Science.gov

Sample records for angiogenic factor genes

  1. Transient and stable transfections of mouse myoblasts with genes coding for pro-angiogenic factors.

    PubMed

    Bialas, M; Krupka, M; Janeczek, A; Rozwadowska, N; Fraczek, M; Kotlinowski, J; Kucharzewska, P; Lackowska, B; Kurpisz, M

    2011-04-01

    Cardiomyocyte loss in the ischaemic heart can be the reason of many complications, eventually being even the cause of patient's death. Despite many promises, cell therapy with the use of skeletal muscle stem cells (SMSC) still remains to be modified and improved. Combined cell and gene therapy seems to be a promising strategy to heal damaged myocardium. In the present study we have investigated the influence of a simultaneous overexpression of two potent pro-angiogenic genes encoding the fibroblast growth factor-4 (FGF-4) and the vascular endothelial growth factor-A (VEGF-A) on a myogenic murine C2C12 cell line. We have demonstrated in in vitro conditions that myoblasts which overexpressed these factors exhibited significant changes in the cell cycle and pro-angiogenic potential with only slight differences in the expression of the myogenic genes. There was not observed the influence of transient or stable overexpression of FGF-4 and VEGF on cell apoptosis/necrosis in standard or oxidative stress conditions comparing to non transfected controls. Overall, our results suggest that the possible transplantation of myoblasts overexpressing pro-angiogenic factors may potentially improve the functionality of the injured myocardium although the definite proof must originate from in situ conducted pre-clinical studies.

  2. A therapy inactivating the tumor angiogenic factors.

    PubMed

    Morales-Rodrigo, Cristian

    2013-02-01

    This paper is devoted to a nonlinear system of partial differential equations modeling the effect of an anti-angiogenic therapy based on an agent that binds to the tumor angiogenic factors. The main feature of the model under consideration is a nonlinear flux production of tumor angiogenic factors at the boundary of the tumor. It is proved the global existence for the nonlinear system and the effect in the large time behavior of the system for high doses of the therapeutic agent.

  3. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  4. Therapeutic angiogenesis: controlled delivery of angiogenic factors

    PubMed Central

    Chu, Hunghao; Wang, Yadong

    2013-01-01

    Therapeutic angiogenesis aims at treating ischemic diseases by generating new blood vessels from existing vasculature. It relies on delivery of exogenous factors to stimulate neovasculature formation. Current strategies using genes, proteins and cells have demonstrated efficacy in animal models. However, clinical translation of any of the three approaches has proved to be challenging for various reasons. Administration of angiogenic factors is generally considered safe, according to accumulated trials, and offers off-the-shelf availability. However, many hurdles must be overcome before therapeutic angiogenesis can become a true human therapy. This article will highlight protein-based therapeutic angiogenesis, concisely review recent progress and examine critical challenges. We will discuss growth factors that have been widely utilized in promoting angiogenesis and compare their targets and functions. Lastly, since bolus injection of free proteins usually result in poor outcomes, we will focus on controlled release of proteins. PMID:22838066

  5. Angiogenic factors and renal disease in pregnancy.

    PubMed

    Rhee, Julie S; Young, Brett C; Rana, Sarosh

    2011-01-01

    Background. Preeclampsia is difficult to diagnose in patients with underlying renal disease and proteinuria. Prior studies show that there is an angiogenic factor imbalance with elevated levels of antiangiogenic proteins soluble fms-like tyrosine kinase 1 (sFlt1) and soluble endoglin (sEng) and reduced levels of the proangiogenic protein, placental growth factor (PlGF) in women with preeclampsia. These angiogenic biomarkers may be useful in distinguishing preeclampsia from other conditions of pregnancy, which may present with overlapping clinical characteristics. Cases. Case 1: A multiparous woman at 18 weeks gestation with nephrotic syndrome presented with hypertensive emergency and worsening renal insufficiency. She underwent induction of labor for severe preeclampsia. Her sFlt1 and sEng levels were at the 97 percentile while her PlGF level was undetectable (less than the 1st percentile). Case 2: A nulliparous woman with lupus nephritis at 22 weeks gestation presented with fetal demise and heart failure. Three weeks previously, the patient had developed thrombocytopenia and hypertensive urgency. She underwent dilation and evacuation. Her angiogenic profile was consistent with severe preeclampsia. Conclusion. Angiogenic factors may provide evidence to support a diagnosis of preeclampsia in patients with preexisting renal disease and proteinuria, conditions in which the classical definition of hypertension and proteinuria cannot be used.

  6. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells.

    PubMed

    Ali, Anwar; Akhter, Muhammad Aleem; Haneef, Kanwal; Khan, Irfan; Naeem, Nadia; Habib, Rakhshinda; Kabir, Nurul; Salim, Asmat

    2015-01-25

    Various preconditioning strategies influence regeneration properties of stem cells. Preconditioned stem cells generally show better cell survival, increased differentiation, enhanced paracrine effects, and improved homing to the injury site by regulating the expression of tissue-protective cytokines and growth factors. In this study, we analyzed gene expression pattern of growth factors through RT-PCR after treatment of mesenchymal stem cells (MSCs) with a metabolic inhibitor, 2,4 dinitrophenol (DNP) and subsequent re-oxygenation for periods of 2, 6, 12 and 24h. These growth factors play important roles in cardiomyogenesis, angiogenesis and cell survival. Mixed pattern of gene expression was observed depending on the period of re-oxygenation. Of the 13 genes analyzed, ankyrin repeat domain 1 (Ankrd1) and GATA6 were downregulated after DNP treatment and subsequent re-oxygenations. Ankrd1 expression was, however, increased after 24h of re-oxygenation. Placental growth factor (Pgf), endoglin (Eng), neuropilin (Nrp1) and jagged 1 (Jag1) were up-regulated after DNP treatment. Gradual increase was observed as re-oxygenation advances and by the end of the re-oxygenation period the expression started to decrease and ultimately regained normal values. Epiregulin (Ereg) was not expressed in normal MSCs but its expression increased gradually from 2 to 24h after re-oxygenation. No change was observed in the expression level of connective tissue growth factor (Ctgf) at any time period after re-oxygenation. Kindlin3, kinase insert domain receptor (Kdr), myogenin (Myog), Tbx20 and endothelial tyrosine kinase (Tek) were not expressed either in normal cells or cells treated with DNP. It can be concluded from the present study that MSCs adjust their gene expression levels under the influence of DNP induced metabolic stress. Their levels of expression vary with varying re-oxygenation periods. Preconditioning of MSCs with DNP can be used for enhancing the potential of these cells for

  7. A new family of angiogenic factors.

    PubMed

    Martínez, Alfredo

    2006-05-18

    Angiogenesis is the production of new blood vessels from pre-existing ones. This process is tightly regulated by a series of pro- and anti-angiogenic molecules in normal physiology and when this equilibrium is broken serious consequences may arise. Solid tumors are characterized by a fast growth that eventually pushes cells away from their natural source of oxygen and nutrients from the capillaries. To survive in this hypoxic environment, tumor cells secrete a variety of pro-angiogenic molecules that would elicit proliferation of new blood vessels, thus re-establishing oxygen and nutrient supply. Blockade of angiogenesis may provide a rational approach to managing tumor growth and novel strategies are being developed. The identification of new targets is of paramount importance in the search for a clinically proficient anti-angiogenic therapy. The adrenomedullin family of peptides and gastrin-releasing peptide (GRP) are newly identified pro-angiogenic molecules, secreted by the tumors, whose inhibition results in a considerable reduction of angiogenesis and of tumor growth in animal models. The recent identification of small molecules that reduce the angiogenic effect of these peptides opens new avenues for the development of new anti-tumorigenic drugs.

  8. Control of the Immune Response by Pro-Angiogenic Factors

    PubMed Central

    Voron, Thibault; Marcheteau, Elie; Pernot, Simon; Colussi, Orianne; Tartour, Eric; Taieb, Julien; Terme, Magali

    2014-01-01

    The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients. PMID:24765614

  9. Hypoxia-Inducible Factor as an Angiogenic Master Switch

    PubMed Central

    Hashimoto, Takuya; Shibasaki, Futoshi

    2015-01-01

    Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications

  10. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells1

    PubMed Central

    Oh, JS; Kucab, JE; Bushel, PR; Martin, K; Bennett, L; Collins, J; DiAugustine, RP; Barrett, JC; Afshari, CA; Dunn, SE

    2002-01-01

    Abstract Activation of the insulin-like growth factor-1 receptor (IGF-1R) by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P450 1A1, cytochrome P450 1B1, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s) whereby some of these changes occur. PMID:11988840

  11. Intramuscular Injection of Angiogenic Gene with Bubble Liposomes Followed by Ultrasound Exposure to Improve Angiogenesis

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Matsuo, Keiko; Endo-Takahashi, Yoko; Suzuki, Kentaro; Matsuki, Yuuki; Takagi, Norio; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Ultrasound (US) in combination with microbubbles has recently engendered much attention as a safe method of gene delivery. Previously, we have developed polyethyleneglycol (PEG)-modified liposomes entrapping echo-contrast gas. We have called the liposomes "Bubble liposomes" (BLs). In this study, to assess the feasibility and the effectiveness of BLs for angiogenic gene delivery in clinical use, we tried to deliver bFGF (an angiogenic factor) expressing plasmid DNA into a mouse hindlimb ischemia model by the combination of BLs and US exposure. After femoral artery ligation, the hindlimb of ischemic mice were treated with BLs and US-mediated intramuscular gene transfer of bFGF expressing plasmid DNA. After the treatment, blood flow was determined over 2 weeks using laser doppler blood flow meter. As a result, the blood flow in the treated groups with BLs and US-mediated the gene transfer was quickly measured, and compared to other treatment groups (non-treated, bFGF alone, or bFGF+US). Furthermore, the number of CD31 positive cells was higher in the treatment groups with BLs and US-mediated the gene transfer than in other treatment groups. These results suggest that intramuscular injection of bFGF as an angiogenic gene with Bubble liposomes followed by ultrasound exposure improved angiogenesis in the ischemic muscle. Thus, gene transfer into the ischemic muscle by the combination of BLs and US exposure is an effective means of angiogenic gene therapy.

  12. Angiogenic factors are increased in circulating granulocytes and CD34(+) cells of myeloproliferative neoplasms.

    PubMed

    Subotički, Tijana; Mitrović Ajtić, Olivera; Beleslin-Čokić, Bojana B; Nienhold, Ronny; Diklić, Miloš; Djikić, Dragoslava; Leković, Danijela; Bulat, Tanja; Marković, Dragana; Gotić, Mirjana; Noguchi, Constance T; Schechter, Alan N; Skoda, Radek C; Čokić, Vladan P

    2017-02-01

    It has been shown that angiogenesis and inflammation play an important role in development of most hematological malignancies including the myeloproliferative neoplasm (MPN). The aim of this study was to investigate and correlate the levels of key angiogenic molecules such as hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral blood and bone marrow cells of MPN patients, along with JAK2V617F mutation allele burden and effects of therapy. HIF-1α and VEGF gene expression were decreased, while eNOS mRNA levels were increased in granulocytes of MPN patients. Furthermore, positively correlated and increased VEGF and eNOS protein levels were in negative correlation with HIF-1α levels in granulocytes of MPN patients. According to immunoblotting, the generally augmented angiogenic factors demonstrated JAK2V617F allele burden dependence only in granulocytes of PMF. The angiogenic factors were largely reduced after hydroxyurea therapy in granulocytes of MPN patients. Levels of eNOS protein expression were stimulated by Calreticulin mutations in granulocytes of essential thrombocythemia. Immunocytochemical analyses of CD34(+) cells showed a more pronounced enhancement of angiogenic factors than in granulocytes. Increased gene expression linked to the proinflammatory TGFβ and MAPK signaling pathways were detected in CD34(+) cells of MPN patients. In conclusion, the angiogenesis is increased in several cell types of MPN patients supported by the transcriptional activation of inflammation-related target genes, and is not limited to bone marrow stroma cells. It also appears that some of the benefit of hydroxyurea therapy of the MPN is mediated by effects on angiogenic factors. © 2016 Wiley Periodicals, Inc.

  13. Characterization of neuritin as a novel angiogenic factor

    SciTech Connect

    Han, Dingding; Qin, Bo; Liu, Guoqing; Liu, Tingting; Ji, Guoqing; Wu, Yanhua; Yu, Long

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Neuritin protein has no effect on the endothelial cell proliferation and adhesion. Black-Right-Pointing-Pointer Neuritin protein increases endothelial cell migration. >Neuritin does not increase tumor cell proliferation in vitro. Black-Right-Pointing-Pointer Overexpression of neuritin induces tumor angiogenesis. >Overexpression of neuritin inhibits tumorigenesis. -- Abstract: Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.

  14. [The role of angiogenic factors in preeclampsia].

    PubMed

    Alasztics, Bálint; Gullai, Nóra; Molvarec, Attila; Rigó, János

    2014-11-23

    Preeclampsia is one of the most common and most serious complications of pregnancy and the management of this condition still challenges obstetricians. Despite intensive research the etiology of preeclampsia still remains unclear. At the beginning of the 2000s preeclampsia-related research was directed towards factors that influence angiogenesis. Most studies have been carried out on the placental growth factor and soluble fms-like tyrosine kinase-1. Most publications confirm the increased concentrations of antiangiogenic factors and decreased concentrations of proangiogenic factors in maternal blood samples in preeclampsia even before the onset of clinical symptoms. According to our current knowledge antiangiogenic proteins are responsible for the endothelial dysfunction in the symptomatic stage of the disease. Placental growth factor and soluble fms-like tyrosine kinase-1 may have important roles in the prediction and treatment of the disease. The point of care detection of placental growth factor and soluble fms-like tyrosine kinase-1 may be used to predict preeclampsia. Rapid tests are available to determine the serum levels of the two proteins. Removal of soluble fms-like tyrosine kinase-1 from maternal circulation is a potential treatment option for early onset preeclampsia.

  15. The potential role of angiogenic factors in rheumatoid arthritis.

    PubMed

    Azizi, Gholamreza; Boghozian, Roobina; Mirshafiey, Abbas

    2014-05-01

    Angiogenesis is an important phenomenon in the pathogenesis of some diseases, such as numerous types of tumors and autoimmunity, and also a number of soluble and cell-bound factors may stimulate neovascularization in inflammatory reaction processes. Here, by highlighting the significance of angiogenesis reaction in rheumatoid arthritis (RA), we will mainly focus on the role of various growth factors, cytokines, enzymes, cells, hypoxic conditions and transcription factors in the angiogenic process and we will then explain some therapeutic strategies based on blockage of angiogenesis and modification of the vascular pathology in RA.

  16. The candidate tumor suppressor CST6 alters the gene expression profile of human breast carcinoma cells: Down-regulation of the potent mitogenic, motogenic, and angiogenic factor autotaxin

    SciTech Connect

    Song Jin; Jie Chunfa; Polk, Paula; Shridhar, Ravi; Clair, Timothy; Zhang, Jun; Yin, Lijia; Keppler, Daniel . E-mail: dkeppl@lsuhsc.edu

    2006-02-03

    We recently coined CST6 as a novel candidate tumor suppressor gene for breast cancer. CST6 indeed is expressed in the normal human breast epithelium, but little or not at all in breast carcinomas and breast cancer cell lines. Moreover, ectopic expression of CST6 in human breast cancer cells suppressed cell proliferation, migration, invasion, and orthotopic tumor growth. To obtain insights into the molecular mechanism by which CST6 exhibits its pleiotropic effects on tumor cells, we compared global gene expression profiles in mock- and CST6-transfected human MDA-MB-435S cells. Out of 12,625 transcript species, 61 showed altered expression. These included genes for extracellular matrix components, cytokines, kinases, and phosphatases, as well as several key transcription factors. TaqMan PCR assays were used to confirm the microarray data for 7 out of 11 genes. One down-regulated gene product, secreted autotaxin/lyso-phospholipase D, was of particular interest because its down-regulation by CST6 could explain most of CST6's effect on the breast cancer cells. This study thus provides First evidence that CST6 plays a role in the modulation of genes, particularly, genes that are highly relevant to breast cancer progression.

  17. Neuropeptide Y is an angiogenic factor in cardiovascular regeneration.

    PubMed

    Saraf, Rabya; Mahmood, Feroze; Amir, Rabia; Matyal, Robina

    2016-04-05

    In diabetic cardiomyopathy, there is altered angiogenic signaling and increased oxidative stress. As a result, anti-angiogenic and pro-inflammatory pathways are activated. These disrupt cellular metabolism and cause fibrosis and apoptosis, leading to pathological remodeling. The autonomic nervous system and neurotransmitters play an important role in angiogenesis. Therapies that promote angiogenesis may be able to relieve the pathology in these disease states. Neuropeptide Y (NPY) is the most abundantly produced and expressed neuropeptide in the central and peripheral nervous systems in mammals and plays an important role in promoting angiogenesis and cardiomyocyte remodeling. It produces effects through G-protein-coupled Y receptors that are widely distributed and also present on the myocardium. Some of these receptors are also involved in diseased states of the heart. NPY has been implicated as a potent growth factor, causing cell proliferation in multiple systems while the NPY3-36 fragment is selective in stimulating angiogenesis and cardiomyocyte remodeling. Current research is focusing on developing a drug delivery mechanism for NPY to prolong therapy without having significant systemic consequences. This could be a promising innovation in the treatment of diabetic cardiomyopathy and ischemic heart disease.

  18. The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia.

    PubMed

    Zhang, Wenjing; Zhao, Xinmei; Xiao, Ying; Chen, Jianmin; Han, Pengfei; Zhang, Jingyao; Fu, Haiying; James Kang, Y

    2016-07-13

    Depressed capillary density is associated with myocardial ischemic infarction, in which hypoxia-inducible factor 1α (HIF-1α) is increased. The present study was undertaken to examine changes in the angiogenic factors whose expression is regulated by HIF-1 and their relation to the depressed capillary density in the Rhesus monkey model of myocardial ischemic infarction. Male Rhesus monkeys 2-3 years old were subjected to myocardial ischemia by permanent ligation of left anterior descending (LAD) artery leading to the development of myocardial infarction. Eight weeks after LAD ligation, copper concentrations, myocardial histological changes and capillary density were examined, along with Western blot and immunohistochemical analysis of angiogenic factors and detection of HIF-1 activity. Capillary density was significantly decreased but the concentrations of HIF-1α and HIF-1β were significantly increased in the infarct area. However, the levels of mRNA and protein for VEGF and VEGFR1 were significantly decreased. Other HIF-1 regulated angiogenic factors, including Tie-2, Ang-1 and FGF-1, were also significantly depressed, but vascular destabilizing factor Ang-2 was significantly increased. Copper concentrations were depressed in the infarct area. Copper-independent HIF-1 activity was increased shown by the elevated mRNA level of IGF-2, a HIF-1 target gene. Removal of copper by a copper chelator, tetraethylenepentamine, from primary cultures of neonatal rat cardiomyocytes also suppressed the expression of HIF-1 regulated VEGF and BNIP3, but not IGF-2. The data suggest that under ischemic conditions, copper loss suppressed the expression of critical angiogenic genes regulated by HIF-1, but did not affect copper-independent HIF-1 activation of gene expression. This copper-dependent dysregulation of angiogenic gene expression would contribute to the pathogenesis of myocardial ischemic infarction.

  19. Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes

    PubMed Central

    Wilson, Julie L.; Korc, Murray

    2016-01-01

    Pancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ∼12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ∼35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature. PMID:26586478

  20. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors.

    PubMed

    Takahashi, Yoshifumi; Saga, Yasushi; Koyanagi, Takahiro; Takei, Yuji; Machida, Shizuo; Taneichi, Akiyo; Mizukami, Hiroaki; Sato, Yasufumi; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-05-01

    Vasohibin-1 (VASH1) is a negative feedback regulator of angiogenesis, the first to be discovered, and was identified in vascular endothelial growth factor (VEGF)-stimulated vascular endothelial cells. Vasohibin-1 inhibits abnormal vascularization induced by various angiogenic factors including fibroblast growth factor and platelet-derived growth factor (PDGF), in addition to VEGF. By focusing on this characteristic of VASH1, we investigated the antitumor effects of VASH1 expression on ovarian cancer cells that produce different angiogenic factors. By using a high VEGF-producing ovarian cancer cell line, SHIN-3, and a high PDGF-producing ovarian cancer cell line, KOC-2S, the cells were transfected with either a VEGF antagonist, soluble VEGF receptor-1 (sVEGFR-1, or sFlt-1), or VASH1 genes to establish their respective cellular expression. The characteristics of these transfectants were compared with controls. We previously reported that the expression of sFlt-1 inhibited tumor vascularization and growth of high VEGF-producing ovarian cancer cells, reduced peritoneal dissemination and ascites development, and prolonged the survival time of the host. However, in the current study, the expression of sFlt-1 had no such effect on the high PDGF-producing ovarian cancer cells used here, whereas VASH1 expression inhibited tumor vascularization and growth, not only in high VEGF-producing cells, but also in high PDGF-producing cells, reduced their peritoneal dissemination and ascites, and prolonged the survival time of the host. These results suggest that VASH1 is an effective treatment for ovarian cancer cells that produce different angiogenic factors.

  1. Lysophosphatidic acid enhanced the angiogenic capability of human chondrocytes by regulating Gi/NF-kB-dependent angiogenic factor expression.

    PubMed

    Chuang, Yi-Wen; Chang, Wen-Ming; Chen, Kai-Hua; Hong, Chang-Zern; Chang, Pey-Jium; Hsu, Hung-Chih

    2014-01-01

    Lysophosphatidic acid (LPA) has been found to mediate myeloid differentiation, stimulate osteogenesis, alter cell proliferation and migration, and inhibit apoptosis in chondrocytes. The effect of LPA on the angiogenic capability of chondrocytes is not clear. This study aimed to investigate its effect on the angiogenic capability of human chondrocytes and the underlying mechanism of these effects. Human chondrocyte cell line, CHON-001, commercialized human chondrocytes (HC) derived from normal human articular cartilage, and human vascular endothelial cells (HUVECs) were used as cell models in this study. The angiogenic capability of chondrocytes was determined by capillary tube formation, monolayer permeability, cell migration, and cell proliferation. An angiogenesis protein array kit was used to evaluate the secretion of angiogenic factors in conditioned medium. Angiogenin, insulin-like growth factor-binding protein 1 (IGFBP-1), interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase (MMP)-9, and vascular endothelial growth factor (VEGF) mRNA and protein expressions were evaluated by Q-RT-PCR and EIA, respectively. LPA receptor (LPAR) expression was determined by RT-PCR. Signaling pathways were clarified using inhibitors, Western blot analysis, and reporter assays. The LPA treatment promoted the angiogenic capability of CHON-001 cells and HC, resulting in enhanced HUVEC capillary tube formation, monolayer permeability, migration, and cell growth. Angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF mRNA and protein expressions were significantly enhanced in LPA-treated chondrocytes. LPA2, 3, 4 and 6 were expressed in CHON-001 and HC cells. Pretreatment with the Gi/o type G protein inhibitor, pertussis toxin (PTX), and the NF-kB inhibitor, PDTC, significantly inhibited LPA-induced angiogenin, IGFBP-1, IL-8, MCP-1, MMP-9, and VEGF expressions in chondrocytes. The PTX pretreatment also inhibited LPA-mediated NF-kB activation, suggesting

  2. Sphingolipid modulation of angiogenic factor expression in neuroblastoma

    PubMed Central

    Li, Mei-Hong; Hla, Timothy; Ferrer, Fernando

    2011-01-01

    Metabolism of sphingolipids into downstream lipid mediators followed by signaling modulates tumor microenvironment and the cancer cells to influence tumor progression. As such, sphingolipid signaling represents a novel way to modulate tumor biology. Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is highly angiogenic and often displays poor prognosis. However, the role of sphingolipid mediators is not known in NB. We found that NB expresses high levels of sphingosine kinase-2 (SphK2), which is essential for the formation of sphingosine-1-phosphate (S1P). S1P induced vascular endothelial growth factor (VEGF) expression in SK-N-AS NB cells. The effect occurred at the transcriptional level. Hypoxia in combination with S1P had a synergistic effect on VEGF expression. Strong correlation was detected between S1P receptor-2 (S1P2) and VEGF mRNAs in 11 different cell lines and 17 NB tissues. Blockade of S1P2 with the selective antagonist JTE-013 significantly inhibited S1P-induced VEGF expression. Overexpression and knockdown of S1P2 in SK-N-AS cells increased or inhibited S1P-induced VEGF secretion, respectively. Interestingly, JTE-013 significantly inhibited tumor growth, VEGF mRNA expression and induced apoptosis in the NB tumor xenografts. Taken together, our data suggest that enhanced formation of sphingolipid mediator S1P in NB profoundly influences tumor microenvironment by inducing VEGF expression via S1P2. Modulation of sphingolipid signaling by inhibiting S1P2 may constitute a novel strategy to control NB. PMID:21576349

  3. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  4. A novel angiogenic factor derived from Aloe vera gel: beta-sitosterol, a plant sterol.

    PubMed

    Moon, E J; Lee, Y M; Lee, O H; Lee, M J; Lee, S K; Chung, M H; Park, Y I; Sung, C K; Choi, J S; Kim, K W

    1999-01-01

    Aloe vera gel has a beneficial effect on wound healing. Because angiogenesis is an essential process in wound healing, we hypothesized that Aloe vera gel might contain potent angiogenic compounds. Here we demonstrate that Aloe vera gel and its extracts are angiogenic on the chorioallantoic membrane (CAM) of chick embryo. Out of the three compounds purified from the final fraction of Aloe vera gel, beta-sitosterol showed a potent angiogenic activity in the CAM assay. In the presence of heparin, beta-sitosterol stimulated neovascularization in the mouse Matrigel plug assay and the motility of human umbilical vein endothelial cells in an in vitro wound migration assay. Thus beta-sitosterol is a novel plant-derived angiogenic factor which may have potential pharmaceutical applications for the management of chronic wounds.

  5. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.

    PubMed

    Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J

    2014-10-01

    The mevalonate pathway (MVP) and the anti-angiogenic effect of bisphosphonates have been shown to play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). This study determined the effect of the bisphosphonate, zoledronic acid and the replenishment of the MVP by geranylgeraniol on human gingival fibroblasts. Cell viability, apoptosis, morphological analysis using transmission electron microscopy, and gene expression for vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B, epiregulin and interferon-alpha were conducted. Results showed cellular viability was decreased in the presence of zoledronic acid and the co-addition of zoledronic acid with geranylgeraniol restored cell viability to control levels. Caspase 3/7 was detected in zoledronic-acid-treated cells indicating apoptosis. Transmission electron microscopy revealed dilation of the rough endoplasmic reticulum with zoledronic acid and the appearance of multiple lipid-like vesicles following the addition of geranylgeraniol. Zoledronic acid significantly (P < 0.05, FR > ± 2) up-regulated vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B and epiregulin at one or more time points but not interferon-alpha. Addition of geranylgeraniol resulted in a reduction in the expression of all five genes compared with zoledronic-acid-treated human gingival fibroblasts. The study concluded geranylgeraniol partially reversed the effects of zoledronic acid in human gingival fibroblasts both at the cellular and genetic levels, suggesting the regulation of these genes is mediated via the mevalonate pathway.

  6. ANGIOGENES: knowledge database for protein-coding and noncoding RNA genes in endothelial cells

    PubMed Central

    Müller, Raphael; Weirick, Tyler; John, David; Militello, Giuseppe; Chen, Wei; Dimmeler, Stefanie; Uchida, Shizuka

    2016-01-01

    Increasing evidence indicates the presence of long noncoding RNAs (lncRNAs) is specific to various cell types. Although lncRNAs are speculated to be more numerous than protein-coding genes, the annotations of lncRNAs remain primitive due to the lack of well-structured schemes for their identification and description. Here, we introduce a new knowledge database “ANGIOGENES” (http://angiogenes.uni-frankfurt.de) to allow for in silico screening of protein-coding genes and lncRNAs expressed in various types of endothelial cells, which are present in all tissues. Using the latest annotations of protein-coding genes and lncRNAs, publicly-available RNA-seq data was analyzed to identify transcripts that are expressed in endothelial cells of human, mouse and zebrafish. The analyzed data were incorporated into ANGIOGENES to provide a one-stop-shop for transcriptomics data to facilitate further biological validation. ANGIOGENES is an intuitive and easy-to-use database to allow in silico screening of expressed, enriched and/or specific endothelial transcripts under various conditions. We anticipate that ANGIOGENES serves as a starting point for functional studies to elucidate the roles of protein-coding genes and lncRNAs in angiogenesis. PMID:27582018

  7. ANGIOGENES: knowledge database for protein-coding and noncoding RNA genes in endothelial cells

    NASA Astrophysics Data System (ADS)

    Müller, Raphael; Weirick, Tyler; John, David; Militello, Giuseppe; Chen, Wei; Dimmeler, Stefanie; Uchida, Shizuka

    2016-09-01

    Increasing evidence indicates the presence of long noncoding RNAs (lncRNAs) is specific to various cell types. Although lncRNAs are speculated to be more numerous than protein-coding genes, the annotations of lncRNAs remain primitive due to the lack of well-structured schemes for their identification and description. Here, we introduce a new knowledge database “ANGIOGENES” (http://angiogenes.uni-frankfurt.de) to allow for in silico screening of protein-coding genes and lncRNAs expressed in various types of endothelial cells, which are present in all tissues. Using the latest annotations of protein-coding genes and lncRNAs, publicly-available RNA-seq data was analyzed to identify transcripts that are expressed in endothelial cells of human, mouse and zebrafish. The analyzed data were incorporated into ANGIOGENES to provide a one-stop-shop for transcriptomics data to facilitate further biological validation. ANGIOGENES is an intuitive and easy-to-use database to allow in silico screening of expressed, enriched and/or specific endothelial transcripts under various conditions. We anticipate that ANGIOGENES serves as a starting point for functional studies to elucidate the roles of protein-coding genes and lncRNAs in angiogenesis.

  8. Clinical outcome, proteome kinetics and angiogenic factors in serum after thermoablation of colorectal liver metastases

    PubMed Central

    2013-01-01

    Background Thermoablation is used to treat patients with unresectable colorectal liver metastases (CRLM). We analyze clinical outcome, proteome kinetics and angiogenic markers in patients treated by cryosurgical ablation (CSA) or radiofrequency ablation (RFA). Methods 205 patients underwent CSA (n = 20), RFA (n = 22), partial hepatectomy (PH, n = 134) or were found truly unresectable (n = 29). Clinical outcome, proteome transitions and angiogenic response in serum were analyzed at various time points after ablation. Result Median overall survival in CSA patients (17.6 months) was worse (p < 0.0001) when compared to RFA treated patients (51.7 months) and patients after PH (43.4 months). The complication rate was higher in the CSA group (50%) as compared to the RFA group (22%). Proteomics analyses showed consistently more changes in serum protein abundance with CSA compared to RFA. In the first four days after ablation a pro-angiogenic serum response occurred. Conclusions RFA of CRLM is superior to CSA with a median survival which equals survival in patients after PH. Proteomics analyses suggests a more aggravated serum response to CSA compared to RFA. Thermoablation is associated with changes in serum levels of angiogenic factors favouring a pro-angiogenic environment, but without differences between RFA and CSA. PMID:23721455

  9. Angiogenic Effects of Dimeric Dipeptide Mimetic of Loop 4 of Nerve Growth Factor.

    PubMed

    Kryzhanovskii, S A; Antipova, T A; Tsorin, I B; Pekeldina, E S; Stolyaruk, V N; Nikolaev, S V; Sorokina, A V; Gudasheva, T A; Seredenin, S B

    2016-08-01

    Angiogenic action of compound GK-2, a dimeric dipeptide mimetic of loop 4 of nerve growth factor (NGF), was studied in in vitro and in vivo experiments. Experiments on human endothelial cell culture HUVEC showed that compound GK-2 significantly (p<0.05) stimulated the initial stage of angiogenesis, and its angiogenic activity was not inferior to the reference neurotrophin NGF. In experiments with hindlimb ischemia modeled in rats, GK-2 (1 mg/kg intraperitoneally for 14 days) significantly increased the total length of capillary vessels (p<0.003) and the number of vessels per 1 mm2 ischemic tissue (p<0.001) in comparison with the control. Our findings indicate that under experimental conditions compound GK-2 exhibits not only angiogenic, but also anti-ischemic activity.

  10. Thymus fat as an attractive source of angiogenic factors in elderly subjects with myocardial ischemia.

    PubMed

    Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Salas, Julian; Mayas, Maria Dolores; Delgado-Lista, Javier; Tinahones, Francisco; El Bekay, Rajaa

    2013-08-01

    Aging negatively affects angiogenesis which is found to be linked to declined vascular endothelial growth factor (VEGF) production. Adult human thymus degenerates into fat tissue (thymus adipose tissue (TAT)). Recently, we described that TAT from cardiomyopathy ischemic subjects has angiogenic properties. The goal of our study was to analyze whether aging could also impair angiogenic properties in TAT as in other adipose tissue such as subcutaneous (subcutaneous adipose tissue (SAT)). SAT and TAT specimens were obtained from 35 patients undergoing cardiac surgery, making these tissues readily available as a prime source of adipose tissue. Patients were separated into two age-dependent groups; middle-aged (n = 18) and elderly (n = 17). Angiogenic, endothelial, and adipogenic expression markers were analyzed in both tissues from each group and correlations were examined between these parameters and also with age. There were no significant differences in subjects from either group in clinical or biological variables. Angiogenic markers VEGF-A, B, C, and D and adipogenic parameters, peroxisome proliferator-activated receptors (PPARγ2), FABP4, and ADRP showed elevated expression levels in TAT from elderly patients compared to the middle-aged group, while in SAT, expression levels of these isoforms were significantly decreased in elderly patients. VEGF-R1, VEGF-R2, VEGF-R3, Thy1, CD31, CD29, and VLA1 showed increased levels in TAT from the elderly compared to the middle-aged, while in SAT these levels displayed a decline with aging. Also, in TAT, angiogenic and endothelial parameters exhibited strong positive correlations with age. TAT appears to be the most appropriate source of angiogenic and endothelial factors in elderly cardiomyopathy subjects compared to SAT.

  11. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  12. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    PubMed

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro.

  13. Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair

    PubMed Central

    2015-01-01

    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA. PMID:24988275

  14. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model

    PubMed Central

    Buchanan, Cara F; Verbridge, Scott S; Vlachos, Pavlos P; Rylander, Marissa Nichole

    2014-01-01

    Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature

  15. Decorin Antagonizes the Angiogenic Network

    PubMed Central

    Neill, Thomas; Painter, Hannah; Buraschi, Simone; Owens, Rick T.; Lisanti, Michael P.; Schaefer, Liliana; Iozzo, Renato V.

    2012-01-01

    Decorin, a small leucine-rich proteoglycan, inhibits tumor growth by antagonizing multiple receptor tyrosine kinases including EGFR and Met. Here, we investigated decorin during normoxic angiogenic signaling. An angiogenic PCR array revealed a profound decorin-evoked transcriptional inhibition of pro-angiogenic genes, such as HIF1A. Decorin evoked a reduction of hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor A (VEGFA) in MDA-231 breast carcinoma cells expressing constitutively-active HIF-1α. Suppression of Met with decorin or siRNA evoked a similar reduction of VEGFA by attenuating downstream β-catenin signaling. These data establish a noncanonical role for β-catenin in regulating VEGFA expression. We found that exogenous decorin induced expression of thrombospondin-1 and TIMP3, two powerful angiostatic agents. In contrast, decorin suppressed both the expression and enzymatic activity of matrix metalloprotease (MMP)-9 and MMP-2, two pro-angiogenic proteases. Our data establish a novel duality for decorin as a suppressor of tumor angiogenesis under normoxia by simultaneously down-regulating potent pro-angiogenic factors and inducing endogenous anti-angiogenic agents. PMID:22194599

  16. An In Vitro Cord Formation Assay Identifies Unique Vascular Phenotypes Associated with Angiogenic Growth Factors

    PubMed Central

    Swearingen, Michelle; Gough, Wendy H.; Lee, Linda; Foreman, Robert; Uhlik, Mark; Hanson, Jeff C.; Lee, Jonathan A.; McClure, Don B.

    2014-01-01

    Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy. PMID:25210890

  17. Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy.

    PubMed

    Perni, Uma; Sison, Cristina; Sharma, Vijay; Helseth, Geri; Hawfield, Amret; Suthanthiran, Manikkam; August, Phyllis

    2012-03-01

    Imbalances in circulating angiogenic factors contribute to the pathogenesis of preeclampsia. To characterize levels of angiogenic factors in pregnant women with chronic hypertension, we prospectively followed 109 women and measured soluble fms-like tyrosine kinase 1 (sFlt1), soluble endoglin, and placental growth factor at 12, 20, 28, and 36 weeks' gestation and postpartum. Superimposed preeclampsia developed in 37 (34%) and was early onset (<34 weeks) in 9 and later onset (≥34 weeks) in 28. Circulating levels of sFlt1 and the ratio of sFlt1 to placental growth factor were higher before clinical diagnosis at 20 weeks' gestation in women who subsequently developed early onset preeclampsia between 28 and 34 weeks compared with levels in women who never developed preeclampsia (P=0.001) or who developed late-onset preeclampsia (P=0.001). Circulating levels of sFlt1, soluble endoglin, and the ratio of sFlt1:placental growth factor were also significantly higher, and placental growth factor levels were significantly lower at the time of clinical diagnosis of superimposed preeclampsia in women with either early or late-onset superimposed preeclampsia compared with levels at similar gestational ages in those with uncomplicated chronic hypertension. We conclude that alterations in angiogenic factors are detectable before and at the time of clinical diagnosis of early onset superimposed preeclampsia, whereas alterations were observed only at the time of diagnosis in women with late-onset superimposed preeclampsia. Longitudinal measurements of angiogenic factors may help anticipate early onset superimposed preeclampsia and facilitate diagnosis of superimposed preeclampsia in women with chronic hypertension.

  18. An in vitro cord formation assay identifies unique vascular phenotypes associated with angiogenic growth factors.

    PubMed

    Falcon, Beverly L; Swearingen, Michelle; Gough, Wendy H; Lee, Linda; Foreman, Robert; Uhlik, Mark; Hanson, Jeff C; Lee, Jonathan A; McClure, Don B; Chintharlapalli, Sudhakar

    2014-01-01

    Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy.

  19. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage

    DTIC Science & Technology

    2008-01-01

    lower than normal pregnancy [230]. Expression of PSGs in trophoblastic malignancies may be a predictive factor in establishing disease and tumor type... disease during pregnancy . Curr Drug Targets Inflamm Allergy, 2005. 4(2): p. 231-7. 96. Chaouat, G., et al., TH1/TH2 paradigm in pregnancy : paradigm...activity. Together these results support a role for PSGs in placentation. iv INDUCTION OF PRO-ANGIOGENIC FACTORS BY PREGNANCY -SPECIFIC

  20. Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations.

    PubMed

    Lekovic, Danijela; Gotic, Mirjana; Skoda, Radek; Beleslin-Cokic, Bojana; Milic, Natasa; Mitrovic-Ajtic, Olivera; Nienhold, Ronny; Sefer, Dijana; Suboticki, Tijana; Buac, Marijana; Markovic, Dragana; Diklic, Milos; Cokic, Vladan P

    2017-03-01

    Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry "hot spot" method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF > PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.

  1. Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance.

    PubMed

    Rusnati, Marco; Presta, Marco

    2015-06-01

    Angiogenesis is implicated in several pathological conditions, including cancer, and in regenerative processes, including the formation of collateral blood vessels after stroke. Physiological angiogenesis is the outcome of a fine balance between the action of angiogenic growth factors (AGFs) and anti-angiogenic molecules, while pathological angiogenesis occurs when this balance is pushed toward AGFs. AGFs interact with multiple endothelial cell (EC) surface receptors inducing cell proliferation, migration and proteases upregulation. On the contrary, free or extracellular matrix-associated molecules inhibit angiogenesis by sequestering AGFs (thus hampering EC stimulation) or by interacting with specific EC receptors inducing apoptosis or decreasing responsiveness to AGFs. Thus, angiogenesis results from an intricate network of interactions among pro- and anti-angiogenic molecules, EC receptors and various modulators. All these interactions represent targets for the development of pro- or anti-angiogenic therapies. These aims call for suitable technologies to study the countless interactions occurring during neovascularization. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time. It has become the golden standard technology for interaction analysis in biomedical research, including angiogenesis. From a survey of the literature it emerges that SPR has already contributed substantially to the better understanding of the neovascularization process, laying the basis for the decoding of the angiogenesis "interactome" and the identification of "hub molecules" that may represent preferential targets for an efficacious modulation of angiogenesis. Here, the still unexploited full potential of SPR is enlightened, pointing to improvements in its use for a deeper understanding of the mechanisms of neovascularization and the identification of novel anti-angiogenic drugs.

  2. CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization

    PubMed Central

    Horie, Shintaro; Robbie, Scott J.; Liu, Jian; Wu, Wei-Kang; Ali, Robin R.; Bainbridge, James W.; Nicholson, Lindsay B.; Mochizuki, Manabu; Dick, Andrew D.; Copland, David A.

    2013-01-01

    Macrophages are rapidly conditioned by cognate and soluble signals to acquire phenotypes that deliver specific functions during inflammation, wound healing and angiogenesis. Whether inhibitory CD200R signaling regulates pro-angiogenic macrophage phenotypes with the potential to suppress ocular neovascularization is unknown. CD200R-deficient bone marrow derived macrophages (BMMΦ) were used to demonstrate that macrophages lacking this inhibitory receptor exhibit enhanced levels of Vegfa, Arg-1 and Il-1β when stimulated with PGE2 or RPE-conditioned (PGE2-enriched) media. Endothelial tube formation in HUVECs was increased when co-cultured with PGE2-conditioned CD200R−/− BMMΦ, and laser-induced choroidal neovascularization was enhanced in CD200R-deficient mice. In corroboration, signaling through CD200R results in the down-regulation of BMMΦ angiogenic and pro-inflammatory phenotypes. Translational potential of this pathway was investigated in the laser-induced model of choroidal neovascularization. Local delivery of a CD200R agonist mAb to target myeloid infiltrate alters macrophage phenotype and inhibits pro-angiogenic gene expression, which suppresses pathological angiogenesis and CNV development. PMID:24170042

  3. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors.

    PubMed

    Sun, Guoming; Shen, Yu-I; Kusuma, Sravanti; Fox-Talbot, Karen; Steenbergen, Charles J; Gerecht, Sharon

    2011-01-01

    Slow vascularization of functional blood limits the transplantation of tissue constructs and the recovery of ischemic and wounded tissues. Despite the widespread investigation of polysaccharide-based hydrogel scaffolds for their therapeutic applications, blood vessel ingrowth into these hydrogel scaffolds remains a challenge. We hypothesized that modifying the properties of biodegradable hydrogel scaffolds with immobilization of multiple angiogenic growth factors (GFs) would induce a rapid proliferation of functional vasculature into the scaffolds. To this end, we remodeled the hydrogel structure by decreasing crosslinking density via reduced degree of substitution of crosslinking groups, which resulted in improved hydrogel properties including reduced rigidity, increased swelling, increased vascular endothelial GF (VEGF) release capability, and facilitated rapid hydrogel disintegration and tissue ingrowth. Immobilizing VEGF in the scaffolds promoted tissue ingrowth and expedited biodegradation. Furthermore, a synergistic effect of multiple angiogenic GFs was established; the coimmobilization of VEGF+ angiopoietin-1, and VEGF+ insulin-like GF+ stromal cell-derived factor-1 induced more and larger blood vessels than any individual GF, while the combination of all GFs dramatically increased the size and number of newly formed functional vessels. Altogether, our data demonstrate that rapid, efficient, and functional neovascularization can be achieved by precisely manipulating hydrogel scaffold properties and immobilizing defined angiogenic GFs.

  4. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors

    PubMed Central

    Bai, Huai; Forrester, John V.; Zhao, Min

    2015-01-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24 h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. PMID:21524919

  5. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    PubMed

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors.

  6. Differential expression of angiogenic factors in peripheral nerve sheath tumors.

    PubMed

    Wasa, Junji; Nishida, Yoshihiro; Suzuki, Yoshitaka; Tsukushi, Satoshi; Shido, Yoji; Hosono, Kozo; Shimoyama, Yoshie; Nakamura, Shigeo; Ishiguro, Naoki

    2008-01-01

    It is difficult to differentiate some malignant peripheral nerve sheath tumors (MPNST) from benign peripheral nerve sheath tumors (BPNST) histologically, and to predict the clinical outcome of patients with MPNST. In this study, the expression of VEGF and MVD were evaluated immunohistochemically in 22 cases of MPNST, 14 of neurofibroma and 19 of schwannoma and correlation of the staining grade of VEGF or MVD and the various clinical factors were analyzed, and statistically evaluated. Levels of VEGF mRNA expression were also determined with real-time RT-PCR. Statistically higher positive staining for VEGF was observed in MPNST compared to neurofibroma (P=0.004) and schwannoma (P<0.001). Even low grade MPNST showed higher VEGF positive staining than neurofibroma. Moreover, high VEGF expression statistically correlated with the poor prognosis of the patients with MPNST (P=0.015). Although MVD in MPNST was significantly higher than that in neurofibroma (P=0.038) and schwannoma (P<0.001), MVD could not predict the prognosis of the patients with MPNST. Although VEGF mRNA expression tended to be higher in MPNST compared to neurofibroma, the difference was not significant. Levels of VEGF protein expression serve as a novel diagnostic and prognostic tools for peripheral nerve sheath tumors.

  7. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix.

  8. Angiogenic properties of adult human thymus fat.

    PubMed

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  9. Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model

    PubMed Central

    Iwamoto, Hideki; Nakamura, Toru; Koga, Hironori; Izaguirre-Carbonell, Jesus; Kamisuki, Shinji; Sugawara, Fumio; Abe, Mitsuhiko; Iwabata, Kazuki; Ikezono, Yu; Sakaue, Takahiko; Masuda, Atsutaka; Yano, Hirohisa; Ohta, Keisuke; Nakano, Masahito; Shimose, Shigeo; Shirono, Tomotake; Torimura, Takuji

    2015-01-01

    Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC. PMID:27119112

  10. Effects of the roughage/concentrate ratio on the expression of angiogenic growth factors in adipose tissue of fattening Wagyu steers.

    PubMed

    Yamada, T; Nakanishi, N

    2012-03-01

    In this experiment, we studied the effects of the dietary roughage/concentrate ratio on the expression of the angiogenic growth factor (VEGF and FGF-2) and the adipogenic transcription factor (C/EBPβ, C/EBPα, and PPARγ) gene in the adipose tissues of Wagyu steers. Steers were fed a high-roughage diet (R group, 35% roughage and 65% concentrate on a TDN basis) or a high-concentrate diet (C group, 10% roughage and 90% concentrate) during the entire fattening period (from 10 to 30months of age) with the same amount of TDN intake between groups. In mesenteric and intermuscular adipocytes, the expression of the angiogenic growth factors was higher in the R group than in the C group. In contrast, the expression of adipogenic transcription factors in the subcutaneous and intramuscular adipocytes was higher in the C group than in the R group. These results indicate that the dietary roughage/concentrate ratio affects the fat depot-specific differences in the angiogenic and adipogenic gene expression pattern.

  11. EGFL7: a unique angiogenic signaling factor in vascular development and disease.

    PubMed

    Nichol, Donna; Stuhlmann, Heidi

    2012-02-09

    EGFL7 is a secreted angiogenic factor that is highly conserved in vertebrates. Most secreted angiogenic signaling molecules, including VEGF and fibroblast growth factor-2, are mainly expressed by non-endothelial cell types such as fibroblasts. In contrast, EGFL7 is unique because it is almost exclusively expressed by and acts on endothelial cells. Egfl7 expression is highest when the endothelium is in an active, proliferating state. This factor acts as a chemoattractant for endothelial cells and binds to components of the extracellular matrix. In vivo, Egfl7 is important for regulating tubulogenesis in zebrafish and for controlling vascular patterning and integrity in mice. Its function in blood vessel development is mediated, at least in part, through modulation of Notch signaling. In this review, we summarize the findings that support a role for Egfl7 in developmental and postnatal angiogenesis and describe the EGFL7-signaling pathways that underlie these processes. In addition, we discuss a potential role for EGFL7 in vascular repair and its possible use as a therapeutic target for treatment of hypoxia-induced injury. Finally, we consider EGFL7 action during tumorigenesis and its potential as an antiangiogenic agent.

