study. Copyright © 2018 Elsevier Inc. All rights reserved.
Yan, Fei; Xu, Xiuxia; Chen, Yihan; Deng, Zhiting; Liu, Hongmei; Xu, Jianrong; Zhou, Jie; Tan, Guanghong; Wu, Junru; Zheng, Hairong
2015-10-01
The design and fabrication of targeted ultrasound contrast agents are key factors in the success of ultrasound molecular imaging applications. Here, we introduce a transformable αvβ3 integrin-targeted microbubble (MB) by incorporation of iRGD-lipopeptides into the MB membrane for non-invasive ultrasound imaging of tumor angiogenesis. First, the iRGD-lipopeptides were synthesized by conjugating iRGD peptides to distearoylphosphatidylethanolamine-polyethylene glycol 2000-maleimide. The resulting iRGD-lipopeptides were used for fabrication of the iRGD-carrying αvβ3 integrin-targeted MBs (iRGD-MBs). The binding specificity of iRGD-MBs for endothelial cells was found to be significantly stronger than that of control MBs (p < 0.01) under in vitro static and dynamic conditions. The binding of iRGD-MBs on the endothelial cells was competed off by pre-incubation with the anti-αv or anti-β3 antibody (p < 0.01). Ultrasound images taken of mice bearing 4T1 breast tumors after intravenous injections of iRGD-MBs or control MBs revealed strong contrast enhancement within the tumors from iRGD-MBs but not from the control MBs; the mean acoustic signal intensity was 10.71 ± 2.75 intensity units for iRGD-MBs versus 1.13 ± 0.18 intensity units for the control MBs (p < 0.01). The presence of αvβ3 integrin was confirmed by immunofluorescence staining. These data indicate that iRGD-MBs can be used as an ultrasound imaging probe for the non-invasive molecular imaging of tumor angiogenesis, and may have further implications for ultrasound image-guided tumor targeting drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
75 FR 77882 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... of federally-funded research and development. Foreign patent applications are filed on selected... applications. Software System for Quantitative Assessment of Vasculature in Three Dimensional Images... vascular networks from medical and basic research images. Deregulation of angiogenesis plays a major role...
Naringin improves random skin flap survival in rats
Cheng, Liang; Chen, Tingxiang; Tu, Qiming; Li, Hang; Feng, Zhenghua; Li, Zhijie; Lin, Dingsheng
2017-01-01
Background Random-pattern flap transfer is commonly used to treat soft-tissue defects. However, flap necrosis remains a serious problem. Naringin accelerates angiogenesis by activating the expression of vascular endothelial growth factor (VEGF). In the present study, we investigated whether naringin improves the survival of random skin flaps. Results Compared with controls, the naringin-treated groups exhibited significantly larger mean areas of flap survival, significantly increased SOD activity and VEGF expression, and significantly reduced MDA level. Hematoxylin and eosin (HE) staining revealed that naringin promoted angiogenesis and inhibited inflammation. Materials and Methods “McFarlane flap” models were established in 90 male Sprague-Dawley (SD) rats divided into three groups: a 40 mg/kg control group (0.5 % sodium carboxymethylcellulose), a 40 mg/kg naringin-treated group, and an 80 mg/kg naringin-treated group. The extent of necrosis was measured 7 days later, and tissue samples were subjected to histological analysis. Angiogenesis was evaluated via lead oxide–gelatin angiography, immunohistochemistry, and laser Doppler imaging. Inflammation was evaluated by measurement of serum TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) levels. Oxidative stress was assessed by measuring superoxide dismutase (SOD) activity and the malondialdehyde (MDA) level. Conclusion Naringin improved random skin flap survival. PMID:29212216
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Yingfeng; Liu, Li; Zhao, Dongliang
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2
Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...
2015-09-08
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less
Molecular imaging of angiogenesis with SPECT
Boerman, Otto C.
2010-01-01
Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435
NASA Astrophysics Data System (ADS)
Wang, Xueding; Rajian, Justin; Shao, Xia; Chamberland, David L.; Girish, Gandikota
2014-03-01
Neovascularity also known as angiogenesis is an early feature of inflammatory arthritis disease. Therefore, identifying the development of neovascularity is one way to potentially detect and characterize arthritis. Laser-based photoacoustic imaging (PAI) is an emerging biomedical imaging modality which may aid in detection of both early and continued development of neovascularity. In this work, we investigated the feasibility of PAI to measure angiogenesis, for the purpose of evaluating and monitoring inflammatory arthritis after treatment. The imaging results on an arthritis rat model demonstrate that 1) there is noticeable enhancement in image intensity in the arthritic ankle joints when compared to the normal joints, and 2) there is noticeable decrease in image intensity in the arthritic ankle joints after treatment when compared to the untreated arthritic joints. In order to validate the findings from PAI, we performed positron emission tomography (PET) and histology on the same joints. The diameters of the ankle joints, as a clinical score of the arthritis, were also measured at each time point.
NASA Astrophysics Data System (ADS)
Hill, Melissa L.; Gorelikov, Ivan; Niroui, Farnaz; Levitin, Ronald B.; Mainprize, James G.; Yaffe, Martin J.; Rowlands, J. A.; Matsuura, Naomi
2013-08-01
Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg-1 mL-1 QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R2 = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
NASA Astrophysics Data System (ADS)
Yang, Runze; Zhang, Qiong; Wu, Ying; Dunn, Jeff F.
2013-01-01
Angiogenesis is a hallmark of many conditions, including cancer, stroke, vascular disease, diabetes, and high-altitude exposure. We have previously shown that one can study angiogenesis in animal models by using total hemoglobin (tHb) as a marker of cerebral blood volume (CBV), measured using broadband near-infrared spectroscopy (bNIRS). However, the method was not suitable for patients as global anoxia was used for the calibration. Here we determine if angiogenesis could be detected using a calibration method that could be applied to patients. CBV, as a marker of angiogenesis, is quantified in a rat cortex before and after hypoxia acclimation. Rats are acclimated at 370-mmHg pressure for three weeks, while rats in the control group are housed under the same conditions, but under normal pressure. CBV increased in each animal in the acclimation group. The mean CBV (%volume/volume) is 3.49%±0.43% (mean±SD) before acclimation for the experimental group, and 4.76%±0.29% after acclimation. The CBV for the control group is 3.28%±0.75%, and 3.09%±0.48% for the two measurements. This demonstrates that angiogenesis can be monitored noninvasively over time using a bNIRS system with a calibration method that is compatible with human use and less stressful for studies using animals.
2-(ω-Carboxyethyl)pyrrole Antibody as a New Inhibitor of Tumor Angiogenesis and Growth.
Wu, Chunying; Wang, Xizhen; Tomko, Nicholas; Zhu, Junqing; Wang, William R; Zhu, Jinle; Wangf, Bin; Wang, Yanming; Salomon, Robert G
2017-01-01
Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. That treatment with CEP antibody induces hypoxia in tumor tissue WHICH was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu
2013-05-01
Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.
Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo
2013-07-01
The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.
Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates
NASA Astrophysics Data System (ADS)
Weidling, John; Isikman, Serhan O.; Greenbaum, Alon; Ozcan, Aydogan; Botvinick, Elliot
2012-12-01
Endothelial cells cultured in three-dimensional (3-D) extracellular matrices spontaneously form microvessels in response to soluble and matrix-bound factors. Such cultures are common for the study of angiogenesis and may find widespread use in drug discovery. Vascular networks are imaged over weeks to measure the distribution of vessel morphogenic parameters. Measurements require micron-scale spatial resolution, which for light microscopy comes at the cost of limited field-of-view (FOV) and shallow depth-of-focus (DOF). Small FOVs and DOFs necessitate lateral and axial mechanical scanning, thus limiting imaging throughput. We present a lens-free holographic on-chip microscopy technique to rapidly image microvessels within a Petri dish over a large volume without any mechanical scanning. This on-chip method uses partially coherent illumination and a CMOS sensor to record in-line holographic images of the sample. For digital reconstruction of the measured holograms, we implement a multiheight phase recovery method to obtain phase images of capillary morphogenesis over a large FOV (24 mm2) with ˜1.5 μm spatial resolution. On average, measured capillary length in our method was within approximately 2% of lengths measured using a 10× microscope objective. These results suggest lens-free on-chip imaging is a useful toolset for high-throughput monitoring and quantitative analysis of microvascular 3-D networks.
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
Orbay, Hakan; Hong, Hao; Koch, Jill M; Valdovinos, Hector F; Hacker, Timothy A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo
2013-01-01
In this study, (64)Cu-NOTA-TRC105 (TRC105 is an anti-CD105 monoclonal antibody that binds to both human and murine CD105) positron emission tomography (PET) was used to assess the response to pravastatin treatment in a murine model of peripheral artery disease (PAD). Hindlimb ischemia was induced by ligation of the right femoral arteries in BALB/c mice under anesthesia, and the left hindlimb served as an internal control. Mice in the treatment group were given intraperitoneal pravastatin daily until the end of the study, whereas the animals in the control group were injected with 0.9% sodium chloride solution. Laser Doppler imaging showed that blood flow in the ischemic hindlimb plummeted to ~20% of the normal level after surgery, and gradually recovered to near normal level on day 10 in the treatment group and on day 20 in the control group. Angiogenesis was non-invasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 3, 10, 17, and 24. Tracer uptake at 48 h post-injection in the ischemic hindlimb in the treatment group was significantly higher than that of the control group on day 10 (20.5 ± 1.9 %ID/g vs 11.4 ± 1.5 %ID/g), suggesting increased CD105 expression and higher level of angiogenesis upon pravastatin treatment, and gradually decreased to background levels in both groups (4.9 ± 0.8 %ID/g vs 3.4 ± 1.9 %ID/g on day 24). The in vivo PET data correlated well with ex vivo biodistribution studies performed on day 24. Increased CD105 expression on days 3 and 10 following ischemia was further confirmed by immunofluorescence staining. Taken together, our results indicated that (64)Cu-NOTA-TRC105 PET is a suitable and non-invasive method to monitor the angiogenesis and therapeutic response in PAD, which can also be utilized for non-invasive evaluation of other pro-angiogenic/anti-angiogenic drugs in other cardiovascular diseases and cancer.
Nanoscale materials for hyperthermal theranostics
NASA Astrophysics Data System (ADS)
Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.
2015-04-01
Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.
Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M.; Sheibani, Nader
2016-01-01
Introduction Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. Methods A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Results Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Conclusions Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. PMID:25649306
Intravital Fluorescence Videomicroscopy to Study Tumor Angiogenesis and Microcirculation1
Vajkoczy, Peter; Ullrich, Axel; Meager, Michael D
2000-01-01
Abstract Angiogenesis and microcirculation play a central role in growth and metastasis of human neoplasms, and, thus, represent a major target for novel treatment strategies. Mechanistic analysis of processes involved in tumor vascularization, however, requires sophisticated in vivo experimental models and techniques. Intravital microscopy allows direct assessment of tumor angiogenesis, microcirculation and overall perfusion. Its application to the study of tumor-induced neovascularization further provides information on molecular transport and delivery, intra- and extravascular cell-to-cell and cell-to-matrix interaction, as well as tumor oxygenation and metabolism. With the recent advances in the field of bioluminescence and fluorescent reporter genes, appropriate for in vivo imaging, the intravital fluorescent microscopic approach has to be considered a powerful tool to study microvascular, cellular and molecular mechanisms of tumor growth. PMID:10933068
3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis.
Min, Zhu; Shichang, Zhao; Chen, Xin; Yufang, Zhu; Changqing, Zhang
2015-08-01
Angiogenesis-osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous bioactive glasses and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers (MPHS scaffolds), so as to investigate whether the sustained release of DMOG promotes local angiogenesis and bone healing. The morphology and microstructure of composite scaffolds were characterized. The DMOG release patterns from scaffolds loaded with different DMOG dosages were evaluated, and the effects of DMOG delivery on human bone marrow stromal cell (hBMSC) adhesion, viability, proliferation, osteogenic differentiation and angiogenic-relative gene expressions with scaffolds were also investigated. In vivo studies were carried out to observe vascular formations and new bone ingrowth with DMOG-loaded scaffolds. The results showed that DMOG could be released in a sustained manner over 4 weeks from MPHS scaffolds and obviously enhance the angiogenesis and osteogenesis in the defects. Microfil perfusion showed a significantly increased formation of vessels in the defects with DMOG delivery. Furthermore, micro-CT imaging and fluorescence labeling indicated larger areas of bone formation for DMOG-loaded scaffolds. It is concluded that MPHS-DMOG scaffolds are promising for enhancing bone healing of osseous defects.
Li, Lian; Chopp, Michael; Ding, Guang Liang; Qu, Chang Sheng; Li, Qing Jiang; Lu, Mei; Wang, Shiyang; Nejad-Davarani, Siamak P; Mahmood, Asim; Jiang, Quan
2012-11-01
Using magnetic resonance imaging (MRI), the present study was undertaken to investigate the therapeutic effect of acute administration of human bone marrow stromal cells (hMSCs) on traumatic brain injury (TBI) and to measure the temporal profile of angiogenesis after the injury with or without cell intervention. Male Wistar rats (300 to 350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, 3 × 10(6) hMSCs) 6 hours after TBI. In-vivo MRI acquisitions of T2-weighted imaging, cerebral blood flow (CBF), three-dimensional (3D) gradient echo imaging, and blood-to-brain transfer constant (Ki) of contrast agent were performed on all animals 2 days after injury and weekly for 6 weeks. Sensorimotor function and spatial learning were evaluated. Volumetric changes in the trauma-induced brain lesion and the lateral ventricles were tracked and quantified using T2 maps, and hemodynamic alteration and blood-brain barrier permeability were monitored by CBF and Ki, respectively. Our data show that transplantation of hMSCs 6 hours after TBI leads to reduced cerebral atrophy, early and enhanced cerebral tissue perfusion and improved functional outcome compared with controls. The hMSC treatment increases angiogenesis in the injured brain, which may promote neurologic recovery after TBI.
Wang, Huaijun; Kaneko, Osamu F; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K
2015-05-01
We sought to assess the feasibility and reproducibility of 3-dimensional ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n = 33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) after intravenous injection of either clinical grade VEGFR2-targeted microbubbles or nontargeted control microbubbles. Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24 hours after treatment with either bevacizumab (n = 7) or saline only (n = 7). Three-dimensional USMI data sets were retrospectively reconstructed into multiple consecutive 1-mm-thick USMI data sets to simulate 2-dimensional imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Three-dimensional USMI was highly reproducible using both VEGFR2-targeted microbubbles and nontargeted control microbubbles (intraclass correlation coefficient, 0.83). The VEGFR2-targeted USMI signal significantly (P = 0.02) decreased by 57% after antiangiogenic treatment compared with the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (ρ = 0.93, P = 0.003). If only central 1-mm tumor planes were analyzed to assess antiangiogenic treatment response, the USMI signal change was significantly (P = 0.006) overestimated by an average of 27% (range, 2%-73%) compared with 3-dimensional USMI. Three-dimensional USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer.
Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S.
Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Sorenson, Christine M; Sheibani, Nader
2015-10-01
Trace elements play critical roles in angiogenesis events. The effects of nitrogen, iron, selenium, phosphorus, gold, and calcium were discussed in part I. In part II, we evaluated the effect of chromium, silicon, zinc, copper, and sulfur on different aspects of angiogenesis, with critical roles in healing and regeneration processes, and undeniable roles in tumor growth and cancer therapy. This review is the second of series that serves as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. The methods of exposure, structure, mechanism, and potential activity of these trace elements are briefly discussed. An electronic search was performed on the role of these trace elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between five different trace elements and their role in regulation of angiogenesis, and homeostasis of pro- and anti-angiogenic factors were assessed. Many studies have investigated the effects and importance of these elements in angiogenesis events. Both stimulatory and inhibitory effects on angiogenesis are observed for the evaluated elements. Chromium can promote angiogenesis in pathological manners. Silicon as silica nanoparticles is anti-angiogenic, while in calcium silicate extracts and bioactive silicate glasses promote angiogenesis. Zinc is an anti-angiogenic agent acting on important genes and growth factors. Copper and sulfur compositions have pro-angiogenic functions by activating pro-angiogenic growth factors and promoting endothelial cells migration, growth, and tube formation. Thus, utilization of these elements may provide a unique opportunity to modulate angiogenesis under various setting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ruiying; Cai, Xin; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Pan, Dipanjan; Lanza, Gregory M.; Wang, Lihong V.
2014-03-01
Photoacoustic (PA) tomography imaging is an emerging, versatile, and noninvasive imaging modality, which combines the advantages of both optical imaging and ultrasound imaging. It opens up opportunities for noninvasive imaging of angiogenesis, a feature of skin pathologies including cancers and psoriasis. In this study, high-density copper oleate encapsulated within a phospholipid surfactant (CuNPs) generated a soft nanoparticle with PA contrast comparable to gold. Within the near-infrared window, the copper nanoparticles can provide a signal more than 7 times higher that of blood. ανβ3-targeted of CuNPs in a Matrigel mouse model demonstrated prominent PA contrast enhancement of the neovasculature compared to mice given nontargeted or competitively inhibited CuNPs. Incorporation of a sn-2 lipase-labile fumagillin prodrug into the CuNPs produced marked antiangiogenesis in the same model, demonstrating the theranostic potential of a PA agent for the first time in vivo. With a PA signal comparable to gold-based nanoparticles yet a lower cost and demonstrated drug delivery potential, ανβ3-targeted CuNPs hold great promise for the management of skin pathologies with neovascular features.
Novel Methods for Imaging PET Biomarkers and Gene Therapy of Cancer
2009-05-01
sphingosine 1-phosphate; GFP, g reen fluorescent protein. ???? ??, 2009•VOLUME 284• NUMBER?? angiogenesis, and platelet aggregation (1, 2). At least eight...FLAG·LPA2 - - ·-...... ---- ---.,_.-. IB: GFP·TRIP6 -- _ ...... IP: FLAG•LPA2 - - --~~-~IB:FLAG·LPA2 lysates • ... IB: GFP·TRIP6 ... N < < < < C) < u < s...Ill Ill Ill IP: FLAGoLPA2 Ill <!I " <!I <!I <!I GST puldown - IB: stv .. t IP: FLAG.f..PA2 c:oomusleblue - lysates ------ 18: MYC..Siva•1
On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.
Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean
2015-01-01
Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.
On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process
Flegg, Jennifer A.; Menon, Shakti N.; Maini, Philip K.; McElwain, D. L. Sean
2015-01-01
Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration. PMID:26483695
Hayward, Nick MEA; Yanev, Pavel; Haapasalo, Annakaisa; Miettinen, Riitta; Hiltunen, Mikko; Gröhn, Olli; Jolkkonen, Jukka
2011-01-01
Cerebral blood flow (CBF) is disrupted after focal ischemia in rats. We examined long-term hemodynamic and cerebrovascular changes in the rat thalamus after focal cerebral ischemia. Cerebral blood flow quantified by arterial spin labeling magnetic resonance imaging was decreased in the ipsilateral and contralateral thalamus 2 days after cerebral ischemia. Partial thalamic CBF recovery occurred by day 7, then the ipsilateral thalamus was chronically hyperperfused at 30 days and 3 months compared with its contralateral side. This contrasted with permanent hypoperfusion in the ipsilateral cortex. Angiogenesis was indicated by endothelial cell (RECA-1) immunohistochemistry that showed increased blood vessel branching in the ipsilateral thalamus at the end of the 3-month follow-up. Only transient thalamic IgG extravasation was observed, indicating that the blood–brain barrier was intact after day 2. Angiogenesis was preceded by transiently altered expression levels of cadherin family adhesion molecules, cadherin-7, protocadherin-1, and protocadherin-17. In conclusion, thalamic pathology after focal cerebral ischemia involved long-term hemodynamic changes and angiogenesis preceded by altered expression of vascular adhesion factors. Postischemic angiogenesis in the thalamus represents a novel type of remote plasticity, which may support removal of necrotic brain tissue and aid functional recovery. PMID:21081957
George, Joseph; Banik, Naren L.; Ray, Swapan K.
2009-01-01
Purpose The limitless invasive and proliferative capacities of tumor cells are associated with telomerase and expression of its catalytic component, human telomerase reverse transcriptase (hTERT). Interferon-γ (IFN-γ) modulates several cellular activities including signaling pathways and cell cycle through transcriptional regulation. Experimental Design Using a recombinant plasmid with hTERT siRNA cDNA, we down regulated hTERT during IFN-γ treatment in human glioblastoma SNB-19 and LN-18 cell lines and examined whether such a combination could inhibit angiogenesis and tumor growth in nude mice. In vitro angiogenesis assay was performed using co-culture of tumor cells with human microvascular endothelial cells. In vivo angiogenesis assay was performed using diffusion chambers under the dorsal skin of nude mice. In vivo imaging of intracerebral tumorigenesis and longitudinal solid tumor development studies were conducted in nude mice. Results In vitro and in vivo angiogenesis assays demonstrated inhibition of capillary-like network formation of microvascular endothelial cells and neovascularization under dorsal skin of nude mice, respectively. We observed inhibition of intracerebral tumorigenesis and subcutaneous solid tumor formation in nude mice after treatment with combination of hTERT siRNA and IFN-γ. Western blotting of solid tumor samples demonstrated significant down regulation of the molecules that regulate cell invasion, angiogenesis, and tumor progression. Conclusions Our study demonstrated that combination of hTERT siRNA and IFN-γ effectively inhibited angiogenesis and tumor progression through down regulation of molecules involved in these processes. Therefore, combination of hTERT siRNA and IFN-γ is a promising therapeutic strategy for controlling growth of human glioblastoma. PMID:19934306
Molecular Imaging of Breast Cancer: Present and future directions
NASA Astrophysics Data System (ADS)
Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa
2014-12-01
Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.
Nanoscale materials for hyperthermal theranostics
Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; ...
2015-03-18
Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less
Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader
2016-02-01
Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sun, Amy; Hou, Lewis; Prugpichailers, Tiffany; Dunkel, Jason; Kalani, Maziyar A; Chen, Xiaoyuan; Kalani, M Yashar S; Tse, Victor
2010-04-01
Bioluminescence imaging (BLI) is emerging as a cost-effective, high-throughput, noninvasive, and sensitive imaging modality to monitor cell growth and trafficking. We describe the use of dynamic BLI as a noninvasive method of assessing vessel permeability during brain tumor growth. With the use of stereotactic technique, 10 firefly luciferase-transfected GL26 mouse glioblastoma multiforme cells were injected into the brains of C57BL/6 mice (n = 80). After intraperitoneal injection of D-luciferin (150 mg/kg), serial dynamic BLI was performed at 1-minute intervals (30 seconds exposure) every 2 to 3 days until death of the animals. The maximum intensity was used as an indirect measurement of tumor growth. The adjusted slope of initial intensity (I90/Im) was used as a proxy to monitor the flow rate of blood into the vascular tree. Using a modified Evans blue perfusion protocol, we calculated the relative permeability of the vascular tree at various time points. Daily maximum intensity correlated strongly with tumor volume. At postinjection day 23, histology and BLI demonstrated an exponential growth of the tumor mass. Slopes were calculated to reflect the flow in the vessels feeding the tumor (adjusted slope = I90/Im). The increase in BLI intensity was correlated with a decrease in adjusted slope, reflecting a decrease in the rate of blood flow as tumor volume increased (y = 93.8e-0.49, R2 = 0.63). Examination of calculated slopes revealed a peak in permeability around postinjection day 20 (n = 42, P < .02 by 1-way analysis of variance) and showed a downward trend in relation to both postinjection day and maximum intensity observed; as angiogenesis progressed, tumor vessel caliber increased dramatically, resulting in sluggish but increased flow. This trend was correlated with Evans blue histology, revealing an increase in Evans blue dye uptake into the tumor, as slope calculated by BLI increases. Dynamic BLI is a practical, noninvasive technique that can semiquantitatively monitor changes in vascular permeability and therefore facilitate the study of tumor angiogenesis in animal models of disease.
Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Coll, Jean-Luc; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo
2012-12-01
64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUV(mean); r = 0.776, P = 0.024 for SUV(max)) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.
A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro.
Khoo, Cheen Peen; Micklem, Kingsley; Watt, Suzanne M
2011-09-01
Angiogenesis is of major interest because of its involvement in numerous pathologies or for promoting tissue repair. It is often assessed by the ability of endothelial cells to sprout, migrate, and form vascular tubules in Matrigel in vitro. Matrigel contains a mixture of basement membrane components, which stimulate endothelial cells to form capillary-like hexagonal structures, and is often preferred over other in vitro assays because of its ease of use, rapidity and the ability to measure key steps in angiogenesis, including migration, protease activity, and tubule formation. Various methods have been used to quantitate tubule formation, yet no consensus has been reached regarding the best quantification method for evaluating the efficacy of angiogenic stimulants or inhibitors in this Matrigel assay. Here, we have measured the ability of umbilical cord blood endothelial colony-forming cell-derived cells to form tubules in growth factor reduced Matrigel in the presence or absence of two angiogenic inhibitors, suramin and SU6668, to compare the benefits and limitations of two quantification methods-Angiosys and Wimasis. These comparative analyses revealed that both Angiosys and Wimasis are easy to use, accurately quantify angiogenesis, and will suit the needs of different types of users. © Mary Ann Liebert, Inc.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
[Virtual screening of anti-angiogenesis flavonoids from Sophora flavescens].
Chen, Xi-Xin; Liu, Yi; Huang, Rong; Zhao, Lin-Lin; Chen, Lei; Wang, Shu-Mei
2017-03-01
Angiogenesis is a dynamic, multi-step process. It is known that about 70 diseases are related to angiogenesis. Both the experimental and the literature reports showed that Sophora flavescens inhibit angiogenesis significantly, but the material basis and the mechanism of action have not been clear. In this study, molecular docking was used for screening of anti-angiogenesis flavonoids from the roots of S. flavescens. One handred and twenty-six flavonoids selected from S. flavescens were screened in the docking ligand database with six targets(VEGF-a,TEK,KDR,Flt1,FGFR1 and FGFR2) as the receptors. In addition, the small-molecule approved drugs of targets from DrugBank database were set as a reference with minimum score of each target's approved drugs as threshold. The LibDock module in Discovery Studio 2.5 (DS2.5) software was applied to screen the compounds. As a result, 37 compounds were screened out that their scores were higher than the minimum score of approved drugs as well as being in the top of 10%. At last the mechanism of flavonoids anti-angiogenesis was preliminarily revealed, which provided a new method for the development of angiogenesis inhibitor drugs. Copyright© by the Chinese Pharmaceutical Association.
Label-free optical imaging of lymphatic vessels within tissue beds in vivo
Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K.
2015-01-01
Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis. PMID:25642129
Serum Inter–α-Trypsin Inhibitor and Matrix Hyaluronan Promote Angiogenesis in Fibrotic Lung Injury
Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S.; Hollingsworth, John W.; Jiang, Dianhua; Lancaster, Lisa H.; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K.; Noble, Paul W.; Kimata, Koji; Schwartz, David A.
2008-01-01
Rationale: The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-α-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. Objectives: To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. Methods: An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. Measurements and Main Results: IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Conclusions: Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627). PMID:18703791
Marien, Koen M.; Andries, Luc; De Schepper, Stefanie; Kockx, Mark M.; De Meyer, Guido R.Y.
2015-01-01
Tumor angiogenesis is measured by counting microvessels in tissue sections at high power magnification as a potential prognostic or predictive biomarker. Until now, regions of interest1 (ROIs) were selected by manual operations within a tumor by using a systematic uniform random sampling2 (SURS) approach. Although SURS is the most reliable sampling method, it implies a high workload. However, SURS can be semi-automated and in this way contribute to the development of a validated quantification method for microvessel counting in the clinical setting. Here, we report a method to use semi-automated SURS for microvessel counting: • Whole slide imaging with Pannoramic SCAN (3DHISTECH) • Computer-assisted sampling in Pannoramic Viewer (3DHISTECH) extended by two self-written AutoHotkey applications (AutoTag and AutoSnap) • The use of digital grids in Photoshop® and Bridge® (Adobe Systems) This rapid procedure allows traceability essential for high throughput protein analysis of immunohistochemically stained tissue. PMID:26150998
Blacher, Silvia; Erpicum, Charlotte; Lenoir, Bénédicte; Paupert, Jenny; Moraes, Gustavo; Ormenese, Sandra; Bullinger, Eric; Noel, Agnès
2014-01-01
The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph) angiogenesis and test pro- and anti-(lymph) angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph) angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.
Shabestari, M; Vik, J; Reseland, J E; Eriksen, E F
2016-10-01
Bone marrow lesions (BML), previously denoted bone marrow edema, are detected as water signals by magnetic resonance imaging (MRI). Previous histologic studies were unable to demonstrate any edematous changes at the tissue level. Therefore, our aim was to investigate the underlying biological mechanisms of the water signal in MRI scans of bone affected by BML. Tetracycline labeling in addition to water sensitive MRI scans of 30 patients planned for total hip replacement surgery was undertaken. Twenty-one femoral heads revealed BML on MRI, while nine were negative and used as controls (CON). Guided by the MRI images cylindrical biopsies were extracted from areas with BML in the femoral heads. Tissue sections from the biopsies were subjected to histomorphometric image analyses of the cancellous bone envelope. Patients with BML exhibited an average 40- and 18-fold increase of bone formation rate and mineralizing surface, respectively. Additionally, samples with BML demonstrated 2-fold reduction of marrow fat and 28-fold increase of woven bone. Immunohistochemical analysis showed a 4-fold increase of angiogenesis markers CD31 and von Willebrand Factor (vWF) in the BML-group compared to CON. This study indicates that BML are characterized by increased bone turnover, vascularity and angiogenesis in keeping with it being a reparatory process. Thus, the water signal, which is the hallmark of BML on MRI, is most probably reflecting increased tissue vascularity accompanying increased remodeling activity. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Assessing the effects of threonyl-tRNA synthetase on angiogenesis-related responses.
Mirando, Adam C; Abdi, Khadar; Wo, Peibin; Lounsbury, Karen M
2017-01-15
Several recent reports have found a connection between specific aminoacyl-tRNA synthetases and the regulation of angiogenesis. As this new area of research is explored, it is important to have reliable assays to assess the specific angiogenesis functions of these enzymes. This review provides information about specific in vitro and in vivo methods that were used to assess the angiogenic functions of threonyl-tRNA synthetase including endothelial cell migration and tube assays as well as chorioallantoic membrane and tumor vascularization assays. The theory and discussion include best methods of analysis and quantification along with the advantages and limitations of each type of assay. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.
2009-11-01
Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.
Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.
1997-01-01
We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.
2010-01-01
PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.
Miles, Kiersten Marie; Seshadri, Mukund; Ciamporcero, Eric; Adelaiye, Remi; Gillard, Bryan; Sotomayor, Paula; Attwood, Kristopher; Shen, Li; Conroy, Dylan; Kuhnert, Frank; Lalani, Alshad S.; Thurston, Gavin; Pili, Roberto
2014-01-01
Background The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC). Methods and Results Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model. Conclusions Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC. PMID:25393540
Photoacoustic detection of neovascularities in skin graft
NASA Astrophysics Data System (ADS)
Yamazaki, Mutsuo; Sato, Shunichi; Saitoh, Daizo; Ishihara, Miya; Okada, Yoshiaki; Ashida, Hiroshi; Obara, Minoru
2005-04-01
We previously proposed a new method for monitoring adhesion of skin graft by measuring photoacoustic (PA) signal originated from the neovascularities. In this study, immunohistochemical staining (IHC) with CD31 antibody was performed for grafted skin tissue to observe neovascularity, and the results were compared with PA signals. We also used a laser Doppler imaging (LDI) to observe blood flow in the grafted skin, and sensitivity of PA measurement and that of LDI were compared. In rat autograft models, PA signals were measured for the grafted skin at postgrafting times of 0-48 h. At 6 h postgrafting, PA signal was observed in the skin depth region of 500-600 mm, while the results of IHC showed that angiogenesis occurred at the depth of about 600 mm. Depths at which PA signal and angiogenesis were observed decreased with postgrafting time. These indicate that the PA signal observed at 6 h postgrafting originated from the neovascularities in the skin graft. Results of LDI showed no blood-originated signal before 48 h postgrafting. These findings suggest that PA measurement is effective in monitoring the adhesion of skin graft in early stage after transplantation.
Angiogenesis after sintered bone implantation in rat parietal bone.
Ohtsubo, S; Matsuda, M; Takekawa, M
2003-01-01
We studied the effect of bone substitutes on revascularization and the restart of blood supply after sintered bone implantation in comparison with synthetic hydroxyapatite implantation and fresh autogenous bone transplantation (control) in rat parietal bones. Methods for the study included the microvascular corrosion cast method and immunohistochemical techniques were also used. The revascularization of the control group was the same as that for usual wound healing in the observations of the microvascular corrosion casts. The sintered bone implantation group was quite similar to that of the control group. In the synthetic hydroxyapatite group, immature newly-formed blood vessels existed even on the 21st day after implantation and the physiological process of angiogenesis was interrupted. Immunohistochemically, vascular endothelial growth factor (VEGF), which activates angiogenesis, appeared at the early stages of both the control group and the sintered bone implantation group. VEGF reduced parallel with the appearance of the transforming growth factor factor-beta-1 (TGF-beta-1), which obstructs angiogenesis, and the angiogenesis passed gradually into the mature stage. In the hydroxyapatite implantation group, TGF-beta-1 appeared at the early stage of the implants. The appearance of VEGF lagged and it existed around the pores of hydroxyapatite even on the 21st day of the implantation. Proliferation and wandering of endothelial cells continued without any maturing of the vessels. These findings suggest that the structure and the components of the implant material affect angiogenesis after implantation as well as new bone formation.
Functional role of inorganic trace elements in angiogenesis--Part I: N, Fe, Se, P, Au, and Ca.
Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Sorenson, Christine M; Sheibani, Nader
2015-10-01
Many inorganic elements are recognized as being essential for the growth of all living organisms. Transfer of nutrients and waste material from cells and tissues in the biological systems are accomplished through a functional vasculature network. Maintenance of the vascular system is vital to the wellbeing of organisms, and its alterations contribute to pathogenesis of many diseases. This article is the first part of a review on the functional role of inorganic elements including nitrogen, iron, selenium, phosphorus, gold, and calcium in angiogenesis. The methods of exposure, structure, mechanisms, and potential activity of these elements are briefly summarized. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between different elements and their role in angiogenesis, and production of pro- and anti-angiogenic factors were assessed. Several studies emphasized the role of these elements on the different phases of angiogenesis process in vivo. These elements can either enhance or inhibit angiogenesis events. Nitrogen in combination with bisphosphonates has antiangiogenic effects, while nitric oxide promotes the production of angiogenic growth factors. Iron deficiency can stimulate angiogenesis, but its excess suppresses angiogenesis events. Gold nanoparticles and selenium agents have therapeutic effects due to their anti-angiogenic characteristics, while phosphorus and calcium ions are regarded as pro-angiogenic elements. Understanding how these elements impact angiogenesis may provide new strategies for treatment of many diseases with neovascular component. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Advanced Ultrasound Technologies for Diagnosis and Therapy.
Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian
2018-05-01
Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
In vivo photoacoustic tomography of total blood flow and Doppler angle
NASA Astrophysics Data System (ADS)
Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2012-02-01
As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.
Fernández-Carrobles, M. Milagro; Tadeo, Irene; Bueno, Gloria; Noguera, Rosa; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial
2013-01-01
Given that angiogenesis and lymphangiogenesis are strongly related to prognosis in neoplastic and other pathologies and that many methods exist that provide different results, we aim to construct a morphometric tool allowing us to measure different aspects of the shape and size of vascular vessels in a complete and accurate way. The developed tool presented is based on vessel closing which is an essential property to properly characterize the size and the shape of vascular and lymphatic vessels. The method is fast and accurate improving existing tools for angiogenesis analysis. The tool also improves the accuracy of vascular density measurements, since the set of endothelial cells forming a vessel is considered as a single object. PMID:24489494
Automatic extraction of angiogenesis bioprocess from text
Wang, Xinglong; McKendrick, Iain; Barrett, Ian; Dix, Ian; French, Tim; Tsujii, Jun'ichi; Ananiadou, Sophia
2011-01-01
Motivation: Understanding key biological processes (bioprocesses) and their relationships with constituent biological entities and pharmaceutical agents is crucial for drug design and discovery. One way to harvest such information is searching the literature. However, bioprocesses are difficult to capture because they may occur in text in a variety of textual expressions. Moreover, a bioprocess is often composed of a series of bioevents, where a bioevent denotes changes to one or a group of cells involved in the bioprocess. Such bioevents are often used to refer to bioprocesses in text, which current techniques, relying solely on specialized lexicons, struggle to find. Results: This article presents a range of methods for finding bioprocess terms and events. To facilitate the study, we built a gold standard corpus in which terms and events related to angiogenesis, a key biological process of the growth of new blood vessels, were annotated. Statistics of the annotated corpus revealed that over 36% of the text expressions that referred to angiogenesis appeared as events. The proposed methods respectively employed domain-specific vocabularies, a manually annotated corpus and unstructured domain-specific documents. Evaluation results showed that, while a supervised machine-learning model yielded the best precision, recall and F1 scores, the other methods achieved reasonable performance and less cost to develop. Availability: The angiogenesis vocabularies, gold standard corpus, annotation guidelines and software described in this article are available at http://text0.mib.man.ac.uk/~mbassxw2/angiogenesis/ Contact: xinglong.wang@gmail.com PMID:21821664
Ma, Lina; Wu, Dan; Bian, Liujiao
2012-08-01
The Kringle 5 domain of plasminogen is one of the most potent angiogenesis inhibitors known to date, which can inhibit cell proliferation and migration efficiently. In the study, on the foundation of successful clone and expression of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5, a two-step chromatographic method, including the use of SP Sepharose Fast Flow cation exchanger and Sephacryl S-100 HR size exclusion chromatography in sequence, was established to separate and purify angiogenesis inhibitor Kringle 5. On the SP Sepharose Fast Flow column, the buffer A consisted of 50.0 mmol/L acetic acid-sodium acetate (pH 5.2), and the buffer B consisted of buffer A with the addition of 0.5 mol/L sodium chloride (pH 5.2); on Sephacryl S-100 HR column, the elution buffer was 5.0 mmol/L phosphate solution (pH 7.0). Through the two-step chromatographic purification process, the purity of the obtained Kringle 5 was more than 98%. In addition, it was found that the obtained Kringle 5 could inhibit the blood vessel growth of chick embryo chorioallantoic membrane effectively. Finally it is concluded that this method can effectively separate active recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5.
Cohn Yakubovich, Doron; Tawackoli, Wafa; Sheyn, Dmitriy; Kallai, Ilan; Da, Xiaoyu; Pelled, Gadi; Gazit, Dan; Gazit, Zulma
2015-12-22
A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro-computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis. The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7(th) day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7(th) and 10(th) postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.
Li, Jian; Jahr, Holger; Zheng, Wei; Ren, Pei-Gen
2017-09-07
The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.
