Science.gov

Sample records for angiotensin ii stimulation

  1. Angiotensin-(1-7) blocks the angiotensin II-stimulated superoxide production.

    PubMed

    Polizio, Ariel Héctor; Gironacci, Mariela Mercedes; Tomaro, Maria Luján; Peña, Clara

    2007-07-01

    Angiotensin (Ang)-(1-7), a bioactive compound of the renin-angiotensin system, exerts effects leading to blood pressure reduction which counterbalance Ang II pressor actions. The present study was conducted to examine Ang-(1-7) and Ang II effects on superoxide anion production in rat aorta using the lucigenin chemiluminescence method. Ang II dose-dependently increased superoxide anion formation when compared to control levels; a maximal increase (2.5-fold) was observed with 1 x 10(-10)M peptide concentration. The Ang II-stimulated superoxide formation was blocked by 1 x 10(-10)M losartan, the specific AT(1) receptor antagonist, but not by 1 x 10(-10)M PD 123319, the AT(2) receptor antagonist, suggesting that the increased superoxide levels caused by Ang II are mediated through AT(1) receptors activation. The Ang II-stimulated superoxide production was not modified by 2 x 10(-8)M allopurinol or 1 x 10(-7)M indomethacin, but was completely abolished by NAD(P)H oxidase inhibitors: 1 x 10(-8)M diphenylene iodonium, or 2 x 10(-8)M apocynin, demonstrating that NAD(P)H oxidase participates in such response. In contrast to Ang II, Ang-(1-7) concentrations ranging 1 x 10(-12) to 1 x 10(-6)M did not modify superoxide anion levels, but prevented the Ang II-enhanced superoxide production. In conclusion, we demonstrated that Ang-(1-7) blocks the pro-oxidant effects of Ang II, thus reducing the superoxide anion production and delaying the hypertension development.

  2. Angiotensin I conversion to angiotensin II stimulates cortical collecting duct sodium transport.

    PubMed

    Komlosi, Peter; Fuson, Amanda L; Fintha, Attila; Peti-Peterdi, János; Rosivall, Laszlo; Warnock, David G; Bell, Phillip Darwin

    2003-08-01

    Angiotensin (Ang) II directly stimulates epithelial sodium channel activity in the rabbit cortical collecting duct. Because Ang I and converting enzyme analogues might be present in the distal nephron, this raises the possibility of intraluminal generation of Ang II. Conversion of Ang I to Ang II was monitored by Ang II-dependent changes in intracellular sodium concentration as a reflection of sodium transport across the apical membrane. This involved imaging-based fluorescence microscopy with sodium-binding benzofuran isophthalate in isolated, perfused, cortical collecting-duct segments from rabbit kidney. Principal and intercalated cells were differentiated by rhodamine-conjugated peanut lectin. Control principal cell intracellular sodium concentration, during perfusion with 25 mmol/L NaCl and zero sodium in the bath plus monensin (10(-5) mol/L) averaged 5.8+/-0.14 mmol/L (n=156). The increase in intracellular sodium concentration, when luminal NaCl was increased from 25 to 150 mmol/L, was elevated by 3.5-fold in the presence of intraluminal Ang I (10(-6) mol/L). Also, the effects of Ang I on sodium transport were not significantly different from the effects of Ang II (10(-9) mol/L). Ang I was used in micromolar concentrations to ensure that there was sufficient substrate available for conversion to Ang II. Inhibition of the angiotensin-converting enzyme with captopril reduced the stimulatory effect of Ang I. These results suggest that intraluminal conversion of Ang I to Ang II can occur in the cortical collecting duct, resulting in enhanced apical sodium entry.

  3. Angiotensin II stimulates sympathetic neurotransmission to adipose tissue

    PubMed Central

    King, Victoria L; English, Victoria L; Bharadwaj, Kalyani; Cassis, Lisa A

    2013-01-01

    Angiotensin II (AngII) facilitates sympathetic neurotransmission by regulating norepinephrine (NE) synthesis, release, and uptake. These effects of AngII contribute to cardiovascular control. Previous studies in our laboratory demonstrated that chronic AngII infusion decreased body weight of rats. We hypothesized that AngII facilitates sympathetic neurotransmission to adipose tissue and may thereby decrease body weight. The effect of chronic AngII infusion on the NE uptake transporter and NE turnover was examined in metabolic (interscapular brown adipose tissue, ISBAT; epididymal fat, EF) and cardiovascular tissues (left ventricle, LV; kidney) of rats. To examine the uptake transporter saturation isotherms were performed using [3H]nisoxetine (NIS). At doses that lowered body weight, AngII significantly increased ISBAT [3H]NIS binding density. To quantify NE turnover, alpha-methyl-para-tyrosine (AMPT) was injected in saline-infused, AngII-infused, or saline-infused rats that were pair-fed to food intake of AngII-infused rats. AngII significantly increased the rate of NE decline in all tissues compared to saline. The rate of NE decline in EF was increased to a similar extent by AngII and by pair feeding. In rats administered AngII and propranolol, reductions in food and water intake and body weight were eliminated. These data support the hypothesis that AngII facilitates sympathetic neurotransmission to adipose tissue. Increased sympathetic neurotransmission to adipose tissue following AngII exposure is suggested to contribute to reductions in body weight. PMID:24224084

  4. Angiotensin II Stimulates H+-ATPase Activity in Intercalated Cells from Isolated Mouse Connecting Tubules and Cortical Collecting Ducts

    PubMed Central

    Wagner, Carsten A.; Mohebbi, Nilufar; Uhlig, Ulrike; Giebisch, Gerhard H.; Breton, Sylvie; Brown, Dennis; Geibel, John P.

    2011-01-01

    Intercalated cells in the collecting duct system express V-type H+-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H+-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H+-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H+-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na+-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H+-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT1-receptors) because it could be blocked by saralasin. Stimulation of H+-ATPase activity required an intact microtubular network - it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H+-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H+-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment. PMID:22116365

  5. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor.

    PubMed Central

    Wolf, G; Ziyadeh, F N; Thaiss, F; Tomaszewski, J; Caron, R J; Wenzel, U; Zahner, G; Helmchen, U; Stahl, R A

    1997-01-01

    Glomerular influx of monocytes/macrophages (M/M) occurs in many immune- and non-immune-mediated renal diseases. The mechanisms targeting M/M into the glomerulus are incompletely understood, but may involve stimulated expression of chemokines. We investigated whether angiotensin II (ANG II) induces the chemokine RANTES in cultured glomerular endothelial cells of the rat and in vivo. ANG II stimulated mRNA and protein expression of RANTES in cultured glomerular endothelial cells. The ANG II-induced RANTES protein was chemotactic for human monocytes. Surprisingly, the ANG II-stimulated RANTES expression was transduced by AT2 receptors because the AT2 receptor antagonists PD 123177 and CGP-42112A, but not an AT1 receptor blocker, abolished the induced RANTES synthesis. Intraperitoneal infusion of ANG II (500 ng/h) into naive rats for 4 d significantly stimulated glomerular RANTES mRNA and protein expression compared with solvent-infused controls. Immunohistochemistry revealed induction of RANTES protein mainly in glomerular endothelial cells and small capillaries. Moreover, ANG II- infused animals exhibited an increase in glomerular ED-1- positive cells compared with controls. Oral treatment with PD 123177 (50 mg/liter drinking water) attenuated the glomerular M/M influx without normalizing the slightly elevated systolic blood pressure caused by ANG II infusion, suggesting that the effects on blood pressure and RANTES induction can be separated. We conclude that the vasoactive peptide ANG II may play an important role in glomerular chemotaxis of M/M through local induction of the chemokine RANTES. The observation that the ANG II- mediated induction of RANTES is transduced by AT2 receptors may influence the decision as to which substances might be used for the therapeutic interference with the activity of the renin-angiotensin system. PMID:9276721

  6. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis.

    PubMed

    Jia, Zhanjun; Zhuang, Yibo; Hu, Caiyu; Zhang, Xintong; Ding, Guixia; Zhang, Yue; Rohatgi, Rajeev; Hua, Hu; Huang, Songming; He, John Ci-Jiang; Zhang, Aihua

    2016-07-26

    Imbalance of salt and water is a frequent and challenging complication of kidney disease, whose pathogenic mechanisms remain elusive. Employing an albumin overload mouse model, we discovered that albuminuria enhanced the expression of NHE3 and NCC but not other transporters in murine kidney in line with the stimulation of angiotensinogen (AGT)/angiotensin converting enzyme (ACE)/angiotensin (Ang) II cascade. In primary cultures of renal tubular cells, albumin directly stimulated AGT/ACE/Ang II and upregulated NHE3 and NCC expression. Blocking Ang II production with an ACE inhibitor normalized the upregulation of NHE3 and NCC in cells. Interestingly, albumin overload significantly reduced mitochondrial superoxide dismutase (SOD2), and administration of a SOD2 mimic (MnTBAP) normalized the expression of NHE3, NCC, and the components of AGT/ACE pathway affected by albuminuria, indicating a key role of mitochondria-derived oxidative stress in modulating renin-angiotensin system (RAS) and renal sodium transporters. In addition, the functional data showing the reduced urinary excretion of Na and Cl and enhanced response to specific NCC inhibitor further supported the regulatory results of sodium transporters following albumin overload. More importantly, the upregulation of NHE3 and NCC and activation of ACE/Ang II signaling pathway were also observed in albuminuric patient kidneys, suggesting that our animal model accurately replicates the human condition. Taken together, these novel findings demonstrated that albuminuria is of importance in resetting renal salt handling via mitochondrial oxidative stress-initiated stimulation of ACE/Ang II cascade. This may also offer novel, effective therapeutic targets for dealing with salt and water imbalance in proteinuric renal diseases.

  7. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    PubMed

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  8. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes

    PubMed Central

    Sundgren, N C; Giraud, G D; Stork, P J S; Maylie, J G; Thornburg, K L

    2003-01-01

    Rat and sheep cardiac myocytes become binucleate as they complete the ‘terminal differentiation’ process soon after birth and are not able to divide thereafter. Angiotensin II (Ang II) is known to stimulate hypertrophic changes in rodent cardiomyocytes under both in vivo and in vitro conditions via the AT1 receptor and intracellular extracellular regulated kinase (ERK) signalling cascade. We sought to develop culture methods for immature sheep cardiomyocytes in order to test the hypothesis that Ang II is a hypertrophic agent in the immature myocardium of the sheep. We isolated fetal sheep cardiomyocytes and cultured them for 96 h, added Ang II and phenylephrine (PE) for 48 h, and measured footprint area and proliferation (5-bromo-2′-deoxyuridine (BrdU) uptake) separately in mono- vs. binucleate myocytes. We found that neither Ang II nor PE changed the footprint area of mononucleated cells. PE stimulated an increase in footprint area of binucleate cells but Ang II did not. Ang II increased myocyte BrdU uptake compared to serum free conditions, but PE did not affect BrdU uptake. The MAP kinase kinase (MEK) inhibitor UO126 prevented BrdU uptake in Ang II-stimulated cells and prevented cell hypertrophy in PE-stimulated cells. This paper establishes culture methods for immature sheep cardiomyocytes and reports that: (1) Ang II is not a hypertrophic agent; (2) Ang II stimulates hyperplastic growth among mononucleate myocytes; (3) PE is a hypertrophic agent in binucleate myocytes; and (4) the ERK cascade is required for the proliferation effect of Ang II and the hypertrophic effect of PE. PMID:12626668

  9. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes.

    PubMed

    Sundgren, N C; Giraud, G D; Stork, P J S; Maylie, J G; Thornburg, K L

    2003-05-01

    Rat and sheep cardiac myocytes become binucleate as they complete the 'terminal differentiation' process soon after birth and are not able to divide thereafter. Angiotensin II (Ang II) is known to stimulate hypertrophic changes in rodent cardiomyocytes under both in vivo and in vitro conditions via the AT1 receptor and intracellular extracellular regulated kinase (ERK) signalling cascade. We sought to develop culture methods for immature sheep cardiomyocytes in order to test the hypothesis that Ang II is a hypertrophic agent in the immature myocardium of the sheep. We isolated fetal sheep cardiomyocytes and cultured them for 96 h, added Ang II and phenylephrine (PE) for 48 h, and measured footprint area and proliferation (5-bromo-2'-deoxyuridine (BrdU) uptake) separately in mono- vs. binucleate myocytes. We found that neither Ang II nor PE changed the footprint area of mononucleated cells. PE stimulated an increase in footprint area of binucleate cells but Ang II did not. Ang II increased myocyte BrdU uptake compared to serum free conditions, but PE did not affect BrdU uptake. The MAP kinase kinase (MEK) inhibitor UO126 prevented BrdU uptake in Ang II-stimulated cells and prevented cell hypertrophy in PE-stimulated cells. This paper establishes culture methods for immature sheep cardiomyocytes and reports that: (1) Ang II is not a hypertrophic agent; (2) Ang II stimulates hyperplastic growth among mononucleate myocytes; (3) PE is a hypertrophic agent in binucleate myocytes; and (4) the ERK cascade is required for the proliferation effect of Ang II and the hypertrophic effect of PE.

  10. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats.

    PubMed

    Daniels, Derek; Mietlicki, Elizabeth G; Nowak, Erica L; Fluharty, Steven J

    2009-01-01

    Angiotensin II (AngII) stimulation of water and NaCl intake is a classic model of the behavioural effects of hormones. In vitro studies indicate that the AngII type 1 (AT(1)) receptor stimulates intracellular pathways that include protein kinase C (PKC) and mitogen-activated protein (MAP) kinase activation. Previous studies support the hypotheses that PKC is involved in AngII-induced water, but not NaCl intake and that MAP kinase plays a role in NaCl consumption, but not water intake, after injection of AngII. The present experiments test these hypotheses in rats using central injections of AngII in the presence or absence of a PKC inhibitor or a MAP kinase inhibitor. Pretreatment with the PKC inhibitor chelerythrine attenuated AngII-induced water intake, but NaCl intake was unaffected. In contrast, pretreatment with U0126, a MAP kinase inhibitor, had no effect on AngII-induced water intake, but attenuated NaCl intake. These data support the working hypotheses and significantly extend our earlier findings and those of others. Perhaps more importantly, these experiments demonstrate the remarkable diversity of peptide receptor systems and add support for the surprising finding that intracellular signalling pathways can have divergent behavioural relevance.

  11. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways

    PubMed Central

    Daniels, Derek; Mietlicki, Elizabeth G.; Nowak, Erica L.; Fluharty, Steven J.

    2010-01-01

    Angiotensin II (AngII) stimulation of water and NaCl intake is a classic model of the behavioural effects of hormones. In vitro studies indicate that the AngII type 1 (AT1) receptor stimulates intracellular pathways that include PKC and MAP kinase activation. Previous studies support the hypotheses that PKC is involved in AngII-induced water, but not NaCl intake and that MAP kinase plays a role in NaCl consumption, but not water intake, after injection of AngII. The present experiments test these hypotheses using central injections of AngII in the presence or absence of a PKC inhibitor or a MAP kinase inhibitor. Pre-treatment with the PKC inhibitor chelerythrine attenuated AngII-induced water intake, but NaCl intake was unaffected. In contrast, pre-treatment with U0126, a MAP kinase inhibitor, had no effect on AngII-induced water intake, but attenuated NaCl intake. These data support the working hypotheses and significantly extend our earlier findings and those of others. Perhaps more importantly, these experiments demonstrate the remarkable diversity of peptide receptor systems and add support for the surprising finding that intracellular signalling pathways can have divergent behavioural relevance. PMID:18723579

  12. Angiotensin II Receptor Blockers

    MedlinePlus

    ... side effects include: Dizziness Elevated blood potassium level (hyperkalemia) Localized swelling of tissues (angioedema) There have been ... 31, 2016. Townsend RR. Major side effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. http://www.uptodate. ...

  13. Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica.

    PubMed

    Maejima, Sho; Konno, Norifumi; Matsuda, Kouhei; Uchiyama, Minoru

    2010-08-01

    Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT(1)) receptor antagonist but not a type-2 (AT(2)) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT(1)-like but not AT(2)-like receptor. We then cloned and characterized cDNA of the tree frog AT(1) receptor from the brain. The tree frog AT(1) receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT(1) receptor and exhibits the functional characteristics of an Ang II receptor. AT(1) receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT(1) receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT(1) receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.

  14. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    PubMed

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P < 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P < 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P < 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate.

  15. Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Tsukuda, Kana; Jing, Fei; Ohshima, Kousei; Nakaoka, Hirotomo; Kan-No, Harumi; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Iwanami, Jun; Horiuchi, Masatsugu

    2014-08-01

    Stroke is a leading cause of death and disability; however, meta-analysis of randomized controlled trials of blood pressure-lowering drugs in acute stroke has shown no definite evidence of a beneficial effect on functional outcome. Accumulating evidence suggests that angiotensin II type 1 receptor blockade with angiotensin II type 2 (AT2) receptor stimulation could contribute to protection against ischemic brain damage. We examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) initiated even after stroke can prevent ischemic brain damage. Stroke was induced by middle cerebral artery (MCA) occlusion, and the area of cerebral infarction was measured by magnetic resonant imaging. C21 (10 µg/kg/day) treatment was initiated immediately after MCA occlusion by intraperitoneal injection followed by treatment with C21 once daily. We observed that ischemic area was enlarged in a time dependent fashion and decreased on day 5 after MCA occlusion. Treatment with C21 initiated after MCA occlusion significantly reduced the ischemic area, with improvement of neurological deficit in a time-dependent manner without affecting blood pressure. The decrease of cerebral blood flow after MCA occlusion was also ameliorated by C21 treatment. Moreover, treatment with C21 significantly attenuated superoxide anion production and expression of proinflammatory cytokines, monocyte chemoattractant protein 1, and tumor necrosis factor α. Interestingly, C21 administration significantly decreased blood-brain barrier permeability and cerebral edema on the ischemic side. These results provide new evidence that direct AT2 receptor stimulation with C21 is a novel therapeutic approach to prevent ischemic brain damage after acute stroke. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II.

    PubMed

    Cabral, Pablo D; Hong, Nancy J; Hye Khan, Md Abdul; Ortiz, Pablo A; Beierwaltes, William H; Imig, John D; Garvin, Jeffrey L

    2014-03-01

    The proximal nephron reabsorbs 60% to 70% of the fluid and sodium and most of the filtered bicarbonate via Na/H exchanger 3. Enhanced proximal nephron transport is implicated in hypertension. Our findings show that a fructose-enriched diet causes salt sensitivity. We hypothesized that fructose stimulates luminal Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Na/H exchange was measured in rat proximal tubules as the rate of intracellular pH (pHi) recovery in fluorescent units/s. Replacing 5 mmol/L glucose with 5 mmol/L fructose increased the rate of pHi recovery (1.8±0.6 fluorescent units/s; P<0.02; n=8). Staurosporine, a protein kinase C inhibitor, blocked this effect. We studied whether this effect was because of the addition of fructose or removal of glucose. The basal rate of pHi recovery was first tested in the presence of a 0.6-mmol/L glucose and 1, 3, or 5 mmol/L fructose added in a second period. The rate of pHi recovery did not change with 1 mmol/L but it increased with 3 and 5 mmol/L of fructose. Adding 5 mmol/L glucose caused no change. Removal of luminal sodium blocked pHi recovery. With 5.5 mmol/L glucose, angiotensin II (1 pmol/L) did not affect the rate of pHi recovery (change, -1.1±0.5 fluorescent units/s; n=9) but it increased the rate of pHi recovery with 0.6 mmol/L glucose/5 mmol/L fructose (change, 4.0±2.2 fluorescent units/s; P<0.02; n=6). We conclude that fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. This mechanism is likely dependent on protein kinase C. These results may partially explain the mechanism by which a fructose diet induces hypertension.

  17. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. © 2016 American Heart Association, Inc.

  18. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction.

    PubMed

    Leo, M Dennis; Bulley, Simon; Bannister, John P; Kuruvilla, Korah P; Narayanan, Damodaran; Jaggar, Jonathan H

    2015-09-15

    Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated K(+) (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction. Copyright © 2015 the American Physiological Society.

  19. Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells

    PubMed Central

    Wagner, Carsten A.; Giebisch, Gerhard; Lang, Florian; Geibel, John P.

    1998-01-01

    Two mechanisms of H+ ion secretion in the proximal tubule that mediate bicarbonate reabsorption have been identified: the brush border Na/H exchanger and electrogenic H+ ion secretion. Angiotensin II (AII) has been shown to be a regulator of the luminal Na+/H+ exchanger and the basolateral Na+/HCO3− cotransporter. In the present study, we examined the effects of AII on H+-ATPase activity in isolated proximal tubule fragments. H+-ATPase activity was assessed by monitoring intracellular pH after Na+ removal from the bath. In addition, we investigated the effects on pH recovery of the proton pump inhibitor bafilomycin A1, removal of Cl−, and of colchicine. pH was continuously measured with the pH-sensitive fluorescent dye 2′, 7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Recovery of cell pH was observed in the absence of external Na+ and was significantly accelerated by AII. The AII-stimulated pH recovery was completely abolished by bafilomycin A1, by removal of Cl−, by NPPB [5-nitro-2-(3-phenylpropylamino)-benzoate; a potent Cl− channel blocker], and by colchicine. We conclude from these studies that AII stimulates proton extrusion via H+-ATPase by a Cl−-dependent process involving brush border insertion of vesicles. This process may contribute to up-regulation of HCO3− reabsorption along the proximal tubule when tubules are exposed to AII. PMID:9689138

  20. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes.

    PubMed

    Quignard, J F; Mironneau, J; Carricaburu, V; Fournier, B; Babich, A; Nurnberg, B; Mironneau, C; Macrez, N

    2001-08-31

    Previous results have shown that in rat portal vein myocytes the betagamma dimer of the G(13) protein transduces the angiotensin II-induced stimulation of calcium channels and increase in intracellular Ca(2+) concentration through activation of phosphoinositide 3-kinase (PI3K). In the present work we determined which class I PI3K isoforms were involved in this regulation. Western blot analysis indicated that rat portal vein myocytes expressed only PI3Kalpha and PI3Kgamma and no other class I PI3K isoforms. In the intracellular presence of an anti-p110gamma antibody infused by the patch clamp pipette, both angiotensin II- and Gbetagamma-mediated stimulation of Ca(2+) channel current were inhibited, whereas intracellular application of an anti-p110alpha antibody had no effect. The anti-PI3Kgamma antibody also inhibited the angiotensin II- and Gbetagamma-induced production of phosphatidylinositol 3,4,5-trisphosphate. In Indo-1 loaded cells, the angiotensin II-induced increase in [Ca(2+)](i) was inhibited by intracellular application of the anti-PI3Kgamma antibody, whereas the anti-PI3Kalpha antibody had no effect. The specificity of the anti-PI3Kgamma antibody used in functional experiments was ascertained by showing that this antibody did not recognize recombinant PI3Kalpha in Western blot experiments. Moreover, anti-PI3Kgamma antibody inhibited the stimulatory effect of intracellularly infused recombinant PI3Kgamma on Ca(2+) channel current without altering the effect of recombinant PI3Kalpha. Our results show that, although both PI3Kgamma and PI3Kalpha are expressed in vascular myocytes, the angiotensin II-induced stimulation of vascular L-type calcium channel and increase of [Ca(2+)](i) involves only the PI3Kgamma isoform.

  1. Luminal angiotensin II stimulates rat medullary thick ascending limb chloride transport in the presence of basolateral norepinephrine.

    PubMed

    Baum, Michel

    2016-02-15

    Angiotensin II (ANG II) is secreted by the proximal tubule resulting in a luminal concentration that is 100- to 1,000-fold greater than that in the blood. Luminal ANG II has been shown to stimulate sodium transport in the proximal tubule and distal nephron. Surprisingly, luminal ANG II inhibits NaCl transport in the medullary thick ascending limb (mTAL), a nephron segment responsible for a significant amount of NaCl absorption from the glomerular ultrafiltrate. We confirmed that addition of 10(-8) M ANG II to the lumen inhibited mTAL chloride transport (220 ± 19 to 165 ± 25 pmol·mm(-1)·min(-1), P < 0.01) and examined whether an interaction with basolateral norepinephrine existed to simulate the in vivo condition of an innervated tubule. We found that in the presence of a 10(-6) M norepinephrine bath, luminal ANG II stimulated mTAL chloride transport from 298 ± 18 to 364 ± 42 pmol·mm(-1)·min(-1) (P < 0.05). Stimulation of chloride transport by luminal ANG II was also observed with 10(-3) M bath dibutyryl cAMP in the bathing solution and bath isoproterenol. A bath of 10(-5) H-89 blocked the stimulation of chloride transport by norepinephrine and prevented the effect of luminal ANG II to either stimulate or inhibit chloride transport. Bath phentolamine, an α-adrenergic agonist, also prevented the decrease in mTAL chloride transport by luminal ANG II. Thus luminal ANG II increases chloride transport with basolateral norepinephrine; an effect likely mediated by stimulation of cAMP. Alpha-1 adrenergic stimulation prevents the inhibition of chloride transport by luminal ANG II.

  2. Angiotensin II stimulates renal proximal tubule Na(+)-ATPase activity through the activation of protein kinase C.

    PubMed

    Rangel, L B A; Caruso-Neves, C; Lara, L S; Lopes, A G

    2002-08-31

    Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.

  3. Somatostatin analog (SMS 201-995) inhibits the basal and angiotensin II-stimulated sup 3 H-thymidine uptake by rat adrenal glands

    SciTech Connect

    Pawlikowski, M.; Lewinski, A.; Sewerynek, E.; Szkudlinski, M.; Kunert-Radek, J.; Wajs, E. )

    1990-02-14

    The effects of a long-acting somatostatin analog SMS 201-995 injections on the basal and angiotensin II-stimulated ({sup 3}H)-thymidine uptake by the rat adrenal glands incubated in vitro were examined. It was shown that SMS 201-995 significantly inhibited the ({sup 3}H)-thymidine uptake and, additionally, suppressed the stimulatory effect of a single angiotensin II injection.

  4. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts.

  5. Dietary Fructose Enhances the Ability of Low Concentrations of Angiotensin II to Stimulate Proximal Tubule Na+ Reabsorption

    PubMed Central

    Gonzalez-Vicente, Agustin; Cabral, Pablo D.; Hong, Nancy J.; Asirwatham, Jessica; Yang, Nianxin; Berthiaume, Jessica M.; Dominici, Fernando P.; Garvin, Jeffrey L.

    2017-01-01

    Fructose-enriched diets cause salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the water and salt filtered through the glomerulus. Angiotensin II (Ang II) regulates this process. Normally, dietary salt reduces Ang II allowing the kidney to excrete more salt, thereby preventing hypertension. We hypothesized that fructose-enriched diets enhance the ability of low concentrations of Ang II to stimulate PT transport. We measured the effects of a low concentration of Ang II (10−12 mol/L) on transport-related oxygen consumption (QO2), and Na/K-ATPase and Na/H-exchange (NHE) activities and expression in PTs from rats consuming tap water (Control) or 20% fructose (FRUC). In FRUC-treated PTs, Ang II increased QO2 by 14.9 ± 1.3 nmol/mg/min (p < 0.01) but had no effect in Controls. FRUC elevated NHE3 expression by 19 ± 3% (p < 0.004) but not Na/K-ATPase expression. Ang II stimulated NHE activity in FRUC PT (Δ + 0.7 ± 0.1 Arbitrary Fluorescent units (AFU)/s, p < 0.01) but not in Controls. Na/K-ATPase activity was not affected. The PKC inhibitor Gö6976 blocked the ability of FRUC to augment the actions of Ang II. FRUC did not alter the inhibitory effect of dopamine on NHE activity. We conclude that dietary fructose increases the ability of low concentrations of Ang II to stimulate PT Na reabsorption via effects on NHE. PMID:28813008

  6. Dietary Fructose Enhances the Ability of Low Concentrations of Angiotensin II to Stimulate Proximal Tubule Na⁺ Reabsorption.

    PubMed

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Hong, Nancy J; Asirwatham, Jessica; Yang, Nianxin; Berthiaume, Jessica M; Dominici, Fernando P; Garvin, Jeffrey L

    2017-08-16

    Fructose-enriched diets cause salt-sensitive hypertension. Proximal tubules (PTs) reabsorb 70% of the water and salt filtered through the glomerulus. Angiotensin II (Ang II) regulates this process. Normally, dietary salt reduces Ang II allowing the kidney to excrete more salt, thereby preventing hypertension. We hypothesized that fructose-enriched diets enhance the ability of low concentrations of Ang II to stimulate PT transport. We measured the effects of a low concentration of Ang II (10(-12) mol/L) on transport-related oxygen consumption (QO₂), and Na/K-ATPase and Na/H-exchange (NHE) activities and expression in PTs from rats consuming tap water (Control) or 20% fructose (FRUC). In FRUC-treated PTs, Ang II increased QO₂ by 14.9 ± 1.3 nmol/mg/min (p < 0.01) but had no effect in Controls. FRUC elevated NHE3 expression by 19 ± 3% (p < 0.004) but not Na/K-ATPase expression. Ang II stimulated NHE activity in FRUC PT (Δ + 0.7 ± 0.1 Arbitrary Fluorescent units (AFU)/s, p < 0.01) but not in Controls. Na/K-ATPase activity was not affected. The PKC inhibitor Gö6976 blocked the ability of FRUC to augment the actions of Ang II. FRUC did not alter the inhibitory effect of dopamine on NHE activity. We conclude that dietary fructose increases the ability of low concentrations of Ang II to stimulate PT Na reabsorption via effects on NHE.

  7. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells.

    PubMed

    Ko, Benjamin; Mistry, Abinash; Hanson, Lauren; Mallick, Rickta; Hoover, Robert S

    2015-04-01

    Angiotensin II (ANG II) increases thiazide-sensitive sodium-chloride cotransporter (NCC) activity both acutely and chronically. ANG II has been implicated as a switch that turns WNK4 from an inhibitor of NCC into an activator of NCC, and ANG II's effect on NCC appears to require WNK4. Chronically, ANG II stimulation of NCC results in an increase in total and phosphorylated NCC, but the role of NCC phosphorylation in acute ANG II actions is unclear. Here, using a mammalian cell model with robust native NCC activity, we corroborate the role that ANG II plays in WNK4 regulation and clarify the role of Ste20-related proline alanine-rich kinase (SPAK)-induced NCC phosphorylation in ANG II action. ANG II was noted to have a biphasic effect on NCC, with a peak increase in NCC activity in the physiologic range of 10(-11) M ANG II. This effect was apparent as early as 15 min and remained sustained through 120 min. These changes correlated with significant increases in NCC surface protein expression. Knockdown of WNK4 expression sharply attenuated the effect of ANG II. SPAK knockdown did not affect ANG II action at early time points (15 and 30 min), but it did attenuate the response at 60 min. Correspondingly, NCC phosphorylation did not increase at 15 or 30 min, but increased significantly at 60 min. We therefore conclude that within minutes of an increase in ANG II, NCC is rapidly trafficked to the cell surface in a phosphorylation-independent but WNK4-dependent manner. Then, after 60 min, ANG II induces SPAK-dependent phosphorylation of NCC.

  8. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells

    PubMed Central

    Mistry, Abinash; Hanson, Lauren; Mallick, Rickta; Hoover, Robert S.

    2015-01-01

    Angiotensin II (ANG II) increases thiazide-sensitive sodium-chloride cotransporter (NCC) activity both acutely and chronically. ANG II has been implicated as a switch that turns WNK4 from an inhibitor of NCC into an activator of NCC, and ANG II's effect on NCC appears to require WNK4. Chronically, ANG II stimulation of NCC results in an increase in total and phosphorylated NCC, but the role of NCC phosphorylation in acute ANG II actions is unclear. Here, using a mammalian cell model with robust native NCC activity, we corroborate the role that ANG II plays in WNK4 regulation and clarify the role of Ste20-related proline alanine-rich kinase (SPAK)-induced NCC phosphorylation in ANG II action. ANG II was noted to have a biphasic effect on NCC, with a peak increase in NCC activity in the physiologic range of 10−11 M ANG II. This effect was apparent as early as 15 min and remained sustained through 120 min. These changes correlated with significant increases in NCC surface protein expression. Knockdown of WNK4 expression sharply attenuated the effect of ANG II. SPAK knockdown did not affect ANG II action at early time points (15 and 30 min), but it did attenuate the response at 60 min. Correspondingly, NCC phosphorylation did not increase at 15 or 30 min, but increased significantly at 60 min. We therefore conclude that within minutes of an increase in ANG II, NCC is rapidly trafficked to the cell surface in a phosphorylation-independent but WNK4-dependent manner. Then, after 60 min, ANG II induces SPAK-dependent phosphorylation of NCC. PMID:25651566

  9. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  10. Direct angiotensin II type 2 receptor stimulation in Nω-nitro-L-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling.

    PubMed

    Paulis, Ludovit; Becker, Sophie T R; Lucht, Kristin; Schwengel, Katja; Slavic, Svetlana; Kaschina, Elena; Thöne-Reineke, Christa; Dahlöf, Björn; Baulmann, Johannes; Unger, Thomas; Steckelings, U Muscha

    2012-02-01

    Pulse wave velocity (PWV), a direct marker of arterial stiffness, is an independent cardiovascular risk factor. Although the angiotensin II type 1 receptor blockade belongs to major antihypertensive and cardioprotective therapies, less is known about the effects of long-term stimulation of the angiotensin II type 2 receptor. Previously, compound 21, a selective nonpeptide angiotensin II type 2 receptor agonist improved the outcome of myocardial infarction in rats along with anti-inflammatory properties. We investigated whether compound 21 alone or in combination with angiotensin II type 1 receptor blockade by olmesartan medoxomil could prevent PWV increase and aortic remodeling in N(ω)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension. Male adult Wistar rats (n=65) were randomly assigned to control, L-NAME, L-NAME+compound-21, L-NAME+olmesartan, and L-NAME+olmesartan+compound-21 groups and treated for 6 weeks. We observed that L-NAME hypertension was accompanied by enhanced PWV, increased wall thickness, and stiffness of the aorta, along with elevated hydroxyproline concentration. Olmesartan completely prevented hypertension, PWV and wall thickness increase, and the increase of aortic stiffness and partly prevented hydroxyproline accumulation. Compound 21 partly prevented all of these alterations, yet without concomitant prevention of blood pressure rise. Although the combination therapy with olmesartan and compound 21 led to blood pressure levels, PWV, and wall thickness comparable to olmesartan-alone-treated rats, only in the combination group was complete prevention of increased hydroxyproline deposition achieved, resulting in even more pronounced stiffness reduction. We conclude that chronic angiotensin II type 2 receptor stimulation prevented aortic stiffening and collagen accumulation without preventing hypertension in rats with inhibited NO synthase. These effects were additive to angiotensin II type 1 receptor blockade, yet without additional

  11. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors.

    PubMed

    Peti-Peterdi, János; Warnock, David G; Bell, P Darwin

    2002-05-01

    Angiotensin II (AngII) helps to regulate overall renal tubular reabsorption of salt and water, yet its effects in the distal nephron have not been well studied. The purpose of these studies was to determine whether AngII stimulates luminal Na(+) transport in the cortical collecting duct (CCD). Intracellular Na(+) concentration ([Na(+)](i)), as a reflection of Na(+) transport across the apical membrane, was measured with fluorescence microscopy using sodium-binding benzofuran isophthalate (SBFI) in isolated, perfused CCD segments dissected from rabbit kidneys. Control [Na(+)](i), during perfusion with 25 mM NaCl and a Na(+)-free solution in the bath containing the Na(+)-ionophore monensin (10 microM, to eliminate basolateral membrane Na(+) transport) averaged 19.3 +/- 5.2 mM (n = 16). Increasing luminal [NaCl] to 150 mM elevated [Na(+)](i) by 9.87 +/- 1.5 mM (n = 7; P < 0.05). AngII (10(-9) M) added to the lumen significantly elevated baseline [Na(+)](i) by 6.3 +/- 1.0 mM and increased the magnitude (Delta = 25.2 +/- 3.7 mM) and initial rate ( approximately 5 fold) of change in [Na(+)](i) to increased luminal [NaCl]. AngII when added to the bath had similar stimulatory effects; however, AngII was much more effective from the lumen. Thus, AngII significantly increased the apical entry of Na(+) in the CCD. To determine if this apical entry step occurred via the epithelial Na(+) channel (ENaC), studies were performed using the specific ENaC blocker, benzamil hydrochloride (10(-6) M). When added to the perfusate, benzamil almost completely inhibited the elevations in [Na(+)](i) to increased luminal [NaCl] in both the presence and absence of AngII. These results suggest that AngII directly stimulates Na(+) channel activity in the CCD. AT(1) receptor blockade with candesartan or losartan (10(-6) M) prevented the stimulatory effects of AngII. Regulation of ENaC activity by AngII may play an important role in distal Na(+) reabsorption in health and disease.

  12. Low dose ouabain stimulates NaK ATPase α1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells.

    PubMed

    Ketchem, Corey J; Conner, Clayton D; Murray, Rebecca D; DuPlessis, Madalyn; Lederer, Eleanor D; Wilkey, Daniel; Merchant, Michael; Khundmiri, Syed J

    2016-11-01

    Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R. To test this hypothesis, we examined the effect of ouabain on renal cell angiotensin II production, the effect of AT1R inhibition on ouabain-stimulated NKA activity, and the effect of ouabain on NKA-AT1R association. Ouabain increased plasma angiotensin II levels in rats treated with ouabain (1μg/kg body wt./day) for 9days and increased angiotensin II levels in cell culture media after 24h treatment with ouabain in human (HKC11), mouse (MRPT), and human adrenal cells. Ouabain 10pM stimulated NKA-mediated (86)Rb uptake and phosphorylation of EGFR, Src, and ERK1/2. These effects were prevented by the AT1R receptor blocker candesartan. FRET and TIRF microscopy using Bodipy-labeled ouabain and mCherry-NKA or mCherry-AT1R demonstrated association of ouabain with AT1R and NKA. Further our FRET and TIRF studies demonstrated increased association between AT1R and NKA upon treatment with low dose ouabain. We conclude that ouabain stimulates NKA in renal proximal tubule cells through an angiotensin/AT1R-dependent mechanism and that this pathway contributes to cardiac glycoside associated hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells.

    PubMed

    Lassègue, B; Alexander, R W; Clark, M; Akers, M; Griendling, K K

    1993-06-01

    In cultured vascular smooth-muscle cells, angiotensin II produces a sustained formation of diacylglycerol (DG) and phosphatidic acid (PtdOH). Since the fatty acid composition of these molecules is likely to determine their efficacy as second messengers, it is important to ascertain the phospholipid precursors and the biochemical pathways from which they are produced. Our experiments suggest that phospholipase D (PLD)-mediated phosphatidylcholine (PtdCho) hydrolysis is the major source of both DG and PtdOH during the late signalling phase. First, in cells labelled with [3H]myristate, which preferentially labels PtdCho, formation of [3H]PtdOH precedes formation of [3H]DG. Second, in contrast with phospholipase C (PLC) activation, DG mass accumulation is dependent on extracellular Ca2+. Similarly, DG mass accumulation is not attenuated by protein kinase C activation, which we have previously shown to inhibit the phosphoinositide-specific PLC. Third, the fatty acid composition of late-phase DG and PtdOH more closely resembles that of PtdCho than that of phosphatidylinositol. Finally, in cells labelled for a short time with [3H]glycerol, the radioactivity incorporated into [3H]DG and PtdOH was greater than that incorporated into PtdIns, but not into PtdCho. We found no evidence that synthesis de novo or phosphatidylethanolamine breakdown contributes to sustained DG and PtdOH formation. Thus, in angiotensin II-stimulated cultured vascular smooth-muscle cells, PLD-mediated PtdCho hydrolysis is the major source of sustained DG and PtdOH, whereas phosphoinositide breakdown is a minor contributor. Furthermore, PtdOH phosphohydrolase, which determines the relative levels of DG and PtdOH, appears to be regulated by protein kinase C. These results have important implications for the role of these second messengers in growth and contraction.

  14. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  15. Protein kinase C epsilon-dependent extracellular signal-regulated kinase 5 phosphorylation and nuclear translocation involved in cardiomyocyte hypertrophy with angiotensin II stimulation.

    PubMed

    Zhao, Zhuo; Wang, Wei; Geng, Jing; Wang, Liqi; Su, Guohai; Zhang, Yun; Ge, Zhiming; Kang, Weiqiang

    2010-03-01

    Angiotensin II (Ang II) plays a critical role in hypertrophy of cardiomyocytes; however, the molecular mechanism, especially the signaling cascades, in cardiomyocytes remains unclear. In the present study, we examined the mechanism of Ang II in hypertrophy of cardiomyocytes. Ang II rapidly stimulated phosphorylation of protein kinase C epsilon (PKCepsilon) in a time- and dose-dependent manner via Ang II receptor-1 (AT(1)). Furthermore, Ang II-induced extracellular signal-regulated kinase 5 (ERK5) phosphorylation and translocation was mediated through a signal pathway that involves AT(1) and PKCepsilon, which resulted in transcriptional activation of myocyte enhancer factor-2C (MEF2C) and hypertrophy. Consequently, inhibiting PKCepsilon or ERK5 by small interfering RNA (siRNA) significantly attenuated Ang II-induced MEF2C activation and hypertrophy of rat cardiomyocytes. These data provide evidence that PKCepsilon-dependent ERK5 phosphorylation and nucleocytoplasmic traffic mediates Ang II-induced MEF2C activation and cardiomyocyte hypertrophy. PKCepsilon and ERK5 may be potential targets in the treatment of pathological vascular hypertrophy associated with the enhanced renin-angiotensin system. (c) 2010 Wiley-Liss, Inc.

  16. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  17. Angiotensin II in the paraventricular nucleus stimulates sympathetic outflow to the cardiovascular system and make vasopressin release in rat.

    PubMed

    Khanmoradi, Mehrangiz; Nasimi, Ali

    2016-10-06

    The hypothalamic paraventricular nucleus (PVN) plays essential roles in neuroendocrine and autonomic functions, including cardiovascular regulation. It was shown that microinjection of angiotensin II (AngII) into the PVN produced a pressor response. In this study, we explored the probable mechanisms of this pressor response. AngII was microinjected into the PVN and cardiovascular responses were recorded. Then, the responses were re-tested after systemic injection of a ganglionic blocker, Hexamethonium, or a vasopressin V1 receptor blocker. Hexamethonium pretreatment (i.v.) greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that the sympathetic system is involved in the cardiovascular effect of AngII in the PVN. Systemic pretreatment (i.v.) with V1 antagonist greatly and significantly attenuated the pressor response to AngII, with no significant effect on heart rate, indicating that vasopressin release is involved in the cardiovascular effect of AngII in the PVN. Overall, we found that AngII microinjected into the PVN produced a pressor response mediated by the sympathetic system and vasopressin release, indicating that other than circulating AngII, endogenous AngII of the PVN increases the vasopressin release from the PVN. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Hypercalcemia stimulates expression of intrarenal phospholipase A2 and prostaglandin H synthase-2 in rats. Role of angiotensin II AT1 receptors.

    PubMed Central

    Mangat, H; Peterson, L N; Burns, K D

    1997-01-01

    In chronic hypercalcemia, inhibition of thick ascending limb sodium chloride reabsorption is mediated by elevated intrarenal PGE2. The mechanisms and source of elevated PGE2 in hypercalcemia are not known. We determined the effect of hypercalcemia on intrarenal expression of cytosolic phospholipase A2 (cPLA2), prostaglandin H synthase-1 (PGHS-1), and prostaglandin H synthase-2 (PGHS-2), enzymes important in prostaglandin production. In rats fed dihydrotachysterol to induce hypercalcemia, Western blot analysis revealed significant upregulation of both cPLA2 and PGHS-2 in the kidney cortex and the inner and outer medulla. Immunofluorescence localized intrarenal cPLA2 and PGHS-2 to interstitial cells of the inner and outer medulla, and to macula densa and cortical thick ascending limbs in both control and hypercalcemic rats. Hypercalcemia had no effect on intrarenal expression of PGHS-1. To determine if AT1 angiotensin II receptor activation was involved in the stimulation of cPLA2 and PGHS-2 in hypercalcemia, we treated rats with the AT1 receptor antagonist, losartan. Losartan abolished the polydipsia associated with hypercalcemia, prevented the increase in cPLA2 protein in all regions of the kidney, and diminished PGHS-2 expression in the inner medulla. In addition, losartan completely prevented the increase in urinary PGE2 excretion in hypercalcemic rats. Intrarenal levels of angiotensin II were unchanged in hypercalcemia. These data indicate that hypercalcemia stimulates intrarenal cPLA2 and PGHS-2 protein expression. Our results further support a role for angiotensin II, acting on AT1 receptors, in mediating this stimulation. PMID:9329957

  19. Angiotensin II Stimulates Thick Ascending Limb NO Production via AT2 Receptors and Akt1-dependent Nitric-oxide Synthase 3 (NOS3) Activation*

    PubMed Central

    Herrera, Marcela; Garvin, Jeffrey L.

    2010-01-01

    Angiotensin II (Ang II) acutely stimulates thick ascending limb (TAL) NO via an unknown mechanism. In endothelial cells, activation of Ang II type 2 receptor (AT2) stimulates NO. Akt1 activates NOS3 by direct phosphorylation. We hypothesized that Ang II stimulates TAL NO production via AT2-mediated Akt1 activation, which phosphorylates NOS3 at serine 1177. We measured NO production by fluorescence microscopy. In isolated TALs, Ang II (100 nm) increased NO production by 1.1 ± 0.2 fluorescence units/min (p < 0.01). Ang II increased cGMP accumulation by 4.9 ± 1.3 fmol/μg (p < 0.01). Upon adding the AT2 antagonist PD123319 (1 μm), Ang II failed to stimulate NO (0.1 ± 0.1 fluorescence units/min; p < 0.001 versus Ang II); adding the AT1 antagonist losartan (1 μm) resulted in Ang II stimulating NO by 0.9 ± 0.1 fluorescence units/min. Akt inhibitor (5 μm) blocked Ang II-stimulated NO (−0.1 ± 0.2 fluorescence units/min versus inhibitor alone). Phospho-Akt1 increased by 72% after 5 min (p < 0.006), returning to basal after 10 min. Phospho-Akt2 did not change after 5 min but increased by 115 and 163% after 10 and 15 min (p < 0.02). Phospho-Akt3 did not change. An AT2 agonist increased pAkt1 by 78% (p < 0.02), PI3K inhibition blocked this effect. In TALs transduced with dominant negative Akt1, Ang II failed to stimulate NO (0.1 ± 0.2 fluorescence units/min versus 1.2 ± 0.2 for controls; p < 0.001). Ang II increased phospho-NOS3 at serine 1177 by 130% (p < 0.01) and 150% after 5 and 10 min (p < 0.02). Ang II increased phosphoNOS3 at serine 633 by 50% after 5 min (p < 0.01). Akt inhibition prevented NOS3 phosphorylation. We concluded that Ang II enhances TAL NO production via activation of AT2 and Akt1-dependent phosphorylation of NOS3 at serines 1177 and 633. PMID:20299462

  20. Angiotensin II stimulates thick ascending limb NO production via AT(2) receptors and Akt1-dependent nitric-oxide synthase 3 (NOS3) activation.