  12. Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors

    PubMed Central

    Thomas, Aline M.; Gomez, Andrew J.; Palma, Jaime L.; Yap, Woon Teck

    2014-01-01

    Hydrogels have been extensively used for regenerative medicine strategies given their tailorable mechanical and chemical properties. Gene delivery represents a promising strategy by which to enhance the bioactivity of the hydrogels, though the efficiency and localization of gene transfer have been challenging. Here, we functionalized porous poly(ethylene glycol) hydrogels with heparin-chitosan nanoparticles to retain the vectors locally and enhance lentivirus delivery while minimizing changes to hydrogel architecture and mechanical properties. The immobilization of nanoparticles, as compared to homogeneous heparin and/or chitosan, is essential to lentivirus immobilization and retention of activity. Using this gene-delivering platform, we over-expressed the angiogenic factors sonic hedgehog (Shh) and vascular endothelial growth factor (Vegf) to promote blood vessel recruitment to the implant site. Shh enhanced endothelial recruitment and blood vessel formation around the hydrogel compared to both Vegf-delivering and control hydrogels. The nanoparticle-modified porous hydrogels for delivering gene therapy vectors can provide a platform for numerous regenerative medicine applications. PMID:25023395

  13. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  14. Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy

    PubMed Central

    Babapoor-Farrokhran, Savalan; Jee, Kathleen; Puchner, Brooks; Hassan, Syed Junaid; Xin, Xiaoban; Rodrigues, Murilo; Kashiwabuchi, Fabiana; Ma, Tao; Hu, Ke; Deshpande, Monika; Daoud, Yassine; Solomon, Sharon; Wenick, Adam; Lutty, Gerard A.; Semenza, Gregg L.; Montaner, Silvia; Sodhi, Akrit

    2015-01-01

    Diabetic eye disease is the most common cause of severe vision loss in the working-age population in the developed world, and proliferative diabetic retinopathy (PDR) is its most vision-threatening sequela. In PDR, retinal ischemia leads to the up-regulation of angiogenic factors that promote neovascularization. Therapies targeting vascular endothelial growth factor (VEGF) delay the development of neovascularization in some, but not all, diabetic patients, implicating additional factor(s) in PDR pathogenesis. Here we demonstrate that the angiogenic potential of aqueous fluid from PDR patients is independent of VEGF concentration, providing an opportunity to evaluate the contribution of other angiogenic factor(s) to PDR development. We identify angiopoietin-like 4 (ANGPTL4) as a potent angiogenic factor whose expression is up-regulated in hypoxic retinal Müller cells in vitro and the ischemic retina in vivo. Expression of ANGPTL4 was increased in the aqueous and vitreous of PDR patients, independent of VEGF levels, correlated with the presence of diabetic eye disease, and localized to areas of retinal neovascularization. Inhibition of ANGPTL4 expression reduced the angiogenic potential of hypoxic Müller cells; this effect was additive with inhibition of VEGF expression. An ANGPTL4 neutralizing antibody inhibited the angiogenic effect of aqueous fluid from PDR patients, including samples from patients with low VEGF levels or receiving anti-VEGF therapy. Collectively, our results suggest that targeting both ANGPTL4 and VEGF may be necessary for effective treatment or prevention of PDR and provide the foundation for studies evaluating aqueous ANGPTL4 as a biomarker to help guide individualized therapy for diabetic eye disease. PMID:26039997

  15. β-Cyclodextrin-Linked Polyethylenimine Nanoparticles Facilitate Gene Transfer and Enhance the Angiogenic Capacity of Mesenchymal Stem Cells for Wound Repair and Regeneration.

    PubMed

    Peng, Li-Hua; Wei, Wei; Shan, Ying-Hui; Zhang, Tian-Yuan; Zhang, Chen-Zhen; Wu, Jia-He; Yu, Lian; Lin, Jun; Liang, Wen-Quan; Khang, Gilson; Gao, Jian-Qing

    2015-04-01

    Repair of deep wounds by cell transplantation strongly depends on angiogenesis and on the regeneration of skin and appendages. In this study, plasmid DNA encoding vascular endothelial growth factor-165 (VEGF-165) was transduced into bone-marrow mesenchymal stem cells (MSCs) using a nonviral vector, β-cyclodextrin-linked polyethylenimine, to enhance angiogenic capacity. The effects of MSCs administered by intradermal injection or transplantation on wound closure were compared in a full-thickness excision wound model. The results showed that the MSC-seeded sponge had significantly stronger acceleration in wound closure than the MSC injection. The effects on wound repair and regeneration of transplanted MSCs and pDNA-VEGF1 65-transfected MSCs (TMSCs) with gelatin/β-tricalcium phosphate scaffold were also investigated. Compared with MSC transplantation, TMSC transplantation showed higher efficacy in stimulating wound closure, promoting dermal collagen synthesis and regulating the deposition of newly formed collagen. In addition, the angiogenic capacity of the TMSCs was higher than that of the MSCs. The results indicate that the nonviral genetic engineering of the MSCs is a promising strategy to enhance the angiogenic capacity of MSCs for wound repair and angiogenesis. Functional gene-activated MSCs may be used as cost-effective and accessible seed cells for skin tissue engineering and as novel carriers for wound gene therapy.

  16. Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity.

    PubMed

    Whittington, Camilla M; Grau, Georges E; Murphy, Christopher R; Thompson, Michael B

    2015-03-01

    Angiogenesis (blood vessel growth), a key process of mammalian pregnancy, facilitates gas exchange and nutrient transport between the mother and the embryo and is regulated by a suite of growth factors. Vascular endothelial growth factor (VEGF) is crucial to this process in pregnant mammals and potentially pregnant squamates (lizards and snakes), as we investigate here. VEGF111 , an unusual and potent angiogenic splice variant of VEGF, increases its expression during pregnancy in the uterus of a viviparous lizard, in parallel with similar increases in uterine angiogenesis during gestation. However, we also find that VEGF111 is expressed in oviparous skinks, and is not ubiquitous among viviparous skinks. Thus, different mechanisms of uterine angiogenesis during pregnancy may evolve concurrent with viviparity in different lizard lineages.

  17. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression

    PubMed Central

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A.; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact. PMID:27594842

  18. VEGF-A: the inductive angiogenic factor for development, regeneration and function of pancreatic beta cells.

    PubMed

    Lui, Kathy O

    2014-01-01

    The heart is the first organ to form during development in vertebrates, and many organs start to develop adjacent to the cardiovascular system. Endothelial cells (ECs) form the inner cell lining of blood vessels and represent the major cell type that interacts with developing organs including the pancreas. ECs receive signals from the developing pancreas to grow and, at the same time, release signals to determine cell-fate specification, morphogenesis and function of the pancreas. In addition to promoting survival of pancreatic islets, in this review, we discuss the role of the vascular niche and angiogenic factors, particularly VEGFA, during pancreatic beta cell development, regeneration and pathophysiological progression of diabetes. Nevertheless, unraveling the molecular signals involved in pancreatic beta cell development and regeneration may shed light into novel drug development to treat diabetes.

  19. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion

    PubMed Central

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869

  20. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    PubMed

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  1. Safety and angiogenic effects of systemic gene delivery of a modified erythropoietin

    PubMed Central

    de Lucas Cerrillo, Ana; Bond, Wesley S.; Rex, Tonia S.

    2015-01-01

    Erythropoietin (EPO) is critical for red blood cell production and is also an effective neuroprotective agent. However, it may also contribute to pathological angiogenesis. Here we investigate the angiogenic potential of EPO and a mutant form with attenuated erythropoietic activity, EPO-R76E, on primary human retinal microvascular endothelial cells (HRMEC) and in the adult retina. Assays of death, proliferation, and tube-formation were performed on HRMECs exposed to EPO, EPO-R76E, or media alone. Postnatal day 9 wild-type mice were injected intramuscularly with adeno-associated virus vectors expressing either enhanced green fluorescent protein or EpoR76E. At 3 months, levels of EPO-R76E in the eye were quantified, and the health of the retinal vasculature was assessed by fluorescein angiography and isolectin immunolabeling. Immunohistochemistry, histology, and electroretinogram assessments were performed as measures of retinal health. Neither EPO nor EPO-R76E induced proliferation or tube-formation in HRMEC under the conditions used. EPO-R76E decreased HRMEC death in a dose-dependent manner. Long-term systemic gene delivery of EPO-R76E was safe in terms of retinal vasculature, histology, and the electroretinogram in vivo. Our results show that EPO-R76E can block HRMEC death, consistent with its role in erythropoiesis and neuroprotection. In addition, long-term gene delivery of EPO-R76E is safe in the adult retina. PMID:25716531

  2. Potential angiogenic role of platelet-activating factor in human breast cancer.

    PubMed

    Montrucchio, G; Sapino, A; Bussolati, B; Ghisolfi, G; Rizea-Savu, S; Silvestro, L; Lupia, E; Camussi, G

    1998-11-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34-and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested.

  3. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    PubMed Central

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  4. Reduced angiogenic gene expression in morbillivirus-triggered oncolysis in a translational model for histiocytic sarcoma.

    PubMed

    Pfankuche, Vanessa Maria; Spitzbarth, Ingo; Lapp, Stefanie; Ulrich, Reiner; Deschl, Ulrich; Kalkuhl, Arno; Baumgärtner, Wolfgang; Puff, Christina

    2017-04-01

    Histiocytic sarcoma represents a rare malignant tumour with a short survival time, indicating the need of novel treatment strategies including oncolytic virotherapy. The underlying molecular mechanisms of viral oncolysis are largely unknown. As cancer in companion animals shares striking similarities with human counterparts, we chose a permanent canine histiocytic sarcoma cell line (DH82 cells) to identify global transcriptome changes following infection with canine distemper virus (CDV), a paramyxovirus closely related to human measles virus. Microarray analysis identified 3054 differentially expressed probe sets (DEPs), encoding for 892 up- and 869 down-regulated unique canine genes, respectively, in DH82 cells persistently infected with the vaccine strain Onderstepoort of CDV (DH82-Ond-pi), compared to non-infected DH82 cells. Up-regulated genes were predominantly related to immune processes, as demonstrated by functional enrichment analysis. Moreover, there was substantial enrichment of genes characteristic for classically activated M1 and alternatively activated M2 macrophages in DH82-Ond-pi; however, significant polarization into either of both categories was lacking. 'Angiogenesis' was the dominant enriched functional term for the down-regulated genes, highlighting decreased blood vessel generation as a potential mechanism of paramyxovirus-induced oncolysis in DH82 cells. The anti-angiogenic effect of infection was verified by immunohistochemistry, which revealed a lower blood vessel density in an in vivo mouse model, xenotransplanted with DH82-Ond-pi, compared to mice transplanted with non-infected DH82 cells. Reduction in angiogenesis appears to be an important oncolytic mechanism of CDV in DH82 cells, suggesting that similar mechanisms might account for human histiocytic sarcoma and maybe other tumours in conjunction with measles virus.

  5. Association between Placental Lesions, Cytokines and Angiogenic Factors in Pregnant Women with Preeclampsia

    PubMed Central

    Weel, Ingrid C.; Baergen, Rebecca N.; Romão-Veiga, Mariana; Borges, Vera T.; Ribeiro, Vanessa R.; Witkin, Steven S.; Bannwart-Castro, Camila; Peraçoli, Jose C.; De Oliveira, Leandro; Peraçoli, Maria T.

    2016-01-01

    Preeclampsia (PE) is considered the leading cause of maternal and perinatal morbidity and mortality. The placenta seems to play an essential role in this disease, probably due to factors involved in its formation and development. The present study aimed to investigate the association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia (PE). We evaluated 20 normotensive pregnant women, 40 with early-onset PE and 80 with late-onset PE. Placental samples were analyzed for histopathology, immunohistochemistry and determination of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), placental growth factor (PlGF), vascular endothelial growth factor (VEGF), fms-like tyrosine-kinase-1 (Flt-1) and endoglin (Eng) levels. Higher percentages of increased syncytial knots and increased perivillous fibrin deposits, and greater levels of TNF-α, TGF-β1and Flt-1 were detected in placentas from early-onset PE. Levels of IL-10, VEGF and PlGF were decreased in PE versus normotensive placentas. Both the TNF-α/IL-10 and sFlt-1/PlGF ratios were higher in placental homogenate of early-onset PE than late-onset PE and control groups. The more severe lesions and the imbalance between TNF-α/IL-10 and PlGF/sFlt-1 in placentas from early-onset PE allows differentiation of early and late-onset PE and suggests higher placental impairment in early-onset PE. PMID:27315098

  6. METHOXYCHLOR-INDUCED ALTERATIONS IN THE HISTOLOGICAL EXPRESSION OF ANGIOGENIC FACTORS IN PITUITARY AND UTERUS

    EPA Science Inventory

    Within the reproductive system, estrogenic stimulation of uterine and pituitary tissue typically causes a proliferative response accompanied by an angiogenic induction of new blood vessels from existing ones, thereby providing nutrients and oxygen to the growing tissue. The proes...

  7. Maternal heme oxygenase 1 regulates placental vasculature development via angiogenic factors in mice.

    PubMed

    Zhao, Hui; Azuma, Junya; Kalish, Flora; Wong, Ronald J; Stevenson, David K

    2011-11-01

    The placental vasculature is critical for nutrient, gas, and waste exchange between the maternal and fetal systems. Its development depends on the proper expression and interaction of angiogenesis and associated growth factors. Heme oxygenase (HMOX), the enzyme for heme degradation, plays a role in angiogenesis and is highly expressed in the placenta. To evaluate the role of maternal HMOX1, the inducible HMOX isozyme, on placental vasculature formation, mice with a partial deficiency in Hmox1 (Hmox1(+/-)) were used. Three-dimensional images of placental vasculatures as well as spiral arteries from Hmox1(+/+) or Hmox1(+/-) placentas were created by vascular corrosion casting technique and imaged by micro-computerized tomography (microCT). The structures and morphologies of fetomaternal interfaces were observed by histological staining and the ultrastructure of uterine natural killer (uNK) cells, a major regulator in spiral artery remodeling, was analyzed by transmission electron microscopy. A group of growth factors and angiogenic factors from the decidua/mesometrial lymphoid aggregate of pregnancy (MLAp) as well as labyrinth regions were quantified using an angiogenesis PCR array kit and compared between Hmox1(+/+) or Hmox1(+/-) placentas. In conclusion, a partial deficiency of maternal Hmox1 resulted in the malformation of fetomaternal interface, insufficiency of spiral artery remodeling, and alteration of uNK cell differentiation and maturation. These changes were independent of the fetal genotype, but relied on the maternal HMOX1 level, which determined the balance of expression levels of pro- and antiangiogenic factors in the decidua/MLAp region. These results implied that Hmox1 polymorphisms among the human population might contribute to some unexplained cases of pregnancy disorders, such as fetal growth retardation and preeclampsia.

  8. Response to Plasmapheresis Measured by Angiogenic Factors in a Woman with Antiphospholipid Syndrome in Pregnancy

    PubMed Central

    Mayer-Pickel, Karoline; Horn, Sabine; Lang, Uwe; Cervar-Zivkovic, Mila

    2015-01-01

    An imbalance of angiogenic and antiangiogenic placental factors such as endoglin and soluble fms-like tyrosine kinase 1 has been implicated in the pathophysiology of preeclampsia. Extraction of these substances by plasmapheresis might be a therapeutical approach in cases of severe early-onset preeclampsia. Case Report. A 21-year-old primigravida with antiphospholipid syndrome developed early-onset preeclampsia at 18 weeks' gestation. She was treated successfully with plasmapheresis in order to prolong pregnancy. Endoglin and sflt-1-levels were measured by ELISA before and after treatment. Endoglin levels decreased significantly after treatment (p < 0.05) and showed a significant decrease throughout pregnancy. A rerise of endoglin and sflt-1 preceded placental abruption 4 weeks before onset of incident. Conclusion. Due to the limited long-term therapeutical possibilities for pregnancies complicated by PE, plasmapheresis seems to be a therapeutical option. This consideration refers especially to pregnancies with early-onset preeclampsia, in which, after first conventional treatment of PE, prolongation of pregnancy should be above all. PMID:26413360

  9. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells.

    PubMed

    Csiszar, Anna; Sosnowska, Danuta; Tucsek, Zsuzsanna; Gautam, Tripti; Toth, Peter; Losonczy, Gyorgy; Colman, Ricki J; Weindruch, Richard; Anderson, Rozalyn M; Sonntag, William E; Ungvari, Zoltan

    2013-03-01

    Moderate caloric restriction (CR) without malnutrition increases healthspan in virtually every species studied, including nonhuman primates. In mice, CR exerts significant microvascular protective effects resulting in increased microvascular density in the heart and the brain, which likely contribute to enhanced tolerance to ischemia and improved cardiac performance and cognitive function. Yet, the underlying mechanisms by which CR confer microvascular protection remain elusive. To test the hypothesis that circulating factors triggered by CR regulate endothelial angiogenic capacity, we treated cultured human endothelial cells with sera derived from Macaca mulatta on long-term (over 10 years) CR. Cells treated with sera derived from ad-libitum-fed control monkeys served as controls. We found that factors present in CR sera upregulate vascular endothelial growth factor (VEGF) signaling and stimulate angiogenic processes, including endothelial cell proliferation and formation of capillary-like structures. Treatment with CR sera also tended to increase cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology) and adhesion to collagen. Collectively, we find that circulating factors induced by CR promote endothelial angiogenic processes, suggesting that increased angiogenesis may be a potential mechanism by which CR improves cardiac function and prevents vascular cognitive impairment.

  10. Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by Monocytes/Macrophages

    PubMed Central

    Maciel, Joana; Oliveira, Marta I.; Colton, Erica; McNally, Amy K.; Oliveira, Carla; Anderson, James M.

    2014-01-01

    -binding proteins, as well as several angiogenic mediators, including endocrine gland-derived vascular endothelial factor, fibroblast growth factor-7, and placental growth factor, were significantly promoted by Fg. This work provides a new perspective on the inflammatory response in the context of bone repair/regeneration mediated by a pro-inflammatory protein (Fg) adsorbed onto a biomaterial (Ch) that does not otherwise exhibit osteogenic properties. PMID:23937279

  11. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Zhou, Yuning; Wu, Yuqiong; Jiang, Xinquan; Zhang, Xiuli; Xia, Lunguo; Lin, Kaili; Xu, Yuanjin

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs) were examined by MTT assay, fluorescence activated cell sorter (FACS) analysis, real-time quantitative PCR (RT-PCR) analysis, alkaline phosphatase (ALP) activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA). Moreover, whether mitogen-activated protein kinase (MAPK) signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK) and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways. PMID:26053266

  12. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis.

    PubMed Central

    Cid, M C; Grant, D S; Hoffman, G S; Auerbach, R; Fauci, A S; Kleinman, H K

    1993-01-01

    Angiogenesis is an important process in chronic inflammatory diseases. We observed that sera from patients with systemic vasculitis stimulated angiogenesis in an in vitro model using human umbilical vein endothelial cells cultured on a basement membrane (Matrigel) substrate. After 40% ammonium sulfate precipitation, angiogenic activity remained in the low molecular weight fraction and could be inactivated by heat. SDS-page of serum FPLC fractions exhibiting maximal angiogenic activity demonstrated two prominent species of 45 and 16-20 kD in patients' sera. These bands were much less apparent in sera obtained from control subjects. Amino-terminal sequencing of the 45-kD protein demonstrated that it was haptoglobin. Purified haptoglobin stimulated angiogenesis in a dose-dependent manner. The angiogenic activity of vasculitis patients' sera was partially inhibited by an antihaptoglobin antibody. Furthermore, serum haptoglobin levels in vasculitis patients correlated both with disease and angiogenic activity. Haptoglobin angiogenic activity was confirmed in two in vivo models using an implanted disc and a subcutaneous injection of basement membrane. Stimulation of angiogenesis is a newly recognized biological function of haptoglobin. The increased levels of haptoglobin found in chronic inflammatory conditions may play an important role in tissue repair. In systemic vasculitis, haptoglobin might also compensate for ischemia by promoting development of collateral vessels. Images PMID:7680672

  13. Independent anti-angiogenic capacities of coagulation factors X and Xa.

    PubMed

    Lange, Soledad; Gonzalez, Ibeth; Pinto, Mauricio P; Arce, Maximiliano; Valenzuela, Rodrigo; Aranda, Evelyn; Elliot, Matias; Alvarez, Marjorie; Henriquez, Soledad; Velasquez, Ethel V; Orge, Felipe; Oliva, Barbara; Gonzalez, Pamela; Villalon, Manuel; Cautivo, Kelly M; Kalergis, Alexis M; Pereira, Karla; Mendoza, Camila; Saez, Claudia; Kato, Sumie; Cuello, Mauricio A; Parborell, Fernanda; Irusta, Griselda; Palma, Veronica; Allende, Miguel L; Owen, Gareth I

    2014-11-01

    Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.

  14. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    PubMed

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P < 0.001 and P = 0.07, respectively). These changes were accompanied by significant time × group interactions in CEPs and select CAFs [placenta growth factor, interleukin (IL)-1β, and IL-2], also favoring the AC+AET group (P < 0.05). (15)O-water positron emission tomography (PET) imaging revealed a 38% decrease in tumor blood flow in the AC+AET group. There were no differences in any tumor tissue markers (P > 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined.

  15. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    SciTech Connect

    He Yingbo; Chang Guodong; Zhan Shunli; Song Xiaomin; Wang Xiaofeng; Luo Yongzhang

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, which implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.

  16. Clinicopathological Features and Prognosis of Papillary Thyroid Microcarcinoma for Surgery and Relationships with the BRAFV600E Mutational Status and Expression of Angiogenic Factors

    PubMed Central

    Shi, Chenlei; Guo, Yong; Lv, Yichen; Nanding, Abiyasi; Shi, Tiefeng; Qin, Huadong; He, Jianjun

    2016-01-01

    Objective To investigate the clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC) for surgery by comparing the difference between PTMC and larger papillary thyroid carcinoma (LPTC). Methods We analyzed the differences in the clinicopathological characteristics, prognosis, B-type RAF kinase (BRAF)V600E mutational status and expression of angiogenic factors, including pigment epithelium-derived factor (PEDF), Vascular Endothelial Growth Factor (VEGF), and hypoxia-inducible factor alpha subunit (HIF-1α), between PTMC and LPTC by retrospectively reviewing the records of 251 patients with papillary thyroid carcinoma, 169 with PTMC, and 82 with LPTC (diameter >1 cm). Results There were no significant differences in the gender, age, multifocality, Hashimoto’s thyroiditis, TNM stage, PEDF protein expression, rate of recurrence, or mean follow-up duration between patients with PTMC or LPTC. The prevalence of extrathyroidal invasion (EI), lymph node metastasis (LNM), and BRAF mutation in patients with PTMC was significantly lower than in patients with LPTC. In addition, in PTMC patients with EI and/or LNM and/or positive BRAF (high-risk PTMC patients), the prevalence of extrathyroidal invasion, Hashimoto's disease, lymph node metastasis, tumor TNM stage, PEDF positive protein expression, the rate of recurrent disease, and the mRNA expression of anti-angiogenic factors was almost as high as in patients with larger PTC, but with no significant difference. Conclusions Extrathyroid invasion, lymph node metastases, and BRAFV600E mutation were the high risk factors of PTMC. PTMC should be considered for the same treatment strategy as LPTC when any of these factors is found. Particularly, PTMC with BRAFV600E gene mutations needed earlier surgical treatment. In addition, the high cell subtype of PTMC with BRAFV600E gene mutation is recommended for total thyroidectomy in primary surgery to reduce the risk of recurrence. PMID:27936049

  17. From preeclampsia to renal disease: a role of angiogenic factors and the renin-angiotensin aldosterone system?

    PubMed

    van der Graaf, Anne Marijn; Toering, Tsjitske J; Faas, Marijke M; Lely, A Titia

    2012-10-01

    Complicating up to 8% of pregnancies, preeclampsia is the most common glomerular disease worldwide and remains a leading cause of infant and maternal morbidity and mortality. Although the exact pathogenesis of this syndrome of hypertension and proteinuria is still incomplete, a consistent line of evidence has identified an imbalance of proangiogenic and anti-angiogenic proteins as a key factor in the development of preeclampsia. Furthermore, more attention has been recently addressed to the renin-angiotensin aldosterone system (RAAS), to provide understanding on the hypertension of preeclampsia. The imbalance of the RAAS and the imbalance between angiogenic and anti-angiogenic factors, which may be both common to preeclampsia and chronic kidney disease (CKD), might explain why a history of preeclampsia predisposes women to develop CKD. In this review, we briefly describe the characteristics of preeclampsia with a focus on the mechanisms of angiogenesis and the RAAS and its role in the pathogenesis of preeclampsia. Our main focus will be on the intriguing association between preeclampsia and the subsequent increased risk of developing CKD and on the potential mechanisms by which the risk of CKD is elevated in women with a history of preeclampsia.

  18. DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer

    PubMed Central

    Sureban, Sripathi M.; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Chandrakesan, Parthasarathy; Ali, Naushad; Lightfoot, Stan A.; Pantazis, Panayotis; Rao, Chinthalapally V.; Postier, Russell G.; Houchen, Courtney W.

    2013-01-01

    Stem cell pluripotency, angiogenesis and epithelial-mesenchymal transition (EMT) have been shown to be significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) and many other aggressive cancers. The dysregulation of these processes is believed to play key roles in tumor initiation, progression, and metastasis, and is contributory to PDAC being the fourth leading cause of cancer-related deaths in the US. The tumor suppressor miRNA miR-145 downregulates critical pluripotency factors and oncogenes and results in repressed metastatic potential in PDAC. Additionally, the miR-200 family regulates several angiogenic factors which have been linked to metastasis in many solid tumors. We have previously demonstrated that downregulation of DCLK1 can upregulate critical miRNAs in both in vitro and in vivo cancer models and results in downregulation of c-MYC, KRAS, NOTCH1 and EMT-related transcription factors. A recent report has also shown that Dclk1 can distinguish between normal and tumor stem cells in Apcmin/+ mice and that ablation of Dclk1+ cells resulted in regression of intestinal polyps without affecting homeostasis. Here we demonstrate that the knockdown of DCLK1 using poly(lactide-co-glycolide)-encapsulated-DCLK1-siRNA results in AsPC1 tumor growth arrest. Examination of xenograft tumors revealed, (a) increased miR-145 which results in decreased pluripotency maintenance factors OCT4, SOX2, NANOG, KLF4 as well as KRAS and RREB1; (b) increased let-7a which results in decreased pluripotency factor LIN28B; and (c) increased miR-200 which results in decreased VEGFR1, VEGFR2 and EMT-related transcription factors ZEB1, ZEB2, SNAIL and SLUG. Specificity of DCLK1 post-transcriptional regulation of the downstream targets of miR-145, miR-200 and let-7a was accomplished utilizing a luciferase-based reporter assay. We conclude that DCLK1 plays a significant master regulatory role in pancreatic tumorigenesis through the regulation of multiple tumor suppressor mi

  19. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble VEGF receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small-for-gestational-age neonate

    PubMed Central

    Romero, Roberto; Nien, Jyh Kae; Espinoza, Jimmy; Todem, David; Fu, Wenjiang; Chung, Hwan; Kusanovic, Juan Pedro; Gotsch, Francesca; Erez, Offer; Mazaki-tovi, Shali; Gomez, Ricardo; Edwin, Sam; Chaiworapongsa, Tinnakorn; Levine, Richard J.; Karumanchi, Ananth

    2008-01-01

    Introduction Accumulating evidence suggests that an imbalance between pro-angiogenic [i.e. vascular endothelial growth factor (VEGF) and placental growth factor (PlGF)] and anti-angiogenic factors [i.e. soluble VEGF receptor-1 (sVEGFR-1, also referred to as sFlt1) is involved in the pathophysiology of preeclampsia (PE). Endoglin is a protein that regulates the pro-angiogenic effects of transforming growth factor β, and its soluble form has been recently implicated in the pathophysiology of PE. The objective of this study was to determine if changes in maternal plasma concentration of these angiogenic and anti-angiogenic factors differ prior to development of disease among patients with normal pregnancies, and those destined to develop PE (preterm and term) or to deliver an SGA neonate. Methods This longitudinal nested case-control study included 144 singleton pregnancies in the following groups: 1) patients with uncomplicated pregnancies who delivered appropriate for gestational age (AGA) neonates (n=46); 2) patients who delivered an SGA neonate but did not develop PE (n=56); and 3) patients who developed PE (n=42). Longitudinal samples were collected at each prenatal visit, which was scheduled at four-week intervals from the first or early second trimester until delivery. Plasma concentrations of soluble endoglin (s-Eng), sVEGFR-1 and PlGF were determined by specific and sensitive ELISA. Results 1) Patients destined to deliver an SGA neonate had higher plasma concentrations of s-Eng throughout gestation than those with normal pregnancies; 2) patients destined to develop preterm PE and term PE had significantly higher concentrations of s-Eng than those with normal pregnancies at 23 and 30 weeks, respectively (for preterm PE: p<0.036 and for term PE: 0=0.002); 3) patients destined to develop PE (term or preterm) and those who delivered an SGA neonate had lower plasma concentrations of PlGF than those with normal pregnancy throughout gestation, and the maternal

  20. Prognostic significance of differential expression of angiogenic genes in women with high-grade serous ovarian carcinoma

    PubMed Central

    Siamakpour-Reihani, Sharareh; Owzar, Kouros; Jiang, Chen; Turner, Taylor; Deng, Yiwen; Bean, Sarah M.; Horton, Janet K.; Berchuck, Andrew; Marks, Jeffrey R.; Dewhirst, Mark W.; Secord, Angeles Alvarez

    2015-01-01

    Objectives To identify angiogenic biomarkers associated with tumor angiogenesis and clinical outcome in high-grade serous ovarian cancer (HGSC). Methods 51 HGSC samples were analyzed using Affymetrix HG-U133A microarray. Microvessel density (MVD) counts were determined using CD31and CD105. Association between mRNA expression levels and overall survival were assessed using rank score statistic. Effect size was estimated as a hazard ratio (HR) under a proportional hazards model. The Storey q-value method was used to account for multiple testing within the false-discovery rate (FDR) framework. Publicly available databases including TCGA and GSE were used for external confirmation. Results Thirty-one angiogenic-related genes were significantly associated with survival (q ≤ 0.05). Of these 31 genes, 4 were also associated with outcome in the TCGA data: AKT1 (q=0.02; TCGA p= 0.01, HR=0.8), CD44 (q= 0.003; TCGA p=0.05, HR=0.9), EPHB2 (q= 0.01; TCGA p=0.05, HR=1.2), and ERBB2 (q= 0.02; TCGA p= 0.05, HR=1.2). While 5 were associated with outcome in the GSE database: FLT1 (q= 0.03; GSE26712 p=0.01, HR=3.1); PF4 (q= 0.02; GSE26712 p=0.01, HR=3.0), NRP1 (q= 0.02; GSE26712 p < 0.04, HR>1.4), COL4A3 (q= 0.04; GSE26712 p= 0.03, HR=1.3), ANGPTL3 (q= 0.02; GSE14764 p=0.02, HR=1.5). High AKT1 and CD44 were associated with longer survival. In contrast, high expression of EPHB2, ERBB2, FLT1; PF4, NRP1, COL4A3, and ANGPTL3 were associated with shorter survival. CD105-MVD and CD31-MVD were not significantly associated with angiogenic gene expression. Conclusions Thirty-one angiogenic-related genes were associated with survival in advanced HGSC and nine of these genes were confirmed in independent publicly available databases. PMID:26260910

  1. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors

    PubMed Central

    Nowak, Dawid G.; Woolard, Jeanette; Amin, Elianna Mohamed; Konopatskaya, Olga; Saleem, Moin A.; Churchill, Amanda J.; Ladomery, Michael R.; Harper, Steven J.; Bates, David O.

    2008-01-01

    Summary Vascular endothelial growth factor A (VEGFA; hereafter referred to as VEGF) is a key regulator of physiological and pathological angiogenesis. Two families of VEGF isoforms are generated by alternate splice-site selection in the terminal exon. Proximal splice-site selection (PSS) in exon 8 results in pro-angiogenic VEGFxxx isoforms (xxx is the number of amino acids), whereas distal splice-site selection (DSS) results in anti-angiogenic VEGFxxxb isoforms. To investigate control of PSS and DSS, we investigated the regulation of isoform expression by extracellular growth factor administration and intracellular splicing factors. In primary epithelial cells VEGFxxxb formed the majority of VEGF isoforms (74%). IGF1, and TNFα treatment favoured PSS (increasing VEGFxxx) whereas TGFβ1 favoured DSS, increasing VEGFxxxb levels. TGFβ1 induced DSS selection was prevented by inhibition of p38 MAPK and the Clk/sty (CDC-like kinase, CLK1) splicing factor kinase family, but not ERK1/2. Clk phosphorylates SR protein splicing factors ASF/SF2, SRp40 and SRp55. To determine whether SR splicing factors alter VEGF splicing, they were overexpressed in epithelial cells, and VEGF isoform production assessed. ASF/SF2, and SRp40 both favoured PSS, whereas SRp55 upregulated VEGFxxxb (DSS) isoforms relative to VEGFxxx. SRp55 knockdown reduced expression of VEGF165b. Moreover, SRp55 bound to a 35 nucleotide region of the 3′UTR immediately downstream of the stop codon in exon 8b. These results identify regulation of splicing by growth and splice factors as a key event in determining the relative pro- versus anti-angiogenic expression of VEGF isoforms, and suggest that p38 MAPK-Clk/sty kinases are responsible for the TGFβ1-induced DSS selection, and identify SRp55 as a key regulatory splice factor. PMID:18843117

  2. Anisi stellati fructus extract attenuates the in vitro and in vivo metastatic and angiogenic potential of malignant cancer cells by downregulating proteolytic activity and pro-angiogenic factors.

    PubMed

    Kim, Aeyung; Im, Minju; Ma, Jin Yeul

    2014-11-01

    Anisi stellati fructus (ASF), commonly known as star anise, has long been used as a traditional Chinese medicine to treat inflammation, nervousness, insomnia and pain. In recent studies, it has been demonstrated that ASF possesses anti-bacterial, anti-fungal and anti-oxidant activities, as well as exhibits inhibitory effects on capillary‑like tube formation in human umbilical vein endothelial cells (HUVECs). However, the effects of ASF extract on the metastatic potential of malignant tumor cells have not been examined. In this study, we found that daily oral administration of ASF (50 mg/kg) remarkably reduced the number of pulmonary metastatic colonies of B16F10 cells in C57BL/6J mice with no observed systemic toxicity. In an in vitro system, ASF inhibited metastatic properties, including anchorage‑independent colony formation, migration and invasion. Upon phorbol 12-myristate 13-acetate (PMA) stimulation, the mRNA levels of matrix metalloproteinases (MMPs) -9, -13, -14 and urokinase plasminogen activator (uPA) decreased in a dose-dependent manner with ASF treatment. Gelatinase, type I collagenase, and uPA activities were also suppressed efficiently by ASF treatment. In response to PMA, NF-κB and AP-1 activation as well as p38 phosphorylation, which are crucial for MMP activation, were significantly decreased by ASF. In particular, ASF considerably inhibited tumor-induced HUVEC migration and tube formation and suppressed in vivo tumor-induced angiogenesis via a reduction of pro-angiogenic factors in tumors. These results collectively indicate that ASF might be useful in the management of metastatic malignant tumors.

  3. Placental growth throughout the last two thirds of pregnancy in sheep: vascular development and angiogenic factor expression.

    PubMed

    Borowicz, Pawel P; Arnold, Daniel R; Johnson, Mary Lynn; Grazul-Bilska, Anna T; Redmer, Dale A; Reynolds, Lawrence P

    2007-02-01

    Morphometric methodologies were developed and applied to investigate the patterns of vascular development in maternal (caruncular; CAR) and fetal (cotyledonary; COT) sheep placentas throughout the last two thirds of gestation. We also examined the expression levels of the major angiogenic factors and their receptors in CAR and COT sheep placentas. Although the vascularity of the CAR tissues increased continuously from Day 50 through Day 140 of pregnancy, those of the COT tissues increased at about twice the instantaneous rate (i.e., the proportionate increase/day) of the CAR. For CAR, vascularity increased 2-fold from Day 50 through Day 140 via relatively small increases in capillary number and 2- to 3-fold increases in capillary diameter. For COT, the increased vascularity resulted from a 12-fold increase in capillary number associated with a concomitant 2-fold decrease in capillary diameter. This large increase in fetal placental capillary number, which was due to increased branching, resulted in 6-fold increases in total capillary cross-sectional area and total capillary surface, per unit of COT tissue. Different patterns of expression of the mRNAs for angiogenic factors and their receptors were observed for CAR and COT. The dilation-like angiogenesis of CAR was correlated with the expression of vascular endothelial growth factor receptor-1 (FLT1), angiopoietin-2 (ANGPT2), and soluble guanylate cyclase (GUCY1B3) mRNAs. The branching-like angiogenesis of COT was correlated with the expression of vascular endothelial growth factor (VEGF), FLT1, angiopoietin-1 (ANGPT1), ANGPT2, and FGF2 mRNAs. Monitoring the expression of angiogenic factors and correlating the levels with quantitative measures of vascularity enable one to model angiogenesis in a spatiotemporal fashion.

  4. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor.

    PubMed

    Vidavalur, Ramesh; Penumathsa, Suresh Varma; Zhan, Lijun; Thirunavukkarasu, Mahesh; Maulik, Nilanjana

    2006-08-01

    This study was undertaken to investigate the effect of phosphodiesterase-5 (PDE5) inhibitor, sildenafil, on angiogenic response in human coronary arteriolar endothelial cells (HCAEC). The cells exposed to sildenafil (1-20 microM) demonstrated significantly accelerated tubular morphogenesis with the induction of thioredoxin-1 (Trx-1), hemeoxygenase-1 (HO-1) and VEGF. Sildenafil induced VEGF and angiopoietin specific receptors such as KDR, Tie-1 and Tie-2. This angiogenic response was repressed by tinprotoporphyrin IX (SnPP), an inhibitor of HO-1 enzyme activity. Sildenafil below 1 muM has no angiogenic effect as evidenced by reduced tuborogenesis. Sildenafil along with SnPP inhibited both VEGF and Angiopoietin-1 (Ang-1) protein expression. Therefore our results demonstrated for the first time that sildenafil is a very potent pro-angiogenic factor.

  5. Priming of mononuclear cells with a combination of growth factors enhances wound healing via high angiogenic and engraftment capabilities.

    PubMed

    Jin, Enze; Kim, Jong-Min; Kim, Sung-Whan

    2013-12-01

    Recently, we demonstrated that a specific combination of growth factors enhances the survival, adhesion and angiogenic potential of mononuclear cells (MNCs). In this study, we sought to investigate the changes of the angiogenic potential of MNCs after short-time priming with a specific combination of growth factors. MNCs were isolated using density gradient centrifugation and incubated with a priming cocktail containing epidermal growth factor (EGF), insulin-like growth factor (IGF)-1, fibroblast growth factor (FGF)-2, FMS-like tyrosine kinase (Flt)-3L , Angiopoietin (Ang)-1, granulocyte chemotactic protein (GCP)-2 and thrombopoietin (TPO) (all 400 ng/ml) for 15, 30 and 60 min. Wounds in nonobese diabetic-severe combined immune deficiency (NOD-SCID) mice were created by skin excision followed by cell transplantation. We performed a qRT-PCR analysis on the growth factor-primed cells. The angiogenic factors vascular endothelial growth factor (VEGF)-A, FGF-2, hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF) and interleukin (IL)-8 and the anti-apoptotic factors IGF-1 and transforming growth factor-β1 were significantly elevated in the MNCs primed for 30 min. (T30) compared with the non-primed MNCs (T0). The scratch wound assay revealed that T30- conditioned media (CM) significantly increased the rate of fibroblast-mediated wound closure compared with the rates from T0-CM and human umbilical vein endothelial cells (HUVEC)-CM at 20 hrs. In vivo wound healing results revealed that the T30-treated wounds demonstrated accelerated wound healing at days 7 and 14 compared with those treated with T0. The histological analyses demonstrated that the number of engrafted cells and transdifferentiated keratinocytes in the wounds were significantly higher in the T30-transplanted group than in the T0-transplanted group. In conclusion, this study suggests that short-term priming of MNCs with growth factors might be alternative therapeutic option for cell

  6. Tongxinluo mitigates atherogenesis by regulating angiogenic factors and inhibiting vasa vasorum neovascularization in apolipoprotein E-deficient mice

    PubMed Central

    Ma, Lianyue; Ni, Mei; Hao, Panpan; Lu, Huixia; Yang, Xiaoyan; Xu, Xingli; Zhang, Cheng; Huang, Shanying; Zhao, Yuxia; Liu, Xiaoling; Zhang, Yun

    2016-01-01

    Vasa vasorum (VV) neovascularization contributes to atherogenesis and its expansion and distribution is correlated with intraplaque expression of angiogenic factors. The present study investigated the roles of Tongxinluo (TXL), a traditional Chinese medication, on VV proliferation and atherogenesis. In vitro, TXL pre-treatment reversed the tumor necrosis factor-a (TNF-a) induced expression of vascular endothelial growth factor A (VEGF-A) and angiopoietin-1 (ANGPT-1) but not ANGPT-2, leading to increased ratio of ANGPT-1 to ANGPT-2. Consistently, TXL treatment (at a dosage of 0.38, 0.75, 1.5 g/kg/d, respectively) decreased the expression of VEGF-A while increased that of ANGPT-1 in early atherosclerotic lesions of apolipoprotein E deficient (apoE−/−) mice. On aortic ring assay, microvessels sprouting from aortas were significantly inhibited in TXL-treated mice. Moreover, VV neovascularization in plaques was markedly reduced with TXL treatment. Histological and morphological analysis demonstrated that TXL treatment reduced plaque burden, plaque size and changed the plaque composition. These data suggest that TXL inhibits early atherogenesis through regulating angiogenic factor expression and inhibiting VV proliferation in atherosclerotic plaque. Our study shed new light on the anti-atherosclerotic effect of TXL. PMID:26908443

  7. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling.

    PubMed

    Andrikopoulos, Petros; Fraser, Scott P; Patterson, Lisa; Ahmad, Zahida; Burcu, Hakan; Ottaviani, Diego; Diss, James K J; Box, Carol; Eccles, Suzanne A; Djamgoz, Mustafa B A

    2011-05-13

    Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and β-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCβ1, and VGSCβ3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.

  8. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.

    PubMed

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin

    2016-07-28

    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases.

  9. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing.

    PubMed

    Lai, Huan-Ju; Kuan, Chen-Hsiang; Wu, Hsi-Chin; Tsai, Jui-Che; Chen, Tim-Mo; Hsieh, Dar-Jen; Wang, Tzu-Wei

    2014-10-01

    The objective of this research study is to develop a collagen (Col) and hyaluronic acid (HA) inter-stacking nanofibrous skin equivalent substitute with the programmable release of multiple angiogenic growth factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF)) either directly embedded in the nanofibers or encapsulated in the gelatin nanoparticles (GNs) by electrospinning technology. The delivery of EGF and bFGF in the early stage is expected to accelerate epithelialization and vasculature sprouting, while the release of PDGF and VEGF in the late stage is with the aim of inducing blood vessels maturation. The physiochemical characterizations indicate that the Col-HA-GN nanofibrous membrane possesses mechanical properties similar to human native skin. The design of a particle-in-fiber structure allows growth factors for slow controlled release up to 1month. Cultured on biodegradable Col-HA membrane with four kinds of growth factors (Col-HA w/4GF), endothelial cells not only increase in growth rate but also form a better network with a thread-like tubular structure. The therapeutic effect of Col-HA w/4GF membrane on streptozotocin (STZ)-induced diabetic rats reveals an accelerated wound closure rate, together with elevated collagen deposition and enhanced maturation of vessels, as revealed by Masson's trichrome stain and immunohistochemical analysis, respectively. From the above, the electrospun Col-HA-GN composite nanofibrous skin substitute with a stage-wise release pattern of multiple angiogenic factors could be a promising bioengineered construct for chronic wound healing in skin tissue regeneration.

  10. 1,25(OH)2vitamin D3 Enhances Myogenic Differentiation by Modulating the Expression of Key Angiogenic Growth factors and Angiogenic Inhibitors in C2C12 Skeletal Muscle Cells

    PubMed Central

    Garcia, Leah A.; Ferrini, Monica G.; Norris, Keith C.; Artaza, Jorge N.

    2012-01-01

    Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-D’s effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C2C12 myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for western blots and proteome profiler arrays. The addition of 1,25-D3 to C2C12 myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogues to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGF’s to promote angiogenesis. PMID:22982629

  11. Circulating angiogenic factors are related to the severity of gestational hypertension and preeclampsia, and their adverse outcomes.

    PubMed

    Leaños-Miranda, Alfredo; Méndez-Aguilar, Francisco; Ramírez-Valenzuela, Karla Leticia; Serrano-Rodríguez, Marilyn; Berumen-Lechuga, Guadalupe; Molina-Pérez, Carlos José; Isordia-Salas, Irma; Campos-Galicia, Inova

    2017-01-01

    Gestational hypertension (GH) and preeclampsia (PE) are characterized by an imbalance in angiogenic factors. However, the relationship among these factors with the severity of hypertensive disorders of pregnancy (HDP) and adverse outcomes are not fully elucidated. We examined whether these biomarkers are related with the severity of HDP and adverse outcomes.Using a cross-sectional design, serum concentrations of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble endoglin were determined in 764 pregnant women: 75 healthy pregnant, 83 with mild GH (mGH), 105 with severe GH (sGH), 122 with mild PE (mPE), and 379 with severe PE (sPE).All angiogenic factors' concentrations were significantly different (P ≤ 0.041) in HDP than in healthy pregnancy. In addition, these factors were markedly different in sPE than in mPE, sGH, or mGH (P ≤ 0.027) and in patients with sGH that in those with mPE or mGH (P < 0.05). As compared to mGH and mPE, patients with sGH and sPE had higher rates of both preterm delivery at <34 weeks of gestation and small-for-gestational age infants. Moreover, patients with sPE had higher rates of adverse maternal outcomes (P < 0.001) when compared to patients with mGH, sGH, or mPE. In all cases, levels of sFlt-1/PlGF ratio were significantly higher in patients with sGH and sPE who had adverse perinatal and maternal outcomes than in those with sGH and sPE who did not (P ≤ 0.016).Circulating concentrations of angiogenic factors appear to be suitable markers to assess the severity of GH and PE, and adverse outcomes.

  12. Circulating angiogenic factors are related to the severity of gestational hypertension and preeclampsia, and their adverse outcomes

    PubMed Central

    Leaños-Miranda, Alfredo; Méndez-Aguilar, Francisco; Ramírez-Valenzuela, Karla Leticia; Serrano-Rodríguez, Marilyn; Berumen-Lechuga, Guadalupe; Molina-Pérez, Carlos José; Isordia-Salas, Irma; Campos-Galicia, Inova

    2017-01-01

    Abstract Gestational hypertension (GH) and preeclampsia (PE) are characterized by an imbalance in angiogenic factors. However, the relationship among these factors with the severity of hypertensive disorders of pregnancy (HDP) and adverse outcomes are not fully elucidated. We examined whether these biomarkers are related with the severity of HDP and adverse outcomes. Using a cross-sectional design, serum concentrations of placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble endoglin were determined in 764 pregnant women: 75 healthy pregnant, 83 with mild GH (mGH), 105 with severe GH (sGH), 122 with mild PE (mPE), and 379 with severe PE (sPE). All angiogenic factors’ concentrations were significantly different (P ≤ 0.041) in HDP than in healthy pregnancy. In addition, these factors were markedly different in sPE than in mPE, sGH, or mGH (P ≤ 0.027) and in patients with sGH that in those with mPE or mGH (P < 0.05). As compared to mGH and mPE, patients with sGH and sPE had higher rates of both preterm delivery at <34 weeks of gestation and small-for-gestational age infants. Moreover, patients with sPE had higher rates of adverse maternal outcomes (P < 0.001) when compared to patients with mGH, sGH, or mPE. In all cases, levels of sFlt-1/PlGF ratio were significantly higher in patients with sGH and sPE who had adverse perinatal and maternal outcomes than in those with sGH and sPE who did not (P ≤ 0.016). Circulating concentrations of angiogenic factors appear to be suitable markers to assess the severity of GH and PE, and adverse outcomes. PMID:28121958

  13. Post-infarct treatment with [Pyr(1)]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats.

    PubMed

    Azizi, Yaser; Faghihi, Mahdieh; Imani, Alireza; Roghani, Mehrdad; Zekri, Ali; Mobasheri, Maryam Beigom; Rastgar, Tayebeh; Moghimian, Maryam

    2015-08-15

    Ischemic heart disease is the leading cause of mortality in the world. Angiogenesis is important for cardiac repair after myocardial infarction (MI) as restores blood supply to the ischemic myocardium and preserves cardiac function. Apelin is a peptide that has been recently shown to potentiate angiogenesis. The aim of this study was to investigate angiogenic effects of [Pyr(1)]apelin-13 in the rat model of post-MI. Male Wistar rats (n=36) were randomly divided into three groups: (1) sham (2) MI and (3) MI treated with [Pyr(1)]apelin-13 (MI+Apel). MI animals were subjected to 30min left anterior descending coronary artery (LAD) ligation and 14 days of reperfusion. Twenty-four hours after LAD ligation, [Pyr(1)]apelin-13 (10nmol/kg/day) was administered i.p. for 5 days. Hemodynamic functions by catheter introduced into the left ventricle (LV), myocardial fibrosis by Masson׳s trichrome staining, gene expression of vascular endothelial growth factor-A (VEGFA), VEGF receptor-2 (Kdr), Ang-1 (angiopoietin-1), Tie2 (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2) and eNOS by Real-time polymerase chain reaction (Real-Time PCR) and myocardial angiogenesis by CD31 imunostaining were assessed at day 14 post-MI. Post-infarct treatment with [Pyr(1)]apelin-13 improved LV function and decreased myocardial fibrosis. [Pyr(1)]apelin-13 treatment led to a significant increase in the expression of VEGFA, Kdr, Ang-1, Tie2 and eNOS. Further, treatment with [Pyr(1)]apelin-13 promoted capillary density. [Pyr(1)]apelin-13 has angiogenic and anti-fibrotic activity via formation of new blood vessels and overexpression of VEGFA, Kdr, Ang-1, Tie2 and eNOS in the infarcted myocardium which could in turn repair myocardium and improve LV function.

  14. The effect of leptin on luteal angiogenic factors during the luteal phase of the estrous cycle in goats

    PubMed Central

    Wiles, Jessica R.; Katchko, Robin A.; Benavides, Elizabeth A.; O’Gorman, Chad W.; Escudero, Jean M.; Keisler, Duane H.; Stanko, Randy L.; Garcia, Michelle R.