Kiyuna, Tasuku; Tome, Yasunori; Uehara, Fuminari; Murakami, Takashi; Zhang, Yong; Zhao, Ming; Kanaya, Fuminori; Hoffman, Robert M
2018-01-01
We previously developed a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In this model, nascent blood vessels selectively express GFP. We also previously showed that osteosarcoma cells promote angiogenesis in this assay. We have also previously demonstrated the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R) can inhibit or regress all tested tumor types in mouse models. The aim of the present study was to determine if S. typhimurium A1-R could inhibit osteosarcoma angiogenesis in the in vivo Gelfoam® color-coded imaging assay. Gelfoam® was implanted subcutaneously in ND-GFP nude mice. Skin flaps were made 7 days after implantation and 143B-RFP human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the implanted Gelfoam. After establishment of tumors in the Gelfoam®, control-group mice were treated with phosphate buffered saline via tail-vein injection (iv) and the experimental group was treated with S. typhimurium A1-R iv Skin flaps were made at day 7, 14, 21, and 28 after implantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small-animal imaging system and confocal fluorescence microscopy. Nascent blood vessels expressing ND-GFP extended into the Gelfoam® over time in both groups. However, the extent of nascent blood-vessel growth was significantly inhibited by S. typhimurium A1-R treatment by day 28. The present results indicate S. typhimurium A1-R has potential for anti-angiogenic targeted therapy of osteosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Simons, K H; Aref, Z; Peters, H A B; Welten, S P; Nossent, A Y; Jukema, J W; Hamming, J F; Arens, R; de Vries, M R; Quax, P H A
2018-06-01
T cells have a distinctive role in neovascularization, which consists of arteriogenesis and angiogenesis under pathological conditions and vasculogenesis under physiological conditions. However, the role of co-stimulation in T cell activation in neovascularization has yet to be established. The aim of this study was to investigate the role T cell co-stimulation and inhibition in angiogenesis, arteriogenesis and vasculogenesis. Hind limb ischemia was induced by double ligation of the left femoral artery in mice and blood flow recovery was measured with Laser Doppler Perfusion Imaging in control, CD70 -/- , CD80/86 -/- , CD70/80/86 -/- and CTLA4 +/- mice. Blood flow recovery was significantly impaired in mice lacking CD70 compared to control mice, but was similar in CD80/86 -/- , CTLA4 +/- and control mice. Mice lacking CD70 showed impaired vasculogenesis, since the number of pre-existing collaterals was reduced as observed in the pia mater compared to control mice. In vitro an impaired capability of vascular smooth muscle cells (VSMC) to activate T cells was observed in VSMC lacking CD70. Furthermore, CD70 -/- , CD80/86 -/- and CD70/80/86 -/- mice showed reduced angiogenesis in the soleus muscle 10 days after ligation. Arteriogenesis was also decreased in CD70 -/- compared to control mice 10 and 28 days after surgery. The present study is the first to describe an important role for T cell activation via co-stimulation in angiogenesis, arteriogenesis and vasculogenesis, where the CD27-CD70 T cell co-stimulation pathway appears to be the most important co-stimulation pathway in pre-existing collateral formation and post-ischemic blood flow recovery, by arteriogenesis and angiogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging
NASA Astrophysics Data System (ADS)
Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.
2014-03-01
Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.
Proulx, Steven T; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J; Huggenberger, Reto; Leroux, Jean-Christophe; Detmar, Michael
2013-07-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo
Proulx, Steven T.; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J.; Huggenberger, Reto
2013-01-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models. PMID:23325334
Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung
2016-11-01
The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin α V β 3 . In the present study, we successfully developed a TAMRA-GHEG-ECG-SDV peptide labeled with both Tc-99 m and TAMRA to target the integrin α V β 3 of tumor cells; furthermore, we evaluated the diagnostic performance of Tc-99 m TAMRA-GHEG-ECG-SDV as a dual-modality imaging agent for tumor of the murine model. TAMRA-GHEG-ECG-SDV was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-SDV with Tc-99 m was done using ligand exchange methods. Labeling stability and cytotoxicity studies were performed. Gamma camera imaging, biodistribution and ex vivo imaging studies were performed in murine models with HT-1080 and HT-29 tumors. A tumor tissue slide was prepared and analyzed using confocal microscopy. After radiolabeling procedures with Tc-99 m, the Tc-99 m TAMRA-GHEG-ECG-SDV complexes were prepared in high yield (>99%). In the gamma camera imaging study, a substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-1080 tumor (integrin α V β 3 positive) and low uptake of Tc-99 m TAMRA-GHEG-ECG-SDV into HT-29 tumor (integrin α V β 3 negative) were demonstrated. A competition study revealed that HT-1080 tumor uptake was effectively blocked by the co-injection of an excess concentration of SDV. Specific uptake of Tc-99 m TAMRA-GHEG-ECG-SDV was confirmed by biodistribution, ex vivo imaging and confocal microscopy studies. Our in vivo and in vitro studies revealed substantial uptake of Tc-99 m TAMRA-GHEG-ECG-SDV in the integrin α V β 3 -positive tumor. Tc-99 m TAMRA-GHEG-ECG-SDV could be a good candidate for a dual-modality imaging agent targeting tumor angiogenesis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Huang, Mei; Nguyen, Patricia; Jia, Fangjun; Hu, Shijun; Gong, Yongquan; de Almeida, Patricia E.; Wang, Li; Nag, Divya; Kay, Mark A.; Giaccia, Amato J; Robbins, Robert C.; Wu, Joseph C.
2011-01-01
Background Under normoxic conditions, hypoxia inducible factor-1 alpha (HIF-1α) is rapidly degraded by two hydroxylases, prolyl hydroxylase (PHD) and factor inhibiting HIF-1 (FIH). Because HIF-1α mediates the cardioprotective response to ischemic injury, its up-regulation may be an effective therapeutic option for ischemic heart failure. Methods and Results PHD and FIH were cloned from mouse embryonic stem cells. The best candidate short hairpin sequences for inhibiting PHD isoenzyme 2 (shPHD2) and FIH (shFIH) were inserted into novel non-viral minicircle vectors. In vitro studies after cell transfection of mouse C2C12 myoblasts, HL-1 atrial myocytes, and c-kit+ cardiac progenitor cells (CPCs) demonstrated higher expression of angiogenesis factors in the double knockdown group compared to the single knockdown and shScramble control groups. To confirm in vitro data, shRNA minicircle vectors were injected intramyocardially following LAD ligation in adult FVB mice (n=60). Functional studies using magnetic resonance imaging (MRI), echocardiography, and pressure-volume (PV) loops showed greater improvement in cardiac function in the double knockdown group. To assess mechanism(s) of this functional recovery, we performed a cell trafficking experiment, which demonstrated significantly greater recruitment of bone marrow cells to the ischemic myocardium in the double knockdown group. Fluorescence activated cell sorting (FACS) showed significantly higher activation of endogenous c-kit+ cardiac progenitor cells. Immunostaining showed increased neovascularization and decreased apoptosis in areas of injured myocardium. Finally, western blots and laser capture microdissection (LCM) analysis confirmed up-regulation of HIF-1α protein and angiogenesis genes, respectively. Conclusions We demonstrated that HIF-1α up-regulation by double knockdown of PHD and FIH synergistically increases stem cell mobilization and myocardial angiogenesis, leading to improved cardiac function. PMID:21911818
Hsiao, Yen-Chang; Chang, Cheng-Jen
2011-01-01
Background and Aims: Currently, the method of choice for the treatment of port-wine stains is laser photocoagulation. Because of evolving treatment options, it is no longer enough for port-wine stains merely to be lightened through laser treatment. The best course of management consists of the most appropriate laser that will produce the most complete clearing of a lesion in the fewest treatment sessions with the least morbidity. The goal is generally accomplished with the use of yellow-light lasers. Materials (Subjects) and Methods: Absorption of laser energy by melanin causes localized heating in the epidermis, which may, if not controlled, produce permanent complications such as hypertrophic scarring or dyspigmentation. Refinements of the results can be achieved by using the flashlamp-pumped pulsed dye laser (FLPDL) in conjunction with the cryogen spray cooling (CSC) system. In our related studies, the infrared thermal image instrument is used for doctors in determining the optimum laser light dosage and preventing the side effects caused by FLPDL. Topic application of angiogenesis inhibitor (Imiquimod) in conjunction with pulsed dye laser treatment for the PWS patients has been assessed for improvement of FLPDL treatment. Results: We present the clinical effect of FLPDL, and the efficacy and safety of cooled laser treatment of PWS birthmarks. Our clinical outcome in the laser treatment of patients with PWS has been achieved to maximize thermal impact on targeted vessels, while minimizing adverse complications. Conclusions: CSC in conjunction with FLPDL can improve the treatment of PWS. The infrared image instrument is helpful for doctors in determining the optimum laser light dosage. Topic application of angiogenesis inhibitor (Imiquimod) in conjunction with laser treatment for the PWS patients is promising in the near future. PMID:24155536
NASA Astrophysics Data System (ADS)
Badea, C. T.; Samei, E.; Ghaghada, K.; Saunders, R.; Yuan, H.; Qi, Y.; Hedlund, L. W.; Mukundan, S.
2008-03-01
Imaging tumor angiogenesis in small animals is extremely challenging due to the size of the tumor vessels. Consequently, both dedicated small animal imaging systems and specialized intravascular contrast agents are required. The goal of this study was to investigate the use of a liposomal contrast agent for high-resolution micro-CT imaging of breast tumors in small animals. A liposomal blood pool agent encapsulating iodine with a concentration of 65.5 mg/ml was used with a Duke Center for In Vivo Microscopy (CIVM) prototype micro-computed tomography (micro-CT) system to image the R3230AC mammary carcinoma implanted in rats. The animals were injected with equivalent volume doses (0.02 ml/kg) of contrast agent. Micro-CT with the liposomal blood pool contrast agent ensured a signal difference between the blood and the muscle higher than 450 HU allowing the visualization of the tumors 3D vascular architecture in exquisite detail at 100-micron resolution. The micro-CT data correlated well with the histological examination of tumor tissue. We also studied the ability to detect vascular enhancement with limited angle based reconstruction, i.e. tomosynthesis. Tumor volumes and their regional vascular percentage were estimated. This imaging approach could be used to better understand tumor angiogenesis and be the basis for evaluating anti-angiogenic therapies.
Mouse blood vessel imaging by in-line x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi
2008-10-01
It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
Yi, Faliu; Yang, Lin; Wang, Shidan; Guo, Lei; Huang, Chenglong; Xie, Yang; Xiao, Guanghua
2018-02-27
Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.
Determining tumor blood flow parameters from dynamic image measurements
NASA Astrophysics Data System (ADS)
Libertini, Jessica M.
2008-11-01
Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.
Li, Jin-Ping; Zhao, De-Li; Jiang, Hui-Jie; Huang, Ya-Hua; Li, Da-Qing; Wan, Yong; Liu, Xin-Ding; Wang, Jin-E
2011-02-01
Hepatocellular carcinoma (HCC) is a common malignant tumor in China, and early diagnosis is critical for patient outcome. In patients with HCC, it is mostly based on liver cirrhosis, developing from benign regenerative nodules and dysplastic nodules to HCC lesions, and a better understanding of its vascular supply and the hemodynamic changes may lead to early tumor detection. Angiogenesis is essential for the growth of primary and metastatic tumors due to changes in vascular perfusion, blood volume and permeability. These hemodynamic and physiological properties can be measured serially using functional computed tomography perfusion (CTP) imaging and can be used to assess the growth of HCC. This study aimed to clarify the physiological characteristics of tumor angiogenesis in cirrhotic liver disease by this fast imaging method. CTP was performed in 30 volunteers without liver disease (control subjects) and 49 patients with liver disease (experimental subjects: 27 with HCC and 22 with cirrhosis). All subjects were also evaluated by physical examination, laboratory screening and Doppler ultrasonography of the liver. The diagnosis of HCC was made according to the EASL criteria. All patients underwent contrast-enhanced ultrasonography, pre- and post-contrast triple-phase CT and CTP study. A mathematical deconvolution model was applied to provide hepatic blood flow (HBF), hepatic blood volume (HBV), mean transit time (MTT), permeability of capillary vessel surface (PS), hepatic arterial index (HAI), hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP) data. The Mann-Whitney U test was used to determine differences in perfusion parameters between the background cirrhotic liver parenchyma and HCC and between the cirrhotic liver parenchyma with HCC and that without HCC. In normal liver, the HAP/HVP ratio was about 1/4. HCC had significantly higher HAP and HAI and lower HPP than background liver parenchyma adjacent to the HCC. The value of HBF at the tumor rim was significantly higher than that in the controls. HBF, HBV, HAI, HAP and HPP, but not MTT and PS, were significantly higher in the cirrhotic liver parenchyma involved with HCC than those of the controls. Perfusion parameters were not significantly different between the controls and the cirrhotic liver parenchyma not involved with HCC. CTP can clearly distinguish tumor from cirrhotic liver parenchyma and controls and can provide quantitative information about tumor-related angiogenesis, which can be used to assess tumor vascularization in cirrhotic liver disease.
Endothelial Notch signalling limits angiogenesis via control of artery formation
Hasan, Sana S.; Tsaryk, Roman; Lange, Martin; Wisniewski, Laura; Moore, John C.; Lawson, Nathan D.; Wojciechowska, Karolina; Schnittler, Hans; Siekmann, Arndt F.
2017-01-01
Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation. PMID:28714969
NASA Astrophysics Data System (ADS)
Sukmana, I.; Djuansjah, J. R. P.
2013-04-01
We present here a three-dimensional (3D) sandwich system made by poly(ethylene terephthalate) (PET) fibre and fibrin extracellular matrix (ECM) for endothelial cell dictation and angiogenesis guidance. In this three-dimensional system, Human Umbilical Vein Endothelial cells (HUVECs) were firstly cultured for 2 (two) days to cover the PET fibre before sandwiched in two layer fibrin gel containing HUVECs. After 4 (four) days of culture, cel-to-cel connection, tube-like structure and multi-cellular lumen formation were then assessed and validated. Phase contrast and fluorescence imaging using an inverted microscope were used to determine cell-to-cell and cell-ECM interactions. Laser scanning confocal microscopy and histological techniques were used to confirm the development of tube-like structure and multi-cellular lumen formation. This study shows that polymer fibres sandwiched in fibrin gel can be used to dictate endothelial cells undergoing angiogenesis with potential application in cancer and cardiovascular study and tissue engineering vascularisation.
Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Manni, Lucia
2014-01-01
Tunicates are the closest relatives to vertebrates and include the only chordate species able to reproduce both sexually and asexually. The colonial tunicate Botryllus schlosseri is embedded in a transparent extracellular matrix (the tunic) containing the colonial circulatory system (CCS). The latter is a network of vessels external to zooids, limited by a simple, flat epithelium that originated from the epidermis. The CCS propagates and regenerates by remodelling and extending the vessel network through the mechanism of sprouting, which typically characterises vertebrate angiogenesis. In exploiting the characteristics of B. schlosseri as a laboratory model, we present a new experimental and analysis method based on the ability to obtain genetically identical subclones representing paired samples for the appropriate quantitative outcome statistical analysis. The method, tested using human VEGF and EGF to induce angiogenesis, shows that the CCS provides a useful in vivo vessel network model for testing the effects of specific injected solutes on vessel dynamics. These results show the potentiality of B. schlosseri CCS as an effective complementary model for in vivo studies on angiogenesis and anticancer therapy. We discuss this potentiality, taking into consideration the origin, nature, and roles of the cellular and molecular agents involved in CCS growth. PMID:25248762
Reuwer, Anne Q; Nowak-Sliwinska, Patrycja; Mans, Laurie A; van der Loos, Chris M; von der Thüsen, Jan H; Twickler, Marcel Th B; Spek, C Arnold; Goffin, Vincent; Griffioen, Arjan W; Borensztajn, Keren S
2012-01-01
Prolactin is best known as the polypeptide anterior pituitary hormone, which regulates the development of the mammary gland. However, it became clear over the last decade that prolactin contributes to a broad range of pathologies, including breast cancer. Prolactin is also involved in angiogenesis via the release of pro-angiogenic factors by leukocytes and epithelial cells. However, whether prolactin also influences endothelial cells, and whether there are functional consequences of prolactin-induced signalling in the perspective of angiogenesis, remains so far elusive. In the present study, we show that prolactin induces phosphorylation of ERK1/2 and STAT5 and induces tube formation of endothelial cells on Matrigel. These effects are blocked by a specific prolactin receptor antagonist, del1-9-G129R-hPRL. Moreover, in an in vivo model of the chorioallantoic membrane of the chicken embryo, prolactin enhances vessel density and the tortuosity of the vasculature and pillar formation, which are hallmarks of intussusceptive angiogenesis. Interestingly, while prolactin has only little effect on endothelial cell proliferation, it markedly stimulates endothelial cell migration. Again, migration was reverted by del1-9-G129R-hPRL, indicating a direct effect of prolactin on its receptor. Immunohistochemistry and spectral imaging revealed that the prolactin receptor is present in the microvasculature of human breast carcinoma tissue. Altogether, these results suggest that prolactin may directly stimulate angiogenesis, which could be one of the mechanisms by which prolactin contributes to breast cancer progression, thereby providing a potential tool for intervention. PMID:22128761
Nickoloff, B. J.; Mitra, R. S.; Varani, J.; Dixit, V. M.; Polverini, P. J.
1994-01-01
Psoriasis is a common inherited skin disease that is characterized by hyperproliferation of epidermal keratinocytes and excessive dermal angiogenesis. A growing body of evidence supports a key pathogenetic role for activated keratinocytes in the angiogenic response that accompanies psoriasis. We investigated the role of psoriatic epidermis in the aberrant expression of angiogenesis by examining the ability of pure populations of multipassaged keratinocytes obtained from the skin of normal individuals and psoriatic patients to induce angiogenesis in vivo in the rat corneal bioassay and endothelial cell chemotaxis in vitro. Media conditioned by keratinocytes from psoriatic patients, including both symptomless skin and psoriatic plaques, induced vigorous angiogenic responses in over 90% of corneas tested and potently stimulated directional migration of capillary endothelial cells in vitro. In contrast, conditioned medium from normal keratinocyte cultures was weakly positive in less than 10% of corneas assayed and failed to stimulate endothelial cell chemotaxis. Furthermore, keratinocytes from psoriatic skin exhibited a 10- to 20-fold increase in interleukin-8 production and a seven-fold reduction in thrombospondin-1 production. The angiogenic activity present in keratinocyte-conditioned media from psoriatic patients was suppressed by adding either highly purified thrombospondin-1 (125 ng) or following the addition of either normal keratinocyte-conditioned media or neutralizing interleukin-8 antibody. We conclude that psoriatic keratinocytes are phenotypically different from normal keratinocytes with respect to their angiogenic capacity and that this aberrant phenotype is attributable to a defect in the overproduction of interleukin-8 and a deficiency in the production of the angiogenesis inhibitor thrombospondin-1. Images Figure 1 PMID:7512793
Choroid Sprouting Assay: An Ex Vivo Model of Microvascular Angiogenesis
Shao, Zhuo; Friedlander, Mollie; Hurst, Christian G.; Cui, Zhenghao; Pei, Dorothy T.; Evans, Lucy P.; Juan, Aimee M.; Tahir, Houda; Duhamel, François; Chen, Jing; Sapieha, Przemyslaw; Chemtob, Sylvain; Joyal, Jean-Sébastien; Smith, Lois E. H.
2013-01-01
Angiogenesis of the microvasculature is central to the etiology of many diseases including proliferative retinopathy, age-related macular degeneration and cancer. A mouse model of microvascular angiogenesis would be very valuable and enable access to a wide range of genetically manipulated tissues that closely approximate small blood vessel growth in vivo. Vascular endothelial cells cultured in vitro are widely used, however, isolating pure vascular murine endothelial cells is technically challenging. A microvascular mouse explant model that is robust, quantitative and can be reproduced without difficulty would overcome these limitations. Here we characterized and optimized for reproducibility an organotypic microvascular angiogenesis mouse and rat model from the choroid, a microvascular bed in the posterior of eye. The choroidal tissues from C57BL/6J and 129S6/SvEvTac mice and Sprague Dawley rats were isolated and incubated in Matrigel. Vascular sprouting was comparable between choroid samples obtained from different animals of the same genetic background. The sprouting area, normalized to controls, was highly reproducible between independent experiments. We developed a semi-automated macro in ImageJ software to allow for more efficient quantification of sprouting area. Isolated choroid explants responded to manipulation of the external environment while maintaining the local interactions of endothelial cells with neighboring cells, including pericytes and macrophages as evidenced by immunohistochemistry and fluorescence-activated cell sorting (FACS) analysis. This reproducible ex vivo angiogenesis assay can be used to evaluate angiogenic potential of pharmacologic compounds on microvessels and can take advantage of genetically manipulated mouse tissue for microvascular disease research. PMID:23922736
Liang, Sheng; Zhang, Caiyuan; Cheng, Weiwei; Hai, Wangxi; Yin, Bing; Wang, Dengbin
2016-01-01
Purpose Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Experimental design and results Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). Conclusions 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27029065
Schiper, Luis; Faintuch, Bluma Linkowski; da Silva Badaró, Roberto José; de Oliveira, Erica Aparecida; Chavez, Victor E. Arana; Chinen, Elisangela; Faintuch, Joel
2016-01-01
OBJECTIVES: Conventional imaging methods are excellent for the morphological characterization of the consequences of osteonecrosis; however, only specialized techniques have been considered useful for obtaining functional information. To explore the affinity of radiotracers for severely devascularized bone, a new mouse model of isolated femur implanted in a subcutaneous abdominal pocket was devised. To maintain animal mobility and longevity, the femur was harvested from syngeneic donors. Two technetium-99m-labeled tracers targeting angiogenesis and bone matrix were selected. METHODS: Medronic acid and a homodimer peptide conjugated with RGDfK were radiolabeled with technetium-99m, and biodistribution was evaluated in Swiss mice. The grafted and control femurs were evaluated after 15, 30 and 60 days, including computed tomography (CT) and histological analysis. RESULTS: Radiolabeling achieved high (>95%) radiochemical purity. The biodistribution confirmed good blood clearance 1 hour after administration. For 99mTc-hydrazinonicotinic acid (HYNIC)-E-[c(RGDfK)2, remarkable renal excretion was observed compared to 99mTc-methylene diphosphonate (MDP), but the latter, as expected, revealed higher bone uptake. The results obtained in the control femur were equal at all time points. In the implanted femur, 99mTc-HYNIC-E-[c(RGDfK)2 uptake was highest after 15 days, consistent with early angiogenesis. Regarding 99mTc-MDP in the implant, similar uptake was documented at all time points, consistent with sustained bone viability; however, the uptake was lower than that detected in the control femur, as confirmed by histology. CONCLUSIONS: 1) Graft viability was successfully diagnosed using radiotracers in severely ischemic bone at all time points. 2) Analogously, indirect information about angiogenesis could be gathered using 999mTc-HYNIC-E-[c(RGDfK)2. 3) These techniques appear promising and warrant further studies to determine their potential clinical applications. PMID:27759852
Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen
2017-03-01
Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chamorro-Jorganes, Aránzazu; Lee, Monica Y.; Araldi, Elisa; Landskroner-Eiger, Shira; Fernández-Fuertes, Marta; Sahraei, Mahnaz; Quiles del Rey, Maria; van Solingen, Coen; Yu, Jun; Fernández-Hernando, Carlos; Sessa, William C.
2016-01-01
Rationale: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17–92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor–induced endothelial cell (EC) functions is unclear and its regulation is unknown. Objective: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17–92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17–92 cluster in the endothelium (miR-17–92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. Methods and Results: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17–92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17–92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17–92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17–92 cluster and is a crucial mediator of miR-17-92–induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17–92 is inhibited. Conclusions: Taken together, our results indicate that VEGF-induced miR-17–92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis. PMID:26472816
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks
Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.
2015-01-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.
Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M
2015-09-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.
Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis.
Seo, Yoojin; Jung, Youngmee; Kim, Soo Hyun
2018-02-01
Initial angiogenesis within the first 3 days is critical for healing ischemic diseases such as myocardial infarction. Recently, decellularized extracellular matrix (dECM) has been reported to provide tissue-derived ECM components and can be used as a scaffold for cell delivery for angiogenesis in tissue engineering. Decellularization by various detergents such as sodium dodecyl sulfate (SDS) and triton X-100 can remove the cell nuclei in tissue organs. However, this leads to ECM structure denaturation, decreased presence of various ECM proteins and cytokines, and loss of mechanical properties. To overcome these limitations, in this study, we developed a supercritical carbon dioxide and ethanol co-solvent (scCO 2 -EtOH) decellularization method, which is a detergent-free system that prevents ECM structure disruption and retains various angiogenic proteins in the heart dECM, and tested on rat heart tissues. The heart tissue was placed into the scCO 2 reactor and decellularized at 37 °C and 350 bar. After scCO 2 -EtOH treatment, the effects were evaluated by DNA, collagen, and glycosaminoglycan (GAG) quantification and hematoxylin and eosin and immunofluorescence staining to determine the absence of nucleic acids and preservation of heart ECM components. Similar to the native group, the scCO 2 -EtOH group contained more ECM components such as collagen, GAGs, collagen I, laminin, and fibronectin and angiogenic factors including vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor and others in comparison to the detergent group. In addition, to estimate angiogenesis of the dECM hydrogels, the neutralized dECM solution was injected in a rat subcutaneous layer (n = 6 in each group: collagen, scCO 2 -EOH, and detergent group), after which the solution naturally formed gelation in the subcutaneous layer. After 3 days, the gels were harvested and estimated by immunofluorescence staining and the ImageJ program for angiogenesis analysis. Consequently, blood vessel formation and density of vWF and α-SMA in the scCO 2 -EtOH group were significantly greater than that in the collagen group. Here we suggest that heart-derived decellularized extracellular matrix (dECM) with scCO 2 -EtOH treatment is a highly promising angiogenic material for healing in ischemic disease. Supercritical carbon dioxide (scCO 2 ) in a supercritical phase has low viscosity and high diffusivity between gas and liquid properties and is known to be affordable, non-toxic, and eco-friendly. Therefore, scCO 2 extraction technology has been extensively used in commercial and industrial fields. Recently, decellularized extracellular matrix (dECM) was applied to tissue engineering and regenerative medicine as a scaffold, therapeutic material, and bio-ink for 3D printing. Moreover, the general decellularization method using detergents has limitations including eliminating tissue-derived ECM components and disrupting their structures after decellularization. To overcome these limitations, heart tissues were treated with scCO 2 -EtOH for decellularization, resulting in preserving of tissue due to the various ECM and angiogenic factors derived. In addition, initiation of angiogenesis was highly induced even after 3 days of injection. Copyright © 2017. Published by Elsevier Ltd.
Comparison of tissue processing methods for microvascular visualization in axolotls.
Montoro, Rodrigo; Dickie, Renee
2017-01-01
The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.
Oliveira de Oliveira, Laura Beatriz; Faccin Bampi, Vinícius; Ferreira Gomes, Carolina; Braga da Silva, Jefferson Luis; Encarnação Fiala Rechsteiner, Sandra Mara
2014-01-01
The word angiogenesis indicates the formation of new vascular segments from existing vessels such as capillaries and venules. Blood vessel formation in tumors is the result of rapid, disorganized vascular growth through two distinct mechanisms: sprouting and intussusceptive angiogenesis. The objective of this study was to elucidate the morphological aspects of these two vascular growth mechanisms in oral squamous cell carcinoma induced in hamster buccal pouch. Eight Syrian golden hamsters had their right buccal pouch treated with DMBA 0.5% and 10% carbamide peroxide for 90 days in order to produce squamous cell carcinoma in this site. Next, buccal pouches of the animals were submitted to the vascular corrosion technique and then analyzed by scanning electron microscopy. The vascular figures of sprouts were observed in the entire vascular network of the buccal pouches, as opposed to the intussusceptive angiogenesis that was predominantly observed in the sub-epithelial network. It was possible to differentiate the figures of sprouts from artifacts by the analysis of the blind ending of these structures. Intussusceptive angiogenesis was identified by the presence of holes trespassing the lumen of the capillaries. Vascular expansion occurred through intussusceptive angiogenesis in two ways: by the fusion of the pillars to form a new capillary and, by increasing the girth of the pillar to form meshes. The method of corrosion associated with scanning electron microscopy proved to be an excellent tool to study the two types of angiogenesis in oral squamous cell carcinoma in the hamster buccal pouch. © 2013 Wiley Periodicals, Inc.
Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis
Renault, Marie-Ange; Vandierdonck, Soizic; Chapouly, Candice; Yu, Yang; Qin, Gangjian; Metras, Alexandre; Couffinhal, Thierry; Losordo, Douglas W.; Yao, Qinyu; Reynaud, Annabel; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Desgranges, Claude; Gadeau, Alain-Pierre
2015-01-01
Rationale A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. Objective The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the crosstalk between angiogenesis and myogenesis in adults. Methods and Results Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-CreERT2; Gli3Flox/Flox mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle–associated transcription factor E2F1. Conclusions This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair–associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine. PMID:24044950
Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay.
Du, Xiaohui; Li, Wanming; Du, Guansheng; Cho, Hansang; Yu, Min; Fang, Qun; Lee, Luke P; Fang, Jin
2018-03-06
Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.
In Vivo Assays for Assessing the Role of the Wilms' Tumor Suppressor 1 (Wt1) in Angiogenesis.
McGregor, Richard J; Ogley, R; Hadoke, Pwf; Hastie, Nicholas
2016-01-01
The Wilms' tumor suppressor gene (WT1) is widely expressed during neovascularization, but it is almost entirely absent in quiescent adult vasculature. However, in vessels undergoing angiogenesis, WT1 is dramatically upregulated. Studies have shown Wt1 has a role in both tumor and ischemic angiogenesis, but the mechanism of Wt1 action in angiogenic tissue remains to be elucidated. Here, we describe two methods for induction of in vivo angiogenesis (subcutaneous sponge implantation, femoral artery ligation) that can be used to assess the influence of Wt1 on new blood vessel formation. Subcutaneously implanted sponges stimulate an inflammatory and fibrotic response including cell infiltration and angiogenesis. Femoral artery ligation creates ischemia in the distal hindlimb and produces an angiogenic response to reperfuse the limb which can be quantified in vivo by laser Doppler flowmetry. In both of these models, the role of Wt1 in the angiogenic process can be assessed using histological/immunohistochemical staining, molecular analysis (qPCR) and flow cytometry. Furthermore, combined with suitable genetic modifications, these models can be used to explore the causal relationship between Wt1 expression and angiogenesis and to trace the lineage of cells expressing Wt1. This approach will help to clarify the importance of Wt1 in regulating neovascularization in the adult, and its potential as a therapeutic target.
Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David
2013-01-01
Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885
Suarez-Martinez, Ariana D; Bierschenk, Susanne; Huang, Katie; Kaplan, Dana; Bayer, Carolyn L; Meadows, Stryder M; Sperandio, Markus; Murfee, Walter L
2018-05-18
The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks. © 2018 S. Karger AG, Basel.
Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate.
Killingsworth, Murray C; Wu, Xiaojuan
2011-01-01
Angiogenesis facilitates metabolism, proliferation and metastasis of adenocarcinoma cells in the prostate, as without the development of new vasculature tumor growth cannot be sustained. However, angiogenesis is variable with the well-known phenomenon of vascular 'hotspots' seen associated with viable tumor cell mass. With the recent recognition of pericytes as molecular regulators of angiogenesis, we have examined the interaction of these cells in actively growing new vessels. Pericyte interactions with developing new vessels were examined using transmission electron microscopy. Pericyte distribution was mapped from α-SMA+ immunostained histological sections and quantified using image analysis. Data was obtained from peripheral and more central regions of 27 cases with Gleason scores of 4-9. Pericyte numbers were increased around developing new vessel sprouts at sites of luminal maturation. Numbers were reduced around the actively growing tips of migrating endothelial cells and functional new vessels. Tumor regions internal to a 500-μm peripheral band showed higher microvessel pericyte density than the peripheral region. Pericytes were found to be key cellular components of developing new vessels in adenocarcinoma of the prostate. Their numbers increased at sites of luminal maturation with these cells displaying an activated phenotype different to quiescent pericytes. Increased pericyte density was found internal to the peripheral region, suggesting more mature vessels lie more centrally. Copyright © 2011 S. Karger AG, Basel.
Sammarco, Giuseppe; Gadaleta, Cosmo Damiano; Zuccalà, Valeria; Albayrak, Emre; Patruno, Rosa; Milella, Pietro; Sacco, Rosario; Ammendola, Michele; Ranieri, Girolamo
2018-04-12
Mast cells and macrophages can play a role in tumor angiogenesis by stimulating microvascular density (MVD). The density of mast cells positive to tryptase (MCDPT), tumor-associated macrophages (TAMs), and MVD were evaluated in a series of 86 gastric cancer (GC) tissue samples from patients who had undergone potential curative surgery. MCDPT, TAMs, and MVD were assessed in tumor tissue (TT) and in adjacent normal tissue (ANT) by immunohistochemistry and image analysis. Each of the above parameters was correlated with the others and, in particular for TT, with important clinico-pathological features. In TT, a significant correlation between MCDPT, TAMs, and MVD was found by Pearson t -test analysis ( p ranged from 0.01 to 0.02). No correlation to the clinico-pathological features was found. A significant difference in terms of mean MCDPT, TAMs, and MVD between TT and ANT was found ( p ranged from 0.001 to 0.002). Obtained data suggest MCDPT, TAMs, and MVD increased from ANT to TT. Interestingly, MCDPT and TAMs are linked in the tumor microenvironment and they play a role in GC angiogenesis in a synergistic manner. The assessment of the combination of MCDPT and TAMs could represent a surrogate marker of angiogenesis and could be evaluated as a target of novel anti-angiogenic therapies in GC patients.
NASA Astrophysics Data System (ADS)
Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa
1996-06-01
The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.
Vatsa, Rakhee; Shykla, Jaya; Mittal, Bhagwant Rai; Bhusari, Priya; Sood, Apurva; Basher, Rajender Kumar; Bhattacharya, Anish
2017-06-01
TENIS (thyroglobulin elevation with negative iodine scintigraphy) syndrome in patients with differentiated thyroid carcinoma is not a rare finding. In such patients, F-FDG PET/CT can help in disease evaluation. RGD tripeptide, used for imaging angiogenesis, may also help in disease detection in patients with negative radioiodine whole-body scan. We present 1 such case in whom Ga-RGD tripeptide imaging was helpful in disease detection in the setting of negative radioiodine whole-body scan.
A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies
Asokan, Priyadarsini; Mitra, Rajendra N.; Periasamy, Ramesh; Han, Zongchao
2018-01-01
Purpose Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally. PMID:29392320
Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua
2016-01-01
Objective To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. Methods RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. Results The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). Conclusions RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts. PMID:26862757
Wang, Zhuochen; Martin, K. Heath; Huang, Wenbin; Dayton, Paul A.; Jiang, Xiaoning
2016-01-01
Techniques to image the microvasculature may play an important role in imaging tumor-related angiogenesis and vasa vasorum associated with vulnerable atherosclerotic plaques. However, the microvasculature associated with these pathologies is difficult to detect using traditional B-mode ultrasound or even harmonic imaging due to small vessel size and poor differentiation from surrounding tissue. Acoustic angiography, a microvascular imaging technique which utilizes superharmonic imaging (detection of higher order harmonics of microbubble response), can yield a much higher contrast to tissue ratio (CTR) than second harmonic imaging methods. In this work, two dual-frequency transducers using lateral mode transmitters were developed for superharmonic detection and acoustic angiography imaging in intracavity applications. A single element dual-frequency IVUS transducer was developed for concept validation, which achieved larger signal amplitude, better contrast to noise ratio (CNR) and pulse length compared to the previous work. A dual-frequency PMN-PT array transducer was then developed for superharmonic imaging with dynamic focusing. The axial and lateral size of the microbubbles in a 200 μm tube were measured to be 269 μm and 200 μm, respectively. The maximum CNR was calculated to be 22 dB. These results show that superharmonic imaging with a low frequency lateral mode transmitter is a feasible alternative to thickness mode transmitters when final transducer size requirements dictate design choices. PMID:27775903
Jyothsna, M; Rammanohar, M; Kumar, Kiran
2017-01-01
Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD-31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson's correlation was used. MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression.
Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer
Boneberg, E-M; Legler, D F; Hoefer, M M; Öhlschlegel, C; Steininger, H; Füzesi, L; Beer, G M; Dupont-Lampert, V; Otto, F; Senn, H-J; Fürstenberger, G
2009-01-01
Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer. Methods: We analysed the expression of angiogenic, lymphangiogenic or antiangiogenic factors, their respective receptors and specific markers for endothelial and lymphendothelial cells by quantitative real-time RT-PCR in primary breast cancer and compared the expression profiles to non-cancerous, tumour-adjacent tissues and breast tissues from healthy women. Results: We found decreased mRNA amounts of major angiogenic and lymphangiogenic factors in tumour compared to healthy tissues, whereas antiangiogenic factors were upregulated. Concomitantly, angiogenic and lymphangiogenic receptors were downregulated in breast tumours. This antiangiogenic, antilymphangiogenic microenvironment was even more pronounced in aggressive tumours and accompanied by reduced amounts of endothelial and lymphatic endothelial cell markers. Conclusion: Primary breast tumours are not a site of highly active angiogenesis and lymphangiogenesis. Selection for tumour cells that survive with minimal vascular supply may account for this observation in clinical apparent tumours. PMID:19672262
Cancer Metastasis: Perivascular Macrophages Under Watch.
Kadioglu, Ece; De Palma, Michele
2015-09-01
TIE2-expressing macrophages cluster around blood vessels and sustain tumor angiogenesis. Harney and colleagues now use live imaging of mouse mammary tumors to show that these perivascular macrophages also promote the transient opening of tumor blood vessels to facilitate hematogenous cancer cell dissemination and metastasis. ©2015 American Association for Cancer Research.
Fundamentals of functional imaging I: current clinical techniques.
Luna, A; Martín Noguerol, T; Mata, L Alcalá
2018-05-01
Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai
2015-06-01
For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.