    PubMed

    Herrera, Marcela; Garvin, Jeffrey L

    2010-05-14

    Angiotensin II (Ang II) acutely stimulates thick ascending limb (TAL) NO via an unknown mechanism. In endothelial cells, activation of Ang II type 2 receptor (AT(2)) stimulates NO. Akt1 activates NOS3 by direct phosphorylation. We hypothesized that Ang II stimulates TAL NO production via AT(2)-mediated Akt1 activation, which phosphorylates NOS3 at serine 1177. We measured NO production by fluorescence microscopy. In isolated TALs, Ang II (100 nm) increased NO production by 1.1 +/- 0.2 fluorescence units/min (p < 0.01). Ang II increased cGMP accumulation by 4.9 +/- 1.3 fmol/microg (p < 0.01). Upon adding the AT(2) antagonist PD123319 (1 microm), Ang II failed to stimulate NO (0.1 +/- 0.1 fluorescence units/min; p < 0.001 versus Ang II); adding the AT(1) antagonist losartan (1 microm) resulted in Ang II stimulating NO by 0.9 +/- 0.1 fluorescence units/min. Akt inhibitor (5 microm) blocked Ang II-stimulated NO (-0.1 +/- 0.2 fluorescence units/min versus inhibitor alone). Phospho-Akt1 increased by 72% after 5 min (p < 0.006), returning to basal after 10 min. Phospho-Akt2 did not change after 5 min but increased by 115 and 163% after 10 and 15 min (p < 0.02). Phospho-Akt3 did not change. An AT(2) agonist increased pAkt1 by 78% (p < 0.02), PI3K inhibition blocked this effect. In TALs transduced with dominant negative Akt1, Ang II failed to stimulate NO (0.1 +/- 0.2 fluorescence units/min versus 1.2 +/- 0.2 for controls; p < 0.001). Ang II increased phospho-NOS3 at serine 1177 by 130% (p < 0.01) and 150% after 5 and 10 min (p < 0.02). Ang II increased phosphoNOS3 at serine 633 by 50% after 5 min (p < 0.01). Akt inhibition prevented NOS3 phosphorylation. We concluded that Ang II enhances TAL NO production via activation of AT(2) and Akt1-dependent phosphorylation of NOS3 at serines 1177 and 633.

  1. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.

  2. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells

    PubMed Central

    Massey, Katherine J.; Li, Quanwen; Rossi, Noreen F.; Keezer, Susan M.; Mattingly, Raymond R.

    2015-01-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser938 were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K·mg protein−1·min−1 and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser938 is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  3. CHBPR-Angiotensin II stimulates renin in inner medullary collecting duct cells via PKC and independent of ENaC and mineralocorticoid receptor activity

    PubMed Central

    Gonzalez, Alexis A.; Liu, Liu; Lara, Lucienne S.; Seth, Dale M; Navar, L. Gabriel; Prieto, Minolfa C

    2011-01-01

    Collecting duct (CD) renin is stimulated by angiotensin (Ang) II providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates epithelial sodium channel (ENaC) via Ang II type 1 receptor (AT1R) and increases mineralocorticoid receptor (MR) activity due to increased aldosterone release. Our objective was to determine if CD renin augmentation is mediated directly by AT1R or via ENaC and MR. In vivo studies examined the effects of ENaC blockade (amiloride; 5 mg/kg/day) on CD renin expression and urinary renin content (URC) in Ang II-infused rats (80 ng/min, 2 weeks). Ang II infusion increased systolic blood pressure (SBP), medullary renin mRNA, URC and intrarenal Ang II levels. Amiloride co-treatment did not alter these responses despite reduction in the rate of progression of SBP. In primary cultures of inner medullary CD (IMCD) cells, renin mRNA and (pro)renin protein levels increased with Ang II (100 nmol/L), and candesartan (AT1R antagonist) prevented this effect. Aldosterone (10−10 to 10−7 mol/L) with or without amiloride did not modify the upregulation of renin mRNA in Ang II treated cells. However, inhibition of protein kinase C (PKC) with calphostin C prevented the Ang II-mediated increases in renin mRNA and (pro)renin protein levels. Furthermore, PKC activation with phorbol 12-myristate 13-acetate (PMA) increased renin expression to the same extent as Ang II. These data indicate that AT1R-mediated increase in CD renin is induced directly by Ang II via PKC pathway and that this regulation is independent of MR activation or ENaC activity. PMID:21282553

  4. Angiotensin II stimulates calcineurin activity in proximal tubule epithelia through AT-1 receptor-mediated tyrosine phosphorylation of the PLC-gamma1 isoform.

    PubMed

    Lea, Janice P; Jin, Shao G; Roberts, Brian R; Shuler, Michael S; Marrero, Mario B; Tumlin, James A

    2002-07-01

    Angiotensin II (AngII) contributes to the maintenance of extracellular fluid volume by regulating sodium transport in the nephron. In nonepithelial cells, activation of phospholipase C (PLC) by AT-1 receptors stimulates the generation of 1,4,5-trisphosphate (IP(3)) and the release of intracellular calcium. Calcineurin, a serine-threonine phosphatase, is activated by calcium and calmodulin, and both PLC and calcineurin have been linked to sodium transport in the proximal tubule. An examination of whether AngII activates calcineurin in a model of proximal tubule epithelia (LLC-PK1 cells) was performed; AngII increased calcineurin activity within 30 s. An examination of whether AngII activates PLC in proximal tubule epithelia was also performed after first showing that all three families of PLC isoforms are present in LLC-PK1 cells. Application of AngII increased IP(3) generation by 60% within 15 s, which coincided with AngII-induced tyrosine phosphorylation of the PLC-gamma1 isoform also observed at 15 s. AngII-induced tyrosine phosphorylation was blocked by the AT-1 receptor antagonist, Losartan. Subsequently, an inhibitor of tyrosine phosphorylation blocked the AngII-induced activation of calcineurin, as did coincubation with an inhibitor of PLC activity and with an antagonist of the AT-1 receptor. It is therefore concluded that AngII stimulates calcineurin phosphatase activity in proximal tubule epithelial cells through a mechanism involving AT-1 receptor-mediated tyrosine phosphorylation of the PLC isoform.

  5. Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors.

    PubMed

    Kovács, Gergely; Peti-Peterdi, János; Rosivall, László; Bell, P Darwin

    2002-02-01

    ANG II is a modulator of tubuloglomerular feedback (TGF); however, the site of its action remains unknown. Macula densa (MD) cells sense changes in luminal NaCl concentration ([NaCl](L)) via a Na-2Cl-K cotransporter, and these cells do possess ANG II receptors. We tested whether ANG II regulates Na-2Cl-K cotransport in MD cells. MD cell Na(+) concentration ([Na(+)](i)) was measured using sodium-binding benzofuran isophthalate with fluorescence microscopy. Resting [Na(+)](i) in MD cells was 27.7 +/- 1.05 mM (n = 138) and increased (Delta[Na(+)](i)) by 18.5 +/- 1.14 mM (n = 17) at an initial rate (Delta[Na(+)](i)/Deltat) of 5.54 +/- 0.53 x 10(-4) U/s with an increase in [NaCl](L) from 25 to 150 mM. Both Delta[Na(+)](i) and Delta[Na(+)](i)/Deltat were inhibited by 80% with 100 microM luminal furosemide. ANG II (10(-9) or 10(-12) M) added to the lumen increased MD resting [Na(+)](i) and [NaCl](L)-dependent Delta[Na(+)](i) and caused a twofold increase in Delta[Na(+)](i)/Deltat. Bath (10(-9) M) ANG II also stimulated cotransport activity, and there was no additive effect of simultaneous addition of ANG II to bath and lumen. The effects of luminal ANG II were furosemide sensitive and abolished by the AT(1) receptor blocker candesartan. ANG II at 10(-6) M failed to stimulate the cotransporter, whereas increased cotransport activity could be restored by blocking AT(2) receptors with PD-123, 319. Thus ANG II may modulate TGF responses via alterations in MD Na-2Cl-K cotransport activity.

  6. Inhibition by atrial and brain natriuretic peptides of endothelin-1 secretion after stimulation with angiotensin II and thrombin of cultured human endothelial cells.

    PubMed Central

    Kohno, M; Yasunari, K; Yokokawa, K; Murakawa, K; Horio, T; Takeda, T

    1991-01-01

    We examined the inhibition by atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) of endothelin-1 secretion stimulated by angiotensin II (ANGII) and thrombin using cultured human umbilical-vein endothelial cells. ANGII and thrombin dose-dependently stimulated immunoreactive (ir) endothelin-1 secretion. Human ANP(1-28) and human BNP-32 both inhibited such secretion in a dose-dependent way. Inhibition of this secretion by ANP and BNP was paralleled by an increase in the level of cyclic guanosine 5'-monophosphate (GMP). The addition of a cyclic GMP analogue, 8-bromo cyclic GMP, reduced this stimulated secretion. Rat ANP(5-25) was weaker than human ANP(1-28) at inhibiting ir-endothelin-1 secretion and increasing cyclic GMP in the cells. ir-Endothelin-1 in the medium consisted of two components separated by high pressure liquid chromatography; the major one corresponded to endothelin-1(1-21) and the minor one corresponded to big endothelin-1(1-38). Treatment with ANP and BNP did not affect this profile. These findings suggest that human ANP and BNP inhibit endothelin-1 secretion stimulated by ANGII and thrombin in these cells through a cyclic GMP-dependent process. Taken together with endothelin stimulation of ANP and BNP secretion from the heart, our results suggest the existence of a cardiac-endothelium feedback. PMID:1645748

  7. Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex.

    PubMed Central

    Kapas, S; Purbrick, A; Hinson, J P

    1995-01-01

    The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa. PMID:7832756

  8. Effects of angiotensin II and its blockers Sar1-Ile8-angiotensin II and DuP 753 on drinking in ducks in relation to properties of subfornical organ neurons.

    PubMed

    Simon, E; Schmid, H A

    1996-01-01

    Properties of systemically applied angiotensin II in stimulating water intake of normally hydrated ducks were studied and the results compared with properties of angiotensin II-responsive neurons of the subfornical organ which are considered as targets for circulating angiotensin II acting as a dipsogen. Following intravenous infusion of hypertonic saline (2000 mosmol.kg-1 at 0.3 ml.min-1 for 1 h), intravenous infusion of 0.3 ml.min-1 isotonic saline with angiotensin II (200 ng.min-1), starting 1 h later, stimulated drinking in each case at an angiotensin II plasma level of about 1400 pg.ml-1. Without hypertonic priming, the same angiotensin II infusion did not stimulate drinking in each experiment; however, if effective, repeated infusions of ANGII induced stable dipsogenic responses. Angiotensin II infusions did not alter plasma levels of antidiuretic hormone. Sar1-Ile8-angiotensin II, a non-selective angiotensin II antagonist, acted weakly as a partial agonist when infused at a dose 200-fold higher than angiotensin II and effectively blocked the dipsogenic action of angiotensin II; this corresponds to the inhibition of angiotensin II-induced excitation by Sar1-Ile8-angiotensin II observed in duck subfornical organ neurons. DuP 753 (losartan), an angiotensin II antagonist specifically blocking AT1 receptors in mammals, had equivocal effects on angiotensin II-induced drinking in ducks at rates 50- and 200-fold higher than angiotensin II, which corresponds to the weak inhibitory action of this compound on angiotensin II-induced neuronal excitation in the duck SFO. Blood pressure was only marginally elevated by the applied angiotensin II dose and Sar1-Ile8-angiotensin II had no effect.

  9. Intracellular angiotensin II activates rat myometrium

    PubMed Central

    Deliu, Elena; Tica, Andrei A.; Motoc, Dana; Brailoiu, G. Cristina

    2011-01-01

    Angiotensin II is a modulator of myometrial activity; both AT1 and AT2 receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca2+ concentration ([Ca2+]i) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT1 receptor antagonist losartan but not by the AT2 receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca2+]i. Blockade of AT1 receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca2+]i produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca2+-free saline, indicating a major involvement of Ca2+ release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP3) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP3 pathway. Angiotensin II-induced increase in [Ca2+]i was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT1-like receptors on lysosomes and activates PLC-IP3-dependent Ca2+ release from endoplasmic reticulum; the response is further augmented by a Ca2+-induced Ca2+ release mechanism via ryanodine receptors activation. PMID:21613610

  10. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  11. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  12. Calcitonin, angiotensin II and FPP significantly modulate mouse sperm function.

    PubMed

    Fraser, L R; Pondel, M D; Vinson, G P

    2001-03-01

    Fertilization-promoting peptide (FPP) regulates the adenylyl cyclase (AC)/cAMP pathway to elicit capacitation-dependent responses, stimulating capacitation in uncapacitated spermatozoa and then arresting it in capacitated cells, thereby inhibiting spontaneous acrosome reactions. Like FPP, calcitonin and angiotensin II are found in seminal plasma and so might affect sperm function; this study investigated responses in uncapacitated and capacitated mouse spermatozoa to these three peptides. Both calcitonin (5 ng/ml) and angiotensin II (1 and 10nmol/l), like FPP (100nmol/l), significantly stimulated capacitation, assessed using chlortetracycline (CTC) fluorescence and fertilization in vitro analyses. Combinations of two or three peptides, at high and low, non-stimulatory concentrations, were more stimulatory than the individual peptides, suggesting that they may act on the same signalling pathway, plausibly AC/cAMP; preliminary data indicate that calcitonin does stimulate cAMP production. In capacitated cells, FPP and calcitonin elicited pertussis toxin-sensitive inhibition of spontaneous acrosome loss, suggesting involvement of inhibitory G proteins; angiotensin II had no detectable effect. When all three peptides were used, angiotensin II did not interfere with inhibitory responses to FPP/calcitonin. These results suggest that angiotensin II, calcitonin and FPP may somehow modulate the AC/cAMP signal transduction pathway, but the precise mechanisms involved have yet to be elucidated.

  13. Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange.

    PubMed

    Fellner, Susan K; Arendshorst, William J

    2008-01-01

    In afferent arterioles, the signaling events that lead to an increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) and initiation of vascular contraction are increasingly being delineated. We have recently studied angiotensin II (ANG II)-mediated effects on sarcoplasmic reticulum (SR) mobilization of Ca(2+) and the role of superoxide and cyclic adenosine diphosphoribose in these processes. In the current study we investigated the participation of transient receptor potential canonical channels (TRPC) and a Na(+)/Ca(2+) exchanger (NCX) in Ca(2+) entry mechanisms. Afferent arterioles, isolated with the magnetized polystyrene bead method, were loaded with fura-2 to measure [Ca(2+)](i) ratiometrically. We observed that the Ca(2+)-dependent chloride channel blocker niflumic acid (10 and 50 microM) affects neither the peak nor plateau [Ca(2+)](i) response to ANG II. Arterioles were pretreated with ryanodine (100 microM) and TMB-8 to block SR mobilization via the ryanodine receptor and inositol trisphosphate receptor, respectively. The peak [Ca(2+)](i) response to ANG II was reduced by 40%. Addition of 2-aminoethoxydiphenyl borane to block TRPC-mediated Ca(2+) entry inhibited the peak [Ca(2+)](i) ANG II response by 80% and the plateau by 74%. Flufenamic acid (FFA; 50 microM), which stimulates TRPC6, caused a sustained increase of [Ca(2+)](i) of 146 nM. This response was unaffected by diltiazem or nifedipine. KB-R7943 (at the low concentration of 10 microM) inhibits reverse (but not forward) mode NCX. KB-R7943 decreased the peak [Ca(2+)](i) response to ANG II by 48% and to FFA by 38%. We conclude that TRPC6 and reverse-mode NCX may be important Ca(2+) entry pathways in afferent arterioles.

  14. Angiotensin II-induced delayed stimulation of phospholipase C gamma1 requires activation of both phosphatidylinositol 3-kinase gamma and tyrosine kinase in vascular myocytes.

    PubMed

    Rakotoarisoa, Lala; Carricaburu, Valérie; Leblanc, Catherine; Mironneau, Chantal; Mironneau, Jean; Macrez, Nathalie

    2006-01-01

    In vascular smooth muscles, angiotensin II (AII) has been reported to activate phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K). We investigated the time-dependent effects of AII on both phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and inositol phosphates (InsPs) accumulation in permeabilized microsomes from rat portal vein smooth muscle in comparison with those of noradrenaline (NA). AII stimulated an early production of PtdInsP3 (within 30 s) followed by a delayed production of InsPs (within 3-5 min), in contrast to NA which activated only a fast production of InsPs. The use of pharmacological inhibitors and antibodies raised against the PI3K and PLC isoforms expressed in portal vein smooth muscle showed that AII specifically activated PI3Kgamma and that this isoform was involved in the AII-induced stimulation of InsPs accumulation. NA-induced InsPs accumulation depended on PLCbeta1 activation whereas AII-induced InsPs accumulation depended on PLCgamma1 activation. AII-induced PLCgamma1 activation required both tyrosine kinase and PI3Kgamma since genistein and tyrphostin B48 (inhibitors of tyrosine kinase), LY294002 and wortmannin (inhibitors of PI3K) and anti-PI3Kgamma antibody abolished AII-induced stimulation of InsPs accumulation. Increased tyrosine phosphorylation of PLCgamma1 was only detected for long-lasting applications of AII and was suppressed by genistein. These data indicate that activation of both PI3Kgamma and tyrosine kinase is a prerequisite for AII-induced stimulation of PLCgamma1 in vascular smooth muscle and suggest that the sequential activation of the three enzymes may be responsible for the slow and long-lasting contraction induced by AII.

  15. Angiotensin II-induced delayed stimulation of phospholipase C γ1 requires activation of both phosphatidiylinositol 3-kinase γ and tyrosine kinase in vascular myocytes

    PubMed Central

    Rakotoarisoa, Lala; Carricaburu, Valérie; Leblanc, Catherine; Mironneau, Chantal; Mironneau, Jean; Macrez, Nathalie

    2006-01-01

    In vascular smooth muscles, angiotensin II (AII) has been reported to activate phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K). We investigated the time-dependent effects of AII on both phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and inositol phosphates (InsPs) accumulation in permeabilized microsomes from rat portal vein smooth muscle in comparison with those of noradrenaline (NA). AII stimulated an early production of PtdInsP3 (within 30 s) followed by a delayed production of InsPs (within 3-5 min), in contrast to NA which activated only a fast production of InsPs. The use of pharmacological inhibitors and antibodies raised against the PI3K and PLC isoforms expressed in portal vein smooth muscle showed that AII specifically activated PI3Kδ and that this isoform was involved in the AII-induced stimulation of InsPs accumulation. NA-induced InsPs accumulation depended on PLCβ1 activation whereas AII-induced InsPs accumulation depended on PLCγ1 activation. AII-induced PLCδ1 activation required both tyrosine kinase and PI3Kδ since genistein and tyrphostin B48 (inhibitors of tyrosine kinase), LY294002 and wortmannin (inhibitors of PI3K) and anti-PI3Kδ antibody abolished AII-induced stimulation of InsPs accumulation. Increased tyrosine phosphorylation of PLCβ1 was only detected for long-lasting applications of AII and was suppressed by genistein. These data indicate that activation of both PI3Kβ and tyrosine kinase is a prerequisite for AII-induced stimulation of PLCβ1 in vascular smooth muscle and suggest that the sequential activation of the three enzymes may be responsible for the slow and long-lasting contraction induced by AII. PMID:16989733

  16. The role of angiotensin II receptors in stroke protection.

    PubMed

    Chrysant, Steven G

    2012-06-01

    The hypothesis that angiotensin II (Ang II) might have a stroke-protective role was first proposed by Brown and Brown about 25 years ago. Their hypothesis was generated from the results of the first Medical Research Council trial in patients with mild to moderate hypertension, which showed that patients treated with the diuretic bendrofluazide had a 70% decrease in strokes compared with those treated with the β-blocker propranolol for similar blood pressure reduction. This hypothesis, which remained dormant for many years, was recently resurrected by several experimental studies that showed that the brain possesses its own renin-angiotensin system (RAS) similar to the one existing in the systemic circulation. These studies also showed that the brain RAS plays an important role in stroke prevention and neuronal protection through its active peptide Ang II. In addition, these studies demonstrated that the beneficial effects of Ang II are mediated through stimulation of its subtype 2 receptors, and possibly through stimulation of the subtype 4 receptors by Ang IV, a metabolite of Ang II. Drugs that selectively block the Ang II subtype 1 receptors, such as the angiotensin receptor blockers, have shown superior protection against strokes and neuronal damage than drugs that decrease the generation of Ang II, such as the angiotensin-converting enzyme inhibitors and β-blockers. In this review, the role of the Ang II receptors and their mechanism of action regarding stroke prevention are discussed in view of the evidence from experimental and clinical studies.

  17. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  18. The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy.

    PubMed

    Baltatu, O; Silva, J A; Ganten, D; Bader, M

    2000-01-01

    The potential involvement of the brain renin-angiotensin system in the hypertension induced by subpressor doses of angiotensin II was tested by the use of newly developed transgenic rats with permanent inhibition of brain angiotensinogen synthesis [TGR(ASrAOGEN)]. Basal systolic blood pressure monitored by telemetry was significantly lower in TGR(ASrAOGEN) than in Sprague-Dawley rats (parent strain) (122.5+/-1.5 versus 128.9+/-1.9 mm Hg, respectively; P<0.05). The increase in systolic blood pressure induced by 7 days of chronic angiotensin II infusion was significantly attenuated in TGR(ASrAOGEN) in comparison with control rats (29.8+/-4.2 versus 46. 3+/-2.5 mm Hg, respectively; P<0.005). Moreover, an increase in heart/body weight ratio was evident only in Sprague-Dawley (11.1%) but not in TGR(ASrAOGEN) rats (2.8%). In contrast, mRNA levels of atrial natriuretic peptide (ANP) and collagen III in the left ventricle measured by ribonuclease protection assay were similarly increased in both TGR(ASrAOGEN) (ANP, x2.5; collagen III, x1.8) and Sprague-Dawley rats (ANP, x2.4; collagen III, x2) as a consequence of angiotensin II infusion. Thus, the expression of these genes in the left ventricle seems to be directly stimulated by angiotensin II. However, the hypertensive and hypertrophic effects of subpressor angiotensin II are at least in part mediated by the brain renin-angiotensin system.

  19. Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity.

    PubMed

    Giani, Jorge F; Gironacci, Mariela M; Muñoz, Marina C; Turyn, Daniel; Dominici, Fernando P

    2008-05-01

    Angiotensin (ANG) II contributes to cardiac remodelling by inducing the activation of several signalling molecules, including ERK1/2, Rho kinase and members of the STAT family of proteins. Angiotensin-(1-7) is produced in the heart and inhibits the proliferative actions of ANG II, although the mechanisms of this inhibition are poorly understood. Accordingly, in the present study we examined whether ANG-(1-7) affects the ANG II-mediated activation of ERK1/2 and Rho kinase, STAT3 and STAT5a/b in rat heart in vivo. We hypothesized that ANG-(1-7) inhibits these growth-promoting pathways, counterbalancing the trophic action of ANG II. Solutions of normal saline (0.9% NaCl) containing ANG II (8 pmol kg(-1)) plus ANG-(1-7) in increasing doses (from 0.08 to 800 pmol kg(-1)) were administered via the inferior vena cava to anaesthetized male Sprague-Dawley rats. After 5 min, hearts were removed and ERK1/2, Rho kinase, STAT3 and STAT5a/b phosphorylation was determined by Western blotting using phosphospecific antibodies. Angiotensin II stimulated ERK1/2 and Rho kinase phosphorylation (2.3 +/- 0.2- and 2.1 +/- 0.2-fold increase over basal values, respectively), while ANG-(1-7) was without effect. The ANG II-mediated phosphorylation of ERK1/2 and Rho kinase was prevented in a dose-dependent manner by ANG-(1-7) and disappeared in the presence of the Mas receptor antagonist d-Ala7-ANG-(1-7). Both ANG II and ANG-(1-7) increased STAT3 and STAT5a/b phosphorylation to a similar extent (130-140% increase). The ANG-(1-7)-stimulated STAT phosphorylation was blocked by the AT(1) receptor antagonist losartan and not by d-Ala7-ANG-(1-7). Our results show a dual action of ANG-(1-7), that is, a stimulatory effect on STAT3 and 5a/b phosphorylation through AT(1) receptors and a blocking action on ANG II-stimulated ERK1/2 and Rho kinase phosphorylation through Mas receptor activation. The latter effect could be representative of a mechanism for a protective role of ANG-(1-7) in the heart by

  20. Angiotensin II binding to cultured bovine adrenal chromaffin cells: identification of angiotensin II receptors

    SciTech Connect

    Boyd, V.L.; Printz, M.P.

    1986-03-05

    Physiological experiments have provided evidence that angiotensin II stimulates catecholamine secretion from the adrenal gland. Their laboratory and others have now shown by receptor autoradiography the presence of angiotensin II receptors (AIIR) in bovine and rat adrenal medulla. In order to extend these studies they have undertaken to define AIIR on cultured bovine adrenal chromaffin cells. Cells were isolated using the method of Levitt including cell enrichment with Percoll gradient centrifugation. Primary cultures of bovine adrenal medullary cells were maintained in DME/F12 medium containing 10% FCS. Cells were characterized by immunocytochemistry for Met- and Leu-enkephalin, PNMT, DBH and Chromagranin A. Cultured cells bind with high affinity and specificity (/sup 125/I)-ANG II yielding a K/sub D/ of 0.74 nM and B/sub max/ of 24,350 sites/cell. After Percoll treatment values of .77 nm and 34,500 sites/cell are obtained. K/sub D/ values are in close agreement with that obtained in adrenal slices by Healy. Competition studies identify a rank order of binding by this receptor similar to that of other tissues. They conclude that cultured chromaffin cells provide a suitable model system for the investigation and characterization of the ANG II receptor and for cellular studies of its functional significance.

  1. Measurement of immunoreactive angiotensin peptides in rat tissues: some pitfalls in angiotensin II analysis.

    PubMed

    De Silva, P E; Husain, A; Smeby, R R; Khairallah, P A

    1988-10-01

    Angiotensin II, the major effector peptide of the renin-angiotensin system, is an endocrine and paracrine regulator of tissue function. To determine its physiological role, it is important to quantify angiotensin II and related fragment peptides in tissues and plasma as a first step toward understanding angiotensin II metabolism within tissues. A fully characterized, sensitive, and reproducible immunochemical assay has been developed for quantitating angiotensin II immunoreactivity in tissues and plasma. We identified two methodological events of critical importance, incompletely addressed in previously reported studies. First, the nonspecific interference resulting from Sep-Pak processing was found to be due to hydrophobic impurities in the octade-casilane absorbent which were eliminated by washing the Sep-Pak with tetrahydrofuran and hexane before use. Second, a significant discrepancy was observed in the recoveries of angiotensin II and 125I-angiotensin II added to tissue extracts following high-pressure liquid chromatography. Angiotensin II immunoreactivity extracted from decapitated rat adrenal gland, brain, and kidney (target organs for angiotensin II), ovary and uterus (potential target organs for angiotensin II), and plasma has been characterized. The predominant component of the angiotensin II immunoreactivity was the biologically active octapeptide angiotensin II. However, in the brain, the ratio of angiotensin II to C-terminal angiotensin II immunoreactive fragments was lower than observed in other tissues studied. Other angiotensin II C-terminal immunoreactive peptide fragments-the biologically active heptapeptide and the biologically inactive angiotensin(3-8) and angiotensin(4-8)--were also detected in variable quantities in the various tissues.

  2. Angiotensin II Blockade and Renal Protection

    PubMed Central

    Kobori, Hiroyuki; Mori, Hirohito; Masaki, Tsutomu; Nishiyama, Akira

    2013-01-01

    Current national guidelines have recommended the use of renin-angiotensin system inhibitors, including angiotensin II type 1 receptor blockers (ARBs), in preference to other antihypertensive agents for treating hypertensive patients with chronic kidney disease. However, the mechanisms underlying the renoprotective effects of ARBs are multiple and complex. Blood pressure reduction by systemic vasodilation with an ARB contributes to its beneficial effects in treating kidney disease. Furthermore, ARB-induced renal vasodilation results in an increase in renal blood flow, leading to improvement of renal ischemia and hypoxia. ARBs are also effective in reducing urinary albumin excretion through a reduction in intraglomerular pressure and the protection of glomerular endothelium and/or podocyte injuries. In addition to blocking angiotensin II-induced renal cell and tissue injuries, ARBs can decrease intrarenal angiotensin II levels by reducing proximal tubular angiotensinogen and production of collecting duct renin, as well as angiotensin II accumulation in the kidney. In this review, we will briefly summarize our current understanding of the pharmacological effects of an ARB in the kidney. We will also discuss the possible mechanisms responsible for the renoprotective effects of ARBs on type 2 diabetic nephropathy. PMID:23176216

  3. Angiotensin III as well as angiotensin II regulates water flow through aquaporins in a clam worm.

    PubMed

    Satou, Ryousuke; Nakagawa, Tsutomu; Ido, Hiroki; Tomomatsu, Masayuki; Suzuki, Fumiaki; Nakamura, Yukio

    2005-07-01

    Angiotensin III has been reported to exist in various animals and tissues. The physiological role, however, is still unclear except that brain angiotensin III is a central regulator of vasopressin release. In this study, angiotensin III as well as angiotensin II enhanced an increase in body weight of clam worms of Perinereis sp. under a hypo-osmotic condition and suppressed a decrease in body weight under a hyper-osmotic condition. When clam worms were treated with tetrachloroaurate (III) after angiotensin-treatment, these enhancing and suppressive effects of the angiotensins under hypo- and hyper-osmotic conditions were inhibited. In contrast, when clam worms were pretreated with tetrachloroaurate (III) before angiotensin-treatment, these effects of angiotensins were not inhibited. Since tetrachloroaurate (III) is a representative blocker of aquaporins, these results indicate that angiotensin III as well as angiotensin II regulates water flow through aquaporins in clam worms.

  4. Eucommia ulmoides Oliv. (Du-Zhong) Lignans Inhibit Angiotensin II-Stimulated Proliferation by Affecting P21, P27, and Bax Expression in Rat Mesangial Cells

    PubMed Central

    Jing, Xian; Huang, Wei-Hua; Tang, Yong-Jun; Wang, Ya-Qin; Li, Hui; Tian, Ying-Ying; Chen, Yao; Zhou, Hong-Hao; Ouyang, Dong-Sheng

    2015-01-01

    Cortex Eucommiae (Du-zhong) is the dried bark of the Eucommia ulmoides Oliv. The natural products identified from Du-zhong include lignans, iridoids, flavonoids, polysaccharides, terpenes, and proteins, Liu et al. (2012). Lignans, the main bioactive components, were protective against hypertensive renal injury in spontaneous hypertensive rats in our previous study, Li et al. (2012). Moreover, Eucommia lignans also diminished aldose reductase (AR) overexpression in the kidney, Li et al. (2012). However, the pathological mechanism underlying the protective effects of Eucommia lignans remains unknown. Cellular proliferation was reported to contribute to important pathological changes in hypertensive renal injuries, and increased angiotensin II (Ang II) expression was reported to be essential for target-organ damage during hypertension. Ang II is the main effective peptide in the renin-angiotensin system and is considered to be a key mediator in the development of hypertensive nephropathy, Rüster and Wolf (2011). Our preliminary results showed that Eucommia lignans had inhibitory effects on Ang II-induced proliferation of rat mesangial cells. In the present study, we investigated the effects of Eucommia ulmoides on Ang II-induced proliferation and apoptosis of rat mesangial cells. Cell cycle-related genes P21 and P27, and cell apoptosis-related genes Bax and Bcl-2, were determined. PMID:26170892

  5. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  6. Activation of Local Chorionic Villi Angiotensin II Levels But Not Angiotensin (1–7) in Preeclampsia

    PubMed Central

    Anton, Lauren; Merrill, David C.; Neves, Liomar A.A.; Stovall, Kathryn; Gallagher, Patricia E.; Diz, Debra I.; Moorefield, Cheryl; Gruver, Courtney; Ferrario, Carlos M.; Brosnihan, K. Bridget

    2009-01-01

    The chorionic villi in the placenta are responsible for the regulation of fetal oxygen and nutrient transport. Although the peripheral renin-angiotensin system is activated during normal pregnancy, the regulation of the local chorionic villi renin-angiotensin system remains unknown. Therefore, placental chorionic villous tissue was collected from nulliparous third-trimester normotensive or preeclamptic subjects and was analyzed for angiotensin peptide content, angiotensinogen, renin, angiotensin-converting enzyme (ACE), ACE2, neprilysin, angiotensin II type 1 (AT1), angiotensin II type 2, Mas receptor mRNAs, and angiotensin receptor density and subtype. Angiotensin II in chorionic villi was significantly higher in preeclamptic subjects, whereas angiotensin (1–7) was not different. Angiotensinogen and AT1 receptor gene expression was significantly higher in preeclamptic subjects. No differences were observed in renin, ACE, ACE2, or neprilysin gene expression. Mas receptor mRNA in preeclamptic subjects was decreased. The AT1 receptor was the predominant receptor subtype in normal and preeclamptic chorionic villi. There was no difference in the density of the AT1, angiotensin II type 2, and angiotensin (1–7) receptors. These results indicate that enhanced chorionic villous expression of angiotensin II may result from increased angiotensinogen. Elevated angiotensin II, acting through the AT1 receptor, may favor vasoconstriction in placental chorionic villi and contribute to impaired fetal blood flow and decreased fetal nutrition observed during preeclampsia. PMID:18259034

  7. Candesartan prevents resiniferatoxin-induced sensory small-fiber neuropathy in mice by promoting angiotensin II-mediated AT2 receptor stimulation.

    PubMed

    Bessaguet, Flavien; Danigo, Aurore; Magy, Laurent; Sturtz, Franck; Desmoulière, Alexis; Demiot, Claire

    2017-09-05

    Sensory defects associated with small-fiber neuropathy (SFN) can lead to profound disabilities. The relationship between the sensory nervous system and modulation of the renin-angiotensin system (RAS) has been described and focused on pain and neurodegeneration in several animal models. We have recently developed an experimental model of functional sensory neuropathy showing thermal hypoalgesia and neuropeptide depletion without nerve fiber degeneration. Here, we aimed to determine whether the modulation of angiotensin II (Ang II) activity could prevent sensory neuropathy induced by RTX. Control and RTX mice received ramipril, an Ang II converting enzyme (ACE) inhibitor, (0.5 mg/kg/day) or candesartan, an Ang II type 1 receptor (AT1R) blocker (0.5 mg/kg/day), one day before vehicle or RTX administration, and each day for the next seven days. Ramipril did not have a beneficial effect in RTX mice, whereas candesartan prevented thermal hypoalgesia and reduced neuropeptide depletion in intraepidermal nerve fibers and dorsal root ganglion neurons. The preventive effect of candesartan was not observed in mice deficient for the Ang II type 2 receptor (AT2R) and was counteracted in wild type mice by EMA200, an AT2R antagonist (3 mg/kg/day). Thus, candesartan may promote AT2R activation by blocking AT1R and increasing Ang II production and enhance its mechanisms of neuroprotection in our RTX model. Our finding that candesartan prevents nociception deficits and neuropeptide depletion encourages the evaluation of its therapeutic potential in patients presenting SFN, particularly those who experience chemotherapy-induced SFN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis.

    PubMed

    Romero, Damian G; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E

    2010-11-29

    Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.

  9. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.

  10. Hypotensive effect of angiotensin II after AT1-receptor blockade with losartan.

    PubMed

    Matys, T; Pawlak, R; Kucharewicz, I; Chabielska, E; Buczko, W

    2000-03-01

    Recent data suggest that hypotensive effect of losartan may not be attributed solely to AT1-receptor blockade, but also to excessive AT2 or other receptors stimulation by elevated angiotensin II and its derivative peptides. Therefore in the present study we examined the effect of angiotensin II on mean blood pressure after AT -receptor blockade with losartan. Male Wistar rats were anaesthetised and received injection of either losartan (30 mg/kg, 1 ml/kg, i.v.) or saline (the same volume and route) followed by bolus injection of angiotensin II (100, 300 or 1,000 ng/kg; 1 ml/kg, i.v.) or 1-hour infusion of angiotensin II (200 ng/kg/min; 2.5 ml/kg/h, i.v.). Control animals received saline instead. Angiotensin II, given either as the injection or the infusion, caused an evident increase in mean blood pressure (p ranged from 0.05 to 0.001 depending on the experimental group). Losartan caused a rapid drop in mean blood pressure and blunted the hypertensive effect of angiotensin II (p < 0.01). Moreover, in the losartan-pretreated animals the hypotensive phase was enhanced by the infusion, but not single injection of angiotensin II, which was most evident from the 30 th minute of observation (p < 0.05 vs control). In conclusion, hypotensive effect of losartan may be amplified by simultaneous increase in angiotensin II level, the situation observed during chronic AT1-receptor blockade.

  11. Angiotensin II in Refractory Septic Shock.

    PubMed

    Antonucci, Elio; Gleeson, Patrick J; Annoni, Filippo; Agosta, Sara; Orlando, Sergio; Taccone, Fabio Silvio; Velissaris, Dimitrios; Scolletta, Sabino

    2017-05-01

    Refractory septic shock is defined as persistently low mean arterial blood pressure despite volume resuscitation and titrated vasopressors/inotropes in patients with a proven or suspected infection and concomitant organ dysfunction. Its management typically requires high doses of catecholamines, which can induce significant adverse effects such as ischemia and arrhythmias. Angiotensin II (Ang II), a key product of the renin-angiotensin-aldosterone system, is a vasopressor agent that could be used in conjunction with other vasopressors to stabilize critically ill patients during refractory septic shock, and reduce catecholamine requirements. However, very few clinical data are available to support Ang II administration in this setting. Here, we review the current literature on this topic to better understand the role of Ang II administration during refractory septic shock, differentiating experimental from clinical studies. We also consider the potential role of exogenous Ang II administration in specific organ dysfunction and possible pitfalls with Ang II in sepsis. Various issues remain unresolved and future studies should investigate important topics such as: the optimal dose and timing of Ang II administration, a comparison between Ang II and the other vasopressors (epinephrine; vasopressin), and Ang II effects on microcirculation.

  12. Angiotensin II type 1 receptor-mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II-induced hypertension.

    PubMed

    Nishiyama, Akira; Seth, Dale M; Navar, L Gabriel

    2003-10-01

    Angiotensin II (Ang II)-dependent hypertension is associated with augmented intrarenal concentrations of Ang II; however, the distribution of the increased intrarenal Ang II has not been fully established. To determine the changes in renal interstitial fluid Ang II concentrations in Ang II-induced hypertension and the consequences of treatment with an angiotensin II type 1 (AT1) receptor blocker. Rats were selected to receive vehicle (5% acetic acid subcutaneously; n = 6), Ang II (80 ng/min subcutaneously, via osmotic minipump; n = 7) or Ang II plus an AT1 receptor antagonist, candesartan cilexetil (10 mg/kg per day, in drinking water; n = 6) for 13-14 days, at which time, experiments were performed on anesthetized rats. Microdialysis probes were implanted in the renal cortex and were perfused at 2 microl/min. The effluent dialysate concentrations of Ang I and Ang II were measured by radioimmunoassay and reported values were corrected for the equilibrium rates at this perfusion rate. Ang II-infused rats developed greater mean arterial pressures (155 +/- 7 mmHg) than vehicle-infused rats (108 +/- 3 mmHg). Ang II-infused rats showed greater plasma (181 +/- 30 fmol/ml) and kidney (330 +/- 38 fmol/g) Ang II concentrations than vehicle-infused rats (98 +/- 14 fmol/ml and 157 +/- 22 fmol/g, respectively). Renal interstitial fluid Ang II concentrations were much greater than plasma concentrations, averaging 5.74 +/- 0.26 pmol/ml in Ang II-infused rats - significantly greater than those in vehicle-infused rats (2.86 +/- 0.23 pmol/ml). Candesartan treatment prevented the hypertension (87 +/- 3 mmHg) and led to increased plasma Ang II concentrations (441 +/- 27 fmol/ml), but prevented increases in kidney (120 +/- 15 fmol/g) and renal interstitial fluid (2.15 +/- 0.12 pmol/ml) Ang II concentrations. These data indicate that Ang II-infused rats develop increased renal interstitial fluid concentrations of Ang II, which may contribute to the increased vascular resistance and

  13. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release.

    PubMed

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz

    2002-10-01

    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  14. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  15. Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Pramanik, Pijush Kanti; Chakraborti, Tapati; Chakraborti, Sajal

    2016-08-01

    The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs.

  16. Angiotensin II, sympathetic nerve activity and chronic heart failure.

    PubMed

    Wang, Yutang; Seto, Sai-Wang; Golledge, Jonathan

    2014-03-01

    Sympathetic nerve activity has been reported to be increased in both humans and animals with chronic heart failure. One of the mechanisms believed to be responsible for this phenomenon is increased systemic and cerebral angiotensin II signaling. Plasma angiotensin II is increased in humans and animals with chronic heart failure. The increase in angiotensin II signaling enhances sympathetic nerve activity through actions on both central and peripheral sites during chronic heart failure. Angiotensin II signaling is enhanced in different brain sites such as the paraventricular nucleus, the rostral ventrolateral medulla and the area postrema. Blocking angiotensin II type 1 receptors decreases sympathetic nerve activity and cardiac sympathetic afferent reflex when therapy is administered to the paraventricular nucleus. Injection of an angiotensin receptor blocker into the area postrema activates the sympathoinhibitory baroreflex. In peripheral regions, angiotensin II elevates both norepinephrine release and synthesis and inhibits norepinephrine uptake at nerve endings, which may contribute to the increase in sympathetic nerve activity seen in chronic heart failure. Increased circulating angiotensin II during chronic heart failure may enhance the sympathoexcitatory chemoreflex and inhibit the sympathoinhibitory baroreflex. In addition, increased circulating angiotensin II can directly act on the central nervous system via the subfornical organ and the area postrema to increase sympathetic outflow. Inhibition of angiotensin II formation and its type 1 receptor has been shown to have beneficial effects in chronic heart failure patients.

  17. Localized accumulation of angiotensin II and production of angiotensin-(1-7) in rat luteal cells and effects on steroidogenesis.

    PubMed

    Pepperell, John R; Nemeth, Gabor; Yamada, Yuji; Naftolin, Frederick; Merino, Maricruz

    2006-08-01

    These studies aim to investigate subcellular distribution of angiotensin II (ANG II) in rat luteal cells, identify other bioactive angiotensin peptides, and investigate a role for angiotensin peptides in luteal steroidogenesis. Confocal microscopy showed ANG II distributed within the cytoplasm and nuclei of luteal cells. HPLC analysis showed peaks that eluted with the same retention times as ANG-(1-7), ANG II, and ANG III. Their relative concentrations were ANG II >or= ANG-(1-7) > ANG III, and accumulation was modulated by quinapril, an inhibitor of angiotensin-converting enzyme (ACE), Z-proprolinal (ZPP), an inhibitor of prolyl endopeptidase (PEP), and parachloromercurylsulfonic acid (PCMS), an inhibitor of sulfhydryl protease. Phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, did not affect peptide accumulation. Quinapril, ZPP, PCMS, and PMSF, as well as losartan and PD-123319, the angiotensin receptor type 1 (AT1) and type 2 (AT2) receptor antagonists, were used in progesterone production studies. ZPP significantly reduced luteinizing hormone (LH)-dependent progesterone production (P < 0.05). Quinapril plus ZPP had a greater inhibitory effect on LH-stimulated progesterone than either inhibitor alone, but this was not reversed by exogenous ANG II or ANG-(1-7). Both PCMS and PMSF acutely blocked LH-stimulated progesterone, and PCMS blocked LH-sensitive cAMP accumulation. Losartan inhibited progesterone production in permeabilized but not intact luteal cells and was reversed by ANG II. PD-123319 had no significant effect on luteal progesterone production in either intact or permeabilized cells. These data suggest that steroidogenesis may be modulated by angiotensin peptides that act in part through intracellular AT1 receptors.

  18. Enhancement by exogenous and locally generated angiotensin II of purinergic neurotransmission via angiotensin type 1 receptor in the guinea-pig isolated mesenteric artery

    PubMed Central

    Onaka, Uran; Fujii, Koji; Abe, Isao; Fujishima, Masatoshi

    1997-01-01

    Angiotensin II is known to enhance sympathetic neurotransmission in the vasculature by increasing the release of noradrenaline, but little is known about the effect on the co-released transmitter, adenosine 5′-triphosphate (ATP). In the present study we have examined the effect of angiotensin II on the excitatory junction potential (e.j.p.) elicited by repetitive field stimulation in the guinea-pig isolated mesenteric artery, to establish the angiotensin II receptor subtype involved in modulating the release of ATP and the role of the endothelium in converting angiotensin I to angiotensin II. Suramin (300 μM), a P2 purinoceptor antagonist, abolished both the e.j.ps and depolarizing response to α,β-methylene-ATP, a stable analogue of ATP, without affecting the resting membrane potential and noradrenaline-induced depolarization. Angiotensin II (0.1 μM) affected neither the resting membrane potential nor the amplitude of the first e.j.p., but increased the amplitudes of the subsequent e.j.ps. This enhancing effect of angiotensin II was abolished by CV-11974 (0.1 μM), an angiotensin II type 1 (AT1) receptor antagonist, but unaffected by PD 123319 (1 μM), an angiotensin II type 2 (AT2) receptor antagonist, or CGP 42112A (1 μM), AT2 receptor ligand. Angiotensin I (0.1 μM) exerted a similar effect on e.j.ps to that of angiotensin II. CV-11974 (0.1 μM) or temocaprilat (10 μM), an angiotensin converting enzyme (ACE) inhibitor, abolished the effect of angiotensin I. Removal of the endothelium did not alter the action of angiotensin I. The results of the present study indicate that the release of ATP from sympathetic nerves innervating the guinea-pig isolated mesenteric artery, as determined from the magnitude of the e.j.p., can be enhanced by angiotensin II via activation of prejunctional AT1 receptors. Qualitatively similar effects were observed with angiotensin I, which appears to be converted into angiotensin II by a subendothelial process

  19. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    SciTech Connect

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-06-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 ..mu..M) stimulates increased neuronal (/sup 3/H)NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal (/sup 3/H)DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism.