    2014-01-01

    Fibroblast growth factor 2 (FGF2), angiopoietin 1 (Ang1), and vascular endothelial growth factor (VEGF) are angiogenic factors implicated in the vascular development of the corpus luteum (CL). Each factor is regulated or influenced by leptin in non-ovarian tissues. Moreover, leptin and its receptor, ObRb, have been identified in luteal tissue throughout the luteal phase. Therefore, leptin is hypothesized to influence luteal vasculature through the regulation of FGF2, Ang1, and VEGF. Multiparous, cycling crossbred female goats (does) were allocated to early (n=12), mid (n=8), and late (n=11) stages of the luteal phase for CL collection. Luteal tissue was harvested and either snap frozen in liquid N2, paraffin embedded, or cultured with leptin (0, 10−12, 10−11, 10−10, 10−9, 10−8 M). Tissue was analyzed for FGF2, Ang1, VEGF, ObRb, and leptin expression. Angiopoietin 1, FGF2, VEGF expression was higher (P≤0.001) in the mid-luteal stage than the early stage. Expression decreased (P≤0.001) during the late luteal stage with the exception of VEGF, which remained elevated. In contrast, leptin and ObRb were lowest (P≤0.003) during the mid-luteal stage compared to the early and late stages. All factors were detected in and/or around vessels in early stage tissue compared to mid and late stages. Leptin stimulated (P≤0.02) Ang1, FGF2, and VEGF expression only in early stage luteal cultures. Collectively, these data provide evidence that leptin may be involved in the luteal angiogenic process during the early stage of CL formation. PMID:24962614

  15. Cooperative Regulation of NSCLC Angiogenic Potential by Macrophage Migration Inhibitory Factor and its Homolog, D-Dopachrome Tautomerase1

    PubMed Central

    Coleman, Arlixer M.; Rendon, Beatriz E.; Zhao, Ming; Qian, Ming-Wei; Bucala, Richard; Xin, Dan; Mitchell, Robert A.

    2009-01-01

    Tumor-derived growth factors and cytokines stimulate neoangiogenesis from surrounding capillaries in order to support tumor growth. Recent studies reveal that macrophage migration inhibitory factor (MIF) expression is increased in lung cancer, particularly non-small cell lung carcinomas (NSCLC). Because MIF has important autocrine effects on normal and transformed cells, we investigated whether autocrine MIF and its only known family member, D-dopachrome tautomerase (D-DT), promote the expression of pro-angiogenic factors CXCL8 and VEGF in NSCLC cells. Our results demonstrate that the expression of CXCL8 and VEGF are strongly reliant upon both the individual and cooperative activities of the two family members. CXCL8 transcriptional regulation by MIF and D-DT appears to involve a signaling pathway that includes the activation of c-Jun-N-terminal Kinase (JNK), c-jun phosphorylation and subsequent AP-1 transcription factor activity. Importantly, human umbilical vein endothelial cell (HUVEC) migration and tube formation induced by supernatants from lung adenocarcinoma cells lacking either or both MIF and D-DT are substantially reduced when compared to normal supernatants. Finally, we demonstrate that the cognate MIF receptor, CD74, is necessary for both MIF and D-DT-induced JNK activation and CXCL8 expression, suggesting its potential involvement in angiogenic growth factor expression. This is the first demonstration of a biological role for D-DT and its synergism with MIF suggests that the combined therapeutic targeting of both family members may enhance current anti-MIF based therapies. PMID:18684922

  16. Expression of Total Vascular Endothelial Growth Factor and the Anti-angiogenic VEGF165b Isoform in the Vitreous of Patients with Retinopathy of Prematurity

    PubMed Central

    Zhao, Min; Xie, Wan-Kun; Bai, Yu-Jing; Huang, Lyu-Zhen; Wang, Bin; Liang, Jian-Hong; Yin, Hong; Li, Xiao-Xin; Shi, Xuan

    2015-01-01

    Background: This study was to examine the expression of total vascular endothelial growth factor (VEGF) and the anti-angiogenic VEGF165b isoform in the vitreous body of retinopathy of prematurity (ROP) patients, and to further study the role of the VEGF splicing in the development of ROP. Methods: This was a prospective clinical laboratory investigation study. All patients enrolled received standard ophthalmic examination with stage 4 ROP that required vitrectomy to collect the vitreous samples. The control samples were from congenital cataract patients. The expression of total VEGF and the anti-angiogenic VEGF165b were measured by enzyme-linked immunosorbent assay. Results were analyzed statistically using nonparametric tests. Results: The total VEGF level was markedly elevated in ROP samples while VEGF165b was markedly decreased compared to control group. The relative protein expression level of VEGF165b isoform was significantly decreased in ROP patients which were correlated with the ischemia-induced neovascularization. Conclusions: There was a switch of VEGF splicing from anti-angiogenic to pro-angiogenic family in ROP patients. A specific inhibitor that more selectively targets VEGF165and controls the VEGF splicing between pro- and anti-angiogenic families might be a more effective therapy for ROP. PMID:26365970

  17. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.

    PubMed

    Du, J; Liu, L; Lay, F; Wang, Q; Dou, C; Zhang, X; Hosseini, S M; Simon, A; Rees, D J; Ahmed, A K; Sebastian, R; Sarkar, K; Milner, S; Marti, G P; Semenza, G L; Harmon, J W

    2013-11-01

    Impaired burn wound healing in the elderly represents a major clinical problem. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that orchestrates the cellular response to hypoxia. Its actions in dermal wounds promote angiogenesis and improve healing. In a murine burn wound model, aged mice had impaired wound healing associated with reduced levels of HIF-1. When gene therapy with HIF-1 alone did not correct these deficits, we explored the potential benefit of HIF-1 gene therapy combined with the intravenous infusion of bone marrow-derived angiogenic cells (BMDACs) cultured with dimethyloxalylglycine (DMOG). DMOG is known to reduce oxidative degradation of HIF-1. The mice treated with a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α)+BMDACs had more rapid wound closure. By day 17, there were more mice with completely closed wounds in the treated group (χ(2), P=0.05). The dermal blood flow measured by laser Doppler showed significantly increased wound perfusion on day 11. Homing of BMDACs to the burn wound was dramatically enhanced by CA5-HIF-1α gene therapy. HIF-1α mRNA expression in the burn wound was increased after transfection with CA5-HIF-1α plasmid. Our findings offer insight into the pathophysiology of burns in the elderly and point to potential targets for developing new therapeutic strategies.

  18. Angiogenic Capacity of Periodontal Ligament Stem Cells Pretreated with Deferoxamine and/or Fibroblast Growth Factor-2

    PubMed Central

    Ratajczak, Jessica; Hilkens, Petra; Gervois, Pascal; Wolfs, Esther; Jacobs, Reinhilde; Lambrichts, Ivo; Bronckaers, Annelies

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) represent a good source of multipotent cells for cell-based therapies in regenerative medicine. The success rate of these treatments is severely dependent on the establishment of adequate vasculature in order to provide oxygen and nutrients to the transplanted cells. Pharmacological preconditioning of stem cells has been proposed as a promising method to augment their therapeutic efficacy. In this study, the aim was to improve the intrinsic angiogenic properties of PDLSCs by in vitro pretreatment with deferoxamine (DFX; 100μM), fibroblast growth factor-2 (FGF-2; 10ng/mL) or both substances combined. An antibody array revealed the differential expression of several proteins, including vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). ELISA data confirmed a 1.5 to 1.8-fold increase in VEGF for all tested conditions. Moreover, 48 hours after the removal of DFX, VEGF levels remained elevated (1.8-fold) compared to control conditions. FGF-2 and combination treatment resulted in a 5.4 to 13.1-fold increase in PlGF secretion, whereas DFX treatment had no effect. Furthermore, both PDLSCs as pretreated PDLSCs induced endothelial migration. Despite the significant elevated VEGF levels of pretreated PDLSCs, the induced endothelial migration was not higher by pretreated PDLSCs. We find that the observed induced endothelial cell motility was not dependent on VEGF, since blocking the VEGFR1-3 with Axitinib (0.5nM) did not inhibit endothelial motility towards PDLSCs. Taken together, this study provides evidence that preconditioning with DFX and/or FGF-2 significantly improves the angiogenic secretome of PDLSCs, in particular VEGF and PlGF secretion. However, our data suggest that VEGF is not the only player when it comes to influencing endothelial behavior by the PDLSCs. PMID:27936076

  19. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells.

    PubMed

    Lin, Zu-Yau; Chuang, Wan-Long

    2012-12-01

    Alteration of the oxidative stress of hepatocellular carcinoma (HCC) cells can influence the expressions of genes favored angiogenesis. Quinone reductase 2 which can activate quinones leading to reactive oxygen species production is a melatonin receptor known as MT3. Prazosin prescribed for benign prostate hyperplasia and hypertension is a potent antagonist for MT3. This study was to investigate the influence of therapeutic concentrations of prazosin (0.01 and 0.1μM) on cell proliferation and differential expressions of CCL2, CCL20, CXCL6, CXCL10, IL8 and IL6 genes related to inflammation and/or oxidative stress in human HCC cell lines. Two HCC cell lines including one without susceptible to amphotericin B-induced oxidative stress (cell line A; HCC24/KMUH) and one with this effect (cell line B; HCC38/KMUH) were investigated by 0.01 and 0.1μM prazosin. The premixed WST-1 cell proliferation reagent was applied for proliferation assay. Differential expressions of genes were examined by quantitative reverse transcriptase-polymerase chain reaction. Our results showed that both 0.01 and 0.1μM prazosin did not influence cell proliferation in both cell lines. Both 0.01 and 0.1μM prazosin in cell line A and 0.01μM prazosin in cell line B did not cause differential expressions of tested genes. However, 0.1μM prazosin caused remarkable up-regulation of IL6 gene and slightly up-regulation of CCL2 gene in cell line B. In conclusion, high therapeutic concentration of prazosin can up-regulate angiogenic IL6 and CCL2 genes in human HCC cells susceptible to amphotericin B-induced oxidative stress. Clinical application of prazosin in patients with HCC should consider this possibility.

  20. THE CHANGE IN CONCENTRATIONS OF ANGIOGENIC AND ANTI-ANGIOGENIC FACTORS IN MATERNAL PLASMA BETWEEN THE FIRST AND SECOND TRIMESTERS IN RISK ASSESSMENT FOR THE SUBSEQUENT DEVELOPMENT OF PREECLAMPSIA AND SGA

    PubMed Central

    Erez, Offer; Romero, Roberto; Espinoza, Jimmy; Fu, Wenjiang; Todem, David; Kusanovic, Juan Pedro; Gotsch, Francesca; Edwin, Samuel; Nien, Jyh Kae; Chaiworapongsa, Tinnakorn; Mittal, Pooja; Mazaki-Tovi, Shali; Than, Nandor Gabor; Gomez, Ricardo; Hassan, Sonia

    2009-01-01

    Introduction An imbalance between angiogenic and anti-angiogenic factors has been proposed as central to the pathophysiology of preeclampsia (PE). Indeed, patients with PE and those delivering small-for-gestational age (SGA) neonates have higher plasma concentrations of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and the soluble form of endoglin (s-Eng), as well as lower plasma concentrations of vascual endothelial growth factor (VEGF) and placental growth factor (PlGF) than do patients with normal pregnancies. Of note, this imbalance has been observed before the clinical presentation of PE or the delivery of an SGA neonate. The objective of this study was to determine if changes in the profile of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters are associated with a high risk for the subsequent development of preeclampsia and/or delivery of an SGA neonate. Methods This longitudinal case-control study included 402 singleton pregnancies in the following groups: 1) normal pregnancies with appropiate for gestational age (AGA) neonates (n=201); 2) patients who delivered an SGA neonate (n=145); and 3) patients who developed PE (n=56). Maternal plasma samples were obtained at the time of each prenatal visit, scheduled at 4-week intervals from the first or early second trimester until delivery. In this study, we included two samples per patient: 1) first sample obtained between 6 and 15 weeks of gestation (“first trimester” sample); and 2) second sample obtained between 20 and 25 weeks of gestation (“second trimester” sample). Plasma concentrations of s-Eng, sVEGFR-1 and PlGF were determined by specific and sensitive immunoassays. Changes in the maternal plasma concentrations of these angiogenesis-related factors were compared among normal patients and those destined to develop PE or deliver an SGA neonate while adjusting for maternal age, nulliparity and body mass index (BMI). General linear

  1. Hypoxia-regulated angiogenic inhibitors

    PubMed Central

    Messmer-Blust, Angela; An, Xiaojin; Li, Jian

    2010-01-01

    The regulation of angiogenesis by hypoxia is an essential homeostatic mechanism that depends on a precise balance between positive and negative angiogenic regulatory molecules. Pro-angiogenic factors are well characterized; however, several in vivo and in vitro studies indicate that there are feedback mechanisms in place to inhibit angiogenesis during hypoxia. Understanding the signaling pathways leading to the negative feedback of angiogenesis will undoubtedly provide important tools to develop novel therapeutic strategies not only to enhance the angiogenic response in coronary artery disease but also to hinder deregulated angiogenesis in tumorigenesis. PMID:20447566

  2. Tube formation in the first trimester placental trophoblast cells: Differential effects of angiogenic growth factors and fatty acids.

    PubMed

    Pandya, Abhilash D; Das, Mrinal K; Sarkar, Arnab; Vilasagaram, Srinivas; Basak, Sanjay; Duttaroy, Asim K

    2016-06-01

    The study aims to investigate whether cytosolic fatty acid-binding protein-4 (FABP4) is involved in angiogenic growth factors- and fatty acid-induced tube formation in first trimester placental trophoblast cells, HTR8/SVneo. We determined the tube formation both at basal as well as stimulated levels in the absence and presence of inhibitors of FABP4 and VEGF signaling pathways. Basal level of tube formation was maximally reduced in the presence of 50 µM of FABP4 inhibitor compared with those by VEGF signaling pathway inhibitors (rapamycin, L-NAME, and p38 MAP kinase inhibitor). Whereas docosahexaenoic acid, 22:6n-3 (DHA)-, and VEGF-induced tube formation was maximally inhibited by p38 MAP kinase inhibitor (63.7 and 34.5%, respectively), however, leptin-induced tube formation was inhibited maximally by FABP4 inhibitor (50.7%). ANGPTL4 and oleic acid (OA)-induced tube formation was not blocked by any of these inhibitors. The FABP4 inhibitor inhibited cell growth stimulated by DHA, leptin, VEGF, and OA (P < 0.05) but was not affected by ANGPTL4. VEGF, leptin, and OA also increased FABP4 protein level in these cells, though the uptake of fatty acids by these cells was not affected by the presence of FABP4 inhibitor. Our data demonstrate that FABP4 may be involved in part in the basal level, and stimulated tube formation by VEGF, DHA, and leptin, whereas it has little or no effect in ANGPTL4- and OA-induced tube formation in these cells. Thus, FABP4 may play a differential role in fatty acids and angiogenic growth factors-mediated tube formation in the first trimester trophoblast cells in vitro.

  3. The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium.

    PubMed Central

    Fox, S. B.; Westwood, M.; Moghaddam, A.; Comley, M.; Turley, H.; Whitehouse, R. M.; Bicknell, R.; Gatter, K. C.; Harris, A. L.

    1996-01-01

    Tumour angiogenesis is a complex multistep process regulated by a number of angiogenic factors. One such factor, platelet-derived endothelial cell growth factor has recently been shown to be thymidine phosphorylase (TP). TP catalyses the reversible phosphorylation of thymidine to deoxyribose-1-phosphate and thymine. Although known to be generally elevated in tumours, the expression of this enzyme in breast carcinomas is unknown. Therefore, we used ribonuclease protection assays and immunohistochemistry to examine the expression of TP in 240 primary breast carcinomas. Nuclear and/or cytoplasmic TP expression was observed in the neoplastic tumour epithelium in 53% of tumours. Immunoreactivity was also often present in the stromal, inflammatory and endothelial cell elements. Although endothelial cell staining was usually focal, immunoreactivity was observed in 61% of tumours and was prominent at the tumour periphery, an area where tumour angiogenesis is most active. Tumour cell TP expression was significantly inversely correlated with grade (P = 0.05) and size (P = 0.003) but no association was observed with other tumour variables. These findings suggest that TP is important for remodelling the existing vasculature early in tumour development, consistent with its chemotactic non-mitogenic properties, and that additional angiogenic factors are more important for other angiogenic processes like endothelial cell proliferation. Relapse-free survival was higher in node-positive patients with elevated TP (P = 0.05) but not in other patient groups. This might be due to the potentiation of chemotherapeutic agents like methotrexate by TP. Therefore, this enzyme might be a prediction marker for response to chemotherapy. Images Figure 1 PMID:8562330

  4. Influence of growth factors and cytokines on angiogenic function of endothelial progenitor cells: a review of in vitro human studies.

    PubMed

    Peplow, Philip V

    2014-06-01

    Growth factors and cytokines released at sites of injury and inflammation play an important role in stimulating endothelial progenitor cell (EPC) migration to these sites. A comparative analysis of the literature shows under neutral in vitro conditions (pH 7.4), several growth factors and cytokines influenced favorably indices of EPC angiogenic function. They included SDF-1, VEGF, PlGF, FGF-2, NGF and IL-1β. Others, e.g. TNF-α, have an unfavorable influence. SDF-1 and VEGF in combination increased chemotactic cell migration and reduced apoptosis caused by serum starvation. Under acidic conditions (pH 6.5), the biological activity of certain growth factors may be impaired, although TPO, SCF and IL-3 were each able to rescue EPCs from acidic exposure apoptosis, a combination of these three factors stimulated cell proliferation and prevented apoptosis. Possible combinations of growth factors and cytokines together with EPC transplantation may provide for a greater extent of vessel repair and new vessel formation.

  5. Adiponectinemia controls pro-angiogenic cell therapy.

    PubMed

    Eren, Philippe; Camus, Stéphane; Matrone, Gianfranco; Ebrahimian, Téni G; François, Delphine; Tedgui, Alain; Sébastien Silvestre, Jean; Blanc-Brude, Olivier P

    2009-11-01

    Angiogenic cell therapy with the transplantation of endothelial progenitor cells (EPC) or bone marrow mononuclear cells (BM-MNC) receives considerable attention as an approach to revascularize ischemic tissues. Adiponectin is a circulating hormone produced by the apM1 gene in adipocytes. Adiponectin modulates lipid metabolism and obesity, and it was recently found to promote physiological angiogenesis in response to ischemia. Patients with multiple cardiovascular disease risk factors or myocardial infarction may benefit from progenitor cell therapy, but they display depressed adiponectinemia. We hypothesized that adiponectin stimulation of transplanted cells is critical for their pro-angiogenic function. We aimed to establish whether adiponectinemia in the cell donor or in the cell recipient determines the success of pro-angiogenic cell therapy. In vitro, we found that conditioned media derived from wild-type adipocytes (adipo-CM) or purified adiponectin strongly enhanced BM-MNC survival and proliferation and stimulated EPC differentiation, whereas adipo-CM from apM1-/- adipocytes was one-half less effective. On the other hand, wild-type and apM1-/- BM-MNC displayed similar resistance to apoptosis and proliferation rates. In vivo, wild-type, and apM1-/- BM-MNC induced similar angiogenic reactions in wild-type ischemic hindlimbs. In contrast, wild-type BM-MNC had much diminished effects in apM1-/- ischemic hindlimbs. We concluded that adiponectin enhances BM-MNC survival and proliferation, and adiponectinemia in the cell therapy recipient is essential for the pro-angiogenic benefits of cell therapy. These observations imply that progenitor cell transplantation might only induce angiogenesis in patients with high adiponectinemia.

  6. A comparative study on the effects of tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo.

    PubMed

    Olivo, M; Bhardwaj, R; Schulze-Osthoff, K; Sorg, C; Jacob, H J; Flamme, I

    1992-09-01

    The chorioallantoic membrane (CAM) assay is a widely used bioassay for testing angiogenic activities. In the present study we compared the gross and micromorphological effects of three angiogenic factors applied in Elvax carriers on the CAM: Tumor necrosis factor-alpha (TNF-alpha), human angiogenic factor (h-AF), and basic fibroblast growth factor (bFGF). Our question was whether the CAM responds to these factors which have very different actions with a stereotype or with a factor specific reaction. By microangiography and light microscopy, all positive reactions appeared as a spoke-wheel vascular pattern with a bundle of small capillary blood vessels in the center. These vessels were predominantly of a distended type in h-AF and TNF experiments, while narrower capillary vessels followed bFGF application. Chorioallantoic ectoderm and endoderm were thickened by cell accumulation and the mesenchymal stroma of the CAM was edematous and infiltrated with leucocytes in all three reactions. Additionally, bFGF experiments showed areas of densely arranged fibroblasts. Observations in vivo showed chorioallantoic tissue movements as a possible mechanism for the spokewheel vascular pattern. As compared with our results from studies of cytokinetics with bromodeoxyuridine, these current findings indicate that chemotaxis is responsible for the chorioallantoic angiogenic reaction rather than cellular proliferation.

  7. A Prospective Cohort Study of the Value of Maternal Plasma Concentrations of Angiogenic and Anti-angiogenic Factors in Early Pregnancy and Midtrimester in the Identification of Patients Destined to Develop Preeclampsia

    PubMed Central

    Kusanovic, Juan Pedro; Romero, Roberto; Chaiworapongsa, Tinnakorn; Erez, Offer; Mittal, Pooja; Vaisbuch, Edi; Mazaki-Tovi, Shali; Gotsch, Francesca; Edwin, Samuel S.; Gomez, Ricardo; Yeo, Lami; Conde-Agudelo, Agustin; Hassan, Sonia S.

    2012-01-01

    OBJECTIVE Changes in the maternal plasma concentrations of angiogenic (such as PlGF and VEGF) and anti-angiogenic factors (such as sEng and sVEGFR-1) precede the clinical presentation of preeclampsia. This study was conducted to examine the role of maternal plasma PlGF, sEng and sVEGFR-1 concentrations in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. METHODS This longitudinal cohort study included 1,622 consecutive singleton pregnant women. Plasma samples were obtained in early pregnancy (6–15 weeks) and midtrimester (20–25 weeks). Maternal plasma PlGF, sEng and sVEGFR-1 concentrations were determined using sensitive and specific immunoassays. The primary outcome was the development of preeclampsia. Secondary outcomes included term, preterm and early-onset preeclampsia. Receiving operating characteristic (ROC) curves, sensitivity, specificity, positive and negative likelihood ratios, and multivariable logistic regression were used for statistical analyses. A p-value of <0.05 was considered significant. RESULTS 1) The prevalence of preeclampsia, term, preterm (<37 weeks) and early-onset preeclampsia (<34 weeks) was 3.8% (62/1,622), 2.5% (40/1,622), 1.4% (22/1,622) and 0.6% (9/1,622), respectively; 2) Higher likelihood ratios were provided by ratios of midtrimester plasma concentrations of PlGF, sEng, and sVEGFR-1 than single analytes; 3) Individual angiogenic and anti-angiogenic factors did not perform well in the identification of preeclampsia as a whole; in particular, they perform poorly in the prediction of term preeclampsia; 4) In contrast, a combination of these analytes such as the PlGF/sEng ratio, its delta and slope had the best predictive performance with a sensitivity of 100%, a specificity of 98%–99%, and likelihood ratios for a positive test of 57.6, 55.6 and 89.6, respectively, for predicting early-onset preeclampsia. CONCLUSIONS 1) The PlGF/sEng ratio and its delta and slope had an excellent

  8. Design principles for therapeutic angiogenic materials

    NASA Astrophysics Data System (ADS)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  9. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    SciTech Connect

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  10. A plasma cytokine and angiogenic factor (CAF) analysis for selection of bevacizumab therapy in patients with metastatic colorectal cancer

    PubMed Central

    Bai, Long; Wang, Feng; Zhang, Dong-sheng; Li, Cong; Jin, Ying; Wang, De-shen; Chen, Dong-liang; Qiu, Miao-zhen; Luo, Hui-yan; Wang, Zhi-qiang; Li, Yu-hong; Wang, Feng-hua; Xu, Rui-hua

    2015-01-01

    This study intends to identify biomarkers that could refine the selection of patients with metastatic colorectal cancer (mCRC) for bevacizumab treatment. Pretreatment 36 plasma cytokines and angiogenic factors (CAFs) were first measured by protein microarray analysis in patients who received first-line bevacizumab-containing therapies (discovery cohort, n = 64), and further evaluated by enzyme-linked immunosorbent assay in patients treated on regimens with or without bevacizumab (validation cohort, n = 186). Factor levels were correlated with clinical outcomes, predictive values were assessed using a treatment by marker interaction term in the Cox model. Patients with lower pretreatment levels of hepatocyte growth factor (HGF) or VEGF-A121 gain much more benefit from bevacizumab treatment as measured by progression-free survival (PFS) and overall survival (OS), while angiopoietin-like 4 (ANGPTL4) levels negatively correlated with PFS and response rate following bevacizumab (all adjusted interaction P < 0.05). A baseline CAF signature combining these three markers has greater predictive ability than individual markers. Signature-negative patients showed impaired survival following bevacizumab treatment (PFS, 7.3 vs 7.0 months; hazard ratio [HR] 1.03; OS, 29.9 vs 21.1 months, HR 1.33) compared with signature-positive patients (PFS, 6.5 vs 11.9 months, HR 0.52; OS, 28.0 vs 55.3 months, HR 0.67). These promising results warrant further prospective studies. PMID:26620439

  11. Tumor Necrosis Factor Type α , a Potent Inhibitor of Endothelial Cell Growth in vitro, is Angiogenic in vivo

    NASA Astrophysics Data System (ADS)

    Frater-Schroder, Marijke; Risau, Werner; Hallmann, Rupert; Gautschi, Peter; Bohlen, Peter

    1987-08-01

    Tumor necrosis factor type α (TNF-α ) inhibits endothelial cell proliferation in vitro. Basal cell growth (in the absence of exogenously added growth factor) and fibroblast growth factor (FGF)-stimulated cell proliferation are inhibited in a dose-dependent manner from 0.1 to 10 ng/ml with half-maximal inhibition occurring at 0.5-1.0 ng of TNF-α per ml. Bovine aortic and brain capillary endothelial and smooth muscle cells are similarly affected. TNF-α is a noncompetitive antagonist of FGF-stimulated cell proliferation. Its action on endothelial cells is reversible and noncytotoxic. Surprisingly, TNF-α does not seem to inhibit endothelial cell proliferation in vivo. In the rabbit cornea, even a high dose of TNF-α (10 μ g) does not suppress angiogenesis induced by basic FGF. On the contrary, in this model system TNF-α stimulates neovascularization. The inflammatory response that is seen in the cornea after TNF-α implantation suggests that the angiogenic properties of this agent may be a consequence of leukocyte infiltration.

  12. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system.

    PubMed

    Sakurai, Yu; Hatakeyama, Hiroto; Sato, Yusuke; Hyodo, Mamoru; Akita, Hidetaka; Ohga, Noritaka; Hida, Kyoko; Harashima, Hideyoshi

    2014-01-10

    Angiogenesis is one of crucial processes associated with tumor growth and development, and consequently a prime target for cancer therapy. Although tumor endothelial cells (TECs) play a key role in pathological angiogenesis, investigating phenotypical changes in neovessels when a gene expression in TEC is suppressed is a difficult task. Small interfering RNA (siRNA) represents a potential agent due to its ability to silence a gene of interest. We previously developed a system for in vivo siRNA delivery to cancer cells that involves a liposomal-delivery system, a MEND that contains a unique pH-sensitive cationic lipid, YSK05 (YSK-MEND). In the present study, we report on the development of a system that permits the delivery of siRNA to TECs by combining the YSK-MEND and a ligand that is specific to TECs. Cyclo(Arg-Gly-Asp-D-Phe-Lys) (cRGD) is a well-known ligand to αVβ3 integrin, which is selectively expressed at high levels in TECs. We incorporated cRGD into the YSK-MEND (RGD-MEND) to achieve an efficient gene silencing in TECs. Quantitative RT-PCR and the 5' rapid amplification of cDNA ends PCR indicated that the intravenous injection of RGD-MEND at a dose of 4.0mg/kg induced a significant RNAi-mediated gene reduction in TEC but not in endothelial cells of other organs. Finally, we evaluated the therapeutic potency of the RGD-MEND encapsulating siRNA against vascular endothelial growth factor receptor 2. A substantial delay in tumor growth was observed after three sequential RGD-MEND injections on alternate days. In conclusion, the RGD-MEND represents a new approach for the characterization of TECs and for us in anti-angiogenic therapy.

  13. FSH up-regulates angiogenic factors in luteal cells of buffaloes.

    PubMed

    Fátima, L A; Evangelista, M C; Silva, R S; Cardoso, A P M; Baruselli, P S; Papa, P C

    2013-11-01

    Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was

  14. Differentiation and angiogenic growth factor message in two mammalian lens epithelial cell lines.

    PubMed

    Kidd, G L; Reddan, J R; Russell, P

    1994-04-01

    Lens epithelial cells in culture can sometimes be induced to form spheroid aggregates termed lentoid bodies, composed of cells exhibiting various characteristics of the more highly differentiated lens fiber cells. However, lentoid bodies are often slow to form, and the ability to produce them declines with serial subculture. It was therefore of interest to establish and/or characterize lens epithelial cell lines capable of forming lentoid bodies. The differentiation state was assessed in lentoid bodies formed by each of two lens epithelial cell lines, the transformed alpha TN4 cell line from mouse and the nontransformed N/N1135A cell line from rabbit. Lentoid and monolayer cultures of each cell line were examined for transcripts of the lens-specific alpha A-crystallin ("alpha A"), gamma D-crystallin ("gamma D"; formerly gamma 1-crystallin) and MP26 genes. alpha TN4 lentoid bodies contained 2.5 times the alpha A RNA found in monolayer cells, but lacked detectable gamma D and MP26 RNA. None of the three markers were detected in either lentoid or monolayer N/N1135A cultures grown under the conditions described. Lentoid body formation alone, therefore, does not indicate the extent of differentiation occurring. At least some of the changes in cell adhesion occurring during lentoid body formation involve laminin-like and fibronectin-like interactions, and are reminiscent of those observed during embryonic lens formation. Finally, vascular endothelial growth factor mRNA was absent from the lens but present in alpha TN4 cells, suggesting a mechanism whereby the lens tumors of the founder mouse became vascularized.

  15. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  16. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology.

    PubMed

    Banks, R E; Forbes, M A; Kinsey, S E; Stanley, A; Ingham, E; Walters, C; Selby, P J

    1998-03-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor with a key role in several pathological processes, including tumour vascularization. Our preliminary observations indicated higher VEGF concentrations in serum samples than in matched plasma samples. We have now demonstrated that this difference is due to the presence of VEGF within platelets and its release upon their activation during coagulation. In eight healthy volunteers, serum VEGF concentrations ranged from 76 to 854 pg ml(-1) and were significantly higher (P < 0.01) than the matched citrated plasma VEGF concentrations, which ranged from < 9 to 42 pg ml(-1). Using platelet-rich plasma, mean (s.d.) platelet VEGF contents of 0.56 (0.36) pg of VEGF 10(-6) platelets were found. Immunocytochemistry demonstrated the cytoplasmic presence of VEGF within megakaryocytes and other cell types within the bone marrow. From examination of the effects of blood sample processing on circulating VEGF concentrations, it is apparent that for accurate measurements, citrated plasma processed within 1 h of venepuncture should be used. Serum is completely unsuitable. The presence of VEGF within platelets has implications for processes involving platelet and endothelial cell interactions. e.g. wound healing, and in tumour metastasis, when platelets adhering to circulating tumour cells may release VEGF at points of adhesion to endothelium, leading to hyperpermeability and extravasation of cells.

  17. Current protein-based anti-angiogenic therapeutics.

    PubMed

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2014-01-01

    Angiogenesis is a multistep process for the formation of new blood vessels. Interactions between several cellular factors including growth factors, cytokines and hematopoietic factors lead to activation of various cellular pathways finally resulting in the extracellular matrix (ECM) degradation, endothelial cell proliferation, survival and migration. Normally, angiogenesis is an essential requirement for vascular development in growing embryos as well as in adult tissues where this process depends on the intricate balance between the activities of the pro- and anti-angiogenic factors. Abnormal angiogenesis results in aberrant vasculature leading to various pathological conditions. The most important factor implicated in angiogenic processes is vascular endothelial growth factor (VEGF) and its family of ligands and receptors. Several anti-angiogenic drugs have been developed and many more are currently in different phases of clinical trials, which target various angiogenesis-inducing agents including VEGF, VEGF receptors, angiopoietins and ECM components such as integrins. Anti-angiogenic therapy can be divided into gene-based therapy and protein-based therapy. Gene-based therapies include the use of antisense oligonucleotides, siRNA, aptamers, catalytic oligonucleotides including ribozymes and DNAzymes and transcription decoys. Protein-based therapeutics includes monoclonal antibodies, peptidomimetics, fusion proteins and decoy receptors. The later class of therapeutics has several advantages over gene-based and small molecule drugs, including specificity and complexity in functions, better tolerability, less interference with normal biological processes and lesser adverse effects due to decreased immune response by virtue of being mostly body's natural proteins. This review provides a comprehensive overview of angiogenesis and on the current protein-based anti-angiogenic therapeutics under research and in the clinic.

  18. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.

  19. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia.

    PubMed

    Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R; Aranda, Jacob; Grant, Maria B; Chaqour, Brahim

    2015-09-18

    The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair.

  20. Levels and values of circulating endothelial progenitor cells, soluble angiogenic factors, and mononuclear cell apoptosis in liver cirrhosis patients

    PubMed Central

    2012-01-01

    Background The roles of circulating endothelial progenitor cell (EPC) and mononuclear cell apoptosis (MCA) in liver cirrhosis (LC) patients are unknown. Moreover, vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α are powerful endogenous substances enhancing EPC migration into circulation. We assessed the level and function of EPCs [CD31/CD34 (E1), KDR/CD34 (E2), CXCR4/CD34 (E3)], levels of MCA, VEGF and SDF-1α in circulation of LC patients. Methods Blood sample was prospectively collected once for assessing EPC level and function, MCA, and plasma levels of VEGF and SDF-1α using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively, in 78 LC patients and 25 age- and gender-matched healthy controls. Results Number of EPCs (E1, E2, E3) was lower (all p < 0.0001), whereas SDF-1α level and MCA were higher (p < 0.001) in study patients compared with healthy controls. Number of EPCs (E2, E3) was higher but MCA was lower (all p < 0.05) in Child's class A compared with Child's class B and C patients, although no difference in VEGF and SDF-1α levels were noted among these patients. Chronic hepatitis B and esophageal varices bleeding were independently, whereas chronic hepatitis C, elevated aspartate aminotransferase (AST), and decompensated LC were inversely and independently correlated with circulating EPC level (all p < 0.03). Additionally, angiogenesis and transwell migratory ability of EPCs were reduced in LC patients than in controls (all p < 0.001). Conclusion The results of this study demonstrated that level, angiogenic capacity, and function of circulating EPCs were significantly reduced, whereas plasma levels of SDF-1α and circulating MCA were substantially enhanced in cirrhotic patients. PMID:22809449

  1. Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma.

    PubMed

    Tsirakis, George; Pappa, Constantina A; Kanellou, Peggy; Stratinaki, Maria A; Xekalou, Athina; Psarakis, Fotios E; Sakellaris, George; Alegakis, Athanasios; Stathopoulos, Efstathios N; Alexandrakis, Michael G

    2012-09-01

    Angiogenesis is a complex process essential for the growth, invasion, and metastasis of various malignant tumours, including multiple myeloma (MM). Various angiogenic cytokines have been implicated in the angiogenic process. Among them, platelet-derived growth factor-AB (PDGF-AB) has been reported to be a potent stimulator of angiogenesis in many solid tumours and haematological malignancies, including MM. The aim of the study was to investigate the relationship between PDGF-AB, microvascular density (MVD), and various angiogenic cytokines, such as basic fibroblast growth factor (b-FGF), angiogenin (ANG), and interleukin-6 (IL-6), in MM patients. Forty-seven MM patients before treatment, 22 of whom were in plateau phase, were studied. We determined the serum levels of the aforementioned cytokines and MVD in bone marrow biopsies before and after treatment. Mean serum values of PDGF-AB, b-FGF, ANG, and MVD were significantly higher in patients compared with controls and with increasing disease stage. Significant positive correlations were observed between serum PDGF-AB, ANG, and IL-6 levels and MVD. Furthermore, we found significant positive correlations between PDGF-AB and b-FGF, IL-6, ANG, and β2 microglobulin. We also found that patients with high MVD had statistically significantly higher serum levels of PDGF-AB when a median MVD value of 7.7 was used as the cutoff point. Furthermore, a significant difference was found in serum levels of PDGF-AB between pre- and post-treatment patients. Finally, survival time was significantly higher in the low MVD group versus the high MVD group (76 vs 51 months). Our results showed that there is a strong positive correlation between PDGF-AB and the studied angiogenic cytokines and MVD. It seems that PDGF-AB plays a role in the complex network of cytokines inducing bone marrow neovascularization in patients with MM.

  2. Angiogenic and tissue remodeling factors in the prostate of elderly rats submitted to hormonal replacement.

    PubMed

    Montico, Fábio; Hetzl, Amanda Cia; Cândido, Eduardo Marcelo; Cagnon, Valéria Helena Alves

    2013-11-01

    The influence of senescence and hormone replacement on the onset of pathologic processes in the prostate is not yet fully understood. The aim was to identify the immunoreactivity and protein levels of molecules involved in cell proliferation, tissue remodeling and angiogenesis in the ventral prostate of elderly rodents following hormonal replacement. Male Sprague-Dawley rats were separated into one Young group (4-months old), treated with peanut oil (5 mL kg(-1) , s.c.), and six Senile groups. The senile rats (10-months old) were subdivided into: Senile group (SEN) (5 mL kg(-1) peanut oil, s.c.); Testosterone group (TEST) (5 mg kg(-1) testosterone cipionate, s.c.); Estrogen group (EST) (25 µg kg(-1) 17β-estradiol, s.c.); castrated group (CAS) (surgical castration); castrated-testosterone group (CT) (same treatment as CAS and TEST groups); and castrated-estrogen group (CE) (same treatment as CAS and EST groups). After 30 days, samples of the ventral prostate were harvested for analyses of insulin-like growth factor-1 receptor (IGFR-1), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and endostatin features. IGFR-1 and MMP-9 showed increased protein levels and epithelial immunolabeling both after hormonal replacement and castration. Increased VEGF levels and reduced endostatin were verified in the SEN group. Hormonal therapy and castration led to a higher increase of VEGF, especially in the EST, CAS, and CE groups. Endostatin increased mainly in the TEST and CT groups. Hormonal therapy in senescence generated a reactive microenvironment characterized by the increase of mitogenic and tissue remodeling factors and by the imbalance of angiogenesis, which possibly compromised organ function and predisposed toward glandular disorders.

  3. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation.

    PubMed

    Lanier, Viola; Gillespie, Corey; Leffers, Merle; Daley-Brown, Danielle; Milner, Joy; Lipsey, Crystal; Webb, Nia; Anderson, Leonard M; Newman, Gale; Waltenberger, Johannes; Gonzalez-Perez, Ruben Rene

    2016-10-01

    Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.

  4. Angiogenic factors, bladder neuroplasticity and interstitial cystitis—new pathobiological insights

    PubMed Central

    2015-01-01

    Vascular endothelial growth factor (VEGF) is essential for normal embryonic development, and maintenance of adult vascular function. Originally described as a vascular permeability factor, VEGF alters tight cell junctions and contributes to maintenance of bladder permeability. VEGF and its receptors are not only expressed in bladder blood vessels but also in apical cells and intramural ganglia. VEGF receptors are fundamentally altered by inflammation and bladder diseases such as interstitial cystitis (IC). Experimental results indicate that VEGF exerts direct effects on bladder nerve density and function. Regardless of the etiology or initiating cause for IC, it is hypothesized that the urinary bladder responds to injury by increasing the production of VEGF that acts initially as a survival mechanism. However, VEGF also has the capacity to increase vascular permeability leading to glomerulations, edema, and inflammation. Moreover, due to elevated numbers of VEGF receptors in the urothelium, the increased levels of VEGF further increase bladder permeability and establish a vicioCus cycle of disease pathophysiology. PMID:26816854

  5. Vascular Endothelial Growth Factor as an Angiogenic Marker in Malignant Astrocytoma and Oligodendroglioma: An Indian Scenario

    PubMed Central

    Vokuda, Ramya S; Srinivas, Bheemanathi Hanuman; Madhugiri, Venkatesh S

    2017-01-01

    Introduction The role of Vascular Endothelial Growth Factor (VEGF) in angiogenesis has been extensively studied in gliomas, such as astrocytoma and oligodendrogliomas, worldwide. However, there is limited information available with regard to the Indian population. Aim To study, whether VEGF is expressed in the Indian population in a pattern similar to that in other population. Materials and Methods In this prospective study approved by the Institute Ethics Committee for Human Studies at Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER) the patients operated for glioma in 2014 and 2015 (n = 60) were included. Tumours were graded as per the World Health Organization (WHO) grading system. VEGF expression in various grades was analysed using immunohistochemistry. Results Of the 60 patients included in this study, 15 were Grade II- (diffuse astrocytomas – 12; oligodendrogliomas- 3), 15 were Grade III-(anaplastic astrocytomas- 2; anaplastic oligodendrogliomas – 13) and 30 were Grade IV-glioblastomas. For VEGF antibody staining, two patients (3.33%) showed negative results and 58 patients (96%) showed positive results. VEGF positivity was 100% in Grade II and III, while it was 93.3% (28/30) in Grade IV tumours (p=0.012). Conclusion The expression of VEGF was associated with the grade of tumour, which gradually increased from Grade II to Grade IV. We conclude that VEGF-regulated angiogenesis plays an important role in tumour progression of astrocytomas and oligodendrogliomas in the Indian population as observed worldwide.

  6. Dual roles of protein tyrosine phosphatase kappa in coordinating angiogenesis induced by pro-angiogenic factors

    PubMed Central

    Sun, Ping-Hui; Chen, Gang; Mason, Malcolm; Jiang, Wen G.; Ye, Lin

    2017-01-01

    A potential role may be played by receptor-type protein tyrosine phosphatase kappa (PTPRK) in angiogenesis due to its critical function in coordinating intracellular signal transduction from various receptors reliant on tyrosine phosphorylation. In the present study, we investigated the involvement of PTPRK in the cellular functions of vascular endothelial cells (HECV) and its role in angiogenesis using in vitro assays and a PTPRK knockdown vascular endothelial cell model. PTPRK knockdown in HECV cells (HECVPTPRKkd) resulted in a decrease of cell proliferation and cell-matrix adhesion; however, increased cell spreading and motility were seen. Reduced focal adhesion kinase (FAK) and paxillin protein levels were seen in the PTPRK knockdown cells which may contribute to the inhibitory effect on adhesion. HECVPTPRKkd cells were more responsive to the treatment of fibroblast growth factor (FGF) in their migration compared with the untreated control and cells treated with VEGF. Moreover, elevated c-Src and Akt1 were seen in the PTPRK knockdown cells. The FGF-promoted cell migration was remarkably suppressed by an addition of PLCγ inhibitor compared with other small inhibitors. Knockdown of PTPRK suppressed the ability of HECV cells to form tubules and also impaired the tubule formation that was induced by FGF and conditioned medium of cancer cells. Taken together, it suggests that PTPRK plays dual roles in coordinating angiogenesis. It plays a positive role in cell proliferation, adhesion and tubule formation, but suppresses cell migration, in particular, the FGF-promoted migration. PTPRK bears potential to be targeted for the prevention of tumour associated angiogenesis. PMID:28259897

  7. Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

    PubMed Central

    Julio-Pieper, Marcela; Lara, Hernán E; Bravo, Javier A; Romero, Carmen

    2006-01-01

    Background Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. Results In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. Conclusion Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis. PMID:17096853

  8. PEI-g-PEG-RGD/Small Interference RNA Polyplex-Mediated Silencing of Vascular Endothelial Growth Factor Receptor and Its Potential as an Anti-Angiogenic Tumor Therapeutic Strategy

    PubMed Central

    Kim, Jihoon; Kim, Sung Wan

    2011-01-01

    Tumor angiogenesis appears to be achieved by the expression of vascular endothelial growth factor (VEGF) within solid tumors that stimulate host vascular endothelial cell mitogenesis and possibly chemotaxis. VEGF's angiogenic actions are mediated through its high-affinity binding to 2 endothelium-specific receptor tyrosine kinase, Flt-1 (VEGFR1), and Flk-1/KDR (VEGFR2). RNA interference-mediated knockdown of protein expression at the messenger RNA level provides a new therapeutic strategy to overcome various diseases. To achieve high efficacy in RNA interference-mediated therapy, it is critical to develop an efficient delivering system to deliver small interference RNA (siRNA) into tissues or cells site-specifically. We previously reported an angiogenic endothelial cell-targeted polymeric gene carrier, PEI-g-PEG-RGD. This targeted carrier was developed by the conjugation of the ανβ3/ανβ5 integrin-binding RGD peptide (ACDCRGDCFC) to the cationic polymer, branched polyethylenimine, with a hydrophilic polyethylene glycol (PEG) spacer. In this study, we used PEI-g-PEG-RGD to deliver siRNA against VEGFR1 into tumor site. The physicochemical properties of PEI-g-PEG-RGD/siRNA complexes was evaluated. Further, tumor growth profile was also investigated after systemic administration of PEI-g-PEG-RGD/siRNA complexes. PMID:21375397

  9. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  10. Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration.

    PubMed

    Montemurro, Tiziana; Viganò, Mariele; Ragni, Enrico; Barilani, Mario; Parazzi, Valentina; Boldrin, Valentina; Lavazza, Cristiana; Montelatici, Elisa; Banfi, Federica; Lauri, Eleonora; Giovanelli, Silvia; Baccarin, Marco; Guerneri, Silvana; Giordano, Rosaria; Lazzari, Lorenza

    2016-01-01

    In a recent work, our group showed the existence of two distinct mesenchymal stem cell (MSC) subsets within human umbilical cord blood. One less proliferative and short-living (SL-CBMSC), the other with higher growth rate and long-living (LL-CBMSC), and therefore better suited for regenerative medicine applications. We examined whether LL-CBMSC possess peculiar paracrine properties able to affect angiogenesis or inflammatory processes. It was shown for the first time that pro-angiogenic, proliferation-stimulating and tissue repairing factors were released at high level not only as soluble cytokines, but also as mRNA precursors embedded in membrane vesicles. The combination of this primary (proteic factors interacting with surface receptors) and delayed (mRNA transferred and translated via vesicle fusion and cargo release) interaction in endothelial target cells resulted in strong blood vessel induction with the development of capillary-like structures. In addition, LL-CBMSC dynamically modulated their release of pro-angiogenic and anti-inflammatory factors in an in vitro model of damage. In conclusion, LL-CBMSC synthesize and secrete multiple factors that may be attuned in response to the status of the target cell, a crucial requisite when paracrine mechanisms are needed at onset of tissue regeneration.

  11. GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling*

    PubMed Central

    Froese, Natali; Kattih, Badder; Breitbart, Astrid; Grund, Andrea; Geffers, Robert; Molkentin, Jeffery D.; Kispert, Andreas; Wollert, Kai C.; Drexler, Helmut; Heineke, Joerg

    2011-01-01

    Understanding the transcriptional regulation of angiogenesis could lead to the identification of novel therapeutic targets. We showed here that the transcription factor GATA6 is expressed in different human primary endothelial cells as well as in vascular endothelial cells of mice in vivo. Activation of endothelial cells was associated with GATA6 nuclear translocation, chromatin binding, and enhanced GATA6-dependent transcriptional activation. siRNA-mediated down-regulation of GATA6 after growth factor stimulation led to a dramatically reduced capacity of macro- and microvascular endothelial cells to proliferate, migrate, or form capillary-like structures on Matrigel. Adenoviral overexpression of GATA6 in turn enhanced angiogenic function, especially in cardiac endothelial microvascular cells. Furthermore, GATA6 protected endothelial cells from undergoing apoptosis during growth factor deprivation. Mechanistically, down-regulation of GATA6 in endothelial cells led to increased expression of transforming growth factor (TGF) β1 and TGFβ2, whereas enhanced GATA6 expression, accordingly, suppressed Tgfb1 promoter activity. High TGFβ1/β2 expression in GATA6-depleted endothelial cells increased the activation of the activin receptor-like kinase 5 (ALK5) and SMAD2, and suppression of this signaling axis by TGFβ neutralizing antibody or ALK5 inhibition restored angiogenic function and survival in endothelial cells with reduced GATA6 expression. Together, these findings indicate that GATA6 plays a crucial role for endothelial cell function and survival, at least in part, by suppressing autocrine TGFβ expression and ALK5-dependent signaling. PMID:21127043

  12. The use of angiogenic and antiangiogenic factors in the differential diagnosis of pre-eclampsia, antiphospholipid syndrome nephropathy and lupus nephritis.

    PubMed

    de Jesus, G R; de Jesus, N R; Levy, R A; Klumb, E M

    2014-10-01

    Pre-eclampsia (PE) is a major cause of maternal mortality and morbidity, perinatal deaths, preterm birth and intrauterine growth restriction. Differential diagnosis with antiphospholipid syndrome (APS) nephropathy and systemic lupus erythematosus (SLE) nephritis during pregnancy is difficult, if not sometimes impossible, as all three diseases may present hypertension and proteinuria. Improvement in diagnosis of PE has also offered new paths for differential diagnosis with other conditions and the analysis of angiogenic (vascular endothelial growth factor, placental growth factor) and antiangiogenic factors (serum soluble fms-like tyrosine kinase 1, soluble endoglin) is promising for differentiation between PE, APS nephropathy and SLE nephritis. This article reviews published studies about those factors in non-pregnant and pregnant patients with APS and SLE, comparing with patterns described in PE.

  13. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy.

    PubMed

    Kim, Jinhwan; Lee, Yeong Mi; Kim, Hyunwoo; Park, Dongsik; Kim, Jihoon; Kim, Won Jong

    2016-01-01

    We present a cationic polymer architecture composed of phenylboronic acid (PBA), sugar-installed polyethylenimine (PEI), and polyethylene glycol (PEG). The chemical bonding of PBA with the diol in the sugar enabled the crosslinking of low-molecular-weight (MW) PEI to form high-MW PEI, resulting in strong interaction with anionic DNA for gene delivery. Inside the cell, the binding of PBA and sugar was disrupted by either acidic endosomal pH or intracellular ATP, so gene payloads were released effectively. This dual stimuli-responsive gene release drove the polymer to deliver DNA for high transfection efficiency with low cytotoxicity. In addition, PBA moiety with PEGylation facilitated the binding of polymer/DNA polyplexes to sialylated glycoprotein which is overexpressed on the tumor cell membrane, and thus provided high tumor targeting ability. Therapeutic application of our polymer was demonstrated as an anti-angiogenic gene delivery agent for tumor growth inhibition. Our judicious designed polymer structure based on PBA provides enormous potential as a gene delivery agent for effective gene therapy by stimuli-responsiveness and tumor targeting.