A novel in vivo model of puncture-induced iris neovascularization
Aronsson, Monica; Kvanta, Anders
2017-01-01
Purpose To assess iris neovascularization by uveal puncture of the mouse eye and determine the role of angiogenic factors during iris neovascularization. Methods Uveal punctures were performed on BalbC mouse eyes to induce iris angiogenesis. VEGF-blockage was used as an anti-angiogenic treatment, while normoxia- and hypoxia-conditioned media from retinal pigment epithelium (RPE) cells was used as an angiogenic-inducer in this model. Iris vasculature was determined in vivo by noninvasive methods. Iris blood vessels were stained for platelet endothelial cell adhesion molecule-1 and vascular sprouts were counted as markers of angiogenesis. Expression of angiogenic and inflammatory factors in the puncture-induced model were determined by qPCR and western blot. Results Punctures led to increased neovascularization and sprouting of the iris. qPCR and protein analysis showed an increase of angiogenic factors, particularly in the plasminogen-activating receptor and inflammatory systems. VEGF-blockage partly reduced iris neovascularization, and treatment with hypoxia-conditioned RPE medium led to a statistically significant increase in iris neovascularization. Conclusions This study presents the first evidence of a puncture-induced iris angiogenesis model in the mouse. In a broader context, this novel in vivo model of neovascularization has the potential for noninvasive evaluation of angiogenesis modulating substances. PMID:28658313
Transrectal Near-Infrared Optical Tomography for Prostate Imaging
2009-03-01
using a directional transurethral ultrasound applicator,” J Magn Reson Imaging., 15(4), 409-17. Iftimia N , and Jiang H (2000), “Quantitative... N , Carroll PR, Flax J, Blumenfeld W, and Folkman J (1993), "Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma," Am J...34 JAMA. 281, 1591-1597 (1999). 6. A. C. Loch, A. Bannowsky, L. Baeurle, B. Grabski, B. König, G. Flier, O. Schmitz-Krause, U. Paul , and T. Loch
2006-07-01
peaks located half of the spectral bandwidth away from the fat peak and the water peak , respectively. We picked the peak with the largest magnitude...cancer. This was described in a published paper (Fan et al, MRM , 2001). SOW4. We demonstrated quantitatively that HiSS provides improved fat...contrast agent. Images of water signal peak height in non-metastatic tumors were smoother in the tumor interior than images of metastatic tumors (p
Colin, S; Guilmain, W; Creoff, E; Schneider, C; Steverlynck, C; Bongaerts, M; Legrand, E; Vannier, J P; Muraine, M; Vasse, M; Al-Mahmood, S
2011-01-01
Background: Tetraspanins are transmembrane proteins known to contribute to angiogenesis. CD9 partner-1 (CD9P-1/EWI-F), a glycosylated type 1 transmembrane immunoglobulin, is a member of the tetraspanin web, but its role in angiogenesis remains to be elucidated. Methods: We measured the expression of CD9P-1 under angiogenic and angiostatic conditions, and the influence of its knockdown onto capillary structures formation by human endothelial cells (hECs). A truncated form of CDP-1, GS-168AT2, was produced and challenged vs hEC proliferation, migration and capillaries' formation. Its association with CD9P-1, CD9, CD81 and CD151 and the expressions of these later at hEC surface were analysed. Finally, its effects onto in vivo tumour-induced angiogenesis and tumour growth were investigated. Results: Vascular endothelial growth factor (VEGF)-induced capillary tube-like formation was inhibited by tumour necrosis factor α and was associated with a rise in CD9P-1 mRNA expression (P<0.05); accordingly, knockdown of CD9P-1 inhibited VEGF-dependent in vitro angiogenesis. GS-168AT2 dose-dependently inhibited in vitro angiogenesis, hEC migration and proliferation (P<0.05). Co-precipitation experiments suggest that GS-168AT2 corresponds to the sequence by which CD9P-1 physiologically associates with CD81. GS-168AT2 induced the depletion of CD151, CD9 and CD9P-1 from hEC surface, correlating with GS-168AT2 degradation. Finally, in vivo injections of GS-168AT2 inhibited tumour-associated angiogenesis by 53.4±9.5% (P=0.03), and reduced tumour growth of Calu 6 tumour xenografts by 73.9±16.4% (P=0.007) without bodyweight loss. Conclusion: The truncated form of CD9P-1, GS-168AT2, potently inhibits angiogenesis and cell migration by at least the downregulation of CD151 and CD9, which provides the first evidences for the central role of CD9P-1 in tumour-associated angiogenesis and tumour growth. PMID:21863033
Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer
Wang, Huaijun; Marchal, Guy; Ni, Yicheng
2011-01-01
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs. PMID:21286490
Ultrasound-contrast-agent dispersion and velocity imaging for prostate cancer localization.
van Sloun, Ruud Jg; Demi, Libertario; Postema, Arnoud W; de la Rosette, Jean Jmch; Wijkstra, Hessel; Mischi, Massimo
2017-01-01
Prostate cancer (PCa) is the second-leading cause of cancer death in men; however, reliable tools for detection and localization are still lacking. Dynamic Contrast Enhanced UltraSound (DCE-US) is a diagnostic tool that is suitable for analysis of vascularization, by imaging an intravenously injected microbubble bolus. The localization of angiogenic vascularization associated with the development of tumors is of particular interest. Recently, methods for the analysis of the bolus convective dispersion process have shown promise to localize angiogenesis. However, independent estimation of dispersion was not possible due to the ambiguity between convection and dispersion. Therefore, in this study we propose a new method that considers the vascular network as a dynamic linear system, whose impulse response can be locally identified. To this end, model-based parameter estimation is employed, that permits extraction of the apparent dispersion coefficient (D), velocity (v), and Péclet number (Pe) of the system. Clinical evaluation using data recorded from 25 patients shows that the proposed method can be applied effectively to DCE-US, and is able to locally characterize the hemodynamics, yielding promising results (receiver-operating-characteristic curve area of 0.84) for prostate cancer localization. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Varsha Vimal; Krishanappa, Savita Jangal; Prakash, Smitha Gowdra; Channabasaviah, Girish Hemdal; Murgod, Sanjay; Pujari, Ravikumar; Kamat, Mamata Sharad
2016-03-01
Angiogenesis is a fundamental process that affects physiologic reactions and pathological processes such as tumour development and metastasis. It is the process of formation of new microvessel from the preexisting vessels. The purpose of this study was to evaluate angiogenesis, macrophage index and correlate the impact of macrophages on angiogenesis in the central and peripheral giant cell granulomas by evaluating immunohistochemically microvessel density, microvessel perimeter and macrophage index. Immunohistochemical analysis was carried on 20 cases of central and peripheral giant cell granulomas each for CD34 and CD68 proteins expression. Inferential statistical analysis was performed using Independent student t-test to assess the microvessel density, microvessel perimeter and macrophage index on continuous scale between Group I and Group II. Level of significance was determined at 5%. Further bivariate analysis using Pearson correlation test was carried out to see the relationship between microvessel density and macrophage index in each group. Microvessel density, micro vessel perimeter and macrophage index was higher in central giant cell granuloma compared to that of peripheral giant cell granuloma. Correlation between microvessel density and macrophage index among these two lesions was statistically insignificant. Angiogenesis as well as the number of macrophages appeared to increase in Central Giant Cell Granuloma in present study. These findings suggest that macrophages may up regulate the angiogenesis in these giant cell granulomas and angiogenesis do have a role in clinical behaviour. However, we could not establish a positive correlation between microvessel density and macrophage index as the values were statistically insignificant. This insignificance may be presumed due to fewer samples taken for study.
Koyama, Hidenori; Okada, Masahiro; Tanaka, Shinji; Shoji, Tetsuo; Emoto, Masanori; Furuzono, Tsutomu; Nishizawa, Yoshiki; Inaba, Masaaki
2012-01-01
Background Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp) coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid) (PLLA) microspheres, named nano-scaffold (NS), were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. Methods and Results Bone marrow mononuclear cells (BMNC) and NS or control PLLA microspheres (LA) were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP)-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC). NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. Conclusion A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders. PMID:22529991
Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis
Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing
2014-01-01
Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194
Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease
Stacy, Mitchel R.; Sinusas, Albert J.
2015-01-01
Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches, such as PET and SPECT, can offer novel insight into PVD by providing non-invasive assessment of biological processes such as angiogenesis and atherosclerosis. This review discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment. PMID:26590787
Effects of CASP5 gene overexpression on angiogenesis of HMEC-1 cells.
Li, Haiyan; Li, Yuzhen; Cai, Limin; Bai, Bingxue; Wang, Yanhua
2015-01-01
The efficacy of gene overexpression of CASP5, a caspase family member, in angiogenesis in vitro and its mechanisms were clarified. Human full-length CASP5 gene was delivered into human microvascular endothelial HMEC-1 cells by recombinant lentivirus. The infection was estimated by green fluorescent protein. MTT method was used to analyze the efficacy of gene overexpression in cell proliferation ability, and Matrigel was used to estimate its effects in angiogenesis ability of cells. Meanwhile, Western blot was used to analyze the effects of CASP5 gene overexpression on the expression levels of angpt-1, angpt-2, Tie2 and VEGF-1 in the cells, which were signaling pathway factors related to angiogenesis. Recombinant lentivirus containing human full-length CASP5 gene was packed and purified successfully, with virus titer of 1×10(8) TU/ml. The recombinant lentivirus was used to infect HMEC-1 cells with MOI of 1, leading to a cell infection rate of 100%. There were no significant effects of CASP5 gene overexpression on both cell proliferation ability and the expression level of angpt-1. Meanwhile, expressions of angpt-2 and VEGF-1 were both enhanced, while Tie2 expression was inhibited. Results indicated that CASP5 gene overexpression promoted angiogenesis of HMEC-1 cells. CASP5 gene overexpression significantly promoted angiogenesis ability of HMEC-1 cells, which was probably achieved by inhibiting angpt-1/Tie2 and promoting VEGF-1 signal pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, K; Corwin, D; Rockne, R
Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate themore » role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI is shown to be consistent with known physics of MRI and can be used to further investigate biological drivers of imaging-based response to RT.« less
Zips, Daniel; Adam, Markus; Flentje, Michael; Haase, Axel; Molls, Michael; Mueller-Klieser, Wolfgang; Petersen, Cordula; Philbrook, Christine; Schmitt, Peter; Thews, Oliver; Walenta, Stefan; Baumann, Michael
2004-10-01
Recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. The present article will introduce a multi-institutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Würzburg, Germany. The joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation.
Examining cerebral angiogenesis in response to physical exercise.
Berggren, Kiersten L; Kay, Jacob J M; Swain, Rodney A
2014-01-01
Capillary growth and expansion (angiogenesis) is a prerequisite for many forms of neural and behavioral plasticity. It is commonly observed in both brain and muscle of aerobically exercising animals. As such, several histological methods have been used to quantify capillary density, including perfusion with India ink, various Nissl stains, and immunohistochemistry. In this chapter, we will describe these histological procedures and describe the stereological analysis used to quantify vessel growth in response to aerobic exercise.
Multiparametric magnetic resonance imaging of the prostate: current concepts*
Bittencourt, Leonardo Kayat; Hausmann, Daniel; Sabaneeff, Natalia; Gasparetto, Emerson Leandro; Barentsz, Jelle O.
2014-01-01
Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint. PMID:25741104
NASA Astrophysics Data System (ADS)
Zhang, Qiujia; You, Jiang; Volkow, Nora D.; Choi, Jeonghun; Yin, Wei; Wang, Wei; Pan, Yingtian; Du, Congwu
2016-02-01
Cocaine abuse can lead to cerebral strokes and hemorrhages secondary to cocaine's cerebrovascular effects, which are poorly understood. We assessed cocaine's effects on cerebrovascular anatomy and function in the somatosensory cortex of the rat's brain. Optical coherence tomography was used for in vivo imaging of three-dimensional cerebral blood flow (CBF) networks and to quantify CBF velocities (CBFv), and multiwavelength laser-speckle-imaging was used to simultaneously measure changes in CBFv, oxygenated (Δ[HbO2]) and deoxygenated hemoglobin (Δ[HbR]) concentrations prior to and after an acute cocaine challenge in chronically cocaine exposed rats. Immunofluorescence techniques on brain slices were used to quantify microvasculature density and levels of vascular endothelial growth factor (VEGF). After chronic cocaine (2 and 4 weeks), CBFv in small vessels decreased, whereas vasculature density and VEGF levels increased. Acute cocaine further reduced CBFv and decreased Δ[HbO2] and this decline was larger and longer lasting in 4 weeks than 2 weeks cocaine-exposed rats, which indicates that risk for ischemia is heightened during intoxication and that it increases with chronic exposures. These results provide evidence of cocaine-induced angiogenesis in cortex. The CBF reduction after chronic cocaine exposure, despite the increases in vessel density, indicate that angiogenesis was insufficient to compensate for cocaine-induced disruption of cerebrovascular function.
Reduced Microvascular Density in Omental Biopsies of Children with Chronic Kidney Disease
Grabe, Niels; Lahrmann, Bernd; Nasser, Hamoud; Freise, Christian; Schneider, Axel; Lingnau, Anja; Degenhardt, Petra; Ranchin, Bruno; Sallay, Peter; Cerkauskiene, Rimante; Malina, Michal; Ariceta, Gema; Schmitt, Claus Peter; Querfeld, Uwe
2016-01-01
Background Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of “uremic microangiopathy”, we have measured microvascular density in biopsies of the omentum of children with CKD. Patients and Methods Omental tissue was collected from 32 healthy children (0–18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2. Results Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, p<0.0021 and by automated quantification (total microvascular surface area 0.89% vs. 1.17% p = 0.01). Density measured by manual imaging was significantly associated with age, height, weight and body surface area in CKD patients and healthy controls. In multivariate analysis, age and serum creatinine level were the only independent, significant predictors of microvascular density (r2 = 0.73). There was no immunohistochemical evidence for apoptosis or autophagy. Quantitative staining showed similar expression levels of the angiogenesis regulators VEGF-A, VEGF-receptor 2 and Angpt1 (p = 0.11), but Angpt2 was significantly lower in CKD children (p = 0.01). Conclusions Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease. PMID:27846250
Vasculogenic Mimicry and Tumor Angiogenesis
Folberg, Robert; Hendrix, Mary J. C.; Maniotis, Andrew J.
2000-01-01
Tumors require a blood supply for growth and hematogenous dissemination. Much attention has been focused on the role of angiogenesis—the recruitment of new vessels into a tumor from pre-existing vessels. However, angiogenesis may not be the only mechanism by which tumors acquire a microcirculation. Highly aggressive and metastatic melanoma cells are capable of forming highly patterned vascular channels in vitro that are composed of a basement membrane that stains positive with the periodic acid-Schiff (PAS) reagent in the absence of endothelial cells and fibroblasts. These channels formed in vitro are identical morphologically to PAS-positive channels in histological preparations from highly aggressive primary uveal melanomas, in the vertical growth phase of cutaneous melanomas, and in metastatic uveal and cutaneous melanoma. The generation of microvascular channels by genetically deregulated, aggressive tumor cells was termed “vasculogenic mimicry” to emphasize their de novo generation without participation by endothelial cells and independent of angiogenesis. Techniques designed to identify the tumor microcirculation by the staining of endothelial cells may not be applicable to tumors that express vasculogenic mimicry. Although it is not known if therapeutic strategies targeting endothelial cells will be effective in tumors whose blood supply is formed by tumor cells in the absence of angiogenesis, the biomechanical and molecular events that regulate vasculogenic mimicry provide opportunities for the development of novel forms of tumor-targeted treatments. The unique patterning characteristic of vasculogenic mimicry provides an opportunity to design noninvasive imaging techniques to detect highly aggressive neoplasms and their metastases. PMID:10666364
Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia
2015-06-01
Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.
Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin
2016-01-01
Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851
Placental angiogenesis in sheep models of compromised pregnancy
Reynolds, Lawrence P; Borowicz, Pawel P; Vonnahme, Kimberly A; Johnson, Mary Lynn; Grazul-Bilska, Anna T; Redmer, Dale A; Caton, Joel S
2005-01-01
Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of ‘stress’ to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development. PMID:15760944
Molecular imaging with targeted contrast ultrasound.
Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R
2009-01-01
Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.
Photoacoustic imaging of breast tumor vascularization: a comparison with MRI and histopathology
NASA Astrophysics Data System (ADS)
Heijblom, Michelle; Piras, Daniele; van den Engh, Frank M.; Klaase, Joost M.; Brinkhuis, Mariël.; Steenbergen, Wiendelt; Manohar, Srirang
2013-06-01
Breast cancer is the most common form of cancer and the leading cause of cancer death among females. Early diagnosis improves the survival chances for the disease and that is why there is an ongoing search for improved methods for visualizing breast cancer. One of the hallmarks of breast cancer is the increase in tumor vascularization that is associated with angiogenesis: a crucial factor for survival of malignancies. Photoacoustic imaging can visualize the malignancyassociated increased hemoglobin concentration with optical contrast and ultrasound resolution, without the use of ionizing radiation or contrast agents and is therefore theoretically an ideal method for breast imaging. Previous clinical studies using the Twente Photoacoustic Mammoscope (PAM), which works in forward mode using a single wavelength (1064 nm), showed that malignancies can indeed be identified in the photoacoustic imaging volume as high contrast areas. However, the specific appearance of the malignancies led to questions about the contrast mechanism in relation to tumor vascularization. In this study, the photoacoustic lesion appearance obtained with an updated version of PAM is compared with the lesion appearance on Magnetic Resonance Imaging (MRI), both in general (19 patients) and on an individual basis (7 patients). Further, in 3 patients an extended histopathology protocol is being performed in which malignancies are stained for vascularity using an endothelial antibody: CD31. The correspondence between PAM and MRI and between PAM and histopathology makes it likely that the high photoacoustic contrast at 1064 nm is indeed largely the consequence of the increased tumor vascularization.
Assili, S.; Fathi Kazerooni, A.; Aghaghazvini, L.; Saligheh Rad, H.R.; Pirayesh Islamian, J.
2015-01-01
Background Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional MRI techniques, namely dynamic contrast enhanced (DCE-) MRI and diffusion-weighted MRI (DWI) can indicate the characteristics of tumor tissue. Methods DCE-MRI analysis is based on the parameters of time intensity curve (TIC) before and after contrast agent injection. This method has the potential to identify the angiogenesis of tumors. DWI analysis is performed according to diffusion of water molecules in a tissue for determination of the cellularity of tumors. Conclusion According to the literature, these methods cannot be used individually to differentiate benign from malignant salivary gland tumors. An effective approach could be to combine the aforementioned methods to increase the accuracy of discrimination between different tumor types. The main objective of this study is to explore the application of DCE-MRI and DWI for assessment of salivary gland tumor types. PMID:26688794
The design and characterization of a digital optical breast cancer imaging system.
Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H
2008-01-01
Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.
Wang, Zhuochen; Heath Martin, K; Huang, Wenbin; Dayton, Paul A; Jiang, Xiaoning
2017-02-01
Techniques to image the microvasculature may play an important role in imaging tumor-related angiogenesis and vasa vasorum associated with vulnerable atherosclerotic plaques. However, the microvasculature associated with these pathologies is difficult to detect using traditional B-mode ultrasound or even harmonic imaging due to small vessel size and poor differentiation from surrounding tissue. Acoustic angiography, a microvascular imaging technique that utilizes superharmonic imaging (detection of higher order harmonics of microbubble response), can yield a much higher contrast-to-tissue ratio than second harmonic imaging methods. In this paper, two dual-frequency transducers using lateral mode transmitters were developed for superharmonic detection and acoustic angiography imaging in intracavity applications. A single element dual-frequency intravascular ultrasound transducer was developed for concept validation, which achieved larger signal amplitude, better contrast-to-noise ratio (CNR), and pulselength compared to the previous work. A dual-frequency [Pb(Mg 1/3 Nb 2/3 )O 3 ]-x[PbTiO 3 ] array transducer was then developed for superharmonic imaging with dynamic focusing. The axial and lateral sizes of the microbubbles in a 200- [Formula: see text] tube were measured to be 269 and [Formula: see text], respectively. The maximum CNR was calculated to be 22 dB. These results show that superharmonic imaging with a low frequency lateral mode transmitter is a feasible alternative to thickness mode transmitters when the final transducer size requirements dictate design choices.
Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression.
Gurevich, David B; Severn, Charlotte E; Twomey, Catherine; Greenhough, Alexander; Cash, Jenna; Toye, Ashley M; Mellor, Harry; Martin, Paul
2018-06-04
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti-angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor-α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Naringin improves random skin flap survival in rats.
Cheng, Liang; Chen, Tingxiang; Tu, Qiming; Li, Hang; Feng, Zhenghua; Li, Zhijie; Lin, Dingsheng
2017-11-07
Random-pattern flap transfer is commonly used to treat soft-tissue defects. However, flap necrosis remains a serious problem. Naringin accelerates angiogenesis by activating the expression of vascular endothelial growth factor (VEGF). In the present study, we investigated whether naringin improves the survival of random skin flaps. Compared with controls, the naringin-treated groups exhibited significantly larger mean areas of flap survival, significantly increased SOD activity and VEGF expression, and significantly reduced MDA level. Hematoxylin and eosin (HE) staining revealed that naringin promoted angiogenesis and inhibited inflammation. "McFarlane flap" models were established in 90 male Sprague-Dawley (SD) rats divided into three groups: a 40 mg/kg control group (0.5 % sodium carboxymethylcellulose), a 40 mg/kg naringin-treated group, and an 80 mg/kg naringin-treated group. The extent of necrosis was measured 7 days later, and tissue samples were subjected to histological analysis. Angiogenesis was evaluated via lead oxide-gelatin angiography, immunohistochemistry, and laser Doppler imaging. Inflammation was evaluated by measurement of serum TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) levels. Oxidative stress was assessed by measuring superoxide dismutase (SOD) activity and the malondialdehyde (MDA) level. Naringin improved random skin flap survival.
Li, Jian; Xu, Qiang; Teng, Bin; Yu, Chen; Li, Jian; Song, Liang; Lai, Yu-Xiao; Zhang, Jian; Zheng, Wei; Ren, Pei-Gen
2016-09-15
Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Arrieta, Oscar; Garcia-Perez, Francisco O; Michel-Tello, David; Ramírez-Tirado, Laura-Alejandra; Pitalua-Cortes, Quetzali; Cruz-Rico, Graciela; Macedo-Pérez, Eleazar-Omar; Cardona, Andrés F; Garza-Salazar, Jaime de la
2018-03-01
Nintedanib is an oral angiokinase inhibitor used as second-line treatment for non-small cell lung cancer. New radiotracers, such as 68 Ga-DOTA-E-[c(RGDfK)] 2 , that target α v β 3 integrin might have an impact as a noninvasive method for assessing angiogenesis inhibitors. Methods: From July 2011 through October 2015, 38 patients received second-line nintedanib plus docetaxel. All patients underwent PET/CT with 68 Ga-DOTA-E-[c(RGDfK)] 2 radiotracer and blood-sample tests to quantify angiogenesis factors (fibroblast growth factor, vascular endothelial growth factor, and platelet-derived growth factor AB) before and after completing 2 therapy cycles. Results: Of the 38 patients, 31 had available baseline and follow-up PET/CT. Baseline lung tumor volume addressed with 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT correlated with serum vascular endothelial growth factor levels, whereas baseline lung/liver SUV max index correlated with platelet-derived growth factor AB. After treatment, the overall response rate and disease control rate were 7.9% and 47.3%, respectively. A greater decrease in lung tumor volume (-37.2% vs. -27.6%) was associated with a better disease control rate in patients ( P = 0.005). Median progression-free survival was 3.7 mo. Nonsmokers and patients with a higher baseline lung tumor volume were more likely to have a higher progression-free survival (6.4 vs. 3.74 [ P = 0.023] and 6.4 vs. 2.1 [ P = 0.003], respectively). Overall survival was not reached. Patients with a greater decrease in lung SUV max (not reached vs. 7.1 mo; P = 0.016) and a greater decrease in the lung/spleen SUV max index (not reached vs. 7.1; P = 0.043) were more likely to have a longer overall survival. Conclusion: 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT is a potentially useful tool for assessing responses to angiogenesis inhibitors. Further analysis and novel studies are warranted to identify patients who might benefit from this therapy. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Delcourt, Nicolas; Quevedo, Celia; Nonne, Christelle; Fons, Pierre; O'Brien, Donogh; Loyaux, Denis; Diez, Maria; Autelitano, François; Guillemot, Jean-Claude; Ferrara, Pascual; Muriana, Arantza; Callol, Carlos; Hérault, Jean-Pascal; Herbert, Jean-Marc; Favre, Gilles; Bono, Françoise
2015-01-01
The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis. PMID:25384978
Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun
2016-01-01
Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386
Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui
2011-01-01
Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006
Angiogenesis Dysregulation in Term Asphyxiated Newborns Treated with Hypothermia
Shaikh, Henna; Boudes, Elodie; Khoja, Zehra; Shevell, Michael; Wintermark, Pia
2015-01-01
Background Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. Objective This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. Design/Methods Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. Results Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. Conclusions These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery. PMID:25996847
Marinaccio, Christian; Giudice, Giuseppe; Nacchiero, Eleonora; Robusto, Fabio; Opinto, Giuseppina; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico
2016-08-01
The presence of interval sentinel lymph nodes in melanoma is documented in several studies, but controversies still exist about the management of these lymph nodes. In this study, an immunohistochemical evaluation of tumor cell proliferation and neo-angiogenesis has been performed with the aim of establishing a correlation between these two parameters between positive and negative interval sentinel lymph nodes. This retrospective study reviewed data of 23 patients diagnosed with melanoma. Bioptic specimens of interval sentinel lymph node were retrieved, and immunohistochemical reactions on tissue sections were performed using Ki67 as a marker of proliferation and CD31 as a blood vessel marker for the study of angiogenesis. The entire stained tissue sections for each case were digitized using Aperio Scanscope Cs whole-slide scanning platform and stored as high-resolution images. Image analysis was carried out on three selected fields of equal area using IHC Nuclear and Microvessel analysis algorithms to determine positive Ki67 nuclei and vessel number. Patients were divided into positive and negative interval sentinel lymph node groups, and the positive interval sentinel lymph node group was further divided into interval positive with micrometastasis and interval positive with macrometastasis subgroups. The analysis revealed a significant difference between positive and negative interval sentinel lymph nodes in the percentage of Ki67-positive nuclei and mean vessel number suggestive of an increased cellular proliferation and angiogenesis in positive interval sentinel lymph nodes. Further analysis in the interval positive lymph node group showed a significant difference between micro- and macrometastasis subgroups in the percentage of Ki67-positive nuclei and mean vessel number. Percentage of Ki67-positive nuclei was increased in the macrometastasis subgroup, while mean vessel number was increased in the micrometastasis subgroup. The results of this study suggest that the correlation between tumor cell proliferation and neo-angiogenesis in interval sentinel lymph nodes in melanoma could be used as a good predictive marker to distinguish interval positive sentinel lymph nodes with micrometastasis from interval positive lymph nodes with macrometastasis subgroups.
Disrupting Tumor Angiogenesis and "the Hunger Games" for Breast Cancer.
Zhou, Ziwei; Yao, Herui; Hu, Hai
2017-01-01
Angiogenesis, one of the hallmarks of cancers, has become an attractive target for cancer therapy since decades ago. It is broadly thought that upregulation of angiogenesis is involved in tumor progression and metastasis. Though tumor vessels are tortuous, disorganized, and leaky, they deliver oxygen and nutrients for tumor development. Based on this knowledge, many kinds of drugs targeting angiogenesis pathways have been developed, such as bevacizumab. However, the clinical outcomes of anti-angiogenesis therapies are moderate in metastatic breast cancer as well as in metastatic colorectal cancer and non-small cell lung cancer, even combined with traditional chemotherapy. In this chapter, the morphologic angiogenesis patterns and the key molecular pathways regulating angiogenesis are elaborated. The FDA-approved anti-angiogenesis drugs and current challenges of anti-angiogenesis therapy are described. The strategies to overcome the barriers will also be elucidated.
NASA Astrophysics Data System (ADS)
Szu, Harold; Hoekstra, Philip; Landa, Joseph; Vydelingum, Nadarajen A.
2014-05-01
We describe an affordable, harmless, and administrative (AHA) metabolic biomarker (MBM) for homecare cancer screening. It may save hundreds of thousands of women's and thousands of men's lives every year from breast cancer and melanoma. The goal is to increase the specificity of infrared (IR) imagery to reduce the false alarm rate (FAR). The patient's hands are immersed in icy cold water, about 11oC, for 30 seconds. We then compare two IR images, taken before and after the cold stimulus, and the difference reveals an enhanced signal and noise ratio (SNR) at tumorigenesis sites since the contraction of capillaries under cold challenge is natural to healthy capillaries, except those newly built capillaries during angiogenesis (Folkman, Nature 1995). Concomitant with the genome and the phenome (molecular signaling by phosphor-mediate protein causing inflammation by platelet activating factor (PAF) that transform cells from benign to malignant is the amplification of nitric oxide (NO) syntheses, a short-lived reactive oxygen species (ROS) that dilates regional blood vessels; superseding normal autonomic nervous system regulation. A rapidly growing tumor site might implicate accumulation of ROS, for which NO can rapidly stretch the capillary bed system usually having thinning muscular lining known as Neo-Angiogenesis (NA) that could behave like Leaky In-situ Faucet Effect (LIFE) in response to cold challenge. To emphasize the state of art knowledge of NA, we mentioned in passing the first generation of an anticapillary growth drug, Avastin by Genetech; it is an antibody protein that is injected for metastasis, while the second generation drug; Sorafenib by Bayers (2001) and Sutent by Pfizer (2000) both target molecular signaling loci to block receptor associated tyrosine kinase induced protein phosphorylation in order to reverse the angiogenesis. Differentiating benign from malignant in a straightforward manner is required to achieve the wellness protocol, yet would become prohibitively expensive and impossible to follow through. For example, given the probability of detection (PD) about 0.1% over unspecified number of years (e.g. menopause years for breast cancer), one might need hundred thousand volunteers. We suggested a Time Reversal Invariant Paradigm (TRIP) (a private communication with Vatican) for gathering equivalent cancer symptom imagery from recovery histories of dozens of patients. We further mixed it with few % of recovered/non-sick cases for negative controls. Creating Virtual images and running videos of these, frame by frame, in two directions (forward and backward in time) resulted in identical Receiver Operation Characteristics (ROC) for both the computer Aided Target Recognition (AiTR) algorithm and the human radiological experts; namely PD versus FAR within the standard deviation; even though the physiology could be entirely different. Such a TRIP would be true taken by any memory-less instantaneous imagery devices (IR, ultrasound, X-rays, MRI excluding magnetic hysteresis memory). In summary, such an affordable, harmless, and administrative, neo-angiogenesis metabolic biomarker can help monitor the transitioning from benign to malignant states of high-risk home alone seniors and also monitor the progress of home alone seniors treatment at home. Therefore, Smartphone equipped with a day camera having IR spectral filtering for a contact self imaging called joystick, when augmented with AHA NA MBM, may be suited for HAS homecare.
microRNA-200b as a Switch for Inducible Adult Angiogenesis.
Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati; Sen, Chandan K
2015-05-10
Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257-1272.
Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun
2015-06-24
Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.
He, Jun; Wang, Min; Jiang, Yue; Chen, Qiudan; Xu, Shaohua; Xu, Qing; Jiang, Bing-Hua
2014-01-01
Background: Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. Objectives: We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. Methods: We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. Results: We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. Conclusion: The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. Citation: He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255–261; http://dx.doi.org/10.1289/ehp.1307545 PMID:24413338
Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ran; Xie, Jun; Wu, Han
Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4more » protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular angiogenesis in db/db mice.« less
Jin, Zhijian; Cheng, Xi; Feng, Haoran; Kuang, Jie; Yang, Weiping; Peng, Chenghong; Shen, Baiyong; Qiu, Weihua
2017-01-01
Anaplastic thyroid carcinoma (ATC) is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI), has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG) and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG) significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC. © 2017 The Author(s). Published by S. Karger AG, Basel.
Topical fentanyl stimulates healing of ischemic wounds in diabetic rats
FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna
2016-01-01
Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258
Prognostic value of angiogenesis in solitary bone plasmacytoma.
Kumar, Shaji; Fonseca, Rafael; Dispenzieri, Angela; Lacy, Martha Q; Lust, John A; Wellik, Linda; Witzig, Thomas E; Gertz, Morie A; Kyle, Robert A; Greipp, Philip R; Rajkumar, S Vincent
2003-03-01
Angiogenesis plays an important role in the biology of multiple myeloma (MM) and has prognostic importance in this disease. Solitary plasmacytoma is a localized plasma cell malignancy that progresses to MM in a significant number of patients. We examined if angiogenesis is increased in solitary plasmacytoma and if it can help identify patients likely to progress to myeloma. We studied angiogenesis in plasmacytoma biopsy samples and bone marrow biopsies from 25 patients. High-grade angiogenesis was present in 64% of plasmacytomas. In contrast, bone marrow angiogenesis was low in all patients. Patients with high-grade angiogenesis in the plasmacytoma sample were more likely to progress to myeloma and had a shorter progression-free survival compared with patients with low-grade angiogenesis (P =.02). Angiogenesis is increased in solitary plasmacytoma and is a significant predictor of progression to myeloma and provides further evidence of its importance in the pathogenesis of myeloma.
Functional inhibition of UQCRB suppresses angiogenesis in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok
2013-04-19
Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less
New Therapeutic Window of Regenerative Opportunity in Diabetic Retinopathy by VESGEN Analysis
NASA Technical Reports Server (NTRS)
Parsons-Wingert, Patricia A.
2012-01-01
Vascular pattern may serve as a useful new biomarker principle of complex, multi-scale signaling in pathological, physiological angiogenesis and microvascular remodeling. Each angiogenesis stimulator or inhibitor we have analyzed, including VEGF, bFGF, TGF-beta1, angiostatin and triamcinolone acetonide, has induced a novel "fingerprint" or "signature" biomarker vascular pattern that is spatio-temporally unique. Remodeling vasculature thereby provides an informative read-out of dominant molecular signaling, when analyzed by innovative, fractal-based VESsel GENeration (VESGEN) Analysis software. Using VESGEN to analyze ophthalmic clinical vascular images, we recently introduced a potential paradigm shift to the understanding of early-stage progression that suggests new regenerative opportunities for human diabetic retinopathy (DR), the major blinding disease for working-aged adults. In a pilot study, we discovered that angiogenesis oscillates as a surprising, homeostatic-like regeneration of retinal vessels during early progression of DR (IOVS 51(1):498). Results suggest that the term non-proliferative DR may be a misnomer. In new studies, normalization of the vasculature will be determined from the response of vascular pattern to therapeutic monitoring and treatment. We have mapped and quantified in vivo experimental models of angiogenesis, lymphangiogenesis and intravital blood flow from cellular/molecular to higher systems levels that include a murine model of infant retinopathy of prematurity (ROP); developing and pathological coronary and placental-like vessel models; progressive intestinal inflammation, growing murine tumors, and other pathological, physiological and therapeutically treated tissues of transgenic mice and avian embryos. Vascular Alterations, Visual Impairments (VIIP) & Increased Intracranial Pressure (ICP), Immunosuppression & Bone Loss: NASA-defined risk categories for human space exploration and ISS Utilization
Emoto, Makoto
2014-01-01
In recent years, studies using ultrasound energy for cancer treatment have advanced, thus revealing the enhancement of drug effects by employing low-intensity ultrasound. Furthermore, anti-angiogenesis against tumors is now attracting attention as a new cancer treatment. Therefore, we focused on the biological effects and the enhancement of drug effects brought by this low-intensity ultrasound energy and reported on the efficacy against a uterine sarcoma model, by implementing the basic studies, for the first time, including the concomitant use of low-intensity ultrasound irradiation, as an expected new antiangiogenic therapy for cancer treatment. Furthermore, we have succeeded in simultaneously utilizing low-intensity ultrasound in both diagnosis and treatment, upon real time evaluation of the anti-tumor effects and anti-angiogenesis effects using color Doppler ultrasound imaging. Although the biological effects of ultrasound have not yet been completely clarified, transient stomas were formed (Sonoporation) in cancer cells irradiated by low-intensity ultrasound and it is believed that the penetration effect of drugs is enhanced due to the drug being more charged inside the cell through these stomas. Furthermore, it has become clear that the concomitant therapy of anti-angiogenesis drugs and low-intensity ultrasound blocks the angiogenic factor VEGF produced by cancer cells, inhibits the induction of circulating endothelial progenitor cells in the bone marrow, and expedites angiogenic inhibitor TSP-1. Based on research achievements in recent years, we predict that the current diagnostic device for color Doppler ultrasound imaging will be improved in the near future, bringing with it the arrival of an age of “low-intensity ultrasound treatment that simultaneously enables diagnosis and treatment of cancer in real time.” PMID:26852677
Chen, Wei-Tsung; Shih, Tiffany Ting Fang; Chen, Ran-Chou; Tu, Shin-Yang; Hsieh, Wen-Yuen; Yang, Pang-Chyr
2012-01-01
The purpose of this study was to validate an integrin αvβ3-targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Integrin αvβ3-positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 or PEG-G3-(Gd-DTPA)6-(cRAD-DTPA)2. DCE MRI was also performed 2 hours after anti-integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.
microRNA–200b as a Switch for Inducible Adult Angiogenesis
Sinha, Mithun; Ghatak, Subhadip; Roy, Sashwati
2015-01-01
Abstract Significance: Angiogenesis is the process by which new blood vessels develop from a pre-existing vascular system. It is required for physiological processes such as developmental biology and wound healing. Angiogenesis also plays a crucial role in pathological conditions such as tumor progression. The underlying importance of angiogenesis necessitates a highly regulated process. Recent Advances: Recent works have demonstrated that the process of angiogenesis is regulated by small noncoding RNA molecules called microRNAs (miRs). These miRs, collectively referred to as angiomiRs, have been reported to have a profound effect on the process of angiogenesis by acting as either pro-angiogenic or anti-angiogenic regulators. Critical Issues: In this review, we will discuss the role of miR-200b as a regulator of angiogenesis. Once the process of angiogenesis is complete, anti-angiogenic miR-200b has been reported to provide necessary braking. Downregulation of miR-200b has been reported across various tumor types, as deregulated angiogenesis is necessary for tumor development. Transient downregulation of miR-200b in wounds drives wound angiogenesis. Future Directions: New insights and understanding of the molecular mechanism of regulation of angiogenesis by miR-200b has opened new avenues of possible therapeutic interventions to treat angiogenesis-related patho-physiological conditions. Antioxid. Redox Signal. 22, 1257–1272. PMID:25761972
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K
2015-10-01
This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.
Delcourt, Nicolas; Quevedo, Celia; Nonne, Christelle; Fons, Pierre; O'Brien, Donogh; Loyaux, Denis; Diez, Maria; Autelitano, François; Guillemot, Jean-Claude; Ferrara, Pascual; Muriana, Arantza; Callol, Carlos; Hérault, Jean-Pascal; Herbert, Jean-Marc; Favre, Gilles; Bono, Françoise
2015-02-06
The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok
2015-01-01
Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. Methods This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Results Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Conclusions Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial. PMID:26155277
Liu, Xiao-Ling; Zhou, Rong; Pan, Qi-Qi; Jia, Xiao-Lin; Gao, Wei-Na; Wu, Jun; Lin, Jing; Chen, Jiang-Fan
2010-01-01
Purpose. The adenosine A2A receptor (A2AR) modulates normal vascularization and pathologic angiogenesis in many tissues and may contribute to the pathogenesis of retinopathy of prematurity (ROP) characterized by abnormal retinal vascularization in surviving premature infants. Here, the authors studied the effects of the genetic inactivation of A2AR on normal retinal vascularization and the development of pathologic angiogenesis in oxygen-induced retinopathy (OIR), an animal model of ROP. Methods. After exposure to 75% oxygen for 5 days (postnatal day [P] 7–P12) and subsequently to room air for the next 9 days (P13–P21), we evaluated retinal vascular morphology by ADPase staining in retinal whole mounts, retinal neovascularization response by histochemistry in serial retinal sections, and retinal VEGF gene expression by real-time PCR analysis in A2AR knockout (KO) mice and their wild-type (WT) littermates. Results. At P17, A2AR KO mice displayed attenuated OIR compared with WT littermates, as evidenced by reduced vaso-obliteration and areas of nonperfusion in the center of the retina, reduced pathologic angiogenesis as evident by decreased non-ganglion cells and neovascular nuclei, and inhibited hypoxia-induced retinal VEGF gene expression. Notably, the attenuation of pathologic angiogenesis by A2AR inactivation was selective for OIR because it did not affect normal retinal vascularization during postnatal development. Conclusions. These findings provide the first evidence that A2AR is critical for the development of OIR and suggest a novel therapeutic approach of A2AR inactivation for ROP by selectively targeting pathologic but not developmental angiogenesis in the retina. PMID:20610844
Rastegari-Pouyani, Mohsen; Mostafaie, Ali; Mansouri, Kamran; Mortazavi-Jahromi, Seyed Shahabeddin; Mohammadi-Motlagh, Hamid-Reza; Mirshafiey, Abbas
2018-04-01
Angiogenesis is a process through which new capillaries are formed from pre-existing ones, which contributes significantly to the pathogenesis of numerous diseases, such as cancer and chronic inflammatory disorders. The β-D-mannuronic acid (M2000) is a novel non-steroidal anti-inflammatory drug (NSAID) with immunosuppressive effects and is a matrix metalloproteinase (MMP) inhibitor. This research aimed to study the anti-angiogenesis effects of M2000 under in vitro and in vivo models. The cytotoxic and anti-proliferative effects of M2000 were examined using the trypan blue method and the MTT assay, respectively. The 3D collagen-cytodex model and the chick chorioallantoic membrane (CAM) assay were then used to evaluate the anti-angiogenesis property of M2000. Cytotoxicity assay revealed that M2000 (at concentrations of less than 100 μg/mL) had no cytotoxic effect on human umbilical vein endothelial cells (HUVECs). It was also illustrated that M2000 had little or no anti-proliferative effect on HUVECs. In addition, the anti-angiogenesis effects of M2000 were shown to be marginal in the in vitro model and both significant and dose-dependent in the in vivo status. This study showed that M2000 could be considered as an anti-angiogenic molecule which more likely exerts its activity mainly via indirect effects on endothelial cells and its anti-inflammatory effects may partly be attributable to its anti-angiogenic activity. Therefore, it could be recommended as a candidate for prevention and treatment of cancer, chronic inflammatory diseases, and other angiogenesis-related disorders. © 2017 John Wiley & Sons Australia, Ltd.
Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells
2010-01-01
Background The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. Methods The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Results Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. Conclusions These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas. PMID:20587068
Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer.
Du, Xue-lian; Jiang, Tao; Sheng, Xiu-gui; Gao, Rong; Li, Qing-shui
2009-12-01
Osteopontin (OPN) has been found to play an important role in tumor angiogenesis in recent years. Our previous studies have shown that OPN is overexpressed in tumor-associated human endometrial endothelial cells (HEECs) isolated from tissue samples of patients with endometrial cancer. In the present study, we aimed to further determine the role of OPN in endometrial cancer-associated angiogenesis. We knock down OPN expression in HEECs and human endometrial cancer Ishikawa (ISK) cells using the small interference RNA method, and then evaluate the effects of OPN on endometrial cancer-associated angiogenesis by in vivo mouse studies and in vitro assays. Our results revealed that proliferative activity of HEECs and ISK cells in vitro was not affected by transfection with the siOPN-RNA (P>0.05). Inhibition of OPN expression in HEECs reduced the cell migration, with the percentage of repaired area of 36.32+/-2.88 vs. 8.54+/-1.13 (P=0.007). HEEC/siOPN and ISK/siOPN demonstrated 67.4% and 51.2% decreased invasiveness compared with controls, respectively (P<0.05). The number of branched points per well was obviously lower in HEEC/siOPN than that in HEEC/Control (32.46+/-17.10 vs. 53.15+/-15.44, P=0.021). Furthermore, ISK cells transfected with OPN siRNA formed smaller tumor in mice and led to a lower microvessel density, i.e., angiogenesis, in transplanted tumors of mice than scrambled siRNA controls (12.88+/-7.14 vs. 28.42+/-9.69 vessels per HPF, P=0.019). These data confirm the positive role of OPN in endometrial cancer-associated angiogenesis and might be of great benefit for finding rational approach in endometrial cancer therapy.
Young, Simon; Kretlow, James D; Nguyen, Charles; Bashoura, Alex G; Baggett, L Scott; Jansen, John A; Wong, Mark; Mikos, Antonios G
2008-09-01
Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs.
Model-based recovery of histological parameters from multispectral images of the colon
NASA Astrophysics Data System (ADS)
Hidovic-Rowe, Dzena; Claridge, Ela
2005-04-01
Colon cancer alters the macroarchitecture of the colon tissue. Common changes include angiogenesis and the distortion of the tissue collagen matrix. Such changes affect the colon colouration. This paper presents the principles of a novel optical imaging method capable of extracting parameters depicting histological quantities of the colon. The method is based on a computational, physics-based model of light interaction with tissue. The colon structure is represented by three layers: mucosa, submucosa and muscle layer. Optical properties of the layers are defined by molar concentration and absorption coefficients of haemoglobins; the size and density of collagen fibres; the thickness of the layer and the refractive indexes of collagen and the medium. Using the entire histologically plausible ranges for these parameters, a cross-reference is created computationally between the histological quantities and the associated spectra. The output of the model was compared to experimental data acquired in vivo from 57 histologically confirmed normal and abnormal tissue samples and histological parameters were extracted. The model produced spectra which match well the measured data, with the corresponding spectral parameters being well within histologically plausible ranges. Parameters extracted for the abnormal spectra showed the increase in blood volume fraction and changes in collagen pattern characteristic of the colon cancer. The spectra extracted from multi-spectral images of ex-vivo colon including adenocarcinoma show the characteristic features associated with normal and abnormal colon tissue. These findings suggest that it should be possible to compute histological quantities for the colon from the multi-spectral images.
USDA-ARS?s Scientific Manuscript database
Vascular endothelial growth factor receptor-2 (VEGFR2) plays a pivotal role in angiogenesis by eliciting vascular endothelial cell growth when bound to VEGF, a powerful pro-angiogenic ligand. While Vegf and Vegfr2 are expressed throughout gestation, the latter third of gestation in mice is character...
Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip
NASA Astrophysics Data System (ADS)
Guo, Peng; Huang, Jing; Moses, Marsha A.
2018-02-01
Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.
2011-01-01
Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major angiogenesis signaling pathway. It needs to be determined whether pro biotic yeast represents a promising approach to GI protection in space. GRC performed only the VESGEN post-testing analysis.
Towards low cost photoacoustic Microscopy system for evaluation of skin health
NASA Astrophysics Data System (ADS)
Hariri, Ali; Fatima, Afreen; Mohammadian, Nafiseh; Bely, Nicholas; Nasiriavanaki, Mohammadreza
2016-09-01
Photoacoustic imaging (PAI) involves both optical and ultrasound imaging, owing to this combination the system is capable of generating high resolution images with good penetration depth. With the growing applications of PAI in neurology, vascular biology, dermatology, ophthalmology, tissue engineering, angiogenesis etc., there is a need to make the system more compact, cheap and effective. Therefore we designed an economical and compact version of PAI systems by replacing expensive and sophisticated lasers with a robust pulsed laser diode of 905 nm wavelength. In this study, we determine the feasibility of the Photoacoustic imaging with a very low excitation energy of 0.1uJ in Photoacoustic microscopy. We developed a low cost portable Photoacoustic Imaging including microscopy (both reflection) Phantom study was performed in this configuration and also ex-vivo image was obtained from mouse skin.
Dancing Styles of Collective Cell Migration: Image-Based Computational Analysis of JRAB/MICAL-L2.
Sakane, Ayuko; Yoshizawa, Shin; Yokota, Hideo; Sasaki, Takuya
2018-01-01
Collective cell migration is observed during morphogenesis, angiogenesis, and wound healing, and this type of cell migration also contributes to efficient metastasis in some kinds of cancers. Because collectively migrating cells are much better organized than a random assemblage of individual cells, there seems to be a kind of order in migrating clusters. Extensive research has identified a large number of molecules involved in collective cell migration, and these factors have been analyzed using dramatic advances in imaging technology. To date, however, it remains unclear how myriad cells are integrated as a single unit. Recently, we observed unbalanced collective cell migrations that can be likened to either precision dancing or awa-odori , Japanese traditional dancing similar to the style at Rio Carnival, caused by the impairment of the conformational change of JRAB/MICAL-L2. This review begins with a brief history of image-based computational analyses on cell migration, explains why quantitative analysis of the stylization of collective cell behavior is difficult, and finally introduces our recent work on JRAB/MICAL-L2 as a successful example of the multidisciplinary approach combining cell biology, live imaging, and computational biology. In combination, these methods have enabled quantitative evaluations of the "dancing style" of collective cell migration.
Vessel calibre—a potential MRI biomarker of tumour response in clinical trials
Emblem, Kyrre E.; Farrar, Christian T.; Gerstner, Elizabeth R.; Batchelor, Tracy T.; Borra, Ronald J. H.; Rosen, Bruce R.; Sorensen, A. Gregory; Jain, Rakesh K.
2015-01-01
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research. PMID:25113840
Identification of inflammation sites in arthritic joints using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Paluchowski, Lukasz A.; Milanic, Matija; Bjorgan, Asgeir; Grandaunet, Berit; Dhainaut, Alvilde; Hoff, Mari; Randeberg, Lise L.
2014-03-01
Inflammatory arthritic diseases have prevalence between 2 and 3% and may lead to joint destruction and deformation resulting in a loss of function. Patient's quality of life is often severely affected as the disease attacks hands and finger joints. Pathology involved in arthritis includes angiogenesis, hyper-vascularization, hyper-metabolism and relative hypoxia. We have employed hyperspectral imaging to study the hemodynamics of affected- and non-affected joints and tissue. Two hyperspectral, push-broom cameras were used (VNIR-1600, SWIR-320i, Norsk Elektro Optikk AS, Norway). Optical spectra (400nm - 1700nm) of high spectral resolution were collected from 15 patients with visible symptoms of arthritic rheumatic diseases in at least one joint. The control group consisted of 10 healthy individuals. Concentrations of dominant chromophores were calculated based on analytical calculations of light transport in tissue. Image processing was used to analyze hyperspectral data and retrieve information, e.g. blood concentration and tissue oxygenation maps. The obtained results indicate that hyperspectral imaging can be used to quantify changes within affected joints and surrounding tissue. Further improvement of this method will have positive impact on diagnosis of arthritic joints at an early stage. Moreover it will enable development of fast, noninvasive and noncontact diagnostic tool of arthritic joints
A novel in vivo model of puncture-induced iris neovascularization.
Beaujean, Ophélie; Locri, Filippo; Aronsson, Monica; Kvanta, Anders; André, Helder
2017-01-01
To assess iris neovascularization by uveal puncture of the mouse eye and determine the role of angiogenic factors during iris neovascularization. Uveal punctures were performed on BalbC mouse eyes to induce iris angiogenesis. VEGF-blockage was used as an anti-angiogenic treatment, while normoxia- and hypoxia-conditioned media from retinal pigment epithelium (RPE) cells was used as an angiogenic-inducer in this model. Iris vasculature was determined in vivo by noninvasive methods. Iris blood vessels were stained for platelet endothelial cell adhesion molecule-1 and vascular sprouts were counted as markers of angiogenesis. Expression of angiogenic and inflammatory factors in the puncture-induced model were determined by qPCR and western blot. Punctures led to increased neovascularization and sprouting of the iris. qPCR and protein analysis showed an increase of angiogenic factors, particularly in the plasminogen-activating receptor and inflammatory systems. VEGF-blockage partly reduced iris neovascularization, and treatment with hypoxia-conditioned RPE medium led to a statistically significant increase in iris neovascularization. This study presents the first evidence of a puncture-induced iris angiogenesis model in the mouse. In a broader context, this novel in vivo model of neovascularization has the potential for noninvasive evaluation of angiogenesis modulating substances.
Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish
Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui
2013-01-01
Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556
Ta1722, an anti-angiogenesis inhibitor targeted on VEGFR-2 against human hepatoma.
Zheng, Lei; He, Xu; Ma, Weina; Dai, Bingling; Zhan, Yingzhuan; Zhang, Yanmin
2012-10-01
In order to investigate the anti-angiogenesis potential and related mechanisms of Ta1722 (a novel taspine derivative compound), a series of experiments in vivo and in vitro were carried out. The proliferation on human cell lines of SMMC-7721, A549, MCF-7, Lovo, and ECV304 was examined by MTT. Angiogenesis inhibition was examined by chick embryo chorioallantoic membrane (CAM) angiogenesis and tube formation assays. Related angiogenesis proteins and their mRNA expression were determined by western blotting and RT-PCR. In addition, the SMMC-7721 nude mouse xenotransplant model was used to evaluate the inhibition of tumor growth. The results showed that Ta1722 inhibited cell proliferation, angiogenesis of CAM and tube formation, and downregulated related positive angiogenesis proteins. The above indicated Ta1722 could serve as a promising candidate of angiogenesis inhibitors by interrupting the VEGF/VEGFR-2 pathway. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Synchrotron radiation microimaging in rabbit models of cancer for preclinical testing
NASA Astrophysics Data System (ADS)
Umetani, Keiji; Uesugi, Kentaro; Kobatake, Makito; Yamamoto, Akira; Yamashita, Takenori; Imai, Shigeki
2009-10-01
Preclinical laboratory animal imaging modalities such as microangiography and micro-computed tomography (micro-CT) have been developed at the SPring-8 BL20B2 bending magnet beamline. The objective of this paper is to demonstrate the usefulness of microangiography systems for physiological examinations of live animals and micro-CT systems for postmortem morphological examinations. Synchrotron radiation microangiography and micro-CT with contrast agents present the main advantageous capability of depicting the anatomy of small blood vessels with tens of micrometers' diameter. This paper reports two imaging instrument types and their respective applications to preclinical imaging of tumor angiogenic blood vessels in tumor-bearing rabbits, where tumor angiogenesis is characterized morphologically by an increased number of blood vessels. A microangiography system with spatial resolution around 10 μm has been used for therapeutically evaluating angiogenic vessels in a rabbit model of cancer for evaluating embolization materials in transcatheter arterial embolization and for radiation therapy. After an iodine contrast agent was injected into an artery, in vivo imaging was carried out using a high-resolution real-time detector incorporating an X-ray direct-conversion-type SATICON pickup tube. On the other hand, a micro-CT system capably performed three-dimensional visualization of tumor angiogenic blood vessels using tumor-transplanted rabbit specimens with a barium sulfate contrast agent injected into the blood vessels. For specimen imaging, a large-field high-resolution micro-CT system based on a 10-megapixel CCD camera was developed to study tumor-associated alterations in angioarchitecture. Evidence of increased vascularity by tumor angiogenesis and decreased vascularity by tumor treatments was achieved by physiological evaluation of angiogenic small blood vessels in microangiographic imaging and by morphological assessment in micro-CT imaging. These results demonstrate the accuracy and usefulness of microangiography and micro-CT systems for quantitative examination of animals' angioarchitecture, respectively, during live and postmortem examinations.
Cheng, Cynthia; Lee, Chadd W; Daskalakis, Constantine
2015-10-27
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient's microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.(1) This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique.
Daskalakis, Constantine
2015-01-01
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient’s microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.1 This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique. PMID:26554744
Breast tumor angiogenesis analysis using 3D power Doppler ultrasound
NASA Astrophysics Data System (ADS)
Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung
2006-03-01
Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.
Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells
2009-01-01
Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137
NASA Astrophysics Data System (ADS)
Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath
2016-09-01
Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.
Pancreatic carcinogenesis: apoptosis and angiogenesis.
Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei
2004-04-01
Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.
Postdoctoral Fellow | Center for Cancer Research
Dr. St. Croix’s laboratory at the Mouse Cancer Genetics Program (MCGP), National Cancer Institute, USA has an open postdoctoral position. We seek a highly motivated, creative and bright individual to participate in a collaborative project that involves the targeting of tumor-associated stroma using T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the characterization and exploitation of molecules associated with tumor angiogenesis. The successful candidate would be involved in developing, producing and characterizing new therapeutic antibodies and CARs that recognize cancer cells or its associated stroma, and preclinical testing of these agents using mouse tumor models. The tumor angiogenesis lab is located at the National Cancer Institute in Frederick with access to state-of-the-art facilities for antibody engineering, genomic analysis, pathology, and small animal imaging, among others. Detailed information about Dr. St. Croix’s research and publications can be accessed at https://ccr.cancer.gov/Mouse-Cancer-Genetics-Program/brad-st-croix.
The effect of baicalin in a mouse model of retinopathy of prematurity
Jo, Hyoung; Jung, Sang Hoon; Yim, Hye Bin; Lee, Sung Jin; Kang, Kui Dong
2015-01-01
Baicalin is a flavonoid derived from the dried root of Scutellaria baicalensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of baicalin in mice. Pups were exposed to a hyperbaric oxygen environment to induce retinal angiogenesis and were subjected to intraperitoneal injection of baicalin. Avascular area, neovascular tufts, and neovascular lumens were quantified from digital images. Compared to the vehicle, baicalin clearly reduced the central avascular zone and the number of neovascular tufts and lumens. High-dose baicalin (10 mg/kg) significantly reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, angiotensin II, and vascular endothelial growth factor (VEGF). These results show that baicalin is a powerful antiangiogenic compound that attenuates new vessel formation in the retina after systemic administration, and is a candidate substance for therapeutic inhibition of retinal angiogenesis. [BMB Reports 2015; 48(5): 271-276] PMID:25154719
Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine; Dewhirst, Mark W; Feron, Olivier
2012-01-01
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.
Danesi, R.; Del Bianchi, S.; Soldani, P.; Campagni, A.; La Rocca, R. V.; Myers, C. E.; Paparelli, A.; Del Tacca, M.
1993-01-01
The effects of suramin, an inhibitor of growth factor mitogenic activity, were evaluated on basic fibroblast growth factor (bFGF)-induced proliferation of bovine aortic endothelial cells and on angiogenesis in the chorioallantoic membrane (CAM) of chick embryos. The role of bFGF gene expression in endothelial cell growth was also investigated by using an antisense oligodeoxynucleotide to bFGF. The 4-fold increase in [3H]-thymidine uptake in endothelial cells in vitro upon stimulation with 10 ng ml-1 of bFGF was inhibited by suramin 300 micrograms ml-1. bFGF antisense oligomer (10 microM) reduced [3H]-thymidine incorporation in exponentially growing cells by 76%; this effect was reversed by bFGF 10 ng ml-1. In the CAM of chick embryos suramin 50 micrograms was a more potent inhibitor of angiogenesis than the combination of heparin 60 micrograms/hydrocortisone 50 micrograms; the mean value of the area with reduced vascularity was significantly larger in suramin-treated CAMs (2.4 cm2) than in heparin/hydrocortisone (0.6 cm2), while the reduction of vascular density was similar (- 35 and - 29% compared to controls, respectively), In conclusion, the effects of treatments with bFGF and bFGF antisense oligomer demonstrate that bFGF plays a relevant role in endothelial cell proliferation and may be the target of suramin since the drug is able to suppress basal and bFGF-induced endothelial cell growth; in addition to this, suramin is a more potent angiogenesis inhibitor in the CAM than the combination of heparin/hydrocortisone. Images Figure 1 Figure 4 PMID:7692920
Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J.; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M.; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine
2012-01-01
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities. PMID:22428047
PET Imaging of Abdominal Aortic Aneurysm with 64Cu-Labeled Anti-CD105 Antibody Fab Fragment.
Shi, Sixiang; Orbay, Hakan; Yang, Yunan; Graves, Stephen A; Nayak, Tapas R; Hong, Hao; Hernandez, Reinier; Luo, Haiming; Goel, Shreya; Theuer, Charles P; Nickles, Robert J; Cai, Weibo
2015-06-01
The critical challenge in abdominal aortic aneurysm (AAA) research is the accurate diagnosis and assessment of AAA progression. Angiogenesis is a pathologic hallmark of AAA, and CD105 is highly expressed on newly formed vessels. Our goal was to use (64)Cu-labeled anti-CD105 antibody Fab fragment for noninvasive assessment of angiogenesis in the aortic wall in a murine model of AAA. Fab fragment of TRC105, a mAb that specifically binds to CD105, was generated by enzymatic papain digestion and conjugated to NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) for (64)Cu labeling. The binding affinity/specificity of NOTA-TRC105-Fab was evaluated by flow cytometry and various ex vivo studies. BALB/c mice were anesthetized and treated with calcium phosphate to induce AAA and underwent weekly PET scans using (64)Cu-NOTA-TRC105-Fab. Biodistribution and autoradiography studies were also performed to confirm the accuracy of PET results. NOTA-TRC105-Fab exhibited high purity and specifically bound to CD105 in vitro. Uptake of (64)Cu-NOTA-TRC105-Fab increased from a control level of 3.4 ± 0.1 to 9.5 ± 0.4 percentage injected dose per gram (%ID/g) at 6 h after injection on day 5 and decreased to 7.2 ± 1.4 %ID/g on day 12, which correlated well with biodistribution and autoradiography studies (i.e., much higher tracer uptake in AAA than normal aorta). Of note, enhanced AAA contrast was achieved, due to the minimal background in the abdominal area of mice. Degradation of elastic fibers and highly expressed CD105 were observed in ex vivo studies. (64)Cu-NOTA-TRC105-Fab cleared rapidly through the kidneys, which enabled noninvasive PET imaging of the aorta with enhanced contrast and showed increased angiogenesis (CD105 expression) during AAA. (64)Cu-NOTA-TRC105-Fab PET may potentially be used for future diagnosis and prognosis of AAA. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Angiomodulatory properties of Rhodiola spp. and other natural antioxidants.
Radomska-Leśniewska, Dorota M; Skopiński, Piotr; Bałan, Barbara J; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Skopińska-Różewska, Ewa; Borecka, Anna; Hevelke, Agata
2015-01-01
Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient.
Sharma, Manoj; Khan, Rehan; Aggarwal, Mayank; Sharma, Alpana
2017-11-26
Objective: Carcinoma of the uterine cervix is either the first or second most common malignancy in Indian women, depending on the registry. Tumor growth and metastasis primarily are determined by angiogenesis and parameters of the molecular environment including extracellular matrix elements, growth factors and cytokines. Effects of chemo-irradiation on biomarkers like vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2) and laminin in patients with carcinoma cervix therefore need to be explored. Methods: Circulatory and mRNA levels of VEGF, Ang-2 and laminin in patients with stage III carcinoma cervix (n=40) were compared with those of normal healthy women (n=20). Measurement was prior to treatment, and after chemotherapy and teleradiation, using high sensitivity ELISA kits and Q-PCR. Clinical response was evaluated as per WHO criteria and was assessed for correlation with the biochemical markers. Results: Levels of all the studied molecules were significantly (p<0.001) higher in patients than in controls. After treatment significant decline (p<0.001) was noted. Out of 40 patients, 33 were complete responders and 7 were non-responders on clinical assessment. On comparison of before and after treatment levels of these molecules complete responders showed significant decline whereas non-responders showed non-significant decrease. Follow-up of the responders for 3 years, revealed 28 of 33 patients to still be disease free, the other 5 demonstrating recurrence. Conclusions: Higher levels of angiogenic factors along with laminin indicate roles played in disease progression aiding angiogenesis. These markers may serve as useful tools in post treatment disease mapping, for which available imaging methods may not provide a true picture. Creative Commons Attribution License
Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo
2013-01-01
The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.
Tijink, Bernard M; Perk, Lars R; Budde, Marianne; Stigter-van Walsum, Marijke; Visser, Gerard W M; Kloet, Reina W; Dinkelborg, Ludger M; Leemans, C René; Neri, Dario; van Dongen, Guus A M S
2009-08-01
The human monoclonal antibody (MAb) fragment L19-SIP is directed against extra domain B (ED-B) of fibronectin, a marker of tumour angiogenesis. A clinical radioimmunotherapy (RIT) trial with (131)I-L19-SIP was recently started. In the present study, after GMP production of (124)I and efficient production of (124)I-L19-SIP, we aimed to demonstrate the suitability of (124)I-L19-SIP immuno-PET for imaging of angiogenesis at early-stage tumour development and as a scouting procedure prior to clinical (131)I-L19-SIP RIT. (124)I was produced in a GMP compliant way via (124)Te(p,n)(124)I reaction and using a TERIMO module for radioiodine separation. L19-SIP was radioiodinated by using a modified version of the IODO-GEN method. The biodistribution of coinjected (124)I- and (131)I-L19-SIP was compared in FaDu xenograft-bearing nude mice, while (124)I PET images were obtained from mice with tumours of <50 to approximately 700 mm(3). (124)I was produced highly pure with an average yield of 15.4 +/- 0.5 MBq/microAh, while separation yield was approximately 90% efficient with <0.5% loss of TeO(2). Overall labelling efficiency, radiochemical purity and immunoreactive fraction were for (124)I-L19-SIP: approximately 80 , 99.9 and >90%, respectively. Tumour uptake was 7.3 +/- 2.1, 10.8 +/- 1.5, 7.8 +/- 1.4, 5.3 +/- 0.6 and 3.1 +/- 0.4%ID/g at 3, 6, 24, 48 and 72 h p.i., resulting in increased tumour to blood ratios ranging from 6.0 at 24 h to 45.9 at 72 h p.i.. Fully concordant labelling and biodistribution results were obtained with (124)I- and (131)I-L19-SIP. Immuno-PET with (124)I-L19-SIP using a high-resolution research tomograph PET scanner revealed clear delineation of the tumours as small as 50 mm(3) and no adverse uptake in other organs. (124)I-MAb conjugates for clinical immuno-PET can be efficiently produced. Immuno-PET with (124)I-L19-SIP appeared qualified for sensitive imaging of tumour neovasculature and for predicting (131)I-L19-SIP biodistribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J
2015-06-15
Purpose: Tc-99m labeled IDA-D-[c(RGDfK){sub 2} ( {sup 99m}Tc-RGD) is a recently developed radiotracer for gamma camera or single photon emission computed tomography (SPECT) imaging and promising agent for the visualization of angiogenesis. In this study, we investigated the internal radiation dosimetry of {sup 99m}Tc-RGD in humans. Methods: Six normal controls (F:M=4:2; 68.3±3.2 years; 56.5±10.7 kg) were participated in this study. Simultaneous anterior and posterior scans of whole-body were performed using dual head gamma camera system. Before the emission scan, transmission scan was performed just before injection of {sup 99m}Tc-RGD using Co-57 flood source. After an intravenous injection of 388.7±29.3 MBqmore » of {sup 99m}Tc-RGD, six serial emission scans were performed at 0, 1, 2, 4, 8 and 24 hours post-injection. The anterior and posterior images were geometrically averaged and attenuation correction was applied using transmission scan image. Regions of interest (ROIs) were drawn on liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Time activity curves were obtained from serial emission scan and ROIs. The number of disintegrations per unit activity administered (residence time) were calculated from the area under the curve of time activity curves and injected dose of each patient. Finally, the radiation dose for each organ and effective doses were obtained using OLINDA/EXM 1.1 software and residence time. Results: High radiation doses were reported on renal and biliary excretion tracks such as urinary bladder wall, upper large intestine, kidneys, liver and gallbladder wall and their doses were 19.15±6.84, 19.28±4.78, 15.67±0.90, 9.13±1.71 and 9.09±2.03 µGy/MBq, respectively. The effective dose and effective dose equivalent were 5.08±0.53 and 7.11±0.58 µSv/MBq, respectively. Conclusion: We evaluated the radiation dose of 99mTc-RGD, which has an acceptable effective radiation dose compare to the other Tc-99m labeled radio-tracers.« less
NASA Astrophysics Data System (ADS)
Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.
2015-07-01
Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.
Puttananjaiah, Shilpa; Chatterji, Anil; Salimath, Bharati
2014-01-01
BACKGROUND/OBJECTIVES Abundant consumption of seaweeds in the diet is epidemiologically linked to the reduction in risk of developing cancer. In larger cases, however, identification of particular seaweeds that are accountable for these effects is still lacking, hindering the recognition of competent dietary-based chemo preventive approaches. The aim of this research was to establish the antiproliferative potency and angiosuppressive mode of action of Stoechospermum marginatum seaweed methanolic extract using various experimental models. MATERIALS/METHODS Among the 15 seaweeds screened for antiproliferative activity against Ehrlich ascites tumor (EAT) cell line, Stoechospermum marginatum extract (SME) was found to be the most promising. Therefore, it was further investigated for its anti-proliferative activity in-vitro against choriocarcinoma (BeWo) and non-transformed Human embryonic kidney (HEK 293) cells, and for its anti-migratory/tube formation activity against HUVEC cells in-vitro. Subsequently, the angiosuppressive activity of S. marginatum was established by inhibition of angiogenesis in in-vivo (peritoneal angiogenesis and chorioallantoic membrane assay) and ex-vivo (rat cornea assay) models. RESULTS Most brown seaweed extracts inhibited the proliferation of EAT cells, while green and red seaweed extracts were much less effective. According to the results, SME selectively inhibited proliferation of BeWo cells in-vitro in a dose-dependent manner, but had a lesser effect on HEK 293 cells. SME also suppressed the migration and tube formation of HUVEC cells in-vitro. In addition, SME was able to suppress VEGF-induced angiogenesis in the chorio allantoic membrane, rat cornea, and tumor induced angiogenesis in the peritoneum of EAT bearing mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provided further evidence of its angiosuppressive activity. CONCLUSIONS Altogether, the data underline that VEGF mediated angiogenesis is the target for the angiosuppressive action of SME and could potentially be useful in cancer prevention or treatment involving stimulated angiogenesis. PMID:25110556
Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis.
Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; Delafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne
2007-10-01
Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target.
Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis
Larrivée, Bruno; Freitas, Catarina; Trombe, Marc; Lv, Xiang; DeLafarge, Benjamin; Yuan, Li; Bouvrée, Karine; Bréant, Christiane; Del Toro, Raquel; Bréchot, Nicolas; Germain, Stéphane; Bono, Françoise; Dol, Frédérique; Claes, Filip; Fischer, Christian; Autiero, Monica; Thomas, Jean-Léon; Carmeliet, Peter; Tessier-Lavigne, Marc; Eichmann, Anne
2007-01-01
Netrins are secreted molecules with roles in axonal growth and angiogenesis. The Netrin receptor UNC5B is required during embryonic development for vascular patterning, suggesting that it may also contribute to postnatal and pathological angiogenesis. Here we show that unc5b is down-regulated in quiescent adult vasculature, but re-expressed during sprouting angiogenesis in matrigel and tumor implants. Stimulation of UNC5B-expressing neovessels with an agonist (Netrin-1) inhibits sprouting angiogenesis. Genetic loss of function of unc5b reduces Netrin-1-mediated angiogenesis inhibition. Expression of UNC5B full-length receptor also triggers endothelial cell repulsion in response to Netrin-1 in vitro, whereas a truncated UNC5B lacking the intracellular signaling domain fails to induce repulsion. These data show that UNC5B activation inhibits sprouting angiogenesis, thus identifying UNC5B as a potential anti-angiogenic target. PMID:17908930
Protein structure in context: The molecular landscape of angiogenesis
Span, Elise A.; Goodsell, David S.; Ramchandran, Ramani; Franzen, Margaret; Herman, Timothy; Sem, Daniel S.
2014-01-01
A team of students, educators, and researchers has developed new materials to teach cell signaling within its cellular context. Two non-traditional modalities are employed: physical models, to explore the atomic details of several of the proteins in the angiogenesis signaling cascade, and illustrations of the proteins in their cellular environment, to give an intuitive understanding of the cellular context of the pathway. The experiences of the team underscore the utility of these types of materials as an effective mode for fostering students’ understanding of the molecular world, and the scientific method used to define it. PMID:23868376
Structural and functional optical coherence tomography imaging of the colon
NASA Astrophysics Data System (ADS)
Welge, Weston Anthony
Colorectal cancer (CRC) remains the second deadliest cancer in the United States, despite steady reduction in mortality rate over the last three decades. Colonoscopy is the gold-standard screening modality with high sensitivity and specificity to mature polyps. However, the miss rate for small (< 5 mm) lesions is estimated to be as high as 26%. Because the five-year survival rate for CRC detected at the local stage is 90%, there is a clear need for a screening procedure that is sensitive to these small lesions. Optical coherence tomography (OCT) has become a major biomedical imaging modality since its invention in 1991. As the optical analog to ultrasound, OCT provides information in both lateral and depth dimensions with resolution < 10 ?m and an imaging depth of about 1.5 mm in scattering tissue. In this dissertation, I describe my efforts to develop new uses of OCT for improved early detection of adenoma in the azoxymethane mouse model of CRC. In recent years, commercial OCT systems have reached imaging speeds sufficiently high for in vivo volumeric imaging while laterally sampling the tissue at the Nyquist limit. First, I describe the design of a miniature endoscope and the integration of this probe with a commercial OCT system. Then I describe the development of two OCT imaging methods, one structural and one functional, that could be used for future work in diagnostic or therapeutic studies. The structural method produces en face images of the colon surface showing the colonic crypts, the first such demonstration of crypt visualization in the mouse. Changes in the crypt pattern are correlated with adenoma and are one of the earliest morphological changes. The functional method uses a Doppler OCT algorithm and image processing to detect the colon microvasculature. This technique can be used for vessel counting and blood flow measurements. Angiogenesis occurs at the beginning of tumorigenesis, and the tumor-originated arterioles are incapable of regular vasodilation. This Doppler OCT technique could potentially detect tumors at the earliest stages by measuring the change in local blood flow velocity in response to vasodilatory stimuli.
Unger, C; Marmé, D
1995-03-28
The emergence of new cytotoxic agents and techniques for treatment of systemic disease as single modalities or in combination with irradiation and surgery will impact on the use of such agents in the management of systemic breast cancer. Metastatic breast carcinoma, unlike other solid tumors, is highly responsive to chemotherapy, response rates of 50 to 70% have been reported consistently, although there has not been a significant improvement on long-term survival of these patients in the last ten years. New therapeutic approaches include cytotoxic and hormonal agents, growth and differentiation factors, monoclonal antibodies, hematopoietic stem cell support, conquest of tumor cell resistance by MDR-modulation, genetic manipulation, identification of new targets on the tumor surface, synthesis of target-oriented designer-drugs and inhibition of tumor angiogenesis. In breast cancer the tumor growth correlates with vascularization and angiogenesis. Tumor angiogenesis is stimulated by the vascular endothelial growth factor (VEGF). Microvessel density is a significant predictor of survival among node-negative women, who are at risk for having occult metastases at presentation. These patients could then be given systemic adjuvant therapy. Animal experiments show promising inhibition of tumor growth in nude mice after application of antibodies against VEGF. Other methods of manipulation of molecular mechanisms of angiogenesis are under investigation.
Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei
2008-04-08
The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.
Baldewijns, Marcella M.; van Vlodrop, Iris J. H.; Smits, Kim M.; Vermeulen, Peter B.; Van den Eynden, Gert G.; Schot, Fiona; Roskams, Tania; van Poppel, Hein; van Engeland, Manon; de Bruïne, Adriaan P.
2009-01-01
Background: von Hippel–Lindau (VHL) inactivation is common in sporadic clear cell renal cell carcinomas (ccRCC). pVHL is part of the ubiquitin ligase complex that targets the alpha subunits of hypoxia-inducible transcription factor (HIF) for degradation under well-oxygenated conditions. In the absence of wild-type pVHL, as observed in VHL patients and most sporadic ccRCCs, constitutive upregulation of HIF results in transcriptional activation of angiogenesis-related genes, such as VEGF. Differences in angiogenic activity within the group of ccRCCs were reported and strong genotype-phenotype correlations were found in patients with VHL disease, raising a question about the importance of VHL inactivation status in angiogenic behaviour and tumour progression. Methods: To address this question, we investigated the influence of VHL mutation (direct sequencing)/hypermethylation (methylation-specific PCR) on angiogenesis/tumour parameters (immunohistochemistry) in 150 patients with sporadic ccRCC. Results: We found no significant association between VHL mutation or methylation and angiogenesis/tumour parameters. Conclusions: These data indicate that tumour progression and angiogenesis are not directly influenced by VHL alterations and that additional genetic/epigenetic events should be considered to explain the diverse angiogenic and proliferative behaviour during tumour progression. PMID:19759417
Animal models of ocular angiogenesis: from development to pathologies.
Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; Chen, Jing
2017-11-01
Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. © FASEB.
Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao
2016-01-01
Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.
2014-03-01
Pincas; Rush University Medical Center, Pathology, Obstetrics and Gynecology Basu, Sanjib; Rush University Medical Center, Preventive Medicine ...and Jacques S Abramowicz 2, 5 Departments of 1 Pharmacology, 2 Obstetrics and Gynecology, 3 Pathology, 5 Preventive Medicine (Biostatistics...Animal Sciences, University of Illinois at Urbana-Champaign, Urbana (Dr Bahr Obstetrics and Gynecology, Wayne State University School of Medicine
Wang, Haibo; Hartnett, M. Elizabeth
2017-01-01
Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated in physiologic vascular development, pathologic blood vessel growth, and vascular restoration. This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors, or from vascular repair that occurs when circulating endothelial progenitor cells home into an area and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic angiogenesis, including EC migration, proliferation and tube formation. However, activation of different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation leads to pathologic angiogenesis. PMID:28587189
Angiomodulatory properties of Rhodiola spp. and other natural antioxidants
Radomska-Leśniewska, Dorota M.; Skopiński, Piotr; Bałan, Barbara J.; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Borecka, Anna; Hevelke, Agata
2015-01-01
Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient. PMID:26557041
Targeted therapy of chronic liver diseases with the inhibitors of angiogenesis.
Srivastava, Ankita; Shukla, Vanistha; Tiwari, Deepika; Gupta, Jaya; Kumar, Sunil; Kumar, Awanish
2018-05-30
Angiogenesis appears to be intrinsically associated with the progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several studies have suggested that this association is relevant for chronic liver disease (CLD) progression, with angiogenesis. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs. Inhibitor of angiogenesis has proved effective for the treatment of patients suffering from CLD. However, it is limited in diagnosis. The last decade has witnessed a plethora of publications which elucidate the potential of angiogenesis inhibitors for the therapy of CLD. The close relationship between the progression of CLDs and angiogenesis emphasizes the need for anti-angiogenic therapy to block/slow down CLD progression. The present review summarizes all these discussions, the results of the related studies carried out to date and the future prospects in this field. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role and future use of angiogenic factors as second-line treatment of CLD. This review compiles relevant findings and offers opinions that have emerged in last few years relating liver angiogenesis and its treatment using anti-angiogenic factors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Liu, Guan-Ting; Huang, Yuan-Li; Tzeng, Huey-En; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2015-02-28
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A
2017-03-01
Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro , the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo , adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis. © FASEB.
Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong
2008-01-01
Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We established a comprehensive gene functional association network to model in vitro angiogenesis regulation. The present study provided a proof-of-concept pilot of applying network perturbation analysis to drug phenotypic activity assessment. PMID:18518970
Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark
2008-01-01
Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028
Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α
Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon
2016-01-01
Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107
Angiostatin inhibits experimental liver fibrosis in mice.
Vogten, J Mathys; Drixler, Tamas A; te Velde, Elisabeth A; Schipper, Marguerite E; van Vroonhoven, Theo J M V; Voest, Emile E; Borel Rinkes, Inne H M
2004-07-01
Liver fibrosis is a response to chronic hepatic damage, which ultimately leads to liver failure and necessitates liver transplantation. A characteristic of fibrosis is pathological vessel growth. This type of angiogenesis may contribute to the disturbance of hepatocyte perfusion dynamics and lead to aggravation of disease. We hypothesized that angiostatin can inhibit pathological vessel growth and, consequently, the development of hepatic fibrosis. Hepatic fibrosis was induced by injection of carbon tetrachloride for 5 weeks. Angiostatin mice received carbon tetrachloride for 5 weeks and angiostatin during weeks 4 and 5. After 5 weeks, immunohistochemistry for endothelial cell marker von Willebrand factor and for cell proliferation was performed. Angiogenesis was quantified by counting the number of immunopositive microvessels. Also, the relative fibrotic surface was determined using Sirius Red histostaining and computer image analysis. Immunohistochemistry revealed increased expression for von Willebrand factor in fibrotic livers. Immunopositive microvessels were localized in fibrotic areas surrounding larger vessels and in emerging fibrotic septa. Angiostatin reduced the number of immunopositive microvessels by 69% (p<0.001). In addition, angiostatin reduced the relative fibrotic area in the liver by 63+/-0.1% (p<0.001). Finally, angiostatin treatment was not associated with differences in cell proliferation. Angiostatin inhibits the development of pathological angiogenesis and liver fibrosis in mice. These results warrant further evaluation of angiostatin as an antifibrotic agent, potentially contributing to the deferment of liver transplantation and reduced recurrence of fibrotic disease in the transplanted liver.