  20. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    PubMed Central

    Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Further, co-immunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism. PMID:25225202

  1. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  2. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  3. Drinking behaviour in rats treated with isoprenaline, angiotensin II or angiotensin antagonists

    PubMed Central

    Chiaraviglio, Emma

    1979-01-01

    1. Isoprenaline hydrochloride injected subcutaneously in rats given a choice test of 1·8% NaCl and water, first induced saline intake which started immediately and was almost concluded in 15 min, followed by a copious water intake. When either saline or water were given in a separate test, saline intake surpassed the water intake in the first 15 min. 2. The delay of 15, 30 or 60 min after injection of isoprenaline, 100 μg/kg, before drinking was allowed, significantly reduced saline intake but did not modify the amount of water subsequently drunk. 3. Isoprenaline caused a sudden drop in arterial blood pressure, the extent and duration depending on the dose. The time of maximum drop 3-4 min after injection coincided with the time the rat drank salt. 4. Isoprenaline-induced saline drinking was significantly reduced after bilateral nephrectomy but water intake was unaffected. 5. The beta-adrenoceptor blocking agent, propranolol, inhibited isoprenaline-induced NaCl and water intake, while the alpha-adrenoceptor antagonist phenoxybenzamine abolished isoprenaline-induced NaCl intake and enhanced water intake. 6. Saralasin acetate (P-113), a competitive inhibitor of angiotensin II, given into the third brain ventricle, prevented the isoprenaline-induced NaCl and water intake as well as angiotensin II-induced drinking. The angiotensin converting enzyme inhibitor SQ-20881 reduced the isoprenaline-induced NaCl and water intake. 7. In conclusion, hypotension might be a component of salt drinking evoked by isoprenaline although the dipsogenic action of beta-stimulation is mainly due to endogenous renin-angiotensin activation. PMID:231100

  4. Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin

    PubMed Central

    Verlander, Jill W.; Hong, Seongun; Pech, Vladimir; Bailey, James L.; Agazatian, Diana; Matthews, Sharon W.; Coffman, Thomas M.; Le, Thu; Inagami, Tadashi; Whitehill, Florence M.; Weiner, I. David; Farley, Donna B.; Kim, Young Hee

    2011-01-01

    Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl− absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance. PMID:21921024

  5. Liver Angiotensinogen Is the Primary Source of Renal Angiotensin II

    PubMed Central

    Niimura, Fumio; Shimizu, Akihiro; Pastan, Ira; Saito, Akihiko; Kobori, Hiroyuki; Nishiyama, Akira; Ichikawa, Iekuni

    2012-01-01

    Angiotensin II content in the kidney is much higher than in the plasma, and it increases more in kidney diseases through an uncertain mechanism. Because the kidney abundantly expresses angiotensinogen mRNA, transcriptional dysregulation of angiotensinogen within the kidney is one potential cause of increased renal angiotensin II in the setting of disease. Here, we observed that kidney-specific angiotensinogen knockout mice had levels of renal angiotensinogen protein and angiotensin II that were similar to those levels of control mice. In contrast, liver-specific knockout of angiotensinogen nearly abolished plasma and renal angiotensinogen protein and renal tissue angiotensin II. Immunohistochemical analysis in mosaic proximal tubules of megalin knockout mice revealed that angiotensinogen protein was incorporated selectively in megalin-intact cells of the proximal tubule, indicating that the proximal tubule reabsorbs filtered angiotensinogen through megalin. Disruption of the filtration barrier in a transgenic mouse model of podocyte-selective injury increased renal angiotensin II content and markedly increased both tubular and urinary angiotensinogen protein without an increase in renal renin activity, supporting the dependency of renal angiotensin II generation on filtered angiotensinogen. Taken together, these data suggest that liver-derived angiotensinogen is the primary source of renal angiotensinogen protein and angiotensin II. Furthermore, an abnormal increase in the permeability of the glomerular capillary wall to angiotensinogen, which characterizes proteinuric kidney diseases, enhances the synthesis of renal angiotensin II. PMID:22518004

  6. Angiotensin II type 2 receptor stimulation improves fatty acid ovarian uptake and hyperandrogenemia in an obese rat model of polycystic ovary syndrome.

    PubMed

    Leblanc, Samuel; Battista, Marie-Claude; Noll, Christophe; Hallberg, Anders; Gallo-Payet, Nicole; Carpentier, André C; Vine, Donna F; Baillargeon, Jean-Patrice

    2014-09-01

    Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.

  7. Increased intracellular free calcium and sensitivity to angiotensin II in platelets of preeclamptic women.

    PubMed

    Haller, H; Oeney, T; Hauck, U; Distler, A; Philipp, T

    1989-04-01

    Preeclampsia is characterized by a generalized vasoconstriction and increased vascular sensitivity to angiotensin II. Intracellular free calcium, implicated in vascular smooth muscle contraction, has been found to be elevated in platelets of other hypertensive disorders. We therefore measured intracellular free calcium concentrations by using the fluorescent probe quin-2 in platelets of six patients with preeclampsia and compared them to measurements in ten normotensive pregnant women and ten age-matched nonpregnant women. Intracellular free calcium was also determined in the preeclamptic women after delivery. We found that intracellular free calcium was slightly elevated in normal pregnancy (102 +/- 13 nmol/L v 87 +/- 17 nmol/L) but was markedly increased in preeclampsia (138 +/- 13 nmol/L, P less than .05). This increase disappeared six weeks after delivery (84 + 10 nmol/L, P less than .01). To investigate whether the increased intracellular free calcium was related to angiotensin II, the platelets were exposed to thrombin and angiotensin II in vitro. Exposure to thrombin and angiotensin II caused a dose-dependent increase in intracellular free calcium. The intracellular response to thrombin was not significantly different in the three groups. However, stimulation with angiotensin II revealed an increased response in intracellular free calcium in preeclampsia (P less than .05) that disappeared after delivery. Our findings show a sustained increase in platelet intracellular free calcium in preeclampsia and suggest a functional alteration of the angiotensin II receptor in this disease.

  8. Mechanisms of angiotensin II natriuresis and antinatriuresis.

    PubMed

    Olsen, M E; Hall, J E; Montani, J P; Guyton, A C; Langford, H G; Cornell, J E

    1985-08-01

    The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy

    PubMed Central

    Jurado-López, Raquel; Martínez-Martínez, Ernesto; Gómez-Hurtado, Nieves; Delgado, Carmen; Visitación Bartolomé, Maria; San Román, José Alberto; Cordova, Claudia; Lahera, Vicente; Nieto, Maria Luisa; Cachofeiro, Victoria

    2012-01-01

    Background The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied. Methodology/Principal Findings The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals. Conclusions/Significance Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac

  10. Molecular basis and functional significance of Angiotensin II-induced increase in Discoidin Domain Receptor 2 gene expression in cardiac fibroblasts.

    PubMed

    George, Mereena; Vijayakumar, Anupama; Dhanesh, Sivadasan Bindu; James, Jackson; Shivakumar, K

    2016-01-01

    Delineation of mechanisms underlying the regulation of fibrosis-related genes in the heart is an important clinical goal as cardiac fibrosis is a major cause of myocardial dysfunction. This study probed the regulation of Discoidin Domain Receptor 2 (DDR2) gene expression and the regulatory links between Angiotensin II, DDR2 and collagen in Angiotensin II-stimulated cardiac fibroblasts. Real-time PCR and western blot analyses showed that Angiotensin II enhances DDR2 mRNA and protein expression in rat cardiac fibroblasts via NADPH oxidase-dependent reactive oxygen species induction. NF-κB activation, demonstrated by gel shift assay, abolition of DDR2 expression upon NF-κB inhibition, and luciferase and chromatin immunoprecipitation assays confirmed transcriptional control of DDR2 by NF-κB in Angiotensin II-treated cells. Inhibitors of Phospholipase C and Protein kinase C prevented Angiotensin II-dependent p38 MAPK phosphorylation that in turn blocked NF-κB activation. Angiotensin II also enhanced collagen gene expression. Importantly, the stimulatory effects of Angiotensin II on DDR2 and collagen were inter-dependent as siRNA-mediated silencing of one abolished the other. Angiotensin II promoted ERK1/2 phosphorylation whose inhibition attenuated Angiotensin II-stimulation of collagen but not DDR2. Furthermore, DDR2 knockdown prevented Angiotensin II-induced ERK1/2 phosphorylation, indicating that DDR2-dependent ERK1/2 activation enhances collagen expression in cells exposed to Angiotensin II. DDR2 knockdown was also associated with compromised wound healing response to Angiotensin II. To conclude, Angiotensin II promotes NF-κB activation that up-regulates DDR2 transcription. A reciprocal regulatory relationship between DDR2 and collagen, involving cross-talk between the GPCR and RTK pathways, is central to Angiotensin II-induced increase in collagen expression in cardiac fibroblasts.

  11. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  12. [Angiotensin II receptor antagonists: different or equivalent?].

    PubMed

    Mounier-Vehier, C; Devos, P

    ARA-II: Angiotensin II receptor antagonists (ARA-II) belong to a recent class of antihypertensive drugs whose mechanism of action is similar to converting enzyme inhibitors (CEI). ARA-II are particularly interesting due to the excellent clinical and biological tolerance, similar to placebo, and their antihypertensive efficacy, comparable with classical drug classes. PUBLISHED TRIALS: A meta-analysis, published by Conlin in the American Journal of Hypertension, suggests that ARA-II, specifically losartan, valsartan, irbesartan and candesartan, have an equipotent blood pressure lowering effect. The careful lecture of this meta-analysis however discloses a faulty methodology from which no valid conclusion can be drawn. Since this early publication, several other comparative studies have been published. These multicentric, randomized double-blind studies enrolled a sufficient number of patients and demonstrated a clinical difference between certain ARA-II at usual dosages. CLINICAL PRACTICE: These studies do have an impact on everyday practice. For the practitioner, the goal is to obtain and then maintain a long-term and optimal reduction in the blood pressure level (reduction or prevention of target-organ disorders and cardiovascular complications of high blood pressure). This reduction in the cardiovascular risk will also depend directly on tolerance and compliance to the antihypertensive treatment. This element must also be considered in assessing treatment efficacy, independent of the blood pressure lowering effect. The results of several other studies will be published in 2001-2003. These large-scale studies on ARA-II related morbidity and mortality will be most useful in determining the role of these drugs in different therapeutic strategies compared with other drug classes.

  13. [Urinary levels of angiotensin-(1-7) and angiotensin II in patients with severe aortic stenosis].

    PubMed

    López-de la Vega, César; Rosas-Peralta, Martín; Lomelí-Estrada, Catalina; Pastelín-Hernández, Gustavo; del Valle-Mondragón, Leonardo

    2011-01-01

    Strengthen knowledge about the pathophysiology of aortic stenosis. Urinary levels of angiotensin-(1-7) and angiotensin II were compared between two samples: A) forty five patients with severe aortic stenosis, without systemic arterial hypertension and with normal kidney and normal left ventricular systolic function; B) control group: twenty one persons without cardiovascular disease. there would be no difference between urinary levels. The average of angiotensin-(1-7) urinary concentration in severe aortic stenosis patients was 2.102 pmol/mL and 5.591 pmol/mL for the control group. The average of Ang II was 0.704 pmol/mL and 0.185 pmol/mL respectively. Using t-Student test, we determine that the difference in urinary concentration of angiotensin-(1-7) [p=0.633] and the difference of angiotensin II (p=0.631), were statistically significant. documented a statistically significant difference in urinary levels angiotensin II and angiotensin-(1-7) within the group of patients with severe aortic stenosis.

  14. Angiotensin II Enhances Connecting Tubule Glomerular Feedback (CTGF)

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Garvin, Jeffrey L.; Carretero, Oscar A.

    2011-01-01

    Increasing Na delivery to epithelial Na channels (ENaC) in the connecting tubule (CNT) causes dilation of the afferent arteriole (Af-Art), a process we call CNT glomerular feedback (CTGF). Angiotensin II (Ang II) stimulates ENaC in the collecting duct via AT1 receptors. We hypothesized that Ang II in the CNT lumen enhances CTGF by activation of AT1 receptors, protein kinase C (PKC) and ENaC. Rabbit Af-Arts and their adherent CNT were microperfused and preconstricted with norepinephrine. Each experiment involved generating two consecutive concentration-response curves by increasing NaCl in the CNT lumen. During the control period, the maximum dilation of the Af-Art was 7.9 ± 0.4 μm, and the concentration of NaCl in the CNT needed to achieve half maximal response (EC50) was 34.7 ± 5.2 mmol/L. After adding Ang II (10−9 mol/L) to the CNT lumen, the maximal response was 9.5 ± 0.7 μm and the EC50 was 11.6 ± 1.3 mmol/L (P=0.01 vs. control). Losartan, an AT1 antagonist (10−6 mol/L) blocked the stimulatory effect of Ang II, PD123319, an AT2 antagonist (10−6 mol/L) did not. The PKC inhibitor staurosporine (10−8 mol/L) added to the CNT inhibited the stimulatory effect of Ang II. The ENaC inhibitor benzamil (10−6 mol/L) prevented both CTGF and its stimulation by Ang II. We concluded that Ang II in the CNT lumen enhances CTGF via activation of AT1, and that this effect requires activation of PKC and ENaC. Potentiation of CTGF by Ang II could help preserve glomerular filtration rate in the presence of renal vasoconstriction. PMID:20696981

  15. ACE2: Angiotensin II/Angiotensin-(1-7) balance in cardiorenal injury

    PubMed Central

    Varagic, Jasmina; Ahmad, Sarfaraz; Nagata, Sayaka; Ferrario, Carlos M.

    2014-01-01

    Our current recognition of the renin-angiotensin system is more convoluted than originally thought due to the discovery of multiple novel enzymes, peptides, and receptors inherent to this interactive biochemical cascade. Over the last decade angiotensin converting enzyme 2 (ACE2) has emerged as a key player in the pathophysiology of hypertension and cardiovascular and renal disease due to its pivotal role in metabolizing vasoconstrictive/hypertrophic/proliferative angiotensin II into favorable angiotensin-(1-7). This review addresses a considerable advancement in research on the role of tissue ACE2 in development and progression of hypertension and cardiorenal injury. We also summarize the results from recent clinical and experimental studies suggesting that serum or urine soluble ACE2 may serve as a novel biomarker or independent risk factor relevant for diagnosis and prognosis of cardiorenal disease. Recent proceedings on novel therapeutic approaches to enhance ACE2/angiotensin-(1-7) axis are also reviewed. PMID:24510672

  16. Effect of chronic intracerebroventricular angiotensin II infusion on vasopressin release in rats

    NASA Technical Reports Server (NTRS)

    Sterling, G. H.; Chee, O.; Riggs, R. V.; Keil, L. C.

    1980-01-01

    The effects of the chronic infusion of angiotensin II into the lateral cerebral ventricle on the release of arginine vasopressin in rats are investigated. Rats were subjected to a continuous infusion of angiotensin at a rate of 1 microgram/h for five days, during which they were offered water, isotonic saline or hypertonic saline ad libitum or 40 ml water/day, and fluid intake, changes in body weight, plasma sodium ion concentrations and plasma and pituitary arginine vasopressin levels were measured. Angiotensin II is found to increase the fluid intake of rats given isotonic saline and decrease plasma sodium ion levels with no changes in plasma or pituitary arginine vasopressin in those given water or isotonic saline. However, in rats given hypertonic saline, plasma sodium concentrations remained at control levels while plasma vasopressin increased, and in water-restricted rats the effects of angiotensin II were intermediate. Results thus demonstrate that angiotensin II-stimulated arginine vasopressin release is reduced under conditions in which plasma sodium ion concentration becomes dilute, compatible with a central role of angiotensin in the regulation of salt and water balance.

  17. Effect of chronic intracerebroventricular angiotensin II infusion on vasopressin release in rats

    NASA Technical Reports Server (NTRS)

    Sterling, G. H.; Chee, O.; Riggs, R. V.; Keil, L. C.

    1980-01-01

    The effects of the chronic infusion of angiotensin II into the lateral cerebral ventricle on the release of arginine vasopressin in rats are investigated. Rats were subjected to a continuous infusion of angiotensin at a rate of 1 microgram/h for five days, during which they were offered water, isotonic saline or hypertonic saline ad libitum or 40 ml water/day, and fluid intake, changes in body weight, plasma sodium ion concentrations and plasma and pituitary arginine vasopressin levels were measured. Angiotensin II is found to increase the fluid intake of rats given isotonic saline and decrease plasma sodium ion levels with no changes in plasma or pituitary arginine vasopressin in those given water or isotonic saline. However, in rats given hypertonic saline, plasma sodium concentrations remained at control levels while plasma vasopressin increased, and in water-restricted rats the effects of angiotensin II were intermediate. Results thus demonstrate that angiotensin II-stimulated arginine vasopressin release is reduced under conditions in which plasma sodium ion concentration becomes dilute, compatible with a central role of angiotensin in the regulation of salt and water balance.

  18. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  19. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system.

    PubMed

    Wen, Hairuo; Gwathmey, Judith K; Xie, Lai-Hua

    2012-08-23

    Angiotensin II (Ang II), an endogenous peptide hormone, plays critical roles in the pathophysiological modulation of cardiovascular functions. Ang II is the principle effector of the renin-angiotensin system for maintaining homeostasis in the cardiovascular system, as well as a potent stimulator of NAD(P)H oxidase, which is the major source and primary trigger for reactive oxygen species (ROS) generation in various tissues. Recent accumulating evidence has demonstrated the importance of oxidative stress in Ang II-induced heart diseases. Here, we review the recent progress in the study on oxidative stress-mediated effects of Ang II in the cardiovascular system. In particular, the involvement of Ang II-induced ROS generation in arrhythmias, cell death/heart failure, ischemia/reperfusion injury, cardiac hypertrophy and hypertension are discussed. Ca(2+)/calmodulin-dependent protein kinase II is an important molecule linking Ang II, ROS and cardiovascular pathological conditions.

  20. Dopamine Inhibits Angiotensin-Stimulated Aldosterone Biosynthesis in Bovine Adrenal Cells

    PubMed Central

    Mc Kenna, Terence J.; Island, Donald P.; Nicholson, Wendell E.; Liddle, Grant W.

    1979-01-01

    The possibility that dopamine may play a role in the in vivo control of aldosterone production in man was suggested to us by reports from others; (a) that bromocriptine, a dopaminergic agonist, inhibits the aldosterone response to diuresis and to the infusion of angiotensin or ACTH; and (b) that metaclopramide, a dopamine blocking agent, causes elevations in plasma aldosterone levels. To determine whether such effects were direct or indirect, we examined the action of dopamine on aldosterone biosynthesis in isolated, bovine adrenal cells. Dopamine significantly inhibits the aldosterone response to angiotensin (P < 0.001), but does not influence basal aldosterone biosynthesis. It has previously been reported that angiotensin stimulates both the early and late phases of aldosterone biosynthesis. The present experiments demonstrated that the enhancing effect of angiotensin on the conversion of deoxycorticosterone to aldosterone (late phase of aldosterone biosynthesis) was almost completely inhibited by dopamine (P < 0.001). A significant inhibitory effect of dopamine (10 nM) was seen even when aldosterone biosynthesis was stimulated by a grossly supraphysiological concentration of angiotensin II (10 μM). However, these studies did not demonstrate any direct effect of dopamine on the early phase of aldosterone biosynthesis (cholesterol to pregnenolone) basally or when stimulated, or on the late phase of aldosterone biosynthesis under basal conditions. These in vitro studies suggest a direct inhibitory role for dopamine on the late phase of aldosterone biosynthesis, which may account for the in vivo inhibition of the aldosterone response to angiotensin in subjects treated with a dopaminergic agent. PMID:447857

  1. Captopril avoids hypertension, the increase in plasma angiotensin II but increases angiotensin 1-7 and angiotensin II-induced perfusion pressure in isolated kidney in SHR.

    PubMed

    Castro-Moreno, P; Pardo, J P; Hernández-Muñoz, R; López-Guerrero, J J; Del Valle-Mondragón, L; Pastelín-Hernández, G; Ibarra-Barajas, M; Villalobos-Molina, R

    2012-10-01

    We investigated captopril effects, an ACE inhibitor, on hypertension development, on Ang II and Ang-(1-7) plasma concentrations, on Ang II-induced contraction in isolated kidneys, and on kidney AT1R from spontaneously hypertensive (SHR) rats. Five weeks-old SHR and Wistar Kyoto (WKY) rats were treated with captopril at 30 mg/kg/day, in drinking water for 2 or 14 weeks. Systolic blood pressure (SBP) was measured, and isolated kidneys were tested for perfusion pressure and AT1R expression; while Ang II and Ang-(1-7) concentrations were determined in plasma. Captopril did not modify SBP in WKY rats and avoided its increase as SHR aged. Plasma Ang-II concentration was ∼4-5 folds higher in SHR rats, and captopril reduced it (P<0.05); while captopril increased Ang-(1-7) by ∼2 fold in all rat groups. Captopril increased Ang II-induced pressor response in kidneys of WKY and SHR rats, phenomenon not observed in kidneys stimulated with phenylephrine, a α₁-adrenoceptor agonist. Captopril did not modify AT1R in kidney cortex and medulla among rat strains and ages. Data indicate that captopril increased Ang II-induced kidney perfusion pressure but not AT₁R density in kidney of WKY and SHR rats, due to blockade of angiotensin II synthesis; however, ACE inhibitors may have other actions like activating signaling processes that could contribute to their diverse effects. © 2012 Blackwell Publishing Ltd.

  2. Angiotensin II induces differential insulin action in rat skeletal muscle.

    PubMed

    Surapongchai, Juthamard; Prasannarong, Mujalin; Bupha-Intr, Tepmanas; Saengsirisuwan, Vitoon

    2017-03-01

    Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P < 0.05) than that in the SHAM group and was associated with increased insulin-stimulated IRS-1 Ser(307) and decreased Akt Ser(473) and AS160 Thr(642) phosphorylation and GLUT-4 expression. However, ANGII-500 infusion did not induce skeletal muscle insulin resistance or impair insulin signaling elements as initially anticipated. Moreover, we found that insulin-stimulated glucose uptake in the ANGII-500 group was accompanied by the enhanced expression of ACE2 and MasR proteins, which are the key elements in the non-classical pathway of the renin-angiotensin system. Collectively, this study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels. © 2017 Society for Endocrinology.

  3. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  4. Left ventricular hypertrophy and angiotensin II receptor blocking agents.

    PubMed

    Yasunari, K; Maeda, K; Nakamura, M; Watanabe, T; Yoshikawa, J; Hirohashi, K

    2005-01-01

    Angiotensin II plays a significant role in cell growth and proliferation in model systems and in humans. Numerous studies have shown that left ventricular hypertrophy (LVH) increases the risk of coronary heart disease, congestive heart failure, stroke or transient ischemic attack; all-cause deaths, and sudden death. The use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) has provided beneficial effects on LVH regression and on cardiac remodeling in the presence of hypertension and heart failure. The new class of ARBs appears to provide cardioprotective effects that are similar to those of the ACE inhibitors. Most of the beneficial effects provided by these agents appear to be related to a more complete blockade of the angiotensin II type 1 (AT1) receptor. However, costimulation of the angiotensin II type 2 (AT2) receptor appears to increase nitric oxide and thus causes some bradykinin-like effects. Evidence for the role of angiotensin II in promoting LVH as well as abnormal regulation of the angiotensin II signal transduction pathways in model systems and in humans has been reviewed. Secondly, the mechanisms for the beneficial effects of angiotensin II receptor blockers studied in model systems and in humans, including possible involvement in the formation of reactive oxygen species by mononuclear cells, are presented. Finally, results from large-scale interventions such as the Losartan Intervention For Endpoint reduction (LIFE) study, as well as an overview of the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial involving the use of ARB in high-risk patients, are presented.

  5. Angiotensinogen Exerts Effects Independent of Angiotensin II

    PubMed Central

    Lu, Hong; Wu, Congqing; Howatt, Deborah A.; Balakrishnan, Anju; Moorleghen, Jessica J.; Chen, Xiaofeng; Zhao, Mingming; Graham, Mark J.; Mullick, Adam E.; Crooke, Rosanne M.; Feldman, David L.; Cassis, Lisa A.; Vander Kooi, Craig W.; Daugherty, Alan

    2015-01-01

    Objective This study determined whether angiotensinogen (AGT) has angiotensin (Ang)II-independent effects using multiple genetic and pharmacological manipulations. Approach and Results All study mice were in LDL receptor -/- background and fed a saturated fat-enriched diet. In mice with floxed alleles and a neomycin cassette in intron 2 of the AGT gene (hypoAGT mice), plasma AGT concentrations were > 90% lower compared to their wild type littermates. HypoAGT mice had lower SBP, less atherosclerosis, and diminished body weight gain and liver steatosis. Low plasma AGT concentrations and all phenotypes were recapitulated in mice with hepatocyte-specific deficiency of AGT or pharmacological inhibition of AGT by antisense oligonucleotide (ASO) administration. In contrast, inhibition of AGT cleavage by a renin inhibitor, aliskiren, failed to alter body weight gain and liver steatosis in LDL receptor -/- mice. In mice with established adiposity, administration of AGT ASO versus aliskiren led to equivalent reductions of SBP and atherosclerosis. AGT ASO administration ceased body weight gain and further reduced body weight, whereas aliskiren did not affect body weight gain during continuous saturated fat-enriched diet feeding. Structural comparisons of AGT proteins in zebrafish, mouse, rat and human revealed 4 highly conserved sequences within the des(AngI)AGT domain. des(AngI)AGT, through adeno-associated viral infection in hepatocyte-specific AGT deficient mice, increased body weight gain and liver steatosis, but did not affect atherosclerosis. Conclusions AGT contributes to body weight gain and liver steatosis through functions of the des(AngI)AGT domain, which are independent of AngII production. PMID:26681751

  6. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  7. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy.

    PubMed

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-09-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1.

  8. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy

    PubMed Central

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-01-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2–1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1. PMID:27588076

  9. Origin of the angiotensin II secreted by cells.

    PubMed

    Ganong, W F

    1994-03-01

    Circulating angiotensin II is unique in that it is formed in the blood by the interaction of circulating proteins. There are in addition many local renin-angiotensin systems in tissues in which angiotensin II is apparently secreted by various types of cells. This brief review considers the possible pathways for synthesis of locally produced angiotensin II in the brain, the anterior pituitary, the testes, the ovaries, the adrenal cortex, the kidneys, the heart, blood vessel walls, and brown and white fat. Synthesis by cells in culture is also reviewed. The possibility that certain cells contain a complete intracellular renin-angiotensin system is not ruled out, but there are problems with this hypothesis. Proteases other than renin may be involved, and there may be different pathways in different tissues. However, it appears that at least in some tissues, angiotensinogen is produced in one population of cells and transported in a paracrine fashion to other renin-containing cells, where it serves as the substrate for production of angiotensin II.

  10. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.

    PubMed

    Palominos, Marisol M; Dünner, Natalia H; Wabitsch, Martin; Rojas, Cecilia V

    2015-10-01

    Angiotensin II reduces adipogenic differentiation of preadipose cells present in the stroma-vascular fraction of human adipose tissue, which also includes several cell types. Because of the ability of non-adipose lineage cells in the stroma-vascular fraction to respond to angiotensin II, it is not possible to unequivocally ascribe the anti-adipogenic response to a direct effect of this hormone on preadipose cells. Therefore, we used the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell strain to investigate the consequences of angiotensin II treatment on adipogenic differentiation under serum-free conditions, by assessing expression of typical adipocyte markers perilipin and fatty acid-binding protein 4 (FABP4), at the transcript and protein level. Reverse transcription-polymerase chain reaction showed that perilipin and FABP4 transcripts were, respectively, reduced to 0.33 ± 0.07 (P < 0.05) and 0.41 ± 0.19-fold (P < 0.05) in SGBS cells induced to adipogenic differentiation in the presence of angiotensin II. Western Blot analysis corroborated reduction of the corresponding proteins to 0.23 ± 0.21 (P < 0.01) and 0.46 ± 0.30-fold (P < 0.01) the respective controls without angiotensin II. Angiotensin II also impaired morphological changes associated with early adipogenesis. Hence, we demonstrated that angiotensin II is able to directly reduce adipogenic differentiation of SGBS preadipose cells.

  11. Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension.

    PubMed

    Xue, Baojian; Beltz, Terry G; Yu, Yang; Guo, Fang; Gomez-Sanchez, Celso E; Hay, Meredith; Johnson, Alan Kim

    2011-02-01

    Many studies have implicated both angiotensin II (ANG II) and aldosterone (Aldo) in the pathogenesis of hypertension, the progression of renal injury, and cardiac remodeling after myocardial infarction. In several cases, ANG II and Aldo have been shown to have synergistic interactions in the periphery. In the present studies, we tested the hypothesis that ANG II and Aldo interact centrally in Aldo- and ANG II-induced hypertension in male rats. In rats with blood pressure (BP) and heart rate (HR) measured by DSI telemetry, intracerebroventricular (icv) infusions of the mineralocorticoid receptor (MR) antagonists spironolactone and RU28318 or the angiotensin type 1 receptor (AT1R) antagonist irbesartan significantly inhibited Aldo-induced hypertension. In ANG II-induced hypertension, icv infusion of RU28318 significantly reduced the increase in BP. Moreover, icv infusions of the reactive oxygen species (ROS) scavenger tempol or the NADPH oxidase inhibitor apocynin attenuated Aldo-induced hypertension. To confirm these effects of pharmacological antagonists, icv injections of either recombinant adeno-associated virus carrying siRNA silencers of AT1aR (AT1aR-siRNA) or MR (MR-siRNA) significantly attenuated the development of Aldo-induced hypertension. The immunohistochemical and Western blot analyses of AT1aR-siRNA- or MR-siRNA-injected rats showed a marked reduction in the expression of AT1R or MR in the paraventricular nucleus compared with scrambled siRNA rats. When animals from all studies underwent ganglionic blockade with hexamethonium, there was a smaller reduction in the fall of BP in animals receiving icv AT1R or MR antagonists. These results suggest that ANG II and Aldo interact in the brain in a mutually cooperative manner such that the functional integrity of both brain AT1R and MR are necessary for hypertension to be induced by either systemic ANG II or Aldo. The pressor effects produced by systemic ANG II or Aldo involve increased central ROS and

  12. Drinking induced by angiotensin II in fishes.

    PubMed

    Kobayashi, H; Uemura, H; Takei, Y; Itatsu, N; Ozawa, M; Ichinohe, K

    1983-02-01

    Among 20 species of freshwater fishes examined, Pseudorasbora parva, Rhodeus ocellatus, Cobitis anguillicaudatus, Carassius auratus, Oryzias latipes, Gambusia affinis, and Gyrinocheilus anymonieri were found to drink water like seawater fishes, while 13 remaining species did not drink. For fish species found exclusively in fresh water, angiotensin II (AII) treatment did not induce drinking. In contrast, those freshwater fishes which survive in estuarine brackish water (Leuciscus hakonensis, C. carassius, Parasilurus asotus, G. affinis, Chaenogobius annularis, Tridentiger obscurus, and G. anymonieri responded to AII by drinking. Furthermore, some freshwater fishes which survive either in hypertonic water (C. auratus) or in sea water (Anguilla japonica and O. latipes) also responded to AII by drinking. Of 17 seawater fishes examined, Eptatretus burgeri, Triakis scyllia, and Heterodontus japonicus failed to drink water, and for Trachurus japonicus, Platichthys bicoloratus, and Glossogobius giuris fasciatopunctatus, water intake was minor (similar to freshwater fishes). The 11 remaining seawater fishes drank water. AII did not induce drinking in fishes living exclusively in sea water. However, seawater fishes which survive either in tide pools (Chasmichthys dolichognathus gulosus) or in brackish water (Sillago japonica, Mugil cephalus, G. giuris fasciatopunctatus) responded to AII by drinking. P. bicoloratus, Acanthopagrus schlegeli, and Fugu niphobles were exceptional, in that they survive in brackish water, but did not respond to AII. Although some exceptions exist, it is generally concluded that a drinking response to AII is characteristic of fishes which encounter water more hypertonic than that in which they typically reside. Accordingly, a drinking mechanism induced by AII may be a compensatory emergency reaction to dehydration stress.

  13. Norepinephrine uptake by rat jejunum: Modulation by angiotensin II

    SciTech Connect

    Suvannapura, A.; Levens, N.R. )

    1988-02-01

    Angiotensin II (ANG II) is believed to stimulate sodium and water absorption from the small intestine by enhancing sympathetic nerve transmission. This study is designed to determine whether ANG II can enhance sympathetic neurotransmission within the small intestine by inhibition norepinephrine (NE) uptake. Intracellular NE accumulation by rat jejunum was concentration dependent and resolved into high- and low-affinity components. The high-affinity component (uptake 1) exhibited a Michaelis constant (K{sub m}) of 1.72 {mu}M and a maximum velocity (V{sub max}) of 1.19 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. The low-affinity component (uptake 2) exhibited a K{sub m} of 111.1 {mu}M and a V{sub max} of 37.1 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. Cocaine, an inhibitor of neuronal uptake, inhibited the intracellular accumulation of label by 80%. Treatment of animals with 6-hydroxydopamine, which depletes norepinephrine from sympathetic terminals, also attenuated NE uptake by 60%. Thus accumulation within sympathetic nerves constitutes the major form of ({sup 3}H)NE uptake into rat jejunum. ANG II inhibited intracellular ({sup 3}H)NE uptake in a concentration-dependent manner. At a dose of 1 mM, ANG II inhibited intracellular ({sup 3}H)NE accumulation by 60%. Cocaine failed to potentiate the inhibition of ({sup 3}H)NE uptake produced by ANG II. Thus ANG II appears to prevent ({sup 3}H)NE accumulation within rat jejunum by inhibiting neuronal uptake.

  14. Direct Activation of ENaC by Angiotensin II: Recent Advances and New Insights

    PubMed Central

    Zaika, Oleg; Mamenko, Mykola; Staruschenko, Alexander

    2012-01-01

    Angiotensin II (Ang II) is the principal effector of the renin-angiotensin-aldosterone system (RAAS). It initiates myriad processes in multiple organs integrated to increase circulating volume and elevate systemic blood pressure. In the kidney, Ang II stimulates renal tubular water and salt reabsorption causing antinatriuresis and antidiuresis. Activation of RAAS is known to enhance activity of the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron. In addition to its well described stimulatory actions on aldosterone secretion, Ang II is also capable to directly increase ENaC activity. In this brief review, we discuss recent findings about non-classical Ang II actions on ENaC and speculate about its relevance for renal sodium handling. PMID:23180052

  15. Angiotensin II induces phosphatidic acid formation in neonatal rat cardiac fibroblasts: evaluation of the roles of phospholipases C and D.

    PubMed

    Booz, G W; Taher, M M; Baker, K M; Singer, H A

    1994-12-21

    Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In 32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of 32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as 32P- or 3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2- 3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such as de novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. A frame shifted disulfide bridged analogue of angiotensin II.

    PubMed

    Schmidt, Boris; Kühn, Christian; Ehlert, Dennis K; Lindeberg, Gunnar; Lindman, Susanna; Karlén, Anders; Hallberg, Anders

    2003-03-20

    N-(2-Mercaptoethyl)glycine [NMGly] was incorporated into the 3 and 5 positions of angiotensin II and oxidized to give the corresponding cyclized disulfide c[NMGly(3,5)]Ang II. The binding affinity to the angiotensin II receptor (AT(1)) of this conformationally constrained analogue, which is related to the potent Ang II agonist c[Hcy(3,5)]Ang II, was examined. The analogue had no affinity to the AT(1) receptor. Theoretical conformational analysis was performed to compare the conformational characteristics of model compounds of c[Hcy(3,5)]Ang II and the frame shifted analogue c[NMGly(3,5)]Ang II in an attempt to explain the lack of affinity.

  17. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis.

    PubMed

    Königshoff, Melanie; Wilhelm, Anke; Jahn, Andreas; Sedding, Daniel; Amarie, Oana Veronica; Eul, Bastian; Seeger, Werner; Fink, Ludger; Günther, Andreas; Eickelberg, Oliver; Rose, Frank

    2007-12-01

    Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease unresponsive to currently available therapies. In IPF, initial alveolar epithelial cell damage leads to activation of fibroblast-(myo)fibroblasts, which deposit an increased amount of a collagen-rich extracellular matrix. Angiotensin II (ANGII) signaling, mediated via angiotensin II receptor type 1 (AGTR1) or type 2 (AGTR2), controls tissue remodeling in fibrosis, but the relevance of AGTR2 remains elusive. In the present study, we demonstrated increased expression of AGTR1 und AGTR2 in human and rodent lung tissues from patients with IPF and mice subjected to bleomycin-induced fibrosis, respectively. Both AGTR1 und AGTR2 localized to interstitial fibroblasts. Quantitative analysis of cell surface expression in primary mouse fibroblasts revealed a significant increase of AGTR2 surface expression in fibrotic fibroblasts, whereas AGTR1 surface expression levels remained similar. ANGII treatment of normal fibroblasts led to enhanced migration and proliferation, which was abrogated after pretreatment with losartan (LOS), an AGTR1 inhibitor. In contrast, in fibrotic fibroblasts, migration and proliferation was modified only by AGTR2, but not AGTR1 inhibition (using PD123319). ANGII-induced effects were mediated via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which was blocked via LOS and PD123319, respectively. Similar effects of AGTR1 and AGTR2 inhibition were observed using conditioned media of alveolar epithelial cells, a prominent source of ANGII in the lung in vivo. In summary, we conclude that ANGII signaling occurs primarily via AGTR1 in normal fibroblasts, while AGTR2-mediated effects are dominant on activated (myo)-fibroblasts, a receptor switch that may perturb epithelial-mesenchymal interaction, thereby further perpetuating fibrogenesis.

  18. Angiotensin II-noradrenergic interactions in renovascular hypertensive rats.

    PubMed Central

    Zimmerman, J B; Robertson, D; Jackson, E K

    1987-01-01

    This study tested the hypothesis that interactions of endogenous angiotensin II (AII) with the noradrenergic neuroeffector junction are important in renin-dependent hypertension. In the in situ blood-perfused rat mesentery, in normal rats exogenous AII potentiated mesenteric vascular responses to periarterial (sympathetic) nerve stimulation (PNS) more than vascular responses to exogenous norepinephrine (NE). In 2-kidney-1-clip (2K-1C) rats with renovascular hypertension mesenteric vascular responses to PNS and NE were greater than in sham-operated rats, and renovascular hypertension mimicked the effects of exogenous AII with respect to enhancing responses to PNS more than responses to NE. In 2K-1C rats, but not in sham-operated rats, 1-Sar-8-Ile-AII markedly suppressed vascular responses to PNS, without influencing responses to NE. Finally, 1-Sar-8-Ile-AII attenuated sympathetic nerve stimulation-induced neuronal spillover of NE in 2K-1C rats, but not in sham-operated rats. These data indicate that renovascular hypertension enhances noradrenergic neurotransmission, and that this enhancement is mediated in part by AII-induced facilitation of NE release. PMID:3301900

  19. CD38 promotes angiotensin II-induced cardiac hypertrophy.

    PubMed

    Guan, Xiao-Hui; Hong, Xuan; Zhao, Ning; Liu, Xiao-Hong; Xiao, Yun-Fei; Chen, Ting-Tao; Deng, Li-Bin; Wang, Xiao-Lei; Wang, Jian-Bin; Ji, Guang-Ju; Fu, Mingui; Deng, Ke-Yu; Xin, Hong-Bo

    2017-03-12

    Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2 O2 -induced injury and hypoxia/reoxygenation-induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang-II)-induced cardiac hypertrophy. Following 14 days of Ang-II infusion with osmotic mini-pumps, a comparable hypertension was generated in both of CD38 knockout and wild-type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild-type mice compared with CD38 knockout mice. Consistently, RNAi-induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang-II-stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca(2+) release induced by Ang-II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca(2+) -NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.

  20. Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) and lactation: an update.

    PubMed

    Shannon, M E; Malecha, S E; Cha, A J

    2000-05-01

    Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are commonly used for the treatment of hypertension. ACEIs have been promoted as first-line therapy for selected patients with chronic hypertension and for the prevention of diabetic nephropathy, thus creating the potential for frequent ACEI exposure among women of childbearing age. ARBs are the most recent addition to the available options for antihypertensive agents. This review specifically focuses on the most up-to-date information regarding these newer antihypertensives with regard to lactation.

  1. Proteinuria, a modifiable risk factor: angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs).

    PubMed

    Dykeman-Sharpe, Jennifer

    2003-01-01

    Microalbuminuria and proteinuria have been determined to be modifiable risk factors for the progression of chronic kidney disease as well as risk factors for cardiovascular events. Angiotensin converting enzyme inhibitors and angiotensin II receptor blockers have been demonstrated to decrease proteinuria at all stages and slow the progression of renal disease. Proteinuria can be used as a marker of successful treatment in patients with chronic kidney disease in combination with other established targets. This article discusses the various diagnostic tests used for the detection of microalbuminuria and proteinuria and appropriate pharmaceutical treatment.

  2. Angiotensin II for the Treatment of Vasodilatory Shock.

    PubMed

    Khanna, Ashish; English, Shane W; Wang, Xueyuan S; Ham, Kealy; Tumlin, James; Szerlip, Harold; Busse, Laurence W; Altaweel, Laith; Albertson, Timothy E; Mackey, Caleb; McCurdy, Michael T; Boldt, David W; Chock, Stefan; Young, Paul J; Krell, Kenneth; Wunderink, Richard G; Ostermann, Marlies; Murugan, Raghavan; Gong, Michelle N; Panwar, Rakshit; Hästbacka, Johanna; Favory, Raphael; Venkatesh, Balasubramanian; Thompson, B Taylor; Bellomo, Rinaldo; Jensen, Jeffrey; Kroll, Stew; Chawla, Lakhmir S; Tidmarsh, George F; Deane, Adam M

    2017-08-03

    Vasodilatory shock that does not respond to high-dose vasopressors is associated with high mortality. We investigated the effectiveness of angiotensin II for the treatment of patients with this condition. We randomly assigned patients with vasodilatory shock who were receiving more than 0.2 μg of norepinephrine per kilogram of body weight per minute or the equivalent dose of another vasopressor to receive infusions of either angiotensin II or placebo. The primary end point was a response with respect to mean arterial pressure at hour 3 after the start of infusion, with response defined as an increase from baseline of at least 10 mm Hg or an increase to at least 75 mm Hg, without an increase in the dose of background vasopressors. A total of 344 patients were assigned to one of the two regimens; 321 received a study intervention (163 received angiotensin II, and 158 received placebo) and were included in the analysis. The primary end point was reached by more patients in the angiotensin II group (114 of 163 patients, 69.9%) than in the placebo group (37 of 158 patients, 23.4%) (odds ratio, 7.95; 95% confidence interval [CI], 4.76 to 13.3; P<0.001). At 48 hours, the mean improvement in the cardiovascular Sequential Organ Failure Assessment (SOFA) score (scores range from 0 to 4, with higher scores indicating more severe dysfunction) was greater in the angiotensin II group than in the placebo group (-1.75 vs. -1.28, P=0.01). Serious adverse events were reported in 60.7% of the patients in the angiotensin II group and in 67.1% in the placebo group. Death by day 28 occurred in 75 of 163 patients (46%) in the angiotensin II group and in 85 of 158 patients (54%) in the placebo group (hazard ratio, 0.78; 95% CI, 0.57 to 1.07; P=0.12). Angiotensin II effectively increased blood pressure in patients with vasodilatory shock that did not respond to high doses of conventional vasopressors. (Funded by La Jolla Pharmaceutical Company; ATHOS-3 ClinicalTrials.gov number, NCT

  3. Role of angiotensin II receptor subtype activation in cognitive function and ischaemic brain damage.

    PubMed

    Horiuchi, Masatsugu; Mogi, Masaki

    2011-07-01

    Recent clinical studies have demonstrated that angiotensin II type 1 (AT(1) ) receptor blockers (ARBs) reduce the onset of stroke, stroke severity and the incidence and progression of Alzheimer's disease and dementia. We can expect that ARBs exert these effects by both AT(1) receptor blockade and angiotensin II type 2 (AT(2) ) receptor stimulation. Moreover, recent experimental results support the notion that AT(2) receptor stimulation with AT(1) receptor blockade could contribute to protection against ischaemic brain damage at least partly due to an increase in cerebral blood flow and decrease in oxidative stress, and prevent cognitive decline. Cellular therapy has been focused on as a new therapeutic approach to restore injured neurons. In this context, it has been reported that AT(2) receptor stimulation enhances neurite outgrowth and decreases neural damage, thereby enhancing neurogenesis. Moreover, additional beneficial effects of ARBs with an AT(1) receptor blocking action with a partial peroxisome proliferator-activated receptor (PPAR)-γ agonistic effect have been reported, and interaction of AT(2) receptor activation and PPAR-γ might be involved in these ARBs' effects. This article reviews the effects of regulation of activation of angiotensin II receptor subtypes on ischaemic brain damage and cognitive function, focusing on the effects of AT(2) receptor stimulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  4. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension

    PubMed Central

    Navar, L Gabriel; Prieto, Minolfa C; Satou, Ryousuke; Kobori, Hiroyuki

    2011-01-01

    The increased activity of intrarenal renin–angiotensin system (RAS) in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis and renal injury. Increases in intrarenal and interstitial angiotensin (Ang) II levels are due to increased AT1 receptor mediated Ang II uptake and stimulation of renal angiotensinogen (AGT) mRNA and protein expression. Augmented proximal tubule AGT production increases tubular AGT secretion and spillover of AGT into the distal nephron and urine. Increased renin formation by principal cells of the collecting ducts forms Ang I from AGT thus increasing Ang II. The catalytic actions of renin and prorenin are enhanced by prorenin receptors (PRRs) on the intercalated cells. The resultant increased intrarenal Ang II levels contribute to the genesis of chronic hypertension. PMID:21339086

  5. Renin-angiotensin system stimulates respiration during acute hypotension but not during hypercapnia.

    PubMed

    Ohtake, P J; Walker, J K; Jennings, D B

    1993-03-01

    We reported that intravenous infusion of angiotensin II (ANG II) stimulated ventilation (VE) in conscious dogs. Other studies in our laboratory have demonstrated that increases in respiration occurred in association with activation of the renin-angiotensin system during acute hypotension and during hypercapnia. Therefore, in conscious dogs (n = 5), we examined the effects of ANG II receptor blockade with intravenous saralasin (0.5 micrograms.kg-1.min-1) on respiratory responses during progressive nitroprusside-induced hypotension and during the ventilatory response to increased inspired fraction of CO2 (VRC). During hypotension (mean arterial pressure decreased approximately 20%) combined with ANG II receptor blockade, VE, heart rate, and arginine vasopressin increases were attenuated compared within unblocked studies. With ANG II receptor blockade during hypotension, alveolar ventilation and arterial PCO2 (PaCO2) were unchanged, which contrasted with a doubling of alveolar ventilation and a decrease of 4.8 +/- 1 Torr in PaCO2 in unblocked studies. During hypercapnia, the slope of the VRC was not affected by ANG II receptor blockade, but with 6.5% inspired CO2 fraction, VE and PaCO2 were lower than in unblocked studies. These results indicated that ANG II contributed to the respiratory response to a modest hypotension but did not affect respiratory sensitivity to CO2.