  14. HET0016, a Selective Inhibitor of 20-HETE Synthesis, Decreases Pro-Angiogenic Factors and Inhibits Growth of Triple Negative Breast Cancer in Mice

    PubMed Central

    Borin, Thaiz Ferraz; Zuccari, Debora A. P. C.; Jardim-Perassi, Bruna V.; Ferreira, Lívia C.; Iskander, A. S. M.; Varma, Nadimpalli Ravi S.; Shankar, Adarsh; Guo, Austin M.; Scicli, Guillermo; Arbab, Ali S.

    2014-01-01

    A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals’ right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day’s data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days. PMID:25549350

  15. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    PubMed

    Borin, Thaiz Ferraz; Zuccari, Debora A P C; Jardim-Perassi, Bruna V; Ferreira, Lívia C; Iskander, A S M; Varma, Nadimpalli Ravi S; Shankar, Adarsh; Guo, Austin M; Scicli, Guillermo; Arbab, Ali S

    2014-01-01

    A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  16. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.

    PubMed

    Wohl, Gregory R; Towler, Dwight A; Silva, Matthew J

    2009-02-01

    Woven bone is formed in response to fatigue-induced stress fractures and is associated with increased local angiogenesis. The molecular mechanisms that regulate this woven bone formation are unknown. Our objective was to measure the temporal and spatial expression of osteo- and angiogenic genes in woven bone formation in response to increasing levels of fatigue-induced damage. We used the rat forelimb compression model to produce four discrete levels of fatigue damage in the right ulna of 115 male Fischer rats. Rats were killed at 0 (1 h), 1, 3 and 7 days after loading. Using qRT-PCR, we quantified gene expression associated with osteogenesis (BMP2, Msx2, Runx2, Osx, BSP, Osc), cell proliferation (Hist4), and angiogenesis (VEGF, PECAM-1) from the central half of the ulna. The spatial distribution of BMP2, BSP and PCNA was assessed by immunohistochemistry or in situ hybridization in transverse histological sections 1, 4, and 7 mm distal to the ulnar mid-diaphysis. One hour after loading, BMP2 was significantly upregulated in neurovascular structures in the medial ulnar periosteum. Expression of angiogenic markers (VEGF, PECAM-1) increased significantly between Day 0 and 1 and, as with BMP2 expression, remained upregulated through Day 7. While Osx and BSP were upregulated on Day 1, the other osteogenic genes (Msx2, Runx2, Osx, BSP and Osc) were induced on Day 3 in association with the initiation of periosteal woven bone formation and continued through Day 7. The magnitude of osteogenic gene expression, particularly matrix genes (BSP, Osc) was significantly proportional the level of fatigue damage. The woven bone response to fatigue injury is remarkably similar to the "intramembranous" portion of fracture repair - rapid formation of periosteal woven bone characterized by early BMP2 expression, cell proliferation, and upregulation of osteogenic genes. We speculate that woven bone repair of fatigue damage may be an abbreviated fracture response without the requirement

  17. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors

    PubMed Central

    Staiano, Rosaria I.; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-01-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol, N-arachidonoyl-ethanolamine, N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular

  18. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    PubMed

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  19. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors

    PubMed Central

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Gaudio, Eugenio

    2015-01-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage. PMID:26451003

  20. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors.

    PubMed

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2015-12-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage.

  1. Cartilage-specific matrix protein, chondromodulin-I (ChM-I), is a strong angio-inhibitor in endochondral ossification of human neonatal vertebral tissues in vivo: relationship with angiogenic factors in the cartilage.

    PubMed

    Kusafuka, Kimihide; Hiraki, Yuji; Shukunami, Chisa; Kayano, Teruo; Takemura, Tamiko

    2002-01-01

    Although cartilage contains many angiogenic factors during endochondral ossification, it is an avascular tissue. The cartilage-specific non-collagenous matrix protein chondromodulin-I (ChM-I) has been shown to be a strong angio-inhibitor. To elucidate whether ChM-I plays an essential role in angio-inhibition during endochondral ossification in man, we investigated the expression and localization of ChM-I in comparison with those of angiogenic factors and the endothelial cell marker CD34 in human neonatal vertebral tissues. Although invasion of CD34-positive endothelial cells was observed in primary subchondral spongiosa, expression of the marker of endothelial cells, CD34, was not found in neonatal vertebral cartilage matrix. Type II collagen was deposited in all matrices during endochondral ossification, whereas aggrecan was deposited in the matrix of hypertrophic cartilage, especially around lacunae. Vascular endothelial growth factor (VEGF), which is known to be a strong angiogenic factor, was localized in chondrocytes in mature to hypertrophic cartilage and also in bone marrow. Fibroblast growth factor-2 (FGF-2; basic fibroblast growth factor), which is also known to be a strong angiogenic factor, was localized in the cytoplasm of chondrocytes of mature cartilage in human vertebral cartilage tissues. Transforming growth factor (TGF)-beta has been reported to have many functions including angiogenesis, and TGF-beta1 was also localized in mature chondrocytes in endochondral tissues undergoing ossification. On the other hand, the novel cartilage-specific matrix protein ChM-I was localized in interterritorial regions of the matrix in mature to hypertrophic cartilage, especially around lacunae. In conclusion, these observations indicate that ChM-I may serve as a barrier against the angiogenic properties of VEGF, FGF-2 and TGF-beta1 during endochondral ossification, and this matrix molecule may play an essential role in determining the avascular nature of cartilage

  2. Can the Lung Cancer Pie Be Divided into Angiogenic Slices?

    PubMed

    Cascone, Tina; Heymach, John V

    2015-12-01

    There are no validated markers for predicting benefit from angiogenesis inhibitors or classifying tumors with distinct angiogenic phenotypes. In patients with non-small cell lung cancer treated with bevacizumab and erlotinib, Franzini and colleagues find that angiogenesis- and hypoxia-associated gene expression signatures predict tumor response and/or clinical outcome, and may define distinct angiogenic patterns.

  3. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  4. Improved Bone Healing by Angiogenic Factor-Enriched Platelet-Rich Plasma and Its Synergistic Enhancement by Bone Morphogenetic Protein-2

    PubMed Central

    Park, Eun-Jin; Kim, Eun-Seok; Weber, Hans-Peter; Wright, Robert F.

    2010-01-01

    (1) Purpose The purpose of this study was to modify the method of platelet-rich plasma (PRP) preparation for obtaining optimal angiogenic potential and accelerate bone healing. Also, the potential synergistic effect of a suboptimal concentration of bone morphogenic protein-2 (BMP-2) and modified PRP (mPRP) on bone healing was evaluated in vivo. (2) Materials and Methods The angiogenic factor-enriched PRP which includes peripheral blood mononuclear cells (mostly lymphocytes and monocytes fraction, excluding polymorphonuclear leukocyte, PMNs) was achieved by lowering concentrations of thrombin and CaCl2, after pre-activation with shear stress using a table-top vortex machine and collagen. In vitro, endothelial cell migration activity in the mPRP group was compared to conventional PRP preparation using a modified Boyden chamber assay. In an animal study, PGA scaffold, PGA scaffold + mPRP, PGA scaffold + mPRP + rhBMP-2, and PGA scaffold + rhBMP-2 were applied to 28 NIH nude rats’ critical size calvarial defects. At 2 weeks, periosteal blood flow was measured using LDPI, and bone formation was evaluated at 8 weeks by histology, DEXA, and μCT. (3) Results mPRP induced faster migration of cord blood-derived outgrowth endothelial-like cells. In vivo, mPRP with low dose rhBMP-2 group showed significantly increased numbers of blood vessels at 2 weeks, and notable synergistic effect on bone healing at 8 weeks as evaluated with histology, bone mineral density (BMD) and bone mineral content (BMC, and μCT. (4) Conclusion mPRP used in this study improved vascular perfusion around the defect, and resulted in enhanced bone healing. Also, combining mPRP with a suboptimal dosage of rhBMP-2 improved bone formation and enhanced bone density. PMID:19014150

  5. Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response.

    PubMed

    Battinelli, Elisabeth M; Markens, Beth A; Kulenthirarajan, Rajesh A; Machlus, Kellie R; Flaumenhaft, Robert; Italiano, Joseph E

    2014-01-02

    Platelets are a reservoir for angiogenic proteins that are secreted in a differentially regulated process. Because of the propensity for clotting, patients with malignancy are often anticoagulated with heparin products, which paradoxically offer a survival benefit by an unknown mechanism. We hypothesized that antithrombotic agents alter the release of angiogenesis regulatory proteins from platelets. Our data revealed that platelets exposed to heparins released significantly decreased vascular endothelial growth factor (VEGF) in response to adenosine 5'-diphosphate or tumor cells (MCF-7 cells) and exhibited a decreased angiogenic potential. The releasate from these platelets contained decreased proangiogenic proteins. The novel anticoagulant fondaparinux (Xa inhibitor) demonstrated a similar impact on the platelet angiogenic potential. Because these anticoagulants decrease thrombin generation, we hypothesized that they disrupt signaling through the platelet protease-activated receptor 1 (PAR1) receptor. Addition of PAR1 antagonists to platelets decreased VEGF release and angiogenic potential. Exposure to a PAR1 agonist in the presence of anticoagulants rescued the angiogenic potential. In vivo studies demonstrated that platelets from anticoagulated patients had decreased VEGF release and angiogenic potential. Our data suggest that the mechanism by which antithrombotic agents increase survival and decrease metastasis in cancer patients is through attenuation of platelet angiogenic potential.

  6. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity.

    PubMed

    Freese, Christian; Hanada, Sanshiro; Fallier-Becker, Petra; Kirkpatrick, C James; Unger, Ronald E

    2017-05-01

    We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm(2) was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.

  7. Tumour biology: Herceptin acts as an anti-angiogenic cocktail

    NASA Astrophysics Data System (ADS)

    Izumi, Yotaro; Xu, Lei; di Tomaso, Emmanuelle; Fukumura, Dai; Jain, Rakesh K.

    2002-03-01

    Malignant tumours secrete factors that enable them to commandeer their own blood supply (angiogenesis), and blocking the action of these factors can inhibit tumour growth. But because tumours may become resistant to treatments that target individual angiogenic factors by switching over to other angiogenic molecules, a cocktail of multiple anti-angiogenic agents should be more effective. Here we show that herceptin, a monoclonal antibody against the cell-surface receptor HER2 (for human epidermal growth factor receptor-2; ref. 4), induces normalization and regression of the vasculature in an experimental human breast tumour that overexpresses HER2 in mice, and that it works by modulating the effects of different pro- and anti-angiogenic factors. As a single agent that acts against multiple targets, herceptin, or drugs like it, may offer a simple alternative to combination anti-angiogenic treatments.

  8. [The diagnostic value of microsatellite LOH analysis and the prognostic relevance of angiogenic gene expression in urinary bladder cancer].

    PubMed

    Szarvas, Tibor

    2009-12-01

    Bladder cancer is the second most common malignancy affecting the urinary system. Currently, histology is the only tool that determines therapy and patients' prognosis. As the treatment of non-invasive (Ta/T1) and muscle invasive (T2-T4) bladder tumors are completely different, correct staging is important, although it is often hampered by disturbing factors. Molecular methods offer new prospects for early disease detection, confirmation of unclear histological findings and prognostication. Applying molecular biological methods, the present study is searching for answers to current diagnostic and prognostic problems in bladder carcinoma. We analyzed tumor, blood and/or urine samples of 334 bladder cancer patients and 117 control individuals. Genetic alterations were analyzed in urine samples of patients and controls, both by PCR-based microsatellite loss of heterozigosity (LOH) analysis using 12 fluorescently labeled primers and by DNA hybridization based UroVysion FISH technique using 4 probes, to assess the diagnostic values of these methods. Whole genome microsatellite analysis (with 400 markers) was performed in tumor and blood specimens of bladder cancer patients to find chromosomal regions, the loss of which may be associated with tumor stage. Furthermore, we assessed the prognostic value of Tie2, VEGF, Angiopoietin-1 and -2. We concluded that DNA analysis of voided urine samples by microsatellite analysis and FISH are sensitive and non-invasive methods to detect bladder cancer. Furthermore, we established a panel of microsatellite markers that could differentiate between non-invasive and invasive bladder cancer. However, further analyses in a larger cohort of patients are needed to assess their specificity and sensitivity. Finally, we identified high Ang-2 and low Tie2 gene expression as significant and independent risk factors of tumor recurrence and cancer related survival.

  9. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    PubMed Central

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J.A.; Kilby, M.D.; Chan, S.Y.

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human decidua from first (8–11 weeks; n = 18) and second (12–16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10−) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel® was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1

  10. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    NASA Astrophysics Data System (ADS)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and

  11. Neuroprotective and Angiogenic Effects of Bone Marrow Transplantation Combined With Granulocyte Colony-Stimulating Factor in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Ohta, Yasuyuki; Nagai, Makiko; Miyazaki, Kazunori; Tanaka, Nobuhito; Kawai, Hiromi; Mimoto, Takafumi; Morimoto, Nobutoshi; Kurata, Tomoko; Ikeda, Yoshio; Matsuura, Tohru; Abe, Koji

    2011-01-01

    Bone marrow (BM) cells from amyotrophic lateral sclerosis (ALS) patients show significantly reduced expression of several neurotrophic factors. Monotherapy with either wild-type (WT) BM transplantation (BMT) or granulocyte colony-stimulating factor (GCSF) has only a small clinical therapeutic effect in an ALS mouse model, due to the phenomenon of neuroprotection. In this study, we investigated the clinical benefits of combination therapy using BMT with WT BM cells, plus GCSF after disease onset in ALS mice [transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation]. Combined treatment with BMT and GCSF delayed disease progression and prolonged the survival of G93A mice, whereas BMT or GCSF treatment alone did not. Histological study of the ventral horns of lumbar cords from G93A mice treated with BMT and GCSF showed a reduction in motor neuron loss coupled with induced neuronal precursor cell proliferation, increased expression of neurotrophic factors (glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor and angiogenin), and neovascularization compared with controls (vehicle only). Compared with G93A microglial cells, most BM-derived WT cells differentiated into microglial cells and strongly expressed neurotrophic factors, combined BMT and GCSF treatment led to the replacement of G93A microglial cells with BM-derived WT cells. These results indicate combined treatment with BMT and GCSF has potential neuroprotective and angiogenic effects in ALS mice, induced by the replacement of G93A microglial cells with BM-derived WT cells. Furthermore, this is the first report showing the effects of combined BMT and GCSF treatment on blood vessels in ALS. PMID:26998403

  12. Circulating Angiogenic Factors Associated with Response and Survival in Patients with Acute Graft-Versus-Host Disease: Results from BMT CTN 0302 and 0802

    PubMed Central

    Holtan, Shernan G.; Verneris, Michael R.; Schultz, Kirk R.; Newell, Laura F.; Meyers, Gabrielle; He, Fiona; DeFor, Todd E.; Vercellotti, Gregory M.; Slungaard, Arne; MacMillan, Margaret L.; Cooley, Sarah A.; Blazar, Bruce R.; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J.

    2015-01-01

    Circulating angiogenic factors (AF) reflect tissue healing capacity, although some AF can also contribute to inflammation and are indicative of endothelial dysfunction. The AF milieu in acute graft-versus-host disease (aGVHD) has not been broadly characterized. We hypothesized that patients with abundant AF involved in repair/regeneration vs. those mediating damage/inflammation would have improved outcomes. Circulating AF known predominantly for repair/regeneration (epidermal growth factor [EGF], fibroblast growth factor-1 and -2, heparin binding-EGF-like growth factor, vascular endothelial growth factor-A, -C, and -D) and for damage/inflammation (angiopoietin-2, endothelin-1, soluble endoglin [sEng], follistatin [FS], leptin, placental growth factor [PlGF]) were measured in a discovery set of HCT recipients with grade III/IV aGVHD versus controls, then validated in two aGVHD cohorts enrolled in Blood and Marrow Transplant Clinical Trials Network (BMT CTN) trials 0302 (N=105, serum) and 0802 (N=158, plasma) versus controls without aGVHD (N=53, serum). Levels of EGF and VEGF-A were lower than controls at the onset of aGVHD in both trials and higher with complete response to first-line aGVHD therapy in CTN 0802. FS and PlGF were elevated in aGVHD measured in either serum or plasma. At day 28 after initial aGVHD therapy, elevated FS was an independent negative prognostic factor for survival in both cohorts (hazard ratio 9.3 in CTN 0302, 2.8 in CTN 0802). These data suggest that circulating AF are associated with clinical outcomes after aGVHD and thus may contribute to both pathogenesis and recovery. PMID:25759146

  13. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  14. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration* ♦

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F.; Fuh, Germaine

    2015-01-01

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137

  15. VEGF Gene Expression in Adult Human Thymus Fat: A Correlative Study with Hypoxic Induced Factor and Cyclooxigenase-2

    PubMed Central

    Tinahones, Francisco; Salas, Julian; Mayas, María Dolores; Ruiz-Villalba, Adrian; Macias-Gonzalez, Manuel; Garrido-Sanchez, Lourdes; DeMora, Manuel; Moreno-Santos, Inmaculada; Bernal, Rosa; Cardona, Fernando; Bekay, Rajaa El

    2009-01-01

    It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. Design Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. Results We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1α, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARγ1/γ2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. Conclusion Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to

  16. Expression analysis of angiogenic growth factors and biological axis CXCL12/CXCR4 axis in idiopathic pulmonary fibrosis.

    PubMed

    Antoniou, Katerina M; Soufla, Giannoula; Lymbouridou, Rena; Economidou, Foteini; Lasithiotaki, Ismini; Manousakis, Manolis; Drositis, Ioannis; Spandidos, Demetrios A; Siafakas, Nikolaos M

    2010-01-01

    Idiopathic pulmonary fibrosis (IPF) is associated with aberrant repair, persistence of collagen deposition, and the development of vascular remodeling. However, the role of angiogenesis in the pathogenesis of IPF is still undetermined. The aim of this study was to evaluate the combined mRNA expression of vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF1) epidermal growth factor (EGF), and its receptor (EGFR) in lung tissue obtained from IPF patients. We have also investigated the expression of chemokine CXCL12/stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, to identify alterations that maybe implicated in the pathogenesis of IPF. The subjects studied consisted of two distinct groups: patients with IPF (n = 25) and subjects (control) undergoing thoracic surgery for reasons other than interstitial lung disease (n = 10). Expression analysis of the aforementioned growth factors and biological axis CXCL12/CXR4 analysis were performed using real-time RT-PCR. IGF-1, EGF, and FGF2 mRNA levels are significantly decreased in the patients compared to the controls (p = 0.028, p = 0.023 and p = 0.009, respectively). SDF1-TR1 and SDF1-TR2 transcript levels were significantly lower in patients compared to controls (p = 0.017 and p = 0.001). Significant coexpression of VEGF mRNA with IGF mRNA was observed in the group of the patients (p = 0.017). An additional coexpression of VEGF mRNA with SDF1-TR1 mRNA was demonstrated(p = 0.030). Our results show a downregulation in angiogenetic mechanisms in IPF. However, our results should be further verified by measuring other angiogenetic pathways in more samples.

  17. Angiogenic effect induced by mineral fibres.

    PubMed

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-10-09

    Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs are potential angiogenic agents that can induce regenerative cytokine and angiogenic factor production resulting in the formation of new blood vessels.

  18. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  19. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene.

    PubMed Central

    Hagiwara, K; Stenman, G; Honda, H; Sahlin, P; Andersson, A; Miyazono, K; Heldin, C H; Ishikawa, F; Takaku, F

    1991-01-01

    Human platelet-derived endothelial cell growth factor (hPD-ECGF) is a novel angiogenic factor which stimulates endothelial cell growth in vitro and promotes angiogenesis in vivo. We report here the cloning and sequencing of the gene for hPD-ECGF and its flanking regions. This gene is composed of 10 exons dispersed over a 4.3-kb region. Its promoter lacks a TATA box and a CCAAT box, structures characteristic of eukaryotic promoters. Instead, six copies of potential Sp1-binding sites (GGGCGG or CCGCCC) were clustered just upstream of the transcription start sites. Southern blot analysis using genomic DNAs from several vertebrates suggested that the gene for PD-ECGF is conserved phylogenetically among vertebrates. The gene for hPD-ECGF was localized to chromosome 22 by analysis of a panel of human-rodent somatic cell hybrid lines. Images PMID:2005900

  20. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke.

    PubMed

    Fouda, Abdelrahman Y; Alhusban, Ahmed; Ishrat, Tauheed; Pillai, Bindu; Eldahshan, Wael; Waller, Jennifer L; Ergul, Adviye; Fagan, Susan C

    2017-01-01

    Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.

  1. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.

    PubMed Central

    Papapetropoulos, A; García-Cardeña, G; Madri, J A; Sessa, W C

    1997-01-01

    Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis and angiogenesis. To investigate the role of nitric oxide (NO) in VEGF-induced proliferation and in vitro angiogenesis, human umbilical vein endothelial cells (HUVEC) were used. VEGF stimulated the growth of HUVEC in an NO-dependent manner. In addition, VEGF promoted the NO-dependent formation of network-like structures in HUVEC cultured in three dimensional (3D) collagen gels. Exposure of cells to VEGF led to a concentration-dependent increase in cGMP levels, an indicator of NO production, that was inhibited by nitro-L-arginine methyl ester. VEGF-stimulated NO production required activation of tyrosine kinases and increases in intracellular calcium, since tyrosine kinase inhibitors and calcium chelators attenuated VEGF-induced NO release. Moreover, two chemically distinct phosphoinositide 3 kinase (PI-3K) inhibitors attenuated NO release after VEGF stimulation. In addition, HUVEC incubated with VEGF for 24 h showed an increase in the amount of endothelial NO synthase (eNOS) protein and the release of NO. In summary, both short- and long-term exposure of human EC to VEGF stimulates the release of biologically active NO. While long-term exposure increases eNOS protein levels, short-term stimulation with VEGF promotes NO release through mechanisms involving tyrosine and PI-3K kinases, suggesting that NO mediates aspects of VEGF signaling required for EC proliferation and organization in vitro. PMID:9399960

  2. Key components of the mode of action for hemangiosarcoma induction in pregabalin-treated mice: evidence of increased bicarbonate, dysregulated erythropoiesis, macrophage activation, and increased angiogenic growth factors in mice but not in rats.

    PubMed

    Criswell, Kay A; Wojcinski, Zbigniew; Pegg, David; Albassam, Mudher; Duddy, Steven; Olsen, Eric; Bailie, Marc; Foote, Stephen; Anderson, Timothy

    2012-07-01

    In carcinogenicity studies, pregabalin increased hemangiosarcoma incidence in mice but not in rats. Investigative studies, ranging in length from 24 h to 12 months, were conducted in mice (1000 or 5000 mg/kg) and rats (900 mg/kg) to evaluate a potential mode-of-action scheme for tumor formation. Three areas were evaluated: (1) hematopoiesis (because endothelial and hematopoietic cells arise from the same precursor and hemangiosarcomas are primarily located in mouse hematopoietic tissues), (2) angiogenic growth factors (because increased angiogenic growth factors may stimulate vascular tumors), and (3) pulmonary/blood gas parameters (because hypoxia is a known driver for endothelial cell proliferation). In mice, pregabalin rapidly increased platelet and megakaryocyte counts, activated platelets and bone marrow erythrophages, decreased the myeloid-to-erythroid (M:E) ratio (49%), and produced bone marrow and splenic congestion and extramedullary hematopoiesis (EMH). Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor immunohistochemical staining were also increased in mouse bone marrow and spleen and vascular endothelial growth factor receptor 2 immunolabeling was increased in liver. Serum bicarbonate was increased within 24 h of pregabalin administration, persisted over time, and was accompanied by decreased respiratory rate (up to 34%) and increased partial pressure of carbon dioxide (pCO(2)), resulting in sustained metabolic alkalosis and elevated blood pH in mice. In contrast, in rats, pregabalin decreased overall bone marrow cellularity, including decreased number of megakaryocytes (24%) with no evidence of erythrophages, no change in M:E ratio, no EMH, and no increase in angiogenic growth factors or blood pH. Persistent alterations in serum bicarbonate, respiratory function, and blood gas parameters in mice, without adequate compensatory mechanisms, has the potential to create chronic tissue hypoxia, an accepted driver of endothelial

  3. Novel aspects of corneal angiogenic and lymphangiogenic privilege

    PubMed Central

    Ellenberg, David; Azar, Dimitri T.; Hallak, Joelle A.; Tobaigy, Faisal; Han, Kyu Yeon; Jain, Sandeep; Zhou, Zhongjun; Chang, Jin-Hong

    2013-01-01

    In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the proangiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed. PMID:20100589

  4. Computational Protein Design to Re-Engineer Stromal Cell-Derived Factor-1α (SDF) Generates an Effective and Translatable Angiogenic Polypeptide Analog

    PubMed Central

    Hiesinger, William; Perez-Aguilar, Jose Manuel; Atluri, Pavan; Marotta, Nicole A.; Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Muenzer, Jeffrey R.; Yang, Elaine C.; Levit, Rebecca D.; Yuan, Li-Jun; MacArthur, John W.; Saven, Jeffery G.; Woo, Y. Joseph

    2014-01-01

    BACKGROUND After ischemic injury, cardiac secretion of the potent endothelial progenitor stem cell (EPC) chemokine SDF stimulates endogenous neovascularization and myocardial repair, a process insufficiently robust to repair major infarcts. Experimentally, exogenous administration of recombinant SDF enhances neovasculogenesis and cardiac function after MI. However, SDF has a short half-life, is bulky, and very expensive. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. METHODS and RESULTS Protein structure model was used to engineer an SDF polypeptide analog (ESA) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. EPCs in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared to both SDF and control gradients (ESA 567±74 cells/HPF vs SDF 438±46 p=0.037; vs Control 156±45 p=0.001). EPC receptor activation was evaluated by quantifying phosphorylated AKT. ESA had significantly greater pAKT levels than SDF and control (1.64±0.24 vs 1.26±0.187, p=0.01; vs. 0.95±0.08, p<0.001). Angiogenic growth factor assays revealed a distinct increase in Angiopoietin-1 expression in the ESA and SDF treated hearts. Also, CD-1 mice (n=30) underwent LAD ligation and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in EF, CO, SV, and Fractional Area Change (FAC) in mice treated with ESA when compared to controls and significant improvement in FAC when compared to SDF treated

  5. Design and Development of Peptides from the Anti-Angiogenic Pigment Epithelial-Derived Factor for the Therapy of Prostate Cancer

    DTIC Science & Technology

    2007-12-01

    ABSTRACT To create PEDF based therapy for hormone-refractory CaP we have proposed to design short synthetic peptides corresponding to the 34- mer...anti-angiogenic epitope of PEDF . The 3D structure of PEDF 34-mer peptide was analyzed using Protean software in terms of relative hydrophobicity, charge...distribution, and antigenic index. Three synthetic peptides covering the 34-mer PEDF fragment were generated and tested for the ability to reproduce

  6. [The effect of tobacco smoking on serum concentration of selected angiogenic factors and somatomedin C in pregnant women and umbilical cord blood].

    PubMed

    Chełchowska, Magdalena; Gajewska, Joanna; Ambroszkiewicz, Jadwiga; Lewandowski, Leszek; Maciejewski, Tomasz M; Ołtarzewski, Mariusz; Laskowska-Klita, Teresa

    2013-01-01

    The objective of this study was to evaluate the effect of cigarette smoking on concentration of selected angiogenic factors (vascular endothelial growth factor VEGF, placenta growth factor PIGF) and somatomedin C (insulin-like growth factor-I) in blood of mothers and umbilical cord blood. The correlations between studied biochemical parameters and markers of estimated intensity of cigarette smoking as well as birth weight were also determined. Fifty healthy pregnant women were divided into two groups: smoking and tobacco abstinent group according to serum cotinine concentration. The current smokers were defined as those who had smoked 5 cigarettes per day for 2 years before conception and continued smoking during pregnancy. In the group of smoking mothers the mean serum concentration of cotinine was 91.6 microg/L and correlated positively with number of cigarettes daily consumed (r = 0.58, p < 0.01) as well as with time of smoking before conception (r = 0.40, p < 0.05). The mean serum concentration of PIGF in III trimester of pregnancy was significantly higher in the group of smokers than in non-smoking ones (p < 0.0001) and correlated with serum cotinine concentration (r = 0.41, p < 0.05) and number of cigarettes daily consumed (r = 0.58, p < 0.01). The concentration of serum VEGF was similar in both studied group. The mean serum level of IGF-I was significantly lower in group of smokers than in non-smokers in the I and III trimester of gestation (p < 0.01). Also in umbilical cord blood of smoking newborn the concentration of IGF-I was lower by 20% than in nonsmoking group (p < 0.05). We observed negative correlation between number of cigarettes daily consumed and serum level of IGF-I in blood of mothers as well as in blood of their children (I trimester: r = -0.43, p < 0.05; III trimester: r = -0.70, p < 0.001; umbilical cord blood: r = -0.45, p < 0.05). In both studied groups there were a positive correlation between birth weight and concentrations of IGF-I in

  7. Cobalt chloride improves angiogenic potential of CD133+ cells.

    PubMed

    Zan, Tao; Du, Zijing; Li, Hua; Li, QingFeng; Gu, Bin

    2012-06-01

    Umbilical cord blood-derived CD133+ cells exhibit the ability to differentiate into endothelial cells and induce new blood vessel growth. Hypoxia-inducible factor-1 (HIF-1), a regulator of hypoxia or the hypoxia-mimetic agent response, actives the SDF-1/CXCR4 signaling pathway and thus plays an important role in angiogenesis in-vivo. In this study we aim to investigate whether CD133+ cells enhance angiogenic ability through hypoxia or CoCl2 in vitro. The CD133+ cells were cultured in normoxia (20 Percent O2), hypoxia (10 Percent O2, 3 Percent O2), or in various concentrations of CoCl2 (50 microM/L, 100 microM/L, 200 microM/L) and subjected to in vitro flow cytometric analysis, tubule formation, as well as migration and proliferation assays. The results demonstrate that both environmental hypoxia and CoCl2 induced hypoxia result in significantly increased CD133+ cell migration, proliferation, and tubule-like structure formation compared with normoxia culture conditions. The HIF-1a, SDF-1, and VEGF protein and gene expression level in conditions of hypoxia is higher than that found in normaxia conditions. Collectively, these data suggest that angiogenic potential of CD133+ cells is influenced by hypoxia or a hypoxia mimetic agent in vitro.

  8. Characterization and angiogenic potential of human neonatal and infant thymus mesenchymal stromal cells.

    PubMed

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G; Si, Ming-Sing

    2015-04-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro.

  9. Characterization and Angiogenic Potential of Human Neonatal and Infant Thymus Mesenchymal Stromal Cells

    PubMed Central

    Wang, Shuyun; Mundada, Lakshmi; Johnson, Sean; Wong, Joshua; Witt, Russell; Ohye, Richard G.

    2015-01-01

    Resident mesenchymal stromal cells (MSCs) are involved in angiogenesis during thymus regeneration. We have previously shown that MSCs can be isolated from enzymatically digested human neonatal and infant thymus tissue that is normally discarded during pediatric cardiac surgical procedures. In this paper, we demonstrate that thymus MSCs can also be isolated by explant culture of discarded thymus tissue and that these cells share many of the characteristics of bone marrow MSCs. Human neonatal thymus MSCs are clonogenic, demonstrate exponential growth in nearly 30 population doublings, have a characteristic surface marker profile, and express pluripotency genes. Furthermore, thymus MSCs have potent proangiogenic behavior in vitro with sprout formation and angiogenic growth factor production. Thymus MSCs promote neoangiogenesis and cooperate with endothelial cells to form functional human blood vessels in vivo. These characteristics make thymus MSCs a potential candidate for use as an angiogenic cell therapeutic agent and for vascularizing engineered tissues in vitro. PMID:25713463

  10. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    PubMed Central

    2013-01-01

    Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy. PMID:23618362

  11. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta; Prasek, Marta; Jaworski, Slawomir; Chwalibog, André

    2013-04-01

    Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.

  12. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance

    PubMed Central

    Depner, C.; zum Buttel, H.; Böğürcü, N.; Cuesta, A. M.; Aburto, M. R.; Seidel, S.; Finkelmeier, F.; Foss, F.; Hofmann, J.; Kaulich, K.; Barbus, S.; Segarra, M.; Reifenberger, G.; Garvalov, B. K.; Acker, T.; Acker-Palmer, A.

    2016-01-01

    Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible factor (HIF)-1α induces the EMT repressor ZEB2, which directly downregulates ephrinB2 through promoter binding to enhance tumour invasiveness. This mechanism is activated following anti-angiogenic treatment of gliomas and is efficiently blocked by disrupting ZEB2 activity. Taken together, our results identify ZEB2 as an attractive therapeutic target to inhibit tumour invasion and counteract tumour resistance mechanisms induced by anti-angiogenic treatment strategies. PMID:27470974

  13. The angiogenic peptide vascular endothelial growth factor-basic fibroblast growth factor signaling is up-regulated in a rat pressure ulcer model.

    PubMed

    Yang, Jing-Jin; Wang, Xue-Ling; Shi, Bo-Wen; Huang, Fang

    2013-08-01

    The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P < 0.05). The expression of VEGF and bFGF in the tissues surrounding I- and II-degree pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P < 0.05). There was a significant positive correlation between change in the VEGF and bFGF. The results showed that with an increase in the degree of pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers.

  14. Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products.

    PubMed

    Harikumar, Kuzhuvelil B; Sung, Bokyung; Tharakan, Sheeja T; Pandey, Manoj K; Joy, Beena; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B

    2010-05-01

    Agents that are safe, affordable, and efficacious are urgently needed for the prevention of chronic diseases such as cancer. Sesamin, a lipid-soluble lignan, is one such agent that belongs to a class of phytoestrogens, isolated from sesame (Sesamum indicum), and has been linked with prevention of hyperlipidemia, hypertension, and carcinogenesis through an unknown mechanism. Because the transcription factor NF-kappaB has been associated with inflammation, carcinogenesis, tumor cell survival, proliferation, invasion, and angiogenesis of cancer, we postulated that sesamin might mediate its effect through the modulation of the NF-kappaB pathway. We found that sesamin inhibited the proliferation of a wide variety of tumor cells including leukemia, multiple myeloma, and cancers of the colon, prostate, breast, pancreas, and lung. Sesamin also potentiated tumor necrosis factor-alpha-induced apoptosis and this correlated with the suppression of gene products linked to cell survival (e.g., Bcl-2 and survivin), proliferation (e.g., cyclin D1), inflammation (e.g., cyclooxygenase-2), invasion (e.g., matrix metalloproteinase-9, intercellular adhesion molecule 1), and angiogenesis (e.g., vascular endothelial growth factor). Sesamin downregulated constitutive and inducible NF-kappaB activation induced by various inflammatory stimuli and carcinogens, and inhibited the degradation of IkappaBalpha, the inhibitor of NF-kappaB, through the suppression of phosphorylation of IkappaBalpha and inhibition of activation of IkappaBalpha protein kinase, thus resulting in the suppression of p65 phosphorylation and nuclear translocation, and NF-kappaB-mediated reporter gene transcription. The inhibition of IkappaBalpha protein kinase activation was found to be mediated through the inhibition of TAK1 kinase. Overall, our results showed that sesamin may have potential against cancer and other chronic diseases through the suppression of a pathway linked to the NF-kappaB signaling.

  15. Immunomodulatory Glc/Man-directed Dolichos lablab Lectin (DLL) evokes anti-tumor response in-vivo by counteracting angiogenic gene expressions.

    PubMed

    Vigneshwaran, V; Thirusangu, Prabhu; Br, Vijay Avin; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T

    2017-03-07

    Neovascularization and jeopardized immunity has been critically emphasized for the establishment of malignant progression. Lectins are the diverse class of carbohydrate interacting proteins having great potential as immunopotentiating and anticancer agents. The present investigation sought to demonstrate the antiproliferative activity of Dolichos lablab lectin (DLL) encompassing immunomodulatory attribute. DLL specific to glucose and mannose carbohydrate moieties has been purified to homogeneity from the common dietary legume Dolichos lablab. Results elucidated that DLL nonspecifically agglutinated blood cells and displayed striking mitogenecity to human and murine lymphocytes in-vitro with IL-2 production. The DLL conditioned medium exerted cytotoxicity towards malignant cells and neoangiogenesis in-vitro. Similarly, in-vivo antitumor investigation of DLL elucidated the regressed proliferation of ascitic and solid tumor cells which was paralleled with blockade of tumor neovasculature. DLL treated mice showed an upregulated immunoregulatory cytokine IL-2 in contrast to severely declined levels in control mice. Mechanistic validation revealed that DLL has abrogated the microvessel formation by weakening the proangiogenic signals specifically NF-κB, HIF-1 α, MMP-2&9 and VEGF in malignant cells leading to tumor regression. In summary, it is evident that the dietary lectin DLL potentially dampens the malignant establishment by mitigating neo-angiogenesis and immune shutdown. This study for the first time dictates the critical role of DLL as an immunostimulatory and anti-angiogenic molecule in cancer therapeutics. This article is protected by copyright. All rights reserved.

  16. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  17. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces.

    PubMed

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-17

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  18. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    PubMed Central

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-01-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization. PMID:26883761

  19. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    NASA Astrophysics Data System (ADS)

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  20. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair.

    PubMed

    Kingham, Paul J; Kolar, Mallappa K; Novikova, Liudmila N; Novikov, Lev N; Wiberg, Mikael

    2014-04-01

    In future, adipose-derived stem cells (ASC) might be used to treat neurological disorders. In this study, the neurotrophic and angiogenic properties of human ASC were evaluated, and their effects in a peripheral nerve injury model were determined. In vitro growth factor stimulation of the cells resulted in increased secretion of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor-A (VEGF-A), and angiopoietin-1 proteins. Conditioned medium from stimulated cells increased neurite outgrowth of dorsal root ganglia (DRG) neurons. Similarly, stimulated cells showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. ASC were seeded into a fibrin conduit that was used to bridge a 10 mm rat nerve gap. After 2 weeks, the animals treated with control or stimulated ASC showed an enhanced axon regeneration distance. Stimulated cells evoked more total axon growth. Analysis of regeneration and apoptosis-related gene expression showed that both ASC and stimulated ASC enhanced GAP-43 and activating transcription factor 3 (ATF-3) expression in the spinal cord and reduced c-jun expression in the DRG. Caspase-3 expression in the DRG was reduced by stimulated ASC. Both ASC and stimulated ASC also increased the vascularity of the fibrin nerve conduits. Thus, ASC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for nerve regeneration.

  1. Pro-angiogenic properties of orosomucoid (ORM)

    SciTech Connect

    Irmak, Ster; Oliveira-Ferrer, Leticia; Erguen, Sueleyman; Tilki, Derya

    2009-11-01

    The acute phase protein orosomucoid (ORM), also known as alpha1-acid glycoprotein (AGP), is found to be increased in infection, inflammation and cancer. Recently, we demonstrated that ORM is produced by endothelial cells and detectable in urine samples of patients with bladder cancer. However, it was not clarified yet whether ORM plays a role in new vessel formation. To this aim we performed overexpression and gene silencing for ORM in human microvascular endothelial cells (HDMECs). ORM purified from human plasma was used individually or in combination with VEGF-A in endothelial tube formation, migration and proliferation assay. The in vivo effect of ORM in angiogenesis was studied using the chicken chorionallantois membrane (CAM) with subsequent counting of blood vessels on histological sections from the stimulated areas of CAM tissue. Our data show that ORM alone enhances migration but not proliferation of HDMECs. ORM alone does not induce endothelial tubes in vitro but simultaneous application of ORM with VEGF-A increases the number and the network of VEGF-A-induced endothelial tubes. Remarkably, ORM alone induces new vessel formation in vivo using CAM assay and supports the VEGF-A-induced new vessel formation in this assay. Taken together, our results let assume that ORM has pro-angiogenic properties and supports the angiogenic effect of VEGF-A. Thus, ORM seems to be involved in the regulation of angiogenesis.

  2. Engineering Factor Viii for Hemophilia Gene Therapy

    PubMed Central

    Roberts, Sean A.; Dong, Biao; Firrman, Jenni A.; Moore, Andrea R.; Sang, Nianli; Xiao, Weidong

    2012-01-01

    Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A. PMID:23565342

  3. Graphene Oxides Show Angiogenic Properties.

    PubMed

    Mukherjee, Sudip; Sriram, Pavithra; Barui, Ayan Kumar; Nethi, Susheel Kumar; Veeriah, Vimal; Chatterjee, Suvro; Suresh, Kattimuttathu Ittara; Patra, Chitta Ranjan

    2015-08-05

    Angiogenesis, a process resulting in the formation of new capillaries from the pre-existing vasculature plays vital role for the development of therapeutic approaches for cancer, atherosclerosis, wound healing, and cardiovascular diseases. In this report, the synthesis, characterization, and angiogenic properties of graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated, observed through several in vitro and in vivo angiogenesis assays. The results here demonstrate that the intracellular formation of reactive oxygen species and reactive nitrogen species as well as activation of phospho-eNOS and phospho-Akt might be the plausible mechanisms for GO and rGO induced angiogenesis. The results altogether suggest the possibilities for the development of alternative angiogenic therapeutic approach for the treatment of cardiovascular related diseases where angiogenesis plays a significant role.

  4. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  5. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  6. Circulating angiogenic factors associated with response and survival in patients with acute graft-versus-host disease: results from Blood and Marrow Transplant Clinical Trials Network 0302 and 0802.

    PubMed

    Holtan, Shernan G; Verneris, Michael R; Schultz, Kirk R; Newell, Laura F; Meyers, Gabrielle; He, Fiona; DeFor, Todd E; Vercellotti, Gregory M; Slungaard, Arne; MacMillan, Margaret L; Cooley, Sarah A; Blazar, Bruce R; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J

    2015-06-01

    Circulating angiogenic factors (AF) reflect tissue healing capacity, although some AF can also contribute to inflammation and are indicative of endothelial dysfunction. The AF milieu in acute graft-versus-host disease (aGVHD) has not been broadly characterized. We hypothesized that patients with abundant AF involved in repair/regeneration versus those mediating damage/inflammation would have improved outcomes. Circulating AF known predominantly for repair/regeneration (epidermal growth factor [EGF], fibroblast growth factor-1 and -2, heparin binding-EGF-like growth factor, and vascular endothelial growth factor-A [VEGF-A], -C, and -D) and for damage/inflammation (angiopoietin-2, endothelin-1, soluble endoglin [sEng], follistatin [FS], leptin, and placental growth factor [PlGF]) were measured in a discovery set of hematopoietic cell recipients with grade III and IV aGVHD and compared with controls, then validated in 2 aGVHD cohorts enrolled in Blood and Marrow Transplant Clinical Trials Network (BMT CTN) trials 0302 (n = 105, serum) and 0802 (n = 158, plasma) versus controls without aGVHD (n = 53, serum). Levels of EGF and VEGF-A were lower than in controls at the onset of aGVHD in both trials and higher with complete response to first-line aGVHD therapy in CTN 0802. FS and PlGF were elevated in aGVHD measured in either serum or plasma. At day 28 after initial aGVHD therapy, elevated FS was an independent negative prognostic factor for survival in both cohorts (hazard ratio, 9.3 in CTN 0302; 2.8 in CTN 0802). These data suggest that circulating AF are associated with clinical outcomes after aGVHD and, thus, may contribute to both pathogenesis and recovery.

  7. Upregulation of the expression of inflammatory and angiogenic markers in human adipocytes by a synthetic cannabinoid, JTE-907.

    PubMed

    González-Muniesa, P; Bing, C; Trayhurn, P

    2010-09-01

    Inflammation in adipose tissue is a characteristic of obesity and the metabolic syndrome. It is suggested that the endocannabinoid system is involved in the regulation of inflammatory and angiogenic processes within the tissue. Human subcutaneous preadipocytes (Zen Bio) were used as the source of human preadipocytes or adipocytes. Gene expression was examined by RT-PCR and real-time PCR. The secretion of inflammation-related proteins was determined by an ELISA array. In experiments on adipocytes treated at day 14 post-differentiation, JTE-907, a synthetic cannabinoid, upregulated the expression of key inflammatory markers - IL-6, MCP-1 and IL-1 beta - and angiogenic factors - VEGF and ANGPTL4 - at 10 microM after 20 h of treatment, having also increased the expression of TRPV1 at 10 microM. JTE-907 showed no effect after 4 h. The ELISA array showed a 2.6-fold increase in IL-6 protein release. The effect of JTE-907 was inhibited by AM251 (CB1 antagonist), and partially by arachidonyl serotonin (TRPV1 and FAAH antagonist). The CB2 antagonist, AM630, partially upregulated the effect of JTE-907. Preadipocytes fed 14 days after 100% confluence exhibited downregulation of CB1, MCP-1, and IL-1 beta, 20 h after having been exposed to JTE-907. CB1 and TRPV1 receptors participate in the regulation of several inflammatory and angiogenic factors in human adipocytes, indicating their potential value as targets for the treatment of disorders related to obesity.

  8. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L

    PubMed Central

    Ramello, M C; Tosello Boari, J; Canale, F P; Mena, H A; Negrotto, S; Gastman, B; Gruppi, A; Acosta Rodríguez, E V; Montes, C L

    2014-01-01

    Solid tumors are infiltrated by immune cells where macrophages and senescent T cells are highly represented. Within the tumor microenvironment, a cross-talk between the infiltrating cells may occur conditioning the characteristic of the in situ immune response. Our previous work showed that tumors induce senescence of T cells, which are powerful suppressors of lympho-proliferation. In this study, we report that Tumor-Induced Senescent (TIS)-T cells may also modulate monocyte activation. To gain insight into this interaction, CD4+ or CD8+TIS-T or control-T cells were co-incubated with autologous monocytes under inflammatory conditions. After co-culture with CD4+ or CD8+TIS-T cells, CD14+ monocytes/macrophages (Mo/Ma) exhibit a higher expression of CD16+ cells and a reduced expression of CD206. These Mo/Ma produce nitric oxide and reactive oxygen species; however, TIS-T cells do not modify phagocyte capacity of Mo/Ma. TIS-T modulated-Mo/Ma show a higher production of pro-inflammatory cytokines (TNF, IL-1β and IL-6) and angiogenic factors (MMP-9, VEGF-A and IL-8) and a lower IL-10 and IP-10 secretion than monocytes co-cultured with controls. The mediator(s) present in the supernatant of TIS-T cell/monocyte-macrophage co-cultures promote(s) tubulogenesis and tumor-cell survival. Monocyte-modulation induced by TIS-T cells requires cell-to-cell contact. Although CD4+ shows different behavior from CD8+TIS-T cells, blocking mAbs against T-cell immunoglobulin and mucin protein 3 and CD40 ligand reduce pro-inflammatory cytokines and angiogenic factors production, indicating that these molecules are involved in monocyte/macrophage modulation by TIS-T cells. Our results revealed a novel role for TIS-T cells in human monocyte/macrophage modulation, which may have deleterious consequences for tumor progression. This modulation should be considered to best tailor the immunotherapy against cancer. PMID:25375372

  9. Pro-angiogenic cytokines as cardiovascular therapeutics: assessing the potential.

    PubMed

    Atluri, Pavan; Woo, Y Joseph

    2008-01-01

    Coronary artery and peripheral vascular disease are global health concerns with limited therapies. Currently available medical and surgical therapies for these disease processes are highly effective for only a fraction of patients. Extensive effort has been devoted to finding molecular therapies to enhance perfusion and function of ischemic myocardial and peripheral skeletal muscle. Angiogenic cytokines (fibroblast growth factor [FGF], vascular endothelial growth factor [VEGF], hepatocyte growth factor [HGF], placental growth factor, stromal cell-derived factor-1alpha) have shown theoretical and experimental promise in upregulating endogenous endothelial progenitor cell-mediated angiogenesis. Preliminary clinical trials have suggested improvements in myocardial and peripheral perfusion following therapy with FGF, VEGF, and HGF. Further studies on the efficacy of cytokine-mediated angiogenesis are required before widespread clinical application is possible. Investigation into adjunctive cytokine therapies for myocardial and peripheral muscle ischemia is warranted. Based on experimental evidence, appropriate angiogenic cytokine therapy should provide benefits in both perfusion and hemodynamic function.

  10. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  11. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].

    PubMed

    Ismailov, Sh M; Barykova, Iu A; Shmarov, M M; Tarantul, V Z; Barskov, I V; Kucherianu, V G; Brylev, L V; Logunov, D Iu; Tutykhina, I L; Bocharov, E V; Zakharova, M N; Naroditskiĭ, B S; Illarioshkin, S N

    2014-05-01

    Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg (SOD1*G93A)d11 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1(G93A) mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1(G93A) mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2-3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + ANG can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.

  12. Functional Angiogenic Mediators in Prostate Cancer

    DTIC Science & Technology

    2000-08-01

    FUNDING NUMBERS Functional Angiogenic Mediators in Prostate Cancer DAMD17-99- 1 -9521 6. AUTHOR(S) Jennifer A. Doll, Ph.D. 7. PERFORMING ORGANIZATION NAME...transition in the prostate by 1 ) identifying the key angiogenic mediators , 2) investigating the clinical significance of mediator levels in prostatic fluid...our proposal, we set out to 1 ) identify such mediators in the prostate, 2) assess the clinical usefulness of measuring angiogenic mediator levels in

  13. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea.

    PubMed

    Lopes, Flavia C M; Traina, Fabiola; Almeida, Camila B; Leonardo, Flavia C; Franco-Penteado, Carla F; Garrido, Vanessa T; Colella, Marina P; Soares, Raquel; Olalla-Saad, Sara T; Costa, Fernando F; Conran, Nicola

    2015-06-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  14. Hypoxia Affects the Structure of Breast Cancer Cell-Derived Matrix to Support Angiogenic Responses of Endothelial Cells.