Downey, Charlene M; Singla, Arvind K; Villemaire, Michelle L; Buie, Helen R; Boyd, Steven K; Jirik, Frank R
2012-01-01
Techniques for visualizing and quantifying the microvasculature of tumors are essential not only for studying angiogenic processes but also for monitoring the effects of anti-angiogenic treatments. Given the relatively limited information that can be gleaned from conventional 2-D histological analyses, there has been considerable interest in methods that enable the 3-D assessment of the vasculature. To this end, we employed a polymerizing intravascular contrast medium (Microfil) and micro-computed tomography (micro-CT) in combination with a maximal spheres direct 3-D analysis method to visualize and quantify ex-vivo vessel structural features, and to define regions of hypoperfusion within tumors that would be indicative of necrosis. Employing these techniques we quantified the effects of a vascular disrupting agent on the tumor vasculature. The methods described herein for quantifying whole tumor vascularity represent a significant advance in the 3-D study of tumor angiogenesis and evaluation of novel therapeutics, and will also find potential application in other fields where quantification of blood vessel structure and necrosis are important outcome parameters.
Infectious Angiogenesis-Different Pathways, the Same Goal.
Urbanowicz, Maria; Kutzner, Heinz; Riveiro-Falkenbach, Erica; Rodriguez-Peralto, Jose L
2016-11-01
Infectious angiogenesis is the biological response of neoangiogenesis induced by infectious organisms. The authors present 3 exemplary entities which show paradigmatic clinico-pathological settings of infectious angiogenesis: Bacillary angiomatosis, Orf (ecthyma contagiosum), and Kaposi sarcoma. The authors review the literature and elucidate etiopathogenetic pathways leading to the phenomenon of neovascularization stimulated by infectious organisms. The authors describe the clinical and histological pictures, interactions between microorganisms and host cells, and changes that occur within cellular structures, as well as angiogenic factors that underpin infectious angiogenesis. The importance of chronic inflammation and tumor angiogenesis is emphasized.
Baum, Richard P.; Kulkarni, Harshad R.; Müller, Dirk; Danthi, Narasimhan; Kim, Young-Seung; Brechbiel, Martin W.
2015-01-01
Abstract 68Ga-NODAGA-THERANOST™ is an αvβ3 integrin antagonist and the first radiolabeled peptidomimetic to reach clinical development for targeting integrin receptors. In this first-in-human study, the feasibility of integrin receptor peptidomimetic positron emission tomography/computed tomography (PET/CT) imaging was confirmed in patients with non-small-cell lung cancer and breast cancer. Methods: Patients underwent PET/CT imaging with 68Ga NODAGA-THERANOST. PET images were analyzed qualitatively and quantitatively and compared to 2-deoxy-2-(18F) fluoro-d-glucose (18F-FDG) findings. Images were obtained 60 minutes postinjection of 300–500 MBq of 68Ga-NODAGA-THERANOST. Results: 68Ga-NODAGA-THERANOST revealed high tumor-to-background ratios (SUVmax=4.8) and uptake at neoangiogenesis sites. Reconstructed fused images distinguished cancers with high malignancy potential and enabled enhanced bone metastasis detection. 18F-FDG-positive lung and lymph node metastases did not show uptake, indicating the absence of neovascularization. Conclusions: 68Ga-NODAGA-THERANOST was found to be safe and effective, exhibiting in this study rapid blood clearance, stability, rapid renal excretion, favorable biodistribution and PK/PD, low irradiation burden (μSv/MBq/μg), and convenient radiolabeling. This radioligand might enable theranostics, that is, a combination of diagnostics followed by the appropriate therapeutics, namely antiangiogenic therapy, image-guided presurgical assessment, treatment response evaluation, prediction of pathologic response, neoadjuvant-peptidomimetic-radiochemotherapy, and personalized medicine strategies. Further clinical trials evaluating 68Ga-NODAGA-THERANOST are warranted. PMID:25945808
[Molecular imaging of tumor blood vessels].
Tilki, D; Singer, B; Seitz, M; Stief, C G; Ergün, S
2007-09-01
In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of the anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of vascular remodeling. Tumor imaging by X-ray, CT, MRI and ultrasound has to be improved by coupling with molecular markers targeting the tumor vessels. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not result in a reduction of tumor diameter. But remodeling of the tumor vessels under anti-angiogenic therapy obviously occurs at an early stage and seems to be a convincing parameter for tumor imaging. Despite the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodeling of the microtumor vessels. Thus, new imaging approaches are needed to overcome this issue.
Image-guided therapies for myocardial repair: concepts and practical implementation
Bengel, Frank M.; George, Richard T.; Schuleri, Karl H.; Lardo, Albert C.; Wollert, Kai C.
2013-01-01
Cell- and molecule-based therapeutic strategies to support wound healing and regeneration after myocardial infarction (MI) are under development. These emerging therapies aim at sustained preservation of ventricular function by enhancing tissue repair after myocardial ischaemia and reperfusion. Such therapies will benefit from guidance with regard to timing, regional targeting, suitable candidate selection, and effectiveness monitoring. Such guidance is effectively obtained by non-invasive tomographic imaging. Infarct size, tissue characteristics, muscle mass, and chamber geometry can be determined by magnetic resonance imaging and computed tomography. Radionuclide imaging can be used for the tracking of therapeutic agents and for the interrogation of molecular mechanisms such as inflammation, angiogenesis, and extracellular matrix activation. This review article portrays the hypothesis that an integrated approach with an early implementation of structural and molecular tomographic imaging in the development of novel therapies will provide a framework for achieving the goal of improved tissue repair after MI. PMID:23720377
Yu, Yuanman; Chen, Jie; Chen, Rui; Cao, Lingyan; Tang, Wei; Lin, Dan; Wang, Jing; Liu, Changsheng
2015-05-13
Rapid and controlled vascularization within scaffolds remains one of the key limitations in tissue engineering applications. This study describes the fabrication and characterization of 2-N,6-O-sulfated chitosan (26SCS)-coated hierarchical scaffold composed of poly(lactic-co-glycolic acid) (PLGA) microspheres, as a desirable vehicle for vascular endothelial growth factor (VEGF) delivery and consequent angiogenic boosting in vitro. Owing to the hierarchical porous structure and high affinity between VEGF and 26SCS, the 26SCS-modified PLGA (S-PLGA) scaffold possesses excellent entrapment and sustained release of VEGF. Using human umbilical vein endothelial cells (HUVECs) as a cell model, the VEGF-loaded S-PLGA scaffold shows desirable cell viability and attachment. The bioactivity of released VEGF is validated by intracellular nitric oxide secretion and capillary tube formation, demonstrating the improved capacity of VEGF-mediated pro-angiogenesis ascribed to 26SCS incorporation. Such a strategy will afford an effective method to prepare a scaffold with promoted angiogenesis.
The effect of Setarud (IMODTM) on angiogenesis in transplanted human ovarian tissue to nude mice
Hormozi, Maryam; Talebi, Saeed; Khorram Khorshid, Hamid Reza; Zarnani, Amir-Hassan; Kamali, Koorosh; Jeddi-Tehrani, Mahmood; Soltangoraee, Haleh; Akhondi, Mohammad Mehdi
2015-01-01
Background: One of the promising methods in fertility preservation among women with cancer is cryopreservation of ovarian cortex but there are many drawbacks such as apoptosis and considerable reduction of follicular density in the transplanted ovary. One solution to reduce ischemic damage is enhancing angiogenesis after transplantation of ovarian cortex tissue. Objective: The aim of this study was to investigate the effect of Setarud, on angiogenesis in transplanted human ovarian tissue. Materials and Methods: In this case control study, twenty four nude mice were implanted subcutaneously, with human ovarian tissues, from four women. The mice were randomly divided into two groups (n=12): the experimental group was treated with Setarud, while control group received only vehicle. Each group was divided into three subgroups (n=4) based on the graft recovery days post transplantation (PT). The transplanted fragments were removed on days 2, 7, and 30 PT and the expression of Angiopoietin-1, Angiopoietin-2, and Vascular endothelial growth factor at both gene and protein levels and vascular density were studied in the grafted ovarian tissues. Results: On the 2nd and 7th day PT, the level of Angiopoietin-1 gene expression in case group was significantly lower than that in control group, while the opposite results were obtained for Angiopoietin-2 and Vascular endothelial growth factor. These results were also confirmed at the protein level. The density of vessels in Setarud group elevated significantly on day 7 PT compared to pre-treatment state. Conclusion: Our results showed that administration of Setarud may stimulates angiogenesis in transplanted human ovarian tissues, although further researches are needed before a clear judgment is made. PMID:26644788
Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus
2015-11-01
We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. © 2015. Published by The Company of Biologists Ltd.
Garantziotis, Stavros; Zudaire, Enrique; Trempus, Carol S; Hollingsworth, John W; Jiang, Dianhua; Lancaster, Lisa H; Richardson, Elizabeth; Zhuo, Lisheng; Cuttitta, Frank; Brown, Kevin K; Noble, Paul W; Kimata, Koji; Schwartz, David A
2008-11-01
The etiology and pathogenesis of angiogenesis in idiopathic pulmonary fibrosis (IPF) is poorly understood. Inter-alpha-trypsin inhibitor (IaI) is a serum protein that can bind to hyaluronan (HA) and may contribute to the angiogenic response to tissue injury. To determine whether IaI promotes HA-mediated angiogenesis in tissue injury. An examination was undertaken of angiogenesis in IaI-sufficient and -deficient mice in the bleomycin model of pulmonary fibrosis and in angiogenesis assays in vivo and in vitro. IaI and HA in patients with IPF were examined. IaI significantly enhances the angiogenic response to short-fragment HA in vivo and in vitro. lal deficiency Ieads to decreased angiogenesis in the matrigel model, and decreases lung angiogenesis after bleomycin exposure in mice. IaI is found in fibroblastic foci in IPF, where it colocalizes with HA. The colocalization is particularly strong in vascular areas around fibroblastic foci. Serum levels of IaI and HA are significantly elevated in patients with IPF compared with control subjects. High serum IaI and HA levels are associated with decreased lung diffusing capacity, but not FVC. Our findings indicate that serum IaI interacts with HA, and promotes angiogenesis in lung injury. IaI appears to contribute to the vascular response to lung injury and may lead to aberrant angiogenesis. Clinical trial registered with www.clinicaltrials.gov (NCT00016627).
TEM8 May Be a Better Anti-Angiogenesis Target | Center for Cancer Research
Anti-angiogenesis agents have improved the efficacy of many treatment strategies for solid tumors, but their ability to inhibit tumor vasculature is often incomplete and comes at a price, namely, side effects that can harm normal tissues including blood vessels. As a result, tumor angiogenesis is seldom completely halted, and both angiogenesis and tumor growth inevitably
TEM8 May Be a Better Anti-Angiogenesis Target | Center for Cancer Research
Anti-angiogenesis agents have improved the efficacy of many treatment strategies for solid tumors, but their ability to inhibit tumor vasculature is often incomplete and comes at a price, namely, side effects that can harm normal tissues including blood vessels. As a result, tumor angiogenesis is seldom completely halted, and both angiogenesis and tumor growth inevitably progress.
Wang, Chao-Qun; Huang, Yu-Wen; Wang, Shih-Wei; Huang, Yuan-Li; Tsai, Chun-Hao; Zhao, Yong-Ming; Huang, Bi-Fei; Xu, Guo-Hong; Fong, Yi-Chin; Tang, Chih-Hsin
2017-01-28
Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun
Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative andmore » anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.« less
Novel endogenous angiogenesis inhibitors and their therapeutic potential
Rao, Nithya; Lee, Yu Fei; Ge, Ruowen
2015-01-01
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application. PMID:26364800
Novel endogenous angiogenesis inhibitors and their therapeutic potential.
Rao, Nithya; Lee, Yu Fei; Ge, Ruowen
2015-10-01
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.
Chu, Jing; Shi, Panpan; Deng, Xiaoyuan; Jin, Ying; Liu, Hao; Chen, Maosheng; Han, Xue; Liu, Hanping
2018-03-25
Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full-thickness cutaneous wound site in streptozotocin-induced diabetic mice. Wounds treated with MSC-ADM demonstrated an increased percentage of wound closure. The treatment of MSC-ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col-I) fibers synthesis via second harmonic generation imaging. The synthesis of Col-I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP-labeled MSCs during wound healing was simultaneously traced via two-photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo-multiplier tube. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging
2005-07-01
measure the FBV as a function of time (Fig. 1). The setup consists of a pair of confocally positioned broadband focused transducers (diameter: 2.54 cm...signals only come from the microbubbles in the small confocal region of the two transducers (1-4 mm3 for 2 MHz transmission). The sampling frequency...amplified and then supplied to a single-element broadband focused transducer. Another broadband focused transducer ( confocally positioned to the first
Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko
2014-01-01
Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661
Hoekstra, Ronald; de Vos, Filip Y F L; Eskens, Ferry A L M; Gietema, Jourik A; van der Gaast, Ate; Groen, Harry J M; Knight, Raymond A; Carr, Robert A; Humerickhouse, Rod A; Verweij, Jaap; de Vries, Elisabeth G E
2005-08-01
ABT-510 is an angiogenesis inhibitor derived from thrombospondin-1, a naturally occurring inhibitor of angiogenesis. We investigated ABT-510, which was administered subcutaneously in patients with advanced solid malignancies, to assess safety, pharmacokinetics, and serum markers of angiogenesis. ABT-510 was administered subcutaneously as a continuous infusion (100 mg/24 h) and bolus injections (100, 200, and 260 mg once daily; 50 and 100 mg twice daily) in 28-day cycles. Thirty-nine patients received a total of 144 treatment cycles. Administration by continuous infusion was hampered by the onset of painful skin infiltrates at the injection site. In the bolus injection regimens, the most common toxicities observed were mild injection-site reactions and fatigue. Maximum-tolerated dose was not defined, but 260 mg was defined as the maximum clinically practical dose. ABT-510 pharmacokinetics were linear across the dosage ranges tested, and the potential therapeutic threshold (plasma concentrations > 100 ng/mL > 3 h/d) was achieved with all dose regimens. Median serum basic fibroblast growth factor (bFGF) levels decreased from 14.1 pg/mL (range, 0.5 to 77.7 pg/mL) at baseline to 3.2 pg/mL (range, 0.2 to 29.4 pg/mL) after 56 days of treatment (P = .003). No correlations with time on study or ABT-510 dose or exposure were observed for individual changes in bFGF. Stable disease lasting for six cycles or more was seen in six patients. ABT-510 demonstrated a favorable toxicity profile and linear and time-independent pharmacokinetics with biologically relevant plasma concentrations. The significant number of patients with prolonged stable disease and the convenient method of dosing merit further studies with this angiogenesis inhibitor.
Huang, Hong; Zhang, Qi; Liu, Jiejie; Hao, Haojie; Jiang, Chaoguang; Han, Weidong
2017-01-01
Background Following severe trauma, treatment of cutaneous injuries is often delayed by inadequate blood supply. The aim of the present study was to determine whether granulocyte-colony stimulating factor (G-CSF) protects endothelial cells (ECs) and enhances angiogenesis in a rat model of hemorrhagic shock (HS) combined with cutaneous injury after resuscitation. Material/Methods The HS rats with full-thickness defects were resuscitated and randomly divided into a G-CSF group (200 μg/kg body weight), a normal saline group, and a blank control group. Histological staining was to used estimate the recovery and apoptosis of skin. Apoptosis- and angiogenesis-related factors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot (WB). Scratch assay, tube formation, and WB experiments were performed to verify the functional effects of G-CSF on HUVECs in vitro. Results H&E staining and Masson trichrome staining showed earlier inflammation resolution and collagen synthesis in the G-CSF-treated group. Angiogenesis-related factors were elevated at mRNA and protein levels. TUNEL staining suggested fewer apoptotic cells in the G-CSF group. The apoptotic-related factors were down-regulated and anti-apoptotic factors were up-regulated in the G-CSF-treated group. Scratch assay and tube formation experiments revealed that G-CSF facilitated migration ability and angiogenic potential of HUVECs. The angiogenic and anti-apoptotic effects were also enhanced in vitro. Conclusions Our results suggest that G-CSF after resuscitation attenuates local apoptosis and accelerates angiogenesis. These findings hold great promise for improving therapy for cutaneous injury in severe trauma and ischemia diseases. PMID:28559534
HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery.
Niemi, Henna; Honkonen, Krista; Korpisalo, Petra; Huusko, Jenni; Kansanen, Emilia; Merentie, Mari; Rissanen, Tuomas T; André, Helder; Pereira, Teresa; Poellinger, Lorenz; Alitalo, Kari; Ylä-Herttuala, Seppo
2014-10-01
Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
Frizzled 4 is required for retinal angiogenesis and maintenance of the blood-retina barrier.
Paes, Kim T; Wang, Ernest; Henze, Kathy; Vogel, Peter; Read, Robert; Suwanichkul, Adisak; Kirkpatrick, Laura L; Potter, David; Newhouse, Matthew M; Rice, Dennis S
2011-08-16
PURPOSE. Mice deficient in the secreted protein Norrin or its receptor Frizzled-4 (FZD4) exhibit incomplete vascularization of the neural retina. However, because of early retinal vascular defects in the knockout models, it has not been possible to study FZD4 contribution in ocular neovascular disease. To further understand the role of this signaling pathway in physiological and pathologic angiogenesis, the authors generated a monoclonal antibody that neutralizes FZD4 function in vivo. METHODS. Antibodies were generated by immunizing Fzd4 knockout mice with the cysteine-rich domain of FZD4. A monoclonal antibody (1.99.25) was discovered that antagonizes Norrin- and WNT3A-induced β-catenin accumulation in vitro. 1.99.25 and an isotype-matched negative control antibody were evaluated in models of developmental retinal angiogenesis, oxygen-induced retinopathy, and retinal angiomatous proliferation. The authors also investigated the role of FZD4 in maintaining the blood-retina barrier in normal adult mice. RESULTS. Administration of 1.99.25 inhibited physiological and pathologic sprouting angiogenesis within the retina. Inhibition of FZD4 in developing retinal vascular networks caused the upregulation of PLVAP, a protein normally associated with fenestrated, immature endothelium in the CNS. In the adult neural retina, the administration of 1.99.25 induced PLVAP expression in the deep capillary bed and enabled extravasation of small and large molecules through the blood-retina barrier. CONCLUSIONS. These results demonstrate that FZD4 is required for physiological and pathologic angiogenesis in the retina and for regulation of retinal endothelial cell differentiation. The authors also show that FZD4 is critical for maintaining the integrity of the mature blood-retina barrier.
Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.
Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C
2016-12-01
High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med Hum Perform. 2016; 87(12):1031-1035.
O'Leary, Andrew P; Fox, James M; Pullar, Christine E
2015-02-01
Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Ding, Xiangya; Shen, Chenyou; Hu, Minmin; Zhu, Ying; Qin, Di; Lu, Hongmei; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun
2016-01-01
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. PMID:27128969
Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange
2018-04-01
Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.
MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.
Das, Swadesh K; Bhutia, Sujit K; Azab, Belal; Kegelman, Timothy P; Peachy, Leyla; Santhekadur, Prasanna K; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B
2013-01-15
Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).
MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma
Das, Swadesh K.; Bhutia, Sujit K.; Azab, Belal; Kegelman, Timothy P.; Peachy, Leyla; Santhekadur, Prasanna K.; Dasgupta, Santanu; Dash, Rupesh; Dent, Paul; Grant, Steven; Emdad, Luni; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B.
2012-01-01
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous). PMID:23233738
An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics
NASA Astrophysics Data System (ADS)
Adhikarla, Vikram; Jeraj, Robert
2016-05-01
Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [64Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing tumour response to anti-angiogenic therapies.
Definition of Two Angiogenic Pathways by Distinct α_v Integrins
NASA Astrophysics Data System (ADS)
Friedlander, Martin; Brooks, Peter C.; Shaffer, Robert W.; Kincaid, Christine M.; Varner, Judith A.; Cheresh, David A.
1995-12-01
Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-α depended on α_vβ_3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-α, or phorbol ester depended on α_vβ_5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by α_vβ_5 but not by α_vβ_3.
Zhang, Bingbo; Yang, Weitao; Yu, Jiani; Guo, Weisheng; Wang, Jun; Liu, Shiyuan; Xiao, Yi; Shi, Donglu
2017-02-01
Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r 1 and r 2 values of 5.43 and 7.502 s -1 × 10 -3 m -1 of Gd 3+ , respectively) than those measured for Gd-DTPA solution (r 1 and r 2 values of 3.42 and 3.86 s -1 × 10 -3 m -1 of Gd 3+ , respectively). In vivo dynamic T 1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo
2011-11-01
The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.
Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization
Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne
2015-01-01
Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946
Small, Gary R.; Hadoke, Patrick W. F.; Sharif, Isam; Dover, Anna R.; Armour, Danielle; Kenyon, Christopher J.; Gray, Gillian A.; Walker, Brian R.
2005-01-01
Angiogenesis restores blood flow to healing tissues, a process that is inhibited by high doses of glucocorticoids. However, the role of endogenous glucocorticoids and the potential for antiglucocorticoid therapy to enhance angiogenesis is unknown. Using in vitro and in vivo models of angiogenesis in mice, we examined effects of (i) endogenous glucocorticoids, (ii) blocking endogenous glucocorticoid action with the glucocorticoid receptor antagonist RU38486, and (iii) abolishing local regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1). Glucocorticoids, administered at physiological concentrations, inhibited angiogenesis in an in vitro aortic ring model and in vivo in polyurethane sponges implanted s.c. RU38486-enhanced angiogenesis in s.c. sponges, in healing surgical wounds, and in the myocardium of mice 7 days after myocardial infarction induced by coronary artery ligation. 11βHSD1 knockout mice showed enhanced angiogenesis in vitro and in vivo within sponges, wounds, and infarcted myocardium. Endogenous glucocorticoids, including those generated locally by 11βHSD1, exert tonic inhibition of angiogenesis. Inhibition of 11βHSD1 in liver and adipose has been advocated to reduce cardiovascular risk in the metabolic syndrome: these data suggest that 11βHSD1 inhibition offers a previously uncharacterized therapeutic approach to improve healing of ischemic or injured tissue. PMID:16093320
REGULATION OF VASCULOGENESIS AND ANGIOGENESIS
Regulation of vasculogenesis and angiogenesis.
B.D. Abbott
Reproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk
Chen, Chaofei; Li, Li; Zhou, Huanjiao Jenny; Min, Wang
2017-01-01
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H2O2 in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases. PMID:28594389
Fascin 1 is dispensable for developmental and tumour angiogenesis
Ma, Yafeng; Reynolds, Louise E.; Li, Ang; Stevenson, Richard P.; Hodivala-Dilke, Kairbaan M.; Yamashiro, Shigeko; Machesky, Laura M.
2013-01-01
Summary The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis. PMID:24244855
Fascin 1 is dispensable for developmental and tumour angiogenesis.
Ma, Yafeng; Reynolds, Louise E; Li, Ang; Stevenson, Richard P; Hodivala-Dilke, Kairbaan M; Yamashiro, Shigeko; Machesky, Laura M
2013-01-01
The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.
Li, Te-Mao; Liu, Shan-Chi; Huang, Ya-Hsin; Huang, Chien-Chung; Hsu, Chin-Jung; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2017-01-01
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis. PMID:28448439
Li, Te-Mao; Liu, Shan-Chi; Huang, Ya-Hsin; Huang, Chien-Chung; Hsu, Chin-Jung; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2017-04-27
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis.
Genetic heterogeneity of skin microvasculature
Liu, Fang; Smith, Jason; Zhang, Zhen; Cole, Richard; Herron, Bruce J
2010-01-01
Angiogenesis, the formation of new blood vessels from existing vasculature, is a complex process that is essential for normal embryonic development. Current models for experimental evaluation of angiogenesis often use tissue from large vessels like the aorta and umbilical vein, which are phenotypically distinct from microvasculature. We demonstrate that the utilization of skin to measure microvascular angiogenesis in embryonic and adult tissues is an efficient way to quantify microvasculature angiogenesis. We validate this approach and demonstrate its added value by showing significant differences in angiogenesis in monogenic and polygenic mouse models. We discovered that the pattern of angiogenic response among inbred mouse strains in this ex vivo assay differ from the strain distributions of previous in vivo angiogenesis assays. The difference between the ex vivo and in vivo assays may be related to systemic factors present in whole animals. Expression analysis of cultured skin biopsies from strains of mice with opposing angiogenic response were performed to identify pathways that contribute to differential angiogenic response. Increased expression of negative regulators of angiogenesis in C57Bl/6J mice was associated with lower growth rates. PMID:20170648
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles
2012-01-01
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792
Molecular Imaging in the Era of Personalized Medicine
Jung, Kyung-Ho; Lee, Kyung-Han
2015-01-01
Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging. PMID:25812652
Molecular imaging in the era of personalized medicine.
Jung, Kyung-Ho; Lee, Kyung-Han
2015-01-01
Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.
Stroma Targeting Nuclear Imaging and Radiopharmaceuticals
Shetty, Dinesh; Jeong, Jae-Min; Shim, Hyunsuk
2012-01-01
Malignant transformation of tumor accompanies profound changes in the normal neighboring tissue, called tumor stroma. The tumor stroma provides an environment favoring local tumor growth, invasion, and metastatic spreading. Nuclear imaging (PET/SPECT) measures biochemical and physiologic functions in the human body. In oncology, PET/SPECT is particularly useful for differentiating tumors from postsurgical changes or radiation necrosis, distinguishing benign from malignant lesions, identifying the optimal site for biopsy, staging cancers, and monitoring the response to therapy. Indeed, PET/SPECT is a powerful, proven diagnostic imaging modality that displays information unobtainable through other anatomical imaging, such as CT or MRI. When combined with coregistered CT data, [18F]fluorodeoxyglucose ([18F]FDG)-PET is particularly useful. However, [18F]FDG is not a target-specific PET tracer. This paper will review the tumor microenvironment targeting oncologic imaging such as angiogenesis, invasion, hypoxia, growth, and homing, and also therapeutic radiopharmaceuticals to provide a roadmap for additional applications of tumor imaging and therapy. PMID:22685650
Imaging of breast cancer with mid- and long-wave infrared camera.
Joro, R; Lääperi, A-L; Dastidar, P; Soimakallio, S; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Järvenpää, R
2008-01-01
In this novel study the breasts of 15 women with palpable breast cancer were preoperatively imaged with three technically different infrared (IR) cameras - micro bolometer (MB), quantum well (QWIP) and photo voltaic (PV) - to compare their ability to differentiate breast cancer from normal tissue. The IR images were processed, the data for frequency analysis were collected from dynamic IR images by pixel-based analysis and from each image selectively windowed regional analysis was carried out, based on angiogenesis and nitric oxide production of cancer tissue causing vasomotor and cardiogenic frequency differences compared to normal tissue. Our results show that the GaAs QWIP camera and the InSb PV camera demonstrate the frequency difference between normal and cancerous breast tissue; the PV camera more clearly. With selected image processing operations more detailed frequency analyses could be applied to the suspicious area. The MB camera was not suitable for tissue differentiation, as the difference between noise and effective signal was unsatisfactory.
Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents
NASA Astrophysics Data System (ADS)
Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie
2017-03-01
Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis.
FOXO1 regulates VEGFA expression and promotes angiogenesis in healing wounds.
Jeon, Hyeran Helen; Yu, Quan; Lu, Yongjian; Spencer, Evelyn; Lu, Chanyi; Milovanova, Tatyana; Yang, Yang; Zhang, Chenying; Stepanchenko, Olga; Vafa, Rameen P; Coelho, Paulo G; Graves, Dana T
2018-03-25
Angiogenesis is a critical aspect of wound healing. We investigated the role of keratinocytes in promoting angiogenesis in mice with lineage-specific deletion of the transcription factor FOXO1. The results indicate that keratinocyte-specific deletion of Foxo1 reduces VEGFA expression in mucosal and skin wounds and leads to reduced endothelial cell proliferation, reduced angiogenesis, and impaired re-epithelialization and granulation tissue formation. In vitro FOXO1 was needed for VEGFA transcription and expression. In a porcine dermal wound-healing model that closely resembles healing in humans, local application of a FOXO1 inhibitor reduced angiogenesis. This is the first report that FOXO1 directly regulates VEGFA expression and that FOXO1 is needed for normal angiogenesis during wound healing. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy.
Zarrabi, Kevin; Fang, Chunhui; Wu, Shenhong
2017-02-02
Angiogenesis is a critical process in the progression of advanced renal cell carcinoma. Agents targeting angiogenesis have played a primary role in the treatment of metastatic renal cell carcinoma. However, resistance to anti-angiogenesis therapy almost always occurs, and major progress has been made in understanding its underlying molecular mechanism. Axitinib and everolimus have been used extensively in patients whom have had disease progression after prior anti-angiogenesis therapy. Recently, several new agents have been shown to improve overall survival in comparison with everolimus. This review provides an in-depth summary of drugs employable in the clinical setting, the rationale to their use, and the studies conducted leading to their approval for use and provides perspective on the paradigm shift in the treatment of renal cell carcinoma. Highlighted are the newly approved agents cabozantinib, nivolumab, and lenvatinib for advanced renal cell carcinoma patients treated with prior anti-angiogenesis therapy.
Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents
Wang, Jinfeng; Zhang, Lin; Pan, Xiaoyan; Dai, Bingling; Sun, Ying; Li, Chuansheng; Zhang, Jie
2017-01-01
Recently, we have identified a biphenyl-aryl urea incorporated with salicylaldoxime (BPS-7) as an anti-angiogenesis agent. Herein, we disclosed a series of novel anti-angiogenesis agents with BPS-7 as lead compound through combining diarylureas with N-pyridin-2-ylcyclopropane carboxamide. Several title compounds exhibited simultaneous inhibition effects against three pro-angiogenic RTKs (VEGFR-2, TIE-2 and EphB4). Some of them displayed potent anti-proliferative activity against human vascular endothelial cell (EA.hy926). In particular, two potent compounds (CDAU-1 and CDAU-2) could be considered as promising anti-angiogenesis agents with triplet inhibition profile. The biological evaluation and molecular docking results indicate that N-pyridin-2-ylcyclopropane carboxamide could serve as a hinge-binding group (HBG) for the discovery of multi-target anti-angiogenesis agents. CDAU-2 also exhibited promising anti-angiogenic potency in a tissue model for angiogenesis. PMID:28332573
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-08-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee
2013-05-01
Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by enhanced angiogenesis and reducing apoptosis.
Launch Conditions Might Affect the Formation of Blood Vessel in the Quail Chorioallantoic Membrane
NASA Technical Reports Server (NTRS)
Henry, M. K.; Unsworth, B. R.; Sychev, B. R.; Guryeva, T. S.; Dadasheva, O. A.; Piert, S. J.; Lagel, K. E.; Dubrovin, L. C.; Jahns, G. C.; Boda, K.;
1998-01-01
AS 2 part of the first joint USA-Russian MIR/Shuttle program, fertilized quail eggs were flown on the MIR 18 mission. Post-flight examination indicated impaired survival of both the embryos in space and also of control embryos exposed to vibrational and g-forces simulating the conditions experienced during the launch of Progress 227. We hypothesized that excess mechanical forces and/or other conditions during the launch might cause abnormal development of the blood supply in the chorioallantoic membrane (CAM) leading to the impaired survival of the embryos. The CAM, a highly vascularized extraembryonic organ, provides for the oxygen exchange across the egg shell and is thus pivotal for proper embryonic development. To test our hypothesis, we compared angiogenesis In CAMS of eggs which were either exposed to the vibration and g-force profile simulating the conditions at launch of Progress 227 (synchronous controls), or kept under routine conditions in a laboratory Incubator (laboratory controls). At various time points during Incubation, the eggs were fixed in paraformaldehyde for subsequent dissection. At the time of dissection, the CAM was carefully lifted from the egg shell and examined as whole mounts by bright-field and fluorescent microscopy. The development or the vasculature (angiogenesis) was assessed from the density of blood vessels per viewing field and evaluated by computer aided image analysis. We observed a significant decrease In blood-vessel density in the synchronous controls versus "normal" laboratory controls beginning from day 10 of Incubation. The decrease in vascular density was restricted to the smallest vessels only, suggesting that conditions during the launch and/or during the subsequent Incubation of the eggs may affect the normal progress of angiogenesis in the CAM. Abnormal angiogenesis In the CAM might contribute to the impaired survival of the embryos observed in synchronous controls as well as in space.
Kuczynski, Elizabeth A; Yin, Melissa; Bar-Zion, Avinoam; Lee, Christina R; Butz, Henriett; Man, Shan; Daley, Frances; Vermeulen, Peter B; Yousef, George M; Foster, F Stuart; Reynolds, Andrew R; Kerbel, Robert S
2016-08-01
The anti-angiogenic Sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, acquired resistance limits its efficacy. An emerging theory to explain intrinsic resistance to other anti-angiogenic drugs is 'vessel co-option,' ie, the ability of tumors to hijack the existing vasculature in organs such as the lungs or liver, thus limiting the need for sprouting angiogenesis. Vessel co-option has not been evaluated as a potential mechanism for acquired resistance to anti-angiogenic agents. To study sorafenib resistance mechanisms, we used an orthotopic human HCC model (n = 4-11 per group), where tumor cells are tagged with a secreted protein biomarker to monitor disease burden and response to therapy. Histopathology, vessel perfusion assessed by contrast-enhanced ultrasound, and miRNA sequencing and quantitative real-time polymerase chain reaction were used to monitor changes in tumor biology. While sorafenib initially inhibited angiogenesis and stabilized tumor growth, no angiogenic 'rebound' effect was observed during development of resistance unless therapy was stopped. Instead, resistant tumors became more locally infiltrative, which facilitated extensive incorporation of liver parenchyma and the co-option of liver-associated vessels. Up to 75% (±10.9%) of total vessels were provided by vessel co-option in resistant tumors relative to 23.3% (±10.3%) in untreated controls. miRNA sequencing implicated pro-invasive signaling and epithelial-to-mesenchymal-like transition during resistance development while functional imaging further supported a shift from angiogenesis to vessel co-option. This is the first documentation of vessel co-option as a mechanism of acquired resistance to anti-angiogenic therapy and could have important implications including the potential therapeutic benefits of targeting vessel co-option in conjunction with vascular endothelial growth factor receptor signaling. © The Author 2016. Published by Oxford University Press.
Angiogenesis blockade as a new therapeutic approach to experimental colitis
Danese, Silvio; Sans, Miquel; Spencer, David M; Beck, Ivy; Doñate, Fernando; Plunkett, Marian L; de la Motte, Carol; Redline, Raymond; Shaw, David E; Levine, Alan D; Mazar, Andrew P; Fiocchi, Claudio
2007-01-01
Background Neoangiogenesis is a critical component of chronic inflammatory disorders. Inhibition of angiogenesis is an effective treatment in animal models of inflammation, but has not been tested in experimental colitis. Aim To investigate the effect of ATN‐161, an anti‐angiogenic compound, on the course of experimental murine colitis. Method Interleukin 10‐deficient (IL10−/−) mice and wild‐type mice were kept in ultra‐barrier facilities (UBF) or conventional housing, and used for experimental conditions. Dextran sodium sulphate (DSS)‐treated mice were used as a model of acute colitis. Mice were treated with ATN‐161 or its scrambled peptide ATN‐163. Mucosal neoangiogenesis and mean vascular density (MVD) were assessed by CD31 staining. A Disease Activity Index (DAI) was determined, and the severity of colitis was determined by a histological score. Colonic cytokine production was measured by ELISA, and lamina propria mononuclear cell proliferation by thymidine incorporation. Result MVD increased in parallel with disease progression in IL10−/− mice kept in conventional housing, but not in IL10−/− mice kept in UBF. Angiogenesis also occurred in DSS‐treated animals. IL10−/− mice with established disease treated with ATN‐161, but not with ATN‐163, showed a significant and progressive decrease in DAI. The histological colitis score was significantly lower in ATN‐161‐treated mice than in scrambled peptide‐treated mice. Inhibition of angiogenesis was confirmed by a significant decrease of MVD in ATN‐161‐treated mice than in ATN‐163‐treated mice. No therapeutic effects were observed in the DSS model of colitis. ATN‐161 showed no direct immunomodulatory activity in vitro. Conclusion Active angiogenesis occurs in the gut of IL10−/− and DSS‐treated colitic mice and parallels disease progression. ATN‐161 effectively decreases angiogenesis as well as clinical severity and histological inflammation in IL10−/− mice but not in the DDS model of inflammatory bowel disease (IBD). The results provide the rational basis for considering anti‐angiogenic strategies in the treatment of IBD in humans. PMID:17170016
Antiangiogenic effects of AA-PMe on HUVECs in vitro and zebrafish in vivo
Xiao, Qi; Zhou, Yachun; Wei, Yingjie; Gong, Zhunan
2018-01-01
Angiogenesis plays a vital role in many physiological and pathological processes and several diseases are connected with its dysregulation. Asiatic acid (AA) has demonstrated anticancer properties and we suspect this might be attributable to an effect on angio-genesis. A modified derivative of AA, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-L-proline methyl ester (AA-PMe), has improved efficacy over its parent compound, but its effect on blood vessel development remains unclear. Methods In this study, we investigated the antiangiogenic activity of AA and AA-PMe in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). First of all, we treated HUVECs with increasing concentrations of AA-PMe or AA, with or without vascular endothelial growth factor (VEGF) present, and assessed cell viability, tube formation, and cell migration and invasion. Quantitative real-time polymerase chain reaction and Western blot analysis were later used to determine the role of vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling in AA-PMe inhibition of angiogenesis. We extended these studies to follow angiogenesis using Tg(fli:EGFP) transgenic zebrafish embryos. For these experiments, embryos were treated with varying concentrations of AA-PMe or AA from 24 to 72 hours postfertilization prior to morphological observation, angiogenesis assessment, and endogenous alkaline phosphatase assay. VEGFR2 expression in whole embryos following AA-PMe treatment was also determined. Results We found AA-PMe decreased cell viability and inhibited migration and tube formation in a dose-dependent manner in HUVECs. Similarly, AA-PMe disrupted the formation of intersegmental vessels, the dorsal aorta, and the posterior cardinal vein in zebrafish embryos. Both in vitro and in vivo AA-PMe surpassed AA in its ability to block angiogenesis by suppressing VEGF-induced phosphorylation of VEGFR2 and disrupting downstream extracellular regulated protein kinase and AKT signaling. Conclusion For the first time, this study reveals that AA-PMe acts as a potent VEGFR2 kinase inhibitor and exerts powerful antiangiogenic activity, suggesting it to be a promising therapeutic candidate for further research. PMID:29670362
New applications of nanotechnology for neuroimaging.
Suffredini, G; East, J E; Levy, L M
2014-07-01
Advances in nanotechnology have the potential to dramatically enhance the detection of neurologic diseases with targeted contrast agents and to facilitate the delivery of focused therapies to the central nervous system. We present the physicochemical rationale for their use, applications in animal models, and ongoing clinical trials using these approaches. We highlight advances in the use of nanoparticles applied to brain tumor imaging, tumor angiogenesis, neurodegeneration, grafted stem cells, and neuroprogenitor cells. © 2014 by American Journal of Neuroradiology.