  6. Interleukin-10 deficiency aggravates angiotensin II-induced cardiac remodeling in mice.

    PubMed

    Kwon, Woo-Young; Cha, Hye-Na; Heo, Jung-Yoon; Choi, Jung-Hyun; Jang, Byung Ik; Lee, In-Kye; Park, So-Young

    2016-02-01

    This study examined the role of interleukin (IL)-10 in angiotensin II-induced cardiac remodeling. Angiotensin II was infused subcutaneously (1.1mg/kg/day) for one week in IL-10 knockout and wild-type mice, after which cardiac function and hypertrophy were assessed by echocardiogram. IL-10 gene expression in the heart was increased by angiotensin II infusion. Plasma levels of brain natriuretic peptide (BNP) and gene expression of BNP in the heart were increased by IL-10 deficiency or angiotensin II, and plasma BNP levels were further increased by IL-10 deficiency with angiotensin II. IL-10 deficiency increased the left ventricular dimension, whereas treatment with angiotensin II increased heart weight. Angiotensin II significantly reduced cardiac function in IL-10 knockout mice compared with wild-type mice. Gene expression of tumor necrosis factor-α and interleukin-6 was increased by IL-10 deficiency or angiotensin II infusion, and these increases were further enhanced by IL-10 deficiency with angiotensin II. Gene expression of collagen I/III and collagen III protein levels were increased by angiotensin II but not by IL-10 deficiency. Gene expression of matrix metalloproteinase2/9 was increased by IL-10 deficiency or angiotensin II, and this expression was further increased by IL-10 deficiency with angiotensin II. Akt phosphorylation was increased by IL-10 deficiency or angiotensin II and further increased by IL-10 deficiency with angiotensin II. Phosphorylation of p38 was increased by IL-10 deficiency. These results suggest that IL-10 deficiency causes deterioration in cardiac functions in angiotensin II-infused mice, suggesting that IL-10 plays a protective role against angiotensin II-induced cardiac remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Radioligand binding assays: application of [(125)I]angiotensin II receptor binding.

    PubMed

    Leifert, Wayne R; Bucco, Olgatina; Abeywardena, Mahinda Y; Patten, Glen S

    2009-01-01

    Angiotensin II (AngII) is an octapeptide hormone with a key role in blood pressure regulation. AngII increases blood pressure by stimulating G protein-coupled receptors in vascular smooth muscle. AngII receptors are therefore an important target in patients with high blood pressure. Strategies to lower high blood pressure (hypertension) include the use of drugs that compete for AngII at the angiotensin II Type 1 receptors (ATR) using ATR antagonists (e.g., irbesartan, valsartan, and losartan). This chapter will demonstrate the subtype specificity of ATR binding and we discuss some of the key experiments that are necessary in optimizing some of the parameters for GPCR screening. The latter protocols include saturation binding to determine K (d) and B (max), as well as competition/inhibition experiments to determine the IC(50) of binding. For these experiments we have used rat liver membranes which express ATR (type 1a) in relatively abundant amounts. Additionally, rat liver membrane preparations can be easily prepared in "bulk," frozen away for extended periods (up to 1 year) and used when necessary with no loss of receptor binding activity using the radiolabeled angiotensin II analogue, [(125)I][Sar(1),I le(8)]AngII.

  8. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  9. Angiotensin II Increased Neuronal Stem Cell Proliferation: Role of AT2R

    PubMed Central

    Chao, Jie; Yang, Lu; Buch, Shilpa; Gao, Lie

    2013-01-01

    Angiotensin II (Ang II), known a potent vasoactive substance in the renin-angiotensin system in the brain, plays a critical role in systemic blood pressure control. However, increasing evidence indicated that the physiological role of Ang II go beyond its vasoactive effect. In the present study, we demonstrated that Ang II type-1 receptor (AT1R) and type-2 receptor (AT2R) were expressed in primary rat hippocampal neuronal stem cells (NSCs). Treatment of rat hippocampal NSCs with Ang II increased cell proliferation. Pretreatment of NSCs with specific AT2R, but not AT1R, antagonist significantly suppressed Ang II-induced cell proliferation. Furthermore, Ang II stimulated ERK and Akt phosphorylation in NSCs. Pretreatment of MEK inhibitor, but not PI3K inhibitor, inhibited Ang II-induced ERK phosphorylation as well as cell proliferation. In addition, stimulation of NSCs with Ang II decreased expression of KV 1.2/KV 3.1 channels and blocked K+ currents which lie downstream of ERK activation. Taken together, these findings underpin the role of AT2R as a novel target that regulates cell proliferation mediated by Ang II with implications for therapeutic intervention for regulation of neurogenesis. PMID:23691054

  10. Complex pathologies of angiotensin II-induced abdominal aortic aneurysms*

    PubMed Central

    Daugherty, Alan; Cassis, Lisa A.; Lu, Hong

    2011-01-01

    Angiotensin II (AngII) is the primary bioactive peptide of the renin angiotensin system that plays a critical role in many cardiovascular diseases. Subcutaneous infusion of AngII into mice induces the development of abdominal aortic aneurysms (AAAs). Like human AAAs, AngII-induced AAA tissues exhibit progressive changes and considerable heterogeneity. This complex pathology provides an impediment to the quantification of aneurysmal tissue composition by biochemical and immunostaining techniques. Therefore, while the mouse model of AngII-induced AAAs provides a salutary approach to studying the mechanisms of the evolution of AAAs in humans, meaningful interpretation of mechanisms requires consideration of the heterogeneous nature of the diseased tissue. PMID:21796801

  11. Sex differences in the drinking response to angiotensin II (AngII): Effect of body weight.

    PubMed

    Santollo, Jessica; Torregrossa, Ann-Marie; Daniels, Derek

    2017-07-01

    Sex differences in fluid intake stimulated by angiotensin II (AngII) have been reported, but the direction of the differences is inconsistent. To resolve these discrepancies, we measured water intake by male and female rats given AngII. Males drank more than females, but when intake was normalized to body weight, the sex difference was reversed. Weight-matched males and females, however, had no difference in intake. Using a linear mixed model analysis, we found that intake was influenced by weight, sex, and AngII dose. We used linear regression to disentangle these effects further. Comparison of regression coefficients revealed sex and weight differences at high doses of AngII. Specifically, after 100ng AngII, weight was a predictor of intake in males, but not in females. Next, we tested for differences in AngII-induced intake in male and females allowed to drink both water and saline. Again, males drank more water than females, but females showed a stronger preference for saline. Drinking microstructure analysis suggested that these differences were mediated by postingestive signals and more bottle switches by the females. Finally, we probed for differences in the expression of components of the renin-angiotensin system in the brains of males and females and found sex differences in several genes in discrete brain regions. These results provide new information to help understand key sex differences in ingestive behaviors, and highlight the need for additional research to understand baseline sex differences, particularly in light of the new NIH initiative to balance sex in biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    SciTech Connect

    Ishizuka, Toshiaki; Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  13. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    PubMed Central

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  14. Angiotensin II, sodium, and cardiovascular hypertrophy in spontaneously hypertensive rats.

    PubMed

    Harrap, S B; Mitchell, G A; Casley, D J; Mirakian, C; Doyle, A E

    1993-01-01

    Angiotensin II (Ang II) may cause cardiovascular hypertrophy as a consequence of increased blood pressure or possibly by direct trophic actions. To dissociate Ang II and blood pressure in young spontaneously hypertensive rats (SHR), we used sodium loading during angiotensin converting enzyme inhibitor treatment. Animals were treated between 6 and 10 weeks of age with perindopril to lower Ang II and blood pressure, or with perindopril and 1% saline drinking fluid or perindopril and aldosterone infusion to lower Ang II but maintain high blood pressure. Blood pressure, heart weight, and media/lumen ratio of mesenteric resistance arteries were studied while rats were on treatment at 10 weeks of age and 15 weeks after treatment at 25 weeks of age. Perindopril lowered blood pressure and inhibited the development of cardiovascular hypertrophy. Saline or aldosterone restored high blood pressure during perindopril treatment and resulted in increased heart weight/body weight and resistance artery media/lumen ratios in direct proportion to the elevation of blood pressure. Because increased structure occurred despite perindopril treatment, we conclude that direct trophic actions of Ang II are not essential for the development of cardiovascular hypertrophy in young SHR and that the antitrophic actions of angiotensin converting enzyme inhibitors depend more on changes in blood pressure than on Ang II. However, restoration of blood pressure and structure by sodium during perindopril treatment raises the possibility that the design of the cardiovascular system and blood pressure may depend indirectly on Ang II through effects on sodium metabolism.

  15. Control of glomerular filtration rate by circulating angiotensin II.

    PubMed

    Hall, J E; Coleman, T G; Guyton, A C; Kastner, P R; Granger, J P

    1981-09-01

    Previous studies from our laboratory have provided evidence that the renin-angiotensin system plays an important role in controlling glomerular filtration rate (GFR) through an efferent arteriolar vasoconstrictor mechanism; however, the relative importance of circulating versus intrarenally formed angiotensin II (ANG II) in this control has not been determined. In the present study, the role of circulating ANG II in regulating GFR during reduced renal artery pressure (RAP) was examined in sodium-depleted dogs. After 90 min of infusion of the angiotensin-converting enzyme inhibitor SQ 14225, which presumably inhibited formation of both circulating and intrarenal ANG II, reduction of RAP to 81 +/- 2 mmHg resulted in marked decreases in GFR, filtration fraction (FF), and calculated efferent arteriolar resistance (RE), whereas renal blood flow (RBF) was maintained approximately 40% above initial control levels determined before SQ 14225 infusion. Replacement of circulating ANG II during SQ 14225 infusion, by intravenous infusion of ANG II at rates that decreased RBF to control levels, increased GFR, FF, and RE to levels not significantly different from control while RAP was maintained constant by aortic constriction. These observations suggest that circulating ANG II plays an important role in regulating RE and GFR during reductions in RAP. The importance of intrarenally formed ANG II in controlling GFR remains to be determined.

  16. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase.

    PubMed

    Stuck, Bettina Johanna; Lenski, Matthias; Böhm, Michael; Laufs, Ulrich

    2008-11-21

    Angiotensin II induces cardiomyocyte hypertrophy, but its consequences on cardiomyocyte metabolism and energy supply are not completely understood. Here we investigate the effect of angiotensin II on glucose and fatty acid utilization and the modifying role of AMP-activated protein kinase (AMPK), a key regulator of metabolism and proliferation. Treatment of H9C2 cardiomyocytes with angiotensin II (Ang II, 1 microm, 4 h) increased [(3)H]leucine incorporation, up-regulated the mRNA expression of the hypertrophy marker genes MLC, ANF, BNP, and beta-MHC, and decreased the phosphorylation of the negative mTOR-regulator tuberin (TSC-2). Rat neonatal cardiomyocytes showed similar results. Western blot analysis revealed a time- and concentration-dependent down-regulation of AMPK-phosphorylation in the presence of angiotensin II, whereas the protein expression of the catalytic alpha-subunit remained unchanged. This was paralleled by membrane translocation of glucose-transporter type 4 (GLUT4), increased uptake of [(3)H]glucose and transient down-regulation of phosphorylation of acetyl-CoA carboxylase (ACC), whereas fatty acid uptake remained unchanged. Similarly, short-term transaortic constriction in mice resulted in down-regulation of P-AMPK and P-ACC but up-regulation of GLUT4 membrane translocation in the heart. Preincubation of cardiomyocytes with the AMPK stimulator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 1 mM, 4 h) completely prevented the angiotensin II-induced cardiomyocytes hypertrophy. In addition, AICAR reversed the metabolic effects of angiotensin II: GLUT4 translocation was reduced, but ACC phosphorylation and TSC phosphorylation were elevated. In summary, angiotensin II-induced hypertrophy of cardiomyocytes is accompanied by decreased activation of AMPK, increased glucose uptake, and decreased mTOR inhibition. Stimulation with the AMPK activator AICAR reverses these metabolic changes, increases fatty acid utilization, and inhibits

  17. Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation

    PubMed Central

    Li, Shau-Hsuan; Lu, Hung-I; Chang, Alice Y.W.; Huang, Wan-Ting; Lin, Wei-Che; Lee, Ching-Chang; Tien, Wan-Yu; Lan, Ya-Chun; Tsai, Hsin-Ting; Chen, Chang-Han

    2016-01-01

    Background The aim of this study was to investigate the effects of the angiotensin II/ angiotensin II type I receptor (AT1R) and angiotensin II type II receptor (AT2R) signaling pathway in esophageal squamous cell carcinoma (ESCC). Methods Immunohistochemistry was performed to evaluate the expression levels of AT1R and AT2R in tissues from 152 surgically resected ESCC patients, and those expression levels were then correlated with treatment outcomes. The angiotensin II/AT1R/AT2R signaling pathway and its biological effects in the context of ESCC were investigated in vitro and in vivo. Results In human samples, AT1R overexpression was univariately associated with inferior overall survival and remained multivariately independent (hazard ratio=1.812). In vitro, angiotensin II stimulated the growth of ESCC cells in a dose-dependent manner. Treatment with irbesartan or AT1R-RNAi knockdown but not treatment with PD123319 significantly decreased the level of angiotensin II-induced ESCC cell proliferation. Angiotensin II also caused mTOR activation in a dose-dependent manner, and everolimus or mTOR-RNAi knockdown significantly suppressed the level of angiotensin II-induced ESCC cell proliferation. Furthermore, AT1R-RNAi knockdown suppressed the activation of mTOR. Clinically, AT1R expression was also correlated with phosphorylated mTOR expression. In a xenograft model, local angiotensin II injection enhanced tumor growth, and this effect could be decreased by treatment with irbesartan or everolimus. In a 4-NQO-induced-ESCC murine model, irbesartan significantly decreased the incidence of esophageal tumor. Conclusions These findings suggest that AT1R overexpression is an independent adverse prognosticator for patients with ESCC and that angiotensin II/AT1R signaling stimulates ESCC growth, in part through mTOR activation. PMID:27564102

  18. Intrarenal role of angiotensin II in controlling sodium excretion during dehydration in dogs.

    PubMed

    Trippodo, N C; Hall, J E; Lohmeier, T E; Guyton, A C

    1977-05-01

    1. The intrarenal role of angiotensin II in controlling sodium excretion was examined in anaesthetized, dehydrated dogs by infusing the angiotensin II antagonist Sar1-Ile8-angiotensin II directly into the renal artery. Comparisons were made with dehydrated dogs receiving only sodium chloride solution intrarenally. 2. Intrarenal angiotensin II blockade resulted in significant increases in urinary sodium excretion and urine flow rate. 3. The results indicate that during the high-renin state of dehydration endogenous angiotensin II has intrarenal effects which lead to salt and water retention.

  19. Clinical Profile of Eprosartan: A Different Angiotensin II Receptor Blocker

    PubMed Central

    Blankestijn, P. J; Rupp, H

    2008-01-01

    Rationale. The goal of antihypertensive treatment is to reduce risk of cardiovascular morbidity and mortality. Apart from blood pressure lowering per se, also reducing the activities of the renin-angiotensin system and sympathetic nervous system appears to be important. Angiotensin II receptor blocker drugs (ARBs) have provided a useful class of anti-hypertensive drugs. Eprosartan is a relatively new ARB which is chemically distinct (non-biphenyl, non-tetrazole) from all other ARBs (biphenyl tetrazoles). An analysis has been made on available experimental and clinical data on eprosartan which not only is an effective and well tolerated antihypertensive agent, but also lowers the activities of the renin-angiotensin system and sympathetic nervous system. Experimental and pharmacokinetic studies on eprosartan have shown differences with the other ARBs. The distinct properties of this non-biphenyl, non-tetrazole ARB might be relevant in the effort to reduce cardiovascular risk, also beyond its blood pressure lowering capacity. PMID:18855637

  20. Retrieval improvement is induced by water shortage through angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions.

  1. Limiting angiotensin II signaling with a cell penetrating peptide mimicking the second intracellular loop of the angiotensin II type I receptor

    PubMed Central

    Yu, Jun; Taylor, Linda; Mierke, Dale; Berg, Eric; Shia, Michael; Fishman, Jordan; Sallum, Christine; Polgar, Peter

    2010-01-01

    A cell-penetrating peptide consisting of the second intracellular loop (IC2) of the Angiotensin II (AngII) type I receptor (AT1) linked to the HIV transactivating regulatory protein (TAT) domain was used to identify the role of this motif for intracellular signal transduction. HEK-293 cells stably transfected with AT1R cDNA and primary cultures of human pulmonary artery smooth muscle cells expressing endogenous AT1 receptor were exposed to the cell-penetrating peptide construct and the effect on angiotensin II signaling determined. The AT1 IC2 peptide effectively inhibited AngII stimulated phosphatidylinositol turnover and calcium influx. It also limited the activation of Akt/PKB as determined by an inhibition of phosphorylation of Akt at Ser473 and completely abolished the AngII dependent activation of the transcriptional factor NFκB. In contrast, the AT1 IC2 peptide had no effect on AngII/AT1 receptor activation of ERK. These results illustrate the potential of using cell penetrating peptides to both delineate receptor-mediated signal transduction as well as to selectively regulate G protein coupled receptor signaling. PMID:20492449

  2. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  3. Central cardiovascular actions of angiotensin II in trout.

    PubMed

    Le Mével, Jean-Claude; Lancien, Frédéric; Mimassi, Nagi

    2008-05-15

    In mammals, a large body of evidence supports the existence of a brain renin-angiotensin system (RAS) acting independently or synergistically with the endocrine RAS to maintain diverse physiological functions, notably cardiovascular homeostasis. The RAS is of ancient origin and although most components of the RAS are present within the brain of teleost fishes, little is known regarding the central physiological actions of the RAS in these vertebrates. The present review encompasses the most relevant functional data for a role of the brain RAS in cardiovascular regulations in our experimental animal model, the unanesthetized trout Oncorhynchus mykiss. This paper mainly focuses on the central effect of angiotensin II (ANG II) on heart rate, blood pressure, heart rate variability and cardiac baroreflex, after intracerebroventricular injection or local microinjection of the peptide within the dorsal vagal motor nucleus. The probable implications of the parasympathetic nervous system in ANG II-evoked changes in the cardiac responses are also discussed.

  4. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors.

    PubMed

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F

    1996-09-01

    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  5. Salvianolic Acid B Attenuates Rat Hepatic Fibrosis via Downregulating Angiotensin II Signaling

    PubMed Central

    Li, Shu; Wang, Lina; Yan, Xiuchuan; Wang, Qinglan; Tao, Yanyan; Li, Junxia; Peng, Yuan; Liu, Ping; Liu, Chenghai

    2012-01-01

    The renin-angiotensin system (RAS) plays an important role in hepatic fibrosis. Salvianolic acid B (Sal B), one of the water-soluble components from Radix Salviae miltiorrhizae, has been used to treat hepatic fibrosis, but it is still not clear whether the effect of Sal B is related to angiotensin II (Ang II) signaling pathway. In the present study, we studied Sal B effect on rat liver fibrosis and Ang-II related signaling mediators in dimethylnitrosamine-(DMN-) induced rat fibrotic model in vivo and Ang-II stimulated hepatic stellate cells (HSCs) in vitro, with perindopril or losartan as control drug, respectively. The results showed that Sal B and perindopril inhibited rat hepatic fibrosis and reduced expression of Ang II receptor type 1 (AT1R) and ERK activation in fibrotic liver. Sal B and losartan also inhibited Ang II-stimulated HSC activation including cell proliferation and expression of type I collagen I (Col-I) and α-smooth muscle actin (α-SMA) production in vitro, reduced the gene expression of transforming growth factor beta (TGF-β), and downregulated AT1R expression and ERK and c-Jun phosphorylation. In conclusion, our results indicate that Sal B may exert an antihepatic fibrosis effect via downregulating Ang II signaling in HSC activation. PMID:23243430

  6. Urinary angiotensin II: a marker of renal tissue activity?

    PubMed

    Reams, G; Villarreal, D; Wu, Z; Bauer, J H

    1994-01-01

    The methodology for the collection, extraction, separation and measurement of urinary angiotensin II [the octapeptide, ANG(1-8)] is described. To determine the origin of urinary ANG(1-8), mean arterial pressure, renal hemodynamics and the arterial, renal venous and urinary concentrations of ANG(1-8) were examined prior to and following the constant intra-arterial infusion of tritiated angiotensin II [3H-ANG(1-8)] in graded doses of 0.5, 2.0 and 2.5 ng/kg/min in 5 uninephrectomized, anesthetized female dogs. The infusion of 3H-ANG-(1-8) had no significant effect on mean arterial pressure, glomerular filtration rate, renal blood flow or urine flow rate. The mean concentration of ANG(1-8) in the urine was 3.7 fmol/ml. None or only trace amounts of 3H-ANG(1-8) were detected in the urine in spite of marked increases in renal arterial 3H-ANG(1-8) concentrations. These observations suggest that urinary ANG(1-8) was derived de novo from the intrarenal generation of angiotensin II. In addition, plasma and urinary concentrations of ANG(1-8) were assessed in patients with essential hypertension undergoing treatment with either a diuretic (n = 14) or an angiotensin-converting enzyme inhibitor (n = 14). Although the concentrations of plasma ANG(1-8) responded appropriately to the respective therapies, the urinary excretion of ANG(1-8) was not different following either therapy. These data suggest that ANG(1-8) collected from the urinary bladder may not occur in adequate concentrations to accurately assess the activity of the intrarenal renin-angiotensin system.

  7. Apelin Is a Negative Regulator of Angiotensin II-Mediated Adverse Myocardial Remodeling and Dysfunction.

    PubMed

    Zhang, Zhen-Zhou; Wang, Wang; Jin, Hai-Yan; Chen, Xueyi; Cheng, Yu-Wen; Xu, Ying-Le; Song, Bei; Penninger, Josef M; Oudit, Gavin Y; Zhong, Jiu-Chang

    2017-10-03

    The apelin pathway has emerged as a critical regulator of cardiovascular homeostasis and disease. However, the exact role of pyr1-apelin-13 in angiotensin (Ang) II-mediated heart disease remains unclear. We used apelin-deficient (APLN(-)(/y)) and apolipoprotein E knockout mice to evaluate the regulatory roles of pyr1-apelin-13. The 1-year aged APLN(-)(/y) mice developed myocardial hypertrophy and dysfunction with reduced angiotensin-converting enzyme 2 levels. Ang II infusion (1.5 mg kg(-)(1) d(-)(1)) for 4 weeks potentiated oxidative stress, pathological hypertrophy, and myocardial fibrosis in young APLN(-)(/y) hearts resulting in exacerbation of cardiac dysfunction. Importantly, daily administration of 100 μg/kg pyr1-apelin-13 resulted in upregulated angiotensin-converting enzyme 2 levels, decreased superoxide production and expression of hypertrophy- and fibrosis-related genes leading to attenuated myocardial hypertrophy, fibrosis, and dysfunction in the Ang II-infused apolipoprotein E knockout mice. In addition, pyr1-apelin-13 treatment largely attenuated Ang II-induced apoptosis and ultrastructural injury in the apolipoprotein E knockout mice by activating Akt and endothelial nitric oxide synthase phosphorylation signaling. In cultured neonatal rat cardiomyocytes and cardiofibroblasts, exposure of Ang II decreased angiotensin-converting enzyme 2 protein and increased superoxide generation, cellular proliferation, and migration, which were rescued by pyr1-apelin-13, and Akt and endothelial nitric oxide synthase agonist stimulation. The increased superoxide generation and apoptosis in cultured cardiofibroblasts in response to Ang II were strikingly prevented by pyr1-apelin-13 which was partially reversed by cotreatment with the Akt inhibitor MK2206. In conclusion, pyr1-apelin-13 peptide pathway is a negative regulator of aging-mediated and Ang II-mediated adverse myocardial remodeling and dysfunction and represents a potential candidate to prevent and treat

  8. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells

    SciTech Connect

    Zhang, Feng; Ren, Jingyi; Chan, Kenneth; Chen, Hong

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascular endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.

  9. Angiotensin II: a candidate for an aldosterone-independent mediator of potassium preservation during volume depletion.

    PubMed

    Hoover, Robert S

    2011-02-01

    Two different stimulators of aldosterone secretion, high-potassium diet and low-sodium diet, have disparate effects on potassium secretion in the distal nephron. The mechanism by which the kidney preserves potassium in the face of a high-aldosterone, volume-depleted state has engendered much thought. Yue et al. now propose that angiotensin II inhibits the renal outer medullary potassium channel (ROMK1) through stimulation of the protein tyrosine kinase c-Src, perhaps acting as a signal to differentiate volume depletion from a high-potassium diet.

  10. Local actions of angiotensin II: quantitative in vitro autoradiographic localization of angiotensin II receptor binding and angiotensin converting enzyme in target tissues

    SciTech Connect

    Chai, S.Y.; Allen, A.M.; Adam, W.R.; Mendelsohn, F.A.

    1986-01-01

    In order to gain insight into the local actions of angiotensin II (ANG II) we have determined the distribution of a component of the effector system for the peptide, the ANG II receptor, and that of an enzyme-catalysing ANG II formation, angiotensin converting enzyme (ACE), by in vitro autoradiography in several target tissues. The superagonist ANG II analog, /sup 125/I(Sar1)ANG II, or the antagonist analog, /sup 125/I(Sar1,Ile8)ANG II, were used as specific radioligands for ANG II receptors. A derivative of the specific ACE inhibitor, lysinopril, called /sup 125/I-351A, was used to label ACE in tissues. In the adrenal, a high density of ANG II receptors occurs in the glomerulosa zone of the cortex and in the medulla. ACE is also localized in these two zones, indicating that local production of ANG II may occur close to its sites of action in the zona glomerulosa and adrenal medulla. In the kidney, a high density of ANG II receptors is associated with glomeruli in the cortex and also with vasa recta bundles in the inner stripe of the outer medulla. ACE is found in very high concentration in deep proximal convoluted tubules of the cortex, while much lower concentrations of the enzyme occur in the vascular endothelium throughout the kidney. In the central nervous system three classes of relationships between ANG II receptors and ACE are observed: In the circumventricular organs, including the subfornical organ and organum vasculosum of the lamina terminalis, a high concentration of both components occurs. Since these structures have a deficient blood-brain barrier, local conversion of circulating angiotensin I (ANG I) to ANG II may contribute to the action of ANG II at these sites.

  11. Adhesion ability of angiotensin II with model membranes.

    PubMed

    Preu, Julia; Tiefenauer, Louis; Gutberlet, Thomas

    2017-02-01

    The octa-peptide angiotensin II (Ang II, (H2NAspArgValTyrIleHisProPheCOOH)) is one of the key player on blood pressure regulation in mammals. Predominantly binding to the Angiotensin type 1 and 2 receptors, the hormone is one of several peptide ligands binding to G protein coupled receptors (GPCR). The active hormone derives from a high molecular weight precursor sequentially cleaved by the proteases renin and the angiotensin converting enzyme (ACE). The chemical nature of the amino acid sequence has an impact on the behavior in the proximity of membranes, demonstrated using different membrane model systems and biophysical methods. Applying electrochemical impedance spectroscopy and small angle X-ray scattering a detailed view on the adhesion of the peptide with model membrane surfaces was performed. The role of specific amino acids involved in the interaction with the phospholipid head group were investigated and, studying a truncated version of Ang II, Ang (1-7), the key role of the C-terminal phenylalanine was proven. Truncation of the C-terminal amino acid abolishes the binding of the peptide to the membrane surface. A shift in pH, altering the protonation state of the central histidine residue impairs the adhesion of Ang II.

  12. Angiotensin II receptors in amphibian kidney. [Calyptocephalella caudiverbera

    SciTech Connect

    Tchernitchin, S.M.; Galli, S.M.; Raizada, M.

    1986-03-05

    The localization of Angiotensin II (Ang II) receptors in the Amphibia kidney was investigated by radioautography and binding studies. /sup 125/I-Ang II was injected into the dorsal aorta of anesthetized toads, Calyptocephalella caudiverbera. The kidney excised 2 and 10 min after injection show intense labeling in the glomeruli and a lesser amount in the tubules. Ang II labeling was found in the proximal, distal and collecting tubules. The thin connecting segment (diluting segment) also shows a distinct labeling. Afferent and efferent arterioles and interstitial connective tissue do not show radioautographic granules above the background level. Ang II binding studies of glomerular and tubular membranes show that the binding of /sup 125/I-Ang II is higher in the glomerular than in the tubular membranes with a Kd of 1.9 x 10/sup -9/M and 1.0 x 10/sup -9/M respectively. Their results show that angiotensin II receptors in the amphibian nephron are present in the glomeruli and tubular segments, supporting the hypothesis of the intrarenal action of Ang II in this group of vertebrates.

  13. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  14. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease.

    PubMed

    Chow, Bryna S M; Allen, Terri J

    2016-08-01

    Angiotensin II (Ang II) is well-considered to be the principal effector of the renin-angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water-electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. Angiotensin II increases glomerular permeability by β-arrestin mediated nephrin endocytosis

    PubMed Central

    Königshausen, Eva; Zierhut, Ulf M.; Ruetze, Martin; Potthoff, Sebastian A.; Stegbauer, Johannes; Woznowski, Magdalena; Quack, Ivo; Rump, Lars C.; Sellin, Lorenz

    2016-01-01

    Glomerular permeability and subsequent albuminuria are early clinical markers for glomerular injury in hypertensive nephropathy. Albuminuria predicts mortality and cardiovascular morbidity. AT1 receptor blockers protect from albuminuria, cardiovascular morbidity and mortality. A blood pressure independent, molecular mechanism for angiotensin II (Ang II) dependent albuminuria has long been postulated. Albuminuria results from a defective glomerular filter. Nephrin is a major structural component of the glomerular slit diaphragm and its endocytosis is mediated by β-arrestin2. Ang II stimulation increases nephrin-β-arrestin2 binding, nephrin endocytosis and glomerular permeability in mice. This Ang II effect is mediated by AT1-receptors. AT1-receptor mutants identified G-protein signaling to be essential for this Ang II effect. Gαq knockdown and phospholipase C inhibition block Ang II mediated enhanced nephrin endocytosis. Nephrin Y1217 is the critical residue controlling nephrin binding to β-arrestin under Ang II stimulation. Nephrin Y1217 also mediates cytoskeletal anchoring to actin via nck2. Ang II stimulation decreases nephrin nck2 binding. We conclude that Ang II weakens the structural integrity of the slit diaphragm by increased nephrin endocytosis and decreased nephrin binding to nck2, which leads to increased glomerular permeability. This novel molecular mechanism of Ang II supports the use of AT1-receptor blockers to prevent albuminuria even in normotensives. PMID:28004760

  16. Photoreleasable ligands to study intracrine angiotensin II signalling

    PubMed Central

    Tadevosyan, Artavazd; Létourneau, Myriam; Folch, Benjamin; Doucet, Nicolas; Villeneuve, Louis R; Mamarbachi, Aida M; Pétrin, Darlaine; Hébert, Terence E; Fournier, Alain; Chatenet, David; Allen, Bruce G; Nattel, Stanley

    2015-01-01

    Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)4]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)4]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2–3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)4]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)4]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)4]Ang-II did not. Cellular uptake of [Tyr(DMNB)4]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48–60) peptide. Intracellular photolysis of [Tyr(DMNB)4]Ang-II induced an increase in nucleoplasmic Ca2+ ([Ca2+]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II. PMID:25433071

  17. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    PubMed

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension. © 2016 American Heart Association, Inc.

  18. Therapeutic trials comparing angiotensin converting enzyme inhibitors and angiotensin II receptor blockers.

    PubMed

    Elliott, W J

    2000-08-01

    Two independent pharmacologic methods of specifically interfering with the renin-angiotensin-aldosterone system have been brought to the marketplace: angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs). These agents have the potential not only to be very widely used for a broad variety of clinical indications but also to compete against each other as treatments for hypertension, heart failure, renal impairment, and other conditions. Many short-term comparative studies of these two classes of drugs have now been completed. Most have focused on surrogate endpoints, such as blood pressure, renal function, or cough. These studies have generally concluded that ARBs are better tolerated but that the two drug classes otherwise have similar efficacy. The largest clinical trial comparing ARBs and ACE inhibitors thus far completed, Evaluation of Losartan in the Elderly (ELITE 2), failed to confirm the results of a smaller study; it did not demonstrate a significant improvement in outcomes (death or hospitalization for heart failure) with an ARB used alone, despite better tolerability. Many longer-term outcome studies with survival endpoints are under way, but most will compare the combination against an ACE inhibitor alone. These studies will define the optimal use of these agents in medicine for decades to come.

  19. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure.

    PubMed

    Gao, Lie; Wang, Wei-Zhong; Wang, Wei; Zucker, Irving H

    2008-10-01

    Upregulation of angiotensin II type 1 receptors (AT(1)R) in the rostral ventrolateral medulla (RVLM) contributes to the sympathoexcitation in the chronic heart failure (CHF). However, the role of angiotensin II type 2 receptor (AT(2)R) is not clear. In this study, we measured AT(1)R and AT(2)R protein expression in the RVLM and determined their effects on renal sympathetic nerve activity, blood pressure, and heart rate in anesthetized sham and CHF rats. We found that (1) although AT(1)R expression in the RVLM was upregulated, the AT(2)R was significantly downregulated (CHF: 0.06+/-0.02 versus sham: 0.15+/-0.02, P<0.05); (2) simultaneously stimulating RVLM AT(1)R and AT(2)R by angiotensin II evoked sympathoexcitation, hypertension, and tachycardia in both sham and CHF rats with greater responses in CHF; (3) stimulating RVLM AT1R with angiotensin II plus the specific AT(2)R antagonist PD123319 induced a larger sympathoexcitatory response than simultaneously stimulating AT(1)R and AT(2)R in sham rats, but not in CHF; (4) activating RVLM AT(2)R with CGP42112 induced a sympathoinhibition, hypotension, and bradycardia only in sham rats (renal sympathetic nerve activity: 36.4+/-5.1% of baseline versus 102+/-3.9% of baseline in artificial cerebrospinal fluid, P<0.05); (5) pretreatment with 5,8,11,14-eicosatetraynoic acid, a general inhibitor of arachidonic acid metabolism, into the RVLM attenuates the CGP42112-induced sympathoinhibition. These results suggest that AT(2)R in the RVLM exhibits an inhibitory effect on sympathetic outflow, which is, at least partially, mediated by an arachidonic acid metabolic pathway. These data implicate a downregulation in the AT(2)R as a contributory factor in the sympathoexcitation in CHF.

  20. Effects of valsartan on angiotensin II-induced migration of human coronary artery smooth muscle cells.

    PubMed

    Kohno, M; Ohmori, K; Nozaki, S; Mizushige, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    2000-11-01

    The migration as well as proliferation of coronary artery medial smooth muscle cells (SMC) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerosis. In the current study, we examined the effects of the angiotensin type 1 receptor antagonist valsartan on angiotensin II (Ang II)-induced migration of cultured human coronary artery SMC using Boyden's chamber methods. Ang II significantly stimulated human coronary artery SMC migration in a concentration-dependent manner between 10(-6) and 10(-8) mol/l when cells of passage 4 to 6 were used. However, the migration response to Ang II was moderately decreased in cells of passage 10 to 12, and was markedly decreased in cells of passage 15 to 17, compared to that of passage 4 to 6. Ang II-induced migration was blocked by the Ang II type 1 (AT1) receptor antagonist valsartan in a concentration-dependent manner. By contrast, the Ang II type 2 (AT2) receptor antagonist PD 123319 did not affect Ang II-induced migration. Ang II modestly increased the cell number of human coronary artery SMC after a 24-h incubation. This increase in cell numbers was also clearly blocked by valsartan, but not by PD 123319. These results indicate that Ang II stimulates migration as well as proliferation via AT1 receptors in human coronary artery SMC when cells of passage 4 to 6 are used. Valsartan may prevent the progression of coronary atherosclerosis through an inhibition of Ang II-induced migration and proliferation in these cells, although in vivo evidence is lacking.

  1. Angiotensin II receptors involved in the enhancement of noradrenergic transmission in the caudal artery of the spontaneously hypertensive rat.

    PubMed Central

    Cox, S. L.; Story, D. F.; Ziogas, J.

    1996-01-01

    1. The effects of the AT1 receptor antagonist losartan and the AT2 receptor antagonist PD 123319, on actions of angiotensin II in isolated caudal arteries of spontaneously hypertensive (SH) and age-matched normotensive (Wistar-Kyoto) rats were compared. 2. Angiotensin II (0.1-3 microM) produced concentration-dependent increases in perfusion pressure in artery preparations from both SH and Wistar-Kyoto (WKY) rats, the maximal increase in the SH rat being significantly greater than the increase in WKY rats. The increase in perfusion pressure in preparations from both strains of rats was prevented by losartan (0.1 microM) and unaffected by PD 123319 (0.1 microM), indicating that the vasoconstrictor action of angiotensin II is subserved by AT1 receptors. 3. Angiotensin II (0.1-3 microM) produced concentration-dependent enhancement of both stimulation-induced (S-I) efflux of [3H]-noradrenaline and stimulation-evoked vasoconstrictor responses in isolated preparations of caudal artery from both SH and WKY rats, in which the noradrenergic transmitter stores had been labelled with [3H]-noradrenaline. The maximum enhancement of S-I efflux produced by angiotensin II (1 microM) was significantly greater in artery preparations from WKY rats than in preparations from SH rats, whereas the maximum enhancement of stimulation-evoked vasoconstrictor responses was greater in preparations from SH rats than in those from WKY rats. 4. In artery preparations from both WKY and SH rats, the AT1 angiotensin II receptor antagonist, losartan (0.01 and 0.1 microM), reduced or abolished the enhancement of both S-I efflux and vasoconstrictor responses by 1 microM angiotensin II. 5. The combination of 0.01 microM losartan and 0.1 microM angiotensin II enhanced both the S-I efflux and stimulation-evoked vasoconstrictor response in caudal artery preparations from WKY rats, whereas 0.1 microM angiotensin alone was ineffective. The AT2 receptor antagonist PD 123319 (0.01 and 0.1 microM) prevented the

  2. Intracisternal galanin/angiotensin II interactions in central cardiovascular control.

    PubMed

    Díaz-Cabiale, Zaida; Parrado, Concepción; Vela, Carmen; Coveñas, Rafael; Yanaihara, Noboru; Fuxe, Kjell; González-Barón, Salvador; Narváez, José A

    2005-04-15

    The aim of this work was to investigate the interactions between angiotensin II (Ang II) and galanin(1-29) [GAL(1-29)] or its N-terminal fragment galanin(1-15) [GAL(1-15)] on central cardiovascular control. The involvement of angiotensin type1 (AT1) receptor subtype was analyzed by the AT1 antagonist, DuP 753. Anesthesized male Sprague-Dawley rats received intracisternal microinjections of Ang II (3 nmol) with GAL(1-29) (3 nmol) or GAL(1-15) (0.1 nmol) alone or in combination. The changes in mean arterial pressure (MAP) and heart rate (HR) recorded from the femoral artery were analyzed. The injection of Ang II and GAL(1-15) alone did not produce any change in MAP. However, coinjections of both Ang II and GAL(1-15) elicited a significant vasopressor response. This response was blocked by DuP 753. Ang II and GAL(1-15) alone produced an increase in HR. The coinjections of Ang II with GAL(1-15) induced an increase in HR not significantly different from the tachycardia produced by each peptide. The presence of DuP 753 counteracted this response. GAL(1-29) alone elicited a transient vasopressor response that disappeared in the presence of Ang II. The coinjections of Ang II with GAL(1-29) and with DuP 753 restored the transient vasopressor effect produced by GAL(1-29). GAL(1-29) produced a slight but significant tachycardic effect that was not modified in the presence of Ang II. The presence of DuP 753 did not modify the tachycardic response produced by Ang II and GAL(1-29). These results give indications for the existence of a differential modulatory effect of Ang II with GAL(1-15) and GAL(1-29) on central blood pressure response that might be dependent on the activity of the angiotensin AT1 receptor subtype.

  3. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.

  4. Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate.

    PubMed

    Bugge, J F; Stokke, E S

    1994-04-01

    The relationship between angiotensin II and renal prostaglandins, and their interactions in controlling renal blood flow (RBF) and glomerular filtration rate (GFR) were investigated in 18 anaesthetized dogs with acutely denervated kidneys. Intrarenal angiotensin II infusion increased renal PGE2 release (veno-arterial concentration difference times renal plasma flow) from 1.7 +/- 0.9 to 9.1 +/- 0.4 and 6-keto-PGF1 alpha release from 0.1 +/- 0.1 to 5.3 +/- 2.1 pmol min-1. An angiotensin II induced reduction in RBF of 20% did not measurably change GFR whereas a 30% reduction reduced GFR by 18 +/- 8%. Blockade of prostaglandin synthesis approximately doubled the vasoconstrictory action of angiotensin II, and all reductions in RBF were accompanied by parallel reductions in GFR. When prostaglandin release was stimulated by infusion of arachidonic acid (46.8 +/- 13.3 and 15.9 +/- 5.4 pmol min-1 for PGE2, and 6-keto-PGF1 alpha, respectively), angiotensin II did not change prostaglandin release, but had similar effects on the relationship between RBF and GFR as during control. In an ureteral occlusion model with stopped glomerular filtration measurements of ureteral pressure and intrarenal venous pressure permitted calculations of afferent and efferent vascular resistances. Until RBF was reduced by 25-30% angiotensin II increased both afferent and efferent resistances almost equally, keeping the ureteral pressure constant. At greater reductions in RBF, afferent resistance increased more than the efferent leading to reductions in ureteral pressure. This pattern was not changed by blockade of prostaglandin synthesis indicating no influence of prostaglandins on the distribution of afferent and efferent vascular resistances during angiotensin II infusion. In this ureteral occlusion model glomerular effects of angiotensin II will not be detected, and it might well be that the shift from an effect predominantly on RBF to a combined effect on both RBF and GFR induced by inhibition

  5. TRIF promotes angiotensin II-induced cross-talk between fibroblasts and macrophages in atrial fibrosis

    SciTech Connect

    Chen, Xiao-Qing; Zhang, Dao-Liang; Zhang, Ming-Jian; Guo, Meng; Zhan, Yang-Yang; Liu, Fang; Jiang, Wei-Feng; Zhou, Li; Zhao, Liang; Wang, Quan-Xing; Liu, Xu

    2015-08-14

    Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts induced the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.

  6. Angiotensin II Moderately Decreases Plasmodium Infection and Experimental Cerebral Malaria in Mice.

    PubMed

    Gallego-Delgado, Julio; Baravian, Charlotte; Edagha, Innocent; Ty, Maureen C; Ruiz-Ortega, Marta; Xu, Wenyue; Rodriguez, Ana

    2015-01-01

    Angiotensin II, a peptide hormone that regulates blood pressure, has been proposed as a protective factor against cerebral malaria based on a genetic analysis. In vitro studies have documented an inhibitory effect of angiotensin II on Plasmodium growth, while studies using chemical inhibitors of angiotensin II in mice showed protection against experimental cerebral malaria but not major effects on parasite growth. To determine whether the level of angiotensin II affects Plasmodium growth and/or disease outcome in malaria, elevated levels of angiotensin II were induced in mice by intradermal implantation of osmotic mini-pumps providing constant release of this hormone. Mice were then infected with P. berghei and monitored for parasitemia and incidence of cerebral malaria. Mice infused with angiotensin II showed decreased parasitemia seven days after infection. The development of experimental cerebral malaria was delayed and a moderate increase in survival was observed in mice with elevated angiotensin II, as confirmed by decreased number of cerebral hemorrhages compared to controls. The results presented here show for the first time the effect of elevated levels of angiotensin II in an in vivo model of malaria. The decreased pathogenesis observed in mice complements a previous human genetic study, reinforcing the hypothesis of a beneficial effect of angiotensin II in malaria.

  7. Angiotensin II Moderately Decreases Plasmodium Infection and Experimental Cerebral Malaria in Mice

    PubMed Central

    Gallego-Delgado, Julio; Baravian, Charlotte; Edagha, Innocent; Ty, Maureen C.; Ruiz-Ortega, Marta; Xu, Wenyue; Rodriguez, Ana

    2015-01-01

    Angiotensin II, a peptide hormone that regulates blood pressure, has been proposed as a protective factor against cerebral malaria based on a genetic analysis. In vitro studies have documented an inhibitory effect of angiotensin II on Plasmodium growth, while studies using chemical inhibitors of angiotensin II in mice showed protection against experimental cerebral malaria but not major effects on parasite growth. To determine whether the level of angiotensin II affects Plasmodium growth and/or disease outcome in malaria, elevated levels of angiotensin II were induced in mice by intradermal implantation of osmotic mini-pumps providing constant release of this hormone. Mice were then infected with P. berghei and monitored for parasitemia and incidence of cerebral malaria. Mice infused with angiotensin II showed decreased parasitemia seven days after infection. The development of experimental cerebral malaria was delayed and a moderate increase in survival was observed in mice with elevated angiotensin II, as confirmed by decreased number of cerebral hemorrhages compared to controls. The results presented here show for the first time the effect of elevated levels of angiotensin II in an in vivo model of malaria. The decreased pathogenesis observed in mice complements a previous human genetic study, reinforcing the hypothesis of a beneficial effect of angiotensin II in malaria. PMID:26376293

  8. Use of Enterally Delivered Angiotensin II Type Ia Receptor Antagonists to Reduce the Severity of Colitis

    PubMed Central

    Okawada, Manabu; Koga, Hiroyuki; Larsen, Scott D.; Showalter, Hollis D.; Turbiak, Anjanette J.; Jin, Xiaohong; Lucas, Peter C.; Lipka, Elke; Hillfinger, John; Kim, Jae Seung

    2011-01-01

    Background Renin-angiotensin system blockade reduces inflammation in several organ systems. Having found a fourfold increase in angiotensin II type Ia receptor expression in a dextran sodium sulfate colitis model, we targeted blockade with angiotensin II type Ia receptor antagonists to prevent colitis development. Because hypotension is a major complication of angiotensin II type Ia receptor antagonists use, we hypothesized that use of angiotensin II type Ia receptor antagonists compounds which lack cell membrane permeability, and thus enteric absorption, would allow for direct enteral delivery at far higher concentrations than would be tolerated systemically, yet retain efficacy. Methods Based on the structure of the angiotensin II type Ia receptor antagonist losartan, deschloro-losartan was synthesized, which has extremely poor cell membrane permeability. Angiotensin II type Ia receptor antagonist efficacy was evaluated by determining the ability to block NF-κB activation in vitro. Dextran sodium sulfate colitis was induced in mice and angiotensin II type Ia receptor antagonist efficacy delivered transanally was assessed. Results In vitro, deschloro-losartan demonstrated near equal angiotensin II type Ia receptor blockade compared to losartan as well as another angiotensin II type Ia receptor antagonist, candesartan. In the dextran sodium sulfate model, each compound significantly improved clinical and histologic scores and epithelial cell apoptosis. Abundance of TNF-α, IL-1β, and IL6 mRNA were significantly decreased with each compound. In vitro and in vivo intestinal drug absorption, as well as measures of blood pressure and mucosal and colonic blood flow, showed significantly lower uptake of deschloro-losartan compared to losartan and candesartan. Conclusions This study demonstrated efficacy of high-dose angiotensin II type Ia receptor antagonists in this colitis model. We postulate that a specially designed angiotensin II type Ia receptor antagonist with

  9. Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species.