    PubMed

    Hielscher, Abigail; Qiu, Connie; Porterfield, Josh; Smith, Quinton; Gerecht, Sharon

    2013-01-01

    Hypoxia, a common feature of the tumor environment and participant in tumor progression, is known to alter gene and protein expression of several Extracellular Matrix (ECM) proteins, many of which have roles in angiogenesis. Previously, we reported that ECM deposited from co-cultures of Neonatal Fibroblasts (NuFF) with breast cancer cells, supported 3-dimensional vascular morphogenesis. Here, we sought to characterize the hypoxic ECM and to identify whether the deposited ECM induce angiogenic responses in Endothelial Cells (ECs). NuFF and MDA-MB-231 breast cancer cells were co-cultured, subjected to alternating cycles of 24 hours of 1% (hypoxia) and 21% (atmospheric) oxygen and de-cellularized for analyses of deposited ECM. We report differences in mRNA expression profiles of matrix proteins and crosslinking enzymes relevant to angiogenesis in hypoxia-exposed co-cultures. Interestingly, overt differences in the expression of ECM proteins were not detected in the de-cellularized ECM; however, up-regulation of the cell-binding fragment of fibronecin was observed in the conditioned media of hypoxic co-cultures. Ultrastructure analyses of the de-cellularized ECM revealed differences in fiber morphology with hypoxic fibers more compact and aligned, occupying a greater percent area and having larger diameter fibers than atmospheric ECM. Examining the effect of hypoxic ECM on angiogenic responses of ECs, morphological differences in Capillary-Like Structures (CLS) formed atop de-cellularized hypoxic and atmospheric ECM were not evident. Interestingly, we found that hypoxic ECM regulated the expression of angiogenic factors and matrix metalloproteinases in CLS. Overall, we report that in vitro, hypoxia does not alter the composition of the ECM deposited by co-cultures of NuFF/MDA-MB-231, but rather alters fiber morphology, and induces vascular expression of angiogenic growth factors and metalloproteinases. Taken together, these results have important implications for

  15. Acquired resistance with epigenetic alterations under long-term anti-angiogenic therapy for hepatocellular carcinoma.

    PubMed

    Ohata, Yoshiteru; Shimada, Shu; Akiyama, Yoshimitsu; Mogushi, Kaoru; Nakao, Keisuke; Matsumura, Satoshi; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru; Tanaka, Shinji

    2017-02-28

    Anti-angiogenic therapy is initially effective for several solid tumors including hepatocellular carcinoma (HCC); however, they finally relapse and progress, resulting in poor prognosis. We here established in vivo drug-tolerant subclones of human HCC cells by long-term treatment with vascular endothelial growth factor receptor (VEGFR) inhibitor and serial transplantation in immunocompromised mice (total 12 months), and then compared them with the parental cells in molecular and biological features. Gene expression profiles elucidated a G-actin monomer binding protein thymosin β 4 (Tβ4) as one of the genes enriched in the resistant cancer cells relative to the initially sensitive ones. Highlighting epigenetic alterations involved in drug resistance, we revealed that Tβ4 could be aberrantly expressed following demethylation of DNA and active modification of histone H3 at the promoter region. Ectopic overexpression of Tβ4 in HCC cells could significantly enhance sphere-forming capacities and infiltrating phenotypes in vitro, and promote growth of tumors refractory to the VEGFR mutltikinase inhibitor sorafenib in vivo. Clinically, sorafenib failed to improve the progression-free survival in patients with Tβ4-high HCC, indicating that Tβ4 expression could be available as a surrogate marker of susceptibility to this drug. This study suggests that Tβ4 expression triggered by epigenetic alterations could contribute to the development of resistance to anti-angiogenic therapy by the acquisition of stemness, and that epigenetic control might be one of the key targets to regulate the resistance in HCC.

  16. Cardiac Angiogenic Imbalance Leads to Peri-partum Cardiomyopathy

    PubMed Central

    Patten, Ian S.; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R.; Rhee, Julie S.; Mitchell, John; Mahmood, Feroze; Hess, Phil; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D.; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S. Ananth; Arany, Zoltan

    2012-01-01

    Peri-partum cardiomyopathy (PPCM) is a frequently fatal disease that affects women near delivery, and occurs more frequently in women with pre-eclampsia and/or multiple gestation. The etiology of PPCM, or why it associates with pre-eclampsia, remains unknown. We show here that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble Flt1 (sFlt1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by sub-clinical cardiac dysfunction, the extent of which correlates with circulating levels of sFlt1. Exogenous sFlt1 alone caused diastolic dysfunction in wildtype mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFlt1. These data strongly suggest that PPCM is in large part a vascular disease, caused by excess anti-angiogenic signaling in the peri-partum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM. PMID:22596155

  17. Anti-angiogenic peptides for cancer therapeutics

    PubMed Central

    Rosca, Elena V.; Koskimaki, Jacob E.; Rivera, Corban G.; Pandey, Niranjan B.; Tamiz, Amir P.; Popel, Aleksander S.

    2011-01-01

    Peptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors. Here we survey recent developments for anti-angiogenic peptides with length not exceeding 50 amino acid residues that have shown activity in pre-clinical models of cancer or have been tested in clinical trials; some of the peptides have been modified and optimized, e.g., through L-to-D and non-natural amino acid substitutions. We highlight technological advances in peptide discovery and optimization including computational and bioinformatics tools and novel experimental techniques. PMID:21470139

  18. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    PubMed

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  19. Anti-angiogenic peptides for cancer therapeutics.

    PubMed

    Rosca, Elena V; Koskimaki, Jacob E; Rivera, Corban G; Pandey, Niranjan B; Tamiz, Amir P; Popel, Aleksander S

    2011-08-01

    Peptides have emerged as important therapeutics that are being rigorously tested in angiogenesis-dependent diseases due to their low toxicity and high specificity. Since the discovery of endogenous proteins and protein fragments that inhibit microvessel formation (thrombospondin, endostatin) several peptides have shown promise in pre-clinical and clinical studies for cancer. Peptides have been derived from thrombospondin, collagens, chemokines, coagulation cascade proteins, growth factors, and other classes of proteins and target different receptors. Here we survey recent developments for anti-angiogenic peptides with length not exceeding 50 amino acid residues that have shown activity in pre-clinical models of cancer or have been tested in clinical trials; some of the peptides have been modified and optimized, e.g., through L-to-D and non-natural amino acid substitutions. We highlight technological advances in peptide discovery and optimization including computational and bioinformatics tools and novel experimental techniques.

  20. Autism risk factors: genes, environment, and gene-environment interactions

    PubMed Central

    Chaste, Pauline; Leboyer, Marion

    2012-01-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors. PMID:23226953

  1. Autism risk factors: genes, environment, and gene-environment interactions.

    PubMed

    Chaste, Pauline; Leboyer, Marion

    2012-09-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors.

  2. Polymorphisms in the hypoxia-inducible factor 1 alpha gene in Mexican patients with preeclampsia: A case-control study

    PubMed Central

    2011-01-01

    Background Although the etiology of preeclampsia is still unclear, recent work suggests that changes in circulating angiogenic factors play a key role in its pathogenesis. In the trophoblast of women with preeclampsia, hypoxia-inducible factor 1 alpha (HIF-1α) is over-expressed, and induces the expression of non-angiogenic factors and inhibitors of trophoblast differentiation. This observation prompted the study of HIF-1α and its relation to preeclampsia. It has been described that the C1772T (P582S) and G1790A (A588T) polymorphisms of the HIF1A gene have significantly greater transcriptional activity, correlated with an increased expression of their proteins, than the wild-type sequence. In this work, we studied whether either or both HIF1A variants contribute to preeclampsia susceptibility. Results Genomic DNA was isolated from 150 preeclamptic and 105 healthy pregnant women. Exon 12 of the HIF1A gene was amplified by PCR, and the genotypes of HIF1A were determined by DNA sequencing. In preeclamptic women and controls, the frequencies of the T allele for C1772T were 4.3 vs. 4.8%, and the frequencies of the A allele for G1790A were 0.0 vs. 0.5%, respectively. No significant differences were found between groups. Conclusion The frequency of the C1772T and G1790A polymorphisms of the HIF1A gene is very low, and neither polymorphism is associated with the development of preeclampsia in the Mexican population. PMID:21414224

  3. Fluid shear stress threshold regulates angiogenic sprouting.

    PubMed

    Galie, Peter A; Nguyen, Duc-Huy T; Choi, Colin K; Cohen, Daniel M; Janmey, Paul A; Chen, Christopher S

    2014-06-03

    The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm(2) triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.

  4. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.

    PubMed

    Doukas, J; Chandler, L A; Gonzalez, A M; Gu, D; Hoganson, D K; Ma, C; Nguyen, T; Printz, M A; Nesbit, M; Herlyn, M; Crombleholme, T M; Aukerman, S L; Sosnowski, B A; Pierce, G F

    2001-05-01

    Although growth factor proteins display potent tissue repair activities, difficulty in sustaining localized therapeutic concentrations limits their therapeutic activity. We reasoned that enhanced histogenesis might be achieved by combining growth factor genes with biocompatible matrices capable of immobilizing vectors at delivery sites. When delivered to subcutaneously implanted sponges, a platelet-derived growth factor B-encoding adenovirus (AdPDGF-B) formulated in a collagen matrix enhanced granulation tissue deposition 3- to 4-fold (p < or = 0.0002), whereas vectors encoding fibroblast growth factor 2 or vascular endothelial growth factor promoted primarily angiogenic responses. By day 8 posttreatment of ischemic excisional wounds, collagen-formulated AdPDGF-B enhanced granulation tissue and epithelial areas up to 13- and 6-fold (p < 0.009), respectively, and wound closure up to 2-fold (p < 0.05). At longer times, complete healing without excessive scar formation was achieved. Collagen matrices were shown to retain both vector and transgene products within delivery sites, enabling the transduction and stimulation of infiltrating repair cells. Quantitative PCR and RT-PCR demonstrated both vector DNA and transgene mRNA within wound beds as late as 28 days posttreatment. By contrast, aqueous formulations allowed vector seepage from application sites, leading to PDGF-induced hyperplasia in surrounding tissues but not wound beds. Finally, repeated applications of PDGF-BB protein were required for neotissue induction approaching equivalence to a single application of collagen-immobilized AdPDGF-B, confirming the utility of this gene transfer approach. Overall, these studies demonstrate that immobilizing matrices enable the controlled delivery and activity of tissue promoting genes for the effective regeneration of injured tissues.

  5. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    PubMed

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis.

  6. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    PubMed Central

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  7. Assessment of angiogenic markers in oral hemangiomas and pyogenic granulomas.

    PubMed

    Freitas, Tarsila M C; Miguel, Márcia C C; Silveira, Ericka J D; Freitas, Roseana A; Galvão, Hébel C

    2005-08-01

    The purpose of this research was to evaluate the immunohistochemical expression of the vascular endothelial growth factor (VEGF-C1) and measuring the angiogenic activity by the staining for von Willebrand factor (vWF) and CD31 in oral pyogenic granulomas and hemangiomas. The results showed that there was no statistically significant difference in the angiogenesis index between the lesions evaluated. The average microvessel density determined for MVC (microvessel count) using CD31 was 60.64 for hemangiomas and 59.64 for pyogenic granulomas, while angiogenic index determined using vWF was 64.24 and 62.20 in these lesions. The results showed that the cells highlighted by staining for vWF were more uniform than in those stained for CD31. There was no statistically significant difference between the lesions for the number of cells highlighted by staining for VEGF-C1. However, the mean number of cells highlighted in pyogenic granuloma specimens was higher (153.23) when compared to oral hemangioma specimens (115.17). The VEGF-positive cells were endothelial cells and fibroblasts in hemangiomas and macrophages and fibroblasts in pyogenic granulomas. These results effort the role of the angiogenic factors in the etiopathogenesis of the hemangiomas and pyogenic granulomas, however, it showed that microvessel quantification is not useful in the differential diagnosis of these lesions.

  8. A Common Profile of Disordered Angiogenic Factor Production and the Exacerbation of Inflammation in Early Preeclampsia, Late Preeclampsia, and Intrauterine Growth Restriction

    PubMed Central

    Kwiatkowski, Sebastian; Dołęgowska, Barbara; Kwiatkowska, Ewa; Rzepka, Rafał; Torbè, Andrzej; Bednarek-Jędrzejek, Magdalena

    2016-01-01

    Preeclampsia and intrauterine growth restriction are two separate disease entities that, according to numerous reports, share the same pathogenesis. In both, angiogenesis disorders and generalized inflammation are the dominant symptoms. In this study, we hypothesized that both diseases demonstrate the same profile in early preeclampsia, late preeclampsia, and intrauterine growth restriction patients, with the only difference being the degree of exacerbation of lesions. One hundred sixty-seven patients were enrolled in the study and divided into four groups: early preeclampsia, late preeclampsia, and intrauterine growth restriction groups, and one control group. Concentrations of the angiogenesis and inflammatory markers soluble fms-like tyrosine kinase receptor 1, placental growth factor, high-sensitivity C-reactive protein, and interleukin-6 were determined, and the behavior of these markers and correlations among them were studied. Higher concentrations of soluble fms-like tyrosine kinase receptor 1, high-sensitivity C-reactive protein, and interleukin-6 and a lower concentration of placental growth factor were observed in the study groups compared with the control group. No differences in concentrations of the studied markers were found among the study groups but significant correlations were observed. The higher values for the angiogenesis and inflammatory markers both in preeclampsia patients and patients with intrauterine growth restriction of placental origin compared with the control group suggest the existence of the same underlying disorders in the development of these pathologies. The observed mutual correlations for disordered angiogenesis and inflammatory markers are suggestive of a mutual relationship between these processes in the development of pathologies evolving secondary to placental ischemia. The same lesion profile was observed for both preeclampsia and ‘placental’ intrauterine growth restriction patients, which could be used in developing

  9. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer.

    PubMed

    Põld, Mehis; Zhu, Li X; Sharma, Sherven; Burdick, Marie D; Lin, Ying; Lee, Peter P N; Põld, Anu; Luo, Jie; Krysan, Kostyantyn; Dohadwala, Mariam; Mao, Jenny T; Batra, Raj K; Strieter, Robert M; Dubinett, Steven M

    2004-03-01

    Elevated tumor cyclooxygenase (COX)-2 activity plays a multifaceted role in non-small cell lung cancer (NSCLC). To elucidate the role of COX-2 in the in vitro and in vivo expression of two known NSCLC angiogenic peptides, CXC ligand (CXCL) 8 and CXCL5, we studied two COX-2 gene-modified NSCLC cell lines, A549 and H157. COX-2 overexpression enhanced the in vitro expression of both CXCL8 and CXCL5. In contrast, specific COX-2 inhibition decreased the production of both peptides as well as nuclear translocation of nuclear factor kappaB. In a severe combined immunodeficient mouse model of human NSCLC, the enhanced tumor growth of COX-2-overexpressing tumors was inhibited by neutralizing anti-CXCL5 and anti-CXCL8 antisera. We conclude that COX-2 contributes to the progression of NSCLC tumorigenesis by enhancing the expression of angiogenic chemokines CXCL8 and CXCL5.

  10. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype.

    PubMed

    Almog, Nava; Ma, Lili; Schwager, Christian; Brinkmann, Bastian G; Beheshti, Afshin; Vajkoczy, Peter; Folkman, Judah; Hlatky, Lynn; Abdollahi, Amir

    2012-01-01

    Tumor dormancy refers to a critical stage in cancer development in which tumor cells remain occult for a prolonged period of time until they eventually progress and become clinically apparent. We previously showed that the switch of dormant tumors to fast-growth is angiogenesis dependent and requires a stable transcriptional reprogramming in tumor cells. Considering microRNAs (miRs) as master regulators of transcriptome, we sought to investigate their role in the control of tumor dormancy. We report here the identification of a consensus set of 19 miRs that govern the phenotypic switch of human dormant breast carcinoma, glioblastoma, osteosarcoma, and liposarcoma tumors to fast-growth. Loss of expression of dormancy-associated miRs (DmiRs, 16/19) was the prevailing regulation pattern correlating with the switch of dormant tumors to fast-growth. The expression pattern of two DmiRs (miR-580 and 190) was confirmed to correlate with disease stage in human glioma specimens. Reconstitution of a single DmiR (miR-580, 588 or 190) led to phenotypic reversal of fast-growing angiogenic tumors towards prolonged tumor dormancy. Of note, 60% of angiogenic glioblastoma and 100% of angiogenic osteosarcoma over-expressing miR190 remained dormant during the entire observation period of ∼ 120 days. Next, the ability of DmiRs to regulate angiogenesis and dormancy-associated genes was evaluated. Transcriptional reprogramming of tumors via DmiR-580, 588 or 190 over-expression resulted in downregulation of pro-angiogenic factors such as TIMP-3, bFGF and TGFalpha. In addition, a G-CSF independent downregulation of Bv8 was found as a common target of all three DmiRs and correlated with decreased tumor recruitment of bone marrow-derived CD11b+ Gr-1+ myeloid cells. In contrast, antiangiogenic and dormancy promoting pathways such as EphA5 and Angiomotin were upregulated in DmiR over-expressing tumors. This work suggests novel means to reverse the malignant tumor phenotype into an

  11. Vascular Endothelial Growth Factor A 165 (VEGFA165), angiogenic isoform, promotes while VEGFA165b antagonizes VEGFA165 stimulated follicular progression in bovine ovarian cortical pieces cultured from pre-pubertal heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have demonstrated in our lab that the VEGFA165 angiogenic isoform stimulates follicle progression in perinatal rat ovaries while inhibitors to VEGFA signal transduction pathways arrest follicular development. Thus, in the current study our objective was to determine if the anti-angioge...

  12. Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway.

    PubMed

    Tabouret, Emeline; Tchoghandjian, Aurelie; Denicolai, Emilie; Delfino, Christine; Metellus, Philippe; Graillon, Thomas; Boucard, Celine; Nanni, Isabelle; Padovani, Laetitia; Ouafik, L'Houcine; Figarella-Branger, Dominique; Chinot, Olivier

    2015-05-10

    Angiogenesis is one of the key features of glioblastoma (GBM). Our objective was to explore the potential changes of angiogenic factors in GBM between initial diagnosis and recurrence after radiotherapy-temozolomide (RT/TMZ). Paired frozen tumors from both initial and recurrent surgery were available for 29 patients. Screening of genes expressions related to angiogenesis was performed using RT- PCR arrays on 10 first patients. Next, RNA expressions of the selected genes were analyzed on all samples. Protein expression was examined by immunohistochemistry. The anti-tumor effect of AMD3100 (anti-CXCR4) was tested in GBM explants. In the screening step, the initial-recurrence expression changes contributed to a selection of seven genes (VEGFA, VEGFR2, VEGFR1, CXCL12, CXCR4, uPA HIF1α). By quantitative RT-PCR, RNA expressions of CXCR4 (p = 0.029) and CXCL12 (p = 0.107) were increased while expressions of HIF1α (p = 0.009) and VEGFR2 (p = 0.081) were decreased at recurrence. Similarly, CXCL12 protein expression tended to increase (p = 0.096) while VEGFR2 staining was decreased (p = 0.004) at recurrence. An increase of anti-tumoral effect was observed with the combination of AMD3100 and RT/TMZ versus RT/TMZ alone in GB explants. Recurrence of GB after chemo-radiation could be associated with a switch of angiogenic pattern from VEGFR2-HIF1α to CXCL12-CXCR4 pathway, leading to new perspectives in angiogenic treatment.

  13. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts

    PubMed Central

    Dore-Savard, Louis; Lee, Esak; Kakkad, Samata; Popel, Aleksander S.; Bhujwalla, Zaver M.

    2016-01-01

    The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome. PMID:27995973

  14. The Effect of Sunitinib Treatment in Human Melanoma Xenografts: Associations with Angiogenic Profiles.

    PubMed

    Gaustad, Jon-Vidar; Simonsen, Trude G; Andersen, Lise Mari K; Rofstad, Einar K

    2017-04-01

    The effect of antiangiogenic agents targeting the vascular endothelial growth factor A (VEGF-A) pathway has been reported to vary substantially in preclinical studies. The purpose of this study was to investigate the effect of sunitinib treatment on tumor vasculature and oxygenation in melanoma xenografts with different angiogenic profiles. A-07, U-25, D-12, or R-18 melanoma xenografts were grown in dorsal window chambers and given daily treatments of sunitinib (40 mg/kg) or vehicle. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply times (BSTs) were assessed from first-pass imaging movies. Tumor hypoxia was assessed with immunohistochemistry by using pimonidazole as hypoxia marker, and the gene expression and the protein secretion rate of angiogenic factors were assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The melanoma lines differed substantially in the expression of VEGF-A, VEGF-C, and platelet-derived growth factor A. Sunitinib treatment reduced vessel densities and induced hypoxia in all melanoma lines, and the magnitude of the effect was associated with the gene expression and protein secretion rate of VEGF-A. Sunitinib treatment also increased vessel segment lengths, reduced the number of small-diameter vessels, and inhibited growth-induced increases in the diameter of surviving vessels but did not change BST. In conclusion, sunitinib treatment did not improve vascular function but reduced vessel density and induced hypoxia in human melanoma xenografts. The magnitude of the treatment-induced effect was associated with the VEGF-A expression of the melanoma lines.

  15. Disruption of components of vascular endothelial growth factor angiogenic signalling system in metabolic syndrome. Findings from a study conducted in rural Bangladeshi women.

    PubMed

    Jesmin, Subrina; Akter, Shamima; Rahman, Md Mizanur; Islam, Md Majedul; Islam, A M Shahidul; Sultana, Sayeeda N; Mowa, Chishimba N; Yamaguchi, Naoto; Okazaki, Osamu; Satoru, Kawano; Kimura, Sosuke; Hiroe, Michiaki; Mizutani, Taro; Moroi, Masao

    2013-04-01

    Metabolic syndrome (MetS) is associated with impaired angiogenesis, a process that is chiefly regulated by vascular endothelial growth factor (VEGF) upon binding to its specific receptors, VEGF-R1 and VEGF-R2. The purpose of the present study was to assess trends or patterns in plasma levels of VEGF and its soluble receptors in subjects with (MetS) or without (non-MetS) MetS; and further examine their association with clinical or metabolic parameters using a subpopulation of South Asian country. A total of 1,802 rural Bangladeshi women aged ≥15 years were studied using a population-based cross-sectional survey. Plasma levels of VEGF were found to be significantly increased (MetS vs. non-MetS: 483.9 vs. 386.9, p<0.001), whereas, the soluble forms of VEGF receptors, sVEGF-R1 and sVEGF-R2, were significantly decreased in subjects with Mets (sVEGF-R1, MetS vs. non-MetS: 512.5 vs. 631.3, p<0.001; sVEGF-R2, MetS vs. non-MetS: 9,302.8 vs. 9,787.4, p=0.004). After adjustment for age and all potential variables, multiple regression analysis revealed that plasma levels of VEGF had significant positive association with blood glucose (p = 0.019) and body mass index (p = 0.007). We also found that mean plasma levels of VEGF increased in direct proportion to levels of MetS components. The present study is the first ever to demonstrate a positive association between trends in levels of plasma VEGF and MetS using a large sample size from South Asia. The association between plasma VEGF and MetS needs further investigations in order to clearly decipher the clinical predictive value and accuracy of plasma VEGF in MetS.

  16. The truncated somatostatin receptor sst5TMD4 stimulates the angiogenic process and is associated to lymphatic metastasis and disease-free survival in breast cancer patients

    PubMed Central

    Gahete, Manuel D.; Rincón-Fernández, David; Durán-Prado, Mario; Hergueta-Redondo, Marta; Ibáñez-Costa, Alejandro; Rojo-Sebastián, Alejandro; Gracia-Navarro, Francisco; Culler, Michael D.; Casanovas, Oriol; Moreno-Bueno, Gema; Luque, Raúl M.; Castaño, Justo P.

    2016-01-01

    The truncated somatostatin receptor sst5TMD4 is associated with poor prognosis in breast cancer and increases breast cancer cell malignancy. Here, we examined the cellular/molecular mechanisms underlying this association, aiming to identify new molecular tools to improve diagnosis, prognosis or therapy. A gene expression array comparing sst5TMD4 stably-transfected MCF-7 cells and their controls (empty-plasmid) revealed the existence of profound alterations in the expression of genes involved in key tumoral processes, such as cell survival or angiogenesis. Moreover, sst5TMD4-overexpressing MCF-7 and MDA-MB-231 cells demonstrated increased expression/production of pro-angiogenic factors and enhanced capacity to form mammospheres. Consistently, sst5TMD4-expressing MCF-7 cells induced xenografted tumors with higher VEGF levels and elevated number of blood vessels. Importantly, sst5TMD4 was expressed in a subset of breast cancers, where it correlated with angiogenic markers, lymphatic metastasis, and reduced disease-free survival. These results, coupled to our previous data, support a relevant role of sst5TMD4 in the angiogenic process and reinforce the role of sst5TMD4 in breast cancer malignancy and metastatic potential, supporting its possible utility to develop new molecular biomarkers and drug therapies for these tumors. PMID:27507050

  17. Beyond Bevacizumab: An Outlook to New Anti-Angiogenics for the Treatment of Ovarian Cancer

    PubMed Central

    Mahner, Sven; Woelber, Linn; Mueller, Volkmar; Witzel, Isabell; Prieske, Katharina; Grimm, Donata; Keller-v Amsberg, Gunhild; Trillsch, Fabian

    2015-01-01

    In addition to the monoclonal vascular endothelial growth factor (VEGF) antibody bevacizumab, several alternative anti-angiogenic treatment strategies for ovarian cancer patients have been evaluated in clinical trials. Apart from targeting extracellular receptors by the antibody aflibercept or the peptibody trebananib, the multikinase inhibitors pazopanib, nintedanib, cediranib, sunitinib, and sorafenib were developed to interfere with VEGF receptors and multiple additional intracellular pathways. Nintedanib and pazopanib significantly improved progression-free survival in two positive phase III trials for first-line therapy. A reliable effect on overall survival could, however, not be observed for any anti-angiogenic first-line therapies so far. In terms of recurrent disease, two positive phase III trials revealed that trebananib and cediranib are effective anti-angiogenic agents for this indication. Patient selection and biomarker guided prediction of response seems to be a central aspect for future studies. Combining anti-angiogenics with other targeted therapies to possibly spare chemotherapy in certain constellations represents another very interesting future perspective for clinical trials. This short review gives an overview of current clinical trials for anti-angiogenic treatment strategies beyond bevacizumab. In this context, possible future perspectives combining anti-angiogenics with other targeted therapies and the need for specific biomarkers predicting response are elucidated. PMID:26500886

  18. Recombinant AAV-PR39-mediated hypoxia-inducible factorgene expression attenuates myocardial infarction.

    PubMed

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Xu, Jian; Li, Zhenwu; Zhang, Wei; Liu, Ying; Zhang, Xuexin

    2014-01-01

    PR39 is an angiogenic masterswitch protein, belonging to the second generation of angiogenic growth factors. However, the role of recombinant adeno-associated virus (AAV) carrying the PR39 fusion gene (AAV-PR39) in acute myocardial infarction remains unclear. Therefore, in this study, we investigated the role of AAV-PR39 in an experimental animal model of acute myocardial infarction. The PR39 gene was fused with the transmembrane peptide, TAT, 6xHis‑tag and NT4 signal sequences. AAV-PR39 was then obtained by calcium phosphate co-precipitation. A total of 18 healthy Chinese mini pigs were randomly divided into an experimental groups (the AAV-PR39-treated group) and a control group [phosphated-buffered saline (PBS)-treated group]. Following the induction of myocardial infarction, enhanced 3.0T MR imaging was performed to observe the changes in myocardial signal intensity at 0 h, 1, 2 and 3 weeks. The expression of hypoxia-inducible factor‑1α (HIF-1α) in the myocardial tissues was determined by SABC immunohistochemistry. In addition, in vitro experiments using CRL-1730 endothelial cells transfected with AAV vector containing NT4-TAT-His-PR39 revealed that the AAV-PR39-treated group had a significantly higher expression of HIF-1α compared with the control group. Moreover, PR39 regulated the HIF-1α-induced expression of angiogenic growth factors. Under hypoxic conditions, the anti-apoptotic effects in the AAV-PR39 group were more pronounced than those observed in the control (PBS-treated) group. In vivo, the enforced expression of recombinant PR39 elevated the level of HIF-1α under hypoxic conditions and decreased the size of the infarcted areas by upregulating the expression of HIF-1α in the areas surrounding the infarct area. Taken together, our data demonstrate that the recombinant AAV-PR39-mediated HIF-1α expression attenuates myocardial infarction, indicating that AAV-PR39 may serve as a novel therapeutic agent for the treatment of myocardial infarction.

  19. Gene variants as risk factors for gastroschisis

    PubMed Central

    Yang, Wei; Schultz, Kathleen; Tom, Lauren; Lin, Bin; Carmichael, Suzan L.; Lammer, Edward J.; Shaw, Gary M.

    2016-01-01

    In a population‐based case‐control study in California of 228 infants, we investigated 75 genetic variants in 20 genes and risk of gastroschisis with regard to maternal age, race/ethnicity, vitamin use, and smoking exposure. We hypothesized that genes related to vascular compromise may interact with environmental factors to affect the risk of gastroschisis. Haplotypes were constructed for 75 gene variants using the HaploView program. Risk for gastroschisis associated with each gene variant was calculated for both the homozygotes and the heterozygotes, with the homozygous wildtypes as the referent. Risks were estimated as odds ratios (ORs) with 95% confidence intervals (CIs) by logistic regression. We found 11 gene variants with increased risk and four variants with decreased risk of gastroschisis for heterozygous (ORh) or homozygous variants (ORv) genotypes. These included NOS3 (rs1036145) ORh = 0.4 (95% CI: 0.2–0.7); NOS3 (rs10277237) ORv = 2.7 (95% CI: 1.3–6.0); ADD1 (rs12503220) ORh = 2.9 (95% CI: 1.6–5.4), GNB3 (rs5443) ORh = 0.2 (95% CI: 0.1–0.5), ORv = 0.4 (95% CI: 0.2–0.9); ICAM1 (rs281428) ORv = 6.9 (95% CI: 2.1–22.9), ICAM1 (rs3093030) ORv = 2.6 (95% CI: 1.2–5.6); ICAM4 (rs281438) ORv = 4.9 (95% CI: 1.4–16.6), ICAM5 (rs281417) ORh = 2.1 (95% CI: 1.1–4.1), ORv = 4.8 (95% CI: 1.7–13.6); ICAM5 (rs281440) ORh = 23.7 (95% CI: 5.5–102.5), ORv = 20.6 (95% CI: 3.4–124.3); ICAM5 (rs2075741) ORv = 2.2 (95% CI: 1.1–4.4); NAT1 ORv = 0.3 (95% CI: 0.1–0.9). There were additional associations between several gene variants and gastroschisis among women aged 20–24 and among mothers with and without vitamin use. NOS3, ADD1, ICAM1, ICAM4, and ICAM5 warrant further investigation in additional populations and with the interaction of additional environmental exposures. © 2016 Wiley Periodicals, Inc. PMID:27616475

  20. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments.

    PubMed

    Bakopoulou, Athina; Kritis, Aristeidis; Andreadis, Dimitrios; Papachristou, Eleni; Leyhausen, Gabriele; Koidis, Petros; Geurtsen, Werner; Tsiftsoglou, Asterios

    2015-11-01

    Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial

  1. The role of vascular endothelial growth factor gene as the genetic marker of atherothrombotic disorders and in the gene therapy of coronary artery disease.

    PubMed

    Petrovic, Daniel

    2010-01-01

    Many human diseases are characterized by vasculature disorders. Out of the many players in the angiogenic network, the vascular endothelial growth genes are by far the best characterized. The vascular endothelial growth factor (VEGF) has been implicated in the pathogenesis of coronary artery disease (CAD) and in its complication, the acute myocardial infarction (AMI). Several common polymorphisms in the promoter region of the VEGF gene have been reported, but only few single nucleotide polymorphisms (SNPs) have been demonstrated to be associated with variations in VEGF serum concentrations and with a susceptibility to CAD and its complications-acute coronary syndromes. Moreover, the -634 C/G VEGF SNP (rs2010963) has been demonstrated to be associated with AMI and the development of heart failure after AMI. Gene-based therapy for patients with refractory CAD has been the subject of extensive investigation. Preclinical studies have shown promise for the delivery of VEGF gene for treating CAD, whereas the results of randomized placebo-controlled trials have not demonstrated unequivocal evidence of efficacy. To conclude, at present the role of VEGF and VEGF SNPs in pathogenesis of AMI and the development of heart failure after AMI is still uncertain and remains to be determined. Obviously, larger studies as well as functional studies are needed to confirm the role of VEGF SNPs in AMI and its complications after AMI.

  2. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  3. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment.

    PubMed

    Ardelean, Daniela S; Jerkic, Mirjana; Yin, Melissa; Peter, Madonna; Ngan, Bo; Kerbel, Robert S; Foster, F Stuart; Letarte, Michelle

    2014-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng (+/-) versus a rise in angiopoietin-2 (Ang-2) in Alk1 (+/-) mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng (+/-) mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.

  4. HSP70-1 is required for interleukin-5-induced angiogenic responses through eNOS pathway

    PubMed Central

    Park, Sung Lyea; Chung, Tae-Wook; Kim, Sangtae; Hwang, Byungdoo; Kim, Jung Min; Lee, Hwan Myung; Cha, Hee-Jae; Seo, Yoonhee; Choe, Soo Young; Ha, Ki-Tae; Kim, Gonhyung; Yun, Seok-Joong; Park, Sung-Soo; Choi, Yung Hyun; Kim, Bo Kyung; Kim, Won-Tae; Cha, Eun-Jong; Patterson, Cam; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    We report a pivotal role for IL-5 as an angiogenic activator. IL-5 increased proliferation, migration and colony tube formation in HUVECs associated with the phosphorylation of ERK and AKT/eNOS, and promoted microvessel sprouting from an angiogenesis animal model. The angiogenic effects were confirmed in IL-5-deficient mice and addition of IL-5 antibody. HSP70-1 was identified via expression profiling following IL-5 stimulation. A siRNA knockdown of HSP70-1 suppressed angiogenic responses and eNOS phosphorylation induced by IL-5. HSP70-1 overexpression enhanced IL-5-induced angiogenic responses. In addition, IL-5-induced neo-vascular formation was verified in both HSP70-1 knockout and HSP70-1 transgenic mice. Furthermore, transcription factor AP-1 was a main factor in IL-5-induced HSP70-1 in response to ERK and AKT signaling pathway. Angiogenic responses induced by VEGF had no effect in either HSP70-1 siRNA in vitro or HSP70-1 knockout mice. IL-5-induced angiogenic responses depended on the binding of IL-5Rα. Our data demonstrate that binding of IL-5 to IL-5Rα receptors enhances angiogenic responses by stimulating the expression of HSP70-1 via the eNOS signaling pathway. PMID:28317868

  5. Differential Angiogenic Regulation of Experimental Colitis

    PubMed Central

    Chidlow, John H.; Langston, Will; Greer, James J.M.; Ostanin, Dmitry; Abdelbaqi, Maisoun; Houghton, Jeffery; Senthilkumar, Annamalai; Shukla, Deepti; Mazar, Andrew P.; Grisham, Matthew B.; Kevil, Christopher G.

    2006-01-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract with unknown multifactorial etiology that, among other things, result in alteration and dysfunction of the intestinal microvasculature. Clinical observations of increased colon microvascular density during IBD have been made. However, there have been no reports investigating the physiological or pathological importance of angiogenic stimulation during the development of intestinal inflammation. Here we report that the dextran sodium sulfate and CD4+CD45RBhigh T-cell transfer models of colitis stimulate angiogenesis that results in increased blood vessel density concomitant with increased histopathology, suggesting that the neovasculature contributes to tissue damage during colitis. We also show that leukocyte infiltration is an obligatory requirement for the stimulation of angiogenesis. The angiogenic response during experimental colitis was differentially regulated in that the production of various angiogenic mediators was diverse between the two models with only a small group of molecules being similarly controlled. Importantly, treatment with the anti-angiogenic agent thalidomide or ATN-161 significantly reduced angiogenic activity and associated tissue histopathology during experimental colitis. Our findings identify a direct pathological link between angiogenesis and the development of experimental colitis, representing a novel therapeutic target for IBD. PMID:17148665

  6. Using Del-1 to Tip the Angiogenic Balance in Endothelial Cells in Modular Constructs

    PubMed Central

    Ciucurel, Ema C.; Vlahos, Alexander E.

    2014-01-01

    Modular tissue engineering is a method of building vascularized tissue-engineered constructs. Submillimeter-sized collagen pieces (modules) coated with a layer of endothelial cells (EC; vascular component), and with embedded functional cells, are self-assembled into a larger, three-dimensional tissue. In this study, we examined the use of developmental endothelial locus-1 (Del-1), an extracellular matrix protein with proangiogenic properties, as a means of tipping the angiogenic balance in human umbilical vein endothelial cells incorporated in modular tissue-engineered constructs. The motivation was to enhance the vascularization of these constructs upon transplantation in vivo, in this case, without the use of exogenous mesenchymal stromal cells. EC were transduced using a lentiviral construct to overexpress Del-1. The Del-1 EC formed more sprouts in a fibrin gel sprouting assay in vitro compared with eGFP (control) transduced EC, as expected. Del-1 EC had a distinct profile of gene expression (upregulation of matrix metalloproteinase-9 [MMP-9], urokinase-type plasminogen activator [uPA/PLAU], vascular endothelial growth factor [VEGF-A], and intercellular adhesion molecule-1 [ICAM-1]; downregulation of angiopoietin-2 [Ang2]), also supporting the notion of “tipping the angiogenic balance”. On the other hand, contrary to our expectations, when Del-1 EC-coated modules were implanted subcutaneously in a severe combined immunodeficient/beige animal model, the proangiogenic effect of Del-1 was less remarkable. There was only a small increase in the number of blood vessels formed in Del-1 implants compared with the eGFP implants, and only few blood vessels formed at the implant site in both cases. This was presumed due to limited EC survival after transplantation. We speculate that if we could improve EC survival in our study (for example, by adding other prosurvival factors or supporting cells), we would see a greater Del-1-induced angiogenic benefit in vivo as a

  7. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase.

    PubMed

    Hanna, Mary; Liu, Haibo; Amir, Jawaria; Sun, Yi; Morris, Stephan W; Siddiqui, M A Q; Lau, Lester F; Chaqour, Brahim

    2009-08-21

    Smooth muscle-rich tissues respond to mechanical overload by an adaptive hypertrophic growth combined with activation of angiogenesis, which potentiates their mechanical overload-bearing capabilities. Neovascularization is associated with mechanical strain-dependent induction of angiogenic factors such as CCN1, an immediate-early gene-encoded matricellular molecule critical for vascular development and repair. Here we have demonstrated that mechanical strain-dependent induction of the CCN1 gene involves signaling cascades through RhoA-mediated actin remodeling and the p38 stress-activated protein kinase (SAPK). Actin signaling controls serum response factor (SRF) activity via SRF interaction with the myocardin-related transcriptional activator (MRTF)-A and tethering to a single CArG box sequence within the CCN1 promoter. Such activity was abolished in mechanically stimulated mouse MRTF-A(-/-) cells or upon inhibition of CREB-binding protein (CBP) histone acetyltransferase (HAT) either pharmacologically or by siRNAs. Mechanical strain induced CBP-mediated acetylation of histones 3 and 4 at the SRF-binding site and within the CCN1 gene coding region. Inhibition of p38 SAPK reduced CBP HAT activity and its recruitment to the SRF.MRTF-A complex, whereas enforced induction of p38 by upstream activators (e.g. MKK3 and MKK6) enhanced both CBP HAT and CCN1 promoter activities. Similarly, mechanical overload-induced CCN1 gene expression in vivo was associated with nuclear localization of MRTF-A and enrichment of the CCN1 promoter with both MRTF-A and acetylated histone H3. Taken together, these data suggest that signal-controlled activation of SRF, MRTF-A, and CBP provides a novel connection between mechanical stimuli and angiogenic gene expression.

  8. [The vascular endothelial growth factor (VEGF): a model of gene regulation and a marker of tumour aggressiveness. An obvious therapeutic target?].

    PubMed

    Grépin, Renaud; Pagès, Gilles

    2009-01-01

    VEGF represents a model of gene expression regulation. RAS/RAF/MEK/ERK and PI3 Kinase pathways, activated in response to growth factors stimulation or by oncogenes, contribute to its expression by activating transcription factors or inactivating proteins implicated in degradation of its mRNA. These factors (Sp1/Sp3, HIF-1 and TTP) constitute molecular markers of tumor aggressiveness. VEGF is overexpressed in solid or hematologic tumors. Thus, numerous compounds regulating angiogenesis by targeting VEGF have been developed. However, their effects are not as spectacular as expected. The existence of anti-angiogenic isoforms of VEGF could be a cause of their less potent activity. These different points are discussed in this review article.

  9. High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries.

    PubMed

    Silvennoinen, Mika; Rinnankoski-Tuikka, Rita; Vuento, Mikael; Hulmi, Juha J; Torvinen, Sira; Lehti, Maarit; Kivelä, Riikka; Kainulainen, Heikki

    2013-04-01

    High-fat diet (HFD) increases fatty acid oxidation in skeletal muscles. We hypothesized that this leads to increased oxygen demand and thus to increased capillarization. We determined the effects of high-fat diet on capillarization and angiogenic factors in skeletal muscles of mice that were either active or sedentary. Fifty-eight C57BL/6 J mice were divided into four groups: low-fat diet sedentary (LFS), low-fat diet active (LFA), high-fat diet sedentary (HFS), and high-fat diet active (HFA). The mice in active groups were housed in cages with running wheels and the sedentary mice were housed in similar cages without running wheels. After 19 weeks HFS, LFA and HFA had higher capillary density and capillary-to-fiber-ratio in quadriceps femoris muscles than LFS. Capillarization was similar in HFS and HFA. To reveal possible mechanisms of HFD induced angiogenesis, we measured protein and mRNA levels of angiogenic factors VEGF-A, HIF-1α, PGC-1α and ERRα. VEGF-A protein levels were higher in muscles of HFS, LFA and HFA compared to LFS. However, no significant differences were observed between HFA and HFS. Protein levels of HIF-1α, PGC-1α, and ERRα were similar in all groups. However, the mRNA expression of HIF-1α and VEGF-A was up-regulated in capillaries but not in muscle fibers of HFS. The sedentary and active mice groups had similar mRNA expression levels of angiogenesis regulators studied. We conclude that high-fat feeding induces angiogenesis in skeletal muscle and up-regulates the gene expression of HIF-1α and VEGF-A in capillaries.

  10. Methodological Approach to Use Fresh and Cryopreserved Vessels as Tools to Analyze Pharmacological Modulation of the Angiogenic Growth.

    PubMed

    Vicente, Diana; Hernández, Blanca; Segura, Vanessa; Pascual, Desirée; Fornaciari, Giacomo; Monto, Fermí; Mirabet, Vicente; Montesinos, M Carmen; DʼOcon, Pilar

    2016-09-01

    The sprouting of new vessels is greatly influenced by the procedure chosen. We sought to optimize the experimental conditions of the angiogenic growth of fresh and cryopreserved vessels cultured in Matrigel with the aim to use this system to analyze the pharmacological modulation of the process. Segments of second-order branches of rat mesenteric resistance arteries, thoracic aorta of rat or mouse, and cryopreserved rat aorta and human femoral arteries were cultured in Matrigel for 7-21 days in different mediums, as well as in the absence of endothelial or adventitia layer. Quantification of the angiogenic growth was performed by either direct measurement of the mean length of the neovessels or by calcein AM staining and determination of fluorescence intensity and area. Fresh and cryopreserved arterial rings incubated in Matrigel exhibited a spontaneous angiogenic response that was strongly accelerated by fetal calf serum. Addition of vascular endothelial growth factor, fibroblast growth factor, endothelial growth factor, or recombinant insulin-like growth factor failed to increase aortic sprouting, unless all were added together. Removal of adventitia, but not the endothelial layer, abrogated the angiogenic response of aortic rings. Determination of the mean neovessel length is an easy and accurate method to quantify the angiogenic growth devoid of confounding factors, such as inclusion of other cellular types surrounding the neovessels. Activity of a α1-adrenoceptor agonist (phenylephrine) and its inhibition by a selective antagonist (prazosin) were analyzed to prove the usefulness of the Matrigel system to evaluate the pharmacological modulation of the angiogenic growth.

  11. Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response

    PubMed Central

    Gallagher-Colombo, Shannon M.; Maas, Amanda L.; Yuan, Min; Busch, Theresa M.

    2015-01-01

    Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and re-establishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy. PMID:26109742

  12. Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumors

    PubMed Central

    Dey, Nandini; De, Pradip; Brian, Leyland-Jones

    2015-01-01

    Vascular endothelial growth factor (VEGF) dependent tumor angiogenesis is an essential step for the initiation and promotion of tumor progression. The hypothesis that VEGF-driven tumor angiogenesis is necessary and sufficient for metastatic progression of the tumor, has been the major premise of the use of anti-VEGF therapy for decades. While the success of anti-VEGF therapy in solid tumors has led to the success of knowledge-based-therapies over the past several years, failures of this therapeutic approach due to the development of inherent/acquired resistance has led to the increased understanding of VEGF-independent angiogenesis. Today, tumor-angiogenesis is not a synonymous term to VEGF-dependent function. The extensive study of VEGF-independent angiogenesis has revealed several key factors responsible for this phenomenon including the role of myeloid cells, and the contribution of entirely new phenomenon like vascular mimicry. In this review, we will present the cellular and molecular factors related to the development of anti-angiogenic resistance following anti-VEGF therapy in different solid tumors. PMID:26692917

  13. Dimethyloxaloylglycine Improves Angiogenic Activity of Bone Marrow Stromal Cells in the Tissue-Engineered Bone

    PubMed Central

    Ding, Hao; Chen, Song; Song, Wen-Qi; Gao, You-Shui; Guan, Jun-Jie; Wang, Yang; Sun, Yuan; Zhang, Chang-Qing

    2014-01-01

    One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1α expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with β-tricalcium phosphate (β-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1α. More newly formed blood vessels were observed in the group treated with β-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with β-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1α, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity. PMID:25013382

  14. Anti-angiogenic therapies for advanced esophago-gastric cancer

    PubMed Central

    Fontana, Elisa; Sclafani, Francesco; Cunningham, David

    2014-01-01

    Neo-vascularization is a vital process for tumor growth and development which involves the interaction between tumor cells and stromal endothelial cells through several growth factors and membranous receptors which ultimately activate pro-angiogenic intracellular signaling pathways. Inhibition of angiogenesis has become a standard treatment option for several tumor types including colorectal cancer, glioblastoma and ovarian cancer. In gastric cancer, the therapeutic role of anti-angiogenic agents is more controversial. Bevacizumab and ramucirumab, two monoclonal antibodies, which target vascular endothelial growth factor-A and vascular endothelial growth factor receptor-2, respectively, have been demonstrated antitumor activity in patients with tumors of the stomach or esophagogastric junction. However, especially for bevacizumab, this antitumor activity has not consistently translated into a survival advantage over standard treatment in randomized trials. In this article, we provide an overview of the role of angiogenesis in gastric cancer and discuss the results of clinical trials that investigated safety and effectiveness of antiangiogenic therapies in this disease. A review of the literature has been done using PubMed, ClinicalTrials.gov website and the ASCO Annual Meeting Library. PMID:25538401

  15. Hemorrhagic events in Hepatocellular Carcinoma patients treated with anti-angiogenic therapies

    PubMed Central

    Duffy, Austin; Wilkerson, Julia; Greten, Tim F.

    2012-01-01

    Background The presence of cirrhosis increases the potential risk of hemorrhage for patients with hepatocellular carcinoma (HCC). We evaluated the relative risk for hemorrhage in patients with HCC treated with anti-angiogenic agents. Patients and Methods We performed a systematic review and meta-analysis of anti-angiogenic studies in HCC from 1995 to 2011. For non-randomized studies we compared bleeding risk with other HCC single-arm studies which did not include an anti-angiogenic agent. To separate disease-specific factors we also performed a comparison analysis with renal cancer studies which evaluated sorafenib. Results Sorafenib was associated with increased bleeding risk compared to control for all grade bleeding events (OR 1.77; 95% CI 1.04, 3.0) but not grade 3–5 events in both HCC and RCC ((OR1.46 95% CI 0.9, 2.36 [p=0.45]). When comparing the risk of bleeding in single-arm phase 2 studies evaluating anti-angiogenic agents, this risk for all events (OR 4.34; 95% CI 2.16, 8.73) was increased compared to control. Conclusions This analysis of both randomized and non-randomized studies evaluating an anti-angiogenic agent in HCC showed that whilst the use of sorafenib was associated with an increased risk of bleeding in HCC, this was primarily for lower grade events and similar in magnitude to the risk encountered in RCC. PMID:23112096

  16. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  17. Methods of combinatorial optimization to reveal factors affecting gene length.

    PubMed

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.