Prediction of Malignancy in Breast Tumors Using Diffusion Weighted Magnetic Resonance Imaging
2001-07-01
Continued) more layers, each individual layer wound at the highest 2.2. Heating density achievable. The inductance variation depicted in Fig. lb indi- The...NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT...vessels that supply nutrients and oxygen to the expanding tumour. Based on recent studies that indicate that the onset of angiogenesis can occur before
Zinc oxide nanoflowers make new blood vessels
NASA Astrophysics Data System (ADS)
Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan
2012-11-01
It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr32369a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Hoi-Hin; Chan, Lai-Sheung; Poon, Po-Ying
2015-09-15
Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a.more » Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by decreasing miR-23a expression. • Hepatocyte growth factor receptor (MET) is a direct regulatory target of miR-23a. • Rg{sub 1} could induce angiogenesis by the inverse regulation of MET through miR-23a.« less
You, Jinzhi; Sun, Jiacheng; Ma, Teng; Yang, Ziying; Wang, Xu; Zhang, Zhiwei; Li, Jingjing; Wang, Longgang; Ii, Masaaki; Yang, Junjie; Shen, Zhenya
2017-08-03
Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.
Zaidi, Maria; Krolikowki, John G; Jones, Deron W; Pritchard, Kirkwood A; Struve, Janine; Nandedkar, Sandhya D; Lohr, Nicole L; Pagel, Paul S; Weihrauch, Dorothée
2013-01-01
The tight skin mouse (Tsk(-/+)) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low-level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk(-/+) mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk(-/+) mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk(-/+) mice received LLLT (670 nm, 50 mW cm(-2), 30 J cm(-2)) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk(-/+) compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk(-/+) mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk(-/+) mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk(-/+) mice. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael
2014-01-01
Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Hind-limb ischemia was induced in 10-12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.
Mydlo, J H
2001-01-01
Angiogenesis-the formation of a vascular network-is essential for the support of a developing tumor when simple diffusion of nutrients is impossible. The ability of a solid tumor to achieve metabolic needs beyond simple diffusion is dependent on the development of this neovascular network. The process of angiogenesis lets the tumor become self-sufficient to grow, and also gives it the ability to metastasize. Growth factors added to human-vein endothelial cells in culture may demonstrate tubularization of cells, but this does not necessarily imply angiogenesis. True in vivo angiogenesis means not only the mobilization of endothelial cells, but the degradation of the matrix and the formation of vessel sprouts in a network that can transport red blood cells (RBCs).
Consensus guidelines for the use and interpretation of angiogenesis assays.
Nowak-Sliwinska, Patrycja; Alitalo, Kari; Allen, Elizabeth; Anisimov, Andrey; Aplin, Alfred C; Auerbach, Robert; Augustin, Hellmut G; Bates, David O; van Beijnum, Judy R; Bender, R Hugh F; Bergers, Gabriele; Bikfalvi, Andreas; Bischoff, Joyce; Böck, Barbara C; Brooks, Peter C; Bussolino, Federico; Cakir, Bertan; Carmeliet, Peter; Castranova, Daniel; Cimpean, Anca M; Cleaver, Ondine; Coukos, George; Davis, George E; De Palma, Michele; Dimberg, Anna; Dings, Ruud P M; Djonov, Valentin; Dudley, Andrew C; Dufton, Neil P; Fendt, Sarah-Maria; Ferrara, Napoleone; Fruttiger, Marcus; Fukumura, Dai; Ghesquière, Bart; Gong, Yan; Griffin, Robert J; Harris, Adrian L; Hughes, Christopher C W; Hultgren, Nan W; Iruela-Arispe, M Luisa; Irving, Melita; Jain, Rakesh K; Kalluri, Raghu; Kalucka, Joanna; Kerbel, Robert S; Kitajewski, Jan; Klaassen, Ingeborg; Kleinmann, Hynda K; Koolwijk, Pieter; Kuczynski, Elisabeth; Kwak, Brenda R; Marien, Koen; Melero-Martin, Juan M; Munn, Lance L; Nicosia, Roberto F; Noel, Agnes; Nurro, Jussi; Olsson, Anna-Karin; Petrova, Tatiana V; Pietras, Kristian; Pili, Roberto; Pollard, Jeffrey W; Post, Mark J; Quax, Paul H A; Rabinovich, Gabriel A; Raica, Marius; Randi, Anna M; Ribatti, Domenico; Ruegg, Curzio; Schlingemann, Reinier O; Schulte-Merker, Stefan; Smith, Lois E H; Song, Jonathan W; Stacker, Steven A; Stalin, Jimmy; Stratman, Amber N; Van de Velde, Maureen; van Hinsbergh, Victor W M; Vermeulen, Peter B; Waltenberger, Johannes; Weinstein, Brant M; Xin, Hong; Yetkin-Arik, Bahar; Yla-Herttuala, Seppo; Yoder, Mervin C; Griffioen, Arjan W
2018-05-15
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Liu, Guan-Ting; Chen, Hsien-Te; Tsou, Hsi-Kai; Tan, Tzu-Wei; Fong, Yi-Chin; Chen, Po-Chen; Yang, Wei-Hung; Wang, Shih-Wei; Chen, Jui-Chieh; Tang, Chih-Hsin
2014-01-01
Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway. PMID:25301739
Kachgal, Suraj; Putnam, Andrew J.
2012-01-01
Using a fibrin-based angiogenesis model, we have established that there is no canonical mechanism used by ECs to degrade the surrounding extracellular matrix (ECM), but rather the set of proteases used is dependent on the mural cells providing the angiogenic cues. Mesenchymal stem cells (MSCs) originating from different tissues, which are thought to be phenotypically similar, promote angiogenesis through distinct mechanisms. Specifically, adipose-derived stem cells (ASCs) promote utilization of the plasminogen activator-plasmin axis by ECs as the primary means of vessel invasion and elongation in fibrin. Matrix metalloproteinases (MMPs) serve a purpose in regulating capillary diameter and possibly in stabilizing the nascent vessels. These proteolytic mechanisms are more akin to those involved in fibroblast-mediated angiogenesis than to those in bone marrow-derived stem cell (BMSC)-mediated angiogenesis. In addition, expression patterns of angiogenic factors such as urokinase plasminogen activator (uPA), hepatocyte growth factor (HGF), and tumor necrosis factor alpha (TNFα) were similar for ASC and fibroblast-mediated angiogenesis, and in direct contrast to BMSC-mediated angiogenesis. The present study illustrates that the nature of the heterotypic interactions between mural cells and endothelial cells depend on the identity of the mural cell used. Even MSCs which are shown to behave phenotypically similar do not stimulate angiogenesis via the same mechanisms. PMID:21104120
Lang, Lixin; Li, Weihua; Guo, Ning; Ma, Ying; Zhu, Lei; Kiesewetter, Dale O; Shen, Baozhong; Niu, Gang; Chen, Xiaoyuan
2011-12-21
[(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [(68)Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging α(v)β(3) integrin receptors. The purpose of this study was to prepare [(18)F]FPPRGD2 [corrected] , [(18)F]FAl-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys, and muscle were similar for all three tracers, and they all showed predominant renal clearance. In conclusion, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [(18)F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]NOTA-PRGD2 are promising alternatives to [(18)F]FPPRGD2 for PET imaging of tumor α(v)β(3) integrin expression.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2016-03-01
Photoacoustic tomography (PAT) is a promising biomedical imaging modality for small animal imaging, breast cancer imaging, monitoring of vascularisation, tumor angiogenesis, blood oxygenation, total haemoglobin concentration etc. The existing PAT systems that uses Q-switched Nd:YAG and OPO nanosecond lasers have limitations in clinical applications because they are expensive, non-potable and not suitable for real-time imaging due to their low pulse repetition rate. Low-energy pulsed near-infrared diode laser which are low-cost, compact, and light-weight (<200 grams), can be used as an alternate. In this work, we present a photoacoustic tomography system with a pulsed laser diode (PLD) that can nanosecond pulses with pulse energy 1.3 mJ/pulse at ~803 nm wavelength and 7000 Hz repetition rate. The PLD is integrated inside a single-detector circular scanning geometric system. To verify the high speed imaging capabilities of the PLD-PAT system, we performed in vivo experimental results on small animal brain imaging using this system. The proposed system is portable, low-cost and can provide real-time imaging.
Kiliç, Türker; Bayri, Yaşar; Ozduman, Koray; Acar, Melih; Diren, Semin; Kurtkaya, Ozlem; Ekinci, Gazanfer; Buğra, Kuyaş; Sav, Aydin; Ozek, M Memet; Pamir, M Necmettin
2002-07-01
Tenascin is an extracellular matrix glycoprotein that is expressed during embryogenesis, inflammation, angiogenesis, and carcinogenesis. The aim of this study was to investigate how tenascin expression relates to histological grade, angiogenesis, and radiological findings in meningiomas. Twenty typical, 20 atypical, and 5 malignant meningiomas were studied retrospectively. Tenascin expression and vascular endothelial growth factor (VEGF) expression in the tumor tissue were investigated by immunohistochemistry. Tenascin messenger ribonucleic acid expression was also studied by comparative reverse transcriptase-polymerase chain reaction. Magnetic resonance images from each case were assessed for peritumoral edema and tumor border shape. The atypical and malignant meningiomas showed higher levels of tenascin expression than the typical meningiomas. The more sensitive messenger ribonucleic acid-based methods confirmed this finding. Tenascin expression was correlated with peritumoral edema and VEGF expression but not with tumor border shape. In the 13 tumors with marked tenascin expression, peritumoral edema was Grade 0 in one, Grade 1 in three, and Grade 2 in nine specimens. In the same 13 tumors, VEGF expression was Grade 1 in five and Grade 2 in eight specimens, and the findings for tumor border shape were Grade 0 in seven, Grade 1 in four, and Grade 2 in two specimens. In meningiomas, tenascin expression is correlated with anaplasia, tumor-associated edema, and VEGF expression but not with tumor border shape. This protein may play a role in the neoplastic and/or angiogenic processes in atypical and malignant meningiomas and may thus be a potential target for meningioma therapy.
NASA Astrophysics Data System (ADS)
Li, Joanne; Bower, Andrew J.; Arp, Zane A.; Olson, Eric; Holland, Claire; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.
2016-02-01
Impaired skin wound healing is a significant co-morbid condition of diabetes that is caused by poor microcirculation among other factors. Hypoxia-inducible factors (HIFs) are transcription factors that mediate the effects of decreased levels of oxygen in biological environments. Inducing mild hypoxia in the tissue could promote angiogenesis, a critical step in the wound healing process in diabetic wounds. To investigate the relationship between hypoxia and diabetic wound healing, a topical treatment consisting of a HIF-activating prolyl-hydroxylase inhibitor was administered to the wounded skin of diabetic (db/db) mice. Studies were conducted in accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory Animals and were reviewed at GSK or by the ethical review process at the institution where the work was performed. The wounded area was tracked in vivo for 28 days utilizing a custom-built multimodal microscopy system. An increase in vascular density around the wounds of treated animals was observed using phase-variance optical coherence tomography (PV-OCT), in comparison to normal controls. In addition, second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) were utilized to examine the collagen regeneration and cellular metabolic activity, respectively, in the wounded skin. The utilization of these light based methods can follow metabolic and morphologic changes in the wound healing process in ways not possible with current evaluation processes. Insights demonstrated in these studies could lead to new endpoints for evaluation of the efficacy of drugs and lead to more direct ways of detecting patient response to treatment.
Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Hihara, Masakatsu; Notodihardjo, Priscilla Valentin; Matsui, Makoto; Tabata, Yasuhiko; Kusumoto, Kenji
2017-07-01
Platelet-rich plasma (PRP), which contains highly concentrated platelets, is produced by centrifuging whole blood. It is a safe and readily available source of a wide range of growth factors necessary for angiogenesis. Gelatin hydrogel granules have been designed and prepared for the controlled release of many growth factors. The angiogenic effect of human PRP was examined in vitro, and the effect of its subcutaneous injection with gelatin hydrogel granules into murine subcutis was evaluated. Human PRP was prepared using a double-spin method. The concentration of growth factors and the platelet count were examined in PRP and in vitro, and the angiogenic activity of human umbilical vein endothelial cells (HUVECs) in co-culture with human dermal fibroblast cells (NHDFs) in the presence and absence of PRP was evaluated. Then, in vivo, PRP, either free or with gelatin hydrogel granules, was injected subcutaneously into tiebacks on mice. Using a microscope and Kurabo angiogenesis image analyser software, the area containing newly formed capillaries was evaluated histologically and the microvascular network score was calculated. PRP was shown to contain high concentrations of PDGF, VEGF and TGFβ and had an angiogenic effect on the co-culture system. PRP with gelatin hydrogel granules significantly enlarged the area containing newly formed capillaries and promoted the microvascular network in murine subcutaneous tissue. PRP encapsulated in gelatin hydrogel microspheres shows promise for enhancing angiogenic effects in murine subcutis and could represent a potential therapeutic combination for the treatment of ischaemic disorders. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.
Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang
2018-04-01
Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and altered ECM. Hence, we provide an interactive and controllable GBM tumor microenvironment and highlight the importance of macrophage-associated immunosuppression in GBM angiogenesis, paving a new direction of screening novel anti-angiogenic therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin
2017-06-13
Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei
2016-10-01
Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway.
Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes
Corvera, Silvia; Gealekman, Olga
2013-01-01
The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data point to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. PMID:23770388
Kangsamaksin, Thaned; Murtomaki, Aino; Kofler, Natalie M.; Cuervo, Henar; Chaudhri, Reyhaan A.; Tattersall, Ian W.; Rosenstiel, Paul E.; Shawber, Carrie J.; Kitajewski, Jan
2015-01-01
A pro-angiogenic role for Jagged-dependent activation of Notch signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of DLL-class and JAG-class ligand/receptor interactions, and developed Notch decoys that function as ligand-specific Notch inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro and retinal angiogenesis, demonstrating JAG-dependent Notch signal activation promotes angiogenesis. In tumors, N110-24 decoy reduced angiogenic sprouting, vessel perfusion, pericyte coverage, and tumor growth. JAG/NOTCH signaling uniquely inhibited expression of anti-angiogenic sVEFGFR-1/sFlt-1. N11-13 decoy interfered with DLL1/DLL4-mediated NOTCH1 signaling and caused endothelial hypersprouting in vitro, in retinal angiogenesis and in tumors. Thus, blockade of JAG- or DLL-mediated Notch signaling inhibits angiogenesis by distinct mechanisms. JAG/Notch signaling positively regulates angiogenesis by suppressing sVEGFR-1/sFlt-1 and promoting mural/endothelial cell interactions. Blockade of JAG-class ligands represents a novel, viable therapeutic approach to block tumor angiogenesis and growth. PMID:25387766
Angiogenesis in the degeneration of the lumbar intervertebral disc
David, Gh; Iencean, SM; Mohan, A
2010-01-01
The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201
Stefansson, Ingunn M.; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M.; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B.; Wik, Elisabeth; Akslen, Lars A.
2015-01-01
Aims Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. Methods and Results By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Conclusions Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis. PMID:26485755
Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco
2011-04-01
The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.
Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation
Tang, Lei; van de Ven, Anne L.; Guo, Dongmin; Andasari, Vivi; Cristini, Vittorio; Li, King C.; Zhou, Xiaobo
2014-01-01
Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. PMID:24404145
Zhang, Zhaofeng; Wang, Junbo; Ding, Ye; Dai, Xiaoqian; Li, Yong
2011-09-01
A wound is a clinical entity which often poses problems in clinical practice. The present study was aimed to investigate the wound healing potential of administering marine collagen peptides (MCP) from Chum Salmon skin by using two wound models (incision and excision) in rats. Ninety-six animals were equally divided into the two wound models and then within each model animals were randomly divided into two groups: vehicle-treated group and 2 g kg(-1) MCP-treated group. Wound closure and tensile strength were calculated. Collagen deposition was assessed by Masson staining and hydroxyproline measurement. Angiogenesis was assessed by immunohistological methods. MCP-treated rats showed faster wound closure and improved tissue regeneration at the wound site, which was supported by histopathological parameters pertaining to wound healing. MCP treatment improved angiogenesis and helped form thicker and better organised collagen fibre deposition compared to vehicle-treated group. The results show the efficacy of oral MCP treatment on wound healing in animals. Copyright © 2011 Society of Chemical Industry.
Multicenter Reproducibility of 18F-Fluciclatide PET Imaging in Subjects with Solid Tumors.
Sharma, Rohini; Kallur, Kumar G; Ryu, Jin S; Parameswaran, Ramanathapuram V; Lindman, Henrik; Avril, Norbert; Gleeson, Fergus V; Lee, Jong D; Lee, Kyung-Han; O'Doherty, Michael J; Groves, Ashley M; Miller, Matthew P; Somer, Edward J; Coombes, Charles R; Aboagye, Eric O
2015-12-01
Integrins are upregulated on both tumor cells and associated vasculature, where they play an important role in angiogenesis and metastasis. Fluciclatide is an arginine-glycine-aspartic acid peptide with high affinity for αvβ3/αvβ5 integrin, which can be radiolabeled for PET imaging of angiogenesis. Thus, (18)F-fluciclatide is a potential biomarker of therapeutic response to antiangiogenic inhibitors. The aim of this study was to evaluate the reproducibility of (18)F-fluciclatide in multiple solid-tumor types. Thirty-nine patients underwent PET/CT scanning at 40, 65, and 90 min after injection of (18)F-fluciclatide (maximum, 370 MBq) on 2 separate days (2-9 d apart). Patients did not receive any therapy between PET/CT scans. (18)F-fluciclatide images were reported and quantitative measures of uptake were extracted using the PERCIST methodology. Intrasubject reproducibility of PET uptake in all measurable lesions was evaluated by calculating relative differences in SUV between PET scans for each lesion during the 2 imaging sessions. Thirty-nine measurable lesions were detected in 26 patients. Lesion uptake correlated strongly across imaging sessions (r = 0.92, P < 0.05, at 40 min; r = 0.94, P < 0.05, at 65 min; r = 0.94, P < 0.05, at 90 min) with a mean relative difference and SD of the relative difference of 0.006 ± 0.18 at 40 min, 0.003 ± 0.19 at 65 min, and 0.025 ± 0.20 at 90 min. This reflects 95% limits of repeatability of 35%-39% for the difference between the 2 SUV measurements or a variability of 18%-20% in agreement from that observed in well-calibrated multicenter (18)F-FDG studies. The test-retest reproducibility of (18)F-fluciclatide across multiple tumor types has been measured and shown to be acceptable. This is an important step in the development of this in vivo biomarker to identify and quantify response to antiangiogenic therapy in cancer patients. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
[Angiogenesis and endometriose].
Becker, C M; Bartley, J; Mechsner, S; Ebert, A D
2004-08-01
Endometriosis is considered a chronic disease of women during their reproductive phase, which resembles many signs of malignancy. So far, therapeutic options for endometriosis-associated pain and infertility are unsatisfactory and often lead to recurrence of disease after termination of treatment. Angiogenesis seems to play an important role in the pathogenesis of endometriosis. The use of angiogenesis inhibitors may add an important new tool to well-established treatment schedules. Therefore, it is very important to thoroughly investigate the role of angiogenesis in endometriosis with respect to the female reproductive system.
Cannabidiol inhibits angiogenesis by multiple mechanisms
Solinas, M; Massi, P; Cantelmo, AR; Cattaneo, MG; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, LM; Noonan, DM; Albini, A; Parolaro, D
2012-01-01
BACKGROUND AND PURPOSE Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. EXPERIMENTAL APPROACH Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability – through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis – and in vitro motility – both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. KEY RESULTS CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. CONCLUSIONS AND IMPLICATIONS This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. PMID:22624859
Cannabidiol inhibits angiogenesis by multiple mechanisms.
Solinas, M; Massi, P; Cantelmo, A R; Cattaneo, M G; Cammarota, R; Bartolini, D; Cinquina, V; Valenti, M; Vicentini, L M; Noonan, D M; Albini, A; Parolaro, D
2012-11-01
Several studies have demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on various tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits the growth of different types of tumours in vitro and in vivo and down-regulates some pro-angiogenic signals produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favourable pharmacological and toxicological profile, here, we evaluated the ability of CBD to modulate tumour angiogenesis. Firstly, we evaluated the effect of CBD on human umbilical vein endothelial cell (HUVEC) proliferation and viability - through [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and FACS analysis - and in vitro motility - both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenesis array kit and an ELISA directed at MMP2. Then we evaluated its effects on in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels, and further characterized its effects in vivo using a Matrigel sponge model of angiogenesis in C57/BL6 mice. CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion and sprouting in vitro, and angiogenesis in vivo in Matrigel sponges. These effects were associated with the down-modulation of several angiogenesis-related molecules. This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells supports the hypothesis that CBD has potential as an effective agent in cancer therapy. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
History of research on angiogenesis.
Ribatti, Domenico
2014-01-01
Over the past 25 years, the number of Medline publications dealing with angiogenesis has increased in a nonlinear fashion, reflecting the interest among basic scientists and clinicians in this field. Under physiological conditions, angiogenesis is regulated by the local balance between endogenous stimulators and inhibitors of this process. In tumor growth, there is an imbalance between endogenous stimulator and inhibitor levels, leading to an 'angiogenic switch'. Starting with the hypothesis formulated by Judah Folkman that tumor growth is angiogenesis-dependent, this area of research has a solid scientific foundation and inhibition of angiogenesis is a major area of therapeutic development for the treatment of cancer. This paper offers an account of the most relevant discoveries in this field of biomedical research. Copyright © 2014 S. Karger AG, Basel.
Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.
Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry
2017-01-01
Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.
Neoadjuvant Anti-Angiogenesis Therapy for Prostate Cancer
2004-08-01
O’Laughlin, R, Landini, C, Shalhav, AL, Stadler, WM, Zagaja , GP, Desai, A, Holroyd, K, Sokoloff, MH. Neoadjuvant combination anti- angiogenesis and androgen...CB, Zagaja , GP, Shalhav, AL. Neoadjuvant combination androgen ablation and anti-angiogenesis therapy in men with high grade and locally-advanced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn
Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGFmore » in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. • Exogenous rhPlGF-1 treatment significantly induced HIMECs migration and tube formation. • Knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced cell angiogenesis activities. • PlGF induced PI3K/Akt phosphorylation in HIMECs which is required for PIGF-induced cell migration and tube formation.« less
FAK-heterozygous mice display enhanced tumour angiogenesis.
Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E; Lees, Delphine M; Baker, Marianne; Jones, Dylan T; Tavora, Bernardo; Ramjaun, Antoine R; Birdsey, Graeme M; Robinson, Stephen D; Parsons, Maddy; Randi, Anna M; Hart, Ian R; Hodivala-Dilke, Kairbaan
2013-01-01
Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.
FAK-heterozygous mice display enhanced tumour angiogenesis
Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan
2013-01-01
Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510
High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis.
Yi, Huan; Ye, Jun; Yang, Xiao-Mei; Zhang, Li-Wen; Zhang, Zhi-Gang; Chen, Ya-Ping
2015-01-01
Ovarian cancer, the most lethal gynecological cancer, related closely to tumor stage. High-grade ovarian cancer always results in a late diagnose and high recurrence, which reduce survival within five years. Until recently, curable therapy is still under research and anti-angiogenesis proves a promising way. Tumor-derived exosomes are essential in tumor migration and metastases such as angiogenesis is enhanced by exosomes. In our study, we have made comparison between high-grade and unlikely high-grade serous ovarian cancer cells on exosomal function of endothelial cells proliferation, migration and tube formation. Exosomes derived from high-grade ovarian cancer have a profound impact on angiogenesis with comparison to unlikely high-grade ovarian cancer. Proteomic profiles revealed some potential proteins involved in exosomal function of angiogenesis such as ATF2, MTA1, ROCK1/2 and so on. Therefore, exosomes plays an influential role in angiogenesis in ovarian serous cancer and also function more effectively in high-grade ovarian cancer cells.
Lindberg, Olle R.; Brederlau, Anke; Kuhn, H. Georg
2014-01-01
Summary One of the major components of the subventricular zone (SVZ) neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF) is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain. PMID:24749069
Full-view 3D imaging system for functional and anatomical screening of the breast
NASA Astrophysics Data System (ADS)
Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei
2018-04-01
Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies on one healthy volunteer and on patient with a suspicious small lesion in the breast. LOUISA3D visualized deoxygenated veins and oxygenated arteries of a healthy volunteer, indicative of its capability to visualize hypoxic microvasculature in cancerous tumors. A small lesion detected on optoacoustic image of a patient was not visible on ultrasound, potentially indicating high system sensitivity of the optoacoustic subsystem to small but aggressively growing cancerous lesions with high density angiogenesis microvasculature. The main breast vasculature (0.5-1 mm) was visible at depth of up to 40-mm with 0.3-mm resolution. The results of LOUISA-3D pilot clinical validation demonstrated the system readiness for statistically significant clinical feasibility study.
Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu
2017-01-01
Background Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. Aim The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 (Sirt6) mRNA -incorporated EMPs on endothelial dysfunction. Methods EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv-Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. Results The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. Conclusion The Sirt6 mRNA-carrying EMPs may ameliorate endothelial dysfunction in diabetic patients. PMID:29371988
Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong
2016-01-01
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756
Angiogenesis-regulating microRNAs and ischemic stroke
Yin, Ke-Jie; Hamblin, Milton; Chen, Y. Eugene
2014-01-01
Stroke is a leading cause of death and disability worldwide. Ischemic stroke is the dominant subtype of stroke and results from focal cerebral ischemia due to occlusion of major cerebral arteries. Thus, the restoration or improvement of reduced regional cerebral blood supply in a timely manner is very critical for improving stroke outcomes and post-stroke functional recovery. The recovery from ischemic stroke largely relies on appropriate restoration of blood flow via angiogenesis. Newly formed vessels would allow increased cerebral blood flow, thus increasing the amount of oxygen and nutrients delivered to affected brain tissue. Angiogenesis is strictly controlled by many key angiogenic factors in the central nervous system, and these molecules have been well-documented to play an important role in the development of angiogenesis in response to various pathological conditions. Promoting angiogenesis via various approaches that target angiogenic factors appears to be a useful treatment for experimental ischemic stroke. Most recently, microRNAs (miRs) have been identified as negative regulators of gene expression in a post-transcriptional manner. Accumulating studies have demonstrated that miRs are essential determinants of vascular endothelial cell biology/angiogenesis as well as contributors to stroke pathogenesis. In this review, we summarize the knowledge of stroke-associated angiogenic modulators, as well as the role and molecular mechanisms of stroke-associated miRs with a focus on angiogenesis-regulating miRs. Moreover, we further discuss their potential impact on miR-based therapeutics in stroke through targeting and enhancing post-ischemic angiogenesis. PMID:26156265
Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan
2016-01-01
Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Green tea and its anti-angiogenesis effects.
Rashidi, Bahman; Malekzadeh, Mehrnoush; Goodarzi, Mohammad; Masoudifar, Aria; Mirzaei, Hamed
2017-05-01
The development of new blood vessels from a pre-existing vasculature (also known as angiogenesis) is required for many physiological processes including embryogenesis and post-natal growth. However, pathological angiogenesis is also a hallmark of cancer and many ischaemic and inflammatory diseases. The pro-angiogenic members of the VEGF family (vascular endothelial growth factor family), VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PlGF), and the related receptors, VEGFR-1, VEGFR-2 and VEGFR-3 have a central and decisive role in angiogenesis. Indeed, they are the targets for anti-angiogenic drugs currently approved. Green tea (from the Camellia sinensis plant) is one of the most popular beverages in the world. It is able to inhibit angiogenesis by different mechanisms such as microRNAs (miRNAs). Green tea and its polyphenolic substances (like catechins) show chemo-preventive and chemotherapeutic features in various types of cancer and experimental models for human cancers. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have multiple effects on the cellular proteome and signalome. Note that the polyphenolic compounds from green tea are able to change the miRNA expression profile associated with angiogenesis in various cancer types. This review focuses on the ability of the green tea constituents to suppress angiogenesis signaling and it summarizes the mechanisms by which EGCG might inhibit the VEGF family. We also highlighted the miRNAs affected by green tea which are involved in anti-angiogenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration. PMID:29085283
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.
Li, Hong; Li, Jinyan; Jiang, Jia; Lv, Fang; Chang, Jiang; Chen, Shiyi; Wu, Chengtie
2017-05-01
To solve the poor healing of polyethylene terephthalate (PET) artificial ligament in bone tunnel, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was hypothesized that Cu-BG coated PET (Cu-BG/PET) grafts could enhance the in vitro osteogenic and angiogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and in vivo graft-bone healing after anterior cruciate ligament (ACL) reconstruction in a goat model. Scanning electron microscope and EDS mapping analysis revealed that the prepared nanocoatings had uniform element distribution (Cu, Ca, Si and P) and nanostructure. The surface hydrophilicity of PET grafts was significantly improved after depositing Cu-BG nanocoatings. The in vitro study displayed that the Cu-BG/PET grafts supported the attachment and proliferation of rBMSCs, and significantly promoted the expression of HIF-1α gene, which up-regulated the osteogenesis-related genes (S100A10, BMP2, OCN) and angiogenesis-related genes (VEGF) in comparison with PET or BG coated PET (BG/PET) grafts which do not contain Cu element. Meanwhile, Cu-BG/PET grafts promoted the bone regeneration at the graft-host bone interface and decreased graft-bone interface width, thus enhancing the bonding strength as well as angiogenesis (as indicated by CD31 expression) in the goat model as compared with BG/PET and pure PET grafts. The study demonstrates that the Cu-containing biomaterials significantly promote osteogenesis and angiogenesis in the repair of bone defects of large animals and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modified PET grafts. It remains a significant challenge to develop an artificial graft with distinct osteogenetic/angiogenetic activity to enhance graft-bone healing for ligament reconstruction. To solve these problems, copper-containing bioactive glass (Cu-BG) nanocoatings on PET artificial ligaments were successfully prepared by pulsed laser deposition (PLD). It was found that the prepared Cu-BG/PET grafts significantly stimulated the proliferation and osteogenic/angiogenic differentiation of bone marrow stromal cells (BMSCs) through activating HIF-1α/S100A10/Ca 2+ signal pathway. The most important is that the in vivo bone-forming ability of Cu-containing biomaterials was, for the first time, elucidated in a large animal model, revealing the enhanced capacity of osteogenesis and angiogenesis with incorporation of bioactive Cu element. It is suggested that the copper-containing biomaterials significantly promote osteogenesis and angiogenesis in large animal defects and thus offering a promising method for ACL reconstruction by using Cu-containing nanobioglass modification of PET grafts, paving the way to apply Cu-containing biomaterials for tissue engineering and regenerative medicine. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belfield, Kevin D.; Yue, Xiling; Morales, Alma R.; Githaiga, Grace W.; Woodward, Adam W.; Tang, Simon; Sawada, Junko; Komatsu, Masanobu; Liu, Xuan
2016-03-01
Observation of the activation and inhibition of angiogenesis processes is important in the progression of cancer. Application of targeting peptides, such as a small peptide that contains adjacent L-arginine (R), glycine (G) and L-aspartic acid (D) residues can afford high selectivity and deep penetration in vessel imaging. To facilitate deep tissue vasculature imaging, probes that can be excited via two-photon absorption (2PA) in the near-infrared (NIR) and subsequently emit in the NIR are essential. In this study, the enhancement of tissue image quality with RGD conjugates was investigated with new NIR-emitting pyranyl fluorophore derivatives in two-photon fluorescence microscopy. Linear and nonlinear photophysical properties of the new probes were comprehensively characterized; significantly the probes exhibited good 2PA over a broad spectral range from 700-1100 nm. Cell and tissue images were then acquired and examined, revealing deep penetration and high contrast with the new pyranyl RGD-conjugates up to 350 μm in tumor tissue.
Islet grafting and imaging in a bioengineered intramuscular space†
Witkowski, Piotr; Sondermeijer, Hugo; Hardy, Mark A.; Woodland, David C.; Lee, Keagan; Bhagat, Govind; Witkowski, Kajetan; See, Fiona; Rana, Abbas; Maffei, Antonella; Itescu, Silviu; Harris, Paul E.
2011-01-01
Background Since the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real time non-invasive manner by PET imaging. Methods Streptozotocin induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was done using insulin staining and evaluation of microvasularity. Results Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors as compared to those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia. Conclusions Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared to controls. The use of a non hepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta-cell mass in real time. These findings have important implications for effective islet implantation outside of the liver, and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss. PMID:19898201
2016-06-01
enhance angiogenesis and stimulate endothelial cells, which favors early healing of the soft tissue.30 EMD is FDA approved for application to root...aesthetic concerns, which can be important to a person’s identity and self -image.5 Another indication is root sensitivity which often results in pain to...cold, heat and even touch leading to an impaired ability to eat or drink and brush one’s teeth. Studies have shown soft tissue coverage procedures
2005-08-01
Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD Peptide-Paclitaxel Conjugate as Model for Integrin Targeted...Plasencia C, Hou Y, Neamati N. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug...Targeted Imaging of Lung Cancer. Neoplasia 2005;7:271-279. 6. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD
Orbay, Hakan; Zhang, Yin; Valdovinos, Hector F; Song, Guoqing; Hernandez, Reinier; Theuer, Charles P; Hacker, Timothy A; Nickles, Robert J; Cai, Weibo
2013-01-01
Biological changes following myocardial infarction (MI) lead to increased secretion of angiogenic factors that subsequently stimulate the formation of new blood vessels as a compensatory mechanism to reverse ischemia. The goal of this study was to assess the role of CD105 expression during MI-induced angiogenesis by positron emission tomography (PET) imaging using (64)Cu-labeled TRC105, an anti-CD105 monoclonal antibody. MI was induced by ligation of the left anterior descending (LAD) artery in female rats. Echocardiography and (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET scans were performed on post-operative day 3 to confirm the presence of MI in the infarct group and intact heart in the sham group, respectively. Ischemia-induced angiogenesis was non-invasively monitored with (64)Cu-NOTA-TRC105 (an extensively validated PET tracer in our previous studies) PET on post-operative days 3, 10, and 17. Tracer uptake in the infarct zone was highest on day 3 following MI, which was significantly higher than that in the sham group (1.41 ± 0.45 %ID/g vs 0.57 ± 0.07 %ID/g; n=3, p<0.05). Subsequently, tracer uptake in the infarct zone decreased over time to the background level on day 17, whereas tracer uptake in the heart of sham rats remained low at all time points examined. Histopathology documented increased CD105 expression following MI, which corroborated in vivo findings. This study indicated that PET imaging of CD105 can be a useful tool for MI-related research, which can potentially improve MI patient management in the future upon clinical translation of the optimized PET tracers.
Galectins in angiogenesis: consequences for gestation.
Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela
2015-04-01
Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
COX-2 – A Novel Target for Reducing Tumor Angiogenesis and Metastasis | Center for Cancer Research
Angiogenesis is essential for tumor growth and metastasis, by supplying a steady stream of nutrients, removing waste, and providing tumor cells access to other sites in the body. The vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a key role in tumor-mediated angiogenesis, and this pathway is the target of monoclonal antibodies and tyrosine kinase inhibitors (TKIs) that have been approved to treat patients with cancer. Unfortunately, tumors can use alternative angiogenesis mechanisms to escape VEGF pathway blockade, but these alternate pathways are not well understood. Brad St. Croix, Ph.D., of CCR’s Mouse Cancer Genetics Program, along with Lihong Xu, Ph.D., a Postdoctoral Fellow in the St. Croix laboratory, and colleagues set out to identify VEGF-independent mediators of tumor angiogenesis.
Tiani, Carolina; Garcia-Pras, Ester; Mejias, Marc; de Gottardi, Andrea; Berzigotti, Annalisa; Bosch, Jaime; Fernandez, Mercedes
2009-02-01
Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.
Chen, Y; Li, C; Xie, H; Fan, Y; Yang, Z; Ma, J; He, D; Li, L
2017-05-18
The recruitment of vascular endothelial cells from the tumor microenvironment (TME) to promote angiogenesis plays key roles in the progression of renal cell carcinoma (RCC). The potential impact of immune cells in the TME on RCC angiogenesis, however, remains unclear. Here, we found that recruitment of mast cells resulted in increased RCC angiogenesis in both in vitro cell lines and in vivo mouse models. Mechanistic analyses revealed that RCC recruited mast cells by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. A clinical survey of human RCC samples also showed that higher expression of the PI3K→︀AKT→︀GSK3β→︀AM signaling pathway correlated with increased angiogenesis. Interruption of PI3K→︀AKT→︀GSK3β→︀AM signaling via specific inhibitors led to decreased recruitment of mast cells, and targeting this infiltrating mast cell-related signaling via an AKT-specific inhibitor suppressed RCC angiogenesis in xenograft mouse models. Together, these results identified a novel role of infiltrating mast cells in RCC angiogenesis and metastasis and suggest a new strategy for treating RCC by targeting this newly identified signaling pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo
CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less
Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence.
Goradel, Nasser Hashemi; Asghari, Mohammad Hossein; Moloudizargari, Milad; Negahdari, Babak; Haghi-Aminjan, Hamed; Abdollahi, Mohammad
2017-11-15
Melatonin, a pineal indolamine, participates in different body functions and is shown to possess diverse biological activities such as anti-tumor action. Angiogenesis inhibition is one of the mechanisms by which melatonin exerts its oncostatic effects. Increased angiogenesis is a major feature of tumor progression, thus angiogenesis inhibition is a critical step in cancer therapy. Melatonin employs a variety of mechanisms to target nutrients and oxygen supply to cancer cells. At the transcriptional level, hypoxia induced factor-1α (HIF-1α) and the genes under its control, such as vascular endothelial growth factor (VEGF) are the main targets of melatonin for inhibition of angiogenesis. Melatonin prevents translocation of HIF-1α into the nucleus thereby hindering VEGF expression and also prevents the formation of HIF-1α, phospho-STAT3 and CBP/p300 complex which is involved in the expression of angiogenesis-related genes. Angiostatic properties of melatonin could be also due to its ability to inhibit VEGFR2's activation and expression. Other angiostatic mechanisms of melatonin include the inhibition of endothelial cell migration, invasion, and tube formation. In the present study, we have reviewed the molecular anti-angiogenesis pathways mediated by melatonin and the responsible mechanisms in various types of cancers both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Ha, Chang Hoon; Wang, Weiye; Jhun, Bong Sook; Wong, Chelsea; Hausser, Angelika; Pfizenmaier, Klaus; McKinsey, Timothy A.; Olson, Eric N.; Jin, Zheng-Gen
2008-01-01
Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase Cγ-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis. PMID:18332134
2000 RSNA annual oration in diagnostic radiology: The future of interventional radiology.
Becker, G J
2001-08-01
Origins in imaging, procedural emphasis, and dependence on innovation characterize interventional radiology, which will continue as the field of image-guided minimally invasive therapies. A steady supply of innovators will be needed. Current workforce shortages demand that this problem be addressed and in an ongoing fashion. Interventional radiology's major identity problem will require multiple corrective measures, including a name change. Diagnostic radiologists must fully embrace the concept of the dedicated interventionalist. Interspecialty turf battles will continue, especially with cardiologists and vascular surgeons. To advance the discipline, interventional radiologists must remain involved in cutting-edge therapies such as endograft repair of aortic aneurysms and carotid stent placement. As the population ages, interventionalists will experience a shift toward a greater emphasis on cancer treatment. Political agendas and public pressure will improve access to care and result in managed health care reforms. Academic centers will continue to witness a decline in time and resources available to pursue academic missions. The public outcry for accountability will result in systems changes aimed at reducing errors and process changes in the way physicians are trained, certified, and monitored. Evidence-based medicine will be the watchword of this century. Interventional radiology will maintain its role through development of methods for delivery of genes, gene products, and drugs to specific target sites; control of angiogenesis and other biologic processes; and noninvasive image-guided delivery of various forms of energy for ablation.