    PubMed

    van den Hoven, Mabel J; Waanders, Femke; Rops, Angelique L; Kramer, Andrea B; van Goor, Harry; Berden, Jo H; Navis, Gerjan; van der Vlag, Johan

    2009-09-01

    Inhibition of the renin-angiotensin-aldosterone system (RAAS) provides renoprotection in adriamycin nephropathy (AN), along with a decrease in overexpression of glomerular heparanase. Angiotensin II (AngII) and reactive oxygen species (ROS) are known to regulate heparanase expression in vivo. However, it is unknown whether this is also the case for aldosterone. Therefore, we further assessed the role of aldosterone, AngII and ROS in the regulation of glomerular heparanase expression. Six weeks after the induction of AN, rats were treated with vehicle (n = 8), lisinopril (75 mg/L, n = 10), spironolactone (3.3 mg/day, n = 12) or the combination of lisinopril and spironolactone (n = 14) for 12 weeks. Age-matched healthy rats served as controls (n = 6). After 18 weeks, renal heparanase and heparan sulfate (HS) expression were examined by immunofluorescence staining. In addition, the effect of aldosterone, AngII and ROS on heparanase expression in cultured podocytes was determined. Treatment with lisinopril, spironolactone or their combination significantly blunted the increased glomerular heparanase expression and restored the decreased HS expression in the GBM. Addition of aldosterone to cultured podocytes resulted in a significantly increased heparanase mRNA and protein expression, which could be inhibited by spironolactone. Heparanase mRNA and protein expression in podocytes were also significantly increased after stimulation with AngII or ROS. Our in vivo and in vitro results show that not only AngII and ROS, but also aldosterone is involved in the regulation of glomerular heparanase expression.

  10. Angiotensin II revisited: new roles in inflammation, immunology and aging

    PubMed Central

    Benigni, Ariela; Cassis, Paola; Remuzzi, Giuseppe

    2010-01-01

    That the renin–angiotensin system (RAS) is involved in regulation of blood pressure, vasoconstriction, sodium intake and potassium excretion is well established. Studies in the last few years have however documented new roles for this molecule as a pro-inflammatory molecule and more recently as a possible pro-fibrotic agent that contributes to progressive deterioration of organ function in disease. Binding of Ang II to its receptors (in particular AT1) mediates intracellular free radical generation that contributes to tissue damage by promoting mitochondrial dysfunction. Blocking Ang II signalling protects against neurodegenerative processes and promotes longevity in rodents. Altogether these findings open the unanticipated perspective for exploring Ang II signalling in therapeutic interventions in inflammatory diseases and aging-related tissue injury. This review extends from the discovery of Ang II and its implications in renal and cardiovascular physiology to cover the roles of the system in inflammation, tissue injury, autoimmunity, oxidative stress and aging. PMID:20597104

  11. Angiotensin II-related hypertension and eye diseases

    PubMed Central

    Marin Garcia, Pablo Jesus; Marin-Castaño, Maria Encarna

    2014-01-01

    Systemic vascular disease, especially hypertension, has been suspected as a risk factor for some eye diseases including, diabetic retinopathy and age-related macular degeneration. Hypertension can contribute to chronic diseases by hemodynamic injury and/or cellular actions induced by hypertension-related hormones or growth factors. Among the most important is Angiotensin II (Ang II), which controls blood pressure and induces different cellular functions that may be dependent or independent of its effect on blood pressure. Importantly, as is true for heart, kidney and other organs, the renin-angiotensin system (RAS) is present in the eye. So, even in the absence of hypertension, local production of Ang II could be involved in eye diseases. The goal of this manuscript is to review the most relevant scientific evidence supporting the role of the RAS activation, in the development of age-related macular degeneration and diabetic retinopathy, and highlight the importance of Ang II in the etiology of these diseases. PMID:25276298

  12. Effect of angiotensin II infusion on rhythmic clock gene expression and local renin-angiotensin system in the aorta of Wistar rats.

    PubMed

    Herichova, I; Zsoldosova, K; Vesela, A; Zeman, M

    2014-07-01

    Endogenous daily rhythms in physiology are regulated by the circadian system consisting of the central and peripheral components. The renin-angiotensin system, involved predominantly in water balance and blood pressure control, exerts 24 h rhythmicity in many of its parameters. The present study is aimed to study possible interactions between these two control systems. We analyzed effects induced by angiotensin II administration on clock gene expression in the aorta of rat and an ability of angiotensin II to influence the local tissue renin-angiotensin system. Angiotensin II was infused in a dose of 100 ng/kg/min by subcutaneously implanted osmotic minipumps for 28 days to male Wistar rats. Gene expression was measured by real time PCR. Angiotensin II administration resulted in an increase in blood pressure, heart weight/body weight index, and water intake in comparison with controls. We observed a significant phase advance in per2 and npas2 mRNA rhythms and decreased mesor of npas2 rhythmic expression in the aorta of angiotensin II-treated rats compared to control. Angiotensin II administration did not influence daily pattern and level of at1 mRNA expression. The ratio ace/ace2 showed a rhythmic pattern in the aorta of control rats with peak levels in the dark period. Angiotensin II infusion influenced clock gene expression and diminished a daily rhythm in ace/ace2 mRNA ratio indicating modulatory effect of angiotensin II on tissue renin-angiotensin system in the aorta.

  13. Structural Basis for Selectivity and Diversity in Angiotensin II Receptors

    PubMed Central

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander; Ishchenko, Andrii; White, Kate L.; Patel, Nilkanth; Sadybekov, Anastasiia; Zamlynny, Beata; Rudd, Michael T.; Hollenstein, Kaspar; Tolstikova, Alexandra; White, Thomas A.; Hunter, Mark S.; Weierstall, Uwe; Liu, Wei; Babaoglu, Kerim; Moore, Eric L.; Katz, Ryan D.; Shipman, Jennifer M.; Garcia-Calvo, Margarita; Sharma, Sujata; Sheth, Payal; Soisson, Stephen M.; Stevens, Raymond C.; Katritch, Vsevolod; Cherezov, Vadim

    2017-01-01

    Angiotensin II receptors, AT1R and AT2R, serve as key components of the renin-angiotensin-aldosterone system. While AT1R plays a central role in the regulation of blood pressure, the function of AT2R is enigmatic with a variety of reported effects. To elucidate the mechanisms for the functional diversity and ligand selectivity between these receptors, we report crystal structures of the human AT2R bound to an AT2R-selective and an AT1R/AT2R-dual ligand, respectively, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins/β-arrestins, in agreement with the lack of signaling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the interactions critical for ligand binding and selectivity. Our results thus provide insights into the structural basis for distinct functions of the angiotensin receptors, and may guide the design of novel selective ligands. PMID:28379944

  14. The synthetic triterpenoid, RTA405, increases glomerular filtration rate and reduces angiotensin II-induced contraction of glomerular mesangial cells

    PubMed Central

    Ding, Yanfeng; Stidham, Rhesa; Bumeister, Ron; Trevino, Isaac; Winters, Ali; Sprouse, Marc; Ding, Min; Ferguson, Deborah A.; Meyer, Colin J.; Wigley, W. Christian; Ma, Rong

    2012-01-01

    Bardoxolone methyl, a synthetic triterpenoid, improves the estimated glomerular filtration rate (GFR) in patients with chornic kidney disease and type 2 diabetes. Since the contractile activity of mesangial cells may influence glomerular filtration, we evaluated the effect of the synthetic triterpenoid RTA405 with structural similarity to bardoxolone methyl, on GFR in rats and on mesangial cell contractility in freshly isolated glomeruli. In rats, RTA 405 increased basal GFR, assessed by inulin clearance, and attenuated the angiotensin II-induced decline in GFR. RTA 405 increased the filtration fraction, but did not affect arterial blood pressure or renal plasma flow. Glomeruli from RTA 405-treated rats were resistant to angiotensin II-induced volume reduction ex vivo. In cultured mesangial cells, angiotensin II-stimulated contraction was attenuated by RTA 405, in a dose- and time-dependent fashion. Further, Nrf2 targeted gene transcription (regulates antioxidant, anti-inflammatory, and cytoprotective responses) in mesangial cells was associated with decreased basal and reduced angiotensin II-stimulated hydrogen peroxide and calcium ion levels. These mechanisms contribute to the GFR increase that occurs following treatment with RTA 405 in rats and may underlie the effect of bardoxolone methyl on the estimated GFR in patients. PMID:23235569

  15. Regulation of rat mesangial cell migration by platelet-derived growth factor, angiotensin II, and adrenomedullin.

    PubMed

    Kohno, M; Yasunari, K; Minami, M; Kano, H; Maeda, K; Mandal, A K; Inoki, K; Haneda, M; Yoshikawa, J

    1999-12-01

    This study sought to determine whether platelet-derived growth factor (PDGF) and angiotensin II (AngII) stimulate migration of cultured rat glomerular mesangial cells. After finding that this was so, the effects of adrenomedullin (ADM) and cAMP-elevating agents on basal and stimulated mesangial cell migration were examined. Two isoforms of PDGF, AB and BB, stimulated migration in a concentration-dependent manner between 1 and 50 ng/ml, while the AA isoform lacked significant effect. AngII modestly but significantly stimulated migration in a concentration-dependent manner between 10(-7) and 10(-6) mol/L. Rat ADM significantly inhibited the PDGF BB- and AngII-stimulated migration in a concentration-dependent manner between 10(-8) and 10(-7) mol/L. Inhibition by rat ADM was accompanied by an increase in cellular cAMP. cAMP agonists or inducers such as 8-bromo cAMP, forskolin, and prostaglandin I2 also significantly reduced the stimulated migration. H 89, a protein kinase A (PKA) inhibitor, attenuated the inhibitory effect of ADM, and a calcitonin gene-related peptide (CGRP) receptor antagonist, human CGRP (8-37), abolished the inhibitory effects of rat ADM. These results suggest that PDGF AB and BB as well as AngII stimulate rat mesangial cell migration and that ADM can inhibit PDGF BB- and AngII-stimulated migration, at least in part through cAMP-dependent mechanisms likely to involve specific ADM receptors with which CGRP interacts. The adenylate cyclase/cAMP/PKA system may be involved in the migration-inhibitory effect of ADM in these cells.

  16. Molecular and cellular effects of azilsartan: a new generation angiotensin II receptor blocker.

    PubMed

    Kajiya, Takashi; Ho, Christopher; Wang, Jiaming; Vilardi, Ryan; Kurtz, Theodore W

    2011-12-01

    Azilsartan medoxomil is a newly approved angiotensin receptor blocker (ARB) reported to lower 24-h blood pressure more effectively than maximally recommended doses of older ARBs. Although azilsartan is considered to be an unusually potent angiotensin II type 1 (AT1) receptor antagonist, little is known about the potential pleiotropic effects of this molecule. We investigated pleiotropic features of azilsartan in cell-based assay systems independent of its effects on blood pressure. In cultured 3T3-L1 preadipocytes, azilsartan enhanced adipogenesis and exerted greater effects than valsartan on expression of genes encoding peroxisome proliferator-activated receptor-α (PPARα), PPARδ, leptin, adipsin, and adiponectin. The effects of azilsartan on adipocyte differentiation and gene expression were observed at concentrations of azilsartan that did not classically stimulate PPAR activity in cell-based transactivation assays. Azilsartan also potently inhibited vascular cell proliferation in the absence of exogenously supplemented angiotensin II. In aortic endothelial cells, azilsartan inhibited cell proliferation at concentrations as low as 1 μmol/l, whereas valsartan showed little or no antiproliferative effects at concentrations below 10 μmol/l. Antiproliferative effects of azilsartan were also observed in cells lacking AT1 receptors. In addition, azilsartan, but not valsartan, blocked angiotensin II-induced activation of mitogen-activated protein kinase in vascular smooth muscle cells 4-8 h after washout of drug from the incubation media. These findings suggest that azilsartan can function as a pleiotropic ARB with potentially beneficial effects on cellular mechanisms of cardiometabolic disease through actions that could involve more than just blockade of AT1 receptors and/or reduction in blood pressure.

  17. Angiotensin II disproportionally attenuates dynamic vagal and sympathetic heart rate controls.

    PubMed

    Kawada, Toru; Mizuno, Masaki; Shimizu, Shuji; Uemura, Kazunori; Kamiya, Atsunori; Sugimachi, Masaru

    2009-05-01

    To better understand the pathophysiological role of angiotensin II (ANG II) in the dynamic autonomic regulation of heart rate (HR), we examined the effects of intravenous administration of ANG II (10 microg.kg(-1).h(-1)) on the transfer function from vagal or sympathetic nerve stimulation to HR in anesthetized rabbits with sinoaortic denervation and vagotomy. In the vagal stimulation group (n = 7), we stimulated the right vagal nerve for 10 min using binary white noise (0-10 Hz). The transfer function from vagal stimulation to HR approximated a first-order low-pass filter with pure delay. ANG II attenuated the dynamic gain from 7.6 +/- 0.9 to 5.8 +/- 0.9 beats.min(-1).Hz(-1) (means +/- SD; P < 0.01) without affecting the corner frequency or pure delay. In the sympathetic stimulation group (n = 7), we stimulated the right postganglionic cardiac sympathetic nerve for 20 min using binary white noise (0-5 Hz). The transfer function from sympathetic stimulation to HR approximated a second-order low-pass filter with pure delay. ANG II slightly attenuated the dynamic gain from 10.8 +/- 2.6 to 10.2 +/- 3.1 beats.min(-1).Hz(-1) (P = 0.049) without affecting the natural frequency, damping ratio, or pure delay. The disproportional suppression of the dynamic vagal and sympathetic regulation of HR would result in a relative sympathetic predominance in the presence of ANG II. The reduced high-frequency component of HR variability in patients with cardiovascular diseases, such as myocardial infarction and heart failure, may be explained in part by the peripheral effects of ANG II on the dynamic autonomic regulation of HR.

  18. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families.

    PubMed

    Patten, Glen S; Abeywardena, Mahinda Y; Bennett, Louise E

    2016-01-01

    Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.

  19. Azilsartan: a newly approved angiotensin II receptor blocker.

    PubMed

    Lam, Sum

    2011-01-01

    Hypertension is a common chronic disease that leads to significant cardiovascular morbidity and mortality. Blood pressure control is essential to prevent end-organ complications, such as stroke, myocardial infarction, heart failure, or kidney disease. Azilsartan is the eighth angiotensin II receptor blocker approved for the management of hypertension, alone or in combination with other agents. At the approved dosage, it reduces systolic blood pressure by 12 to 15 mm Hg and diastolic blood pressure by 7 to 8 mm Hg. A higher dose of azilsartan (80 mg) was superior to valsartan 320 mg or olmesartan 40 mg in lowering systolic blood pressure in short-term studies. Additional blood pressure reduction is expected when azilsartan is used adjunctively with a diuretic. However, the effects of azilsartan on cardiovascular morbidity or mortality are still lacking. Azilsartan is well tolerated; the most common side effects are headache and diarrhea. No cases of hyperkalemia have been reported in 6-week clinical trials. Worsening of renal function and hypotension should be monitored, particularly in those with baseline risk factors. It is unknown whether azilsartan would join angiotensin-converting enzyme inhibitors and other angiotensin receptor blockers as the preferred hypertensive agents for end-organ protection. At this time, azilsartan should be considered as an alternative agent for mild-to-moderate hypertension, or as an adjunctive therapy when preferred agents fail to maintain optimal blood pressure control. It is also an option for those patients who have contraindications or cannot tolerate other antihypertensive agents, including dry cough induced by angiotensin-converting enzyme inhibitors.

  20. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    SciTech Connect

    Sharma, Girish; Goalstone, Marc Lee; E-mail: Marc.Goalstone@uchsc.edu

    2007-03-23

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment (<60 min) with insulin or A-II increased phosphorylation of ERK1/2 at 15 min and ERK5 at 5 min. Chronic treatment ({<=}8 h) with insulin increased ERK1/2 phosphorylation by 4 h and ERK5 by 8 h. A-II-stimulated phosphorylation of ERK1/2 by 8 h and ERK5 by 4 h. The EC{sub 50} for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC{sub 50} for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2.

  1. Acute effects of angiotensin II on myocardial performance.

    PubMed

    Broomé, M; Haney, M; Häggmark, S; Johansson, G; Aneman, A; Biber, B

    2001-10-01

    Specific angiotensin II (Ang II) receptors exist in many organs including peripheral blood vessels, cardiac myocytes and the central nervous system. This suggests multiple sites of actions for Ang II throughout the cardiovascular system. Cardiac effects of Ang II are not completely understood, though its prominent vasoconstrictor actions are well described. This study was designed to assess left ventricular function during administration of Ang II using relatively load-independent methods in a whole-animal model. Ang II was infused in incremental doses (0-200 microg x h(-1)) in anaesthetised instrumented pigs (n=10). Cardiac systolic and diastolic function were evaluated by analysis of the left ventricular pressure-volume relationship. Heart rate (HR), mean arterial pressure (MAP) and systemic vascular resistance (SVR) increased dose-dependently with Ang II, while cardiac output (CO) remained unchanged. Systolic function indices, end-systolic elastance (Ees) and preload recruitable stroke work (PRSW), demonstrated dose-dependent increases. The diastolic function parameter tau (tau) did not change with increasing Ang II dose. Ang II infusion caused increases in contractility indices in anaesthetised pigs in the doses used in this study. The mechanisms for these systolic function effects may be a direct myocardial effect or modulated through changes in autonomic nervous system activity.

  2. Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria

    PubMed Central

    Nishiyama, Akira; Nakagawa, Toshitaka; Kobori, Hiroyuki; Nagai, Yukiko; Okada, Noriyuki; Konishi, Yoshio; Morikawa, Takashi; Okumura, Michiaki; Meda, Isseiki; Kiyomoto, Hideyasu; Hosomi, Naohisa; Mori, Takefumi; Ito, Sadayoshi; Imanishi, Masahito

    2008-01-01

    Objectives Beneficial effects of angiotensin II type 1 receptor blockers have been indicated for patients with diabetic nephropathy. We investigated the effects of an angiotensin II type 1 receptor blocker, telmisartan, on intrarenal angiotensin II levels and the progression of albuminuria or glomerular injury in type 2 diabetic Otsuka Long–Evans Tokushima Fatty rats with microalbuminuria. Methods and Results Otsuka Long–Evans Tokushima Fatty rats were randomly treated with telmisartan (10 mg/kg/day, orally), hydralazine (25 mg/kg/day in drinking water) or vehicle from the initiation of albuminuria (13 weeks old). At this age, Otsuka Long–Evans Tokushima Fatty rats showed low but detectable albuminuria (1.0±0.1 mg/day) and higher systolic blood pressure, postprandial blood glucose and kidney angiotensin II levels than age-matched nondiabetic Long–Evans Tokushima Otsuka rats. At 35 weeks of age, vehicle-treated Otsuka Long–Evans Tokushima Fatty rats did not show apparent glomerular injury or tubulointerstitial fibrosis but did exhibit severe albuminuria (72.6±5.9 mg/day) and accumulation of cytoplasmic granules containing albumin in podocytes. Otsuka Long–Evans Tokushima Fatty rats also showed higher systolic blood pressure, postprandial blood glucose, collagen gene expression, desmin staining (a marker of podocyte injury) and angiotensin II levels than Long–Evans Tokushima Otsuka rats. Treatment with telmisartan did not affect postprandial blood glucose but decreased systolic blood pressure, collagen gene expression, desmin staining and angiotensin II levels. Telmisartan also prevented the development of albuminuria (0.6±0.1 mg/day at 35 weeks old) and accumulation of cytoplasmic granules. Hydralazine treatment resulted in a similar reduction in systolic blood pressure and partially attenuated the albuminuria (35.4±1.8 mg/day at 35 weeks old) but did not affect the other parameters. Conclusion The present results suggest the contribution of

  3. Plasma angiotensin II concentrations in diabetic ketoacidosis and in hyperosmolar non-ketotic hyperglycemia.

    PubMed

    Sullivan, P A; Gonggrijp, H; Crowley, M J; Ferriss, J B; O'Sullivan, D J

    1981-01-01

    Plasma angiotensin II concentrations were measured in 14 patients in diabetic ketoacidosis and in two patients with hyperosmolar non-ketotic hyperglycemia, before treatment and again when blood glucose control was restored. In the ketoacidosis group plasma angiotensin II before treatment was markedly raised in all patients with otherwise uncomplicated diabetes, but was within the normal range in some patients with long-term complications such as neuropathy, retinopathy and nephropathy. Mean angiotensin II before treatment was significantly higher in otherwise uncomplicated patients than in those with long-term complications. However, plasma angiotensin II decreased with improved control in all. Angiotensin II levels did not correlate with indices of rehydration such as changes in blood urea, packed cell volume and calculated changes in plasma volume. There was, however, a significant negative association between pre-treatment angiotensin II and pH. Two patients with hyperosmolar non-ketotic hyperglycemia were more dehydrated but less acidotic. Pre-treatment angiotensin II in each was well below the mean of the ketoacidosis group. These data are further evidence that the renin-angiotensin system may be imparied in diabetics with long-term complications. In addition, they suggest that factors other than fluid depletion are also important in activating the renin-angiotensin system in uncontrolled diabetes.

  4. Increased colonic mucosal angiotensin I and II concentrations in Crohn's colitis.

    PubMed

    Jaszewski, R; Tolia, V; Ehrinpreis, M N; Bodzin, J H; Peleman, R R; Korlipara, R; Weinstock, J V

    1990-06-01

    To define a potential role for the angiotensin system in Crohn's colitis, the colonic mucosal levels of angiotensin I and II were measured in endoscopic biopsy samples from patients with active Crohn's colitis (n = 20), ulcerative colitis (n = 13), other forms of colitis (n = 3), and normal controls (n = 17). Colonic mucosal levels of angiotensin I and II were greater in patients with Crohn's colitis than in normal subjects (p less than 0.001 and p less than 0.001, respectively). Mucosal levels of angiotensin I and II were also higher in Crohn's colitis than in ulcerative colitis (p less than 0.001 and p less than 0.001, respectively), and levels of angiotensin II were higher in Crohn's than in other forms of colitis (p = 0.014). Mucosal levels of angiotensin I and II correlated well with the degree of macroscopic inflammation in Crohn's colitis (r = 0.86, p less than 0.001 and r = 0.68, p less than 0.001, respectively). Mucosal levels of angiotensin I correlated fairly well with the Crohn's Disease Activity Index (r = 0.46, p less than 0.05) while angiotensin II levels correlated poorly. These studies suggest that angiotensin I and II may have a role in the inflammation associated with Crohn's colitis.

  5. [Vasoprotective effects of statins and angiotensin II blockers in atherothrombosis].

    PubMed

    Egido, J; Ruiz-Ortega, M; Muñoz-García, B; Martín-Ventura, J L; Blanco-Colio, L M

    2005-01-01

    Cardiovascular disease, including atherothrombosis, is the most frequent cause of mortality in the Western World. In the last years, major advances have been made in the pathogenesis of this disease. Currently, the drugs most widely used are the inhibitors of the HMG-CoA reductase (statins) and the antihypertensive drugs, mainly angiotensin II blockers. The first group has been shown to be effective on cardiovascular disease due to atherothrombosis, and the second group on hypertensive disease. Nevertheless, recent data suggest that these two situations can improve with the concomitant use of both drugs.

  6. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  7. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  8. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    PubMed

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Angiotensin II receptor antagonists and heart failure: angiotensin-converting-enzyme inhibitors remain the first-line option.

    PubMed

    2005-10-01

    (1) Some angiotensin-converting-enzyme inhibitors (ACE inhibitors) reduce mortality in patients with heart failure (captopril, enalapril, ramipril and trandolapril), and in patients with recent myocardial infarction and heart failure or marked left ventricular dysfunction (captopril, ramipril and trandolapril). (2) Angiotensin II receptor antagonists, otherwise known as angiotensin receptor blockers, have haemodynamic effects similar to ACE inhibitors, but differ in their mechanism of action and certain adverse effects. (3) Five clinical trials have evaluated angiotensin II receptor antagonists (candesartan, losartan and valsartan) in terms of their effect on mortality and on the risk of clinical deterioration in patients with symptomatic heart failure, but without severe renal failure, hyperkalemia or hypotension. In these trials, candesartan and valsartan were used at much higher doses than those recommended for the treatment of arterial hypertension. (4) In patients with heart failure who were not taking an angiotensin II receptor antagonist or an ACE inhibitor at enrollment, no significant difference was found between losartan and captopril in terms of mortality or the risk of clinical deterioration. (5) In patients with heart failure who had stopped taking an ACE inhibitor because of adverse effects, candesartan had no effect on mortality as compared with placebo, but it did reduce the risk of clinical deterioration (3 fewer hospitalisations per year per 100 patients). However, candesartan was associated with adverse effects such as renal failure and hyperkalemia, especially in patients who had experienced these same adverse effects while taking an ACE inhibitor. (6) In patients with heart failure who were already taking an ACE inhibitor, adjunctive candesartan or valsartan treatment did not influence mortality in comparison to the addition of a placebo. Adding candesartan or valsartan reduced the risk of hospitalisation (between 1 and 3 fewer hospitalisations

  10. The role of the renal effects of angiotensin II in hypertension.

    PubMed

    Young, D B; Lohmeier, T E; Hall, J E; Declue, J E; Bengis, R G; Coleman, T G; Guyton, A C

    1980-01-01

    The renin-angiotensin system is involved in many forms of clinical and experimental hypertension. Although angiotensin II has powerful vasoconstrictor properties, it is doubtful that any substance can produce sustained hypertension solely by increasing total peripheral resistance. Since the authors have demonstrated previously that alterations in the kidney's ability to excrete sodium can affect long-term arterial blood pressure regulation, they investigated angiotensin's effect on renal function in several experimental models. The results of these studies clearly demonstrate that angiotensin has a powerful direct antinatriuretic effect, the magnitude of which is sufficient to cause marked hypertension at angiotensin concentrations well within the pathophysiological range.

  11. Angiotensin II in the brain and pituitary: contrasting roles in the regulation of adenohypophyseal secretion.

    PubMed

    Ganong, W F

    1989-01-01

    Angiotensin II (AII) is present in gonadotropes in rats, and there are AII receptors on lactotropes and corticotropes. AII may be a paracrine mediator that stimulates the secretion of prolactin and adrenocorticotropin (ACTH) at the level of the pituitary, but additional research is needed to define its exact role. Angiotensinogen may also reach the gonadotropes via a paracrine route. On the other hand, there is considerable evidence that brain AII stimulates the secretion of luteinizing hormone (LH) by increasing the secretion of LH-releasing hormone, and that this effect is due to AII-mediated release of norepinephrine from noradrenergic nerve terminals in the preoptic region of the hypothalamus. In addition, brain AII inhibits the secretion of prolactin, probably by increasing the release of dopamine into the portal hypophyseal vessels. Circulating AII stimulates the secretion of a third anterior pituitary hormone, ACTH, by acting on one or more of the circumventricular organs to increase the secretion of corticotropin-releasing hormone.

  12. Properly timed exposure to central ANG II prevents behavioral sensitization and changes in angiotensin receptor expression

    PubMed Central

    Santollo, Jessica; Whalen, Philip E.; Speth, Robert C.; Clark, Stewart D.

    2014-01-01

    Previous studies show that the angiotensin type 1 receptor (AT1R) is susceptible to rapid desensitization, but that more chronic treatments that stimulate ANG II lead to sensitization of several responses. It is unclear, however, if the processes of desensitization and sensitization interact. To test for differences in AT1R expression associated with single or repeated injections of ANG II, we measured AT1R mRNA in nuclei that control fluid intake of rats given ANG II either in a single injection or divided into three injections spaced 20 min apart. Rats given a single injection of ANG II had more AT1R mRNA in the subfornical organ (SFO) and the periventricular tissue surrounding the anteroventral third ventricle (AV3V) than did controls. The effect was not observed, however, when the same cumulative dose of ANG II was divided into multiple injections. Behavioral tests found that single daily injections of ANG II sensitized the dipsogenic response to ANG II, but a daily regimen of four injections did not cause sensitization. Analysis of 125I-Sar1-ANG II binding revealed a paradoxical decrease in binding in the caudal AV3V and dorsal median preoptic nucleus after 5 days of single daily injections of ANG II; however, this effect was absent in rats treated for 5 days with four daily ANG II injections. Taken together, these data suggest that a desensitizing treatment regimen prevents behavior- and receptor-level effects of repeated daily ANG II. PMID:25354729

  13. Angiotensin II causes cellular proliferation in infantile haemangioma via angiotensin II receptor 2 activation.

    PubMed

    Itinteang, Tinte; Marsh, Reginald; Davis, Paul Frank; Tan, Swee Thong

    2015-05-01

    To investigate the effect of the angiotensin peptides and their agonists and antagonists on cellular proliferation in proliferating infantile haemangioma (IH) in vitro explants. Proliferating IH samples from six patients were cultured in vitro in the presence of angiotensin I (ATI) alone, or AT1 and the ACE inhibitor, ramipril, or ATII alone, or ATII with the ATII receptor 1 (ATIIR1) blocker, losartan, or ATII with the ATIIR2 blocker, PD123319, or the ATIIR2 agonist, CGP42112. After 6 days in culture, the IH tissue pieces were harvested, formalin-fixed and paraffin-embedded. The effect of each treatment type on cellular proliferation was evaluated by immunohistochemical staining of these tissue pieces using the proliferation marker, Ki67. There was a significant increase in cellular proliferation in the ATI and ATII treated IH tissues compared with control samples. Their effect on cellular proliferation was reduced by adding ramipril and PD123319, respectively. CGP42112, but not losartan, significantly increased cellular proliferation. Our findings suggest a key regulatory role of ATI and ATII in promoting cellular proliferation in IH, and establish a role for ACE and ATIIR2 in the proliferation of this tumour. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension.

    PubMed

    Xue, Baojian; Thunhorst, Robert L; Yu, Yang; Guo, Fang; Beltz, Terry G; Felder, Robert B; Johnson, Alan Kim

    2016-01-01

    Obesity has been shown to promote renin-angiotensin system activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure. Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high-fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in renin-angiotensin system activity and inflammatory mechanisms in the brain. HFD did not increase baseline blood pressure, but enhanced the hypertensive response to Ang II compared with a normal-fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor-α synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor blocker, irbesartan, or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with tumor necrosis factor-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. Real-time quantitative reverse transcription-polymerase chain reaction analysis of lamina terminalis tissue indicated that HFD feeding, central tumor necrosis factor-α, or a central subpressor dose of Ang II upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines, whereas inhibition of Ang II type 1 receptor and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain renin-angiotensin system and of central proinflammatory cytokines. © 2015 American Heart Association, Inc.

  15. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA

    SciTech Connect

    Elton, T.S.; Dion, L.D.; Bost, K.L.; Oparil, S.; Blalock, J.E.

    1988-04-01

    The authors have generated a monospecific antibody to a synthetic peptide encoded by an RNA complementary to the mRNA for angiotensin II (AII) and determined whether this antibody recognizes the AII receptor. They demonstrate that the antibody competes specifically with /sup 125/I-labeled AII for the same binding site on rat adrenal membranes. Furthermore, they show this antibody inhibits the secretion of aldosterone from cultured rat adrenal cells, suggesting that the antibody recognizes the biologically relevant AII receptor. Finally, they demonstrate that antibody to the complementary peptide can be used to immunoaffinity-purify a protein of M/sub r/ 66,000 that specifically binds radiolabeled AII.

  16. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis.

    PubMed

    Hao, Guanghua; Han, Zhenhua; Meng, Zhe; Wei, Jin; Gao, Dengfeng; Zhang, Hong; Wang, Nanping

    2015-01-01

    Ets-1, the prototypical member of the family of Ets transcription factors, has been shown to participate in tissue fibrotic remodeling. However, its role in cardiac fibrosis has not been established. The aim of this study was to investigate the role of Ets-1 in profibrotic actions of angiotensin II (Ang II) in cardiac fibroblasts (CFs) and in the in vivo heart. In growth-arrested CFs, Ang II induced Ets-1 expression in a time- and concentration-dependent manner. Pretreatment with Ang II type 1 receptor blocker losartan, protein kinase C inhibitor bisindolylmaleimide I, extracellular signal-regulated kinase (ERK) inhibitor PD98059, or c-Jun NH(2)-terminal kinase (JNK) inhibitor SP600125 partly inhibited this induction accompanied with impaired cell proliferation and production of plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) protein, the two downstream targets of Ets-1. Knockdown of Ets-1 by siRNA significantly inhibited the inductive effects of Ang II on cell proliferation and expression of CTGF and PAI-1. Moreover, the levels of Ets-1, PAI-1 and CTGF protein were simultaneously upregulated in left ventricle of Ang II-infused rats in parallel with an increase in the activation of ERK and JNK. Our data suggest that Ets-1 may mediate Ang II-induced cardiac fibrotic effects.

  17. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis

    PubMed Central

    Hao, Guanghua; Han, Zhenhua; Meng, Zhe; Wei, Jin; Gao, Dengfeng; Zhang, Hong; Wang, Nanping

    2015-01-01

    Ets-1, the prototypical member of the family of Ets transcription factors, has been shown to participate in tissue fibrotic remodeling. However, its role in cardiac fibrosis has not been established. The aim of this study was to investigate the role of Ets-1 in profibrotic actions of angiotensin II (Ang II) in cardiac fibroblasts (CFs) and in the in vivo heart. In growth-arrested CFs, Ang II induced Ets-1 expression in a time- and concentration-dependent manner. Pretreatment with Ang II type 1 receptor blocker losartan, protein kinase C inhibitor bisindolylmaleimide I, extracellular signal-regulated kinase (ERK) inhibitor PD98059, or c-Jun NH(2)-terminal kinase (JNK) inhibitor SP600125 partly inhibited this induction accompanied with impaired cell proliferation and production of plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) protein, the two downstream targets of Ets-1. Knockdown of Ets-1 by siRNA significantly inhibited the inductive effects of Ang II on cell proliferation and expression of CTGF and PAI-1. Moreover, the levels of Ets-1, PAI-1 and CTGF protein were simultaneously upregulated in left ventricle of Ang II-infused rats in parallel with an increase in the activation of ERK and JNK. Our data suggest that Ets-1 may mediate Ang II-induced cardiac fibrotic effects. PMID:26617730

  18. Salt preference elicited by chronic intracerebroventricular angiotensin II.

    PubMed

    Izumi, H; Nakamura, I

    1994-10-01

    1. Much more water was consumed than either 0.9% or 2.7% saline in response to various dipsogenic stimuli in untreated normal replete rats when they had free access to water, 0.9% and 2.7% saline. On the other hand, the rats drank more 0.9% saline than water and 2.7% saline when each solution is the sole drinking fluid offered. 2. A marked increase in preference for 0.9% saline was observed during the chronic i.c.v. injection of angiotensin II at a dose of 25 ng/hr for 7 consecutive days in the three bottle choice test. After the cessation of angiotensin II infusion, most rats (45 out of 50 rats) returned to drink much more water than 0.9% and 2.7% saline, similar to the drinking pattern of the 0.9% saline-treated control rats. However, some rats (5 out of 50 rats) still preferred 0.9% saline and this persisted for up to 3 months although these rats did not show a hypertensive state and an increase of plasma renin activity.

  19. Angiotensin-(1-7)-induced renal vasodilation in hypertensive humans is attenuated by low sodium intake and angiotensin II co-infusion.

    PubMed

    van Twist, Daan J L; Houben, Alfons J H M; de Haan, Michiel W; Mostard, Guy J M; Kroon, Abraham A; de Leeuw, Peter W

    2013-10-01

    Current evidence suggests that angiotensin-(1-7) plays an important role in the regulation of tissue blood flow. This evidence, however, is restricted to studies in animals and human forearm. Therefore, we studied the effects of intrarenal angiotensin-(1-7) infusion on renal blood flow in hypertensive humans. To assess the influence of renin-angiotensin system activity, sodium intake was varied and co-infusion with angiotensin II was performed in a subgroup. In 57 hypertensive patients who were scheduled for renal angiography, renal blood flow was measured ((133)Xenon washout method) before and during intrarenal infusion of angiotensin-(1-7) (3 incremental doses: 0.27, 0.9, and 2.7 ng/kg per minute). Patients were randomized into low or high sodium intake. These 2 groups of patients received angiotensin-(1-7), with or without intrarenal co-infusion of angiotensin II (0.3 ng/kg per minute). Angiotensin-(1-7) infusion resulted in intrarenal vasodilation in patients adhering to a sodium-rich diet. This vasodilatory effect of angiotensin-(1-7) was clearly attenuated by low sodium intake, angiotensin II co-infusion, or both. Regression analyses showed that the prevailing renin concentration was the only independent predictor of angiotensin-(1-7)-induced renal vasodilation. In conclusion, angiotensin-(1-7) induces renal vasodilation in hypertensive humans, but the effect of angiotensin-(1-7) is clearly attenuated by low sodium intake and co-infusion of angiotensin II. This supports the hypothesis that angiotensin-(1-7) induced renal vasodilation depends on the degree of renin-angiotensin-system activation.

  20. The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes

    PubMed Central

    Wennmann, D O; Vollenbröker, B; Eckart, A K; Bonse, J; Erdmann, F; Wolters, D A; Schenk, L K; Schulze, U; Kremerskothen, J; Weide, T; Pavenstädt, H

    2014-01-01

    The Hippo pathway fulfills a crucial function in controlling the balance between proliferation, differentiation and apoptosis in cells. Recent studies showed that G protein-coupled receptors (GPCRs) serve as upstream regulators of Hippo signaling, that either activate or inactivate the Hippo pathway via the large tumor suppressor kinase (LATS) and its substrate, the co-transcription factor Yes-associated protein (YAP). In this study, we focused on the Angiotensin II type 1 receptor (AT1R), which belongs to the GPCR family and has an essential role in the control of blood pressure and water homeostasis. We found that Angiotensin II (Ang II) inactivates the pathway by decreasing the activity of LATS kinase; therefore, leading to an enhanced nuclear shuttling of unphosphorylated YAP in HEK293T cells. This shuttling of YAP is actin-dependent as disruption of the actin cytoskeleton inhibited dephosphorylation of LATS and YAP. Interestingly, in contrast to HEK293T cells, podocytes, which are a crucial component of the glomerular filtration barrier, display a predominant nuclear YAP localization in vivo and in vitro. Moreover, stimulation with Ang II did not alter Hippo pathway activity in podocytes, which show a deactivated pathway. Reactivation of the LATS kinase activity in podocytes resulted in an increased cytoplasmic YAP localization accompanied by a strong induction of apoptosis. Thus, our work indicates that the control of LATS activation and subsequent YAP localization is important for podocyte homeostasis and survival. PMID:25393475

  1. Angiotensin II receptor blocker-based therapy in Japanese elderly, high-risk, hypertensive patients.

    PubMed

    Ogawa, Hisao; Kim-Mitsuyama, Shokei; Matsui, Kunihiko; Jinnouchi, Tomio; Jinnouchi, Hideaki; Arakawa, Kikuo

    2012-10-01

    It is unknown whether high-dose angiotensin II receptor blocker therapy or angiotensin II receptor blocker + calcium channel blocker combination therapy is better in elderly hypertensive patients with high cardiovascular risk. The objective of the study was to compare the efficacy of these treatments in elderly, high-risk Japanese hypertensive patients. The OlmeSartan and Calcium Antagonists Randomized (OSCAR) study was a multicenter, prospective, randomized, open-label, blinded-end point study of 1164 hypertensive patients aged 65 to 84 years with type 2 diabetes or cardiovascular disease. Patients with uncontrolled hypertension during treatment with olmesartan 20 mg/d were randomly assigned to receive 40 mg/d olmesartan (high-dose angiotensin II receptor blocker) or a calcium channel blocker + 20 mg/d olmesartan (angiotensin II receptor blocker + calcium channel blocker). The primary end point was a composite of cardiovascular events and noncardiovascular death. During a 3-year follow-up, blood pressure was significantly lower in the angiotensin II receptor blocker + calcium channel blocker group than in the high-dose angiotensin II receptor blocker group. Mean blood pressure at 36 months was 135.0/74.3 mm Hg in the high-dose angiotensin II receptor blocker group and 132.6/72.6 mm Hg in the angiotensin II receptor blocker + calcium channel blocker group. More primary end points occurred in the high-dose angiotensin II receptor blocker group than in the angiotensin II receptor blocker + calcium channel blocker group (58 vs 48 events, hazard ratio [HR], 1.31, 95% confidence interval, 0.89-1.92; P=.17). In patients with cardiovascular disease at baseline, more primary events occurred in the high-dose angiotensin II receptor blocker group (HR, 1.63, P=.03); in contrast, fewer events were observed in the subgroup without cardiovascular disease (HR, 0.52, P=.14). This treatment-by-subgroup interaction was significant (P=.02). The angiotensin II receptor blocker and

  2. Effect of phorbol ester and pertussis toxin on the enhancement of noradrenaline release by angiotensin II in mouse atria.

    PubMed Central

    Musgrave, I. F.; Majewski, H.

    1989-01-01

    1. Mouse atria were incubated with [3H]-noradrenaline, and the outflow of radioactivity due to electrical field stimulation (5 Hz, 60 s) was used as an index of noradrenaline release. Angiotensin II (0.01 and 0.1 microM) significantly enhanced the stimulation-induced (S-I) outflow of radioactivity. 2. Phorbol 12-myristate 13-acetate (0.001, 0.03, 0.1 and 1.0 microM), a protein kinase C activating phorbol ester, significantly enhanced the S-I outflow of radioactivity. When angiotensin II (0.1 microM) was present with the concentration of phorbol 12-myristate 13-acetate that was maximally effective in increasing the S-I outflow (0.1 microM), the enhancement of S-I outflow produced by angiotensin II was maintained. 3. Polymyxin B (70 microM), an inhibitor of protein kinase C, significantly inhibited the S-I outflow. Polymyxin B also inhibited the enhancement of the S-I outflow produced by angiotensin II (0.1 microM). 4. In another series of experiments mice were injected with pertussis toxin (1.5 micrograms per mouse), 4 days before their atria were removed. The effectiveness of pertussis toxin pretreatment was determined indirectly using carbachol. Carbachol caused a concentration-dependent fall in both the rate and force of beating of isolated spontaneously beating atria from mice pretreated with vehicle. This effect of carbachol was not seen with atria from mice pretreated with pertussis toxin. 5. Pertussis toxin pretreatment did not alter the enhancement of the S-I outflow of radioactivity produced by angiotensin II (0.01 and 0.1 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2720295

  3. Identification and characterization of an angiotensin II receptor on cultured bovine adrenal chromaffin cells

    SciTech Connect

    Boyd, V.L.

    1987-01-01

    The presence of an angiotensin II receptor on cultured bovine adrenal chromaffin cells was demonstrated by radioligand binding. A single class of finding sites with a K/sub D/ of 0.7 nM was characterized. The use of radioligands also allows the localization of receptors by autoradiography. Autoradiography demonstrated that approximately 50% of the isolated cells bound angiotensin II. It was of interest to see if angiotensin II bound to a cell that possessed a certain phenotype. In order to evaluate this possibility a technique was developed that combined autoradiography and immunocytochemistry. Results indicated that angiotensin II binding sites were not localized preferentially to either norepinephrine or epinephrine cells. Binding of angiotensin II was associated with the release of intracellular catecholamine stores. Cells were pre-loaded with /sup 3/H-norepinephrine and secretion was monitored by following radioactivity released into the supernatant. Alternatively, release of endogenous catecholamines was determined by fluorometric assay.

  4. Quantitative autoradiography of angiotensin II receptors in brain and kidney: focus on cardiovascular implications

    SciTech Connect

    Gehlert, D.R.; Speth, R.C.; Wamsley, J.K.

    1985-01-01

    Quantitative techniques of receptor autoradiography have been applied to localize (/sup 125/I)-angiotensin II binding sites in brain and kidney. High densities of autoradiographic grains, indicating the presence of angiotensin II receptors, have been localized to several rat brain nuclei including the dorsal motor nucleus of the vagus, nucleus of the solitary tract, anterior pituitary, locus coeruleus and several hypothalamic nuclei. Cat thoracic spinal cord exhibited a high density of sites over the intermedio-lateral cell column. In sections of rat kidney, angiotensin II receptors were detected in the glomerulus, vasa recta and ureter. The cardiovascular implications of these results are apparent and relate angiotensin II to hypertensive mechanisms. Thus, angiotensin II represents an endocoid which is involved in control of blood pressure through its effects on peripheral organs as well as the central nervous system.

  5. Effect of angiotensin II and captopril on renal tubular function in man.

    PubMed Central

    Düsing, R; Moritz, J; Glänzer, K; Kramer, H J

    1985-01-01

    The effects of nonpressor doses of intravenous angiotensin II and of the converting enzyme inhibitor captopril on renal excretory function were investigated in eight healthy volunteers during sustained water diuresis on a constant intake of 150 mmol sodium per day. The angiotensin II-analogue val5-angiotensin II-asp1-beta-amide was infused i.v. at an average dose of 2.6 ng kg-1 min-1 which was the highest dose without a significant effect on arterial blood pressure. This subpressor dose of angiotensin II significantly decreased urine volume, urinary excretion of sodium, chloride and phosphate and distal delivery [(CH2O + CCl)/GFR X 100] in the absence of changes in GFR or distal fractional chloride absorption [CH2O/(CH2O + CCl)]. In a second series of experiments, an oral dose of 50 mg of the angiotensin I-converting enzyme inhibitor captopril was given to the sodium replete volunteers. In this study, captopril did not affect arterial blood pressure, GFR or any of the determined parameters of renal tubular function. Our results strongly suggest that the nonpressor dose of angiotensin II induced renal retention of sodium chloride via increased absorption in the proximal tubule. Thus, they further support the concept that angiotensin II participates in the regulation of renal sodium chloride excretion by affecting proximal tubular absorptive capacity. However, in the sodium replete stage, angiotensin II is of no major importance in regulating sodium chloride excretion. PMID:3884028

  6. Angiotensin II Induced Cardiac Dysfunction on a Chip

    PubMed Central

    Horton, Renita E.; Yadid, Moran; McCain, Megan L.; Sheehy, Sean P.; Pasqualini, Francesco S.; Park, Sung-Jin; Cho, Alexander; Campbell, Patrick; Parker, Kevin Kit

    2016-01-01

    In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics. PMID:26808388

  7. Angiotensin II Induced Cardiac Dysfunction on a Chip.

    PubMed

    Horton, Renita E; Yadid, Moran; McCain, Megan L; Sheehy, Sean P; Pasqualini, Francesco S; Park, Sung-Jin; Cho, Alexander; Campbell, Patrick; Parker, Kevin Kit

    2016-01-01

    In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.

  8. Angiotensin II activates the RhoA exchange factor Arhgef1 in humans.

    PubMed

    Carbone, Maria Luigia; Brégeon, Jérémy; Devos, Nabila; Chadeuf, Gilliane; Blanchard, Anne; Azizi, Michel; Pacaud, Pierre; Jeunemaître, Xavier; Loirand, Gervaise

    2015-06-01

    Although a causative role for RhoA-Rho kinase has been recognized in the development of human hypertension, the molecular mechanism(s) and the RhoA guanine exchange factor(s) responsible for the overactivation of RhoA remain unknown. Arhgef1 was identified as a RhoA guanine exchange factor involved in angiotensin II (Ang II)-mediated regulation of vascular tone and hypertension in mice. The aim of this study was to determine whether Arhgef1 is activated and involved in the activation of RhoA-Rho kinase signaling by Ang II in humans. In vitro stimulation of human coronary artery smooth muscle cells and human peripheral blood mononuclear cells by Ang II (0.1 μmol/L) induced activation of Arhgef1 attested by its increased tyrosine phosphorylation. Silencing of Arhgef1 expression by siRNA inhibited Ang II-induced activation of RhoA-Rho kinase signaling. In normotensive subjects, activation of the renin-angiotensin system by a low-salt diet for 7 days increased RhoA-Rho kinase signaling and stimulated Arhgef1 activity in peripheral blood mononuclear cells. In conclusion, our results strongly suggest that Arhgef1 mediates Ang II-induced RhoA activation in humans. Moreover, they show that measurement of RhoA guanine exchange factor activity in peripheral blood mononuclear cells might be a useful method to evaluate RhoA guanine exchange factor activity in humans. © 2015 American Heart Association, Inc.