  18. Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors

    DTIC Science & Technology

    2006-03-01

    W81XWH-04-1-0701 TITLE: Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors PRINCIPAL INVESTIGATOR: Urszula T. Iwaniec...CONTRACT NUMBER Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors 5b. GRANT NUMBER W81XWH-04-1-0701 5c. PROGRAM ELEMENT NUMBER...control of obesity through centrally administered, recombinant adeno-associated virus leptin gene (rAAV-lep) therapy will decrease the incidence of

  19. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  20. Anti-Angiogenic and Anti-Inflammatory Effects of Statins: Relevance to Anti-Cancer Therapy

    PubMed Central

    Dulak, Józef; Józkowicz, Alicja

    2006-01-01

    Angiogenesis is indispensable for the growth of solid tumors and angiogenic factors are also involved in the progression of hematological malignancies. Targeting the formation of blood vessels is therefore regarded as a promising strategy in cancer therapy. Interestingly, besides demonstration of some beneficial effects of novel anti-angiogenic compounds, recent data on the activity of already available drugs point to their potential application in anti-angiogenic therapy. Among these are the statins, the inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Statins are very efficient in the treatment of hypercholesterolemia in cardiovascular disorders; however, their effects are pleiotropic and some are not directly related to the inhibition of cholesterol synthesis. Some reports particularly highlight the pro-angiogenic effects of statins, which are caused by low, nanomolar concentrations and are regarded as beneficial for the treatment of cardiovascular diseases. On the other hand, the anti-angiogenic activities, observed at micromolar concentrations of statins, may be of special significance for cancer therapy. Those effects are caused by the inhibition of both proliferation and migration and induction of apoptosis in endothelial cells. Moreover, the statin-mediated inhibition of vascular endothelial growth factor synthesis, the major angiogenic mediator, may contribute to the attenuation of angiogenesis. It has been suggested that the anti-cancer effect of statins can be potentially exploited for the cancer therapy. However, several clinical trials aimed at the inhibition of tumor growth by treatment with very high doses of statins did not provide conclusive data. Herein, the reasons for those outcomes are discussed and the rationale for further studies is presented. PMID:16375664

  1. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

    PubMed Central

    Bulnes, Susana; Bengoetxea, Harkaitz; Ortuzar, Naiara; Argandoña, Enrike G.; Garcia-Blanco, Álvaro; Rico-Barrio, Irantzu; Lafuente, José V.

    2012-01-01

    The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies. PMID:22852079

  2. Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells

    PubMed Central

    O’Neill, Christina L.; Guduric-Fuchs, Jasenka; Chambers, Sarah E. J.; O’Doherty, Michelle; Bottazzi, Barbara; Stitt, Alan W.; Medina, Reinhold J.

    2016-01-01

    Aims Circulating angiogenic cells (CACs) promote revascularization of ischaemic tissues although their underlying mechanism of action and the consequences of delivering varying number of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation. Methods and results CACs at low (2 × 105 cells/mL) and mid (2 × 106 cells/mL) cellular densities significantly enhanced endothelial cell tube formation in vitro, while high density (HD) CACs (2 × 107 cells/mL) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and HD CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the HD CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo. Importantly, our data revealed that the anti-angiogenic effect observed in HD CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to HD CACs. In addition, we confirmed that PTX3 inhibits fibroblast growth factor (FGF) 2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects. Conclusion Endothelium, when exposed to HD CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischaemic disease. PMID:27659714

  3. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells

    PubMed Central

    Zou, Li; Chen, Qingshan; Quanbeck, Zachary; Bechtold, Joan E.; Kaufman, Dan S.

    2016-01-01

    Human pluripotent stem cells provide a standardized resource for bone repair. However, criteria to determine which exogenous cells best heal orthopedic injuries remain poorly defined. We evaluated osteogenic progenitor cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Phenotypic and genotypic analyses demonstrated that these hESCs/hiPSCs are similar in their osteogenic differentiation efficiency and they generate osteogenic cells comparable to osteogenic cells derived from mesenchymal stromal cells (BM-MSCs). However, expression of angiogenic factors, such as vascular endothelial growth factor and basic fibroblast growth factor in these osteogenic progenitor cells are markedly different, suggesting distinct pro-angiogenic potential of these stem cell derivatives. Studies to repair a femur non-union fracture demonstrate only osteogenic progenitor cells with higher pro-angiogenic potential significantly enhance bone repair in vivo. Together, these studies highlight a key role of pro-angiogenic potential of transplanted osteogenic cells for effective cell-mediated bone repair. PMID:26980556

  4. Nuclear actin activates human transcription factor genes including the OCT4 gene.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; Tokunaga, Makio; Sakata-Sogawa, Kumiko; Harata, Masahiko

    2015-01-01

    RNA microarray analyses revealed that nuclear actin activated many human transcription factor genes including OCT4, which is required for gene reprogramming. Oct4 is known to be activated by nuclear actin in Xenopus oocytes. Our findings imply that this process of OCT4 activation is conserved in vertebrates and among cell types and could be used for gene reprogramming of human cells.

  5. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  6. NT-07PHASE 1-2 DOSE-ESCALATION STUDY OF VB-111, AN ANTI-ANGIOGENIC GENE THERAPY, AS MONOTHERAPY AND IN COMBINATION WITH BEVACIZUMAB, IN PATIENTS WITH RECURRENT GLIOBLASTOMA

    PubMed Central

    Brenner, Andrew; Cohen, Yael; Vredenburgh, James; Peters, Katherine; Blumenthal, Deborah; Bokstein, Felix; Breitbart, Eyal; Bangio, Livnat; Sher, Naamit; Harats, Dror; Wen, Patrick

    2014-01-01

    BACKGROUND: VB-111 is an anti-angiogenic agent consisting of a non-replicating adenovirus vector (Ad-5) with a modified murine pre-proendothelin promoter leading to apoptosis of tumor vasculature by expressing a fas-chimera transgene in angiogenic endothelial cells. Safety and efficacy of VB-111 alone and in combination with bevacizumab (BEV) were evaluated for patients with recurrent Glioblastoma (rGBM) in this phase 1-2 dose-escalation study. METHODS: VB-111 was administered as a single intravenous infusion at escalating doses from 1x1012 to 1x1013 viral particles (VPs), followed by repeat doses of 3x1012 or 1x1013 every 2 months. The protocol was amended to add-on BEV 10mg/Kg every 2 weeks upon further progression. Assessments included safety, pharmacokinetics, tumor response (RANO criteria) and overall survival (OS). RESULTS: Forty-six patients at 4 recruiting medical centers in the US and Israel received up to 13 repeat doses of VB-111. Of these 30 received the high dose (1x1013). There were 22 related adverse events, 19 CTCAE grade 1-2. The median OS was 360 [range: 70-574] and 266 days [range: 28-664] for patients receiving at least one high dose vs. subjects who received lower doses, respectively (p NS). Progression free survival was 63 vs. 55 days for patients who received high vs. lower doses, respectively (p = 0.01). Median follow-up was 232 days. Six patients had a partial response and/or prolonged disease stability (≥180 days). Tumor growth rates showed a statistically significant dose response. Eleven patients received combination therapy of VB-111 with BEV after progression on VB-111 alone. Median time to second progression was 93 days. VB-111 was safe and well tolerated both as monotherapy and combined therapy. CONCLUSIONS: VB-111 was safe and well tolerated as monotherapy and in combination with BEV in patients with recurrent glioblastoma. Encouraging tumor growth attenuation and responses were seen. Overall survival was about 3 months longer

  7. The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages

    PubMed Central

    Gelati, Maurizio; Aplin, Alfred C; Fogel, Eric; Smith, Kelly D; Nicosia, Roberto Francesco

    2008-01-01

    The purpose of this study was to define early events during the angiogenic response of the aortic wall to injury. Rat aortic rings produced neovessels in collagen culture but lost this capacity over time. These quiescent rings responded to vascular endothelial growth factor (VEGF) but not to a cocktail of macrophage-stimulatory cytokines and chemokines that was angiogenically active on fresh rings. Analysis of cytokine receptor expression revealed selective loss in quiescent rings of the proangiogenic chemokine receptor CXCR2, which was expressed predominantly in aortic macrophages. Pharmacologic inhibition of CXCR2 impaired angiogenesis from fresh rings but had no effect on VEGF-induced angiogenesis from quiescent explants. Angiogenesis was also impaired in cultures of aortic rings from CXCR2-deficient mice. Reduced CXCR2 expression in quiescent rat aortic rings correlated with marked macrophage depletion. Pharmacologic ablation of macrophages from aortic explants blocked formation of neovessels in vitro and reduced aortic ring-induced angiogenesis in vivo. The angiogenic response of macrophage-depleted rings was completely restored by adding exogenous macrophages. Moreover, angiogenesis from fresh rings was promoted by macrophage colony stimulating factor (CSF-1) and inhibited with anti-CSF-1 antibody. Thus aortic angiogenic sprouting following injury is strongly influenced by conditions that modulate resident macrophage numbers and function. PMID:18832730

  8. Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin

    PubMed Central

    2013-01-01

    Background Angiogenesis is the main therapeutic mechanism of cell therapy for cardiovascular diseases, but diabetes is reported to reduce the function and number of progenitor cells. Therefore, we studied the effect of streptozotocin-induced diabetes on the bone marrow-mesenchymal stem cell (MSC) function, and examined whether diabetes-impaired MSC could be rescued by pretreatment with oxytocin. Results MSCs were isolated and cultured from diabetic (DM) or non-diabetic (non-DM) rat, and proliferation rate was compared. DM-MSC was pretreated with oxytocin and compared with non-DM-MSC. Angiogenic capacity was estimated by tube formation and Matrigel plug assay, and therapeutic efficacy was studied in rat myocardial infarction (MI) model. The proliferation and angiogenic activity of DM-MSC were severely impaired but significantly improved by pretreatment with oxytocin. Krüppel-like factor 2 (KLF2), a critical angiogenic factor, was dramatically reduced in DM-MSC and significantly restored by oxytocin. In the Matrigel plug assay, vessel formation of DM-BMSCs was attenuated but was recovered by oxytocin. In rat MI model, DM-MSC injection did not ameliorate cardiac injury, whereas oxytocin-pretreated DM-MSC improved cardiac function and reduced fibrosis. Conclusions Our results show that diabetes influenced MSC by reducing angiogenic capacity and therapeutic potential. We demonstrate the striking effect of oxytocin on stem cell dysfunction and suggest the use of oxytocin as a priming reagent in autologous stem cell therapy. PMID:24024790

  9. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization

    PubMed Central

    Tahiri, Houda; Omri, Samy; Yang, Chun; Duhamel, François; Samarani, Suzanne; Ahmad, Ali; Vezina, Mark; Bussières, Martin; Vaucher, Elvire; Sapieha, Przemyslaw; Hickson, Gilles; Hammamji, Karim; Lapointe, Réjean; Rodier, Francis; Tremblay, Sophie; Royal, Isabelle; Cailhier, Jean-François; Chemtob, Sylvain; Hardy, Pierre

    2016-01-01

    Pathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models. In this study, we investigated the alteration of proangiogenic properties of macrophages by LMPs treatment in vitro and in vivo models. LMPs regulated the expression of several angiogenesis-related factors in macrophages and consequently stimulated their antiangiogenic effects evidenced by the suppression of the proliferation of human retinal endothelial cells in co-culture experiments. The involvement of CD36 receptor in LMPs uptake by macrophages was demonstrated by in vitro assays and by immunostaining of choroidal flat mounts. In addition, ex vivo experiments showed that CD36 mediates the antiangiogenic effect of LMPs in murine and human choroidal explants. Furthermore, intravitreal injection of LMPs in the mouse model of laser-induced CNV significantly suppressed CNV in CD36 dependent manner. The results of this study suggested an ability of LMPs to alter the gene expression pattern of angiogenesis-related factors in macrophages, which provide important information for a new therapeutic approach for efficiently interfering with both vascular and extravascular components of CNV. PMID:27874077

  10. Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization.

    PubMed

    Tahiri, Houda; Omri, Samy; Yang, Chun; Duhamel, François; Samarani, Suzanne; Ahmad, Ali; Vezina, Mark; Bussières, Martin; Vaucher, Elvire; Sapieha, Przemyslaw; Hickson, Gilles; Hammamji, Karim; Lapointe, Réjean; Rodier, Francis; Tremblay, Sophie; Royal, Isabelle; Cailhier, Jean-François; Chemtob, Sylvain; Hardy, Pierre

    2016-11-22

    Pathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models. In this study, we investigated the alteration of proangiogenic properties of macrophages by LMPs treatment in vitro and in vivo models. LMPs regulated the expression of several angiogenesis-related factors in macrophages and consequently stimulated their antiangiogenic effects evidenced by the suppression of the proliferation of human retinal endothelial cells in co-culture experiments. The involvement of CD36 receptor in LMPs uptake by macrophages was demonstrated by in vitro assays and by immunostaining of choroidal flat mounts. In addition, ex vivo experiments showed that CD36 mediates the antiangiogenic effect of LMPs in murine and human choroidal explants. Furthermore, intravitreal injection of LMPs in the mouse model of laser-induced CNV significantly suppressed CNV in CD36 dependent manner. The results of this study suggested an ability of LMPs to alter the gene expression pattern of angiogenesis-related factors in macrophages, which provide important information for a new therapeutic approach for efficiently interfering with both vascular and extravascular components of CNV.

  11. Six-Month Assessment of a Phase I Trial of Angiogenic Gene Therapy for the Treatment of Coronary Artery Disease Using Direct Intramyocardial Administration of an Adenovirus Vector Expressing the VEGF121 cDNA

    PubMed Central

    Rosengart, Todd K.; Lee, Leonard Y.; Patel, Shailen R.; Kligfield, Paul D.; Okin, Peter M.; Hackett, Neil R.; Isom, O. Wayne; Crystal, Ronald G.

    1999-01-01

    Objective To summarize the 6-month follow-up of a cohort of patients with clinically significant coronary artery disease who received direct myocardial injection of an E1−E3− adenovirus (Ad) gene transfer vector (AdGVVEGF121.10) expressing the human vascular endothelial growth factor (VEGF) 121 cDNA to induce therapeutic angiogenesis. Background Therapeutic angiogenesis describes a novel approach to the treatment of vascular occlusive disease that uses the administration of growth factors known to induce neovascularization of ischemic tissues. Methods Direct myocardial injection of AdGVVEGF121.10 into an area of reversible ischemia was carried out in 21 patients as an adjunct to conventional coronary artery bypass grafting (group A, n = 15) or as sole therapy using a minithoracotomy (group B, n = 6). Results No evidence of systemic or cardiac-related adverse events related to vector administration was observed up to 6 months after therapy. Trends toward improvement in angina class and exercise treadmill testing at 6-month follow-up in the sole therapy group suggest the effects of this therapy are persistent for ≥6 months. Conclusions This study suggests that direct myocardial administration of AdGVVEGF121.10 appears to be well tolerated in patients with clinically significant coronary artery disease. Initiation of phase II evaluation of this therapy appears warranted. PMID:10522716

  12. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  13. Human papillomavirus causes an angiogenic switch in keratinocytes which is sufficient to alter endothelial cell behavior

    SciTech Connect

    Chen, W.; Li, F.; Mead, L.; White, H.; Walker, J.; Ingram, D.A.; Roman, A.

    2007-10-10

    One of the requirements for tumor growth is the ability to recruit a blood supply, a process known as angiogenesis. Angiogenesis begins early in the progression of cervical disease from mild to severe dysplasia and on to invasive cancer. We have previously reported that expression of human papillomavirus type 16 E6 and E7 (HPV16 E6E7) proteins in primary foreskin keratinocytes (HFKs) decreases expression of two inhibitors and increases expression of two angiogenic inducers [Toussaint-Smith, E., Donner, D.B., Roman, A., 2004. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 23, 2988-2995]. Here we report that HPV-induced early changes in the keratinocyte phenotype are sufficient to alter endothelial cell behavior both in vitro and in vivo. Conditioned media from HPV16 E6E7 expressing HFKs as well as from human cervical keratinocytes containing the intact HPV16 were able to stimulate proliferation and migration of human microvascular endothelial cells. In addition, introduction of the conditioned media into immunocompetent mice using a Matrigel plug model resulted in a clear angiogenic response. These novel data support the hypothesis that HPV proteins contribute not only to the uncontrolled keratinocyte growth seen following HPV infection but also to the angiogenic response needed for tumor formation.

  14. Virulence factors genes in enterococci isolated from beavers (Castor fiber).

    PubMed

    Lauková, Andrea; Strompfová, Viola; Kandričáková, Anna; Ščerbová, Jana; Semedo-Lemsaddek, Teresa; Miltko, Renata; Belzecki, Grzegorz

    2015-03-01

    Only limited information exists concerning the microbiota in beaver (Castor fiber). This study has been focused on the virulence factors genes detection in enterococci from beavers. In general, animals are not affected by enterococcal infections, but they can be a reservoir of, e.g. pathogenic strains. Moreover, detection of virulence factors genes in enterococci from beavers was never tested before. Free-living beavers (12), male and female (age 4-5 years) were caught in the north-east part of Poland. Sampling of lower gut and faeces was provided according to all ethical rules for animal handling. Samples were treated using a standard microbiological method. Pure bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identification system. Virulence factors genes-gelE (gelatinase), agg (aggregation), cylA (cytolysin A), efaAfs (adhesin Enterococcus faecalis), efaAfm (adhesin Enterococcus faecium) and esp (surface protein) were tested by PCR. Moreover, gelatinase and antibiotic phenotypes were tested. Species detected were Enterococcus thailandicus, E. faecium, E. faecalis and Enterococcus durans. In literature, enterococcal species distribution was never reported yet up to now. Strains were mostly sensitive to antibiotics. Vancomycin-resistant E. faecalis EE9Tr1 possess cylA, efaAfs, esp and gelE genes. Strains were aggregation substance genes absent. Adhesin E. faecium (efaAfm) gene was detected in two of three E. faecium strains, but it was present also in E. thailandicus. Esp gene was present in EE9Tr1 and E. durans EDTr92. The most detected were gelE, efaAfm genes; in EF 4Hc1 also gelatinase phenotype was found. Strains with virulence factors genes will be tested for their sensitivity to antimicrobial enterocins.

  15. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity.

    PubMed

    Smith, Taylor F; Anastopoulos, Arthur D; Garrett, Melanie E; Arias-Vasquez, Alejandro; Franke, Barbara; Oades, Robert D; Sonuga-Barke, Edmund; Asherson, Philip; Gill, Michael; Buitelaar, Jan K; Sergeant, Joseph A; Kollins, Scott H; Faraone, Stephen V; Ashley-Koch, Allison

    2014-12-01

    Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder (ADHD); however, the etiological underpinnings of this relationship remain unclear. This study investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and cytokine-related biological pathways moderate the relationship between birth weight and ADHD symptom severity. A total of 398 youth from two multi-site, family-based studies of ADHD were included in the analysis. The sample consisted of 360 ADHD probands, 21 affected siblings, and 17 unaffected siblings. A set of 164 SNPs from 31 candidate genes, representing five biological pathways, were included in our analyses. Birth weight and gestational age data were collected from a state birth registry, medical records, and parent report. Generalized Estimating Equations tested for main effects and interactions between individual SNPs and birth weight centile in predicting ADHD symptom severity. SNPs within neurotrophic (NTRK3) and cytokine genes (CNTFR) were associated with ADHD inattentive symptom severity. There was no main effect of birth weight centile on ADHD symptom severity. SNPs within angiogenic (NRP1 & NRP2), neurotrophic (NTRK1 & NTRK3), cytokine (IL16 & S100B), and kynurenine (CCBL1 & CCBL2) genes moderate the association between birth weight centile and ADHD symptom severity. The SNP main effects and SNP × birth weight centile interactions remained significant after adjusting for multiple testing. Genetic variability in angiogenic, neurotrophic, and inflammatory systems may moderate the association between restricted prenatal growth, a proxy for an adverse prenatal environment, and risk to develop ADHD.

  16. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  17. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors.

    PubMed

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-03-23

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (-786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles -786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2-5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue.

  18. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2014-06-01

    An angiogenic pathway was studied that involved stromal tissue degradation with matrix metalloproteinases (MMPs), vesicular endothelial growth factor-A (VEGF-A), and hypoxia inducible factor-1α (HIF-1α) mediated growth regulation in a complex interaction with chemokines, such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β). Gene and protein expression was studied with real-time PCR, Western immunoblot, and immunofluorescence. Morphological and histopathological analysis of tumor was done, as also the activity of MMPs and HIF-1α by gelatin zymography and ELISA. Binding interactions of proteins were studied by molecular docking. Piroxicam, a traditional NSAID and C-phycocyanin, a biliprotein from Spirulina platensis, were utilized in the chemoprevention of DMH-induced rat colon cancer. A significant number of tumors was evident in DMH treated animals, while with piroxicam and C-phycocyanin, the number and size of tumors/lesions were reduced. Colonic tissues showed severe dysplasia, tubular adenoma, and adenocarcinoma from DMH, with invasive features along with signet ring cell carcinoma. No occurrence of carcinoma was detected in either of the drug treatments or in a combination regimen. An elevated VEGF-A, MMP-2, and MMP-9 level was observed, which is required for metastasis and invasion into surrounding tissues. Drugs induced chemoprevention by down-regulating these proteins. Piroxicam docked in VEGF-A binding site of VEGF-A receptors i.e., VEGFR1 and VEGFR2, while phycocyanobilin (a chromophore of C-phycocyanin) docked with VEGFR1 alone. HIF-1α is up-regulated which is associated with increased oxygen demand and angiogenesis. MCP-1 and MIP-1β expression was also found altered in DMH and regulated by the drugs. Anti-angiogenic role of piroxicam and C-phycocyanin is well demonstrated.

  19. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  20. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    PubMed

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  1. Research of the degradation products of chitosan's angiogenic function

    NASA Astrophysics Data System (ADS)

    Wang, Jianyun; Chen, Yuanwei; Ding, Yulong; Shi, Guoqi; Wan, Changxiu

    2008-11-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 °C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  2. Elevated levels of angiogenic cytokines in the plasma of cancer patients.

    PubMed

    Fuhrmann-Benzakein, E; Ma, M N; Rubbia-Brandt, L; Mentha, G; Ruefenacht, D; Sappino, A P; Pepper, M S

    2000-01-01

    Although in the normal healthy organism angiogenesis is a tightly regulated process, under a variety of circumstances it may contribute to disease states. These include the growth of solid tumors, the hematogenous spread of tumor cells and the growth of metastasis. Our aim was to measure the levels of 5 angiogenic cytokines in the plasma of patients with a variety of cancers, to establish a plasmatic angiogenic profile. We prospectively obtained blood samples in citrated tubes from 40 healthy individuals and 75 patients with a variety of solid tumors. Patients who had received any form of treatment in the preceeding 6 months were excluded from the study. Plasma levels of the following 5 cytokines were determined by ELISA: vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), basic fibroblast growth factor, transforming growth factor-beta and tumor necrosis factor-alpha. In some cases, additional samples were taken 4 and 15 days after surgical removal of the tumor. Our findings demonstrate, that firstly, compared to the tumor group VEGF was almost always undetectable or present at very low levels in healthy individuals; secondly, a threshold value for HGF was found to exist between the 2 groups (healthy vs. tumor); and thirdly, there was a clear relationship between plasma levels of VEGF and HGF and extension of disease (i.e., without or with metastases). The timing of blood sampling in the post-operative period was found to be critical, particularly with regard to VEGF and HGF. The existence of a systemic angiogenic profile in the plasma of cancer patients may be useful as a diagnostic and prognostic tool and may help in the future to monitor the responses of individual patients to anti-tumor and, particularly, anti-angiogenic therapy.

  3. The Differential Expression of Kiss1, MMP9 and Angiogenic Regulators across the Feto-Maternal Interface of Healthy Human Pregnancies: Implications for Trophoblast Invasion and Vessel Development

    PubMed Central

    Matjila, Mushi; Millar, Robert; van der Spuy, Zephne; Katz, Arieh

    2013-01-01

    Genes involved in invasion of trophoblast cells and angiogenesis are crucial in determining pregnancy outcome. We therefore studied expression profiles of these genes in both fetal and maternal tissues to enhance our understanding of feto-maternal dialogue. We investigated the expression of genes involved in trophoblast invasion, namely Kiss1, Kiss1 Receptor (Kiss1R) and MMP9 as well as the expression of angiogenic ligands Vascular Endothelial Growth Factor-A (VEGF-A) and Prokineticin-1 (PROK1) and their respective receptors (VEGFR1, VEGFR2 and PROK1R) across the feto-maternal interface of healthy human pregnancies. The placenta, placental bed and decidua parietalis were sampled at elective caesarean delivery. Real-time RT-PCR was used to investigate transcription, while immunohistochemistry and western blot analyses were utilized to study protein expression. We found that the expression of Kiss1 (p<0.001), Kiss1R (p<0.05) and MMP9 (p<0.01) were higher in the placenta compared to the placental bed and decidua parietalis. In contrast, the expression of VEGF-A was highest in the placental bed (p<0.001). While VEGFR1 expression was highest in the placenta (p<0.01), the expression of VEGFR2 was highest in the placental bed (p<0.001). Lastly, both PROK1 (p<0.001) and its receptor PROK1R (p<0.001) had highest expression in the placenta. Genes associated with trophoblast invasion were highly expressed in the placenta which could suggest that the influence on invasion capacity may largely be exercised at the fetal level. Furthermore, our findings on angiogenic gene expression profiles suggest that angiogenesis may be regulated by two distinct pathways with the PROK1/PROK1R system specifically mediating angiogenesis in the fetus and VEGFA/VEGFR2 ligand-receptor pair predominantly mediating maternal angiogenesis. PMID:23696833

  4. Stimulation of osteogenic and angiogenic ability of cells on polymers by pulsed laser deposition of uniform akermanite-glass nanolayer.

    PubMed

    Wu, Chengtie; Zhai, Dong; Ma, Hongshi; Li, Xiaomin; Zhang, Yali; Zhou, Yinghong; Luo, Yongxiang; Wang, Yueyue; Xiao, Yin; Chang, Jiang

    2014-07-01

    Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30 nm) of thickness 130 nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.

  5. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.

  6. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  7. Muscle as a target for supplementary factor IX gene transfer.

    PubMed

    Hoffman, Brad E; Dobrzynski, Eric; Wang, Lixin; Hirao, Lauren; Mingozzi, Federico; Cao, Ou; Herzog, Roland W

    2007-07-01

    Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.

  8. Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy.

    PubMed

    Moccia, Francesco; Zuccolo, Estella; Poletto, Valentina; Cinelli, Mariapia; Bonetti, Elisa; Guerra, Germano; Rosti, Vittorio

    2015-09-01

    Endothelial progenitor cells (EPCs) have recently been shown to promote the angiogenic switch in solid neoplasms, thereby promoting tumour growth and metastatisation. The genetic suppression of EPC mobilization from bone marrow prevents tumour development and colonization of remote organs. Therefore, it has been assumed that anti-angiogenic treatments, which target vascular endothelial growth factor (VEGF) signalling in both normal endothelial cells and EPCs, could interfere with EPC activation in cancer patients. Our recent data, however, show that VEGF fails to stimulate tumour endothelial colony-forming cells (ECFCs), i.e. the only EPC subtype truly belonging to the endothelial lineage. The present article will survey current evidence about EPC involvement in the angiogenic switch: we will focus on the controversy about EPC definition and on the debate around their actual incorporation into tumour neovessels. We will then discuss how ECFC insensitivity to VEGF stimulation in cancer patients could underpin their well-known resistance to anti-VEGF therapies.

  9. Erythropoietin is involved in the angiogenic potential of bone marrow macrophages in multiple myeloma.

    PubMed

    De Luisi, Annunziata; Binetti, Laura; Ria, Roberto; Ruggieri, Simona; Berardi, Simona; Catacchio, Ivana; Racanelli, Vito; Pavone, Vincenzo; Rossini, Bernardo; Vacca, Angelo; Ribatti, Domenico

    2013-10-01

    Erythropoietin (Epo) is the crucial cytokine regulator of red blood cell production, and recombinant human erythropoietin (rHuEpo) is widely used in clinical practice for the treatment of anemia, primarily in kidney disease and in cancer. Increasing evidence suggests several biological roles for Epo and its receptor, Epo-R, unrelated to erythropoiesis, including angiogenesis. Epo-R has been found expressed in various non-haematopoietic cells and tissues, and in cancer cells. Here, we detected the expression of Epo-R in bone marrow-derived macrophages (BMMAs) from multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) patients and assessed whether Epo/Epo-R axis plays a role in MM macrophage-mediated angiogenesis. We found that Epo-R is over-expressed in BMMAs from MM patients with active disease compared to MGUS patients. The treatment of BMMAs with rHuEpo significantly increased the expression and secretion of key pro-angiogenic mediators, such as vascular endothelial growth factor, hepatocyte growth factor and monocyte chemotactic protein (MCP-1/CCL-2), through activation of JAK2/STAT5 and PI3 K/Akt pathways. In addition, the conditioned media harvested from rHuEpo-treated BMMAs enhanced bone marrow-derived endothelial cell migration and capillary morphogenesis in vitro, and induced angiogenesis in the chorioallantoic membrane of chick embryos in vivo. Furthermore, we found an increase in the circulating levels of several pro-angiogenic cytokines in serum of MM patients with anemia under treatment with Epo. Our findings highlight the direct effect of rHuEpo on macrophage-mediated production of pro-angiogenic factors, suggesting that Epo/Epo-R pathway may be involved in the regulation of angiogenic response occurring in MM.

  10. Fibroblast nemosis induces angiogenic responses of endothelial cells

    SciTech Connect

    Enzerink, Anna; Rantanen, Ville; Vaheri, Antti

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  11. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  12. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil.

    PubMed

    Araújo, Lilhian A; Araújo, Rafael G M; Gomes, Flávia O; Lemes, Susy R; Almeida, Luciane M; Maia, Lauro J Q; Gonçalves, Pablo J; Mrué, Fátima; Silva-Junior, Nelson J; Melo-Reis, Paulo R DE

    2016-01-01

    This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P <0.05), but no significant difference was found between Curcuma longa essential oil and the positive control (P >0.05). Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P <0.05), characteristic factors of the angiogenesis process. In conclusion, Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  13. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  14. Nerve growth factor gene therapy in Alzheimer disease.

    PubMed

    Tuszynski, Mark H

    2007-01-01

    Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.

  15. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon.

    PubMed

    Tang, Jin Bo; Chen, Chuan Hao; Zhou, You Lang; McKeever, Clarie; Liu, Paul Y

    2014-01-01

    In this study of a tendon injury model, we investigated how injection of a vector incorporating one growth factor gene changes expression levels of multiple growth factor genes in the healing process. The flexor tendon of chicken toes was completely cut and repaired surgically. The tendons in the experimental arm were injected with an adeno-associated virus-2 vector incorporating basic fibroblast growth-factor gene, whereas the tendons in the control arm were not injected or injected with sham vectors. Using real-time polymerase chain reaction, we found that, within the tendon healing period, a set of growth factor genes-transforming growth factor-β1, vascular endothelial growth factor, and connective tissue growth factor-were significantly up-regulated. Expression of the platelet-derived growth factor-B gene was not changed, and the insulin-like growth factor was down-regulated. A tendon marker gene, scleraxis, was significantly up-regulated in the period. Our study revealed an intriguing finding that introduction of one growth factor gene in the healing tendon modulated expression of multiple growth factor genes. We believe this study may have significant implications in determining the approach of gene therapy, and the findings substantiate that gene therapy using a single growth factor could affect multiple growth factors.

  16. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy

    PubMed Central

    Chan, Lai Yue; Craik, David J.; Daly, Norelle L.

    2016-01-01

    Peptide analogues derived from bioactive hormones such as somatostatin or certain growth factors have great potential as angiogenesis inhibitors for cancer applications. In an attempt to combat emerging drug resistance many FDA-approved anti-angiogenesis therapies are co-administered with cytotoxic drugs as a combination therapy to target multiple signaling pathways of cancers. However, cancer therapies often encounter limiting factors such as high toxicities and side effects. Here, we combined two anti-angiogenic epitopes that act on different pathways of angiogenesis into a single non-toxic cyclic peptide framework, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II), and subsequently assessed the anti-angiogenic activity of the novel compound. We hypothesized that the combination of these two epitopes would elicit a synergistic effect by targeting different angiogenesis pathways and result in improved potency, compared to that of a single epitope. This novel approach has resulted in the development of a potent, non-toxic, stable and cyclic analogue with nanomolar potency inhibition in in vitro endothelial cell migration and in vivo chorioallantoic membrane angiogenesis assays. This is the first report to use the MCoTI-II framework to develop a 2-in-1 anti-angiogenic peptide, which has the potential to be used as a form of combination therapy for targeting a wide range of cancers. PMID:27734947

  17. Factoring nonviral gene therapy into a cure for hemophilia A.

    PubMed

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  18. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  19. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  20. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2004-06-01

    From the studies performed during the last one year, we determined the effects of AAV-mediated anti-angiogenic gene therapy as a combination therapy...angiogenic gene therapy in combination with chemotherapy. In the next year, we will determine whether such a combination therapy would provide regression of established tumors.

  1. Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin

    PubMed Central

    Jittiporn, Kanjana; Suwanpradid, Jutamas; Patel, Chintan; Rojas, Modesto; Thirawarapan, Suwan; Moongkarndi, Primchanien; Suvitayavat, Wisuda; Caldwell, Ruth B.

    2014-01-01

    Retinal neovascularization is a major cause of vision loss in diseases characterized by retinal ischemia and is characterized by the pathological growth of abnormal vessels. Vascular Endothelial Growth Factor (VEGF) is known to play an important role in this process. Oxidative stress has been strongly implicated in up regulation of VEGF associated with neovascularization in various tissues. Hence, compounds with anti-oxidant actions can prevent neovascularization. α-mangostin, a component of mangosteen (Garcinia mangostana Linn), has been shown to have an anti-oxidant property in pathological conditions involving angiogenesis such as cancer. However, the effect of α-mangostin on ROS formation and angiogenic function in microvascular endothelial cells has not been studied. Hence, this study demonstrated the anti-angiogenic effects of α-mangostin in relation to ROS formation in bovine retinal endothelial cells (REC). α-mangostin significantly and dose-dependently reduced formation of ROS in hypoxia-treated REC. α-mangostin also significantly and dose-dependently suppressed VEGF-induced increases in permeability, proliferation, migration and tube formation in REC and blocked angiogenic sprouting in the ex vivo aortic ring assay. In addition, α-mangostin inhibited VEGF-induced phosphorylation of VEGFR2 and ERK1/2-MAPK. According to our results, α-mangostin reduces oxidative stress and limits VEGF-induced angiogenesis through a process involving abrogation of VEGFR2 and ERK1/2-MAPK activation. PMID:24721607

  2. Angiogenic and Osteogenic Potential of Bone Repair Cells for Craniofacial Regeneration

    PubMed Central

    Pagni, Giorgio; Park, Chan-Ho; Tarle, Susan A.; Bartel, Ronnda L.; Giannobile, William V.

    2010-01-01

    There has been increased interest in the therapeutic potential of bone marrow derived cells for tissue engineering applications. Bone repair cells (BRCs) represent a unique cell population generated via an ex vivo, closed-system, automated cell expansion process, to drive the propagation of highly osteogenic and angiogenic cells for bone engineering applications. The aims of this study were (1) to evaluate the in vitro osteogenic and angiogenic potential of BRCs, and (2) to evaluate the bone and vascular regenerative potential of BRCs in a craniofacial clinical application. BRCs were produced from bone marrow aspirates and their phenotypes and multipotent potential characterized. Flow cytometry demonstrated that BRCs were enriched for mesenchymal and vascular phenotypes. Alkaline phosphatase and von Kossa staining were performed to assess osteogenic differentiation, and reverse transcriptase–polymerase chain reaction was used to determine the expression levels of bone specific factors. Angiogenic differentiation was determined through in vitro formation of tube-like structures and fluorescent labeling of endothelial cells. Finally, 6 weeks after BRC transplantation into a human jawbone defect, a biopsy of the regenerated site revealed highly vascularized, mineralized bone tissue formation. Taken together, these data provide evidence for the multilineage and clinical potential of BRCs for craniofacial regeneration. PMID:20412009

  3. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    SciTech Connect

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent . E-mail: vbours@ulg.ac.be; Griffioen, Arjan W.

    2007-05-11

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.

  4. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review.

    PubMed

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-01-03

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.

  5. Angiogenic cytokines are antibody targets during graft-versus-leukemia reactions

    PubMed Central

    Piesche, Matthias; Ho, Vincent T.; Kim, Haesook; Nakazaki, Yukoh; Nehil, Michael; Yaghi, Nasser; Kolodin, Dmitriy; Weiser, Jeremy; Altevogt, Peter; Kiefel, Helena; Alyea, Edwin P.; Antin, Joseph H.; Cutler, Corey; Koreth, John; Canning, Christine; Ritz, Jerome; Soiffer, Robert J.; Dranoff, Glenn

    2014-01-01

    Purpose The graft-versus-leukemia (GVL) reaction is an important example of immune-mediated tumor destruction. A coordinated humoral and cellular response accomplishes leukemia cell killing, but the specific targets remain largely uncharacterized. To learn more about the antigens that elicit antibodies during GVL reactions, we analyzed advanced myelodysplasia (MDS) and acute myeloid leukemia (AML) patients who received an autologous, granulocyte-macrophage colony stimulating factor (GM-CSF) secreting tumor cell vaccine early after allogeneic hematopoietic stem cell transplantation (HSCT). Experimental Design A combination of tumor-derived cDNA expression library screening, protein microarrays, and antigen-specific ELISAs were employed to characterize sera obtained longitudinally from 15 AML/MDS patients who were vaccinated early after allogeneic HSCT. Results A broad, therapy-induced antibody response was uncovered, which primarily targeted intracellular proteins that function in growth, transcription/translation, metabolism, and homeostasis. Unexpectedly, antibodies were also elicited against eight secreted angiogenic cytokines that play critical roles in leukemogenesis. Antibodies to the angiogenic cytokines were evident early after therapy, and in some patients manifested a diversification in reactivity over time. Patients that developed antibodies to multiple angiogenic cytokines showed prolonged remission and survival. Conclusions These results reveal a potent humoral response during GVL reactions induced with vaccination early after allogeneic HSCT and raise the possibility that antibodies, in conjunction with NK cells and T lymphocytes, may contribute to immune-mediated control of myeloid leukemias. PMID:25538258

  6. Normalization of Postinfarct Biomechanics Using a Novel Tissue-Engineered Angiogenic Construct

    PubMed Central

    Atluri, Pavan; Trubelja, Alen; Fairman, Alexander S.; Hsiao, Philip; MacArthur, John W.; Cohen, Jeffrey E.; Shudo, Yasuhiro; Frederick, John R.; Woo, Y. Joseph

    2014-01-01

    Background Cell-mediated angiogenic therapy for ischemic heart disease has had disappointing results. The lack of clinical translatability may be secondary to cell death and systemic dispersion with cell injection. We propose a novel tissue-engineered therapy, whereby extracellular matrix scaffold seeded with endothelial progenitor cells (EPCs) can overcome these limitations using an environment in which the cells can thrive, enabling an insult-free myocardial cell delivery to normalize myocardial biomechanics. Methods and Results EPCs were isolated from the long bones of Wistar rat bone marrow. The cells were cultured for 7 days in media or seeded at a density of 5×106 cells/cm2 on a collagen/vitronectin matrix. Seeded EPCs underwent ex vivo modification with stromal cell–derived factor-1α (100 ng/mL) to potentiate angiogenic properties and enhance paracrine qualities before construct formation. Scanning electron microscopy and confocal imaging confirmed EPC–matrix adhesion. In vitro vasculogenic potential was assessed by quantifying EPC cell migration and vascular differentiation. There was a marked increase in vasculogenesis in vitro as measured by angiogenesis assay (8 versus 0 vessels/hpf; P=0.004). The construct was then implanted onto ischemic myocardium in a rat model of acute myocardial infarction. Confocal microscopy demonstrated a significant migration of EPCs from the construct to the myocardium, suggesting a direct angiogenic effect. Myocardial biomechanical properties were uniaxially quantified by elastic modulus at 5% to 20% strain. Myocardial elasticity normalized after implant of our tissue-engineered construct (239 kPa versus normal=193, P=0.1; versus infarct=304 kPa, P=0.01). Conclusions We demonstrate restoration and normalization of post–myocardial infarction ventricular biomechanics after therapy with an angiogenic tissue-engineered EPC construct. PMID:24030426

  7. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation

    PubMed Central

    Langlois, Allan; Mura, Carole; Bietiger, William; Seyfritz, Elodie; Dollinger, Camille; Peronet, Claude; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Sigrist, Séverine

    2016-01-01

    Introduction This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR). Materials and Methods Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira) for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF) secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα) expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31). To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight) were transplanted into diabetic (streptozotocin) Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose. Results Islet viability and function were respectively preserved and enhanced (p<0.05) with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05) after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05). Moreover, Lira activated mTOR (p<0.05) signalling pathway. In vivo, Lira improved vascular density (p<0.01), body-weight gain (p<0.01) and reduced fasting blood glucose in transplanted rats (p<0.001). Conclusion The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation

  8. Therapeutic application of anti-angiogenic nanomaterials in cancers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Patra, Chitta Ranjan

    2016-06-01

    Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the

  9. Inferring transcription factor collaborations in gene regulatory networks

    PubMed Central

    2014-01-01

    Background Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively participate in the transcriptional regulation. Results We model the underlying regulatory interactions in terms of the directions (activation or repression) and their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic dataset shows that our algorithm is significantly better than the existing ones. Conclusions mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is available at http://www.msu.edu/~jinchen/mTRIM. PMID:24565025

  10. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors

    PubMed Central

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-01-01

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (−786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles −786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2–5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue. PMID:27004986

  11. Angiogenic Mechanisms of Human CD34(+) Stem Cell Exosomes in the Repair of Ischemic Hindlimb.

    PubMed

    Mathiyalagan, Prabhu; Liang, Yaxuan; Kim, David; Misener, Sol; Thorne, Tina; Kamide, Christine; Klyachko, Ekaterina; Losordo, Douglas W; Hajjar, Roger J; Sahoo, Susmita

    2017-03-15

    Rationale: Paracrine secretions appear to mediate therapeutic effects of human CD34(+) stem cells locally transplanted in patients with myocardial and critical limb ischemia as well as in animal models. Earlier, we had discovered that paracrine secretion from human CD34(+) cells contains pro-angiogenic, membrane-bound nano-vesicles called exosomes (CD34Exo). Objective: Here, we investigated the mechanisms of CD34Exo-mediated ischemic tissue repair and therapeutic angiogenesis by studying their miRNA content and uptake. Methods and Results: When injected into mouse ischemic hindlimb tissue, CD34Exo, but not the CD34exo-depleted conditioned media, mimicked the beneficial activity of their parent cells by improving ischemic limb perfusion, capillary density, motor function and their amputation. CD34Exo were found to be enriched with pro-angiogenic miRNAs such as miR-126-3p. Knocking down miR-126-3p from CD34exo abolished their angiogenic activity and beneficial function both in vitro and in vivo. Interestingly, injection of CD34Exo increased miR-126-3p levels in mouse ischemic limb, but did not affect the endogenous synthesis of miR-126-3p suggesting a direct transfer of stable and functional exosomal miR-126-3p. miR-126-3p enhanced angiogenesis by suppressing the expression of its known target, SPRED1; simultaneously modulating the expression of genes involved in angiogenic pathways such as VEGF, ANG1, ANG2, MMP9, TSP1 etc. Interestingly, CD34Exo, when treated to ischemic hindlimbs, were most efficiently internalized by endothelial cells relative to smooth muscle cells and fibroblasts demonstrating a direct role of stem cell-derived exosomes on mouse endothelium at the cellular level. Conclusions: Collectively, our results have demonstrated a novel mechanism by which cell-free CD34Exo mediates ischemic tissue repair via beneficial angiogenesis. Exosome-shuttled angiomiRs may signify amplification of stem cell function and may explain the angiogenic and therapeutic

  12. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

    PubMed

    Paps, Jordi; Holland, Peter W H; Shimeld, Sebastian M

    2012-03-01

    Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.

  13. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  14. Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs.

    PubMed

    Przygrodzka, E; Kaczmarek, M M; Kaczynski, P; Ziecik, A J

    2016-02-01

    In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL.

  15. Identification of sites subjected to serine/threonine phosphorylation by SGK1 affecting N-myc downstream-regulated gene 1 (NDRG1)/Cap43-dependent suppression of angiogenic CXC chemokine expression in human pancreatic cancer cells.

    PubMed

    Murakami, Yuichi; Hosoi, Fumihito; Izumi, Hiroto; Maruyama, Yuichiro; Ureshino, Hiroki; Watari, Kosuke; Kohno, Kimitoshi; Kuwano, Michihiko; Ono, Mayumi

    2010-05-28

    We have recently reported that N-myc downstream-regulated gene 1 (NDRG1)/Ca(2+)-associated protein with a molecular mass of 43kDa (Cap43) suppresses angiogenesis and tumor growth of pancreatic cancer through marked decreases in both the expression of CXC chemokines and phosphorylation of a NF-kappaB signaling molecule, inhibitor of kappaB kinase (IkappaBalpha). NDRG1/Cap43 is phosphorylated at serine/threonine sites in its C-terminal domain by serum- and glucocorticoid-regulated kinase 1 (SGK1). In this study, we attempted to clarify the domain or site of NDRG1/Cap43 responsible for its suppression of CXC chemokine expression in pancreatic cancer cells. Expression of the deletion constructs CapDelta2 [deletion of amino acids (AA) 130-142] and CapDelta4 [deletion of AA 180-294] as well as the wild-type full sequence of NDRG1/Cap43 (F-Cap), suppressed the production of CXC chemokines such as Groalpha/CXCL1 and ENA-78/CXCL5, whereas no or low suppression was observed in cell expressing the CapDelta5 mutant [deletion of AA 326-350] and CapDelta6 mutant [deletion of AA 326-394]. We further introduced mutations at the serine and threonine sites at 328 [T328A], 330 [S330A] and 346 [T346A], which are susceptible to phosphorylation by SGK1, and also constructed double mutants [T328A, S330A], [T328A, T346A] and [S330A, T346A]. Expression of all these mutants, with the exception of [S330A, T346A], suppressed the production of CXC chemokine to similar levels as their wild-type counterpart. IkappaBalpha was found to be specifically phosphorylated by this double mutant [S330A, T346A] and the CapDelta5 mutant at levels comparable to that induced in their wild-type counterpart. Phosphorylation of NDRG1/Cap43 at both serine330 and threonine346 is required for its suppressive action on the NF-kappaB signaling pathway and CXC chemokine expression in pancreatic cancer cells.

  16. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone.

    PubMed

    Skopinski, Piotr; Szaflik, Jerzy; Duda-Król, Barbara; Nartowska, Jadwiga; Sommer, Ewa; Chorostowska-Wynimko, Joanna; Demkow, Urszula; Skopinska-Rózewska, Ewa

    2004-10-01

    Angiogenesis, the process of new blood vessel formation, is the key event in the mechanism of several pathological processes including diabetic retinopathy. The physiological control of angiogenesis depends on the balance between stimulatory and inhibitory factors. Therefore, a number of anti-angiogenic approaches has been developed, many of them based on the inhibition of the functional activity of pro-angiogenic factors. The aim of the present study was to compare the anti-angiogenic effectiveness of sulindac sulfone and some herbal compounds in the serum-induced angiogenesis test performed in Balb/c mice. Pooled sera from 35 patients with diabetes type 2 and retinopathy were used as pro-angiogenic stimuli. The strongest inhibitory effect was observed for the sulindac sulfone and ursolic acid in the highest concentration of 200 micro g/ml, as well as for the low-dosage concomitant treatment with 2 micro g/ml of epigallocatechin gallate (EGCG, green tea flavanol), ursolic acid (plant-derived triterpenoid), sulindac sulfone and convalamaroside (steroidal saponin). Combination treatment was significantly more effective than monotherapy with medium (20 micro g/ml) or lowest doses of tested compounds. The present study is the first to demonstrate the potent anti-angiogenic effect of the combination therapy comprising of plant-derived extracts and sulindac sulfone, as tested in the in vivo angiogenesis experimental model with sera of non-proliferative diabetic retinopathy patients used as the pro-angiogenic stimuli. We think that it might be the first step toward application of some of these compounds, in the future, in preventive anti-angiogenic therapy of these patients, as well, as in the treatment of later, proliferative stage of this disease.

  17. Cloning the human gene for macrophage migration inhibitory factor (MIF)

    SciTech Connect

    Paralkar, V.; Wistow, G. )

    1994-01-01

    Macrophage migration inhibitory factor (MIF) was originally identified as a lymphokine. However, recent work strongly suggests a wider role for MIF beyond the immune system. It is expressed specifically in the differentiating cells of the immunologically privileged eye lens and brain, is a delayed early response gene in fibroblasts, and is expressed in many tissues. Here, the authors report the structure of the remarkably small gene for human MIF that has three exons separated by introns of only 189 and 95 bp and covers less than 1 kb. The cloned sequence also includes 1 kb of 5[prime] flanking region. Primer extension and 5[prime] rapid amplification of cDNA ends (RACE) of human brain RNA both indicate the presence of a single transcription start site in a TATA-less promoter. Northern blot analysis shows a single size of MIF mRNA (about 800 nt) in all human tissues examined. In contrast to previous reports, they find no evidence for multiple genes for MIF in the human genome. 20 refs., 3 figs.

  18. First evidence of in vivo pro-angiogenic activity of cerebrospinal fluid samples from multiple sclerosis patients.

    PubMed

    Ribatti, Domenico; Iaffaldano, Pietro; Marinaccio, Christian; Trojano, Maria

    2016-02-01

    Increased vascular density and endothelial cell proliferation have been demonstrated in multiple sclerosis (MS) white matter, as well as an elevated vascular endothelial growth factor expression was detected in reactive astrocytes of both active and inactive chronic demyelinated lesions and in sera of MS patients during clinical relapses. In this study, we have investigated the angiogenic activity of cerebrospinal fluid (CSF) samples from MS patients with different stages of disease by means of the chick embryo chorioallantoic membrane (CAM), a well-known assay to study angiogenesis in vivo. Results have shown that CSF samples from MS patients induced a significant (p < 0.05) angiogenic response in CAM in comparison with CSF from neurological controls. The vessel density was higher (p < 0.0001) in secondary (23.60 ± 1.14) and primary (23.50 ± 1.87) progressive patients in comparison with relapsing MS (17.25 ± 1.75) and clinically isolated syndrome suggestive of MS (13.00 ± 1.79), and a significant correlation (r = 0.611, p = 0.005) was found between the angiogenic response and disability level. The results of this preliminary report demonstrate for the first time an angiogenic activity in vivo of CSF samples from MS patients and confirm the importance of angiogenesis as a key event in MS pathogenesis and progression.