Lenkinski, Robert E.; Bloch, B. Nicholas; Liu, Fangbing; Frangioni, John V.; Perner, Sven; Rubin, Mark A.; Genega, Elizabeth; Rofsky, Neil M.; Gaston, Sandra M.
2009-01-01
Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined. In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies. Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of DCEMRI positive prostate cancers. These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer. PMID:18752015
Wieczór, Radosław; Gadomska, Grażyna; Ruszkowska-Ciastek, Barbara; Stankowska, Katarzyna; Budzyński, Jacek; Fabisiak, Jacek; Suppan, Karol; Pulkowski, Grzegorz; Rość, Danuta
2015-11-01
Type 2 diabetes coexistent with lower extremity artery disease (peripheral arterial disease (PAD)) can be observed in numerous patients. The mechanism compensating for ischemia and contributing to healing is angiogenesis-the process of forming new blood vessels. The purpose of this study was to assess the likely impact of type 2 diabetes on the plasma levels of proangiogenic factor (vascular endothelial growth factor A (VEGF-A)) and angiogenesis inhibitors (soluble VEGF receptors type 1 and type 2 (sVEGFR-1 and sVEGFR-2)) in patients with PAD. Among 46 patients with PAD under pharmacological therapy (non-invasive), we identified, based on medical history, a subgroup with coexistent type 2 diabetes (PAD-DM2+, n=15) and without diabetes (PAD-DM2-, n=31). The control group consisted of 30 healthy subjects. Plasma levels of VEGF-A, sVEGFR-1, and sVEGFR-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. The subgroups of PAD-DM2+ and PAD-DM2- revealed significantly higher concentrations of VEGF-A (P=0.000 007 and P=0.000 000 1, respectively) and significantly lower sVEGFR-2 levels (P=0.02 and P=0.000 01, respectively), when compared with the control group. Patients with PAD and coexistent diabetes tended to have a lower level of VEGF-A and higher levels of sVEGFR-1 and sVEGFR-2 comparable with non-diabetic patients. The coexistence of type 2 diabetes and PAD is demonstrated by a tendency to a lower plasma level of proangiogenic factor (VEGF-A) and higher levels of angiogenesis inhibitors (sVEGFR-1 and sVEGFR-2) at the same time. Regardless of the coexistence of type 2 diabetes, hypoxia appears to be a crucial factor stimulating the processes of angiogenesis in PAD patients comparable with healthy individuals, whereas hyperglycemia may have a negative impact on angiogenesis in lower limbs.
2013-01-01
Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856
Mesenchymal Stem Cells Derived from Human Limbal Niche Cells
Li, Gui-Gang; Zhu, Ying-Ting; Xie, Hua-Tao; Chen, Szu-Yu; Tseng, Scheffer C. G.
2012-01-01
Purpose. We investigated whether human limbal niche cells generate mesenchymal stem cells. Methods. Limbal niche cells were isolated from the limbal stroma by collagenase alone or following dispase removal of the limbal epithelium (D/C), and cultured on plastic in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS), or coated or three-dimensional Matrigel in embryonic stem cell medium with leukemia inhibitory factor and basic fibroblast growth factor. Expression of cell markers, colony-forming units-fibroblast, tri-lineage differentiation, and ability of supporting limbal epithelial stem/progenitor cells were compared to limbal residual stromal cells. Results. Stromal cells expressing angiogenesis markers were found perivascularly, subjacent to limbal basal epithelial cells, and in D/C and limbal residual stromal cells. When seeded in three-dimensional Matrigel, D/C but not limbal residual stromal cells yielded spheres of angiogenesis progenitors that stabilized vascular networks. Similar to collagenase-isolated cells, D/C cells could be expanded on coated Matrigel for more than 12 passages, yielding spindle cells expressing angiogenesis and mesenchymal stem cells markers, and possessing significantly higher colony-forming units-fibroblast and more efficient tri-lineage differentiation than D/C and limbal residual stromal cells expanded on plastic in DMEM with 10% FBS, of which both lost the pericyte phenotype while limbal residual stromal cells turned into myofibroblasts. Upon reunion with limbal epithelial stem/progenitor cells to form spheres, D/C cells expanded on coated Matrigel maintained higher expression of p63α and lower expression of cytokeratin 12 than those expanded on plastic in DMEM with 10% FBS, while spheres formed with human corneal fibroblasts expressed cytokeratin 12 without p63α. Conclusions. In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with angiogenesis and mesenchymal stem cells potentials. They might partake in angiogenesis and regeneration during corneal wound healing. PMID:22836771
2011-01-01
Introduction Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum. Methods Immunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining. Results Antiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs). Conclusions These results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin. PMID:21303517
Melemenidis, Stavros; Jefferson, Andrew; Ruparelia, Neil; Akhtar, Asim M; Xie, Jin; Allen, Danny; Hamilton, Alastair; Larkin, James R; Perez-Balderas, Francisco; Smart, Sean C; Muschel, Ruth J; Chen, Xiaoyuan; Sibson, Nicola R; Choudhury, Robin P
2015-01-01
Angiogenesis is an essential component of tumour growth and, consequently, an important target both therapeutically and diagnostically. The cell adhesion molecule αvβ3 integrin is a specific marker of angiogenic vessels and the most prevalent vascular integrin that binds the amino acid sequence arginine-glycine-aspartic acid (RGD). Previous studies using RGD-targeted nanoparticles (20-50 nm diameter) of iron oxide (NPIO) for magnetic resonance imaging (MRI) of tumour angiogenesis, have identified a number of limitations, including non-specific extravasation, long blood half-life (reducing specific contrast) and low targeting valency. The aim of this study, therefore, was to determine whether conjugation of a cyclic RGD variant [c(RGDyK)], with enhanced affinity for αvβ3, to microparticles of iron oxide (MPIO) would provide a more sensitive contrast agent for imaging of angiogenic tumour vessels. Cyclic RGD [c(RGDyK)] and RAD [c(RADyK)] based peptides were coupled to 2.8 μm MPIO, and binding efficacy tested both in vitro and in vivo. Significantly greater specific binding of c(RGDyK)-MPIO to S-nitroso-n-acetylpenicillamine (SNAP)-stimulated human umbilical vein endothelial cells in vitro than PBS-treated cells was demonstrated under both static (14-fold increase; P < 0.001) and flow (44-fold increase; P < 0.001) conditions. Subsequently, mice bearing subcutaneous colorectal (MC38) or melanoma (B16F10) derived tumours underwent in vivo MRI pre- and post-intravenous administration of c(RGDyK)-MPIO or c(RADyK)-MPIO. A significantly greater volume of MPIO-induced hypointensities were found in c(RGDyK)-MPIO injected compared to c(RADyK)-MPIO injected mice, in both tumour models (P < 0.05). Similarly, administration of c(RGDyK)-MPIO induced a greater reduction in mean tumour T2* relaxation times than the control agent in both tumour models (melanoma P < 0.001; colorectal P < 0.0001). Correspondingly, MPIO density per tumour volume assessed immunohistochemically was significantly greater for c(RGDyK)-MPIO than c(RADyK)-MPIO injected animals, in both melanoma (P < 0.05) and colorectal (P < 0.0005) tumours. In both cases, binding of c(RGDyK)-MPIO co-localised with αvβ3 expression. Comparison of RGD-targeted and dynamic contrast enhanced (DCE) MRI assessment of tumour perfusion indicated sensitivity to different vascular features. This study demonstrates specific binding of c(RGDyK)-MPIO to αvβ3 expressing neo-vessels, with marked and quantifiable contrast and rapid clearance of unbound particles from the blood circulation compared to NPIO. Combination of this molecular MRI approach with conventional DCE MRI will enable integrated molecular, anatomical and perfusion tumour imaging. PMID:25767618
Zhao, Yanbo; Song, Jiale; Bi, Xukun; Gao, Jing; Shen, Zhida; Zhu, Junhui; Fu, Guosheng
2018-06-20
Endothelial progenitor cells (EPCs) are a promising cell source for tissue repair and regeneration, predominantly through angiogenesis promotion. Paracrine functions serve a pivotal role in EPC‑mediated angiogenesis, which may be impaired by various cardiovascular risk factors. Therefore, it is important to identify a solution that optimizes the paracrine function of EPCs. Thymosin β4 (Tβ4) is a peptide with the potential to promote tissue regeneration and wound healing. A previous study demonstrated that Tβ4 enhances the EPC‑mediated angiogenesis of the ischemic myocardium. In the present study, whether Tβ4 improved angiogenesis by enhancing the paracrine effects of EPCs was investigated. A tube formation assay was used to assess the effect of angiogenesis, and the paracrine effects were measured using an ELISA kit. The results indicated that Tβ4 improved the paracrine effects of EPCs, evidenced by an increase in the expression of vascular endothelial growth factor (VEGF). EPC‑conditioned medium (EPC‑CM) significantly promoted human umbilical vein endothelial cell angiogenesis in vitro, which was further enhanced by pretreatment with Tβ4. The effect of Tβ4 pretreated EPC‑CM on angiogenesis was abolished by VEGF neutralizing antibody in vitro, indicating that increased VEGF secretion had a pivotal role in Tβ4‑mediated EPC angiogenesis. Furthermore, transplantation of EPCs pretreated with Tβ4 into infarcted rat hearts resulted in significantly higher VEGF expression in the border zone, compared with EPC transplantation alone. To further investigate whether the Akt/eNOS pathway was involved in Tβ4‑induced VEGF secretion in EPCs, the expression levels of VEGF in EPC‑CM were significantly decreased following knockdown of Akt or eNOS by small interfering RNA transfection. In conclusion, Tβ4 significantly increased angiogenesis by enhancing the paracrine effects of EPCs, evidenced by the increased expression of VEGF. The RAC‑α serine/threonine‑protein kinase/endothelial nitric oxide synthase signal transduction pathway was involved in the regulation of Tβ4‑induced VEGF secretion in EPCs. Further studies are required to investigate the long‑term prognosis of patients with coronary heart disease following Tβ4‑pretreated EPC transplantation.
Photoacoustic imaging of inflammatory arthritis in human joints
NASA Astrophysics Data System (ADS)
Jo, Janggun; Xu, Guan; Marquardt, April; Francis, Sheeja; Yuan, Jie; Girish, Dhanuj; Girish, Gandikota; Wang, Xueding
2016-02-01
The ducal imaging with photoacoustic imaging (PAI) that is an emerging technology and clinical ultrasound imaging that is an established modality is developed for the imaging of early inflammatory arthritis. PAI is sensitive to blood volume, not limited by flow like ultrasound, holding great promise for the earliest detection of increase in blood volume and angiogenesis - a key early finding inflammation PAI has the capability of assessing inflammation in superficial human soft tissues, offering potential benefits in diagnosis, treatment and monitoring of inflammatory arthritis. PAI combined with ultrasonography (US), is a real time dual-modality system developed and tested to identify active synovitis in metacarpophalangeal (MCP) joints of 10 arthritis patients and 10 normal volunteers. Photoacoustic images of the joints were acquired at 580-nm laser wavelength, which provided the desired balance between the optical contrast of hemoglobin over bone cortex and the imaging depth. Confirmed by US Doppler imaging, the results from ten patients and ten normal volunteers demonstrated satisfactory sensitivity of PAI in assessing enhanced blood flow due to active synovitis. This preliminary study suggests that photoacoustic imaging, by identifying early increase in blood volume, related to increased vascularity, a hallmark of joint inflammation, could be a valuable supplement to musculoskeletal US.
Saghiri, M-A; Asatourian, A; Garcia-Godoy, F; Sheibani, N
2016-07-01
Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging.
Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.
Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan
2010-02-01
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.
Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G
2003-01-01
Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.
FKBPL Is a Critical Antiangiogenic Regulator of Developmental and Pathological Angiogenesis
Yakkundi, Anita; Bennett, Rachel; Hernández-Negrete, Ivette; Delalande, Jean-Marie; Hanna, Mary; Lyubomska, Oksana; Arthur, Kenneth; Short, Amy; McKeen, Hayley; Nelson, Laura; McCrudden, Cian M.; McNally, Ross; McClements, Lana; McCarthy, Helen O.; Burns, Alan J.; Bicknell, Roy; Kissenpfennig, Adrien
2015-01-01
Objective— The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models. Approach and Results— FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL’s critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl+/− mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish. Conclusions— FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes. PMID:25767277
Usuki, K; Heldin, N E; Miyazono, K; Ishikawa, F; Takaku, F; Westermark, B; Heldin, C H
1989-01-01
Platelet-derived endothelial cell growth factor (PD-ECGF) is a 45-kDa endothelial cell mitogen which has angiogenic properties in vivo. We report here that human foreskin fibroblasts, a human squamous cell carcinoma cell line, and 2 out of the 3 human thyroid carcinoma cell lines investigated produce PD-ECGF, whereas 21 other cell lines examined do not. The positive cell lines contained a 1.8-kilobase PD-ECGF mRNA, and a 45-kDa protein could be demonstrated in lysates of the cell lines by immunoblotting and immunoprecipitation using a specific antiserum against PD-ECGF. Furthermore, the cell lysates contained mitogenic activity for endothelial cells that was neutralized by the PD-ECGF antiserum. PD-ECGF was found to be secreted only slowly from the producer cells, consistent with the previous finding that the primary translation product lacks a signal sequence. The restricted expression and intracellular sequestration of PD-ECGF imply a strictly controlled function in endothelial cell proliferation and angiogenesis. Aberrant production of PD-ECGF may play a role in tumor angiogenesis. Images PMID:2678104
Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis.
Chong, Diana C; Yu, Zhixian; Brighton, Hailey E; Bear, James E; Bautch, Victoria L
2017-10-01
Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention. © 2017 The Authors.
Meeting Summary | Division of Cancer Prevention
The Trans-National Institutes of Health (NIH) Angiogenesis Workshop was convened May 20-21, 2013 at the National Institutes of Health in Bethesda, MD to evaluate the state-of-the-science for angiogenesis research disciplines and to address scientific gaps influencing public health outcomes on human disease. Because angiogenesis research applies to many diseases, a
USDA-ARS?s Scientific Manuscript database
VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...
Rusnati, Marco; Urbinati, Chiara; Bonifacio, Silvia; Presta, Marco; Taraboletti, Giulia
2010-01-01
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents. PMID:27713299
Alteration of Developmental and Pathological Retinal Angiogenesis in angptl4-deficient Mice*
Perdiguero, Elisa Gomez; Galaup, Ariane; Durand, Mélanie; Teillon, Jérémie; Philippe, Josette; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Thurston, Gavin; Germain, Stéphane
2011-01-01
Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. PMID:21832056
Brem, S. S.; Zagzag, D.; Tsanaclis, A. M.; Gately, S.; Elkouby, M. P.; Brien, S. E.
1990-01-01
Microvascular proliferation, a hallmark of malignant brain tumors, represents an attractive target of anticancer research, especially because of the quiescent nonproliferative endothelium of the normal brain. Cerebral neoplasms sequester copper, a trace metal that modulates angiogenesis. Using a rabbit brain tumor model, normocupremic animals developed large vascularized VX2 carcinomas. By contrast, small, circumscribed, relatively avascular tumors were found in the brains of rabbits copper-depleted by diet and penicillamine treatment (CDPT). The CDPT rabbits showed a significant decrease in serum copper, copper staining of tumor cell nuclei, microvascular density, the tumor volume, endothelial cell turnover, and an increase in the vascular permeability (breakdown of the blood-brain barrier), as well as peritumoral brain edema. In non-tumor-bearing animals, CDPT did not alter the vascular permeability or the brain water content. CDPT also inhibited the intracerebral growth of the 9L gliosarcoma in F-344 rats, with a similar increase of the peritumoral vascular permeability and the brain water content. CDPT failed to inhibit tumor growth and the vascularization of the VX2 carcinoma in the thigh muscle or the metastases to the lung, findings that may reflect regional differences in the responsiveness of the endothelium, the distribution of copper, or the activity of cuproenzymes. Metabolic and pharmacologic withdrawal of copper suppresses intracerebral tumor angiogenesis; angiosuppression is a novel biologic response modifier for the in situ control of tumor growth in the brain. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 12 Figure 15 Figure 16 PMID:1700617
Li, Zhanghua; Liao, Wen; Zhao, Qiang; Liu, Ming; Xia, Wei; Yang, Yi; Shao, Ningsheng
2013-07-01
To explore the feasibility of allogeneic mesenchymal stem cells (MSCs) transplanted intravenously for angiogenesis and bone repair in a rabbit model of avascular necrosis of femoral head (ANFH). Forty-five rabbits were randomized into three groups: a blank control group (without treatment), a necrotic control group (ANFH induced but without therapy), and an MSC transplantation group (ANFH induced and treated with MSC transplantation). The biopsies, blood sampling, and imaging examinations were performed on each animal at different time points (2, 4, and 6 wk). To monitor angiogenesis and bone repair progress, examinations included real-time polymerase chain reaction, Western blot analysis, x-ray, computed tomography, Masson trichrome staining, picrosirius red staining, and immunohistochemical staining. Necrosis and bone collapse were observed in bilateral femoral heads of necrotic rabbits of the necrotic control group, whereas the femoral head morphology was generally restored in the MSC transplantation group. The mRNA levels of Cbfa1, BMP, VEGF, and OPN in bone tissue were significantly higher in the MSC transplantation group than in the necrotic control group. In addition, the total protein amount of Cbfa1 in the MSC transplantation group was also significantly higher than that in the necrotic control group (P < 0.05). Intravenous transplantation of allogeneic MSCs can promote vascular and bone regeneration in the necrotic region of the femoral head in a rabbit model of ANFH. The results of our study suggest that the intravenous transplantation of MSCs could be a potential and minimally invasive treatment option for ANFH patients. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, J; Rancilio, N; Fulkerson, C
Purpose: Ultrasound (US) is a noninvasive, nonradiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (inter- and intra-fraction). A detailed methodology integrating 3D-US within RT is presented. This method is easier to adopt into current treatment protocol than current US based systems and reduces user variability for image acquisition, thus eliminating transducer induced changes that limit CT planning system. Methods: We designed an in-house integrated US manipulator and platform to relate CT, 3D-US and linear accelerator coordinate systems. To validate the platform, an agar-based phantom withmore » measured densities and speed-of-sound consistent with tissues surrounding the bladder, was rotated (0–45°) resulting in translations (up to 55mm) relative to the CT and US coordinate systems. After acquiring and integrating CT and US images into the treatment planning system, US-to-US and US-to-CT images were co-registered to re-align the phantom relative to the linear accelerator. Errors in the transformation matrix components were calculate to determine precision of this method under different patient positions. Results: Statistical errors from US-US registrations for different patient orientations ranged from 0.06–1.66mm for x, y, and z translational components, and 0.00–1.05° for rotational components. Statistical errors from US-CT registrations were 0.23–1.18mm for the x, y and z translational components, and 0.08–2.52° for the rotational components. Conclusion: Based on our result, this is consistent with currently used techniques for positioning prostate patients if couch re-positioning is less than a 5 degree rotation. We are now testing this on a dog patient to obtain both inter and intra-fractional positional errors. Additional design considerations include the future use of ultrasound-based functionality (photoacoustics, radioacoustics, Doppler) to monitor blood flow and hypoxia and/or in-vivo dosimetry for applications in other therapeutic techniques, such as hyperthermia, anti-angiogenesis, and particle therapy.« less
Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S
2014-04-01
In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.
Aronis, K N; Diakopoulos, K N; Fiorenza, C G; Chamberland, J P; Mantzoros, C S
2011-09-01
Leptin has been shown to regulate angiogenesis in animal and in vitro studies by upregulating the production of several pro-angiogenic factors, but its role in regulating angiogenesis has never been studied in humans. The potential angiogenic effect of two doses of metreleptin (50 and 100 ng/ml) was evaluated in vitro, using a novel three-dimensional angiogenesis assay. Fifteen healthy, normoleptinaemic volunteers were administered both a physiological (0.1 mg/kg) and a pharmacological (0.3 mg/kg) single dose of metreleptin, in vivo, on two different inpatient admissions separated by 1-12 weeks. Serum was collected at 0, 6, 12 and 24 h after metreleptin administration. Twenty lean women, with leptin levels <5 ng/ml, were randomised in a 1:1 fashion to receive either physiological replacement doses of metreleptin (0.04-0.12 mg/kg q.d.) or placebo for 32 weeks. Serum was collected at 0, 8, 20 and 32 weeks after randomisation. Proteomic angiogenesis array analysis was performed to screen for angiogenic factors. Circulating concentrations of angiogenin, angiopoietin-1, platelet derived endothelial factor (PDGF)-AA, matrix metalloproteinase (MMP) 8 and 9, endothelial growth factor (EGF) and vascular EGF (VEGF) were also measured. Both metreleptin doses failed to induce angiogenesis in the in vitro model. Although leptin levels increased significantly in response to both short-term and long-term metreleptin administration, circulating concentrations of angiogenesis markers did not change significantly in vivo. This is the first study that examines the effect of metreleptin administration in angiogenesis in humans. Metreleptin administration does not regulate circulating angiogenesis related factors in humans. ClinicalTrials.gov NCT00140205 and NCT00130117. This study was supported by National Institutes of Health-National Center for Research Resources grant M01-RR-01032 (Harvard Clinical and Translational Science Center) and grant number UL1 RR025758. Funding was also received from the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785, 79929 and 81913, and AG032030.
Investigation of the Lack of Angiogenesis in the Formation of Lymph Node Metastases
Jeong, Han-Sin; Jones, Dennis; Liao, Shan; Wattson, Daniel A.; Cui, Cheryl H.; Duda, Dan G.; Willett, Christopher G.; Jain, Rakesh K.
2015-01-01
Background: To date, antiangiogenic therapy has failed to improve overall survival in cancer patients when used in the adjuvant setting (local-regional disease with no detectable systemic metastasis). The presence of lymph node metastases worsens prognosis, however their reliance on angiogenesis for growth has not been reported. Methods: Here, we introduce a novel chronic lymph node window (CLNW) model to facilitate new discoveries in the growth and spread of lymph node metastases. We use the CLNW in multiple models of spontaneous lymphatic metastases in mice to study the vasculature of metastatic lymph nodes (n = 9–12). We further test our results in patient samples (n = 20 colon cancer patients; n = 20 head and neck cancer patients). Finally, we test the ability of antiangiogenic therapy to inhibit metastatic growth in the CLNW. All statistical tests were two-sided. Results: Using the CLNW, we reveal the surprising lack of sprouting angiogenesis during metastatic growth, despite the presence of hypoxia in some lesions. Treatment with two different antiangiogenic therapies showed no effect on the growth or vascular density of lymph node metastases (day 10: untreated mean = 1.2%, 95% confidence interval [CI] = 0.7% to 1.7%; control mean = 0.7%, 95% CI = 0.1% to 1.3%; DC101 mean = 0.4%, 95% CI = 0.0% to 3.3%; sunitinib mean = 0.5%, 95% CI = 0.0% to 1.0%, analysis of variance P = .34). We confirmed these findings in clinical specimens, including the lack of reduction in blood vessel density in lymph node metastases in patients treated with bevacizumab (no bevacizumab group mean = 257 vessels/mm2, 95% CI = 149 to 365 vessels/mm2; bevacizumab group mean = 327 vessels/mm2, 95% CI = 140 to 514 vessels/mm2, P = .78). Conclusion: We provide preclinical and clinical evidence that sprouting angiogenesis does not occur during the growth of lymph node metastases, and thus reveals a new mechanism of treatment resistance to antiangiogenic therapy in adjuvant settings. The targets of clinically approved angiogenesis inhibitors are not active during early cancer progression in the lymph node, suggesting that inhibitors of sprouting angiogenesis as a class will not be effective in treating lymph node metastases. PMID:26063793
2012-01-01
Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184
Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng
2017-03-15
Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we developed a thermosensitive chitosan/gelatin hydrogel that not only enhances the viability of the encapsulated ASCs, the gradual degradation of gelatin also result in a more porous architecture, leading to sustained release of ASCs from the hydrogel. ASC-encapsulated hydrogel enhanced in vitro wound healing of fibroblasts and tube formation of endothelial cells. It also promoted in vivo angiogenesis in a chick embryo chorioallantoic membrane assay and a mice wound model. Therefore, chitosan/gelatin hydrogel represents an effective delivery system that allows for controlled release of viable ASCs for therapeutic angiogenesis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Qian; Du, Yang; Jing, Lijia; Liang, Xiaolong; Li, Yaqian; Li, Xiaofeng; Dai, Zhifei; Tian, Jie
2016-03-01
Endostar, a novel recombinant human endostatin, has been proven to inhibit tumor angiogenesis and is utilized as an anticancer drug. While free drugs can display limited efficacy, nanoscaled anticancer drugs have been fabricated and proven to possess superior therapeutic effects. Poly(lactic acid) (PLA) is a FDA-approved biomaterial displaying excellent biocompatibility and low toxicity. In this study, Endostar-loaded PLA nanoparticles (EPNPs) were first prepared, and a near-infrared (NIR) dye, IRDye 800CW, was conjugated to the surface for detecting nanoparticle biodistribution through fluorescence molecular imaging (FMI) using an orthotopic breast tumor mouse model. The antitumor efficacy of EPNPs was examined using bioluminescence imaging (BLI) and immunohistology. To further improve the antitumor effects, we combined EPNPs with zoledronic acid monohydrate (ZA), which is known to decrease the tumor-associated macrophages (TAM) and inhibit tumor progression. We found that EPNPs decreased human umbilical vein endothelial cell (HUVEC) viability by inhibiting tumor growth gene expression more significantly than free Endostar in vitro. In vivo, EPNPs displayed better tumor growth inhibitory effects compared with free Endostar, and the combination of EPNPs with ZA exhibited more significant antitumor effects. As confirmed by CD31 and CD11b immunohistochemistry, the combination of EPNPs and ZA showed synergistic effects in reducing tumor angiogenesis and TAM accumulation in tumor regions. Taken together, this study presents a novel and effective form of nanoscaled Endostar for the treatment of breast cancer that displays synergistic antitumor effects in combination with ZA.
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice
Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen
2011-01-01
Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420
Combination of Anti-angiogenesis with Chemotherapy for More Effective Cancer Treatment*
Ma, Jie; Waxman, David J.
2008-01-01
Angiogenesis is a hallmark of tumor development and metastasis and is now a validated target for cancer treatment. Overall, however, the survival benefits of anti-angiogenic drugs have, thus far, been rather modest, stimulating interest in developing more effective ways to combine anti-angiogenic drugs with established chemotherapies. This review discusses recent progress and emerging challenges in this field; interactions between anti-angiogenic drugs and conventional chemotherapeutic agents are examined, and strategies for the optimization of combination therapies are discussed. Anti-angiogenic drugs such as the anti-VEGF antibody bevacizumab can induce a functional normalization of the tumor vasculature that is transient and can potentiate the activity of co-administered chemoradiotherapies. However, chronic angiogenesis inhibition typically reduces tumor uptake of co-administered chemotherapeutics, indicating a need to explore new approaches, including intermittent treatment schedules and provascular strategies to increase chemotherapeutic drug exposure. In cases where anti-angiogenesis-induced tumor cell starvation augments the intrinsic cytotoxic effects of a conventional chemotherapeutic drug, combination therapy may increase anti-tumor activity despite a decrease in cytotoxic drug exposure. As new angiogenesis inhibitors enter the clinic, reliable surrogate markers are needed to monitor the progress of anti-angiogenic therapies and to identify responsive patients. New targets for anti-angiogenesis continue to be discovered, increasing the opportunities to interdict tumor angiogenesis and circumvent resistance mechanisms that may emerge with chronic use of these drugs. PMID:19074844
Reynolds, Alison L.; Alvarez, Yolanda; Sasore, Temitope; Waghorne, Nora; Butler, Clare T.; Kilty, Claire; Smith, Andrew J.; McVicar, Carmel; Wong, Vickie H. Y.; Galvin, Orla; Merrigan, Stephanie; Osman, Janina; Grebnev, Gleb; Sjölander, Anita; Stitt, Alan W.; Kennedy, Breandán N.
2016-01-01
Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge DiversetTM library and inhibition of hyaloid vessel angiogenesis in Tg(fli1:EGFP) zebrafish. 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4–10 μm in zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT1–2) at micromolar IC50 values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents. PMID:26846851
Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo
Cartland, Siân P.; Genner, Scott W.; Zahoor, Amna; Kavurma, Mary M.
2016-01-01
Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. PMID:27918462
Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.
Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M
2016-12-02
Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.
Kuo, Jennifer H.; Cuevas, Ileana; Chen, Amy; Dunn, Ashley; Kuri, Mauricio; Boudreau, Nancy
2014-01-01
Objective: Homeobox (HOX) transcription factors coordinate gene expression in wound repair and angiogenesis. Previous studies have shown that gene transfer of HoxA3 to wounds of diabetic mice accelerates wound healing, increasing angiogenesis and keratinocyte migration. In this study, we examined whether HoxA3 can also improve angiogenesis, epidermal integrity, and viability of composite skin grafts. Approach: To determine the effects of HoxA3 on composite skin grafts, we constructed bilayered composite grafts incorporating fibroblasts engineered to constitutively secrete HoxA3. We then transplanted these composite grafts in vivo. Results: The composite grafts produced a stratified epidermal layer after seventeen days in culture and following transplantation in vivo, these grafts exhibit normal epidermal differentiation and reduced contraction compared to controls. In addition, HoxA3 grafts showed increased angiogenesis. Quantitative polymerase chain reaction (PCR) analyses of HoxA3 graft tissue reveal an increase in the downstream HoxA3 target genes MMP-14 and uPAR expression, as well as a reduction in CCL-2 and CxCl-12. Innovation: Expression of secreted HoxA3 in composite grafts represents a comprehensive approach that targets both keratinocytes and endothelial cells to promote epidermal proliferation and angiogenesis. Conclusion: Secreted HoxA3 improves angiogenesis, reduces expression of inflammatory mediators, and prolongs composite skin graft integrity. PMID:25302136
Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg
2010-01-01
Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137
Total alkaloids of Rubus alceifolius Poir shows anti-angiogenic activity in vivo and in vitro.
Zhao, Jinyan; Lin, Wei; Zhuang, Qunchuan; Zhong, Xiaoyong; Cao, Zhiyun; Hong, Zhenfeng; Peng, Jun
2014-11-01
Total alkaloids is an active ingredient of the natural plant Rubus alceifolius Poir, commonly used for the treatment of various cancers. Antitumor effects may be mediated through anti-angiogenic mechanisms. As such, the goal of the present study was to investigate and evaluate the effect of total alkaloids in Rubus alceifolius Poir (TARAP) on tumor angiogenesis and investigate the underlying molecular mechanisms of TARAP action in vivo and in vitro. A chick embryo chorioallantoic membrane (CAM) assay was used to assess angiogenesis in vivo. An MTT assay was performed to determine the viability of human umbilical vein endothelial cells (HUVECs) with and without treatment. Cell cycle progression of HUVECs was examined by FACS analysis with propidium iodide staining. HUVEC migration was determined using a scratch wound method. Tube formation of HUVECs was assessed with an ECMatrix gel system, and mRNA and protein expression of VEGF-A in both HUVECs and HepG2 human hepatocellular carcinoma cells were examined by RT-PCR and ELISA, respectively. Our results showed that TARAP inhibited angiogenesis in the CAM model in vivo and inhibited HUVEC proliferation via blocking cell cycle G1 to S progression in a dose- and time-dependent manners in vitro. Moreover, TARAP inhibited HUVEC migration and tube formation and downregulated mRNA and protein expression of VEGF-A in both HepG2 cells and HUVECs. Our findings suggest that the anti-angiogenic activity of TARAP may partly contribute to its antitumor properties and may be valuable for the treatment of diseases involving pathologic angiogenesis such as cancer. © The Author(s) 2014.
Zhu, Qiang; Zou, Li; Jagavelu, Kumaravelu; Simonetto, Douglas A.; Huebert, Robert C.; Jiang, Zhi-Dong; DuPont, Herbert L.; Shah, Vijay H.
2012-01-01
Background/Aims Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, effect of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. Methods Effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and toll like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist, lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. Results Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in BDL liver and was reduced by rifaximin administration and thus was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. Conclusion These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis. PMID:22173161
Importance of interaction between nerve growth factor and α9β1 integrin in glial tumor angiogenesis
Walsh, Erin M.; Kim, Richard; Del Valle, Luis; Weaver, Michael; Sheffield, Joel; Lazarovici, Philip; Marcinkiewicz, Cezary
2012-01-01
NGF is a growth factor for which the role in the promotion of angiogenesis is still not completely understood. We found that NGF promotes the pathological neovascularization process in glioma through a direct interaction with α9β1 integrin, which is up-regulated on microvascular endothelial cells in cancer tissue. We propagated gHMVEC primary cells using a new method of immune-selection, and these cells demonstrated α9β1 integrin-dependent binding of NGF in a cell adhesion assay. Moreover, NGF induced gHMVEC proliferation and chemotaxis inhibited by specific blockers of α9β1 integrin, such as MLD-disintegrins and monoclonal antibody Y9A2. A Matrigel tube formation assay revealed that NGF significantly increased capillary-like growth from gHMVEC to a level comparable to treatment with VEGF. The snake venom disintegrin, VLO5, inhibited the agonistic effect of both growth factors, whereas the effect of Y9A2 was not statistically significant. Angiogenesis exogenously induced by NGF was also α9β1-integrin dependent in an embryonic quail CAM system. However, angiogenesis pathologically induced by developing glioma in this system was only sensitive for inhibition with MLD-disintegrin, suggesting a more complex effect of cancer cells on the neovascularization process. The anti-angiogenic effect of MLD-disintegrins is probably related to their pro-apoptotic ability induced in activated tumoral endothelial cells. Therefore, the molecular basis of these disintegrins may be useful for developing new angiostatic pharmaceuticals for application in cancer therapy. PMID:22611032
Autophagy triggered by magnolol derivative negatively regulates angiogenesis
Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F
2013-01-01
Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847
Evolutionary emergence of angiogenesis in avascular tumors using a spatial public goods game
Salimi Sartakhti, Javad; Manshaei, Mohammad Hossein; Sadeghi, Mehdi
2017-01-01
Natural selection in cancer often results in the emergence of increasingly malignant tumor cells that display many if not all of the hallmarks of cancer. One of the most important traits acquired during cancer progression is angiogenesis. Tumor cells capable of secreting pro-angiogenic factors can be seen as cooperators where the improved oxygenation, nutrient delivery and waste disposal resulting from angiogenesis could be seen as a public good. Under this view, the relatively costly secretion of molecular signals required to orchestrate angiogenesis would be undertaken exclusively by cooperating tumor cells but the benefits of angiogenesis would be felt by neighboring tumor cells regardless of their contribution to the process. In this work we detail a mathematical model to better understand how clones capable of secreting pro-angiogenic factors can emerge in a tumor made of non-cooperative tumor cells. Given the importance of the spatial configuration of the tumor in determining the efficacy of the secretion of pro-angiogenic factors as well as the benefits of angiogenesis we have developed a spatial game theoretic approach where interactions and public good diffusion are described by graphs. The results show that structure of the population affects the evolutionary dynamics of the pro-angiogenic clone. Specifically, when the benefit of angiogenesis is represented by sigmoid function with regards to the number of pro-angiogenic clones then the probability of the coexistence of pro-angiogenic and angiogenesis-neutral clones increases. Our results demonstrate that pro-angiogenic clone equilibrates into clusters that appear from surrounding vascular tissues towards the center of tumor. These clusters appear notably less dense after anti-angiogenic therapy. PMID:28399181
Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin
2015-01-01
Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
De Filippis, D; Russo, A; D'Amico, A; Esposito, G; Concetta, P; Cinelli, M; Russo, G; Iuvone, T
2008-01-01
Background and purpose: Chronic inflammatory conditions, such as granulomas, are associated with angiogenesis. Mast cells represent the main cell type orchestrating angiogenesis, through the release of their granule content. Therefore, compounds able to modulate mast cell behaviour may be considered as a new pharmacological approach to treat angiogenesis-dependent events. Here, we tested the effect of selective cannabinoid (CB) receptor agonists in a model of angiogenesis-dependent granuloma formation induced by λ-carrageenin in rats. Experimental approach: Granulomas were induced by λ-carrageenin-soaked sponges implanted subcutaneously on the back of male Wistar rats. After 96 h, implants were removed and granuloma formation was measured (wet weight); angiogenesis was evaluated by histological analysis and by the measurement of haemoglobin content. Mast cells in the granulomas were evaluated histologically and by RT-PCR and immunoblotting analysis for mast cell-derived proteins (rat mast cell protease-5 (rMCP-5) and nerve growth factor). Selective CB1 and CB2 receptor agonists, ACEA and JWH-015 (0.001–0.1 mg mL−1), were given locally only once, at the time of implantation. Key results: The CB1 and CB2 receptor agonists decreased the weight and vascularization of granulomas after 96 h. This treatment also reduced mast cell number and activation in granulomatous tissue. Specifically, these compounds prevented the transcription and expression of rMCP-5, a protein involved in sprouting and advance of new blood vessels. Conclusion and implications: Modulation of mast cell function by cannabinoids reduced granuloma formation and associated angiogenesis. Therefore cannabinoid-related drugs may be useful in the management of granulomatous diseases accompanied by angiogenesis. PMID:18552882
HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de; Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de; Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de
Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. Inmore » cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.« less
Song, Mun-Gyu; Lee, Hye-Jin; Jin, Bo-Yeong; Gutierrez-Aguilar, Ruth; Shin, Kyung-Ho; Choi, Sang-Hyun; Um, Sung Hee; Kim, Dong-Hoon
2016-11-01
Adipose tissue (AT) expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC) of subcutaneous and visceral fats in lean and obese mice. We compared the AC of epididymal fat (EF) and inguinal fat (IF) using an angiogenesis assay in diet-induced obese (DIO) mice and diet-resistant (DR) mice fed a high-fat diet (HFD). Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD), DIO mice, and DR mice fed a HFD. DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a , Vegfa , Fgf1 , Kdr , and Pecam1 ), macrophage recruitment, and inflammation (including Emr1 , Ccr2 , Itgax , Ccl2 , Tnf , and Il1b ) correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity.
Trau, Heidi A.; Davis, John S.; Duffy, Diane M.