  9. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2

    PubMed Central

    Wang, Yonggang; Xin, Ying; Tan, Yi

    2017-01-01

    Although angiotensin II (Ang II) was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN) via activating nuclear factor (erythroid-derived 2)-like 2 (NRF2), the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT) and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2. PMID:28191275

  10. Angiotensin II-Activated Protein Kinase D Mediates Acute Aldosterone Secretion

    PubMed Central

    Shapiro, Brian A.; Olala, Lawrence; Arun, Senthil Nathan; Parker, Peter M.; George, Mariya V.; Bollag, Wendy B.

    2009-01-01

    Summary Dysregulation of the renin-angiotensin II (AngII)-aldosterone system can contribute to cardiovascular disease, such that an understanding of this system is critical. Diacylglycerol-sensitive serine/threonine protein kinase D (PKD) is activated by AngII in several systems, including the human adrenocortical carcinoma cell line NCI H295R, where this enzyme enhances chronic (24 hours) AngII-evoked aldosterone secretion. However, the role of PKD in acute AngII-elicited aldosterone secretion has not been previously examined. In primary cultures of bovine adrenal glomerulosa cells, which secrete detectable quantities of aldosterone in response to secretagogues within minutes, PKD was activated in response to AngII, but not an elevated potassium concentration or adrenocorticotrophic hormone. This activation was time- and dose-dependent and occurred through the AT1, but not the AT2, receptor. Adenovirus-mediated overexpression of constitutively-active PKD resulted in enhanced AngII-induced aldosterone secretion; whereas overexpression of a dominant-negative PKD construct decreased AngII-stimulated aldosterone secretion. Thus, we demonstrate for the first time that PKD mediates acute AngII-induced aldosterone secretion. PMID:19961896

  11. Structural basis for selectivity and diversity in angiotensin II receptors

    DOE PAGES

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander; ...

    2017-04-20

    The angiotensin II receptors AT1R and AT2R serve as key components of the renin–angiotensin–aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the samemore » time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less

  12. Chronic blockade of angiotensin II formation during sodium deprivation.

    PubMed

    Hall, J E; Guyton, A C; Smith, M J; Coleman, T G

    1979-12-01

    The present study was designed to investigate the mechanisms by which the renin-angiotensin system (RAS) regulates arterial pressure (AP) and renal function during chronic sodium deprivation. Intravenous infusion of the converting enzyme inhibitor SQ 14225 (14 microgram.kg-1.mm-1) for 8 days in 12 sodium-deficient dogs caused a marked decrease in AP from 90 +/- 1 to 67 +/- 2 mmHg and a reduction in glomerular filtration rate (GFR), filtration fraction (FF), and plasma aldosterone concentration (PAC). Despite the fall in AP and GFR, urinary Na excretion and effective renal plasma flow (ERPF) increased above control levels. In four dogs, infusion of aldosterone (200 micrograms/day) for 8 days during continuous SQ 14225 infusion restored PAC to levels above control, but did not significantly change AP or renal function from the values observed during SQ 14225 infusion alone. However, infusion of angiotensin II (AII) (10 or 20 ng.kg-1.min-1) for 5--8 days during continuous SQ 14225 infusion almost completely restored AP and renal function to control levels. These data indicate that the RAS plays a major role in regulating AP, renal hemodynamics, and Na excretion during Na deprivation, probably through the direct effects of AII rather than through changes in PAC.

  13. Noradrenaline and angiotensin II modify vascular prostanoid release in fructose-fed hypertensive rats.

    PubMed

    Puyó, A M; Mayer, M A; Giorgi, S; Gómez, A H; Peredo, H A

    2007-10-01

    1 A fructose-enriched diet induces hypertension, metabolic alterations and insulin resistance in rats, resembling human metabolic syndrome. Previously, we found that prostanoid production was altered in fructose-fed rats. 2 This study analysed the effects of incubation with noradrenaline (NA) and angiotensin II (Ang II) on prostanoid release in mesenteric vascular beds from control and fructose-fed rats. Animals which received fructose solution (10% w/v) for 22 weeks showed higher systolic blood pressure and triglyceridaemia. 3 In controls, NA increased 6-keto-prostaglandin (PG) F(1)alpha (prostacyclin metabolite) and thromboxane (TX) production. Ang II increased only TX release. In fructose-fed animals, NA increased 6-keto-PG F(1)alpha and TX. PGF(2)alpha (vasoconstrictor) was also elevated. Ang II also increased PGF(2)alpha and PGE(2) levels. 4 In conclusion, in fructose rats Ang II in vitro stimulates a vasoconstrictor prostanoid not stimulated in controls. This could be related to the observed in vivo blood pressure increase. In fructose-fed animals, NA and Ang II also augment vasodilator prostanoids, suggesting a compensatory mechanism because of long-term hypertension.

  14. Intracrine action of angiotensin II in the intact ventricle of the failing heart: angiotensin II changes cardiac excitability from within

    PubMed Central

    2013-01-01

    The influence of intracellular injection of angiotensin II (Ang II) on electrical properties of single right ventricular fibers from the failing heart of cardiomyopathic hamsters (TO2) was investigated in the intact ventricle of 8-month-old animals. Intracellular injection was performed using pressure pulses (40–70 psi) for short periods of time (20 ms) while recoding the action potential simultaneously from the same fiber. The results indicated that intracellular Ang II caused a hyperpolarization of 7.7 mV ± 4.3 mV (n = 39) (4 animals) (P < 0.05) followed by a small fall in membrane potential. The action potential duration was significantly increased at 50% and at 90% repolarization, and the refractoriness was significantly enhanced. The effect of intracellular Ang II on action potential duration was related to the inhibition of potassium conductance through PKC activation because Bis-1 (360 nM), a selective PKC inhibitor, abolished the effect of the peptide. Injections performed in different fibers of the same ventricle showed a variable effect of Ang II on action potential duration and generated spontaneous rhythmicity. The effect of intracellular Ang II on action potential duration and cardiac refractoriness remains for more than 1 h after interruption of the intracellular injection of the peptide. PMID:21744071

  15. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation.

    PubMed

    Fuentes, Paula; Acuña, María José; Cifuentes, Mariana; Rojas, Cecilia V

    2010-07-01

    Despite the importance of adipocyte formation for adipose tissue physiology, current knowledge about the mechanisms that regulate the recruitment of progenitor cells to undergo adipogenic differentiation is limited. A role for locally generated angiotensin II emerged from studies with human and murine cells. Preadipose cells from different human fat depots show reduced response to adipogenic stimuli when exposed to angiotensin II. This investigation sought to gain an insight into the intracellular mechanisms involved in the anti-adipogenic response of human preadipose cells from omental fat to angiotensin II. Its effect was evaluated on cells stimulated to adipogenic differentiation in vitro, by assessment of glycerol-3-phosphate dehydrogenase activity and expression of early markers of adipogenesis. Extracellular signal-regulated kinase(1,2) (ERK(1,2)) pathway activation was inferred from the phosphorylated to total ERK(1,2) ratio determined by western blot. Exposure to angiotensin II throughout the 10-day differentiation period resulted in a reduced adipogenic response. A similar anti-adipogenic effect was observed when this hormone was present during the first 48 h of induction to differentiation. Angiotensin II treatment had no consequences on CCAAT/enhancer-binding protein beta and peroxisome proliferator-activated receptor gamma (PPARG) induction, but increased the phosphorylated form of the key adipogenic regulator PPARG. Upon angiotensin II exposure, a raise of phosphorylated ERK(1,2) was determined, which was more prominent 8-20 h after induction of adipogenesis (when controls reached negligible values). Chemical inhibition of ERK(1,2) phosphorylation prevented angiotensin II-dependent reduction in adipogenesis. These results support the participation of the mitogen-activated protein kinase/ERK(1,2) pathway in the anti-adipogenic effect of angiotensin II on preadipose cells from human omental adipose tissue.

  16. Angiotensin II potentiates α-adrenergic vasoconstriction in the elderly.

    PubMed

    Barrett-O'Keefe, Zachary; Witman, Melissa A H; McDaniel, John; Fjeldstad, Anette S; Trinity, Joel D; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Runnels, Sean; Morgan, David E; Sander, Mikael; Richardson, Russell S; Wray, D Walter

    2013-03-01

    Aging is characterized by increased sympatho-excitation, expressed through both the α-adrenergic and RAAS (renin-angiotensin-aldosterone) pathways. Although the independent contribution of these two pathways to elevated vasoconstriction with age may be substantial, significant cross-talk exists that could produce potentiating effects. To examine this interaction, 14 subjects (n=8 young, n=6 old) underwent brachial artery catheterization for administration of AngII (angiotensin II; 0.8-25.6 ng/dl per min), NE [noradrenaline (norepinephrine); 2.5-80 ng/dl per min] and AngII with concomitant α-adrenergic antagonism [PHEN (phentolamine); 10 μg/dl per min]. Ultrasound Doppler was utilized to determine blood flow, and therefore vasoconstriction, in both infused and contralateral (control) limbs. Arterial blood pressure was measured directly, and sympathetic nervous system activity was assessed via microneurography and plasma NE analysis. AngII sensitivity was significantly greater in the old, indicated by both greater maximal vasoconstriction (-59±4% in old against -48±3% in young) and a decreased EC50 (half-maximal effective concentration) (1.4±0.2 ng/dl per min in old against 2.6±0.7 μg/dl per min in young), whereas the maximal NE-mediated vasoconstriction was similar between these groups (-58±9% in old and -62±5% in young). AngII also increased venous NE in the old group, but was unchanged in the young group. In the presence of α-adrenergic blockade (PHEN), maximal AngII-mediated vasoconstriction in the old was restored to that of the young (-43±8% in old and -39±6% in young). These findings indicate that, with healthy aging, the increased AngII-mediated vasoconstriction may be attributed, in part, to potentiation of the α-adrenergic pathway, and suggest that cross-talk between the RAAS and adrenergic systems may be an important consideration in therapeutic strategies targeting these two pathways.

  17. Mechanism of pulmonary conversion of angiotensin I to angiotensin II in the dog.

    NASA Technical Reports Server (NTRS)

    Oparil, S.; Tregear, G. W.; Koerner, T.; Barnes, B. A.; Haber, E.

    1971-01-01

    The conversion mechanism was studied in vivo in the pulmonary circulation of the intact anesthetized dog and in vitro in plasma by using L-Leu-angiotensin I, D-Leu-angiotensin I, and des-Leu-angiotensin I which had been synthesized by the solid-phase technique. The results obtained indicate that pulmonary conversion in vivo and plasma conversion in vitro occur via a dipeptidylcarboxypeptidase and that a D-amino acid at the C-terminus prevents conversion.

  18. Arsenic causes aortic dysfunction and systemic hypertension in rats: Augmentation of angiotensin II signaling.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kandasamy, Kannan; Choudhury, Soumen; Kutty, Harikumar Sankaran; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2015-07-25

    The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation

  19. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  20. Angiotensin II, hypertension, and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease.

    PubMed

    Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr

    2016-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.

  1. Metabolomics in angiotensin II-induced cardiac hypertrophy.

    PubMed

    Mervaala, Eero; Biala, Agnieszka; Merasto, Saara; Lempiäinen, Juha; Mattila, Ismo; Martonen, Essi; Eriksson, Ove; Louhelainen, Marjut; Finckenberg, Piet; Kaheinen, Petri; Muller, Dominik N; Luft, Friedrich C; Lapatto, Risto; Oresic, Matej

    2010-02-01

    Angiotensin II (Ang II) induces mitochondrial dysfunction. We tested whether Ang II alters the "metabolomic" profile. We harvested hearts from 8-week-old double transgenic rats harboring human renin and angiotensinogen genes (dTGRs) and controls (Sprague-Dawley), all with or without Ang II type 1 receptor (valsartan) blockade. We used gas chromatography coupled with time-of-flight mass spectrometry to detect 247 intermediary metabolites. We used a partial least-squares discriminate analysis and identified 112 metabolites that differed significantly after corrections (false discovery rate q <0.05). We found great differences in the use of fatty acids as an energy source, namely, decreased levels of octanoic, oleic, and linoleic acids in dTGR (all P<0.01). The increase in cardiac hypoxanthine levels in dTGRs suggested an increase in purine degradation, whereas other changes supported an increased ketogenic amino acid tyrosine level, causing energy production failure. The metabolomic profile of valsartan-treated dTGRs more closely resembled Sprague-Dawley rats than untreated dTGRs. Mitochondrial respiratory chain activity of cytochrome C oxidase was decreased in dTGRs, whereas complex I and complex II were unaltered. Mitochondria from dTGR hearts showed morphological alterations suggesting increased mitochondrial fusion. Cardiac expression of the redox-sensitive and the cardioprotective metabolic sensor sirtuin 1 was increased in dTGRs. Interestingly, valsartan changed the level of 33 metabolites and induced mitochondrial biogenesis in Sprague-Dawley rats. Thus, distinct patterns of cardiac substrate use in Ang II-induced cardiac hypertrophy are associated with mitochondrial dysfunction. The finding underscores the importance of Ang II in the regulation of mitochondrial biogenesis and cardiac metabolomics, even in healthy hearts.

  2. Angiotensin II induces cardiomyocyte hypertrophy probably through histone deacetylases.

    PubMed

    Lu, Ying; Yang, Shuang

    2009-09-01

    Angiotensin II (Ang II) plays a pathophysiological role in the genesis of cardiac hypertrophy as a hypertrophic stimulus. But little is known about the terminal steps, in which Ang II reprograms cardiac gene expression. Histone deacetyltransferases (HDACs) are considered as the integrators of divergent stress-response pathways during heart remodeling. However, the exact role of HDACs in the hypertrophic process is not clear yet. Therefore, we studied the expression of HDAC2, one of Class I HDACs, and the effect of valproic acid (VPA), a nonspecific HDAC inhibitor, in the Ang II-induced cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were prepared from 1-day-old Wistar rats and treated with Ang II. The mRNA levels of HDAC2 and beta-myosin heavy chain (beta-MHC), a hypertrophic marker gene, were determined by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression of HDAC2 and c-fos, an immediate early response gene, was evaluated by immunohistochemistry, and the surface areas of cardiomyocytes were measured using Motic Images software. The expression levels of HDAC2 mRNA and protein were increased in a time-dependent manner during the hypertrophic process, accompanied with the increment of beta-MHC and c-fos proteins. Ang II also increased the surface area of cardiomyocytes by more than twofold. VPA significantly reversed these changes. These results suggest that Ang II may induce cardiomyocyte hypertrophy through HDACs in combination with c-fos and that VPA has the protective effect on cardiomyocyte hypertrophy. Thus, HDAC inhibition is a feasible therapeutic strategy that holds promise in the treatment of cardiac hypertrophy.

  3. Gamma-aminobutyric acid and taurine antagonize the central effects of angiotensin II and renin on the intake of water and salt, and on blood pressure in rats.

    PubMed

    Abe, M; Tokunaga, T; Yamada, K; Furukawa, T

    1988-03-01

    Antagonism by neuro-amino acids of the central effects of angiotensin II and renin in rats was investigated. Angiotensin II (100 ng), injected into the preoptic area, stimulated the intake of water but not salt, to a lesser extent and with a shorter duration as compared with that induced by renin (5 mU), injected into the preoptic area. This angiotensin II-induced intake of water was markedly inhibited by [Sar1, Ile8]-angiotensin II, an angiotensin II receptor antagonist, but not by captopril, an angiotensin-converting enzyme inhibitor, previously administered through the same cannula. The angiotensin II-induced intake of water was also inhibited in a dose-dependent manner by gamma-aminobutyric acid (GABA) (50-100 micrograms), muscimol, a GABA agonist, (100-200 ng), taurine (100-200 micrograms) and hypotaurine (100-200 micrograms), administered into the cerebroventricle and by GABA (5-10 micrograms), muscimol (10-20 ng) and taurine (10-20 micrograms) injected into the preoptic area in smaller doses. Renin (5 mU), injected into the preoptic area, elicited a marked increase in the intake of water and salt, which lasted for about 3 days. The effect of renin was inhibited by [Sar1, Ile8]-angiotensin II (10 micrograms) and was eliminated by captopril (25 micrograms) injected into the preoptic area. This effect of renin was not influenced by the peripheral administration of captopril. The effect of renin was also inhibited by GABA, muscimol or taurine injected into the cerebroventricle, in larger doses, or into the preoptic area in smaller doses.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effects of angiotensin II on arginine-vasopressin in physiological and pathological situations in man.

    PubMed

    Padfield, P L; Morton, J J

    1977-08-01

    Studies were designed to determine whether angiotensin II has a direct stimulatory effect on arginine-vasopressin in man and to determine the role, if any, played by angiotensin II in the control of vasopressin release in physiological and pathological conditions. Acute infusion of angiotensin II in normal volunteers produced small but definite increases in plasma levels of arginine-vasopressin (5-4+/-0-3(S.E.M.) to 6-4+/-0-2 pg/ml) only when plasma angiotensin II levels were supraphysiological. Concurrent measurements of plasma arginine-vasopressin and angiotensin II were made during acute changes in fluid balance and posture in normal volunteers and in clinical conditions characterized by high plasma levels of angiotensin II (Addison's disease and Bartter's syndrome). The results of these studies allow us to conclude that there is little to suggest a direct effect of angiotensin II which is likely to be relevant to the normal physiological control of arginine-vasopressin in man.

  5. Angiotensin II promotes iron accumulation and depresses PGI₂ and NO synthesis in endothelial cells: effects of losartan and propranolol analogs.

    PubMed

    Mak, I Tong; Landgraf, Kenneth M; Chmielinska, Joanna J; Weglicki, William B

    2012-10-01

    Angiotensin may promote endothelial dysfunction through iron accumulation. To research this, bovine endothelial cells (ECs) were incubated with iron (30 µmol·L⁻¹) with or without angiotensin II (100 nmol·L⁻¹). After incubation for 6 h, it was observed that the addition of angiotensin enhanced EC iron accumulation by 5.1-fold compared with a 1.8-fold increase for cells incubated with iron only. This enhanced iron uptake was attenuated by losartan (100 nmol·L⁻¹), d-propranolol (10 µmol·L⁻¹), 4-HO-propranolol (5 µmol·L⁻¹), and methylamine, but not by vitamin E or atenolol. After 6 h of incubation, angiotensin plus iron provoked intracellular oxidant formation (2'7'-dichlorofluorescein diacetate (DCF-DA) fluorescence) and elevated oxidized glutathione; significant loss of cell viability occurred at 48 h. Stimulated prostacyclin release decreased by 38% (6 h) and NO synthesis was reduced by 41% (24 h). Both oxidative events and functional impairment were substantially attenuated by losartan or d-propranolol. It is concluded that angiotensin promoted non-transferrin-bound iron uptake via AT-1 receptor activation, leading to EC oxidative functional impairment. The protective effects of d-propranolol and 4-HO-propranolol may be related to their lysosomotropic properties.

  6. Comparison of the hypertrophic effect of phorbol ester, norepinephrine, angiotensin II and contraction on cultured cardiomyocytes

    SciTech Connect

    Allo, S.N.; Carl, L.L.; Morgan, H.E. )

    1991-03-15

    Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), angiotensin II (AII) and contraction stimulate cardiomyocyte growth. Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 {times} 10{sup 6} cells/60mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE treated cells, respectively. Maximal stimulation of the capacity for protein synthesis was 32% for PMA treated cells at 24 h as compared to 59% and 77% for NE treated and contracting cells respectively at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation between RNA and protein content independent of the stimulus used. AII increased RNA content by 28% at 48h, but had no effect on growth up to 72h. Treatment with staurosporine blocked the stimulation of growth, suggestive of a role for protein kinase C (PKC). However, the inhibition of contraction-induced growth was due in part to a reduction in the rate of contraction. It was concluded that: significant differences existed in the time course of growth stimulation and RNA accumulation, depending on the stimulus; and growth inhibition by staurosporine is suggestive of an important role of PKC in hypertrophic growth induced by these stimuli.

  7. Gender differences in response to acute and chronic angiotensin II infusion: a translational approach

    PubMed Central

    Toering, Tsjitske J; van der Graaf, Anne Marijn; Visser, Folkert W; Buikema, Hendrik; Navis, Gerjan; Faas, Marijke M; Lely, A Titia

    2015-01-01

    Women with renal disease progress at a slower rate to end stage renal disease than men. As angiotensin II has both hemodynamic and direct renal effects, we hypothesized that the female protection may result from gender differences in responses to angiotensin II. Therefore, we studied gender differences in response to angiotensin II, during acute (human) and chronic (rats) angiotensin II administration. In young healthy men (n = 18) and women (n = 18) we studied the responses of renal hemodynamics (125I-iothalamate and 131I-Hippuran) and blood pressure to graded angiotensin II infusion (0.3, 1.0, and 3.0 ng/kg/min for 1 h). Men had increased responses of diastolic blood pressure (P = 0.01), mean arterial pressure (P = 0.05), and a more pronounced decrease in effective renal plasma flow (P = 0.009) than women. We measured the changes in proteinuria and blood pressure in response to chronic administration (200 ng/kg/min for 3 weeks) of angiotensin II in rats. Male rats had an increased response of proteinuria compared with females (GEE analysis, P = 0.001). Male, but not female, angiotensin II-treated rats had increased numbers of renal interstitial macrophages compared to sham-treated rats (P < 0.001). In conclusion, gender differences are present in the response to acute and chronic infusion of angiotensin II. Difference in angiotensin II sensitivity could play a role in gender differences in progression of renal disease. PMID:26149279

  8. Angiotensin-II Type 1 Receptor-Mediated Janus Kinase 2 Activation Induces Liver Fibrosis

    PubMed Central

    Granzow, Michaela; Schierwagen, Robert; Klein, Sabine; Kowallick, Benita; Huss, Sebastian; Linhart, Markus; Reza Mazar, Irela G.; Görtzen, Jan; Vogt, Annabelle; Schildberg, Frank A.; Gonzalez-Carmona, Maria A.; Wojtalla, Alexandra; Krämer, Benjamin; Nattermann, Jacob; Siegmund, Sören V.; Werner, Nikos; Fürst, Dieter O.; Laleman, Wim; Knolle, Percy; Shah, Vijay H.; Sauerbruch, Tilman; Trebicka, Jonel

    2017-01-01

    Activation of the renin angiotensin system resulting in stimulation of angiotensin-II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intra-cellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by realtime polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human-derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild-type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho-kinase activation. These effects were prevented in AT1R–/– mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII-induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. Conclusion Our study substantiates the important cell-intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis. PMID:24619965

  9. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    PubMed Central

    George, Amee J.; Purdue, Brooke W.; Gould, Cathryn M.; Thomas, Daniel W.; Handoko, Yanny; Qian, Hongwei; Quaife-Ryan, Gregory A.; Morgan, Kylie A.; Simpson, Kaylene J.; Thomas, Walter G.; Hannan, Ross D.

    2013-01-01

    Summary The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R–EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R–EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R–EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR–EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer. PMID:24046455

  10. Effect of exercise on plasma concentrations of arginine vasopressin, angiotensin II and aldosterone in hypertensive and normotensive renal transplant recipients.

    PubMed

    Pedersen, E B; Danielsen, H; Nielsen, A H; Knudsen, F; Jensen, T; Kornerup, H J; Madsen, M

    1986-04-01

    Plasma concentrations of angiotensin II (A II), aldosterone (Aldo) and arginine vasopressin (AVP), and serum osmolality (Sosm) were determined before and after gradually increasing exercise loads on a bicycle ergometer in 10 hypertensive (group I) and 10 normotensive renal transplant recipients (group II), and in 15 healthy control subjects (group III). Working capacity was reduced in groups I and II. The A II, Aldo, AVP, Sosm increased in all groups after exercise. The A II was higher in group I than II and the percentage changes were significantly lower in groups I and II than in group III. There were no significant differences in Aldo between the groups either before or after exercise. The AVP was the same in groups I and II, and AVP in these groups was higher than in group III. The Sosm and AVP were significantly correlated in all groups. Neither A II, Aldo nor AVP were significantly correlated to systolic blood pressure (BP). Alterations in AVP, but not in A II or Aldo, were correlated to the degree of exercise load. It can be concluded that the renin-angiotensin-aldosterone system and the osmoregulatory system are stimulated during exercise in renal transplant recipients. The A II is elevated in post-renal transplant hypertension, but the responsiveness is reduced in both hypertensive and normotensive recipients. The alterations in AVP are probably secondary to changes in Sosm, and the higher AVP levels in recipients could be due to a decreased responsiveness of the renal tubules to AVP. Our findings are in good agreement with the hypothesis that hypertension after renal transplantation is angiotensin II-dependent.

  11. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis

    PubMed Central

    Vilas-Boas, Walkíria Wingester; Ribeiro-Oliveira Jr, Antônio; Pereira, Regina Maria; da Cunha Ribeiro, Renata; Almeida, Jerusa; Nadu, Ana Paula; Simões e Silva, Ana Cristina; dos Santos, Robson Augusto Souza

    2009-01-01

    AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) I, Ang II, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P < 0.05). In contrast, Ang II was significantly reduced in MLD. Ang-(1-7)/Ang II ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang II levels were lower and Ang-(1-7)/Ang II ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ± 0.04, P < 0.02), whereas the peripheral circulating Ang II/Ang I ratio was elevated in comparison to splanchnic levels (0.18 ± 0.02 vs 0.13 ± 0.02, P < 0.04). Ang-(1-7)/Ang II ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang II may play a role in the hemodynamic changes of human cirrhosis. PMID:19469002

  12. Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy.

    PubMed

    Cheng, Tzu-Hurng; Liu, Ju-Chi; Lin, Heng; Shih, Neng-Lang; Chen, Yen-Ling; Huang, Meng-Ting; Chan, Paul; Cheng, Ching-Feng; Chen, Jin-Jer

    2004-02-01

    Resveratrol is proposed to account in part for the protective effect of red wine on the cardiovascular system. Angiotensin II (Ang II) is a potent hypertrophic stimulus in cardiomyocytes. In this study, we determined the effect of resveratrol on Ang II-induced cardiomyocyte hypertrophy. Cultured neonatal rat cardiomyocytes were stimulated with Ang II, and [3H]leucine incorporation and beta-myosin heavy chain (beta-MyHC) promoter activity were examined. Intracellular reactive oxygen species (ROS) were measured by a redox-sensitive fluorescent dye, 2' 7'-dichlorofluorescin diacetate, and the extracellular signal-regulated kinase (ERK) phosphorylation was examined by Western blotting. Resveratrol inhibited Ang II-increased intracellular ROS levels. Furthermore, resveratrol, as well as the antioxidant N-acetyl-cysteine, decreased Ang II- or H2O2-increased protein synthesis, beta-MyHC promoter activity, and ERK phosphorylation. In summary, we demonstrate for the first time that resveratrol inhibits Ang II-induced cardiomyocyte hypertrophy via attenuation of ROS generation.

  13. Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy.

    PubMed

    Wu, Q-Q; Zong, J; Gao, L; Dai, J; Yang, Z; Xu, M; Fang, Y; Ma, Z-G; Tang, Q-Z

    2014-05-01

    Cardiac hypertrophy is an adaptive process of the heart in response to various stimuli, but sustained cardiac hypertrophy will finally lead to heart failure. Sulforaphane-extracted from cruciferous vegetables of the genus Brassica such as broccoli, brussels sprouts, and cabbage-has been evaluated for its anticarcinogenic and antioxidant effects. To investigate the effect of sulforaphane on angiotensin II (Ang II)-induced cardiac hypertrophy in vitro. Embryonic rat heart-derived H9c2 cells were co-incubated with sulforaphane and Ang II. The cell surface area and mRNA levels of hypertrophic markers were measured to clarify the effect of sulforaphane on cardiac hypertrophy. The underlying mechanism was further investigated by detecting the activation of Akt and NF-κB signaling pathways. We found that H9c2 cells pretreated with sulforaphane were protected from Ang II-induced hypertrophy. The increasing mRNA levels of ANP, BNP, and β-MHC in Ang II-stimulated cells were also down-regulated after sulforaphane treatment. Moreover, sulforaphane repressed the Ang II-induced phosphorylation of Akt, GSK3β, mTOR, eIF4e, as well as of IκBα and NF-κB. Based on our results, sulforaphane attenuates Ang II-induced hypertrophy of H9c2 cardiomyocytes mediated by the inhibition of intracellular signaling pathways including Akt and NF-κB.

  14. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties.

    PubMed

    Nakao, Tomoko; Morita, Hiroyuki; Maemura, Koji; Amiya, Eisuke; Inajima, Tsukasa; Saito, Yuichiro; Watanabe, Masafumi; Manabe, Ichiro; Kurabayashi, Masahiko; Nagai, Ryozo; Komuro, Issei

    2013-10-01

    Melatonin is well known to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether melatonin has a therapeutic effect on the vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of melatonin on Ang II-induced vascular endothelial damage were investigated. In cultured vascular endothelial cells, Ang II stimulation increased ROS generation and inhibited eNOS phosphorylation (Ser1177), both of which were clearly restored by pretreatment with melatonin. The translocation of p47(phox) subunit of NADPH oxidase from the cytosol to plasma membrane was promoted in Ang II-treated vascular endothelial cells, which was canceled by melatonin pretreatment. In Ang II-infused rats, increased ROS generation in the aortic wall and impaired endothelial function of the aortic ring were observed, which were rescued by coadministration of melatonin. In vasculature, melatonin receptor agonist ramelteon had the antioxidative effect in the same manner as melatonin by itself. These findings suggest that melatonin directly ameliorates Ang II-induced vascular endothelial damage partly via its antioxidative properties, providing with us the potential rationale for clinical application of melatonin to the prevention from cardiovascular diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Angiotensin II induces MMP 2 activity via FAK/JNK pathway in human endothelial cells.

    PubMed

    Jiménez, Eugenio; Pérez de la Blanca, Enrique; Urso, Loredana; González, Irene; Salas, Julián; Montiel, Mercedes

    2009-03-20

    Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of cardiovascular diseases and are modified in response to a variety of stimuli such as bioactive peptides, cytokines and/or grown factors. In this study, we demonstrated that angiotensin II (Ang II) induces a time- and dose-dependent increase in the activity of metalloproteinase 2 (MMP 2) in human umbilical vein endothelial cells (HUVEC). The effect of Ang II was markedly attenuated in cells pretreated with wortmannin and LY294002, two selective inhibitors of phosphatidylinositol-3-kinase (PI3K), indicating that PI3K plays a key role in regulating MMP 2 activity. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific Src-family tyrosine kinase inhibitor PP2, demonstrating the involvement of protein tyrosine kinases, and particularly Src-family tyrosine kinases on the downstream signaling pathway of Ang II receptors. Furthermore, Ang II-induced MMP 2 activation was markedly blocked by SP600125, a selective c-Jun N-terminal kinase (JNK) inhibitor, or pre-treatment of cells with antisense oligonucleotide to focal adhesion kinase (FAK), indicating that both molecules were important for the activation of MMP 2 by Ang II receptor stimulation. In conclusion, these results suggest that Ang II mediates an increase in MMP 2 activity in macrovascular endothelial cells through signal transduction pathways dependent on PI3K and Src-family tyrosine kinases activation, as well as JNK and FAK phosphorylation.

  16. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells.

    PubMed

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal

  17. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli.

    PubMed

    Saavedra, J M; Armando, I

    2017-09-07

    Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.

  18. Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training.

    PubMed

    Amaral, S L; Papanek, P E; Greene, A S

    2001-09-01

    Results from our laboratory have suggested a pathway involving angiotensin II type 1 (AT(1)) receptors and vascular endothelial growth factor (VEGF) in angiogenesis induced by electrical stimulation. The present study investigated if similar mechanisms underlie the angiogenesis induced by short-term exercise training. Seven days before training and throughout the training period, male Sprague-Dawley rats received either captopril or losartan in their drinking water. Rats underwent a 3-day treadmill training protocol. The tibialis anterior and gastrocnemius muscles were harvested under anesthesia and lightly fixed in formalin (vessel density) or frozen in liquid nitrogen (VEGF expression). In controls, treadmill training resulted in a significant increase in vessel density in all muscles studied. However, the angiogenesis induced by exercise was completely blocked by either losartan or captopril. Western blot analysis showed that VEGF expression was increased in the exercised control group, and both losartan and captopril blocked this increase. The role of VEGF was directly confirmed using a VEGF-neutralizing antibody. These results confirm the role of angiotensin II and VEGF in angiogenesis induced by exercise.

  19. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.

    PubMed

    Rezk, Bashir M; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.

  20. Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening

    PubMed Central

    Eberson, Lance S.; Secomb, Timothy W.; Larmonier, Nicolas; Larson, Douglas F.

    2014-01-01

    Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4+CD25+Foxp3+ regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val5]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4+ and CD8+ T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases. PMID:25258681

  1. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor.

    PubMed

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-07-27

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1-7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1-7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1-7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1-7), high-dose Ang-(1-7), high-dose Ang-(1-7) + A779 and high-dose Ang-(1-7) + PD123319. Ang-(1-7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1-7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1-7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell-endothelial cell communication. Thus, Ang-(1-7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma.

  2. Angiotensin-(1–7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor

    PubMed Central

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-01-01

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1–7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1–7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1–7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1–7), high-dose Ang-(1–7), high-dose Ang-(1–7) + A779 and high-dose Ang-(1–7) + PD123319. Ang-(1–7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1–7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1–7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell–endothelial cell communication. Thus, Ang-(1–7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma. PMID:26225830

  3. Inhibition of Angiotensin II receptors during pregnancy induces malformations in developing rat kidney.

    PubMed

    Sánchez, Susana I; Seltzer, Alicia M; Fuentes, Lucia B; Forneris, Myriam L; Ciuffo, Gladys M

    2008-06-24

    Evidence suggests that Angiotensin II plays an important role in the complex process of renal organogenesis. Rat kidney organogenesis starts between E13-14 and lasts up to 2 weeks after birth. The present study demonstrates histologic modifications and changes in receptor localisation in animals born from mothers treated with Angiotensin II, Losartan or PD123319 (1.0 mg/kg/day) during late pregnancy. Angiotensin II-treated animals exhibited very well developed tubules in the renal medulla in coincidence with higher AT(1) binding. Control animals exhibited angiotensin AT(2) binding in the outer stripe of the outer medulla, while in the Angiotensin II-treated animals binding was observed to the inner stripe. In Angiotensin II-treated 1-week-old animals, the nephrogenic zone contained fewer immature structures, and more developed collecting tubules than control animals. Treatment with Losartan resulted in severe renal abnormalities. For newborn and 1-week-old animals, glomeruli exhibited altered shape and enlarged Bowman spaces, in concordance with a loss of [(125)I]Angiotensin II binding in the cortex. Blockade with PD123319 led to an enlarged nephrogenic zone with increased number of immature glomeruli, and less glomeruli in the juxtamedullary area. Autoradiography showed a considerable loss of AT(1) binding in the kidney cortex of PD123319-treated animals at both ages. The present results show for the first time histomorphological and receptor localisation alterations following treatment with low doses of Losartan and PD123319 during pregnancy. These observations confirm previous assumptions that in the developing kidney Angiotensin II exerts stimulatory effects through AT(1) receptors that might be counterbalanced by angiotensin AT(2) receptors.

  4. Association of angiotensin-converting enzyme and angiotensin II type I receptor gene polymorphisms with extreme obesity in Polish individuals.

    PubMed

    Pacholczyk, Marta; Ferenc, Tomasz; Kowalski, Jan; Adamczyk, Przemysław; Chojnowski, Jacek; Ponikowska, Irena

    2013-08-01

    There is strong evidence for the presence of a functional renin-angiotensin system in human adipose tissue. The aim of our study was to investigate the association of polymorphic variants of angiotensin-converting enzyme gene (ACE I/D) and angiotensin II type I receptor gene (AGTR1 A1166C) with extreme obesity and obesity-associated type 2 diabetes mellitus (T2DM) and to examine their combined effect on extremely obese patients. Overall, no significant associations were detected between ACE and AGTR1 gene polymorphisms and extreme obesity. However, extremely obese patients with T2DM showed an increased frequency of ACE II genotype compared with controls (p<0.05) and with non-diabetic extremely obese patients (p<0.01). The results suggest that II genotype of ACE was a significant contributor to extreme obesity in AA homozygotes of AGTR1 gene, regardless of the presence of T2DM. Moreover, the analysis of genetic polymorphisms demonstrated that ACE II and AGTR1 AC genotypes were most frequently observed in patients with extreme obesity and T2DM. On the basis of our results, we suggest that ACE II homozygosity may be a significant predictor of extreme obesity and T2DM and that the interaction between ACE and AGTR1 genes may be considered a predisposing factor for extreme obesity and extreme obesity-associated T2DM development.

  5. SIRT1 inhibits angiotensin II-induced vascular smooth muscle cell hypertrophy.

    PubMed

    Li, Li; Gao, Peng; Zhang, Huina; Chen, Houzao; Zheng, Wei; Lv, Xiang; Xu, Tingting; Wei, Yusheng; Liu, Depei; Liang, Chihchuan

    2011-02-01

    Angiotensin II (Ang II) stimulates vascular smooth muscle cell (VSMC) hypertrophy as a critical event in the development of vascular diseases such as atherosclerosis. Sirtuin (SIRT) 1, a nicotinamide adenine dinucleotide dependent deacetylase, has been demonstrated to exert protective effects in atherosclerosis by promoting endothelium-dependent vascular relaxation and reducing macrophage foam cell formation, but its role in VSMC hypertrophy remains unknown. In this study, we tried to investigate the effect of SIRT1 on Ang II-induced VSMC hypertrophy. Results showed that adenoviral-mediated over-expression of SIRT1 significantly inhibited Ang II-induced VSMC hypertrophy, while knockdown of SIRT1 by RNAi resulted in an increased [(3)H]-leucine incorporation of VSMC. Accordingly, nicotinamide adenine dinucleotide phosphate oxidase 1 (Nox1) expression induced by Ang II was inhibited by SIRT1 in VSMCs. SIRT1 activator resveratrol decreased, whereas endogenous SIRT1 inhibitor nicotinamide increased Nox1 expression in A7r5 VSMCs. Furthermore, transcription factor GATA-6 was involved in the down-regulation of Nox1 expression by SIRT1. These results provide new insight into SIRT1's anti-atherogenic properties by suppressing Ang II-induced VSMC hypertrophy.

  6. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan.

    PubMed

    Abe, Masanori; Oikawa, Osamu; Okada, Kazuyoshi; Soma, Masayoshi

    2015-03-01

    Angiotensin-converting enzyme 2 (ACE2) is a member of the renin-angiotensin system that degrades angiotensin (Ang) II to the seven-amino acid peptide fragment Ang-(1-7). We evaluated the changes in urinary ACE2 levels in response to treatment with the angiotensin II type 1 receptor blocker olmesartan in diabetes patients with nephropathy. This prospective, open-label, interventional study was conducted with 31 type 2 diabetes patients with nephropathy. After initial evaluation, patients received 20 mg/day olmesartan, which was increased to 40 mg/day over a 24-week period. In diabetes patients with chronic kidney disease, olmesartan significantly increased urinary ACE2 levels independently of blood pressure and plasma aldosterone levels and reduced albuminuria, urinary liver-type fatty acid binding protein (L-FABP), and plasma aldosterone levels. Multivariable regression analysis revealed that the change in urinary L-FABP levels was an independent predictor of increased urinary ACE2 levels. Olmesartan may have the unique effect of increasing urinary ACE2 levels. However, whether this contributes to olmesartan's renoprotective effect must be examined further. © The Author(s) 2014.

  7. Oxidative DNA Damage in Kidneys and Heart of Hypertensive Mice Is Prevented by Blocking Angiotensin II and Aldosterone Receptors

    PubMed Central

    Brand, Susanne; Amann, Kerstin; Mandel, Philipp; Zimnol, Anna; Schupp, Nicole

    2014-01-01

    Introduction Recently, we could show that angiotensin II, the reactive peptide of the blood pressure-regulating renin-angiotensin-aldosterone-system, causes the formation of reactive oxygen species and DNA damage in kidneys and hearts of hypertensive mice. To further investigate on the one hand the mechanism of DNA damage caused by angiotensin II, and on the other hand possible intervention strategies against end-organ damage, the effects of substances interfering with the renin-angiotensin-aldosterone-system on angiotensin II-induced genomic damage were studied. Methods In C57BL/6-mice, hypertension was induced by infusion of 600 ng/kg • min angiotensin II. The animals were additionally treated with the angiotensin II type 1 receptor blocker candesartan, the mineralocorticoid receptor blocker eplerenone and the antioxidant tempol. DNA damage and the activation of transcription factors were studied by immunohistochemistry and protein expression analysis. Results Administration of angiotensin II led to a significant increase of blood pressure, decreased only by candesartan. In kidneys and hearts of angiotensin II-treated animals, significant oxidative stress could be detected (1.5-fold over control). The redox-sensitive transcription factors Nrf2 and NF-κB were activated in the kidney by angiotensin II-treatment (4- and 3-fold over control, respectively) and reduced by all interventions. In kidneys and hearts an increase of DNA damage (3- and 2-fold over control, respectively) and of DNA repair (3-fold over control) was found. These effects were ameliorated by all interventions in both organs. Consistently, candesartan and tempol were more effective than eplerenone. Conclusion Angiotensin II-induced DNA damage is caused by angiotensin II type 1 receptor-mediated formation of oxidative stress in vivo. The angiotensin II-mediated physiological increase of aldosterone adds to the DNA-damaging effects. Blocking angiotensin II and mineralocorticoid receptors therefore

  8. Sex chromosome effects unmasked in angiotensin II-induced hypertension

    PubMed Central

    Ji, Hong; Zheng, Wei; Wu, Xie; Liu, Jun; Ecelbarger, Carolyn M.; Watkins, Rebecca; Arnold, Arthur P.; Sandberg, Kathryn

    2010-01-01

    Sex differences in mean arterial pressure (MAP) are reported in many experimental models of hypertension and are ascribed to gonadal sex based of studies showing gonadectomy and gonadal hormone replacement affect MAP. The interpretation of these studies, however, has been confounded by differences in the sex chromosome complement (XX vs. XY). To investigate the sex chromosome complement independently of gonadal sex, we used the four core genotype (FCG) mouse model in which gonadal sex is separated from the sex chromosome complement enabling comparisons among XX and XY females and XX and XY males. We found that in the gonadectomized (GDX) FCG, MAP after 2 weeks of angiotensin II (Ang II) infusion (200 ng/kg/min) was greater in XX than XY [MAP (mm Hg): GDX-XX-Female, 148±4.5; GDX-XY-Female, 133±4.4; GDX-XX-Male, 149±9.4; GDX-XY-Male, 138±5.5; p<0.03, XX vs XY; n=8-9/grp]. In contrast, no sex chromosome effects (SCE) were found on heart rate (HR) body weight (BW) or plasma Ang II 2 weeks after Ang II infusion. This study suggests that in addition to effects of gonadal hormones on blood pressure, X- or Y-linked genes, parental imprinting or X mosaicism contribute to sex differences in hypertension. Furthermore, the finding that MAP was greater in XX mice compared to XY mice in the GDX state suggests adverse SCE encoded within the XX sex chromosome complement could contribute to hypertension in women with ovarian hormone deficiency such as postmenopausal women and women with premature ovarian failure. PMID:20231528

  9. Characterization of functional urotensin II receptors in human skeletal muscle myoblasts: comparison with angiotensin II receptors.

    PubMed

    Qi, Jian-shen; Minor, Lisa K; Smith, Charles; Hu, Bing; Yang, Jing; Andrade-Gordon, Patricia; Damiano, Bruce

    2005-04-01

    The properties of urotensin II (U-II) receptor (UT receptor) and angiotensin II (ANG II) receptor (AT receptor) in primary human skeletal myoblasts (HSMM) and differentiated skeletal myotubes (HSMMT) were characterized. Radiolabeled U-II and ANG II bound specifically to HSMM with Kd's of 0.31 nM (2311 receptors/cell) and 0.61 nM (18,257 receptors/cell), respectively. The cyclic segment of U-II peptide, CFWKYC, was the minimal sequence required for binding, with the WKY residues essential. Inhibitor studies suggested AT1 is the predominant ANG II receptor. After radioligand binding, under conditions designed to minimize receptor internalization, half the bound U-II was resistant to acid washing suggesting that U-II binds tightly to its receptor in a quasi-irreversible fashion. The AT1 receptor-bound radioligand was completely removed under the same conditions. RT-PCR detected the expression of mRNAs for UT and AT1 receptors. Western blotting showed that U-II and ANG II signaled via ERK1/2 kinase. UT receptor was not lost upon differentiation into myotubes since both mRNA for UT receptor and U-II binding were still present. ANG II receptors were also present as shown by ANG II-induced calcium mobilization.

  10. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    PubMed Central

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  11. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-08-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. © 2015 American Heart Association, Inc.

  12. Postconditioning attenuates coronary perivascular and interstitial fibrosis through modulating angiotensin II receptors and angiotensin-converting enzyme 2 after myocardial infarction.