  19. microRNA-454 shows anti-angiogenic and anti-metastatic activity in pancreatic ductal adenocarcinoma by targeting LRP6

    PubMed Central

    Fan, Yue; Shi, Chenye; Li, Tianyu; Kuang, Tiantao

    2017-01-01

    Our previous work has shown that microRNA-454 (miR-454) can inhibit the growth of pancreatic ductal adenocarcinoma (PDAC) by blocking the recruitment of bone marrow-derived macrophages. In the present study, we aimed to explore its role in the proliferation, invasion, and pro-angiogenic activity of PDAC cells in vitro and lung metastasis in vivo. PANC-1 and MiaPaCa-2 cells were transfected with a miR-454-expressing plasmid and tested for cell proliferation, colony formation, cell cycle distribution, invasion, and pro-angiogenic activity. The target gene(s) that mediated the action of miR-454 was identified. The effect of miR-454 overexpression on lung metastasis of PDAC was evaluated in nude mice. Of note, overexpression of miR-454 significantly inhibited PDAC cell proliferation and colony formation and arrests PDAC cells at the G2/M phase. Decreased invasiveness was observed in miR-454-overexpressing PDAC cells. Conditioned media from miR-454-overexpressing PANC-1 cells contained lower levels of vascular endothelial growth factor and had reduced capacity to induce endothelial cell tube-like structure formation. Mechanistically, miR-454 was found to target the mRNA of LRP6 and inhibit the activation of Wnt/β-catenin signaling in PDAC cells. Ectopic expression of LRP6 significantly reversed the suppressive effects of miR-454 on PDAC cells. In vivo studies confirmed that miR-454-overexpressing PANC-1 cells formed significantly less lung metastases than control cells. Altogether, miR-454 functions as a suppressor in tumor growth, angiogenesis, and metastasis in PDAC, likely through downregulation of LRP6. PMID:28123855

  20. High-risk gastrointestinal stromal tumour (GIST) and synovial sarcoma display similar angiogenic profiles: a nude mice xenograft study

    PubMed Central

    Giner, Francisco; Machado, Isidro; Lopez-Guerrero, Jose Antonio; Mayordomo-Aranda, Empar; Llombart-Bosch, Antonio

    2017-01-01

    Background Gastrointestinal stromal tumour (GIST) is the most common primary mesenchymal tumour of the gastrointestinal tract. Spindle cell monophasic synovial sarcoma (SS) can be morphologically similar. Angiogenesis is a major factor for tumour growth and metastasis. Our aim was to compare the angiogenic expression profiles of high-risk GIST and spindle cell monophasic SS by histological, immunohistochemical and molecular characterisation of the neovascularisation established between xenotransplanted tumours and the host during the initial phases of growth in nude mice. Methods The angiogenic profile of two xenotransplanted human soft-tissue tumours were evaluated in 15 passages in nude mice using tissue microarrays (TMA). Tumour pieces were also implanted subcutaneously on the backs of 14 athymic Balb-c nude mice. The animals were sacrificed at 24, 48, and 96 h; and 7, 14, 21, and 28 days after implantation to perform histological, immunohistochemical, and molecular studies (neovascularisation experiments). Results Morphological similarities were apparent in the early stages of neoplastic growth of these two soft-tissue tumours throughout the passages in nude mice and in the two neovascularisation experiments. Immunohistochemistry demonstrated overexpression of pro-angiogenic factors between 24 h and 96 h after xenotransplantation in both tumours. Additionally, neoplastic cells coexpressed chemokines (CXCL9, CXCL10, GRO, and CXCL12) and their receptors in both tumours. Molecular studies showed two expression profiles, revealing an early and a late phase in the angiogenic process. Conclusion This model could provide information on the early stages of the angiogenic process in monophasic spindle cell SS and high-risk GIST and offers an excellent way to study possible tumour response to antiangiogenic drugs. PMID:28386296

  1. Epidermal growth factor gene is a newly identified candidate gene for gout

    PubMed Central

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  2. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome.

    PubMed

    Pereira, Cidália D; Severo, Milton; Rafael, LuIsa; Martins, Maria João; Neves, Delminda

    2014-01-01

    Consuming a high-fructose diet induces metabolic syndrome (MS)-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  3. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  4. Elongation factor-2: a useful gene for arthropod phylogenetics.

    PubMed

    Regier, J C; Shultz, J W

    2001-07-01

    Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always <5%. With additional nonarthropod sequences included, one indel supports monophyly of Tardigrada, Onychophora, and Arthropoda relative to molluscan, annelidan, and mammalian outgroups. New and previously published sequences from RNA polymerase II (1038 nucleotides) and elongation factor-1alpha (1092 nucleotides) were analyzed for the same taxa. A comparison of bootstrap values from the three genes analyzed separately revealed widely varying values for some clades, although there was never strong support for conflicting groups. In combined analyses, there was strong bootstrap support for the generally accepted clades Arachnida, Arthropoda, Euchelicerata, Hexapoda, and Pycnogonida, and for Chelicerata, Myriapoda, and Pancrustacea, whose monophyly is more controversial. Recovery of some additional groups was fairly robust to method of analysis but bootstrap values were not high; these included Pancrustacea + Chelicerata, Hexapoda + Cephalocarida + Remipedia, Cephalocarida + Remipedia, and Malaocostraca + Cirripedia. Atelocerata (= Myriapoda + Hexapoda) was never recovered. Elongation factor-2 is now the second protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the

  5. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    PubMed

    Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

    2015-03-01

    There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects.

  6. Hypoxia up-regulates the angiogenic cytokine secretoneurin via an HIF-1alpha- and basic FGF-dependent pathway in muscle cells.

    PubMed

    Egger, Margot; Schgoer, Wilfried; Beer, Arno G E; Jeschke, Johannes; Leierer, Johannes; Theurl, Markus; Frauscher, Silke; Tepper, Oren M; Niederwanger, Andreas; Ritsch, Andreas; Kearney, Marianne; Wanschitz, Julia; Gurtner, Geoffrey C; Fischer-Colbrie, Reiner; Weiss, Guenter; Piza-Katzer, Hildegunde; Losordo, Douglas W; Patsch, Josef R; Schratzberger, Peter; Kirchmair, Rudolf

    2007-09-01

    Expression of angiogenic cytokines like vascular endothelial growth factor is enhanced by hypoxia. We tested the hypothesis that decreased oxygen levels up-regulate the angiogenic factor secretoneurin. In vivo, muscle cells of mouse ischemic hind limbs showed increased secretoneurin expression, and inhibition of secretoneurin by a neutralizing antibody impaired the angiogenic response in this ischemia model. In a mouse soft tissue model of hypoxia, secretoneurin was increased in subcutaneous muscle fibers. In vitro, secretoneurin mRNA and protein were up-regulated in L6 myoblast cells after exposure to low oxygen levels. The hypoxia-dependent regulation of secretoneurin was tissue specific and was not observed in endothelial cells, vascular smooth muscle cells, or AtT20 pituitary tumor cells. The hypoxia-dependent induction of secretoneurin in L6 myoblasts is regulated by hypoxia-inducible factor-1alpha, since inhibition of this factor using si-RNA inhibited up-regulation of secretoneurin. Induction of secretoneurin by hypoxia was dependent on basic fibroblast growth factor in vivo and in vitro, and inhibition of this regulation by heparinase suggests an involvement of low-affinity basic fibroblast growth factor binding sites. In summary, our data show that the angiogenic cytokine secretoneurin is up-regulated by hypoxia in muscle cells by hypoxia-inducible factor-1alpha- and basic fibroblast growth factor-dependent mechanisms.

  7. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease.

    PubMed

    Hoier, B; Walker, M; Passos, M; Walker, P J; Green, A; Bangsbo, J; Askew, C D; Hellsten, Y

    2013-12-01

    Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients.

  8. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease

    PubMed Central

    Hoier, B.; Walker, M.; Passos, M.; Walker, P. J.; Green, A.; Bangsbo, J.; Askew, C. D.

    2013-01-01

    Peripheral arterial disease (PAD) is caused by atherosclerosis and is associated with microcirculatory impairments in skeletal muscle. The present study evaluated the angiogenic response to exercise and passive movement in skeletal muscle of PAD patients compared with healthy control subjects. Twenty-one PAD patients and 17 aged control subjects were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor thrombospondin-1 protein was markedly higher (P < 0.05) in PAD patients compared with the control subjects, whereas soluble VEGF receptor-1 dialysate levels were similar in the two groups. The basal VEGF protein content in the muscle tissue samples was ∼27% lower (P < 0.05) in the PAD patients compared with the control subjects. Analysis of mRNA expression for a range of angiogenic and angiostatic factors revealed a modest change with active exercise and passive movement in both groups, except for an increase (P < 0.05) in the ratio of angiopoietin-2 to angiopoietin-1 mRNA in the PAD group with both interventions. PAD patients and aged individuals showed a similar limited angiogenic response to active exercise and passive movement. The limited increase in muscle extracellular VEGF combined with an elevated basal level of thrombospondin-1 in muscle extracellular fluid of PAD patients may restrict capillary growth in these patients. PMID:24157526

  9. Nanoparticle accumulation in angiogenic tissues: towards predictable pharmacokinetics.

    PubMed

    Yaehne, Kristin; Tekrony, Amy; Clancy, Aisling; Gregoriou, Yiota; Walker, John; Dean, Kwin; Nguyen, Trinh; Doiron, Amber; Rinker, Kristina; Jiang, Xiao Yu; Childs, Sarah; Cramb, David

    2013-09-23

    Nanoparticles are increasingly used in medical applications such as drug delivery, imaging, and biodiagnostics, particularly for cancer. The design of nanoparticles for tumor delivery has been largely empirical, owing to a lack of quantitative data on angiogenic tissue sequestration. Using fluorescence correlation spectroscopy, the deposition rate constants of nanoparticles into angiogenic blood vessel tissue are determined. It is shown that deposition is dependent on surface charge. Moreover, the size dependency strongly suggests that nanoparticles are taken up by a passive mechanism that depends largely on geometry. These findings imply that it is possible to tune nanoparticle pharmacokinetics simply by adjusting nanoparticle size.

  10. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  11. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity.

    PubMed

    Wang, Xiuhui; Zhou, Yuning; Xia, Lunguo; Zhao, Cancan; Chen, Lei; Yi, Deliang; Chang, Jiang; Huang, Liping; Zheng, Xuebin; Zhu, Huiying; Xie, Youtao; Xu, Yuanjin; Lin, Kaili

    2015-02-01

    The bioactivity and stability of coatings on alloy implants play critical roles in the fast osseointegration and maintenance of a long-term life span of the implants, respectively. Herein, nano-sheet surface on bioactive calcium silicate (CaSiO3, CS) coatings on metal substrates was fabricated by combining atmosphere plasma spraying (APS) and hydrothermal technology (HT). The glassy phase in CS coatings generated by APS was converted into crystalline sheet-like nano-structures after HT treatment. Compared with the original CS coating samples, HT treatment decreased the degradation rate of the CS coatings. Moreover, the fabricated nano-structured topography of CS coatings increased the apatite mineralization ability and significantly enhanced the cell attachment, proliferation, differentiation, alkaline phosphatase (ALP) activity and expression of osteogenic genes and angiogenic factors of rat bone marrow stromal cells (bMSCs). Our results suggest that the nano-structured CS coatings have immense potential in improving the clinical performance of medical implants.

  12. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  13. Transcription factors and target genes of pre-TCR signaling.

    PubMed

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  14. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  15. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  16. Vertebrate embryos as tools for anti-angiogenic drug screening and function.

    PubMed

    Beedie, Shaunna L; Diamond, Alexandra J; Fraga, Lucas Rosa; Figg, William D; Vargesson, Neil

    2016-11-22

    The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.

  17. Anti-Angiogenic Gene Therapy for Prostate Cancer

    DTIC Science & Technology

    2004-04-01

    in immunocompetent animals (47). 16. Kisker, 0., Becker, C. M., Prox, D., Fannon, M., D’Amato. R., Flynn, E.. Fogler , Persistence and stable expression...Pluda, J., Fogler , W., Schiller, J. H., and Wilding, rAAV is the poor transduction efficiency in primary tumors as well as G. Phase I phannacokinetic

  18. The somite-secreted factor Maeg promotes zebrafish embryonic angiogenesis

    PubMed Central

    Qi, Jialing; Qin, Yinyin; Shi, Yunwei; Zhang, Jie; Gong, Jie; Dong, Zhangji; Liu, Xiaoyu; Sun, Chen; Chai, Renjie; Le Noble, Ferdinand; Liu, Dong

    2016-01-01

    MAM and EGF containing gene (MAEG), also called Epidermal Growth Factor-like domain multiple 6 (EGFL6), belongs to the epidermal growth factor repeat superfamily. The role of Maeg in zebrafish angiogenesis remains unclear. It was demonstrated that maeg was dynamically expressed in zebrafish developing somite during a time window encompassing many key steps in embryonic angiogenesis. Maeg loss-of-function embryos showed reduced endothelial cell number and filopodia extensions of intersegmental vessels (ISVs). Maeg gain-of-function induced ectopic sprouting evolving into a hyperbranched and functional perfused vasculature. Mechanistically we demonstrate that Maeg promotes angiogenesis dependent on RGD domain and stimulates activation of Akt and Erk signaling in vivo. Loss of Maeg or Itgb1, augmented expression of Notch receptors, and inhibiting Notch signaling or Dll4 partially rescued angiogenic phenotypes suggesting that Notch acts downstream of Itgb1. We conclude that Maeg acts as a positive regulator of angiogenic cell behavior and formation of functional vessels. PMID:27780917

  19. The role of NF-kappaB in the angiogenic response of coronary microvessel endothelial cells.

    PubMed Central

    Stoltz, R A; Abraham, N G; Laniado-Schwartzman, M

    1996-01-01

    The activation of nuclear factor (NF)-kappaB by 12(R)-hydroxyeicosatrienoic acid [12(R)-HETrE], an arachidonic acid metabolite with potent stereospecific proinflammatory and angiogenic properties, was examined and its role in the angiogenic response was determined in capillary endothelial cells derived from coronary microvessels. Electrophoretic mobility-shift assay of nuclear protein extracts from cells treated with 12(R)-HETrE demonstrated a rapid and stereospecific time- and concentration-dependent increase in the binding activity of NF-kappaB, which was inhibitable by the antioxidants N-acetylcysteine, butylated hydroxyanisole, and pyrrolidine dithiocarbamate and was partially attenuated by the protein kinase C inhibitors, staurosporine and calphostin C. Neither 12(S)-HETrE nor other related eicosanoids--e.g., 12(R)-HETE, 12(S)-HETE, and leukotriene B4--stimulated the activation of NF-kappaB relative to 12(R)-HETrE, substantiating the claim for a specific receptor-mediated mechanism. 12(R)-HETrE stimulated the formation of capillary-like cords of microvessel endothelial cells distinguishable from a control; this effect was comparable to that observed with basic fibroblast growth factor (bFGF). Inhibition of NF-kappaB activation resulted in inhibition of capillary-like formation of endothelial cells treated with 12(R)-HETrE by 80% but did not affect growth observed with bFGF. It is suggested that 12(R)-HETrE's angiogenic activity involves the activation of NF-kappaB, possibly via protein kinase C stimulation and the generation of reactive oxygen intermediates for downstream signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610127

  20. Residential Proximity to Major Roadways is Associated with Increased Levels of AC133+ Circulating Angiogenic Cells

    PubMed Central

    DeJarnett, Natasha; Yeager, Ray; Conklin, Daniel J.; Lee, Jongmin; O'Toole, Timothy E.; McCracken, James; Abplanalp, Wes; Srivastava, Sanjay; Riggs, Daniel W.; Hamzeh, Ihab; Wagner, Stephen; Chugh, Atul; DeFilippis, Andrew; Ciszewski, Tiffany; Wyatt, Brad; Becher, Carrie; Higdon, Deirdre; Ramos, Kenneth S.; Tollerud, David J.; Myers, John A.; Rai, Shesh N.; Shah, Jasmit; Zafar, Nagma; Krishnasamy, Sathya S.; Prabhu, Sumanth D.; Bhatnagar, Aruni

    2016-01-01

    Objective Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease (CVD) risk. Yet the nature of this association remains unclear, and its impact on individual CVD risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. Approach and Results In a cross-sectional study, CVD risk factors, blood levels of C-reactive protein (CRP), and 15 antigenically-defined circulating angiogenic cell populations were measured in participants (n=316) with moderate to high CVD risk. Attributes of roadways surrounding residential locations were assessed using Geographic Information Systems. Associations between road proximity and cardiovascular indices were analyzed using Generalized Linear Models. Close proximity (<50m) to a major roadway was associated with lower income and higher rates of smoking, but not CRP levels. After adjustment for potential confounders, levels of circulating angiogenic cell in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31+/AC133+, AC133+, CD34+/AC133+, and CD34+/45dim/AC133+ cells); and positively associated with road segment distance (CD31+/AC133+, AC133+, and CD34+/AC133+ cells), traffic intensity (CD31+/AC133+ and AC133+ cells), and distance-weighted traffic intensity (CD31+/34+/45+/AC133+ cells). Conclusions Living close to a major roadway is associated with elevated levels of circulating cells positive for the “early” stem marker, AC133+. This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury due to residential proximity to roadways. PMID:26293462

  1. Interferon-α and angiogenic dysregulation in pregnant lupus patients destined for preeclampsia

    PubMed Central

    Andrade, Danieli; Kim, Mimi; Blanco, Luz P.; Karumanchi, S. Ananth; Koo, Gloria C.; Redecha, Patricia; Kirou, Kyriakos; Alvarez, Angela M.; Mulla, Melissa J.; Crow, Mary K.; Abrahams, Vikki M.; Kaplan, Mariana J.; Salmon, Jane E.

    2015-01-01

    Objective To investigate whether elevated IFN-α early in pregnancy is associated with poor pregnancy outcomes and examine its relationship to angiogenic imbalance. Methods Women were enrolled in a case-control longitudinal study of lupus pregnancies. Serum samples obtained monthly through pregnancy were assayed for IFN-α and for antiangiogenic factor, sFlt1, and proangiogenic factor, (PlGF). Each of 28 SLE patients with poor pregnancy outcome was matched to an SLE patient with an uncomplicated pregnancy and to a pregnant healthy control. The effects of IFN-α and/or sFlt1 on-human endothelial cells and endothelial-trophoblast interactions was assessed. Results Compared to SLE patients with uncomplicated pregnancies, patients with preeclampsia had increased IFN-α before clinical symptoms. Non-autoimmune patients destined for preeclampsia did not have increased IFN-α. In SLE patients with low IFN-α, marked angiogenic imbalance (higher sFlt1, lower PlGF and higher sFlt1/PlGF ratios) precedes maternal manifestations of preeclampsia, whereas in SLE with high IFN-α, preeclampsia occurs without evidence of systemic angiogenic imbalance. Treatment of human endothelial cells with sFlt1 induced expression of sFlt1 mRNA, and IFN-α dramatically amplified responses to sFlt1. In a model of spiral artery transformation, only IFN-α and sFlt1 together disrupted the ability of trophoblast cells to remodel endothelial tube structures. Conclusions Our studies identify a new mechanism by which IFN-α induces an antiangiogenic milieu, increases the sensitivity of endothelial cells to sFlt1, and suggest that elevated IFN-α may contribute to pathogenesis of preeclampsia in some SLE pregnancies. PMID:25603823

  2. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response

    PubMed Central

    Markowska, Anna I.; Liu, Fu-Tong

    2010-01-01

    Recent studies have shown that a carbohydrate-binding protein, galectin-3, is a novel pro-angiogenic molecule. The mechanism by which galectin-3 promotes angiogenesis remains unknown. We demonstrate here that galectin-3 is a mediator of vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-mediated angiogenic response. Angiogenesis assays revealed that galectin-3 inhibitors, β-lactose and dominant-negative galectin-3, reduce VEGF- and bFGF-mediated angiogenesis in vitro and that VEGF- and bFGF-mediated angiogenic response is reduced in galectin-3 knockdown cells and Gal3−/− animals. Integrin αvβ3 was identified as the major galectin-3–binding protein and anti-αv, -β3, and -αvβ3 integrin function-blocking antibodies significantly inhibited the galectin-3–induced angiogenesis. Furthermore, galectin-3 promoted the clustering of integrin αvβ3 and activated focal adhesion kinase. Knockdown of GnTV, an enzyme that synthesizes high-affinity glycan ligands for galectin-3, substantially reduced: (a) complex N-glycans on αvβ3 integrins and (b) VEGF- and bFGF-mediated angiogenesis. Collectively, these data suggest that galectin-3 modulates VEGF- and bFGF-mediated angiogenesis by binding via its carbohydrate recognition domain, to the GnTV synthesized N-glycans of integrin αvβ3, and subsequently activating the signaling pathways that promote the growth of new blood vessels. These findings have broad implications for developing novel, carbohydrate-based therapeutic agents for inhibition of angiogenesis. PMID:20713592

  3. Evidence for the Effects of Xanthohumol in Disrupting Angiogenic, but not Stable Vessels

    PubMed Central

    Negrão, Rita; Incio, João; Lopes, Rui; Azevedo, Isabel; Soares, Raquel

    2007-01-01

    Angiogenesis is a complex multistep process that comprises proliferation, migration, and anastomosis of endothelial cells, followed by stabilization of the newly formed vessel through the attachment of support cells. This process is imbalanced in a large number of disorders, including cardiovascular disease, diabetes and cancer. Evidence indicates that xanthohumol (XN), a prenylated chalcone present in beer, exerts anti-angiogenic properties. However, its precise effect within the angiogenic steps is not accurately established. The purpose of the present study was to examine which features of the angiogenic process can be disturbed by XN. Human umbilical vein endothelial cells (HUVEC) and human fetal aortic smooth muscle cells (SMC) were incubated with xanthohumol at 5 and 10 μM, and cell viability, apoptosis, invasion and capillary-like structures formation were examined. Treatment with 10 μM XN significantly decreased viability and invasion capacity and increased apoptosis in both cell types as assessed by MTT, double-chamber assay and TUNEL assay respectively. The two concentrations of XN further led to a significant reduction in the number of capillary-like structures, when HUVEC were cultured on growth factor reduced-Matrigel-coated plates. Interestingly, XN exhibited the opposite effect when HUVEC were co-cultured with SMC, leading to an increase in the number of cord structures. In addition, incubation of both types of cells with XN resulted in reduced activity of NFκB, a transcription factor implicated in these cell fates. Given the absence of adverse effects in mature vasculature by XN, these findings emphasize the potential use of XN against pathological situations where angiogenesis is stimulated. PMID:23675054

  4. Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data

    PubMed Central

    Essaghir, Ahmed; Toffalini, Federica; Knoops, Laurent; Kallin, Anders; van Helden, Jacques; Demoulin, Jean-Baptiste

    2010-01-01

    Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining. PMID:20215436

  5. [Association of schizophrenia with variations in genes encoding transcription factors].

    PubMed

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  6. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  7. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  8. Angiogenic growth factors in neural embryogenesis and neoplasia.

    PubMed Central

    Zagzag, D.

    1995-01-01

    "Blood vessels have the power to increase within themselves which is according to the necessity whether natural or diseased. As a further proof that this is a general principle, we find that all growing parts are much more vascular than those that are come to their full growth; because growth is an operation beyond the simple support of the part. This is the reason why young animals are more vascular than those that are full grown. This is not peculiar to the natural operation of growth, but applies also to disease and restoration." PMID:7531952

  9. Treatment with anti-NAP monoclonal antibody reduces disease severity in murine model of novel angiogenic protein-induced or ovalbumin-induced arthritis.

    PubMed

    Nataraj, N B; Krishnamurthy, J; Salimath, B P

    2013-02-01

    Rheumatoid arthritis (RA) is a polyarticular inflammatory, angiogenic disease. Synovial angiogenesis contributes to inflammation in RA. In this study we have developed an arthritic model in rats using a novel angiogenic protein (NAP), isolated from human synovial fluid of RA patients. We produced anti-NAP monoclonal antibodies (mAbs) and investigated the therapeutic efficacy of the same in adjuvant-induced or NAP-induced arthritis as a model of human RA. The treatment of arthritic rats with anti-NAP mAbs resulted in effective amelioration of paw oedema, radiological arthritic characteristics, serum levels of vascular endothelial growth factor (VEGF) and NAP, compared to that of untreated arthritic animals. Further, profiling of angiogenic markers such as synovial microvessel density, angiogenesis, CD31, VEGF and fms-like tyrosine kinase (Flt1) by immunohistochemistry both in arthritic and anti-NAP mAb-treated animals revealed the efficacy of mAb as an anti-angiogenic functional antibody. Therefore, NAP may be an attractive target to design anti-angiogenic and anti-arthritic therapies to control the pathogenesis of arthritis.

  10. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells

    PubMed Central

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L.; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J.; Otterson, Mary F.; Stoner, Gary D.; Shaker, Reza; Rafiee, Parvaneh

    2014-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat’s digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer. PMID:25446010

  11. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells.

    PubMed

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J; Otterson, Mary F; Stoner, Gary D; Shaker, Reza; Rafiee, Parvaneh

    2015-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.

  12. Phosphatase inhibitors with anti-angiogenic effect in vitro.

    PubMed

    Sylvest, Lene; Bendiksen, Christine Dam; Houen, Gunnar

    2010-01-01

    Levamisole has previously been identified as an inhibitor of angiogenesis in vitro and in vivo, but the mechanism behind the anti-angiogenic behavior has not yet been established. However, one known effect of levamisole is the inhibition of alkaline phosphatase, and this fact encouraged us to test other phosphatase inhibitors for their anti-angiogenic effects by using the same method as used to identify levamisole: an ELISA-based co-culture angiogenesis assay giving quantitative and qualitative results. Historically, intracellular phosphatases have been associated with the downregulation of signaling pathways, and kinases with their upregulation, but lately, the phospatases have also been coupled to positive signaling, which is why inhibition of phosphatases has become associated with anti-tumorigenic and anti-angiogenic effects. The results obtained in this work reveal several agents with anti-angiogenic potential and give a strong indication that phosphatase inhibition is linked to anti-angiogenic activity. An apparent disruption of endothelial tube formation was seen for seven of eight phosphatase inhibitors tested in the angiogenesis assay. By looking at the morphological results, it was seen that most of the inhibitors impaired proliferation and elongation of the endothelial cells, which still had a differentiated appearance. One inhibitor, PTP inhibitor IV, seemed to impair endothelial cell differentiation and induced the same morphology as when cells were treated with levamisole, although at a 200 times lower concentration than that of levamisole. Hence, our work points out compounds with a potential that may be of use in the search for new medical products for the treatment of malignant tumors, or other conditions where angiogenesis plays a central role.

  13. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties.

    PubMed

    Moldenhauer, Lachlan M; Cockshell, Michaelia P; Frost, Lachlan; Parham, Kate A; Tvorogov, Denis; Tan, Lih Y; Ebert, Lisa M; Tooley, Katie; Worthley, Stephen; Lopez, Angel F; Bonder, Claudine S

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3) strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs) with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133(+) EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs), namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133(+) cell expansion with clear pro-angiogenic properties (in vitro and in vivo) and thus may provide clinical utility for humans in the future.

  14. MiR-29a modulates the angiogenic properties of human endothelial cells

    SciTech Connect

    Yang, Zeran; Wu, Lingjiao; Zhu, Xiuming; Xu, Jie; Jin, Rong; Li, Guohong; Wu, Fusheng

    2013-04-26

    Highlights: •miR-29a may be stimulated by hypoxia in HUVEC. •miR-29a regulates cell cycle, proliferation and tube network formation of HUVEC. •HMG box-containing protein-1(HBP1) is a direct target of miR-29a. •miR-29a has a potential value for treating angiogenesis-associated diseases. -- Abstract: Although extensive investigation has been made on miR-29a in relation to malignancies, only a little information has been provided about the angiogenic property of this miRNA so far. Herein, we sought to investigate the role of miR-29a in regulating cell cycle and angiogenic phenotype of endothelial cells. The results showed that miR-29a is highly expressed and upregulated by hypoxia-mimicking reagents in human umbilical vein endothelial cells (HUVEC). Consistent with this preliminary finding, introduction of exogenous agomiR-29a, or Antagomir-29a altered cell cycle progression and promoted, or repressed the proliferation and tube formation of HUVEC, respectively. Furthermore, by using luciferase reporter assay, the expression of HBP1, a suppressor transcription factor was directly regulated by miR-29a through 3′-UTR. Increased or decreased HBP1 protein level was associated with the inhibition or overexpression of miR-29a, respectively. We conclude that miR-29a has a significant role in regulating cell cycle, proliferation and angiogenic properties of HUVEC, and this function is likely mediated through HBP1 protein at the post-transcriptional level. As a novel molecular target, miR-29a may have a potential value for the treatment of angiogenesis-associated diseases such as cardiovascular diseases and cancers.

  15. Plant proteolytic enzyme papain abrogates angiogenic activation of human umbilical vein endothelial cells (HUVEC) in vitro

    PubMed Central

    2013-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of physiologic and pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. It is known that cysteine proteases from plants, like bromelain and papain are capable to suppress inflammatory activation. Recent studies have demonstrated that they may interfere with angiogenesis related pathways as well. The aim of this study was to investigate the anti-angiogenic effects of papain on human umbilical vein endothelial cells (HUVEC) in vitro. Methods Cell viability after prolonged treatment with papain was investigated by life cell staining and lactate dehydrogenase release assay. Angiogenic activation was assessed by ELISA against phosphorylated proteins AKT, MEK1/2, ERK1/2, SAPK/JNK and p38-MAPK. Growth inhibition was determined by means of an MTT-assay and cell migration by means of a scratch assay. Capability to form a capillary network was investigated using a tube formation assay. Results Papain did not induce proteolysis or cell detachment of HUVEC in a concentration range between 0 and 25 μg/mL. Four hours treatment with 10 μg/mL papain resulted in a reduced susceptibility of endothelial cells to activation by VEGF as determined by phosphorylation levels of Akt, MEK1/2, SAPK/JNK. Papain exerted a distinct inhibitory effect on cell growth, cell migration and tube formation with inhibition of tube formation detectable at concentrations as low as 1 μg/mL. Bromelain and ficin displayed similar effects with regard to cell growth and tube formation. Conclusion Papain showed a strong anti-angiogenic effect in VEGF activated HUVEC. This effect may be due to interference with AKT, MEK1/2 and SAPK/JNK phosphorylation. Two other plant derived cysteine proteases displayed similar inhibition of HUVEC cell growth and tube formation. These findings indicate that plant proteolytic enzymes may have potential as preventive and therapeutic agents against angiogenesis related human diseases

  16. Diminazene Attenuates Pulmonary Hypertension and Improves Angiogenic Progenitor Cell Functions in Experimental Models

    PubMed Central

    Shenoy, Vinayak; Gjymishka, Altin; Jarajapu, Yagna P.; Qi, Yanfei; Afzal, Aqeela; Rigatto, Katya; Ferreira, Anderson J.; Fraga-Silva, Rodrigo A.; Kearns, Patrick; Douglas, Jane Yellowlees; Agarwal, Deepmala; Mubarak, Kamal K.; Bradford, Chastity; Kennedy, William R.; Jun, Joo Y.; Rathinasabapathy, Anandharajan; Bruce, Erin; Gupta, Dipankar; Cardounel, Arturo J.; Mocco, J.; Patel, Jawaharlal M.; Francis, Joseph; Grant, Maria B.; Katovich, Michael J.

    2013-01-01

    Rationale: Studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays a protective role against lung diseases, including pulmonary hypertension (PH). Recently, an antitrypanosomal drug, diminazene aceturate (DIZE), was shown to exert an “off-target” effect of enhancing the enzymatic activity of ACE2 in vitro. Objectives: To evaluate the pharmacological actions of DIZE in experimental models of PH. Methods: PH was induced in male Sprague Dawley rats by monocrotaline, hypoxia, or bleomycin challenge. Subsets of animals were simultaneously treated with DIZE. In a separate set of experiments, DIZE was administered after 3 weeks of PH induction to determine whether the drug could reverse PH. Measurements and Main Results: DIZE treatment significantly prevented the development of PH in all of the animal models studied. The protective effects were associated with an increase in the vasoprotective axis of the lung renin-angiotensin system, decreased inflammatory cytokines, improved pulmonary vasoreactivity, and enhanced cardiac function. These beneficial effects were abolished by C-16, an ACE2 inhibitor. Initiation of DIZE treatment after the induction of PH arrested disease progression. Endothelial dysfunction represents a hallmark of PH pathophysiology, and growing evidence suggests that bone marrow–derived angiogenic progenitor cells contribute to endothelial homeostasis. We observed that angiogenic progenitor cells derived from the bone marrow of monocrotaline-challenged rats were dysfunctional and were repaired by DIZE treatment. Likewise, angiogenic progenitor cells isolated from patients with PH exhibited diminished migratory capacity toward the key chemoattractant stromal-derived factor 1α, which was corrected by in vitro DIZE treatment. Conclusions: Our results identify a therapeutic potential of DIZE in PH therapy. PMID:23370913

  17. Protein Z Exerts Pro-Angiogenic Effects and Upregulates CXCR4

    PubMed Central

    Butschkau, Antje; Wagner, Nana-Maria; Genz, Berit; Vollmar, Brigitte

    2014-01-01

    Objective Protein Z (PZ) is a vitamin K-dependent coagulation factor without catalytic activity. Evidence points towards PZ as an independent risk factor for the occurrence of human peripheral arterial disease. However, the role of PZ in ischemia-driven angiogenesis and vascular healing processes has not been elucidated so far. Approach Angiogenic potency of PZ was assessed in established in vitro assays using endothelial cells. PZ-deficient (PZ−/−) mice and their wild-type littermates (PZ+/+) were subjected to hindlimb ischemia. Furthermore, PZ−/− mice were exposed to PZ expressing adenovirus (AdV-PZ) or control adenovirus (AdV-GFP). In an additional set of animals, PZ−/− mice were exposed to AdV-PZ and AdV-GFP, each in combination with the CXCR4 antagonist AMD3100. Results In vitro, PZ stimulated migratory activity and capillary-like tube formation of endothelial cells comparable to SDF-1. PZ−/− mice exhibited diminished hypoxia-driven neovascularization and reperfusion in post-ischemic hindlimbs, which was restored by adenoviral gene transfer up to levels seen in PZ+/+ mice. The stimulatory impact of PZ on endothelial cells in vitro was abolished by siRNA targeting against PZ and PZ was not able to restore reduced migration after knock-down of CXCR4. The increased surface expression of CXCR4 on PZ-stimulated endothelial cells and the abrogated restoration of PZ−/− mice via AdV-PZ after concomitant treatment with the CXCR4 antagonist AMD3100 supports the idea that PZ mediates angiogenesis via a G-protein coupled pathway and involves the SDF-1/CXCR4 axis. This is underlined by the fact that addition of the G-protein inhibitor PTX to PZ-stimulated endothelial cells abolished the effect of PZ on capillary-like tube formation. Conclusions The results of the current study reveal a role of PZ in ischemia-induced angiogenesis, which involves a G-protein coupled pathway and a raised surface expression of CXCR4. Our findings thereby extend the

  18. Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation.

    PubMed

    Groothuis, Aline; Duda, Georg N; Wilson, Cameron J; Thompson, Mark S; Hunter, Morgan R; Simon, Paul; Bail, Hermann J; van Scherpenzeel, Karine M; Kasper, Grit

    2010-08-01

    Compromised angiogenesis appears to be a major limitation in various suboptimal bone healing situations. Appropriate mechanical stimuli support blood vessel formation in vivo and improve healing outcomes. However, the mechanisms responsible for this association are unclear. To address this question, the paracrine angiogenic potential of early human fracture haematoma and its responsiveness to mechanical loading, as well as angiogenic growth factors involved, were investigated in vitro. Human haematomas were collected from healthy patients undergoing surgery within 72 h after bone fracture. The haematomas were embedded in a fibrin matrix, and cultured in a bioreactor resembling the in vivo conditions of the early phase of bone healing (20% compression, 1 Hz) over 3 days. Conditioned medium (CM) from the bioreactor was then analyzed. The matrices were also incubated in fresh medium for a further 24 h to evaluate the persistence of the effects. Growth factor (GF) concentrations were measured in the CM by ELISAs. In vitro tube formation assays were conducted on Matrigel with the HMEC-1 cell line, with or without inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Cell numbers were quantified using an MTS test. In vitro endothelial tube formation was enhanced by CM from haematomas, compared to fibrin controls. The angiogenesis regulators, vascular endothelial growth factor (VEGF) and transforming growth factor beta1 (TGF-beta1), were released into the haematoma CM, but not angiopoietins 1 or 2 (Ang1, 2), basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF). Mechanical stimulation of haematomas, but not fibrin controls, further increased the induction of tube formation by their CM. The mechanically stimulated haematoma matrices retained their elevated pro-angiogenic capacity for 24 h. The pro-angiogenic effect was cancelled by inhibition of VEGFR2 signalling. VEGF concentrations in CM tended to be elevated by mechanical

  19. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    SciTech Connect

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  20. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2004-08-01

    neuroendocrine factors. They can guide cancer cell perineural invasion and dissemination through the release of soluble and solid matrix factors (see review (32...Ooshima, A. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral

  1. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  2. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients

    PubMed Central

    Rupp, Tristan; Arnold, Christiane; van der Heyden, Michaël; Orend, Gertraud; Hussenet, Thomas

    2014-01-01

    Angiogenesis represents a rate-limiting step during tumor progression. Targeting angiogenesis is already applied in cancer treatment, yet limits of anti-angiogenic therapies have emerged, notably because tumors adapt and recur after treatment. Therefore, there is a strong need to better understand the molecular and cellular mechanisms underlying tumor angiogenesis. Using the RIP1-Tag2 transgenic murine model, we identified 298 genes that are deregulated during the angiogenic switch, revealing an ingression/expansion of specific stromal cell types including endothelial cells and pericytes, but also macrophages and perivascular mesenchymal cells. Canonical TGF-β signaling is up-regulated during the angiogenic switch, especially in tumor-associated macrophages and fibroblasts. The matrisome, comprising extracellular matrix (ECM) and ECM-associated molecules, is significantly enriched, which allowed us to define the AngioMatrix signature as the 110 matrisomal genes induced during the RIP1-Tag2 angiogenic switch. Several AngioMatrix molecules were validated at expression level. Ablation of tenascin-C, one of the most highly induced ECM molecules during the switch, resulted in reduced angiogenesis confirming its important role. In human glioma and colorectal samples, the AngioMatrix signature correlates with the expression of endothelial cell markers, is increased with tumor progression and finally correlates with poor prognosis demonstrating its diagnostic and therapeutic potential. PMID:25301723

  3. Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF(165).

    PubMed

    Lim, Dong-Kwon; Wylie, Ryan G; Langer, Robert; Kohane, Daniel S

    2016-01-01

    Vascular endothelial growth factor 165 (VEGF165) is an important extracellular protein involved in pathological angiogenesis in diseases such as cancer, wet age-related macular degeneration (wet-AMD) and retinitis pigmentosa. VEGF165 exists in two different isoforms: the angiogenic VEGF165a, and the anti-angiogenic VEGF165b. In some angiogenic diseases the proportion of VEGF165b may be equal to or higher than that of VEGF165a. Therefore, developing therapeutics that inhibit VEGF165a and not VEGF165b may result in greater anti-angiogenic activity and therapeutic benefit. To this end, we report the selective binding properties of sulfated hyaluronic acid (s-HA). Selective biopolymers offer several advantages over antibodies or aptamers including cost effective and simple synthesis, and the ability to make nanoparticles or hydrogels for drug delivery applications or VEGF165a sequestration. Limiting sulfation to the C-6 hydroxyl (C-6 OH) in the N-acetyl-glucosamine repeat unit of hyaluronic acid (HA) resulted in a polymer with strong affinity for VEGF165a but not VEGF165b. Increased sulfation beyond the C-6 OH (i.e. greater than 1 sulfate group per HA repeat unit) resulted in s-HA polymers that bound both VEGF165a and VEGF165b. The C-6 OH sulfated HA (Mw 150 kDa) showed strong binding properties to VEGF165a with a fast association rate constant (Ka; 2.8 × 10(6) M(-1) s(-1)), slow dissociation rate constant (Kd; 2.8 × 10(-3) s(-1)) and strong equilibrium binding constant (KD; ∼1.0 nM)), which is comparable to the non-selective VEGF165 binding properties of the commercialized therapeutic anti-VEGF antibody (Avastin(®)). The C-6 OH sulfated HA also inhibited human umbilical vein endothelial cell (HUVEC) survival and proliferation and human dermal microvascular endothelial cell (HMVEC) tube formation. These results demonstrate that the semi-synthetic natural polymer, C-6 OH sulfated HA, may be a promising biomaterial for the treatment of angiogenesis

  4. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    SciTech Connect

    Nambiar, Dhanya K.; Rajamani, Paulraj; Singh, Rana P.

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic

  5. Tumour-associated macrophages influence canine mammary cancer stem-like cells enhancing their pro-angiogenic properties.

    PubMed

    Rybicka, A; Eyileten, C; Taciak, B; Mucha, J; Majchrzak, K; Hellmen, E; Krol, M

    2016-08-01

    Cancer stem-like cells as cells with ability to self-renewal and potential to differentiate into various types of cells are known to be responsible for tumour initiation, recurrence and drug resistance. Hence a comprehensive research is concentrated on discovering cancer stem-like cells biology and interdependence between them and other cells. The aim of our study was to evaluate the impact of macrophages on cancer stem-like cells in canine mammary carcinomas. As recent studies indicated presence of macrophages in cancer environment stimulates cancer cells into more motile and invasive cells by acquisition of macrophage phenotypes. From two canine mammary tumour cell lines, CMT-U27 and P114 cancer stem-like cells were stained with Sca1, CD44 and EpCAM monoclonal antibodies and isolated. Those cells were next co-cultured with macrophages for 5 days and used for further experiments. Canine Gene Expression Microarray revealed 29 different expressed transcripts in cancer stem-like cells co-cultured with macrophages compared to those in mono-culture. Up-regulation of C-C motif chemokine 2 was considered as the most interesting for further investigation. Additionally, those cells showed overexpression of genes involved in non-canonical Wnt pathway. The results of 3D tubule formation in endothelial cells induced by cancer stem-like cells co-cultured with macrophages compared to cancer stem-like cells from mono-cultures and with addition of Recombinant Canine CCL2/MCP-1 revealed the same stimulating effect. Based on those results we can conclude that macrophages have an impact on cancer stem-like cells increasing secretion of pro-angiogenic factors.

  6. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    PubMed Central

    Reece-Hoyes, John S; Shingles, Jane; Dupuy, Denis; Grove, Christian A; Walhout, Albertha JM; Vidal, Marc; Hope, Ian A

    2007-01-01

    Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale. PMID:17244357

  7. Nuclear gene-regulated expression of chloroplast genes for coupling factor one in maize

    SciTech Connect

    Kobayashi, H.; Bogorad, L.; Miles, C.D.

    1987-11-01

    In order to gain a better understanding of the interaction between the chloroplast and nuclear genomes in controlling the expression of plastid genes and the biosynthesis of chloroplast proteins, maize (Zea mays) nuclear gene mutant hcf*-38, in which ..cap alpha.. and ..beta.. subunits of coupling factor one (CF/sub 1/) are almost completely missing was studied. The mutant possesses all the other subunits of CF/sub 1/ but several peptides of photosystem II are present in reduced amounts. A competitive hybridization experiment showed the presence of the same plastid mRNA species in mutant and wild-type plants except for slightly lower levels of some transcripts in the mutant. Northern hybridization and dot blot hybridization experiments showed the features of transcripts for ..cap alpha.. and ..beta.. subunits of CF/sub 1/ in the mutant to be similar to those in the wild-type maize although their levels are somewhat lower in the mutant. In vivo and in organello protein labeling experiments with L-(/sup 35/S)Met have shown that ..cap alpha.. and ..beta.. subunits of CF/sub 1/ are synthesized, assembled into CF/sub 1/, and probably associated with thylakoid membranes in mutant plants. It is concluded that they are subsequently degraded.

  8. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties

    PubMed Central

    2014-01-01

    Introduction Adipose tissue has the unique property of expanding throughout adult life, and angiogenesis is required for its growth. However, endothelial progenitor cells contribute minimally to neovascularization. Because myeloid cells have proven to be angiogenic, and monocytes accumulate in expanding adipose tissue, they might contribute to vascularization. Methods The stromal vascular fraction (SVF) cells from human adipose tissue were magnetically separated according to CD45 or CD14 expression. Adipose-derived mesenchymal stromal cells (MSCs) were obtained from SVF CD45- cells. CD14+ monocytes were isolated from peripheral blood (PB) mononuclear cells and then cultured with SVF-derived MSCs. Freshly isolated or cultured cells were characterized with flow cytometry; the conditioned media were analyzed for the angiogenic growth factors, angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and granulocyte macrophage colony-stimulating factor (GM-CSF) with Luminex Technology; their angiogenic capacity was determined in an in vivo gelatinous protein mixture (Matrigel) plug angiogenesis assay. Results CD45+ hematopoietic cells within the SVF contain CD14+ cells that co-express the CD34 progenitor marker and the endothelial cell antigens VEGF receptor 2 (VEGFR2/KDR), VEGFR1/Flt1, and Tie2. Co-culture experiments showed that SVF-derived MSCs promoted the acquisition of KDR and Tie-2 in PB monocytes. MSCs secreted significant amounts of Ang-2 and HGF, but minimal amounts of bFGF, G-CSF, or GM-CSF, whereas the opposite was observed for SVF CD14+ cells. Additionally, SVF CD14+ cells secreted significantly higher levels of VEGF and bFGF than did MSCs. Culture supernatants of PB monocytes cultured with MSCs contained significantly higher concentrations of VEGF, HGF, G-CSF, and GM-CSF than did the supernatants from cultures without MSCs

  9. Palmitoylethanolamide Regulates Production of Pro-Angiogenic Mediators in a Model of β Amyloid-Induced Astrogliosis In Vitro.

    PubMed

    Cipriano, Mariateresa; Esposito, Giueseppe; Negro, Luana; Capoccia, Elena; Sarnelli, Giovanni; Scuderi, Caterina; De Filippis, Daniele; Steardo, Luca; Iuvone, Teresa

    2015-01-01

    Aβ-induced astrogliosis can worsen the eziopathogenesis of Alzheimer disease (AD) by the release of proinflammatory and pro-oxidant mediators. Activated glial cells may release also pro-angiogenic molecules. The role of angiogenesis in AD is still controversial: although angiogenesis brings oxygen and nutrients to injured tissue, it may also exacerbate reactive gliosis. Moreover, by altering blood-brain barrier permeability pro-angiogenic mediators promote passage of inflammatory/immune-competent cells into the brain, thereby exacerbating gliosis. The release of proangiogenic factors during astrogliosis may thus be a key-step in controlling AD progression. The endogenous fatty acid amide, palmitoylethanolamide (PEA), is a pleiotropic mediator exerting anti-inflammatory, antinociceptive and antiangiogenic effects in several in vitro and in vivo models of chronic-degenerative disease. In this study, we investigated the effects of PEA in AD angiogenesis and neuroinflammation by using conditioned medium from untreated and Aβ-treated C6 rat astroglioma cells and HUVEC human endothelial cells. PEA (10-8-10-6 M) concentration-dependently reduced expression of pro-inflammatory and pro-angiogenic markers in Aβ (1 μg/mL)-stimulated C6 cells. Moreover, culture medium from PEA-treated C6 cells reduced HUVEC cell proliferation as compared to cells treated with conditioned medium from Aβ-treated C6 cells. Immunocytochemical analysis revealed that PEA treatment inhibited nuclear levels of mitogen-activated protein kinase 1 (the main pro-angiogenic pathway) and cytoplasmic vascular endothelial growth factor in HUVEC cells receiving C6 conditioned medium. Finally, the peroxisome proliferator-activated receptor alpha inhibitor GW6471, added to Aβ-treated C6 cells blocked all PEA effects in this model, suggesting that PEA acts through a proliferator-activated receptor alpha-dependent mechanism on astroglial cells. Collectively, these data support the

  10. Sharks: a potential source of antiangiogenic factors and tumor treatments.

    PubMed

    Cho, Jung; Kim, Young

    2002-12-01

    Since angiogenesis is a key feature of tumor growth, inhibiting this process is one way to treat cancer. Cartilage is a natural source of material with strong antiangiogenic activity. This report reviews knowledge of the anticancer properties of shark cartilage and clinical information on drugs such as neovastat and squalamine. Because their entire endoskeleton is composed of cartilage, sharks are thought to be an ideal source of angiogenic and tumor growth inhibitors. Shark cartilage extract has shown antiangiogenic and antitumor activities in animals and humans. The oral administration of cartilage extract was efficacious in reducing angiogenesis. Purified antiangiogenic factors from shark cartilage, such as U-995 and neovastat (AE-941), also showed antiangiogenic and antitumor activity. AE-941 is under phase III clinical investigation. Squalamine, a low molecular weight aminosterol, showed strong antitumor activity when combined with chemotherapeutic materials. The angiogenic tissue inhibitor of metalloprotease 3 (TIMP-3) and tumor suppressor protein (snm23) genes from shark cartilage were cloned and characterized.