2014-01-01
ABSTRACT Rapid angiogenesis occurs as the ovulatory follicle is transformed into the corpus luteum. To determine if luteinizing hormone (LH)-stimulated prostaglandin E2 (PGE2) regulates angiogenesis in the ovulatory follicle, cynomolgus macaques received gonadotropins to stimulate multiple follicular development and chorionic gonadotropin (hCG) substituted for the LH surge to initiate ovulatory events. Before hCG, vascular endothelial cells were present in the perifollicular stroma but not amongst granulosa cells. Endothelial cells entered the granulosa cell layer 24–36 h after hCG, concomitant with the rise in follicular PGE2 and prior to ovulation, which occurs about 40 h after hCG. Intrafollicular administration of the PG synthesis inhibitor indomethacin was coupled with PGE2 replacement to demonstrate that indomethacin blocked and PGE2 restored follicular angiogenesis in a single, naturally developed monkey follicle in vivo. Intrafollicular administration of indomethacin plus an agonist selective for a single PGE2 receptor showed that PTGER1 and PTGER2 agonists most effectively stimulated angiogenesis within the granulosa cell layer. Endothelial cell tracing and three-dimensional reconstruction indicated that these capillary networks form via branching angiogenesis. To further explore how PGE2 mediates follicular angiogenesis, monkey ovarian microvascular endothelial cells (mOMECs) were isolated from ovulatory follicles. The mOMECs expressed all four PGE2 receptors in vitro. PGE2 and all PTGER agonists increased mOMEC migration. PTGER1 and PTGER2 agonists promoted sprout formation while the PTGER3 agonist inhibited sprouting in vitro. While PTGER1 and PTGER2 likely promote the formation of new capillaries, each PGE2 receptor may mediate aspects of PGE2's actions and, therefore, LH's ability to regulate angiogenesis in the primate ovulatory follicle. PMID:25376231
Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing.
Brcic, L; Brcic, I; Staresinic, M; Novinscak, T; Sikiric, P; Seiwerth, S
2009-12-01
Angiogenesis is a natural and complex process controlled by angiogenic and angiostatic molecules, with a central role in healing process. One of the most important modulating factors in angiogenesis is the vascular endothelial growth factor (VEGF). Pentadecapeptide BPC 157 promotes healing demonstrating particular angiogenic/angiomodulatory potential. We correlated the angiogenic effect of BPC 157 with VEGF expression using in vitro (cell culture) and in vivo (crushed muscle and transected muscle and tendon) models. Results revealed that there is no direct angiogenic effect of BPC 157 on cell cultures. On the other hand, immunohistochemical analysis of muscle and tendon healing using VEGF, CD34 and FVIII antibodies showed adequately modulated angiogenesis in BPC 157 treated animals, resulting in a more adequate healing. Therefore the angiogenic potential of BPC 157 seems to be closely related to the healing process in vivo with BPC 157 stimulating angiogenesis by up-regulating VEGF expression.
Recurrent PTPRB and PLCG1 mutations in angiosarcoma.
Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J
2014-04-01
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.
N-CAM Exhibits a Regulatory Function in Pathological Angiogenesis in Oxygen Induced Retinopathy
Håkansson, Joakim; Ståhlberg, Anders; Wolfhagen Sand, Fredrik; Gerhardt, Holger; Semb, Henrik
2011-01-01
Background Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis. Methodology/Principal Findings Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected. Conclusion/Significance We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy. PMID:22043302
Angiogenesis in Spontaneous Tumors and Implications for Comparative Tumor Biology
Benazzi, C.; Al-Dissi, A.; Chau, C. H.; Figg, W. D.; Sarli, G.; de Oliveira, J. T.; Gärtner, F.
2014-01-01
Blood supply is essential for development and growth of tumors and angiogenesis is the fundamental process of new blood vessel formation from preexisting ones. Angiogenesis is a prognostic indicator for a variety of tumors, and it coincides with increased shedding of neoplastic cells into the circulation and metastasis. Several molecules such as cell surface receptors, growth factors, and enzymes are involved in this process. While antiangiogenic therapy for cancer has been proposed over 20 years ago, it has garnered much controversy in recent years within the scientific community. The complex relationships between the angiogenic signaling cascade and antiangiogenic substances have indicated the angiogenic pathway as a valid target for anticancer drug development and VEGF has become the primary antiangiogenic drug target. This review discusses the basic and clinical perspectives of angiogenesis highlighting the importance of comparative biology in understanding tumor angiogenesis and the integration of these model systems for future drug development. PMID:24563633
Inhibitory effects of vitamin K3 on DNA polymerase and angiogenesis.
Matsubara, Kiminori; Kayashima, Tomoko; Mori, Masaharu; Yoshida, Hiromi; Mizushina, Yoshiyuki
2008-09-01
Vitamins play essential roles in cellular reactions and maintain human health. Recent studies have revealed that some vitamins including D3, B6 and K2 and their derivatives have an anti-cancer effect. As a mechanism, their inhibitory effect on cancer-related angiogenesis has been demonstrated. Vitamin K2 (menaquinones) has an anti-cancer effect in particular for hepatic cancer and inhibits angiogenesis. In the current study, we demonstrated that sole vitamin K3 (menadione) selectively inhibits the in vitro activity of eukaryotic DNA polymerase gamma, which is a mitochondrial DNA polymerase, and suppresses angiogenesis in a rat aortic ring model. The anti-angiogenic effect of vitamin K3 has been shown in angiogenesis models using human umbilical vein endothelial cells (HUVECs) with regard to HUVEC growth, tube formation on reconstituted basement membrane and chemotaxis. These results suggest that vitamin K3 may be a potential anti-cancer agent like vitamin K2.
Robich, Michael P.; Osipov, Robert M.; Nezafat, Reza; Feng, Jun; Clements, Richard T.; Bianchi, Cesario; Boodhwani, Munir; Coady, Michael A.; Laham, Roger J.; Sellke, Frank W.
2010-01-01
Introduction Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac magnetic resonance imaging and coronary angiography 7 weeks later, prior to sacrifice and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (p<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (p=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (p=0.32). Tissue blood flow during stress was 2.8 fold greater in HCRV swine when compared to HCC swine (p=0.04). Endothelial dependent microvascular relaxation response to Substance P was diminished in HCC swine which was rescued by resveratrol treatment (p=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine v. control swine (p=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV v. HCC swine of the following markers of angiogenesis: VEGF (p=0.002), peNOS(ser1177)(p=0.04), NFkB (p=0.004), and pAkt(thr308)(p=0.001). Conclusion Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelial dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. PMID:20837905
Zhang, Guangjian; Gao, Rui; Wang, Yuanbo; Liu, Yan; Li, Juan; Jia, Xi; Liang, Yiqian; Yang, Aimin
2018-01-01
Aims To investigate the association between angiogenetic activity of hyperplastic thymus and serum thyroglobulin (Tg) level in differentiated thyroid carcinoma patients with thyroglobulin (Tg)-elevated Negative Iodine Scintigraphy (TENIS) Syndrome. Methods A cohort of 30 consecutive patients who underwent total thyroidectomy followed by radioiodine ablation and had TENIS syndrome received integrin αvβ3 targeted imaging with 99mTc-HYNIC-PEG4-E[PEG4-c(RGDfk)]2 (99mTc-3PRGD2). The correlation of angiogenetic activity of the thymus and the serum Tg levels was evaluated in patients with enlarged thymus. Results Enlarged thymus was detected in 9 out of the 30 TENIS patients and all hyperplastic thymus showed an increased accumulation of the tracer (median tumor/background ratio: 2.8). Five of them had only mediastinal uptake and surgical removal of the mediastinal mass in one provided histopathologic evidence of thymic tissue. The other four were not assigned further treatment and were free of disease in the follow-up, though their stimulated Tg levels consistently increased. Four out of the 9 patients showed 99mTc-3PRGD2 uptake outside the mediastinum were assigned surgery followed by radioiodine treatment. Their stimulated Tg levels decreased after iodine ablation, but not drop back to normal. A significant linear correlation was observed between serum Tg levels and the degree of angiogenesis in the hyperplastic thymus. Conclusions The angiogenetic activity in hyperplastic thymus was related with the consistently elevated serum Tg levels in TENIS syndrome patients. Based on the existing literature and current data, we propose further intervention for patients with RGD uptake outside thymus, while close follow-up for patients with only mediastinal uptake. PMID:29423055
Perfluorocarbon Nanoparticles for Physiological and Molecular Imaging and Therapy
Chen, Junjie; Pan, Hua; Lanza, Gregory M.; Wickline, Samuel A.
2014-01-01
Herein we review the use of non-nephrotoxic perfluorocarbon nanoparticles (PFC NP) for noninvasive detection and therapy of kidney diseases, and provide a synopsis of other related literature pertinent to anticipated clinical application. Recent reports indicate that PFC NP allow quantitative mapping of kidney perfusion, and oxygenation after ischemia-reperfusion injury with the use of a novel multi-nuclear 1H/19F magnetic resonance imaging (MRI) approach,. Furthermore, when conjugated with targeting ligands, the functionalized PFC NP offer unique and quantitative capabilities for imaging inflammation in the kidney of atherosclerotic ApoE-null mice. Additionally, PFC NP can facilitate drug delivery for treatment of inflammation, thrombosis, and angiogenesis in selected conditions that are comorbidities for to kidney failure. The excellent safety profile of PFC NP with respect to kidney injury positions these nanomedicine approaches as promising diagnostic and therapeutic candidates for treating and following acute and chronic kidney diseases. PMID:24206599
Targeting of MPEG-protected polyamino acid carrier to human E-selectin in vitro.
Kang, H W; Weissleder, R; Bogdanov, A
2002-01-01
Targeted diagnostic agents are expected to have a significant impact in molecular imaging of cell-surface associated markers of proliferation, inflammation and angiogenesis. In this communication, we describe a new class of targeted polyamino acid-based protected graft copolymers (PGC) of poly-(L-lysine) and methyl poly-(ethylene glycol) (PGC) covalently conjugated with a monoclonal antibody fragment, F(ab')(2). We utilized targeted PGC conjugates as carriers of near-infrared indocyanine fluorophores (Cy5.5) for optical imaging of endothelial cell populations expressing IL-1 beta inducible proinflammatory marker E-selectin. We compared two conjugation chemistries, involving either introduction of sulfhydryl group to F(ab')(2), or via direct attachment of the antibody fragment directly to the chemically activated PGC. Both PGC-based targeted agents demonstrated high binding specificity (20-30 fold over non-specific uptake) and were utilized for imaging E-selectin expression on human endothelial cells activated with IL-1 beta.
MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis
Caporali, Andrea; Emanueli, Costanza
2011-01-01
MicroRNAs (miRs) are post-transcriptional inhibitory regulators of gene expression acting by direct binding to complementary messenger RNA (mRNA) transcripts. Recent studies have demonstrated that miRs are crucial determinants of endothelial cell behavior and angiogenesis. We have provided evidence of the prominent role of miR-503 in impairment of postischemic reparative angiogenesis in the setting of diabetes. Because miR-503 belongs to the miR-16 extended family of miRs, in this review, we describe the cardiovascular functions of miR-503 and other members of the miR-16 family and their impact on angiogenesis. PMID:22814423
Sato, Yasufumi
2010-06-01
Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.
Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.
Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K
2017-10-02
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.
Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis
Matkar, Pratiek N.; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K.
2017-01-01
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. PMID:28974056
Angiogenesis is inhibitory for mammalian digit regeneration
Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong
2014-01-01
Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862
Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio
2013-01-01
A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706
Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc. E.; Dweik, Raed; Erzurum, Serpil C.
2016-01-01
Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge, and prior to airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and murine model of asthma. Exvivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wildtype mice transplanted with eotaxin-1/2 deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, while adoptive transfer of proangiogenic progenitor cells from wildtype mice in an atopic asthma model into the eotaxin-1/2 deficient mice led to angiogenesis and airway inflammation. The findings indicate that TH2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221
Haney, C R; Fan, X; Markiewicz, E; Mustafi, D; Karczmar, G S; Stadler, W M
2013-02-01
Sorafenib is a multi-kinase inhibitor that blocks cell proliferation and angiogenesis. It is currently approved for advanced hepatocellular and renal cell carcinomas in humans, where its major mechanism of action is thought to be through inhibition of vascular endothelial growth factor and platelet-derived growth factor receptors. The purpose of this study was to determine whether pixel-by-pixel analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is better able to capture the heterogeneous response of Sorafenib in a murine model of colorectal tumor xenografts (as compared with region of interest analysis). MRI was performed on a 9.4 T pre-clinical scanner on the initial treatment day. Then either vehicle or drug were gavaged daily (3 days) up to the final image. Four days later, the mice were again imaged. The two-compartment model and reference tissue method of DCE-MRI were used to analyze the data. The results demonstrated that the contrast agent distribution rate constant (K(trans)) were significantly reduced (p < 0.005) at day-4 of Sorafenib treatment. In addition, the K(trans) of nearby muscle was also reduced after Sorafenib treatment. The pixel-by-pixel analysis (compared to region of interest analysis) was better able to capture the heterogeneity of the tumor and the decrease in K(trans) four days after treatment. For both methods, the volume of the extravascular extracellular space did not change significantly after treatment. These results confirm that parameters such as K(trans), could provide a non-invasive biomarker to assess the response to anti-angiogenic therapies such as Sorafenib, but that the heterogeneity of response across a tumor requires a more detailed analysis than has typically been undertaken.
Circulating fibrocytes stabilize blood vessels during angiogenesis in a paracrine manner.
Li, Jinqing; Tan, Hong; Wang, Xiaolin; Li, Yuejun; Samuelson, Lisa; Li, Xueyong; Cui, Caibin; Gerber, David A
2014-02-01
Accumulating evidence supports that circulating fibrocytes play important roles in angiogenesis. However, the specific role of fibrocytes in angiogenesis and the underlying mechanisms remain unclear. In this study, we found that fibrocytes stabilized newly formed blood vessels in a mouse wound-healing model by inhibiting angiogenesis during the proliferative phase and inhibiting blood vessel regression during the remodeling phase. Fibrocytes also inhibited angiogenesis in a Matrigel mouse model. In vitro study showed that fibrocytes inhibited both the apoptosis and proliferation of vascular endothelial cells (VECs) in a permeable support (Transwell) co-culture system. In a three-dimensional collagen gel, fibrocytes stabilized the VEC tubes by decreasing VEC tube density on stimulation with growth factors and preventing VEC tube regression on withdrawal of growth factors. Further mechanistic investigation revealed that fibrocytes expressed many prosurvival factors that are responsible for the prosurvival effect of fibrocytes on VECs and blood vessels. Fibrocytes also expressed angiogenesis inhibitors, including thrombospondin-1 (THBS1). THBS1 knockdown partially blocked the fibrocyte-induced inhibition of VEC proliferation in the Transwell co-culture system and recovered the fibrocyte-induced decrease of VEC tube density in collagen gel. Purified fibrocytes transfected with THBS1 siRNA partially recovered the fibrocyte-induced inhibition of angiogenesis in both the wound-healing and Matrigel models. In conclusion, our findings reveal that fibrocytes stabilize blood vessels via prosurvival factors and anti-angiogenic factors, including THBS1. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.
Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen
2011-02-01
Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
KSHV-Mediated Angiogenesis in Tumor Progression
Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.
2016-01-01
Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661
Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao
2013-04-12
The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.
Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development.
Metzler, Veronika M; de Brot, Simone; Robinson, Robert S; Jeyapalan, Jennie N; Rakha, Emad; Walton, Thomas; Gardner, David S; Lund, Emma F; Whitchurch, Jonathan; Haigh, Daisy; Lochray, Jack M; Robinson, Brian D; Allegrucci, Cinzia; Fray, Rupert G; Persson, Jenny L; Ødum, Niels; Miftakhova, Regina R; Rizvanov, Albert A; Hughes, Ieuan A; Tadokoro-Cuccaro, Rieko; Heery, David M; Rutland, Catrin S; Mongan, Nigel P
2017-08-01
The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eisenblaetter, Michel; Flores-Borja, Fabian; Lee, Jae Jin; Wefers, Christina; Smith, Hannah; Hueting, Rebekka; Cooper, Margaret S; Blower, Philip J; Patel, Dominic; Rodriguez-Justo, Manuel; Milewicz, Hanna; Vogl, Thomas; Roth, Johannes; Tutt, Andrew; Schaeffter, Tobias; Ng, Tony
2017-01-01
Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r 2 =0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology.
Eisenblaetter, Michel; Flores-Borja, Fabian; Lee, Jae Jin; Wefers, Christina; Smith, Hannah; Hueting, Rebekka; Cooper, Margaret S; Blower, Philip J; Patel, Dominic; Rodriguez-Justo, Manuel; Milewicz, Hanna; Vogl, Thomas; Roth, Johannes; Tutt, Andrew; Schaeffter, Tobias; Ng, Tony
2017-01-01
Background Systemic cancer spread is preceded by the establishment of a permissive microenvironment in the target tissue of metastasis - the premetastatic niche. As crucial players in establishment of the pre-metastatic niche, myeloid derived suppressor cells (MDSC) release S100A8/A9, an exosomal protein that contributes to metastasis, angiogenesis, and immune suppression. We report the application of antibody-based single-photon emission computed tomography (SPECT) for detection of S100A8/A9 in vivo as an imaging marker for pre-metastatic tissue priming. Methods A syngeneic model system for invasive breast cancer with (4T1.2) or without (67NR) the tendency to form lung metastasis was established in BALB/c mice. A SPECT-probe has been generated and tested for visualization of S100A9 release. Tumor-associated changes in numbers and fuction of immune cells in pre-metastatic tissue were evaluated by flow cytometry and confocal microscopy. Results S100A8/A9 imaging reflected MDSC abundance and the establishment of an immunosuppressive environment in pre-metastatic lung tissue (activity 4T1.2 vs. healthy control: 0.95 vs. 0.45 %ID; p<0.001). The S100A8/A9 imaging signal in the pre-metastatic lung correlated with the subsequent metastatic tumor burden in the same organ (r2=0.788; p<0.0001). CCL2 blockade and the consecutive inhibition of premetastatic niche establishment was clearly depicted by S100A9-SPECT (lung activity untreated vs. treated: 2 vs, 1.4 %ID). Conclusion We report S100A8/A9 as a potent imaging biomarker for tumor-mediated immune remodeling with potential applications in basic research and clinical oncology. PMID:28744322
Avian Blood-Vessel Formation in Space
NASA Technical Reports Server (NTRS)
Lelkes, Peter I.
1999-01-01
Based on previous studies, we hypothesized that the developmental anomalies observed in the past might be related to or caused by delayed or improper vascular development. The objective of our research is to test the hypothesis that exposure to microgravity during space flight cause delayed or improper vascular development during embryogenesis. The effects of microgravity on the time course and extent of avian blood-vessel formation are assessed using two models, one for angiogenesis and one for vasculogenesis. The methodological approach is dictated by the constraints of the tissue preservation method used in space. Thus, both in the chorioallantoic membrane (CAM) and in the adrenal, we will evaluate microscopically the vascular architecture and immunostain endothelial cells with specific antibodies (anti- vWF and QH1). The extent of ECM protein deposition will be assessed by immunohistochemistry and correlated with the degree of vascularization, using computer-based image analysis. Also, the cellular source for ECM proteins will be assessed by in situ hybridization.
VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis
2007-09-01
with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are
2007-08-01
He L, Neamati N, Chen X. Evaluation of Biodistribution and Anti-tumor Effect of a Dimeric RGD Peptide-paclitaxel Conjugate in Mice with Breast...Chemistry-Anti-Cancer Agents (CMC-ACA). 2006;6:407-428. 11. Dayam R, Aiello F, Wu Y, Garofalo A, Chen X, Neamati N. Discovery of Small Molecule...Tumor Integrin αvβ3 Expression with [18F]FRGD2. J Nucl Med. 2006;47:113-121. 18 16. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and
2013-10-01
in a still format as well as in real-time clips (15 minutes for each hen). The effects of targeted microbubbles were visually evaluated online during...Determination of time between the serum prevalence of anti-NMP antibodies as well as increased serum IL-16 levels and the formation of solid tumor...endoplasmic reticular (ER) and mitochondrial stress. Glucose-regulated protein of 78kDa (GRP78) is a marker of ER stress. Tumor-associated ER stress
COX-2 – A Novel Target for Reducing Tumor Angiogenesis and Metastasis | Center for Cancer Research
Angiogenesis is essential for tumor growth and metastasis, by supplying a steady stream of nutrients, removing waste, and providing tumor cells access to other sites in the body. The vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) play a key role in tumor-mediated angiogenesis, and this pathway is the target of monoclonal antibodies and tyrosine kinase
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
76 FR 45839 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... of federally-funded research and development. Foreign patent applications are filed on selected... applications. Methods and Software for the Quantitative Assessment of Vasculature in Allantois and Retina... effectiveness of research in the area of angiogenesis. This in turn will lead to enhanced progress in the...
Requirement of Vascular Integrin α_vβ_3 for Angiogenesis
NASA Astrophysics Data System (ADS)
Brooks, Peter C.; Clark, Richard A. F.; Cheresh, David A.
1994-04-01
Angiogenesis depends on the adhesive interactions of vascular cells. The adhesion receptor integrin α_vβ_3 was identified as a marker of angiogenic vascular tissue. Integrin α_vβ_3 was expressed on blood vessels in human wound granulation tissue but not in normal skin, and it showed a fourfold increase in expression during angiogenesis on the chick chorioallantoic membrane. In the latter assay, a monoclonal antibody to α_vβ_3 blocked angiogenesis induced by basic fibroblast growth factor, tumor necrosis factor-α, and human melanoma fragments but had no effect on preexisting vessels. These findings suggest that α_vβ_3 may be a useful therapeutic target for diseases characterized by neovascularization.
Vasculogenesis and Angiogenesis: Molecular and Cellular Controls
Kubis, N.; Levy, B.I.
2003-01-01
Summary Angiogenesis characterizes embryonic development, but also occurs in adulthood in physiological situations such as adaptation to muscle exercise, and in pathological conditions like cancer. Major advances have been made in understanding the molecular mechanisms responsible for vasculogenesis and angiogenesis, largely due to the use of “knock-out mice”, i.e. mice in which the gene coding for the protein under investigation has been inactivated. Interestingly, the same growth factors and their receptors are equally involved in the different aspects of vasculogenesis and angiogenesis during development and in adulthood. This review aims to describe in detail their respective roles and how interactions between them lead to a newly formed vessel. PMID:20591248
2013-01-01
Background The learning active subnetworks problem involves finding subnetworks of a bio-molecular network that are active in a particular condition. Many approaches integrate observation data (e.g., gene expression) with the network topology to find candidate subnetworks. Increasingly, pathway databases contain additional annotation information that can be mined to improve prediction accuracy, e.g., interaction mechanism (e.g., transcription, microRNA, cleavage) annotations. We introduce a mechanism-based approach to active subnetwork recovery which exploits such annotations. We suggest that neighboring interactions in a network tend to be co-activated in a way that depends on the “correlation” of their mechanism annotations. e.g., neighboring phosphorylation and de-phosphorylation interactions may be more likely to be co-activated than neighboring phosphorylation and covalent bonding interactions. Results Our method iteratively learns the mechanism correlations and finds the most likely active subnetwork. We use a probabilistic graphical model with a Markov Random Field component which creates dependencies between the states (active or non-active) of neighboring interactions, that incorporates a mechanism-based component to the function. We apply a heuristic-based EM-based algorithm suitable for the problem. We validated our method’s performance using simulated data in networks downloaded from GeneGO against the same approach without the mechanism-based component, and two other existing methods. We validated our methods performance in correctly recovering (1) the true interaction states, and (2) global network properties of the original network against these other methods. We applied our method to networks generated from time-course gene expression studies in angiogenesis and lung organogenesis and validated the findings from a biological perspective against current literature. Conclusions The advantage of our mechanism-based approach is best seen in networks composed of connected regions with a large number of interactions annotated with a subset of mechanisms, e.g., a regulatory region of transcription interactions, or a cleavage cascade region. When applied to real datasets, our method recovered novel and biologically meaningful putative interactions, e.g., interactions from an integrin signaling pathway using the angiogenesis dataset, and a group of regulatory microRNA interactions in an organogenesis network. PMID:23432934
Tailoring vessel morphology in vivo
NASA Astrophysics Data System (ADS)
Gould, Daniel Joseph
Tissue engineering is a rapidly growing field which seeks to provide alternatives to organ transplantation in order to address the increasing need for transplantable tissues. One huge hurdle in this effort is the provision of thick tissues; this hurdle exists because currently there is no way to provide prevascularized or rapidly vascularizable scaffolds. To design thick, vascularized tissues, scaffolds are needed that can induce vessels which are similar to the microvasculature found in normal tissues. Angiogenic biomaterials are being developed to provide useful scaffolds to address this problem. In this thesis angiogenic and cell signaling and adhesion factors were incorporated into a biomimetic poly(ethylene glycol) (PEG) hydrogel system. The composition of these hydrogels was precisely tuned to induce the formation of differing vessel morphology. To sensitively measure induced microvascular morphology and to compare it to native microvessels in several tissues, this thesis developed an image-based tool for quantification of scale invariant and classical measures of vessel morphology. The tool displayed great utility in the comparison of native vessels and remodeling vessels in normal tissues. To utilize this tool to tune the vessel response in vivo, Flk1::myr-mCherry fluorescently labeled mice were implanted with Platelet Derived Growth Factor-BB (PDGF-BB) and basic Fibroblast Growth Factor (FGF-2) containing PEG-based hydrogels in a modified mouse corneal angiogenesis assay. Resulting vessels were imaged with confocal microscopy, analyzed with the image based tool created in this thesis to compare morphological differences between treatment groups, and used to create a linear relationship between space filling parameters and dose of growth factor release. Morphological parameters of native mouse tissue vessels were then compared to the linear fit to calculate the dose of growth factors needed to induce vessels similar in morphology to native vessels. Resulting induced vessels did match in morphology to the target vessels. Several other covalently bound signals were then analyzed in the assay and resulting morphology of vessels was compared in several studies which further highlighted the utility of the micropocket assay in conjunction with the image based tool for vessel morphological quantification. Finally, an alternative method to provide rapid vasculature to the constructs, which relied on pre-seeded hydrogels encapsulated endothelial cells was also developed and shown to allow anastamosis between induced host vessels and the implanted construct within 48 hours. These results indicate great promise in the rational design of synthetic, bioactive hydrogels, which can be used as a platform to study microvascular induction for regenerative medicine and angiogenesis research. Future applications of this research may help to develop therapeutic strategies to ameliorate human disease by replacing organs or correcting vessel morphology in the case of ischemic diseases and cancer.
Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.
Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio
2011-01-01
Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.
SRF selectively controls tip cell invasive behavior in angiogenesis.
Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin
2013-06-01
Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Aihua; Cheng Guangli; Zhu Genghui
Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increasedmore » in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.« less
Regulation of angiogenesis by phospholipid lysophosphatidic acid.
Chen, Yiliang; Ramakrishnan, Devi Prasadh; Ren, Bin
2013-06-01
Lysophosphatidic acid (LPA) as a bioactive phospholipid signaling mediator is emerging as an important regulator of endothelial cell functions and angiogenesis. Many studies have shown that LPA is an active player in regulating the processes of endothelial cell migration, proliferation, and differentiation, all essential in angiogenesis. Through modulating angiogenesis associated gene expression, LPA also promotes pathological angiogenesis. Intriguingly, the angiogenic signaling mechanisms mediated by LPA have been linked to specific G-protein coupled receptors and down stream MAPK including Erk1/2, p38 and JNK, protein kinase D (PKD-1), Rho kinase (ROCK), and the NF-kappa B signaling pathways. LPA regulates angiogenic responses via a complex signaling network, and LPA signaling is integrated and transduced to the nucleus to coordinate the transcription of different angiogenic genes. Investigation of these mechanisms will provide novel and valuable insights into the understanding of endothelial cell biology and angiogenic programs. This knowledge will facilitate designs for better therapies for the ischemic cardiovascular diseases and malignant tumors.
Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin
2014-01-01
Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458
Xie, Liang; Duncan, Michael B; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O; Hanahan, Douglas; Kalluri, Raghu
2011-06-14
Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis.
Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua
2016-01-01
To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.
Deep, Gagan; Kumar, Rahul; Nambiar, Dhanya K.; Jain, Anil K.; Ramteke, Anand M.; Serkova, Natalie J.; Agarwal, Chapla; Agarwal, Rajesh
2017-01-01
Hypoxia is associated with aggressive phenotype and poor prognosis in prostate cancer (PCa) patients suggesting that PCa growth and progression could be controlled via targeting hypoxia-induced signaling and biological effects. Here, we analyzed silibinin (a natural flavonoid) efficacy to target cell growth, angiogenesis and metabolic changes in human PCa, LNCaP and 22Rv1 cells under hypoxic condition. Silibinin treatment inhibited the proliferation, clonogenicity and endothelial cells tube formation by hypoxic (1% O2) PCa cells. Interestingly, hypoxia promoted a lipogenic phenotype in PCa cells via activating acetyl-Co A carboxylase (ACC) and fatty acid synthase (FASN) that was inhibited by silibinin treatment. Importantly, silibinin treatment strongly decreased hypoxia-induced HIF-1α expression in PCa cells together with a strong reduction in hypoxia-induced NADPH oxidase (NOX) activity. HIF-1α overexpression in LNCaP cells significantly increased the lipid accumulation and NOX activity; however, silibinin treatment reduced HIF-1α expression, lipid levels, clonogenicity and NOX activity even in HIF-1α overexpressing LNCaP cells. In vivo, silibinin feeding (200 mg/kg body weight) to male nude mice with 22Rv1 tumors, specifically inhibited tumor vascularity (measured by dynamic contrast-enhanced MRI) resulting in tumor growth inhibition without directly inducing necrosis (as revealed by diffusion-weighted MRI). Silibinin feeding did not significantly affect tumor glucose uptake measured by FDG-PET; however, reduced the lipid synthesis measured by quantitative 1H-NMR metabolomics. IHC analyses of tumor tissues confirmed that silibinin feeding decreased proliferation and angiogenesis as well as reduced HIF-1α, FASN and ACC levels. Together, these findings further support silibinin usefulness against PCa through inhibiting hypoxia-induced signaling. PMID:27533043
A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies.
Asokan, Priyadarsini; Mitra, Rajendra N; Periasamy, Ramesh; Han, Zongchao; Borrás, Teresa
2018-02-01
Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally.
Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N
2016-01-01
Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.
Myristic Acid-Modified DA7R Peptide for Whole-Process Glioma-Targeted Drug Delivery.
Ying, Man; Wang, Songli; Zhang, Mingfei; Wang, Ruifeng; Zhu, Hangchang; Ruan, Huitong; Ran, Danni; Chai, Zhilan; Wang, Xiaoyi; Lu, Weiyue
2018-06-13
The clinical treatment of aggressive glioma has been a great challenge, mainly because of the complexity of the glioma microenvironment and the existence of the blood-brain tumor barrier (BBTB)/blood-brain barrier (BBB), which severely hampers the effective accumulation of most therapeutic agents in the glioma region. Additionally, vasculogenic mimicry (VM), angiogenesis, and glioma stem cells (GSC) in malignant glioma also lead to the failure of clinical therapy. To address the aforementioned issues, a whole-process glioma-targeted drug delivery strategy was proposed. The D A7R peptide has effective BBTB-penetrating and notable glioma-, angiogenesis-, and VM-targeting abilities. Herein, we designed a myristic acid modified D A7R ligand (MC- D A7R), which combines tumor-homing D A7R with BBB-penetrable MC. MC- D A7R was then immobilized to PEGylated liposomes (MC- D A7R-LS) to form a whole-process glioma-targeting system. MC- D A7R-LS exhibited exceptional internalization in glioma, tumor neovascular, and brain capillary endothelial cells. Enhanced BBTB- and BBB-traversing efficiencies were also observed on MC- D A7R-LS. Ex vivo imaging on brain tumors also demonstrated the feasibility of MC- D A7R-LS in intracranial glioma-homing, whereas the immunofluorescence studies demonstrated its GSC and angiogenesis homing. Furthermore, doxorubicin-loaded MC- D A7R-LS accomplished a remarkable therapeutic outcome, as a result of a synergistic improvement on the glioma microenvironment. Our study highlights the potential of the MC-modified D A7R peptide as a great candidate for the whole-process glioma-targeted drug delivery.
Arenillas, Juan F; Alvarez-Sabín, José; Montaner, Joan; Rosell, Anna; Molina, Carlos A; Rovira, Alex; Ribó, Marc; Sánchez, Esther; Quintana, Manuel
2005-01-01
Angiogenesis may be beneficial in chronic myocardial and limb ischemia, but its role in intracranial atherosclerosis remains unknown. We aimed to investigate the relationship between the pro-angiogenic vascular endothelial growth factor (VEGF) and the anti-angiogenic endostatin, and the extent and risk of recurrence of symptomatic intracranial atherosclerosis. Of a total of 94 consecutive patients with symptomatic intracranial stenoses, 40 fulfilled all inclusion criteria. Intracranial stenoses were confirmed by magnetic resonance angiography. Magnetic resonance imaging (MRI) including diffusion-weighted sequences was conducted. Plasmatic VEGF and endostatin were determined from blood samples obtained 3 months after stroke onset, and patients were followed-up thereafter. A total of 144 intracranial stenoses were confirmed (median number per patient=3). Endostatin/VEGF ratio gradually augmented with the increasing number of intracranial stenoses (r=0.35, P=0.02). Diabetes mellitus (OR, 6.04; CI, 1.1 to 32.2; P=0.03) and a higher endostatin/VEGF ratio (OR, 15.7; CI, 2.2 to 112.3; P=0.006) were independently associated with a greater extent of intracranial atherosclerosis. During a median follow-up of 13 months, 8 patients (20%) experienced a new cerebral ischemic event. A higher baseline endostatin concentration was an independent predictor of new events (hazard ratio, 7.24; CI, 1.6 to 33.8; P=0.011) in a Cox regression model after adjustment for age, sex, number of stenotic vessels, and risk factors. Patients with a higher endostatin level had a lower survival free of new events (P=0.01, log-rank test). A predominance of the inhibitor endostatin within the endogenous angiogenic response is associated with a greater extent and risk of recurrence of symptomatic intracranial atherosclerosis, suggesting that angiogenesis may be beneficial in this condition.
Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei
2012-01-01
Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305
Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia.
Zhang, Xuejing; Tang, Xuelian; Hamblin, Milton H; Yin, Ke-Jie
2018-06-11
Angiogenesis is a complex process that depends on the delicate regulation of gene expression. Dysregulation of transcription during angiogenesis often leads to various human diseases. Emerging evidence has recently begun to show that long non-coding RNAs (lncRNAs) may mediate angiogenesis in both physiological and pathological conditions; concurrently, underlying molecular mechanisms are largely unexplored. Previously, our lab identified metastasis associates lung adenocarcinoma transcript 1 ( Malat1 ) as an oxygen-glucose deprivation (OGD)-responsive endothelial lncRNA. Here we reported that genetic deficiency of Malat1 leads to reduced blood vessel formation and local blood flow perfusion in mouse hind limbs at one to four weeks after hindlimb ischemia. Malat1 and vascular endothelial growth factor receptor 2 ( VEGFR2 ) levels were found to be increased in both cultured mouse primary skeletal muscle microvascular endothelial cells (SMMECs) after 16 h OGD followed by 24 h reperfusion and in mouse gastrocnemius muscle that underwent hindlimb ischemia followed by 28 days of reperfusion. Moreover, Malat1 silencing by locked nucleic acid (LNA)-GapmeRs significantly reduced tube formation, cell migration, and cell proliferation in SMMEC cultures. Mechanistically, RNA subcellular isolation and RNA-immunoprecipitation experiments demonstrate that Malat1 directly targets VEGFR2 to facilitate angiogenesis. The results suggest that Malat1 regulates cell-autonomous angiogenesis through direct regulation of VEGFR2.
NASA Astrophysics Data System (ADS)
Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone
1993-04-01
THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.
Angiogenic and angiostatic factors in the molecular control of angiogenesis.
Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O
2003-09-01
The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.
Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β.
Saraswati, Sarita; Agarwal, S S
2013-05-01
Strychnine is known to possess anti-inflammatory and antitumour activity, but its roles in tumour angiogenesis, the key step involved in tumour growth and metastasis, and the involved molecular mechanism are still unknown. We aimed to investigate the effects of strychnine on key components of inflammatory angiogenesis in the murine cannulated sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and strychnine (0.25, and 0.5 mg/kg/day) was given through installed cannulas for 9 days. The implants collected at day 9 postimplantation were processed for the assessment of haemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG) and collagen used as indexes for angiogenesis, neutrophil and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic and fibrogenic cytokines were also determined. Strychnine treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), tumour necrosis factor (TNF)-α and transforming growth factor (TGF-β). A regulatory function of strychnine on multiple parameters of main components of inflammatory angiogenesis has been revealed giving insight into the potential therapeutic underlying the actions of strychnine. Copyright © 2013 Elsevier Inc. All rights reserved.
Advances and challenges in skeletal muscle angiogenesis
Baum, Oliver; Hellsten, Ylva; Egginton, Stuart
2015-01-01
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338
Yang, Yi; Kimura-Ohba, Shihoko; Thompson, Jeffrey F; Salayandia, Victor M; Cossé, Melissa; Raz, Limor; Jalal, Fakhreya Y; Rosenberg, Gary A
2018-06-01
Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular regulation and role of angiogenesis in reproduction.
Rizov, Momchil; Andreeva, Petya; Dimova, Ivanka
2017-04-01
Angiogenesis is an essential process for proper functioning of the female reproductive system and for successful pregnancy realization. The multitude of factors required for physiological angiogenesis and the complexity of regulation of their temporal-spatial activities contribute to aberrations in human fertilization and pregnancy outcomes. In this study, we reviewed the current knowledge of the temporal expression patterns, functions, and regulatory mechanisms of angiogenic factors during foliculogenesis, early implantation/placentation and embryo development, as well as recurrent spontaneous abortions. Angiogenic factors including vascular endothelial growth factors and angiopoietins have documented roles in the development of primordial follicles into mature antral follicles. They also participate in decidualization, which is accompanied by the creation of an extensive network of vessels in the stromal bed that support the growth of the embryo and the placenta, and maintain early pregnancy. During placentation angiogenic and angiomodulatory cytokines, T and B lymphocytes and macrophages affect angiogenesis in a context-dependent manner. Defects in angiogenesis at the maternal-fetal interface contribute to miscarriage in humans. The establishment of more polymorphisms in the genes involved in angiogenesis/vasculogenesis, and their pathological phenotype and expression could give opportunities for prediction, creating a therapeutic strategy, and treatment of diseases related to female reproductive health and problematic conception. Copyright © 2017. Published by Elsevier B.V.
Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.
2012-01-01
Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156
MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs.
Soufi-Zomorrod, Mina; Hajifathali, Abbas; Kouhkan, Fatemeh; Mehdizadeh, Mahshid; Rad, Seyed Mohammad Ali Hosseini; Soleimani, Masoud
2016-07-01
The sprouting of new blood vessels by angiogenesis is critical in vascular development and homeostasis. Aberrant angiogenesis leads to enormous pathological conditions such as ischemia and cancer. MicroRNAs (also known as miRNAs or miRs) play key roles in regulation of a range of cellular processes by posttranscriptional suppression of their target genes. Recently, new studies have indicated that miRNAs are involved in certain angiogenic settings and signaling pathways use these non-coding RNAs to promote or suppress angiogenic processes. Herein, VEGFR2 and FGFR1 were identified as miR-129-1 and miR-133 targets using bioinformatic algorithms, respectively. Afterwards, using luciferase reporter assay and gene expression analysis at both mRNA and protein levels, VEGFR2 and FGFR1 were validated as miR-129-1 and miR-133 targets. In addition, we showed that miR-129-1 and miR-133 suppress angiogenesis properties such as proliferation rate, cell viability, and migration activity of human umbilical vein endothelial cells (HUVEC) in vitro. We conclude that these miRNAs can suppress key factors of angiogenesis by directly targeting them. These results have important therapeutic implications for a variety of diseases involving deregulation of angiogenesis, including cancer.