    PubMed

    Wang, Zhang-Feng; Wang, Ning-Ping; Harmouche, Suzanna; Philip, Tiji; Pang, Xue-Fen; Bai, Feng; Zhao, Zhi-Qing

    2017-05-01

    Postconditioning (Postcon) is known to reduce infarct size. This study tested the hypothesis that Postcon attenuates the perivascular and interstitial fibrosis after myocardial infarction through modulating angiotensin II-activated fibrotic cascade. Male Sprague-Dawley rats were subjected to 45-min coronary occlusion followed by 1 and 6 wk of reperfusion. Postcon was applied at the onset of reperfusion with four cycles of 10/10-s reperfusion-ischemia at the onset of reperfusion. Preconditioning (Precon) with two cycles of 5/5-min ischemia-reperfusion was applied before coronary occlusion. Postcon reduced angiotensin-converting enzyme protein and expression in the perivascular area and intermyocardium, coincident with the less-expressed angiotensin II receptor, type 1, enhanced angiotensin II receptor, type 2, and angiotensin converting enzyme 2. Postcon lowered the monocyte chemoattractant protein-1 and inhibited the populations of interstitial macrophages (60 ± 12 versus 84 ± 9.5 number per high-powered field [HPF] in control, P < 0.05). Along with these modulations, Postcon also downregulated transforming growth factor β1 protein and inhibited proliferation of α-smooth muscle actin expressing myofibroblasts (41 ± 11 versus 79 ± 8.2 number per HPF in control, P < 0.05), consistent with downregulated phospho-Smad2 and phospho-Smad3. Furthermore, the synthesis of collagen I and III was attenuated, and the perivascular-interstitial fibrosis was inhibited by Postcon as demonstrated by reduced perivascular fibrosis ratio (0.6 ± 0.6 versus 1.6 ± 0.5 per HPF in control, P < 0.05) and smaller collagen-rich area (16 ± 4.7 versus 34 ± 9.2% per HPF in control, P < 0.05). Precon conferred a comparable level of protection as Postcon did in all parameters measured, suggesting protection trigged by this endogenous stimulation can be achieved when it was applied either before ischemia or after reperfusion. These results suggest that Postcon

  13. Evodiamine inhibits angiotensin II-induced rat cardiomyocyte hypertrophy.

    PubMed

    He, Na; Gong, Qi-Hai; Zhang, Feng; Zhang, Jing-Yi; Lin, Shu-Xian; Hou, Hua-Hua; Wu, Qin; Sun, An-Sheng

    2017-09-05

    To investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms. Cardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca(2+)]i) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis. Compared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca(2+)]i) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca(2+)]i concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05). Evo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca(2+)]i concentration, and inhibition of CaN and

  14. An angiotensin II receptor antagonist suppresses running-enhanced hippocampal neurogenesis in rat.

    PubMed

    Mukuda, Takao; Sugiyama, Hiroyuki

    2007-06-01

    Hippocampal neurogenesis is enhanced by voluntary running exercise in adult mammals. To elucidate the factors involved in this enhancement, we examined the effects of losartan, an antagonist of angiotensin II type 1 receptors, on the running-enhanced neurogenesis in the adult rat hippocampus. When losartan was administered orally via the drinking water, the running-enhanced cell proliferation in the subgranular zone was almost completely suppressed, indicating that this enhancement may be mediated by angiotensin II and its receptors.

  15. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  16. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah

    2015-01-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. PMID:25767030

  17. Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity.

    PubMed

    Schling, Petra; Schäfer, Thorsten

    2002-12-13

    Human adipose tissue expresses all components necessary for the local production of angiotensin II, which has multiple functions in adipose tissue, ranging from regulation of local blood flow to complex influences on tissue homeostasis. Still the mechanisms controlling human adipose tissue angiotensin II concentrations are not yet known. We investigated whether angiotensin II is degraded by human primary cultured preadipocytes and adipocytes and which enzymes are responsible for its metabolism. Distinct but transient angiotensin II production was limited by degradation due to consecutive proteolytic cleavage by endopeptidase and aminopeptidase activities. The endopeptidase could be identified as neprilysin expressed on the surface of both preadipocytes and adipocytes. Degradation of angiotensin II was preceded by a lag phase that was considerably longer in preadipocytes. This time span could not be explained by an induction of neprilysin nor by an increase in its surface localization. Following the lag phase, adipocytes showed a higher degradation activity than preadipocytes as mirrored by increased neprilysin levels and activity measured in their membrane fractions. Our findings demonstrate that human preadipocytes and adipocytes differentially express functional neprilysin and aminopeptidase activity involved in the regulation of angiotensin II concentrations in human adipose tissue.

  18. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli

    PubMed Central

    Ilatovskaya, Daria V.; Palygin, Oleg; Chubinskiy-Nadezhdin, Vladislav; Negulyaev, Yuri A.; Ma, Rong; Birnbaumer, Lutz; Staruschenko, Alexander

    2014-01-01

    A key role for podocytes in the pathogenesis of proteinuric renal diseases has been established. Angiotensin II causes depolarization and increased intracellular calcium concentration in podocytes; members of the cation TRPC channels family, particularly TRPC6, are proposed as proteins responsible for calcium flux. Angiotensin II evokes calcium transient through TRPC channels and mutations in the gene encoding the TRPC6 channel result in the development of focal segmental glomerulosclerosis. Here we examined the effects of angiotensin II on intracellular calcium ion levels and endogenous channels in intact podocytes of freshly isolated decapsulated mouse glomeruli. An ion channel with distinct TRPC6 properties was identified in wild type, but was absent in TRPC6 knockout mice. Single channel electrophysiological analysis found that angiotensin II acutely activated native TRPC-like channels in both podocytes of freshly isolated glomeruli and TRPC6 channels transiently overexpressed in CHO cells; the effect was mediated by changes in the channel open probability. Angiotensin II evoked intracellular calcium transients in the wild type podocytes, which was blunted in TRPC6 knockout glomeruli. Pan-TRPC inhibitors gadolinium and SKF 96365 reduced the response in wild type glomerular epithelial cells, whereas the transient in TRPC6 knockout animals was not affected. Thus, angiotensin II-dependent activation of TRPC6 channels in podocytes may have a significant role in the development of kidney diseases. PMID:24646854

  19. Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation.

    PubMed

    Topchiy, Elena; Panzhinskiy, Evgeniy; Griffin, W Sue T; Barger, Steven W; Das, Mita; Zawada, W Michael

    2013-01-01

    Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100 nM angiotensin II (Ang II) - a strong stimulator of Nox - was applied to cultures of a murine neural stem cell line, C17.2. Twelve hours following a single treatment with Ang II, there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium fluorescence) from the steady state at 0, 5, and 30 min and gradually increasing from 1 h to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine. Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: (i) mitochondrial and (ii) extramitochondrial; the latter indicative of the involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal, stress- or disease-modifying neurogenesis.

  20. Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation

    PubMed Central

    Topchiy, Elena; Panzhinskiy, Evgeniy; Griffin, W. Sue T.; Barger, Steven W.; Das, Mita; Zawada, W. Michael

    2013-01-01

    Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100nM angiotensin II (Ang II) – a strong stimulator of Nox – was applied to cultures of a murine neural stem cell line C17.2. Twelve hours following a single treatment with Ang II there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium, DHE, fluorescence) from the steady state at 0, 5, and 30 minutes and gradually increasing from one hour to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine (NAC). Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: i) mitochondrial and ii) extramitochondrial; the latter indicative of involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal or stress- or disease-modifying neurogenesis. PMID:23751520

  1. Myometrial angiotensin II receptor subtypes change during ovine pregnancy.

    PubMed Central

    Cox, B E; Ipson, M A; Shaul, P W; Kamm, K E; Rosenfeld, C R

    1993-01-01

    Although regulation of angiotensin II receptor (AT) binding in vascular and uterine smooth muscle is similar in nonpregnant animals, studies suggest it may differ during pregnancy. We, therefore, examined binding characteristics of myometrial AT receptors in nulliparous (n = 7), pregnant (n = 24, 110-139 d of gestation), and postpartum (n = 21, 5 to > or = 130 d) sheep and compared this to vascular receptor binding. We also determined if changes in myometrial binding reflect alterations in receptor subtype. By using plasma membrane preparations from myometrium and medial layer of abdominal aorta, we determined receptor density and affinity employing radioligand binding; myometrial AT receptor subtypes were assessed by inhibiting [125I]-ANG II binding with subtype-specific antagonists. Compared to nulliparous ewes, myometrial AT receptor density fell approximately 90% during pregnancy (1,486 +/- 167 vs. 130 +/- 16 fmol/mg protein) and returned to nulliparous values > or = 4 wk postpartum; vascular binding was unchanged. Nulliparous myometrium expressed predominantly AT2 receptors (AT1/AT2 congruent to 15%/85%), whereas AT1 receptors predominated during pregnancy (AT1/AT2 congruent to 80%/20%). By 5 d postpartum AT1/AT2 congruent to 40%/60%, and > 4 wk postpartum AT2 receptors again predominated (AT1/AT2 congruent to 15%/85%). In studies of ANG II-induced force generation, myometrium from pregnant ewes (n = 10) demonstrated dose-dependent increases in force (P < 0.001), which were inhibited with an AT1 receptor antagonist. Postpartum myometrial responses were less at doses > or = 10(-9) M (P < 0.05) and unaffected by AT2 receptor antagonists. Vascular and myometrial AT receptor binding are differentially regulated during ovine pregnancy, the latter primarily reflecting decreases in AT2 receptor expression. This is the first description of reversible changes in AT receptor subtype in adult mammals. PMID:8227339

  2. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts.

    PubMed

    Bai, Jian; Zhang, Na; Hua, Ying; Wang, Bingjian; Ling, Lin; Ferro, Albert; Xu, Biao

    2013-01-01

    Differentiation of cardiac fibroblasts into myofibroblasts is a critical event in the progression of cardiac fibrosis that leads to pathological cardiac remodeling. Metformin, an antidiabetic agent, exhibits a number of cardioprotective properties. However, much less is known regarding the effect of metformin on cardiac fibroblast differentiation. Thus, in the present study, we examined the effect of metformin on angiotensin (Ang) II-induced differentiation of cardiac fibroblasts into myofibroblasts and its underlying mechanism. Adult rat cardiac fibroblasts were stimulated with Ang II (100 nM) in the presence or absence of metformin (10-200 µM). Ang II stimulation induced the differentiation of cardiac fibroblasts into myofibroblasts, as indicated by increased expression of α-smooth muscle actin (α-SMA) and collagen types I and III, and this effect of Ang II was inhibited by pretreatment of cardiac fibroblasts with metformin. Metformin also decreased Ang II-induced reactive oxygen species (ROS) generation in cardiac fibroblasts via inhibiting the activation of the PKC-NADPH oxidase pathway. Further experiments using PKC inhibitor calphostin C and NADPH oxidase inhibitor apocynin confirmed that inhibition of the PKC-NADPH oxidase pathway markedly attenuated Ang II-induced ROS generation and myofibroblast differentiation. These data indicate that metformin inhibits Ang II-induced myofibroblast differentiation by suppressing ROS generation via the inhibition of the PKC-NADPH oxidase pathway in adult rat cardiac fibroblasts. Our results provide new mechanistic insights regarding the cardioprotective effects of metformin and provide an efficient therapeutic strategy to attenuate cardiac fibrosis.

  3. Long-term regulation of vacuolar H(+)-ATPase by angiotensin II in proximal tubule cells.

    PubMed

    Carraro-Lacroix, L R; Girardi, A C C; Malnic, G

    2009-09-01

    Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.

  4. The mechanistic basis for the disparate effects of angiotensin II on coronary collateral growth.

    PubMed

    Reed, Ryan; Kolz, Christopher; Potter, Barry; Rocic, Petra

    2008-01-01

    We hypothesize that controversial effects of angiotensin II (Ang II) are attributable to its regulation of reactive oxygen species (ROS) and ROS-dependent signaling. Coronary collateral growth (CCG) was stimulated in normal (WKY) and syndrome X (JCR) rats by transient/repetitive ischemia (RI). Blood flow was measured in the normal (NZ) and the collateral-dependent (CZ) zone. In WKY, RI increased CZ flow (0.84 mL/min/g), but RI+subpressor Ang II increased it more (1.24 mL/min/g). This was associated with transient p38 and sustained Akt activation. A hypertensive dose of Ang II decreased CZ flow (0.69 mL/min/g), which was associated with sustained p38 and transient Akt activation. AT1R blockade by candesartan abrogated CZ flow in WKY (0.58 mL/min/g), reduced myocardial superoxide, and blocked p38 and Akt activation. RI-induced CZ flow in JCR was significantly decreased compared with WKY (0.12 mL/min/g), associated with a large increase in superoxide and lack of p38 and Akt activation. CZ flow in JCR was partially restored by candesartan (0.45 mL/min/g), accompanied by reduction in superoxide and partial restoration of p38 and Akt activation. Ang II/AT1R blockade, at least in part, regulates CCG via generating optimal ROS amounts and activating redox-sensitive signaling.

  5. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  6. Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans

    PubMed Central

    Pialoux, Vincent; Poulin, Marc J.; Hemmelgarn, Brenda R.; Muruve, Daniel A.; Chirico, Erica N.; Faes, Camille; Sola, Darlene Y.; Ahmed, Sofia B.

    2017-01-01

    Compared to other cyclooxygenase-2 inhibitors, celecoxib is associated with a lower cardiovascular risk, though the mechanism remains unclear. Angiotensin II is an important mediator of oxidative stress in the pathophysiology of vascular disease. Cyclooxygenase-2 may modify the effects of angiotensin II though this has never been studied in humans. The purpose of the study was to test the effects of selective cyclooxygenase-2 inhibition on plasma measures of oxidative stress, the vasoconstrictor endothelin-1, and nitric oxide metabolites, both at baseline and in respose to Angiotensin II challenge in healthy humans. Measures of 8-hydroxydeoxyguanosine, advanced oxidation protein products, nitrotyrosine, endothelin-1, and nitric oxide metabolites were assessed from plasma samples drawn at baseline and in response to graded angiotensin II infusion (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min) before and after 14 days of cyclooxygenase-2 inhibition in 14 healthy subjects (eight male, six female) in high salt balance, a state of maximal renin angiotensin system suppression. Angiotensin II infusion significantly increased plasma oxidative stress compared to baseline (8-hydroxydeoxyguanosine; +17%; advanced oxidation protein products; +16%), nitrotyrosine (+76%). Furthermore, levels of endothelin-1 levels were significantly increased (+115%) and nitric oxide metabolites were significantly decreased (−20%). Cycloxygenase-2 inhibition significantly limited the increase in 8-hydroxydeoxyguanosine, nitrotyrosine and the decrease in nitric oxide metabolites induced by angiotensin II infusion, though no changes in advanced oxidation protein products and endothelin-1 concentrations were observed. Cyclooxygenase-2 inhibition with celecoxib partially limited the angiotensin II-mediated increases in markers of oxidative stress in humans, offering a potential physiological pathway for the improved cardiovascular risk profile of this drug. PMID:28344559

  7. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  8. Autoradiographic localization of angiotensin II receptors in rat brain.

    PubMed Central

    Mendelsohn, F A; Quirion, R; Saavedra, J M; Aguilera, G; Catt, K J

    1984-01-01

    The 125I-labeled agonist analog [1-sarcosine]-angiotensin II ( [Sar1]AII) bound with high specificity and affinity (Ka = 2 X 10(9) M-1) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. Images PMID:6324205

  9. Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes.

    PubMed

    Clark, Michelle A; Tran, Hsieu; Nguyen, Chinh

    2011-10-01

    Angiotensin (Ang) III is a biologically active metabolite of Ang II with similar effects and receptor binding properties as Ang II. Most Ang III studies delineate physiological effects of the peptide but, the intracellular pathways leading to the actions are unknown and are a focus of these studies. We investigated in cultured brainstem and cerebellum rat astrocytes whether Ang III stimulates ERK1/2 mitogen activated protein (MAP) kinases and astrocyte growth. Ang III significantly stimulated ERK1/2 MAP kinases in a dose- and time-dependent manner. The maximal stimulation occurred with 100 nM Ang III (2.8±0.3 and 2.3±0.1-fold over basal, in brainstem and cerebellum astrocytes, respectively). This stimulation occurred as early as 1 min, and was sustained for at least 15 min. Moreover, inhibition of the ERK1/2 MAP kinase pathway by 10 μM PD98059 attenuated Ang III-induced ERK1/2 phosphorylation. Ang III induction of ERK1/2 occurred via stimulation of the Ang AT(1) receptor since pretreatment with 10 μM Losartan, a selective AT(1) receptor blocker, prevented Ang III-induced ERK1/2 phosphorylation. The selective AT(2) Ang receptor blocker PD123319 was ineffective. Comparable to Ang II, Ang III also stimulated astrocyte growth in a concentration-dependent manner, an effect that occurred via activation of the AT(1) receptor as well. These findings suggest that Ang III has similar effects as Ang II in astrocytes since it rapidly stimulates the phosphorylation of the ERK1/2 MAP kinases and induces astrocyte proliferation through activation of the AT(1) receptor. These studies are important in establishing signaling pathways for Ang III and provide validation of the central role of Ang III.

  10. Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor

    PubMed Central

    2014-01-01

    Background The pressor response to angiotensin II (AngII) is attenuated in adult females as compared to males via an angiotensin type 2 receptor (AT2R)-dependent pathway. We hypothesized that adult female mice are protected against AngII-induced hypertension via an enhanced AT2R-mediated pathway and that in reproductively senescent females this pathway is no longer operative. Methods Mean arterial pressure was measured via telemetry in 4-month-old (adult) and 16-month-old (aged) and aged ovariectomized (aged-OVX) wild-type and AT2R knockout (AT2R-KO) female mice during baseline and 14-day infusion of vehicle (saline) or AngII (600 ng/kg/min s.c.). Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to determine renal gene expression of angiotensin receptors and angiotensin-converting enzyme 2 in response to 14-day treatment with vehicle or AngII. Results Basal mean arterial pressure was similar between the groups. The pressor response to AngII was augmented in adult AT2R-KO compared to adult wild-type mice (29 ± 3 mmHg versus 10 ± 4 mmHg, respectively, on day 14 as compared to basal mean arterial pressure, P = 0.002). In wild-type mice, pressor responsiveness to AngII was augmented with age, such that the pressor response to AngII was similar between aged AT2R-KO and wild-type female mice (31 ± 4 mmHg versus 34 ± 3 mmHg, respectively, on day 14, P = 0.9). There were no significant differences in pressor responsiveness to AngII between aged and aged-OVX mice. Vehicle-treated aged wild-type mice had a lower renal AT2R/AT1R balance as compared to adult counterparts. In response to AngII, the renal AT2R/AT1R balance in aged wild-type females was greater than that observed in vehicle-treated aged wild-type females and adult wild-type females, yet the protective effects of AT2R activation were not restored. Conclusions The protective role of the AT2R depressor pathway is lost with age in female mice. Therefore

  11. Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects.

    PubMed

    Sakurada, Takumi; Ishizawa, Keisuke; Imanishi, Masaki; Izawa-Ishizawa, Yuki; Fujii, Shoko; Tominaga, Erika; Tsuneishi, Teppei; Horinouchi, Yuya; Kihira, Yoshitaka; Ikeda, Yasumasa; Tomita, Shuhei; Aihara, Ken-ichi; Minakuchi, Kazuo; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2013-01-01

    Nifedipine is unstable under light and decomposes to a stable nitroso analog, nitrosonifedipine (NO-NIF). The ability of NO-NIF to block calcium channels is quite weak compared with that of nifedipine. Recently, we have demonstrated that NO-NIF reacts with unsaturated fatty acid leading to generate NO-NIF radical, which acquires radical scavenging activity. However, the effects of NO-NIF on the pathogenesis related with oxidative stress, such as atherosclerosis and hypertension, are unclear. In this study, we investigated the effects of NO-NIF on angiotensin II (Ang II)-induced vascular remodeling. Ang II-induced thickening and fibrosis of aorta were inhibited by NO-NIF in mice. NO-NIF decreased reactive oxygen species (ROS) in the aorta and urinary 8-hydroxy-20-deoxyguanosine. Ang II-stimulated mRNA expressions of p22(phox), CD68, F4/80, monocyte chemoattractant protein-1, and collagen I in the aorta were inhibited by NO-NIF. Moreover, NO-NIF inhibited Ang II-induced cell migration and proliferation of vascular smooth muscle cells (VSMCs). NO-NIF reduced Ang II-induced ROS to the control level detected by dihydroethidium staining and lucigenin chemiluminescence assay in VSMCs. NO-NIF suppressed phosphorylations of Akt and epidermal growth factor receptor induced by Ang II. However, NO-NIF had no effects on intracellular Ca(2+) increase and protein kinase C-δ phosphorylation induced by Ang II in VSMCs. The electron paramagnetic resonance spectra indicated the continuous generation of NO-NIF radical of reaction with cultured VSMCs. These findings suggest that NO-NIF improves Ang II-induced vascular remodeling via the attenuation of oxidative stress.

  12. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation.

    PubMed

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Felder, Robert B; Johnson, Alan Kim

    2016-05-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines. © 2016 American Heart

  13. Differential expression profile of long non-coding RNA in cardiomyocytes autophagy induced by angiotensin II.

    PubMed

    Gu, Ying; Yang, Fan; Xu, Ru-Ming; Zhang, Yun-Yan; Li, Yang; Liu, Su-Xuan; Zhang, Guan-Xin; Wang, Guo-Kun; Ma, Li-Ping

    2017-10-01

    Autophagy is a ubiquitous intracellular process for cellular homeostasis maintenance by recycling damaged protein and organelles. Dysregulation of cardiomyocytes autophagic activity is implicated in various heart diseases. Recent studies had demonstrated that long non-coding RNAs (lncRNAs) played crucial roles on modulation of autophagic activity. In this study, we first established an angiotensin II-induced autophagy model on neonatal rat cardiomyocytes. Western blot assay confirmed that the expression of Beclin 1 and the conversion of soluble LC3-I to lipid bound LC3-II were significantly increased at 12 h after angiotensin II stimulation, but the cardiomyocytes surface area and hypertrophic markers expression had no significant change. Then microarray analysis and real-time PCR were applied to detect differentially expressed lncRNAs during cardiomyocytes autophagy. A total of 1,249 lncRNAs were determined as differentially expressed, including 700 upregulated lncRNAs and 549 downregulated lncRNAs. LncRNAs subgroup analysis showed there were 43 transcribed ultra-conserved noncoding RNAs (T-UCRs) differentially expressed in cardiomyocytes autophagy, of which 26 T-UCRs were upregulated and 17 T-UCRs were downregulated. Bioinformatics analysis further showed that 94 differentially expressed lncRNAs contained potential binding sites of miR-22, a pro-hypertrophic and pro-autophagic microRNA. Therefore, these differentially expressed lncRNAs might play critical roles in cardiomyocytes autophagy. This finding would provide an experimental basis for future investigation on ischemic heart disease. © 2017 International Federation for Cell Biology.

  14. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  15. Angiotensin II-mediated calcium signals and mitogenesis in human prostate stromal cell line hPCPs

    PubMed Central

    Wennemuth, Gunther; Aumüller, Gerhard

    2004-01-01

    Western blots and immunocytochemistry were used to detect angiotensin 1 (AT1) and angiotensin 2 (AT2) receptors in human primary cultures of the prostate stromal compartment (hPCPs). Immunohistochemistry was performed on human prostate tissue-embedded paraffin. In addition, pharmacological tools were applied in combination with photometry experiments to characterize the physiological activity of AT1 and AT2 receptors in hPCPs cell culture. A proliferation assay was used to describe the mitogenic activity of angiotensin II (Ang II) on hPCPs cells. Only the AT1 receptor was detected in Western blot analysis. Immunocytochemistry of hPCPs cells showed that the AT1 receptor is present in both the smooth muscle type and the fibroblastic type. In the stromal compartment of human prostate tissue, immunoreaction with antibodies against the AT1 receptor was detectable. Fura-2-loaded hPCPs cells showed an instantaneous and linear rise in free intracellular calcium ion concentration ([Ca2+]i) after local perfusion with Ang II in concentrations of 10 nM. Removing of external calcium or emptying intracellular calcium stores before Ang II application diminished or abolished this [Ca2+]i response. The response to Ang II was also diminished when hPCPs cells were perfused with the AT1 receptor inhibitor losartan prior to Ang II application. No inhibition of the [Ca2+]i increase was detectable after perfusion with PD 123319, a specific inhibitor of the AT2 receptor. hPCPs cells were stimulated with Ang II in various concentrations over a period of 2 days. The subsequently performed proliferation assay revealed a mitogenic effect of Ang II on hPCPs in concentrations starting at 10 nM. This effect could be inhibited by losartan. PMID:15644863

  16. Angiotensin-(1-9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis.

    PubMed

    Ocaranza, Maria Paz; Moya, Jackeline; Barrientos, Victor; Alzamora, Rodrigo; Hevia, Daniel; Morales, Cristobal; Pinto, Melissa; Escudero, Nicolás; García, Lorena; Novoa, Ulises; Ayala, Pedro; Díaz-Araya, Guillermo; Godoy, Ivan; Chiong, Mario; Lavandero, Sergio; Jalil, Jorge E; Michea, Luis

    2014-04-01

    Little is known about the biological effects of angiotensin-(1-9), but available evidence shows that angiotensin-(1-9) has beneficial effects in preventing/ameliorating cardiovascular remodeling. In this study, we evaluated whether angiotensin-(1-9) decreases hypertension and reverses experimental cardiovascular damage in the rat. Angiotensin-(1-9) (600  ng/kg per min for 2 weeks) reduced already-established hypertension in rats with early high blood pressure induced by angiotensin II infusion or renal artery clipping. Angiotensin-(1-9) also improved cardiac (assessed by echocardiography) and endothelial function in small-diameter mesenteric arteries, cardiac and aortic wall hypertrophy, fibrosis, oxidative stress, collagen and transforming growth factor type β - 1 protein expression (assessed by western blot). The beneficial effect of angiotensin-(1-9) was blunted by coadministration of the angiotensin type 2(AT2) receptor blocker PD123319 (36  ng/kg per min) but not by coadministration of the Mas receptor blocker A779 (100  ng/kg per min). Angiotensin-(1-9) treatment also decreased circulating levels of Ang II, angiotensin-converting enzyme activity and oxidative stress in aorta and left ventricle. Whereas, Ang-(1-9) increased endothelial nitric oxide synthase mRNA levels in aorta as well as plasma nitrate levels. Angiotensin-(1-9) reduces hypertension, ameliorates structural alterations (hypertrophy and fibrosis), oxidative stress in the heart and aorta and improves cardiac and endothelial function in hypertensive rats. These effects were mediated by the AT2 receptor but not by the angiotensin-(1-7)/Mas receptor axis.

  17. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.

    PubMed

    Zou, A P; Wu, F; Cowley, A W

    1998-01-01

    This study examined the effect of intravenous infusion of subpressor doses of angiotensin (Ang II) on renal medullary blood flow (MBF), medullary partial oxygen pressure (PO2), and nitric oxide (NO) concentration under normal conditions and during reduction of the medullary nitric oxide synthase (NOS) activity in anesthetized rats. With laser Doppler flowmetry and polarographic measurement of PO2 with microelectrodes, Ang II (5 ng/kg per minute) did not alter renal cortical and medullary blood flows or medullary PO2. N(omega)-nitro-L-arginine methyl ester (L-NAME) was infused into the renal medullary interstitial space at a dose of 1.4 microg/kg per minute, a dose that did not significantly alter basal levels of MBF or PO2. Intravenous infusion of Ang II at the same dose in the presence of L-NAME decreased MBF by 23% and medullary PO2 by 28%, but it had no effect on cortical blood flow or arterial blood pressure. An in vivo microdialysis-oxyhemoglobin NO trapping technique was used in other rats to determine tissue NO concentrations using the same protocol. Ang II infusion increased tissue NO concentrations by 85% in the renal cortex and 150% in the renal medulla. Renal medullary interstitial infusion of L-NAME (1.4 microg/kg per minute) reduced medullary NO concentrations and substantially blocked Ang II-induced increases in NO concentrations in the renal medulla, but not in the renal cortex. Tissue slices of the renal cortex and medulla were studied to determine the effects of Ang II and L-NAME on the nitrite/nitrate production. Ang II stimulated the nitrite/nitrate production predominately in the renal medulla, which was significantly attenuated by L-NAME. We conclude that small elevations of circulating Ang II levels increase medullary NO production and concentrations, which plays an important role in buffering the vasoconstrictor effects of this peptide and in maintaining a constancy of MBF.

  18. BLOCKADE OF BRAIN ANGIOTENSIN II AT1 RECEPTORS AMELIORATES STRESS, ANXIETY, BRAIN INFLAMMATION AND ISCHEMIA: THERAPEUTIC IMPLICATIONS

    PubMed Central

    SAAVEDRA, Juan M.; SÁNCHEZ-LEMUS, Enrique; BENICKY, Julius

    2010-01-01

    SUMMARY Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of major importance. Recently, attention has been focused on the role of a brain regulatory peptide, Angiotensin II, and in the translational value of the blockade of its physiological AT1 receptors. In addition to its well-known cardiovascular effects, Angiotensin II, through AT1 receptor stimulation, is a pleiotropic brain modulatory factor involved in the control of the reaction to stress, in the regulation of cerebrovascular flow and the response to inflammation. Excessive brain AT1 receptor activity is associated with exaggerated sympathetic and hormonal response to stress, vulnerability to cerebrovascular ischemia and brain inflammation, processes leading to neuronal injury. In animal models, inhibition of brain AT1 receptor activity with systemically administered Angiotensin II receptor blockers is neuroprotective; it reduces exaggerated stress responses and anxiety, prevents stress-induced gastric ulcerations, decreases vulnerability to ischemia and stroke, reverses chronic cerebrovascular inflammation, and reduces acute inflammatory responses produced by bacterial endotoxin. These effects protect neurons from injury and contribute to increase the lifespan. Angiotensin II receptor blockers are compounds with a good margin of safety widely used in the treatment of hypertension and their anti-inflammatory and vascular protective effects contribute to reduce renal and cardiovascular failure. Inhibition of brain AT1 receptors in humans is also neuroprotective

  19. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase.

    PubMed

    Chalupsky, Karel; Cai, Hua

    2005-06-21

    Recent studies demonstrate that oxidative inactivation of tetrahydrobiopterin (H4B) may cause uncoupling of endothelial nitric oxide synthase (eNOS) to produce superoxide (O2*-). H4B was found recyclable from its oxidized form by dihydrofolate reductase (DHFR) in several cell types. Functionality of the endothelial DHFR, however, remains completely unknown. Here we present findings that specific inhibition of endothelial DHFR by RNA interference markedly reduced endothelial H4B and nitric oxide (NO.) bioavailability. Furthermore, angiotensin II (100 nmol/liter for 24 h) caused a H4B deficiency that was mediated by H2O2-dependent down-regulation of DHFR. This response was associated with a significant increase in endothelial O2*- production, which was abolished by eNOS inhibitor N-nitro-L-arginine-methyl ester or H2O2 scavenger polyethylene glycol-conjugated catalase, strongly suggesting H2O2-dependent eNOS uncoupling. Rapid and transient activation of endothelial NAD(P)H oxidases was responsible for the initial burst production of O2* (Rac1 inhibitor NSC 23766 but not an N-nitro-L-arginine-methyl ester-attenuated ESR O2*- signal at 30 min) in response to angiotensin II, preceding a second peak in O2*- production at 24 h that predominantly depended on uncoupled eNOS. Overexpression of DHFR restored NO. production and diminished eNOS production of O2*- in angiotensin II-stimulated cells. In conclusion, these data represent evidence that DHFR is critical for H4B and NO. bioavailability in the endothelium. Endothelial NAD(P)H oxidase-derived H2O2 down-regulates DHFR expression in response to angiotensin II, resulting in H4B deficiency and uncoupling of eNOS. This signaling cascade may represent a universal mechanism underlying eNOS dysfunction under pathophysiological conditions associated with oxidant stress.

  20. [Angiotensin II inhibitors for the diagnosis and treatment of hypertension].

    PubMed

    Brunner, H R; Gavras, H

    1976-12-11

    Specific antagonists of the renin angiotensin system have been used to investigate the role of this hormonal system in blood pressure homeostasis and in different types of experimental and clinical hypertension. Using this approach it was possible to show that renin via angiotensin participates actively in blood pressure maintenace, particularly following sodium depletion. Such antagonists, if available for oral administration and taken together with a diuretic, would be useful therapeutically.

  1. Mechanism of adrenal angiotensin II receptor changes after nephrectomy in rats.

    PubMed Central

    Douglas, J G

    1981-01-01

    At 48 h after bilateral nephrectomy in rats there is a two- to threefold increase in the number of adrenal angiotensin II receptors and a decrease in Kd of smooth muscle angiotensin II receptors. These changes have been attributed to the absence of circulating angiotensin II. Serum K+, which increases after nephrectomy may be an important and overlooked modulator. Therefore, the present experiments were designed to assess the role of K+ as a regulator of angiotensin II receptors after nephrectomy. Serum K+ was controlled with Na polystyrene sulfonate (Kayexalate), a resin designed to exchange Na+ for K+ in the gastrointestinal tract. Acutely nephrectomized rats were divided into two groups: experimental animals received Kayexalate resin every 12 h for four doses, and controls received Kayexalate exchanged with KCl in vitro before gavage. There was a significant positive correlation serum K+ and aldosterone (r = 0.78, P less than 0.001). Kayexalate maintained a normal serum K+ of 5.9 +/- 0.2 meq/liter (n = 27), aldosterone 25 +/- 3 ng/dl (n = 27) and adrenal receptor concentration of 934 +/- 156 fmol/mg protein (n = 4). Control animals had significantly higher serum K+ of 10.5 +/- 0.4 meq/liter (n = 23), aldosterone 435 +/- 32 (n = 23), and adrenal receptors of 2726 +/- 235 fmol/mg protein (n = 4). There was a linear relationship between serum K+ and number of adrenal receptors (r = 0.87). No such relationship was present in uterine smooth muscle. Therefore, these studies demonstrate that K+ modulates the number of adrenal but not smooth muscle angiotensin II receptors after nephrectomy. This is the first evidence that potassium modulates angiotensin II receptors independently of changes in angiotensin II blood levels. PMID:6259213

  2. Role of Jagged1-Hey1 Signal in Angiotensin II-induced Impairment of Myocardial Angiogenesis

    PubMed Central

    Guan, Ai-Li; He, Tao; Shao, Yi-Bing; Chi, Yi-Fan; Dai, Hong-Yan; Wang, Yan; Xu, Li; Yang, Xuan; Ding, Hua-Min; Cai, Shang-Lang

    2017-01-01

    Background: Angiotensin II (Ang II) is a major contributor to the development of heart failure. However, the molecular and cellular mechanisms that underlie this process remain elusive. Inadequate angiogenesis in the myocardium leads to a transition from cardiac hypertrophy to dysfunction, and our previous study showed that Ang II significantly impaired the angiogenesis response. The current study was designed to examine the role of Jagged1-Notch signaling in the effect of Ang II during impaired angiogenesis and cardiac hypertrophy. Methods: Ang II was subcutaneously infused into 8-week-old male C57BL/6 mice at a dose of 200 ng·kg−1·min−1 for 2 weeks using Alzet micro-osmotic pumps. N-[N-(3, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine tert-butyl ester (DAPT), a γ-secretase inhibitor, was injected subcutaneously during Ang II infusion at a dose of 10.0 mg·kg−1·d−1. Forty mice were divided into four groups (n = 10 per group): control group; Ang II group, treated with Ang II; DAPT group, treated with DAPT; and Ang II + DAPT group, treated with both Ang II and DAPT. At the end of experiments, myocardial (left ventricle [LV]) tissue from each experimental group was evaluated using immunohistochemistry, Western blotting, and real-time polymerase chain reaction. Data were analyzed using one-way analysis of variance test followed by the least significant difference method or independent samples t-test. Results: Ang II treatment significantly induced cardiac hypertrophy and impaired the angiogenesis response compared to controls, as shown by hematoxylin and eosin (HE) staining and immunohistochemistry for CD31, a vascular marker (P < 0.05 for both). Meanwhile, Jagged1 protein was significantly increased, but gene expression for both Jag1 and Hey1 was decreased in the LV following Ang II treatment, compared to that in controls (relative ratio for Jag1 gene: 0.45 ± 0.13 vs. 0.84 ± 0.15; relative ratio for Hey1 gene: 0.51 ± 0.08 vs. 0.91 ± 0.09; P < 0

  3. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Beltz, Terry G; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2014-07-15

    This study investigated sex differences in the sensitization of angiotensin (ANG) II-induced hypertension and the role of central estrogen and ANG-(1-7) in this process. Male and female rats were implanted for telemetered blood pressure (BP) recording. A subcutaneous subpressor dose of ANG II was given alone or concurrently with intracerebroventricular estrogen, ANG-(1-7), an ANG-(1-7) receptor antagonist A-779 or vehicle for 1 wk (induction). After a 1-wk rest (delay), a pressor dose of ANG II was given for 2 wk (expression). In males and ovariectomized females, subpressor ANG II had no sustained effect on BP during induction, but produced an enhanced hypertensive response to the subsequent pressor dose of ANG II during expression. Central administration of estrogen or ANG-(1-7) during induction blocked ANG II-induced sensitization. In intact females, subpressor ANG II treatment produced a decrease in BP during induction and delay, and subsequent pressor ANG II treatment given during expression produced only a slight but significant increase in BP. However, central blockade of ANG-(1-7) by intracerebroventricular infusion of A-779 during induction restored the decreased BP observed in females during induction and enhanced the pressor response to the ANG II treatment during expression. RT-PCR analyses indicated that estrogen given during induction upregulated mRNA expression of the renin-angiotensin system (RAS) antihypertensive components, whereas both central estrogen and ANG-(1-7) downregulated mRNA expression of RAS hypertensive components in the lamina terminalis. The results indicate that females are protected from ANG II-induced sensitization through central estrogen and its regulation of brain RAS.

  4. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension

    PubMed Central

    Zhang, Zhongming; Beltz, Terry G.; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2014-01-01

    This study investigated sex differences in the sensitization of angiotensin (ANG) II-induced hypertension and the role of central estrogen and ANG-(1–7) in this process. Male and female rats were implanted for telemetered blood pressure (BP) recording. A subcutaneous subpressor dose of ANG II was given alone or concurrently with intracerebroventricular estrogen, ANG-(1–7), an ANG-(1–7) receptor antagonist A-779 or vehicle for 1 wk (induction). After a 1-wk rest (delay), a pressor dose of ANG II was given for 2 wk (expression). In males and ovariectomized females, subpressor ANG II had no sustained effect on BP during induction, but produced an enhanced hypertensive response to the subsequent pressor dose of ANG II during expression. Central administration of estrogen or ANG-(1–7) during induction blocked ANG II-induced sensitization. In intact females, subpressor ANG II treatment produced a decrease in BP during induction and delay, and subsequent pressor ANG II treatment given during expression produced only a slight but significant increase in BP. However, central blockade of ANG-(1–7) by intracerebroventricular infusion of A-779 during induction restored the decreased BP observed in females during induction and enhanced the pressor response to the ANG II treatment during expression. RT-PCR analyses indicated that estrogen given during induction upregulated mRNA expression of the renin-angiotensin system (RAS) antihypertensive components, whereas both central estrogen and ANG-(1–7) downregulated mRNA expression of RAS hypertensive components in the lamina terminalis. The results indicate that females are protected from ANG II-induced sensitization through central estrogen and its regulation of brain RAS. PMID:24858844

  5. Measurement of Cardiac Angiotensin II by Immunoassays, HPLC-Chip/Mass Spectrometry, and Functional Assays.

    PubMed

    De Mello, Walmor C; Gerena, Yamil

    2017-01-01

    The molecular mechanisms related to the effect of angiotensin II, its level on cardiac tissues, as well as its overexpression represent an important aspect of cardiovascular pharmacology and pathology. Severe alterations of cardiac functions are induced by hypertension including activation of circulating and local cardiac renin angiotensin systems. In this chapter, we are providing the methods and materials necessary for further investigation of this important topic.

  6. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  7. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  8. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage

    PubMed Central

    Balarezo, María G.; Affram, Kwame; Saavedra, Juan M.; Symes, Aviva J.

    2015-01-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article. Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan’s blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking

  9. Advanced Glycation End Products Activate a Chymase-Dependent Angiotensin II Generating Pathway in Diabetic Complications

    PubMed Central

    Koka, Vijay; Wang, Wansheng; Huang, Xiao Ru; Kim-Mitsuyama, Shokei; Truong, Luan D.; Lan, Hui Y

    2006-01-01

    Background: Angiotensin II is a key mediator of diabetes-related vascular disease. It is now recognized that in addition to angiotensin converting enzyme (ACE), chymase is an important alternative angiotensin II generating enzyme in hypertension and diabetes. However, the mechanism of induction of chymase in diabetes remains unknown. Methods and Results: Here we report that chymase is upregulated in coronary and renal arteries in patients with diabetes by immunohistochemistry. Upregulation of vascular chymase is associated with deposition of advanced glycation end products (AGEs), increase in expression of the receptor for AGEs (RAGE), and activation of ERK1/2 MAP kinase. In vitro, AGEs can induce chymase expression and chymase-dependent angiotensin II generation in human vascular smooth muscle cells via the RAGE-ERK1/2 MAP kinase-dependent mechanism. This is confirmed by blockade of AGE-induced vascular chymase expression with a neutralizing RAGE antibody and an inhibitor to ERK1/2, and by overexpression of the dominant negative-ERK1/2. Compared to ACE, chymase contributes to the majority of angiotensin II production (more than 70%, p<0.01) in response to AGEs. Further more, AGE-induced Angiotensin II production is blocked by the anti-RAGE antibody and by inhibition of ERK1/2 MAP kinase activities. Conclusions: Advanced glycation end products, a hallmark of diabetes, induce chymase via the RAGE-ERK1/2 MAP kinase pathway. Chymase initiates an important alternative angiotensin II generating pathway in diabetes and may play a critical role in diabetic vascular disease. PMID:16520412

  10. Central renin-angiotensin system activation and inflammation induced by high fat diet sensitize angiotensin II-elicited hypertension

    PubMed Central

    Xue, Baojian; Thunhorst, Robert L.; Yu, Yang; Guo, Fang; Beltz, Terry G.; Felder, Robert B.; Johnson, Alan Kim

    2016-01-01

    Obesity has been shown to promote renin-angiotensin system (RAS) activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure (BP). Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in RAS activity and inflammatory mechanisms in the brain. HFD did not increase baseline BP, but enhanced the hypertensive response to Ang II compared to a normal fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor α (TNF-α) synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor (AT1-R) blocker, irbesartan or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with TNF-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. RT-PCR analysis of lamina terminalis tissue indicated that HFD feeding, central TNF-α or a central subpressor dose of Ang II upregulated mRNA expression of several components of the RAS and proinflammatory cytokines, whereas inhibition of AT1-R and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain RAS and of central proinflammatory cytokines. PMID:26573717

  11. Characterization of angiotensin II binding sites in African Green monkey uterus

    SciTech Connect

    Petersen, E.P.; Wright, J.W.; Harding, J.W.

    1985-01-14

    The observation that there are significant differences in the concentration, affinity, and specificity of both central nervous system (CNS) and peripheral angiotensin receptors among several different mammalian species, including the African Green monkey, led to the detailed analysis of /sup 125/I-angiotensin II binding in the uterus of the African Green monkey. The B/sub max/ for angiotensin receptors in uterine tissue from this species is 56.6 +/- 8.7 fmole per mg protein. The K/sub d/ for angiotensin II is .601 +/- .108 mM. The specificity of the receptor is similar to that reported for the uterus of the rat and dog. These results indicate that the angiotensin II receptors, although nearly absent from the CNS of the African Green monkey, are found in the uterus and are very similar to uterine receptors previously characterized in the rat and dog and support the use of these species as appropriate models for studying the biochemistry of angiotensin binding in the uterus. 25 references, 1 figure, 2 tables.

  12. Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor.

    PubMed

    Matsuura, Hirohide; Ichiki, Toshihiro; Ikeda, Jiro; Takeda, Kotaro; Miyazaki, Ryohei; Hashimoto, Toru; Narabayashi, Eriko; Kitamoto, Shiro; Tokunou, Tomotake; Sunagawa, Kenji

    2011-09-01

    Inhibition of prolyl hydroxylase domain-containing protein (PHD) by hypoxia stabilizes hypoxia-inducible factor 1 and increases the expression of target genes, such as vascular endothelial growth factor. Although the systemic renin-angiotensin system is activated by hypoxia, the role of PHD in the regulation of the renin-angiotensin system remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin II type 1 receptor (AT(1)R). Hypoxia, cobalt chloride, and dimethyloxalylglycine, all known to inhibit PHD, reduced AT(1)R expression in vascular smooth muscle cells. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT(1)R expression. Cobalt chloride diminished angiotensin II-induced extracellular signal-regulated kinase phosphorylation. Cobalt chloride decreased AT(1)R mRNA through transcriptional and posttranscriptional mechanisms. Oral administration of cobalt chloride (14 mg/kg per day) to C57BL/6J mice receiving angiotensin II infusion (490 ng/kg per minute) for 4 weeks significantly attenuated perivascular fibrosis of the coronary arteries without affecting blood pressure level. These data suggest that PHD inhibition may be beneficial for the treatment of cardiovascular diseases by inhibiting renin-angiotensin system via AT(1)R downregulation.

  13. Na(+)-H+ exchanger kinetics in adrenal glomerulosa cells and its activation by angiotensin II

    SciTech Connect

    Conlin, P.R.; Kim, S.Y.; Williams, G.H.; Canessa, M.L. )

    1990-07-01

    We have studied the kinetic properties of basal and angiotensin II (ANG II) stimulated Na(+)-H+ exchange in adrenal glomerulosa cells by measuring changes in cytosolic pH (pHi) and initial rates of 22Na uptake in the presence or absence of dimethylamiloride (DMA). The cells were studied under basal conditions, at constant pHi with varied external sodium (Na+o), and at varied pHi with constant Na+o (50 mM). In 2,7-biscarboxyethyl-5(6)-carboxyfluorescein loaded cells under basal conditions, pHi rose from 7.09 +/- 0.02 to 7.19 +/- 0.02. Similarly, DMA-sensitive Na influx was enhanced from 9.2 +/- 1.3 to 14.8 +/- 2.1 nmol Na+/mg protein x min (P less than 0.01) by ANG II. In cells acid-loaded by preincubation in Na(+)-free media (pHi 6.8), addition of varying Na+o resulted in a rapid H+ efflux that was markedly inhibited by DMA. DMA-sensitive Na+ influx into these acidified cells with varied Na+o exhibited a Michaelis-Menten constant (Km) of 23 mM and a maximum velocity (Vmax) of 43 nmol Na+/mg protein x min. By varying pHi (from pHi 7.1 to 6.2), DMA-sensitive Na+ influx likewise showed activation with cellular acidification with a pK at pHi 7.09. At pHi 6.8, ANG II decreased the Km for Na+o from 23 to 17 mM and increased the Vmax from 43 to 53 nmol Na+/mg protein x min. The pHi dependence of DMA-sensitive Na+ influx was not affected by ANG II (pK at pHi 7.03). DMA also inhibited AII-stimulated aldosterone secretion and Na+ influx similarly. These results indicate that Na(+)-H+ exchange in adrenal glomerulosa cells is functioning under basal conditions, and is modulated by ANG II with enhanced Na+o affinity and Vmax but without a shift in pHi dependence (similar to ANG II effects on vascular smooth muscle cells). These effects suggest an important role for Na(+)-H+ exchange during ANG II stimulation of aldosterone production by glomerulosa cells.

  14. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa

    SciTech Connect

    Urata, H.; Khosla, M.C.; Bumpus, M.; Husain, A. )

    1988-11-01

    Based on the observation that high levels of renin and angiotensin II (Ang II) are found in the adrenal zona glomerulosa (ZG), it has been postulated that Ang II is formed intracellularly by the renin-converting enzyme cascade in this tissue. To test this hypothesis, the authors examined renin-angiotensin system components in subcellular fractions of the rat adrenal ZG. Renin activity and immunoreactive-Ang II (IR-Ang II) were observed in vesicular fractions but were not colocalized. In addition, angiotensinogen, angiotensin I, and converting enzyme were not observed in the renin or IR-Ang II-containing vesicular fractions. These data do not support the hypothesis that Ang II is formed intracellularly within the renin-containing vesicles of the ZG. Rather, since modulatable renin release from adrenal ZG slices was observed and renin activity was found in dense vesicular fractions (33-39% sucrose), it is likely that Ang II formation in the ZG is extracellular and initiated by the release of vesicular renin. In ZG lysomal fractions {sup 125}I-labeled Ang II was degraded to {sup 125}I-labeled des-(Phe{sup 8})Ang II. Since Ang II antibodies do not recognize des-(Phe{sup 8})Ang II, these finding explain why IR-Ang II in the ZG is due predominantly to Ang II and not to its C-terminal immunoreactive fragments.