  11. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  12. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  13. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  14. Identification of Tumor Endothelial Cells with High Aldehyde Dehydrogenase Activity and a Highly Angiogenic Phenotype

    PubMed Central

    Maishi, Nako; Ohga, Noritaka; Hida, Yasuhiro; Kawamoto, Taisuke; Iida, Junichiro; Shindoh, Masanobu; Tsuchiya, Kunihiko; Shinohara, Nobuo; Hida, Kyoko

    2014-01-01

    Tumor blood vessels play an important role in tumor progression and metastasis. It has been reported that tumor endothelial cells (TECs) exhibit highly angiogenic phenotypes compared with those of normal endothelial cells (NECs). TECs show higher proliferative and migratory abilities than those NECs, together with upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). Furthermore, compared with NECs, stem cell markers such as Sca-1, CD90, and multidrug resistance 1 are upregulated in TECs, suggesting that stem-like cells exist in tumor blood vessels. In this study, to reveal the biological role of stem-like TECs, we analyzed expression of the stem cell marker aldehyde dehydrogenase (ALDH) in TECs and characterized ALDHhigh TECs. TECs and NECs were isolated from melanoma-xenografted nude mice and normal dermis, respectively. ALDH mRNA expression and activity were higher in TECs than those in NECs. Next, ALDHhigh/low TECs were isolated by fluorescence-activated cell sorting to compare their characteristics. Compared with ALDHlow TECs, ALDHhigh TECs formed more tubes on Matrigel-coated plates and sustained the tubular networks longer. Furthermore, VEGFR2 expression was higher in ALDHhigh TECs than that in ALDHlow TECs. In addition, ALDH was expressed in the tumor blood vessels of in vivo mouse models of melanoma and oral carcinoma, but not in normal blood vessels. These findings indicate that ALDHhigh TECs exhibit an angiogenic phenotype. Stem-like TECs may have an essential role in tumor angiogenesis. PMID:25437864

  15. A novel polypeptide from shark cartilage with potent anti-angiogenic activity.

    PubMed

    Zheng, Lanhong; Ling, Peixue; Wang, Zheng; Niu, Rongli; Hu, Chaoxin; Zhang, Tianmin; Lin, Xiukun

    2007-05-01

    Using guanidine-HCl extraction, acetone precipitation, ultra-filtration and chromatography, a novel polypeptide with potent anti-angiogenic activity was purified from cartilage of the shark, Prionace glauca. N-terminal amino acid sequence analysis and SDS-PAGE revealed that the substance is a novel polypeptide with MW 15500 (PG155). The anti-angiogenic effects of PG155 were evaluated using zebrafish embryos model in vivo. Treatment of the embryos with 20 microg/ml PG155 resulted in a significant reduction in the growth of subintestinal vessels (SIVs). A higher dose resulted in almost complete inhibition of SIV growth, as observed by endogenous alkaline phosphatase (EAP) staining assay. An in vitro transwell experiment revealed that the polypeptide inhibited vascular endothelial growth factor (VEGF) induced migration and tubulogenesis of human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs in 20 microg/ml PG155 significantly decreased the density of migrated cells. Almost complete inhibition of cell migration was found when HUVECs were treated with 40-80 microg/ml PG155. PG155 (20 microg/ml) markedly inhibited the tube formation of HUVECs and a dose-dependent effect was also found when treatment of HUVECs with PG155 at the concentration from 20-160 microg/ml.

  16. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays.

    PubMed

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (<15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu(2+). The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings.

  17. Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration

    PubMed Central

    Alcayaga-Miranda, F.; Varas-Godoy, M.; Khoury, M.

    2016-01-01

    Mesenchymal stem cells (MSCs) are known to display important regenerative properties through the secretion of proangiogenic factors. Recent evidence pointed at the key role played by exosomes released from MSCs in this paracrine mechanism. Exosomes are key mediators of intercellular communication and contain a cargo that includes a modifiable content of microRNA (miRNA), mRNA, and proteins. Since the biogenesis of the MSCs-derived exosomes is regulated by the cross talk between MSCs and their niche, the content of the exosomes and consequently their biological function are dependent on the cell of origin and the physiologic or pathologic status of their microenvironment. Recent preclinical studies revealed that MSCs-derived exosomes have a critical implication in the angiogenic process since the use of exosomes-depleted conditioned medium impaired the MSCs angiogenesis response. In this review, we discuss the current knowledge related to the angiogenic potential of MSCs-exosomes and methods to enhance their biological activities for improved vascular regeneration. The current gain of insight in exosomes studies highlights the power of combining cell based therapies and their secreted products in therapeutic angiogenesis. PMID:27127516

  18. Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine.

    PubMed

    Lupo, Gabriella; Caporarello, Nunzia; Olivieri, Melania; Cristaldi, Martina; Motta, Carla; Bramanti, Vincenzo; Avola, Roberto; Salmeri, Mario; Nicoletti, Ferdinando; Anfuso, Carmelina D

    2016-01-01

    Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific "normalization window." So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug.

  19. Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine

    PubMed Central

    Lupo, Gabriella; Caporarello, Nunzia; Olivieri, Melania; Cristaldi, Martina; Motta, Carla; Bramanti, Vincenzo; Avola, Roberto; Salmeri, Mario; Nicoletti, Ferdinando; Anfuso, Carmelina D.

    2017-01-01

    Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific “normalization window.” So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug. PMID:28111549

  20. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    PubMed

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.

  1. Prevention of the Angiogenic Switch in Human Breast Cancer

    DTIC Science & Technology

    2006-03-01

    transcription and secretion in breast cancer cells. Oncogene 21, 7730-7739. 4. Sengupta K, Banerjee S , Saxena NK, Banerjee SK . (2004). Thrombospondin-1...findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position, policy or...of the Angiogenic Switch in Human Breast Cancer 5b. GRANT NUMBER W81XWH-04-1-0316 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S

  2. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    PubMed Central

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  3. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells

    PubMed Central

    Wu, Qianqian; Fang, Tao; Lang, Hongxin; Chen, Min; Shi, Ping; Pang, Xining; Qi, Guoxian

    2017-01-01

    In vivo studies have shown that amnion-produced growth factors participate in many diseases that involve angiogenesis, re-epithelialization and immunomodulation. Although human amniotic epithelial cells (hAECs) and human amniotic mesenchymal stem cells (hAMSCs) can be obtained from amniotic membranes, there is little information regarding their biological differences. The aim of the present study was to isolate and characterize cells from human amnions, to investigate the biological potential and behavior of these cells on the function of endothelial cells in vivo and in vitro and to examine variations in the expression profile of growth factors in different human amnion-derived cell types. Amnion fragments were enzymatically digested into two cell fractions, which were analyzed by mesenchymal and epithelial cell markers. Human aortic endothelial cells (hAoECs) were cultured with conditioned medium (CdM) collected from hAECs or hAMSCs. We used scratch and Transwell assays to evaluate migration ability; Cell Counting Kit-8 (CCK-8) and cell cycle analysis to evaluate proliferation ability; and a Matrigel tube formation assay to evaluate angiogenesis ability. To detect expression of angiogenesis-related genes, qPCR and enzyme-linked immunosorbent assay (ELISA) analyses were conducted. As stem cells, hAECs and hAMSCs all expressed the stem cell markers SSEA-4, OCT-4 and SOX-2. CdM obtained from hAECs promoted cell migration; CdM obtained from hAMSCs promoted cell proliferation; CdM obtained from hAECs and hAMSCs both promoted angiogenesis in hAoECs. Amnion-derived cells secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, EGF, HB-EGF and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Our results highlight that human amniotic epithelial and mesenchymal stem cells, which showed differences in their soluble factor secretion and angiogenic functions, could be ideal cell sources for

  4. Gene-specific regulation by general translation factors.

    PubMed

    Dever, Thomas E

    2002-02-22

    Protein synthesis is the ultimate step of gene expression and a key control point for regulation. In particular, it enables cells to rapidly manipulate protein production without new mRNA synthesis, processing, or export. Recent studies have enhanced our understanding of the translation initiation process and helped elucidate how modifications of the general translational machinery regulate gene-specific protein production.

  5. Inferring gene correlation networks from transcription factor binding sites.

    PubMed

    Mahdevar, Ghasem; Nowzari-Dalini, Abbas; Sadeghi, Mehdi

    2013-01-01

    Gene expression is a highly regulated biological process that is fundamental to the existence of phenotypes of any living organism. The regulatory relations are usually modeled as a network; simply, every gene is modeled as a node and relations are shown as edges between two related genes. This paper presents a novel method for inferring correlation networks, networks constructed by connecting co-expressed genes, through predicting co-expression level from genes promoter's sequences. According to the results, this method works well on biological data and its outcome is comparable to the methods that use microarray as input. The method is written in C++ language and is available upon request from the corresponding author.

  6. Network analysis of microRNAs, transcription factors, target genes and host genes in human anaplastic astrocytoma

    PubMed Central

    XUE, LUCHEN; XU, ZHIWEN; WANG, KUNHAO; WANG, NING; ZHANG, XIAOXU; WANG, SHANG

    2016-01-01

    Numerous studies have investigated the roles played by various genes and microRNAs (miRNAs) in neoplasms, including anaplastic astrocytoma (AA). However, the specific regulatory mechanisms involving these genes and miRNAs remain unclear. In the present study, associated biological factors (miRNAs, transcription factors, target genes and host genes) from existing studies of human AA were combined methodically through the interactions between genes and miRNAs, as opposed to studying one or several. Three regulatory networks, including abnormally expressed, related and global networks were constructed with the aim of identifying significant gene and miRNA pathways. Each network is composed of three associations between miRNAs targeted at genes, transcription factors (TFs) regulating miRNAs and miRNAs located on their host genes. Among these, the abnormally expressed network, which involves the pathways of previously identified abnormally expressed genes and miRNAs, partially indicated the regulatory mechanism underlying AA. The network contains numerous abnormal regulation associations when AA emerges. By modifying the abnormally expressed network factors to a normal expression pattern, the faulty regulation may be corrected and tumorigenesis of AA may be prevented. Certain specific pathways are highlighted in AA, for example PTEN which is targeted by miR-21 and miR-106b, regulates miR-25 which in turn targets TP53. PTEN and miR-21 have been observed to form feedback loops. Furthermore, by comparing and analyzing the pathway predecessors and successors of abnormally expressed genes and miRNAs in three networks, similarities and differences of regulatory pathways may be identified and proposed. In summary, the present study aids in elucidating the occurrence, mechanism, prevention and treatment of AA. These results may aid further investigation into therapeutic approaches for this disease. PMID:27347075

  7. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.

    PubMed Central

    Virbasius, J V; Scarpulla, R C

    1994-01-01

    Mitochondrial transcription factor A (mtTFA), the product of a nuclear gene, stimulates transcription from the two divergent mitochondrial promoters and is likely the principal activator of mitochondrial gene expression in vertebrates. Here we establish that the proximal promoter of the human mtTFA gene is highly dependent upon recognition sites for the nuclear respiratory factors, NRF-1 and NRF-2, for activity. These factors have been previously implicated in the activation of numerous nuclear genes that contribute to mitochondrial respiratory function. The affinity-purified factors from HeLa cells specifically bind to the mtTFA NRF-1 and NRF-2 sites through guanine nucleotide contacts that are characteristic for each site. Mutations in these contacts eliminate NRF-1 and NRF-2 binding and also dramatically reduce promoter activity in transfected cells. Although both factors contribute, NRF-1 binding appears to be the major determinant of promoter function. This dependence on NRF-1 activation is confirmed by in vitro transcription using highly purified recombinant proteins that display the same binding specificities as the HeLa cell factors. The activation of the mtTFA promoter by both NRF-1 and NRF-2 therefore provides a link between the expression of nuclear and mitochondrial genes and suggests a mechanism for their coordinate regulation during organelle biogenesis. Images PMID:8108407

  8. Pituitary tumor transforming gene binding factor: a new gene in breast cancer.

    PubMed

    Watkins, Rachel J; Read, Martin L; Smith, Vicki E; Sharma, Neil; Reynolds, Gary M; Buckley, Laura; Doig, Craig; Campbell, Moray J; Lewy, Greg; Eggo, Margaret C; Loubiere, Laurence S; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2010-05-01

    Pituitary tumor transforming gene (PTTG) binding factor (PBF; PTTG1IP) is a relatively uncharacterized oncoprotein whose function remains obscure. Because of the presence of putative estrogen response elements (ERE) in its promoter, we assessed PBF regulation by estrogen. PBF mRNA and protein expression were induced by both diethylstilbestrol and 17beta-estradiol in estrogen receptor alpha (ERalpha)-positive MCF-7 cells. Detailed analysis of the PBF promoter showed that the region -399 to -291 relative to the translational start site contains variable repeats of an 18-bp sequence housing a putative ERE half-site (gcccctcGGTCAcgcctc). Sequencing the PBF promoter from 122 normal subjects revealed that subjects may be homozygous or heterozygous for between 1 and 6 repeats of the ERE. Chromatin immunoprecipitation and oligonucleotide pull-down assays revealed ERalpha binding to the PBF promoter. PBF expression was low or absent in normal breast tissue but was highly expressed in breast cancers. Subjects with greater numbers of ERE repeats showed higher PBF mRNA expression, and PBF protein expression positively correlated with ERalpha status. Cell invasion assays revealed that PBF induces invasion through Matrigel, an action that could be abrogated both by siRNA treatment and specific mutation. Furthermore, PBF is a secreted protein, and loss of secretion prevents PBF inducing cell invasion. Given that PBF is a potent transforming gene, we propose that estrogen treatment in postmenopausal women may upregulate PBF expression, leading to PBF secretion and increased cell invasion. Furthermore, the number of ERE half-sites in the PBF promoter may significantly alter the response to estrogen treatment in individual subjects.

  9. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures

    PubMed Central

    Böhrnsen, Florian; Schliephake, Henning

    2016-01-01

    Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs. PMID:27910940

  10. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus

    PubMed Central

    Reynolds, John A.; Haque, Sahena; Williamson, Kate; Ray, David W.; Alexander, M. Yvonne; Bruce, Ian N.

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk. PMID:26930567

  11. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    PubMed Central

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  12. Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF165

    PubMed Central

    Kim, Tae-Hyun; Kang, Min Sil

    2016-01-01

    Vascularization is a key issue for the success of tissue engineering to repair damaged tissue. In this study, we report a composite scaffold delivering angiogenic factor for this purpose. Vascular endothelial growth factor (VEGF) was loaded on mesoporous silica nanoparticle (MSN), which was then incorporated within a type I collagen sponge, to produce collagen/MSN/VEGF (CMV) scaffold. The CMV composite scaffold could release VEGF sustainably over the test period of 28 days. The release of VEGF improved the cell proliferation. Moreover, the in vivo angiogenesis of the scaffold, as studied by the chick chorioallantoic membrane (CAM) model, showed that the VEGF-releasing scaffold induced significantly increased number of blood vessel complexes when compared with VEGF-free scaffold. The composite scaffold showed good biocompatibility, as examined in rat subcutaneous tissue. These results demonstrate that the CMV scaffold with VEGF-releasing capacity can be potentially used to stimulate angiogenesis and tissue repair. PMID:27689093

  13. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.

    PubMed

    Belbahri, Lassaad; Calmin, Gautier; Mauch, Felix; Andersson, Jan O

    2008-01-31

    Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.

  14. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    PubMed

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  15. Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: A preliminary study

    PubMed Central

    Lizano, Paulo L; Keshavan, Matcheri S; Tandon, Neeraj; Mathew, Ian T; Mothi, Suraj Sarvode; Montrose, Debra M; Yao, Jeffrey K

    2016-01-01

    Schizophrenia (SZ) is a heterogeneous disorder that presents in adolescence, persists into adulthood, and has many clinical features. Recent evidence suggests that abnormalities in inflammatory, neurotrophic, and angiogenic processes may play a role in the etiology of SZ. The identification of molecular biomarkers early in the course of disease is crucial to transforming diagnostic and therapeutic avenues. We investigated 14 molecular analytes focusing on inflammatory, neurotrophic and angiogenic pathways from the plasma of antipsychotic-naïve familial high risk for SZ (FHR; n=35) and first-episode psychosis (FEP; n=45) subjects, in comparison to healthy controls (HC, n=39). We identified distinct alterations in molecular signatures in young relatives at FHR for SZ prior to psychosis onset and FEP subjects. Firstly, the expression of soluble fms-like tyrosine kinase (sFlt-1), an anti-angiogenic factor that binds vascular endothelial growth factor (VEGF), was significantly increased in the FHR group compared to HC, but not in FEP. Secondly, interferon gamma (IFNγ) was significantly reduced in the FEP group compared to HC. Thirdly, network analysis revealed a positive correlation between sFlt-1 and VEGF, suggesting an activation of the angiogenic cascade in the FHR group, which persists in FEP. Our results indicate an angiogenesis and immunological dysfunction early in the course of disease, shifting the balance towards anti-angiogenesis and inflammation. PMID:26692348

  16. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts.

    PubMed

    Igarashi, Junsuke; Okamoto, Ryuji; Yamashita, Tetsuo; Hashimoto, Takeshi; Karita, Sakiko; Nakai, Kozo; Kubota, Yasuo; Takata, Maki; Yamaguchi, Fuminori; Tokuda, Masaaki; Sakakibara, Norikazu; Tsukamoto, Ikuko; Konishi, Ryoji; Hirano, Katsuya

    2016-03-01

    We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.

  17. Correcting Transcription Factor Gene Sets for Copy Number and Promoter Methylation Variations

    PubMed Central

    Rathi, Komal S.; Gaykalova, Daria A.; Hennesey, Patrick; Califano, Joseph A.; Ochs, Michael F.

    2014-01-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, since some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation and demonstrate the improvement in inference of transcription factor activity in a simulated data set based on the background expression observed in normal head and neck tissue. PMID:25195578

  18. Correcting transcription factor gene sets for copy number and promoter methylation variations.

    PubMed

    Rathi, Komal S; Gaykalova, Daria A; Hennessey, Patrick; Califano, Joseph A; Ochs, Michael F

    2014-09-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, as some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation, and demonstrate the improvement in inference of transcription factor activity in a simulated dataset based on the background expression observed in normal head and neck tissue.

  19. Anti-angiogenic effects of pterogynidine alkaloid isolated from Alchornea glandulosa

    PubMed Central

    Lopes, Flávia CM; Rocha, Ana; Pirraco, Ana; Regasini, Luis O; Silva, Dulce HS; Bolzani, Vanderlan S; Azevedo, Isabel; Carlos, Iracilda Z; Soares, Raquel

    2009-01-01

    Background Angiogenesis, a complex multistep process that comprehends proliferation, migration and anastomosis of endothelial cells (EC), has a major role in the development of pathologic conditions such as inflammatory diseases, tumor growth and metastasis. Brazilian flora, the most diverse in the world, is an interesting spot to prospect for new chemical leads, being an important source of new anticancer drugs. Plant-derived alkaloids have traditionally been of interest due to their pronounced physiological activities. We investigated the anti-angiogenic potential of the naturally occurring guanidine alkaloid pterogynidine (Pt) isolated from the Brazilian plant Alchornea glandulosa. The purpose of this study was to examine which features of the angiogenic process could be disturbed by Pt. Methods Human umbilical vein endothelial cells (HUVEC) were incubated with 8 μM Pt and cell viability, proliferation, apoptosis, invasion and capillary-like structures formation were addressed. Nuclear factor κB (NFκB), a transcription factor implicated in these processes, was also evaluated in HUVEC incubated with Pt. Quantifications were expressed as mean ± SD of five independent experiments and one-way analysis of variance (ANOVA) followed by the Dunnet test was used. Results A significant decrease in proliferation and invasion capacity and an effective increase in apoptosis as assessed by bromodeoxyuridine (BrdU), double-chamber and terminal transferase dUTP nick end labeling (TUNEL) assay, respectively, have been found. Pt also led to a drastic reduction in the number of capillary-like structures formation when HUVEC were cultured on growth factor reduced-Matrigel (GFR-Matrigel) coated plates. In addition, incubation of HUVEC with Pt resulted in reduced NFκB activity. Conclusion These findings emphasize the potential use of Pt against pathological situations where angiogenesis is stimulated as tumor development. PMID:19463163

  20. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  1. Angiogenic Blockade and Radiotherapy in Hepatocellular Carcinoma

    SciTech Connect

    Chi, Kwan-Hwa; Liao, Chao-Sheng; Chang, Chih-Chia; Ko, Hui-Ling; Tsang, Yuk-Wah; Yang, Kuo-Ching; Mehta, Minesh P.

    2010-09-01

    Purpose: We report our preliminary experience of combining sunitinib and helical tomotherapy in patients with advanced HCC. Methods and Materials: Records of patients with advanced hepatocellular carcinoma (HCC) treated with helical tomotherapy and sunitinib after radiation therapy (RT) from March 2007 to August 2008 were retrospectively reviewed. We report acute toxicities, radiologic response, serial {alpha}-fetoprotein (AFP) kinetics, and survival. Results: Of 23 evaluable patients, 60% had {>=}2 hepatic lesions, extrahepatic disease was present in 5 (21.7%), and all received 2 tablets (25 mg) of sunitinib at least 1 week before, during, and 2 weeks after RT. Thirteen patients continued maintenance sunitinib after RT until disease progression. Hypofractionated RT with a median target dose of 52.5 Gy/15 fractions was delivered. An objective response was achieved in 74% of patients. The 1-year survival rate was 70%, with median survival of 16 months. Multivariate analysis showed that maintenance sunitinib was the most significant factor for survival. The time to progression was 10 months in the maintenance group compared with 4 months in the control group. Eighteen out of 21 patients with elevated AFP (85.7%) had {>=}50% decline of AFP within 2 months after RT. There were three episodes of upper gastrointestinal bleeding and one episode of pancreatitis; 10 patients had {>=}Grade 2 elevation of liver enzymes, and 15 had {>=}Grade 2 thrombocytopenia. Conclusions: These preliminary results suggest that sunitinib and helical tomotherapy yield high Response Evaluation Criteria in Solid Tumors (RECIST) and AFP response rates in advanced HCC with an acceptable safety profile. Maintenance sunitinib after RT potentially prolongs survival. A randomized trial is warranted.

  2. Molecular Analysis of Factor VIII and Factor IX Genes in Hemophilia Patients: Identification of Novel Mutations and Molecular Dynamics Studies

    PubMed Central

    Al-Allaf, Faisal A.; Taher, Mohiuddin M.; Abduljaleel, Zainularifeen; Bouazzaoui, Abdellatif; Athar, Mohammed; Bogari, Neda M.; Abalkhail, Halah A.; Owaidah, Tarek MA.

    2017-01-01

    Background Hemophilias A and B are X-linked bleeding disorders caused by mutations in the factor VIII and factor IX genes, respectively. Our objective was to identify the spectrum of mutations of the factor VIII and factor IX genes in Saudi Arabian population and determine the genotype and phenotype correlations by molecular dynamics (MD) simulation. Methods For genotyping, blood samples from Saudi Arabian patients were collected, and the genomic DNA was amplified, and then sequenced by Sanger method. For molecular simulations, we have used softwares such as CHARMM (Chemistry at Harvard Macromolecular Mechanics; http://www.charmm-gui.org) and GROMACS. In addition, the secondary structure was determined based on the solvent accessibility for the confirmation of the protein stability at the site of mutation. Results Six mutations (three novel and three known) were identified in factor VIII gene, and six mutations (one novel and five known) were identified in factor IX gene. The factor VIII novel mutations identified were c.99G>T, p. (W33C) in exon 1, c.2138 DelA, p. (N713Tfs*9) in eon14, also a novel mutation at splicing acceptor site of exon 23 c.6430 - 1G>A. In factor IX, we found a novel mutation c.855G>C, p. (E285D) in exon 8. These novel mutations were not reported in any factor VIII or factor IX databases previously. The deleterious effects of these novel mutations were confirmed by PolyPhen2 and SIFT programs. Conclusion The protein functional and structural studies and the models built in this work would be appropriate for predicting the effects of deleterious amino acid substitutions causing these genetic disorders. These findings are useful for genetic counseling in the case of consanguineous marriages which is more common in the Saudi Arabia. PMID:28270892

  3. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    PubMed

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  4. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  5. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  6. Impact of angiogenic therapy in the treatment of critical lower limb ischemia in an animal model.

    PubMed

    Reis, Paulo Eduardo Ocke; de Carvalho, Leonardo Pinto; Yasumura, Eduardo; da Silva, Flavia Helena; Garcia, Bianca Cristina; Beutel, Abram; Sacramento, Chester Bittencourt; Baptista-Silva, José Carlos Costa; de Campos, Ruy Ribeiro; Takiya, Christina Maeda; Borojevic, Radovan; Han, Sang Won

    2014-04-01

    Angiogenic therapies for critical limb ischemia were tested in a mouse model. The mice were anesthetized and their femoral arteries were ligated. The animals were treated with bone marrow mononuclear cells (BMMCs) alone, BMMCs combined with plasmid vector encoding granulocyte macrophage colony-stimulating factor (GM-CSF), received no treatment, or no intervention (controls). The degree of ischemia was monitored for 4 weeks using a visual scale. Muscle atrophy and strength were assessed at 4 weeks postoperatively; the mice were then killed. In treated animals, total necrosis of the limb was not found, the weight of the gastrocnemius and quadriceps muscles was significantly higher, functional ability and tissue regeneration were significantly increased, and muscle impairment and adipocyte presence were significantly reduced compared with untreated animals. At inducing angiogenesis, the BMMCs alone was more effective than BMMCs combined with plasmid vector encoding GM-CSF. Treated animals showed increased angiogenesis compared with ischemic untreated ones.

  7. The noni anthraquinone damnacanthal is a multi-kinase inhibitor with potent anti-angiogenic effects.

    PubMed

    García-Vilas, Javier A; Pino-Ángeles, Almudena; Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Ángel

    2017-01-28

    The natural bioactive compound damnacanthal inhibits several tyrosine kinases. Herein, we show that -in fact- damancanthal is a multi kinase inhibitor. A docking and molecular dynamics simulation approach allows getting further insight on the inhibitory effect of damnacanthal on three different kinases: vascular endothelial growth factor receptor-2, c-Met and focal adhesion kinase. Several of the kinases targeted and inhibited by damnacanthal are involved in angiogenesis. Ex vivo and in vivo experiments clearly demonstrate that, indeed, damnacanthal is a very potent inhibitor of angiogenesis. A number of in vitro assays contribute to determine the specific effects of damnacanthal on each of the steps of the angiogenic process, including inhibition of tubulogenesis, endothelial cell proliferation, survival, migration and production of extracellular matrix remodeling enzyme. Taken altogether, these results suggest that damancanthal could have potential interest for the treatment of cancer and other angiogenesis-dependent diseases.

  8. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes.

    PubMed Central

    Miyatake, S; Otsuka, T; Yokota, T; Lee, F; Arai, K

    1985-01-01

    A cDNA clone that expresses granulocyte-macrophage colony stimulating factor (GM-CSF) activity in COS-7 cells has been isolated from a pcD library prepared from mRNA derived from concanavalin A-activated mouse helper T cell clones. Based on homology with the mouse GM-CSF cDNA sequence, the mouse GM-CSF gene was isolated. The human GM-CSF gene was also isolated based on homology with the human GM-CSF cDNA sequence. The nucleotide sequences determined for the genes and their flanking regions revealed that both the mouse and human GM-CSF genes are composed of three introns and four exons. The organization of the mouse and human GM-CSF genes are highly homologous and strong sequence homology between the two genes is found both in the coding and non-coding regions. A 'TATA'-like sequence was found 20-25 bp upstream from the transcription initiation site. In the 5'-flanking region, there is a highly homologous region extending 330 bp upstream of the putative TATA box. This sequence may play a role in regulation of expression of the GM-CSF gene. These structures are compared with those of different lymphokine genes and their regulatory regions. Images Fig. 2. Fig. 6. PMID:3876930

  9. Network and pathway analysis of microRNAs, transcription factors, target genes and host genes in human glioma

    PubMed Central

    ZHANG, YING; ZHAO, SHISHUN; XU, ZHIWEN

    2016-01-01

    To date, there has been rapid development with regard to gene and microRNA (miR/miRNA) research in gliomas. However, the regulatory mechanisms of the associated genes and miRNAs remain unclear. In the present study, the genes, miRNAs and transcription factors (TFs) were considered as elements in the regulatory network, and focus was placed on the associations between TFs and miRNAs, miRNAs and target genes, and miRNAs and host genes. In order to show the regulatory correlation clearly, all the elements were investigated and three regulatory networks, namely the differentially-expressed, related and global networks, were constructed. Certain important pathways were highlighted, with analysis of the similarities and differences among the networks. Next, the upstream and downstream elements of differentially-expressed genes, miRNAs and predicted TFs were listed. The most notable aspect of the present study was the three levels of network, particularly the differentially-expressed network, since the differentially-expressed associations that these networks provide appear at the initial stages of cancers such as glioma. If the states of the differentially-expressed associations can be adjusted to the normal state via alterations in regulatory associations, which were also recorded in the study networks and tables, it is likely that cancer can be regulated or even avoided. In the present study, the differentially-expressed network illuminated the pathogenesis of glioma; for example, a TF can regulate one or more miRNAs, and a target gene can be targeted by one or more miRNAs. Therefore, the host genes and target genes, the host genes and TFs, and the target genes and TFs indirectly affect each other through miRNAs. The association also exists between TFs and TFs, target genes and target genes, and host genes and host genes. The present study also demonstrated self-adaption associations and circle-regulations. The related network further described the regulatory mechanism

  10. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    PubMed

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  11. Embryonic Expression of the Chicken Krüppel-like (KLF) Transcription Factor Gene Family

    PubMed Central

    Antin, Parker B.; Pier, Maricela; Sesepasara, Terry; Yatskievych, Tatiana A; Darnell, Diana K.

    2010-01-01

    The Krüppel-like transcription factors are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15 and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development. PMID:20503383

  12. Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells

    PubMed Central

    Boyle, Michael; Chun, Crystal; Strojny, Chelsee; Narayanan, Raghuvaran; Bartholomew, Amelia; Sundivakkam, Premanand; Alapati, Satish

    2014-01-01

    Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro. PMID:25427002

  13. Anti-angiogenic activities of CRBGP from buccal glands of lampreys (Lampetra japonica).

    PubMed

    Jiang, Qi; Liu, Yu; Duan, Dandan; Gou, Meng; Wang, Hao; Wang, Jihong; Li, Qingwei; Xiao, Rong

    2016-04-01

    Cysteine-rich secretory proteins (CRISPs), characterized by 16 conserved cysteines, are distributed in a wide range of organisms, such as secernenteas, amphibians, reptiles and mammals. In the previous studies, a novel CRISP family member (cysteine-rich buccal gland protein, CRBGP) was separated from the buccal gland of lampreys (Lampetra japonica, L. japonica). Lamprey CRBGP could not only suppress depolarization-induced contraction of rat tail arterial smooth muscle, but also block voltage-gated sodium channels (VGSCs). In the present study, the anti-angiogenic activities of lamprey CRBGP were investigated using endothelial cells and chick chorioallantoic membrane (CAM) models. In vitro assays, lamprey CRBGP is able to induce human umbilical vein endothelial cells (HUVECs) apoptosis by disturbing the calcium homeostasis and mitochondria functions. In addition, lamprey CRBGP could inhibit proliferation, adhesion, migration, invasion and tube formation of HUVECs by affecting the organization of F-actin and expression level of matrix metallo-proteinase 2 (MMP-2), matrix metallo-proteinase 9 (MMP-9) and vascular endothelial growth factor A (VEGFA) which are related to angiogenesis. In vivo assays, lamprey CRBGP could suppress the blood vessel formation in CAM models. Therefore, lamprey CRBGP is an important protein present in the buccal gland of lampreys and might help lampreys suppress the contraction of blood vessels, nociceptive responses and wound healing of host fishes during their feeding time. In addition, lamprey CRBGP might have the potential to act as an effective anti-angiogenic factor for the treatment of abnormal angiogenesis induced diseases.

  14. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  15. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization

    PubMed Central

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R.; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher’s discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes’ weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher’s criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data. PMID:26348772

  16. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  17. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.

  18. Vascular endothelial growth factor gene (VEGFA) polymorphisms may serve as prognostic factors for recurrent depressive disorder development.

    PubMed

    Gałecki, Piotr; Gałecka, Elżbieta; Maes, Michael; Orzechowska, Agata; Berent, Dominika; Talarowska, Monika; Bobińska, Kinga; Lewiński, Andrzej; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2013-08-01

    Recurrent depressive disorder (rDD) is a multifactorial disease. Vascular endothelial growth factor (VEGF) is one of the factors that have been suggested to play a role in the etiology and/or development of this disease. Limited information related to the role of VEGFA gene polymorphism in depressive disorder is available. The aim of the study was to analyze the association between VEGFA gene polymorphisms (+405G/C; rs2010963, +936C/T; rs 3025039), VEGFA gene expression, and its serum protein levels in rDD in the Caucasian population. In the current study, 268 patients and 200 healthy controls of the Caucasian origin were involved. Genotyping and gene expression were performed using polymerase chain reaction (PCR)-based methods. Enzyme-linked immunosorbent assay (ELISA) was used for detection of circulating serum VEGF levels. The distribution of VEGFA polymorphism +405G/C differed significantly between rDD patients and healthy subjects. The results of this study indicated that the C allele and CC genotype of VEGFA are risk factors for rDD. Haplotypes CC and TG are the important factors for depression development. Further, VEGFA mRNA expression and VEGF levels were higher in rDD patients than in controls. The VEGFA gene polymorphism may serve as a prognostic factor for rDD development. Our study showed higher levels of both VEGFA mRNA in the peripheral blood cells and serum VEGF in patients diagnosed with rDD than in healthy controls. The obtained results suggest VEGF and the gene encoding the molecule play a role in the etiology of the disease and should be further investigated.

  19. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    NASA Astrophysics Data System (ADS)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  20. Muscarinic receptors participation in angiogenic response induced by macrophages from mammary adenocarcinoma-bearing mice

    PubMed Central

    de la Torre, Eulalia; Davel, Lilia; Jasnis, María A; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María E

    2005-01-01

    Introduction The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR). Methods Peritoneal macrophages from female BALB/c mice bearing a 7-day LMM3 tumor were inoculated intradermally (3 × 105 cells per site) into syngeneic mice. Before inoculation, TMps were stimulated with the muscarinic agonist carbachol in the absence or presence of different muscarinic antagonists or enzyme inhibitors. Angiogenesis was evaluated by counting vessels per square millimeter of skin. The expression of mAchR, arginase and cyclo-oxygenase (COX) isoforms was analyzed by Western blotting. Arginase and COX activities were evaluated by urea and prostaglandin E2 (PGE2) production, respectively. Results TMps, which stimulate neovascularization, express functional mAchR, because carbachol-treated TMps potently increased new blood vessels formation. This response was completely blocked by preincubating TMps with pirenzepine and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), M1 and M3 receptor antagonists, and partly by the M2 receptor antagonist methoctramine. M1 receptor activation by carbachol in TMps triggers neovascularization through arginase products because Nω-hydroxy-L-arginine reversed the agonist action. Preincubation of TMps with methoctramine partly prevented carbachol-stimulated urea formation. In addition, COX-derived liberation of PGE2 is responsible for the promotion of TMps angiogenic activity by M3 receptor. We also detected a higher expression of vascular endothelial growth factor (VEGF) in TMps than in macrophages from normal mice. Carbachol

  1. Dynamic control of gene regulatory logic by seemingly redundant transcription factors

    PubMed Central

    AkhavanAghdam, Zohreh; Sinha, Joydeb; Tabbaa, Omar P; Hao, Nan

    2016-01-01

    Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms. DOI: http://dx.doi.org/10.7554/eLife.18458.001 PMID:27690227

  2. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  3. Targetfinder.org: a resource for systematic discovery of transcription factor target genes

    PubMed Central

    Kiełbasa, Szymon M.; Blüthgen, Nils; Fähling, Michael

    2010-01-01

    Targetfinder.org (http://targetfinder.org/) provides a web-based resource for finding genes that show a similar expression pattern to a group of user-selected genes. It is based on a large-scale gene expression compendium (>1200 experiments, >13 000 genes). The primary application of Targetfinder.org is to expand a list of known transcription factor targets by new candidate target genes. The user submits a group of genes (the ‘seed’), and as a result the web site provides a list of other genes ranked by similarity of their expression to the expression of the seed genes. Additionally, the web site provides information on a recovery/cross-validation test to check for consistency of the provided seed and the quality of the ranking. Furthermore, the web site allows to analyse affinities of a selected transcription factor to the promoter regions of the top-ranked genes in order to select the best new candidate target genes for further experimental analysis. PMID:20460454

  4. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model.

    PubMed

    Mandel, T; Fleming, A J; Krähenbühl, R; Kuhlemeier, C

    1995-12-01

    The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5' ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.

  5. Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) Enhances Angiogenic and Cardiomyogenic Potential of Murine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Labedz-Maslowska, Anna; Lipert, Barbara; Berdecka, Dominika; Kedracka-Krok, Sylwia; Jankowska, Urszula; Kamycka, Elzbieta; Sekula, Malgorzata; Madeja, Zbigniew; Dawn, Buddhadeb; Jura, Jolanta; Zuba-Surma, Ewa K.

    2015-01-01

    The current evidence suggests that beneficial effects of mesenchymal stem cells (MSCs) toward myocardial repair are largely due to paracrine actions of several factors. Although Monocyte chemoattractant protein-induced protein 1 (MCPIP1) is involved in the regulation of inflammatory response, apoptosis and angiogenesis, whether MCPIP1 plays any role in stem cell-induced cardiac repair has never been examined. By employing retroviral (RV)-transduced overexpression of MCPIP1, we investigated the impact of MCPIP1 on viability, apoptosis, proliferation, metabolic activity, proteome, secretome and differentiation capacity of murine bone marrow (BM) - derived MSCs. MCPIP1 overexpression enhanced angiogenic and cardiac differentiation of MSCs compared with controls as indicated by elevated expression of genes accompanying angiogenesis and cardiomyogenesis in vitro. The proangiogenic activity of MCPIP1-overexpressing MSCs (MCPIP1-MSCs) was also confirmed by increased capillary-like structure formation under several culture conditions. This increase in differentiation capacity was associated with decreased proliferation of MCPIP1-MSCs when compared with controls. MCPIP1-MSCs also expressed increased levels of proteins involved in angiogenesis, autophagy, and induction of differentiation, but not adverse inflammatory agents. We conclude that MCPIP1 enhances endothelial and cardiac differentiation of MSCs. Thus, modulating MCPIP1 expression may be a novel approach useful for enhancing the immune-regulatory, anti-apoptotic, anti-inflammatory and regenerative capacity of BM-derived MSCs for myocardial repair and regeneration of ischemic tissues. PMID:26214508

  6. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

    PubMed Central

    Taniguchi, Hironori; Wendisch, Volker F.

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production. PMID:26257719

  7. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example.

    PubMed

    Taniguchi, Hironori; Wendisch, Volker F

    2015-01-01

    Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.

  8. Expression and production of cardiac angiogenic mediators depend on the Trypanosoma cruzi-genetic population in experimental C57BL/6 mice infection.

    PubMed

    Shrestha, Deena; Bajracharya, Bijay; Paula-Costa, Guilherme; Salles, Beatriz C; Leite, Ana Luísa J; Menezes, Ana Paula J; Souza, Débora Ms; Oliveira, Laser Am; Talvani, André

    2017-03-01

    Mammalian cardiac cells are important targets to the protozoan Trypanosoma cruzi. The inflammatory reaction in the host aims at eliminating this parasite, can lead to cell destruction, fibrosis and hypoxia. Local hypoxia is well-defined stimulus to the production of angiogenesis mediators. Assuming that different genetic T. cruzi populations induce distinct inflammation and disease patterns, the current study aims to investigate whether the production of inflammatory and angiogenic mediators is a parasite strain-dependent condition. C57BL/6 mice were infected with the Y and Colombian strains of T. cruzi and euthanized at the 12th and 32nd days, respectively. The blood and heart tissue were processed in immune assays and/or qPCR (TNF, IL-17, IL-10, CCL2, CCL3, CCL5, CCR2, CCR5 and angiogenic factors VEGF, Ang-1, Ang-2) and in histological assays. The T. cruzi increased the inflammatory and angiogenic mediators in the infected mice when they were compared to non-infected animals. However, the Colombian strain has led to higher (i) leukocyte infiltration, (ii) cardiac TNF and CCL5 production/expression, (iii) cardiac tissue parasitism, and to higher (iv) ratio between heart/body weights. On the other hand, the Colombian strain has caused lower production and expression VEGF, Ang-1 and Ang-2, when it was compared to the Y strain of the parasite. The present study highlights that the T. cruzi-genetic population defines the pattern of angiogenic/inflammatory mediators in the heart tissue, and that it may contribute to the magnitude of the cardiac pathogenesis. Besides, such assumption opens windows to the understanding of the angiogenic mediator's role in association with the experimental T. cruzi infection.

  9. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  10. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  11. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    PubMed

    Egan, Karl; Crowley, Darragh; Smyth, Paul; O'Toole, Sharon; Spillane, Cathy; Martin, Cara; Gallagher, Michael; Canney, Aoife; Norris, Lucy; Conlon, Niamh; McEvoy, Lynda; Ffrench, Brendan; Stordal, Britta; Keegan, Helen; Finn, Stephen; McEneaney, Victoria; Laios, Alex; Ducrée, Jens; Dunne, Eimear; Smith, Leila; Berndt, Michael; Sheils, Orla; Kenny, Dermot; O'Leary, John

    2011-01-01

    Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  12. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter.

    PubMed Central

    Cogswell, J P; Godlevski, M M; Bonham, M; Bisi, J; Babiss, L

    1995-01-01

    Progression through the somatic cell cycle requires the temporal regulation of cyclin gene expression and cyclin protein turnover. One of the best-characterized examples of this regulation is seen for the B-type cyclins. These cyclins and their catalytic component, cdc2, have been shown to mediate both the entry into and maintenance of mitosis. The cyclin B1 gene has been shown to be expressed between the late S and G2 phases of the cell cycle, while the protein is degraded specifically at interphase via ubiquitination. To understand the molecular basis for transcriptional regulation of the cyclin B1 gene, we cloned the human cyclin B1 gene promoter region. Using a chloramphenicol acetyltransferase reporter system and both stable and transient assays, we have shown that the cyclin B1 gene promoter (extending to -3800 bp relative to the cap site) can confer G2-enhanced promoter activity. Further analysis revealed that an upstream stimulatory factor (USF)-binding site and its cognate transcription factor(s) are critical for expression from the cyclin B1 promoter in cycling HeLa cells. Interestingly, USF DNA-binding activity appears to be regulated in a G2-specific fashion, supporting the idea that USF may play some role in cyclin B1 gene activation. These studies suggest an important link between USF and the cyclin B1 gene, which in part explains how maturation promoting factor complex formation is regulated. PMID:7739559

  13. Inflammatory Genes and Psychological Factors Predict Induced Shoulder Pain Phenotype

    PubMed Central

    George, Steven Z.; Parr, Jeffrey J.; Wallace, Margaret R.; Wu, Samuel S.; Borsa, Paul A.; Dai, Yunfeng; Fillingim, Roger B.

    2014-01-01

    Purpose The pain experience has multiple influences but little is known about how specific biological and psychological factors interact to influence pain responses. The current study investigated the combined influences of genetic (pro-inflammatory) and psychological factors on several pre-clinical shoulder pain phenotypes. Methods An exercise-induced shoulder injury model was used, and a priori selected genetic (IL1B, TNF/LTA region, IL6 single nucleotide polymorphisms, SNPs) and psychological (anxiety, depressive symptoms, pain catastrophizing, fear of pain, kinesiophobia) factors were included as the predictors of interest. The phenotypes were pain intensity (5-day average and peak reported on numerical rating scale), upper-extremity disability (5-day average and peak reported on the QuickDASH instrument), and duration of shoulder pain (in days). Results After controlling for age, sex, and race, the genetic and psychological predictors were entered separately as main effects and interaction terms in regression models for each pain phenotype. Results from the recruited cohort (n = 190) indicated strong statistical evidence for the interactions between 1) TNF/LTA SNP rs2229094 and depressive symptoms for average pain intensity and duration and 2) IL1B two-SNP diplotype and kinesiophobia for average shoulder pain intensity. Moderate statistical evidence for prediction of additional shoulder pain phenotypes included interactions of kinesiophobia, fear of pain, or depressive symptoms with TNF/LTA rs2229094 and IL1B. Conclusion These findings support the combined predictive ability of specific genetic and psychological factors for shoulder pain phenotypes by revealing novel combinations that may merit further investigation in clinical cohorts, to determine their involvement in the transition from acute to chronic pain conditions. PMID:24598699

  14. Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants

    PubMed Central

    Berdichevski, Alexandra; Simaan Yameen, Haneen; Dafni, Hagit; Neeman, Michal; Seliktar, Dror

    2015-01-01

    Therapies that promote angiogenesis have been successfully applied using various combinations of proangiogenic factors together with a biodegradable delivery vehicle. In this study we used bimodal noninvasive monitoring to show that the host response to a proangiogenic biomaterial can be drastically affected by the mode of implantation and the surface area-to-volume ratio of the implant material. Fluorescence/MRI probes were covalently conjugated to VEGF-bearing biodegradable PEG-fibrinogen hydrogel implants and used to document the in vivo degradation and liberation of bioactive constituents in an s.c. rat implantation model. The hydrogel biodegradation and angiogenic host response with three types of VEGF-bearing implant configurations were compared: preformed cylindrical plugs, preformed injectable microbeads, and hydrogel precursor, injected and polymerized in situ. Although all three were made with identical amounts of precursor constituents, the MRI data revealed that in situ polymerized hydrogels were fully degraded within 2 wk; microbead degradation was more moderate, and plugs degraded significantly more slowly than the other configurations. The presence of hydrogel degradation products containing the fluorescent label in the surrounding tissues revealed a distinct biphasic release profile for each type of implant configuration. The purported in vivo VEGF release profile from the microbeads resulted in highly vascularized s.c. tissue containing up to 16-fold more capillaries in comparison with controls. These findings demonstrate that the configuration of an implant can play an important role not only in the degradation and resorption properties of the materials, but also in consequent host angiogenic response. PMID:25825771

  15. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro.

    PubMed

    Birnbaum, Tobias; Hildebrandt, Jenna; Nuebling, Georg; Sostak, Petra; Straube, Andreas

    2011-10-01

    Tumor angiogenesis is of central importance in the malignancy of glioblastoma multiforme (GBM). As previously shown, human mesenchymal stem cells (hMSC) migrate towards GBM and are incorporated into tumor microvessels. However, phenotype and function of recruited hMSC remain unclear. We evaluated the differentiation and angiogenic potential of hMSC after stimulation with glioblastoma-conditioned medium in vitro. Immunostaining with endothelial, smooth muscle cell and pericyte markers was used to analyze hMSC differentiation in different concentrations of tumor-conditioned medium (CM), and the angiogenic potential was evaluated by matrigel-based tube-formation assay (TFA). Immunofluorescence staining revealed that tumor-conditioned hMSC (CM-hMSC) expressed CD 151, VE-cadherin, desmin, α-smooth muscle actin, nestin, and nerval/glial antigen 2 (NG2) in a CM concentration-dependent manner, whereas no expression of von-Willebrand factor (vWF) and smooth myosin could be detected. These findings are indicative of GBM-dependent differentiation of hMSC into pericyte-like cells, rather than endothelial or smooth muscle cells. Furthermore, TFA of hMSC and CM-hMSC revealed CM-dependent formation of capillary-like networks, which differed substantially from those formed by human endothelial cells (HUVEC), also implying pericyte-like tube formation. These results are indicative of GBM-derived differentiation of hMSC into pericyte-like mural cells, which might contribute to the neovascularization and stabilization of tumor vessels.

  16. Angiogenic effects of the extracts from Chinese herbs: Angelica and Chuanxiong.

    PubMed

    Meng, Hua; Guo, Jun; Sun, Ji-Yuan; Pei, Jian-Ming; Wang, Yue-Min; Zhu, Miao-Zhang; Huang, Chen

    2008-01-01

    Angelica and ChuanXiong are used to cure ischemic heart disease in China. Previous studies found that these two herbs could increase myocardial blood flow, oxygen-supply and keep myocardial oxygen balance, etc. However, the mechanisms of angiogenic effects of these two herbs are not well-known. The purpose of this study was to assess the effects of Angelica and ChuanXiong on vascular endothelial growth factor (VEGF) expression in rat myocardial infarction, on endothelial cell proliferation and quantity of vessels on chick embryo chorioallantoic membrane (CAM). In this study, rats were divided randomly into either pre-treatment or acute-treatment group and sacrificed at the end of the treatments. VEGF expression using Western blot analysis was significantly increased in the groups pre-treated with ChuanXiong and Angelica when compared to the control group (p < 0.05). There was significant increase in VEGF expression in the rats treated acutely with Angelica (p < 0.05). In the contrary, the rats treated with ChuanXiong showed a decrease in VEGF expression when compared to the acute-treatment control group (p < 0.05). Similar results were observed in immunohistochemistry of VEGF expression in the myocardia. Our study also demonstrated that these two herbs significantly enhanced endothelial cell proliferation (p < 0.05) and revascularity in CAM (p < 0.05). The data showed that Angelica and ChuanXiong could affect VEGF expression in rat myocardial infarction, promote endothelial cell proliferation and stimulate quantity of vessels on CAM model. The results suggest that Angelica and ChuanXiong have angiogenic effects, and may provide some mechanisms for the treatment of myocardial infarction and peripheral ischemia.

  17. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    SciTech Connect

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H.; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  18. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  19. A case study on the identification of confounding factors for gene disease association analysis.

    PubMed

    Han, Bin; Xie, Ruifei; Wu, Shixiu; Li, Lihua; Zhu, Lei

    2015-01-01

    Variation in the expression of genes arises from a variety of sources. It is important to remove sources of variation between arrays of non-biological origin. Non-biological variation, caused by lurking confounding factors, usually attracts little attention, although it may substantially influence the expression profile of genes. In this study, we proposed a method which is able to identify the potential confounding factors and highlight the non-biological variations. We also developed methods and statistical tests to study the confounding factors and their influence on the homogeneity of microarray data, gene selection, and disease classification. We explored an ovarian cancer gene expression profile and showed that data batches and arraying conditions are two confounding factors. Their influence on the homogeneity of data, gene selection, and disease classification are statistically analyzed. Experiments showed that after normalization, their influences were removed. Comparative studies further showed that the data became more homogeneous and the classification quality was improved. This research demonstrated that identifying and reducing the impact of confounding factors is paramount in making sense of gene-disease association analysis.