  15. [Biphasic effect of angiotensin II on conditioned reflectory reaction patterns in albino rats].

    PubMed

    Hecht, K; Hecht, T; Poppei, M; Treptow, K; Choinowski, S; Nitschkoff, S

    1975-01-01

    40 male albino rats were used to investigate the influence of one single i. v. dose of 10 ng/kg Angiotensin II upon established and stabilized conditional-reflectory response pattern (two-dimensional conditional-reflectory decision process and periodicities of conditional-reflectory processes). At normotonous blood-pressure values, Angiotensin II exerted a biphasic action on the conditional-reflectory response pattern. In the first phase of action (up to 30 min after injection) there prevailed centralnervous inhibition processes, while the second phase of action (30-70 min after injection) was marked by a general centralnervous excitation, which is reflected by extremely short times of response, and a pronounced sensitivity to optic, acoustic and tactile stimuli. The decision capacity of the animals was considerably reduced in both phases. The periodicities of conditional-reflectory processes (duration of periods in the minute range) are strongly disturbed in the first phase of action, and tend to normal in the second phase. Furthermore, Angiotensin II was found to have a selective, hierarchically ordered influence with regard to the duration and intensity of action. Thus, the information processing activity of the CNS underwent most pronounced changes. The centralnervous regulatory functions were less affected; the blood pressure regulation showed little and transient influence by Angiotensin II. In the discussion, the neurotropic and algogenic action of Angiotensin II, and the relation of the octapeptide effect with pathogenetic mechanisms of experimental neurotically induced hypertonia are dealt with.

  16. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology.

    PubMed

    Jennings, Brett L; Sahan-Firat, Seyhan; Estes, Anne M; Das, Kanak; Farjana, Nasreen; Fang, Xiao R; Gonzalez, Frank J; Malik, Kafait U

    2010-10-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study showing that angiotensin II-induced vascular smooth muscle cell growth depends on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg per minute) or mice (1000 μg/kg per day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased vascular reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1(-/-) mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3',4,5'-tetramethoxystilbene, which prevents both cytochrome P450 1B1-dependent and -independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases.

  17. CYTOCHROME P450 1B1 CONTRIBUTES TO ANGIOTENSIN II-INDUCED HYPERTENSION AND ASSOCIATED PATHOPHYSIOLOGY

    PubMed Central

    Jennings, Brett L.; Sahan-Firat, Seyhan; Estes, Anne M.; Das, Kanak; Farjana, Nasreen; Fang, Xiao R.; Gonzalez, Frank J.; Malik, Kafait U.

    2010-01-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study that angiotensin II-induced vascular smooth muscle cell growth is dependent on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg/min) or mice (1000 μg/kg/day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1-/- mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3′,4,5′-tetramethoxystilbene which prevents both cytochrome P450 1B1-dependent and independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases. PMID:20805442

  18. Angiotensin II-induced cardiomyocyte hypertrophy in vitro is TAK1-dependent and Smad2/3-independent.

    PubMed

    Watkins, Sarah J; Borthwick, Gillian M; Oakenfull, Rachael; Robson, Andrew; Arthur, Helen M

    2012-04-01

    Cardiac hypertrophy occurs as an adaptation to hypertension but a sustained hypertrophic response can ultimately lead to heart failure. Angiotensin-II (Ang II) is released following hemodynamic overload and stimulates a cardiac hypertrophic response. AngII also increases expression of the regulatory cytokine, transforming growth factor-β1 (TGFβ1), which is also implicated in the cardiac hypertrophic response and can stimulate activation of Smad2/3 as well as TGFβ-activated kinase 1 (TAK1) signaling mediators. To better understand the downstream signaling events in cardiac hypertrophy, we therefore investigated activation of Smad2/3 and TAK1 signaling pathways in response to Ang II and TGFβ1 using primary neonatal rat cardiomyocytes to model cardiac hypertrophic responses. Small interfering RNA (siRNA) knockdown of Smad 2/3 or TAK1 protein or addition of the TGFβ type I receptor inhibitor, SB431542, were used to investigate the role of downstream mediators of TGFβ signaling in the hypertrophic response. Our data revealed that TGFβ1 stimulation leads to cardiomyocyte hypertrophic phenotypes that were indistinguishable from those occurring in response to Ang II. In addition, inhibition of the TGFβ1 type receptor abolished Ang II-induced hypertrophic changes. Furthermore, the hypertrophic response was also prevented following siRNA knockdown of TAK1 protein, but was unaffected by knockdown of Smad2/3 proteins. We conclude that Ang II-induced cardiomyocyte hypertrophy in vitro occurs in a TAK1-dependent, but Smad-independent, manner.

  19. A low salt diet and circadian dysfunction synergize to induce angiotensin II-dependent hypertension in mice

    PubMed Central

    Pati, Paramita; Fulton, David J.R.; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A.; Stepp, David W.; Rudic, R. Daniel

    2015-01-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in nighttime blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and Period isoform knockout mice (Per2-KO, Per2,3-KO and Per1,2,3-KO/PerTKO mice). On a normal diet, administration of Ang II caused caused non-dipping blood pressure and exacerbated vascular hypertrophy in the Period isoform knockout mice. To study the endogenous effects of Ang II stimulation, we then administered a low salt diet to the mice, which does stimulate endogenous Ang II in addition to lowering blood pressure. A low salt diet decreased blood pressure in WT mice. In contrast, Period isoform knockout mice lost their circadian rhythm in blood pressure on a low salt diet, due to an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic low salt caused vascular hypertrophy in Period isoform knockout mice which also exhibited increased renin levels and altered AT1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension. PMID:26781276

  20. c-Abl mediates angiotensin II-induced apoptosis in podocytes

    PubMed Central

    Chen, Xinghua; Ren, Zhilong; Liang, Wei; Zha, Dongqing; Liu, Yipeng; Chen, Cheng; Singhal, Pravin C.; Ding, Guohua

    2013-01-01

    Backgroud Angiotensin II (Ang II) has been reported to cause podocyte apoptosis in rats both in vivo and in vitro studies. However, the underlying mechanisms are poorly understood. In the present study, we investigated the role of the nonreceptor tyrosine kinase c-Abl in Ang II-induced podocyte apoptosis. Methods Male Sprague-Dawley rats in groups of 12 were administered either Ang II (400 kg-1·kg-1·min-1) or Ang II + STI-571 (50 mg·kg-1·d-1) by osmotic minipumps. In addition, 12 rats-receiving normal saline served as the control. Glomeruli c-Abl expression was carried out by real time PCR, Western blotting and immunolabeled, and occurrence of apoptosis was carried out by TUNEL staining and transmission electron microscopic analysis. In vitro studies, conditionally immortalized mouse podocytes were treated with Ang II (10-9-10-6 M) in the presence or absence of either c-Abl inhibitor, Src-I1, specific c-Abl siRNA, or c-Abl plasmid alone. Quantification of podocyte c-Abl expression and c-Abl phosphorylation at Y245 and Y412 was carried out by real time PCR, Western blotting and immunofluorescence imaging. The nuclear c-Abl and p53 were quantified by co-immunoprecipitation and Western blotting studies. Podocyte apoptosis was analysed by flow cytometry and Hoechst-33342 staining. Results c-Abl expression was demonstrated in rat kidney podocytes in vivo and cultured mouse podocytes in vitro. Ang II-receiving rats displayed enhanced podocyte c-Abl expression. And Ang II significantly stimulated c-Abl expression in cultured podocytes. Furthermore Ang II upregulated podocyte c-Abl phosphorylation at Y245 and Y412. Ang II also induced an increase of nuclear p53 protein and nuclear c-Abl-p53 complexes in podocytes and podocyte apoptosis. Down-regulation of c-Abl expression by c-Abl inhibitor (Src-I1) as well as specific siRNA inhibited Ang II-induced podocyte apoptosis; conversely, podoctyes transfected with c-Abl plasmid displayed enhanced apoptosis. Conclusions These

  1. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism.

    PubMed

    Cisternas, Franco; Morales, María Gabriela; Meneses, Carla; Simon, Felipe; Brandan, Enrique; Abrigo, Johanna; Vazquez, Yaneisi; Cabello-Verrugio, Claudio

    2015-03-01

    Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.

  2. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance.

    PubMed

    Violin, Jonathan D; DeWire, Scott M; Yamashita, Dennis; Rominger, David H; Nguyen, Lisa; Schiller, Kevin; Whalen, Erin J; Gowen, Maxine; Lark, Michael W

    2010-12-01

    Biased G protein-coupled receptor ligands engage subsets of the receptor signals normally stimulated by unbiased agonists. However, it is unclear whether ligand bias can elicit differentiated pharmacology in vivo. Here, we describe the discovery of a potent, selective β-arrestin biased ligand of the angiotensin II type 1 receptor. TRV120027 (Sar-Arg-Val-Tyr-Ile-His-Pro-D-Ala-OH) competitively antagonizes angiotensin II-stimulated G protein signaling, but stimulates β-arrestin recruitment and activates several kinase pathways, including p42/44 mitogen-activated protein kinase, Src, and endothelial nitric-oxide synthase phosphorylation via β-arrestin coupling. Consistent with β-arrestin efficacy, and unlike unbiased antagonists, TRV120027 increased cardiomyocyte contractility in vitro. In rats, TRV120027 reduced mean arterial pressure, as did the unbiased antagonists losartan and telmisartan. However, unlike the unbiased antagonists, which decreased cardiac performance, TRV120027 increased cardiac performance and preserved cardiac stroke volume. These striking differences in vivo between unbiased and β-arrestin biased ligands validate the use of biased ligands to selectively target specific receptor functions in drug discovery.

  3. Enhanced angiotensin-converting enzyme activity and systemic reactivity to angiotensin II in normotensive rats exposed to a high-sodium diet

    PubMed Central

    Crestani, Sandra; Júnior, Arquimedes Gasparotto; Marques, Maria C.A.; Sullivan, Jennifer C.; Webb, R. Clinton; da Silva-Santos, J. Eduardo

    2016-01-01

    A high salt diet is associated with reduced activity of the renin–angiotensin–aldosterone system (RAAS). However, normotensive rats exposed to high sodium do not show changes in systemic arterial pressure. We hypothesized that, despite the reduced circulating amounts of angiotensin II induced by a high salt diet, the cardiovascular system’s reactivity to angiotensin II is increased in vivo, contributing to maintain arterial pressure at normal levels. Male Wistar rats received chow containing 0.27% (control), 2%, 4%, or 8% NaCl for six weeks. The high-sodium diet did not lead to changes in arterial pressure, although plasma levels of angiotensin II and aldosterone were reduced in the 4% and 8% NaCl groups. The 4% and 8% NaCl groups showed enhanced pressor responses to angiotensin I and II, accompanied by unchanged and increased angiotensin-converting enzyme activity, respectively. The 4% NaCl group showed increased expression of angiotensin II type 1 receptors and reduced expression of angiotensin II type 2 receptors in the aorta. In addition, the hypotensive effect of losartan was reduced in both 4% and 8% NaCl groups. In conclusion these results explain, at least in part, why the systemic arterial pressure is maintained at normal levels in non-salt sensitive and healthy rats exposed to a high salt diet, when the functionality of RAAS appears to be blunted, as well as suggest that angiotensin II has a crucial role in the vascular dysfunction associated with high salt intake, even in the absence of hypertension. PMID:24321189

  4. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203

  5. Angiotensin II regulates growth of the developing papillas ex vivo

    PubMed Central

    Song, Renfang; Preston, Graeme; Khalili, Ali; El-Dahr, Samir S.

    2012-01-01

    We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT1 receptor (AT1R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT1R-null mice. Papillas were dissected from Hoxb7GFP+ or AGT+/+, +/−, −/− mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10−5 M), or the specific AT1R antagonist candesartan (10−6 M) for 24 h. Percent reduction in papillary length was attenuated in AGT+/+ and in AGT+/− compared with AGT−/− (−18.4 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, −22.8 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7GFP+ (−1.5 ± 0.3 vs. −10.0 ± 1.4%, P < 0.05) or AGT+/+, +/−, and −/− papillas (−12.8 ± 0.7 vs. −18.4 ± 1.3%, P < 0.05, −16.8 ± 1.1 vs. −23 ± 1.2%, P < 0.05; −26.2 ± 1.6 vs. −32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7GFP+ papillas in the presence of the AT1R antagonist candesartan was higher compared with control (−24.3 ± 2.1 vs. −10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT1R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT1R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell

  6. Centrally mediated erectile dysfunction in rats with type 1 diabetes: role of angiotensin II and superoxide.

    PubMed

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P

    2013-09-01

    Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. This study aims to determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)- and nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol, or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Two weeks of enalapril, losartan, or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses-T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 minutes, P < 0.05; SNP responses-T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 minutes, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections, were also significantly increased in T1D rats after enalapril, losartan, or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased, and superoxide production was reduced in T1D rats after these treatments. These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes

  7. Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P.

    2015-01-01

    Introduction Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. Aim To determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)-nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Methods Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Main Outcome Measure Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Results Two weeks of enalapril, losartan or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses – T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 min, P < 0.05; SNP responses – T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 min, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections were also significantly increased in T1D rats after enalapril, losartan or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased and superoxide production was reduced in T1D rats after these treatments. Conclusions These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes

  8. Properties of angiotensin II receptors in glial cells from the adult corpus callosum.

    PubMed Central

    Matute, C; Pulakat, L; Río, C; Valcárcel, C; Miledi, R

    1994-01-01

    The existence and the properties of angiotensin II receptors in the adult bovine and human corpus callosum (CC) were investigated by using Xenopus oocytes and primary glial cell cultures. In oocytes injected with CC mRNA, angiotensin II elicited oscillatory Cl- currents due to activation of the inositol phosphate/Ca(2+)-receptor-channel coupling system. The receptors expressed in oocytes and in CC cultures were pharmacologically similar to the AT1 receptor type as assayed by binding. Northern blot analysis and in situ hybridization studies in sections from CC and in glial cultures revealed that the receptors were molecularly related to the AT1 receptor and that they were present in astrocytes. In these cells, activation of the receptors with angiotensin II increased de novo DNA synthesis, promoted the release of aldosterone, and induced c-Fos expression. These findings indicate that CC astrocytes possess functional AT1 receptors that participate in various physiological processes. Images PMID:8170986

  9. Effect of des-aspartate-angiotensin I on the actions of angiotensin II in the isolated renal and mesenteric vasculature of hypertensive and STZ-induced diabetic rats.

    PubMed

    Dharmani, M; Mustafa, M R; Achike, F I; Sim, M K

    2005-07-15

    The present study investigated the action of des-aspartate-angiotensin I (DAA-I) on the pressor action of angiotensin II in the renal and mesenteric vasculature of WKY, SHR and streptozotocin (STZ)-induced diabetic rats. Angiotensin II-induced a dose-dependent pressor response in the renal vasculature. Compared to the WKY, the pressor response was enhanced in the SHR and reduced in the STZ-induced diabetic rat. DAA-I attenuated the angiotensin II pressor action in renal vasculature of WKY and SHR. The attenuation was observed for DAA-I concentration as low as 10(-18) M and was more prominent in SHR. However, the ability of DAA-I to reduce angiotensin II response was lost in the STZ-induced diabetic kidney. Instead, enhancement of angiotensin II pressor response was seen at the lower doses of the octapeptide. The effect of DAA-I was not inhibited by PD123319, an AT2 receptor antagonist, and indomethacin, a cyclo-oxygenase inhibitor in both WKY and SHR, indicating that its action was not mediated by angiotensin AT2 receptor and prostaglandins. The pressor responses to angiotensin II in mesenteric vascular bed were also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses were significantly smaller in SHR but no significant difference was observed between STZ-induced diabetic and WKY rat. Similarly, PD123319 and indomethacin had no effect on the action of DAA-I. The findings reiterate a regulatory role for DAA-I in vascular bed of the kidney and mesentery. By being active at circulating level, DAA-I subserves a physiological role. This function appears to be present in animals with diseased state of hypertension and diabetes. It is likely that DAA-I functions are modified to accommodate the ongoing vascular remodeling.

  10. Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells

    PubMed Central

    Bian, Fang; Cui, Jun; Zheng, Tao; Jin, Si

    2017-01-01

    The retention of plasma low-density lipoprotein (LDL) particles to subendothelial spaces through transcytosis across the endothelium is the initial step of atherosclerosis (AS). Angiotensin II (Ang II), as the principal effector molecule of the renin-angiotensin system (RAS), is implicated in several important steps of AS development. However, whether or not Ang II can directly exert a pro-atherogenic effect by promoting LDL transcytosis across endothelial barriers, has not been defined. In the present study, we found that Ang II upregulated intracellular reactive oxygen species (ROS) levels in endothelial cells (ECs) by measuring fluorescence of 2′,7′-dichlorofluorescein (DCF-DA). Based on our transcytosis model, we observed that Ang II significantly accelerated LDL transcytosis, whereas transcytosis inhibitor methyl-β-cyclodextrin (MβCD) and ROS inhibitor dithiothreitol (DTT), markedly blocked the Ang II-stimulated increase in LDL transcytosis. Confocal imaging analysis revealed that both LDL uptake by cells and LDL retention in human umbilical venous walls were highly elevated after Ang II exposure, while MβCD and DTT significantly inhibited the effects of Ang II. What is more, proteins involved in caveolae-mediated transcytosis, including LDL receptor (LDLR), caveolin-1 and cavin-1, were associated with Ang II-induced LDL transcytosis across the ECs. Nevertheless, this process was independent of clathrin in our study. Of note, ROS inhibitor, DTT, markedly decreased the expression levels of those proteins. Consequently, ROS are critical mediators in Ang II-induced LDL transcytosis. Hopefully, these findings will provide novel insight into the crosstalk between dyslipidemia and RAS in atherogenesis. PMID:28204818

  11. Adrenomedullin is a potent inhibitor of angiotensin II-induced migration of human coronary artery smooth muscle cells.

    PubMed

    Kohno, M; Yokokawa, K; Kano, H; Yasunari, K; Minami, M; Hanehira, T; Yoshikawa, J

    1997-06-01

    The migration of coronary artery medial smooth muscle cells (SMCs) into the intima is proposed to be an important process of intimal thickening in coronary atherosclerotic lesions. In the current study, we examined the possible interaction of adrenomedullin, a novel vasorelaxant peptide, and angiotensin II (Ang II) on human coronary artery SMC migration using Boyden's chamber method. Ang II stimulated SMC migration in a concentration-dependent manner between 10(6) and 10(8) mol/L. This stimulation was clearly blocked by the Ang II type 1 receptor antagonist losartan but not by the type 2 receptor antagonist PD 123319. The migration stimulatory effect of Ang II was chemotactic in nature for cultured human coronary artery SMCs but was not chemokinetic. Human adrenomedullin clearly inhibited Ang II-induced migration in a concentration-dependent manner. Human adrenomedullin stimulated cAMP formation in these cells. Inhibition by adrenomedullin of Ang II-induced SMC migration was paralleled by an increase in the cellular level of cAMP. 8-Bromo-cAMP, a cAMP analogue, and forskolin, an activator of adenylate cyclase, inhibited the Ang II-induced SMC migration. These results suggest that Ang II stimulates SMC migration via type 1 receptors in human coronary artery and adrenomedullin inhibits Ang II-induced migration at least partly through a cAMP-dependent mechanism. Taken together with the finding that adrenomedullin is synthesized in and secreted from vascular endothelial cells, this peptide may play a role as a local antimigration factor in certain pathological conditions.

  12. pK(a) determination of angiotensin II receptor antagonists (ARA II) by spectrofluorimetry.

    PubMed

    Cagigal, E; González, L; Alonso, R M; Jiménez, R M

    2001-10-01

    The acid-base equilibrium constants of a new family of antihypertensive drugs, the angiotensin II receptor antagonists (ARA II), Losartan, Irbesartan, Valsartan, Candesartan cilexetil, its metabolite Candesartan M1 and Telmisartan were determined by spectrofluorimetry. Relative fluorescent intensity (I(F,rel))-pH data were treated by graphical (derivatives and curve-fitting) and numerical methods (LETAGROP SPEFO). The resultant pK(a) values at an ionic strength of 0.5 M were (3.15+/-0.07) for Losartan, (4.70+/-0.06) for Irbesartan, (4.90+/-0.09) for Valsartan, (6.0+/-0.1) for Candesartan cilexetil, (3.9+/-0.1) for Candesartan M1, and (4.45+/-0.09) for Telmisartan.

  13. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  14. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    PubMed

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  15. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells

    PubMed Central

    Villalobos, Laura A.; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases. PMID:28018220

  16. Brain regions influenced by the lateral parabrachial nucleus in angiotensin II-induced water intake.

    PubMed

    Davern, P J; McKinley, M J

    2013-11-12

    This study examined which brain regions are influenced by an inhibitory lateral parabrachial nucleus (LPBN) mechanism that affects water intake. Controls and rats with bilateral LPBN lesions were administered angiotensin II (AngII) (0.5mg/kg subcutaneous - SC), drinking responses measured, and brains processed for Fos-immunohistochemistry. A separate group of LPBN-lesioned and non-lesioned animals were denied water for 90 min prior to perfusion to remove any confounding factor of water intake. LPBN-lesioned rats drank a cumulative volume of 9 mL compared with <4 mL by controls (p<0.01). Compared with sham-lesioned animals, Fos expression was attenuated in overdrinking LPBN-lesioned rats in the median preoptic nucleus (MnPO), paraventricular nucleus of the hypothalamus (PVN), supraoptic nucleus (SON) (p<0.001), bed nucleus of the stria terminalis and central nucleus of the amygdala (p<0.01). In LPBN-lesioned rats that did not drink, greater numbers of activated neurons were detected in the PVN (p<0.001), SON (p<0.01), MnPO, nucleus of the solitary tract (NTS) and area postrema (p<0.05) in response to SC AngII, compared with non-lesioned rats. These data suggest that the direct effects of LPBN lesions caused an increase in AngII-induced water intake and in rats that did not drink an increase in Fos expression, while indirect secondary effects of LPBN lesions caused a reduction in Fos expression possibly related to excessive ingestion of water. An inhibitory mechanism, likely related to arterial baroreceptor stimulation, relayed by neurons located in the LPBN influences the responses of the MnPO, PVN and SON to increases in peripheral AngII.

  17. Vascular angiotensin II type 2 receptor attenuates atherosclerosis via a kinin/NO-dependent mechanism.

    PubMed

    Takata, Hiroki; Yamada, Hiroyuki; Kawahito, Hiroyuki; Kishida, Sou; Irie, Daisuke; Kato, Taku; Wakana, Noriyuki; Miyagawa, Sonoko; Fukui, Kensuke; Matsubara, Hiroaki

    2015-06-01

    The angiotensin II (Ang II) type 1 receptor exerts pro-atherogenic action by augmenting oxidative stress, whereas the Ang II type 2 receptor (AT2)-mediated effect on atherosclerosis remains controversial. AT2 transgenic (AT2-Tg) mice, which overexpress AT2 in their vascular smooth muscle cells, were crossed with apoE-deficient (apoE(-/-)) mice to generate AT2 transgenic apoE(-/-) mice (AT2-Tg/apoE(-/-)). A subpressor dose of Ang II infusion exaggerated atherosclerosis development in apoE(-/-) mice, which was markedly suppressed in AT2-Tg/apoE(-/-) mice. Inhibitors of nitric oxide (NO) synthase (L-NAME) or bradykinin type 2 receptor completely abolished AT2-mediated anti-atherogenic actions. The vascular cell adhesion molecule-1 expression levels and degree of monocyte/macrophage accumulation in the intima were also considerably reduced in AT2-Tg/apoE(-/-) mice; these phenomena were completely reversed by L-NAME treatment. Ang II infusion significantly enhanced the accumulation of dihydroethidium-positive mononuclear cells in the intima and mRNA expression levels of Nox2, a phagocytic cell-type NADPH oxidase subunit in apoE(-/-) mice, which was completely inhibited in AT2-Tg/apoE(-/-) mice. Vascular AT2 stimulation exerts anti-atherogenic actions in an endothelial kinin/NO-dependent manner, and its anti-oxidative effect is likely to be exerted by inhibiting the accumulation of superoxide-producing mononuclear leukocytes. © The Author(s) 2013.

  18. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    PubMed Central

    SAAVEDRA, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  19. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders.

    PubMed

    Saavedra, Juan M

    2012-11-01

    The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  20. Signaling of angiotensin II-induced vascular protein synthesis in conduit and resistance arteries in vivo

    PubMed Central

    Daigle, Christine; Martens, Fabrice MAC; Girardot, Daphné; Dao, Huy Hao; Touyz, Rhian M; Moreau, Pierre

    2004-01-01

    Background From in vitro studies, it has become clear that several signaling cascades are involved in angiotensin II-induced cellular hypertrophy. The aim of the present study was to determine some of the signaling pathways mediating angiotensin II (Ang II)-induced protein synthesis in vivo in large and small arteries. Methods Newly synthesized proteins were labeled during 4 hours with tritiated leucine in conscious control animals, or animals infused for 24 hours with angiotensin II (400 ng/kg/min). Hemodynamic parameters were measure simultaneously. Pharmacological agents affecting signaling cascades were injected 5 hours before the end of Ang II infusion. Results Angiotensin II nearly doubled the protein synthesis rate in the aorta and small mesenteric arteries, without affecting arterial pressure. The AT1 receptor antagonist Irbesartan antagonized the actions of Ang II. The Ang II-induced protein synthesis was associated with increased extracellular signal-regulated kinases (ERK)1/2 phosphorylation in aortic, but not in mesenteric vessels. Systemic administration of PD98059, an inhibitor of the ERK-1/2 pathway, produced a significant reduction of protein synthesis rate in the aorta, and only a modest decrease in mesenteric arteries. Rapamycin, which influences protein synthesis by alternative signaling, had a significant effect in both vessel types. Rapamycin and PD98059 did not alter basal protein synthesis and had minimal effects on arterial pressure. Conclusion ERK1/2 and rapamycin-sensitive pathways are involved in pressure-independent angiotensin II-induced vascular protein synthesis in vivo. However, their relative contribution may vary depending on the nature of the artery under investigation. PMID:15134586

  1. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    PubMed

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10(-7)-102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME (N(G)-nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10(-20)-10(-4) mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 logEC50; P<0.001) and NO-dependent dilation (16±3% versus 39±6%; P=0.006). Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P=0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had

  2. Lead exposure, begun in utero, decreases renin and angiotensin II in adult rats

    SciTech Connect

    Victery, W.; Vander, A.J.; Markel, H.; Katzman, L.; Shulak, J.M.; Germain, C.

    1982-05-01

    Male rats were exposed continously to Pb in utero and after birth by giving their mothers, during pregnancy and lactation, drinking water containing 0, 5, or 25 ppm Pb (as Pb acetate) and then continuing this regimen after weaning for approximately 5 months. At the time of sacrifice (5 months) the 5- and 25-ppm groups had mean blood Pb concentrations of 5.6 and 18.2 ..mu..g/dl, respectively. No differences in systolic blood pressure occurred between groups. Rats exposed to 25 ppm manifested a significant decrease in basal plasma renin activity (PRA) but a significant increase in PRA during stimulation of renin release by acute volume depletion. In this latter state, the ratio of angiotensin II to PRA was significantly reduced in the 25-ppm group. Groups exposed to 5 and 25 ppm both had significant decreases in renal renin concentration. We conclude that chronic exposure of rats to doses of Pb which produce blood Pb concentrations similar to those generally present in urban human populations does not induce hypertension but does inhibit renin synthesis and release, as well as reducing plasma angiotension II concentration at any given PRA, either by inhibiting conversion of AI to AII or by enhancing AII catabolism.

  3. Blood, pituitary, and brain renin-angiotensin systems and regulation of secretion of anterior pituitary gland.

    PubMed

    Ganong, W F

    1993-07-01

    In addition to increasing blood pressure, stimulating aldosterone and vasopressin secretion, and increasing water intake, angiotensin II affects the secretion of anterior pituitary hormones. Some of these effects are direct. There are angiotensin II receptors on lactotropes and corticotropes in rats, and there may be receptors on thyrotropes and other secretory cells. Circulating angiotensin II reaches these receptors, but angiotensin II is almost certainly generated locally by the pituitary renin-angiotensin system as well. There are also indirect effects produced by the effects of brain angiotensin II on the secretion of hypophyseotropic hormones. In the anterior pituitary of the rat, the gonadotropes contain renin, angiotensin II, and some angiotensin-converting enzyme. There is debate about whether these cells also contain small amounts of angiotensinogen, but most of the angiotensinogen is produced by a separate population of cells and appears to pass in a paracrine fashion to the gonadotropes. An analogous situation exists in the brain. Neurons contain angiotensin II and probably renin, but most angiotensin-converting enzyme is located elsewhere and angiotensinogen is primarily if not solely produced by astrocytes. Angiotensin II causes secretion of prolactin and adrenocorticotropic hormone (ACTH) when added to pituitary cells in vitro. Paracrine regulation of prolactin secretion by angiotensin II from the gonadotropes may occur in vitro under certain circumstances, but the effects of peripheral angiotensin II on ACTH secretion appear to be mediated via the brain and corticotropin-releasing hormone (CRH). In the brain, there is good evidence that locally generated angiotensin II causes release of norepinephrine that in turn stimulates gonadotropin-releasing hormone-secreting neurons, increasing circulating luteinizing hormone. In addition, there is evidence that angiotensin II acts in the arcuate nuclei to increase the secretion of dopamine into the portal

  4. Paradoxical role of angiotensin II type 2 receptors in resistance arteries of old rats

    PubMed Central

    Pinaud, Frédéric; Bocquet, Arnaud; Dumont, Odile; Retailleau, Kevin; Baufreton, Christophe; Andriantsitohaina, Ramaroson; Loufrani, Laurent; Henrion, Daniel

    2007-01-01

    The role of angiotensin II type 2 receptors (AT2R) remains a matter of controversy. Its vasodilatory and antitrophic properties are well accepted. Nevertheless, in hypertensive rats AT2R stimulation induces a vasoconstriction counteracting flow-mediated dilation (FMD). This contraction is reversed by hydralazine. As FMD is also decreased in aging, another risk factor for cardiovascular diseases, we hypothesized that AT2R function might be altered in old rats resistance arteries. Mesenteric resistance arteries (250 μm diameter) were isolated from old (24 months) and control (4 months) rats receiving hydralazine (16 mg/kg/day, 2 weeks) or water. FMD, NO-mediated dilation and eNOS expression were lower in old than in control rats. AT2R blockade improved FMD in old rats, suggesting that AT2R stimulation produced vasoconstriction. AT2R expression was higher in old rats and mainly located in the smooth muscle layer. In old rats AT2R stimulation induced endothelium-independent contraction, which was suppressed by the antioxydant Tempol. Reactive oxygen species (ROS) level was higher in old rats arteries than in controls. Hydralazine improved FMD and NO-dependent dilation in old rats without change in AT2R expression and location. In old rats treated with hydralazine ROS level was reduced in endothelial and smooth muscle cells and AT2R-dependent contraction was abolished. Thus, AT2R stimulation induced vasoconstriction through activation of ROS production, contributing to decrease FMD in old rats resistance arteries. Hydralazine suppressed AT2R-dependent ROS production and AT2R-dependent contraction, improving FMD. Importantly, endothelial alterations in aging were reversible. These findings are important to consider in the choice of vasoactive drugs in aging. PMID:17485601

  5. Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7).

    PubMed

    Fernandes, Tiago; Hashimoto, Nara Y; Magalhães, Flávio C; Fernandes, Fernanda B; Casarini, Dulce E; Carmona, Adriana K; Krieger, José E; Phillips, M Ian; Oliveira, Edilamar M

    2011-08-01

    Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart.

  6. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina

    PubMed Central

    Kawamura, Hajime; Kobayashi, Masato; Li, Qing; Yamanishi, Shigeki; Katsumura, Kozo; Minami, Masahiro; Wu, David M; Puro, Donald G

    2004-01-01

    The aim of this study was to identify the mechanisms by which angiotensin II alters the physiology of the pericyte-containing microvasculature of the retina. Despite evidence that this vasoactive signal regulates capillary perfusion by inducing abluminal pericytes to contract and thereby microvascular lumens to constrict, little is known about the events linking angiotensin exposure with pericyte contraction. Here, using microvessels freshly isolated from the adult rat retina, we monitored pericyte currents via perforated-patch pipettes, measured pericyte calcium levels with fura-2 and visualized pericyte contractions and lumen constrictions by time-lapse photography. We found that angiotensin activates nonspecific cation (NSC) and calcium-activated chloride channels; the opening of these channels induces a depolarization that is sufficient to activate the voltage-dependent calcium channels (VDCCs) expressed in the retinal microvasculature. Associated with these changes in ion channel activity, intracellular calcium levels rise, pericytes contract and microvascular lumens narrow. Our experiments revealed that an influx of calcium through the NSC channels is an essential step linking the activation of AT1 angiotensin receptors with pericyte contraction. Although not required in order for angiotensin to induce pericytes to contract, calcium entry via VDCCs serves to enhance the contractile response of these cells. In addition to activating nonspecific cation, calcium-activated chloride and voltage-dependent calcium channels, angiotensin II also causes the functional uncoupling of pericytes from their microvascular neighbours. This inhibition of gap junction-mediated intercellular communication suggests a previously unappreciated complexity in the spatiotemporal dynamics of the microvascular response to angiotensin II. PMID:15486015

  7. The Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil Ameliorates Insulin Resistance Induced by Chronic Angiotensin II Treatment in Rat Skeletal Muscle

    PubMed Central

    Lastra, Guido; Santos, Fernando R.; Hooshmand, Payam; Hooshmand, Paria; Mugerfeld, Irina; Aroor, Annayya R.; DeMarco, Vincent G.; Sowers, James R.; Henriksen, Erik J.

    2013-01-01

    Angiotensin receptor (type 1) blockers (ARBs) can reduce both hypertension and insulin resistance induced by local and systemic activation of the renin-angiotensin-aldosterone system. The effectiveness of azilsartan medoxomil (AZIL-M), a novel imidazole-based ARB, to facilitate metabolic improvements in conditions of angiotensin II (Ang II)-associated insulin resistance is currently unknown. The aim of this study was to determine the impact of chronic AZIL-M treatment on glucose transport activity and key insulin signaling elements in red skeletal muscle of Ang II-treated rats. Male Sprague-Dawley rats were treated for 8 weeks with or without Ang II (200 ng/kg/min) combined with either vehicle or AZIL-M (1 mg/kg/day). Ang II induced significant (p < 0.05) increases in blood pressure, which were completely prevented by AZIL-M. Furthermore, Ang II reduced insulin-mediated glucose transport activity in incubated soleus muscle, and AZIL-M co-treatment increased this parameter. Moreover, AZIL-M treatment of Ang II-infused animals increased the absolute phosphorylation of insulin signaling molecules, including Akt [both Ser473 (81%) and Thr308 (23%)] and AS160 Thr642 (42%), in red gastrocnemius muscle frozen in situ. Absolute AMPKα (Thr172) phosphorylation increased (98%) by AZIL-M treatment, and relative Thr389 phosphorylation of p70 S6K1, a negative regulator of insulin signaling, decreased (51%) with AZIL-M treatment. These results indicate that ARB AZIL-M improves the in vitro insulin action on glucose transport in red soleus muscle and the functionality of the Akt/AS160 axis in red gastrocnemius muscle in situ in Ang II-induced insulin-resistant rats, with the latter modification possibly associated with enhanced AMPKα and suppressed p70 S6K1 activation. PMID:23922555

  8. Lack of microsomal prostaglandin E synthase-1 reduces cardiac function following angiotensin II infusion

    PubMed Central

    Yang, Xiao-Ping; He, Quan; LaPointe, Margot C.

    2011-01-01

    Our laboratory previously reported that inducible PGE2 synthase, mPGES-1, contributes to micromolar production of PGE2 in neonatal ventricular myocytes in vitro, which stimulates their growth. We therefore hypothesized that mPGES-1 contributes to cardiac hypertrophy following angiotensin II (ANG II) infusion. To test this hypothesis, we used 10- to 12-wk-old mPGES-1 knockout mice (mPGES-1 KO) and C57Bl/6 control mice infused for 8 wk with either 1.4 mg·kg−1·day−1 ANG II or vehicle subcutaneously. Blood pressure [systolic blood pressure (SBP)] was measured throughout the study, and cardiac function was assessed by M-mode echocardiography at baseline and at 8 wk of infusion. At the conclusion of the study, immunohistochemistry was used to evaluate collagen fraction, myocyte cross-sectional area (MCSA), and apoptosis. At baseline, there was no difference in SBP between mPGES-1 KO mice and C57BL/6 controls. ANG II infusion increased SBP to similar levels in both strains. In control mice, infusion of ANG II increased MCSA and posterior wall thickness at diastole (PWTd) but had little effect on cardiac function, consistent with compensatory hypertrophy. In contrast, cardiac function was worse in mPGES-1 KO mice after ANG II treatment. Ejection fraction declined from 76.2 ± 2.7 to 63.3 ± 3.4% after ANG II, and left ventricular dimension at systole and diastole increased from 1.29 ± 0.02 to 1.78 ± 0.15 mm and from 2.57 ± 0.03 to 2.90 ± 0.13 mm, respectively. Infusion of ANG II increased both the LV-to-body weight and the mass-to-body weight ratios to a similar extent in both strains. However, PWTd increased by a lesser extent in KO mice, suggesting an impaired hypertrophic response. ANG II infusion increased collagen staining similarly in both strains, but TdT-dUTP nick end labeling staining was greater in mPGES-1 KO mice. Overall, these results are consistent with a beneficial effect for mPGES-1 in the maintenance of cardiac function in ANG II

  9. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2)

    PubMed Central

    Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang

    2017-01-01

    Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2−/− mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases. PMID:28322341

  10. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II.

    PubMed

    Utsunomiya, Hirotoshi; Takekoshi, Susumu; Gato, Nobuki; Utatsu, Hisao; Motley, Evangeline D; Eguchi, Kunie; Fitzgerald, Trinita G; Mifune, Mizuo; Frank, Gerald D; Eguchi, Satoru

    2002-12-27

    Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.

  11. [Ca{sup 2+}]{sub i} and PKC-{alpha} are involved in the inhibitory effects of Ib, a novel nonpeptide AngiotensinII subtype AT{sub 1} receptor antagonist, on AngiotensinII-induced vascular contraction in vitro

    SciTech Connect

    Wang Yu; Wang Wei; Wang Qiujuan Wu Jinhui; Xu Jinyi; Wu Xiaoming

    2007-12-07

    The vasoactive peptide AngiotensinII (AngII) is an important factor in the cardiovascular system, exerting most of its effects through AngII receptor type 1 (AT{sub 1}). Ib, a new nonpeptide AT{sub 1} receptor antagonist, has been observed to play a positive role in the treatment of hypertension in preclinical tests. In this study, the inhibitory effects of Ib on AngII-induced vascular contraction in vitro were investigated, and its molecular mechanisms were further explored. In endothelium-denuded aortic rings from rabbits, Ib produced a rightward shift in the concentration-response curve for AngII with a decrease in the maximal contractile response and the pD{sub 2}{sup '} was 7.29. In vascular smooth muscle cells (VSMCs), the specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was inhibited by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. Ib could inhibit both AngII-induced Ca{sup 2+} mobilization from internal stores and Ca{sup 2+} influx. Moreover, the translocation of PKC-{alpha} stimulated by AngII was inhibited by Ib. Thus, the inhibitory effects of Ib might be related with the depression on AngII-induced increase in [Ca{sup 2+}]{sub i} and translocation of PKC-{alpha} through blocking AT{sub 1} receptors.

  12. Protective effects of coenzyme Q10 against angiotensin II-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Tsuneki, Hiroshi; Tokai, Emi; Suzuki, Takashi; Seki, Takayuki; Okubo, Kyosuke; Wada, Tsutomu; Okamoto, Tadashi; Koya, Sakuji; Kimura, Ikuko; Sasaoka, Toshiyasu

    2013-02-15

    Angiotensin II is the major effector in the renin-angiotensin system, and angiotensin II-induced oxidative stress and endothelial dysfunction are profoundly implicated in the pathogenesis of hypertension and cardiovascular disease. In the present study, we investigated the effect of an antioxidant reagent, coenzyme Q10, on angiotensin II-induced oxidative stress in human umbilical vein endothelial cells (HUVEC) to assess its potential usefulness for antioxidant therapy. Treatment of HUVEC with coenzyme Q10 (1-10μM) increased its intracellular levels in a concentration-dependent manner. Coenzyme Q10 (10μM) prevented the actions of angiotensin II (100nM): overproduction of reactive oxygen species, increases in expression of p22(phox) and Nox2 subunits of NADPH oxidase, and inhibition of insulin-induced nitric oxide production. In addition, coenzyme Q10 prevented angiotensin II-induced upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and inhibited their adhesion to U937 monocytic cells. Moreover, treatment of HUVEC with coenzyme Q10 effectively ameliorated angiotensin II-induced increases in expression of Nox2 subunit of NADPH oxidase, ICAM-1, and VCAM-1. These results provide the first in vitro evidence that coenzyme Q10 is an efficient antioxidant reagent to improve angiotensin II-induced oxidative stress and endothelial dysfunction, possibly relevant to the causes of cardiovascular disease.

  13. Central mineralocorticoid receptors and the role of angiotensin II and glutamate in the paraventricular nucleus of rats with angiotensin II-induced hypertension.

    PubMed

    Gabor, Alexander; Leenen, Frans H H

    2013-05-01

    A chronic increase in circulating angiotensin II (Ang II) activates an aldosterone-mineralocorticoid receptor-ouabain neuromodulatory pathway in the brain that increases neuronal activation in hypothalamic nuclei, such as the paraventricular nucleus (PVN) and causes progressive hypertension. Several models of chronic sympathetic hyperactivity are associated with an increase in AT1 and glutamate receptor activation in the PVN. The current study evaluated whether increased angiotensin type 1 (AT1) and glutamate receptor-dependent signaling in the PVN contributes to the maintenance of blood pressure (BP) in Ang II-hypertensive Wistar rats, and the role of aldosterone-mineralocorticoid receptor pathway in this enhanced signaling. After subcutaneous infusion of Ang II for 2 weeks, in conscious rats BP and heart rate were recorded after (1) 10-minute bilateral infusions of candesartan and kynurenate in the PVN; (2) 1 hour intracerebroventricular infusion of eplerenone, and (3) candesartan and kynurenate after eplerenone. Candesartan or kynurenate in the PVN fully reversed the increase in BP from circulating Ang II. Kynurenate after candesartan or candesartan after kynurenate did not further lower BP. Intracerebroventricular infusion of eplerenone at 16 hours after its infusion fully reversed the increase in BP from circulating Ang II. After eplerenone, candesartan and kynurenate in the PVN did not further decrease BP. These findings suggest that increased mineralocorticoid receptor activation in the brain activates a slow neuromodulatory pathway that maintains enhanced AT1 and glutamate receptor-dependent signaling in the PVN, and thereby the hypertension from a chronic increase in circulating Ang II.

  14. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells

    SciTech Connect

    Balla, T.; Guillemette, G.; Baukal, A.J.; Catt, K.J.

    1987-10-14

    Angiotensin II stimulates the formation of several inositol polyphosphates in cultured bovine adrenal glomerulosa cells prelabelled with (/sup 3/H) inositol. Analysis by high performance anion exchange chromatography of the inositol-phosphate compounds revealed the existence of two additional inositol tetrakisphosphate (InsP4) isomers in proximity to Ins-1,3,4,5-P4, the known phosphorylation product of Ins-1,4,5-trisphosphate and precursor of Ins-1,3,4-trisphosphate. Both of these new compounds showed a slow increase after stimulation with angiotensin II. The structure of one of these new InsP4 isomers, which is a phosphorylation product of Ins-1,3,4-P3, was deduced by its resistance to periodate oxidation to be Ins-1,3,4,6-P4. The existence of multiple cycles of phosphorylation-dephosphorylation reactions for the processing of Ins-1,4,5-P4 may represent a new aspect of the inositol-lipid related signalling mechanism in agonist-activated target cells.

  15. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice

    PubMed Central

    2011-01-01

    Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1. PMID:21955547

  16. CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis

    PubMed Central

    Xu, Jing; Lin, Song-Chang; Chen, Jiyuan; Miao, Yuanxin; Taffet, George E.; Entman, Mark L.

    2011-01-01

    Angiotensin II plays an important role in the development of cardiac hypertrophy and fibrosis, but the underlying cellular and molecular mechanisms are not completely understood. Recent studies have shown that bone marrow-derived fibroblast precursors are involved in the pathogenesis of cardiac fibrosis. Since bone marrow-derived fibroblast precursors express chemokine receptor, CCR2, we tested the hypothesis that CCR2 mediates the recruitment of fibroblast precursors into the heart, causing angiotensin II-induced cardiac fibrosis. Wild-type and CCR2 knockout mice were infused with angiotensin II at 1,500 ng·kg−1·min−1. Angiotensin II treatment resulted in elevated blood pressure and cardiac hypertrophy that were not significantly different between wild-type and CCR2 knockout mice. Angiotensin II treatment of wild-type mice caused prominent cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors expressing the hematopoietic markers, CD34 and CD45, and the mesenchymal marker, collagen I. However, angiotensin II-induced cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors in the heart were abrogated in CCR2 knockout mice. Furthermore, angiotensin II treatment of wild-type mice increased the levels of collagen I, fibronectin, and α-smooth muscle actin in the heart, whereas these changes were not observed in the heart of angiotensin II-treated CCR2 knockout mice. Functional studies revealed that the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and left ventricular dilatation in angiotensin II-treated CCR2 knockout mice. Our data demonstrate that CCR2 plays a pivotal role in the pathogenesis of angiotensin II-induced cardiac fibrosis through regulation of bone marrow-derived fibroblast precursors. PMID:21572015

  17. Angiotensin II induces the expression of c-reactive protein via MAPK-dependent signal pathway in U937 macrophages.

    PubMed

    Li, Ming; Liu, Juntian; Han, Chunjie; Wang, Bin; Pang, Xiaoming; Mao, Junjun

    2011-01-01

    Atherosclerosis is an inflammatory disease in the vessel wall. As an inflammatory molecule, C-reactive protein (CRP) participates in all stages of atherosclerotic process. Although angiotensin II (Ang II) can stimulate the vascular cells to produce CRP, it is unknown whether Ang II induces CRP expression in macrophages. The present study was to observe effect of Ang II on CRP production and the related signal pathway in U937 macrophages so as to provide more evidence for the proinflammatory action of Ang II. The results showed that Ang II significantly increased mRNA and protein expression of CRP in U937 macrophages in time- and concentration-dependent manners. AT(1) receptor blocker losartan blocked Ang II -induced CRP expression in mRNA and protein levels in U937 macrophages. Losartan and complex II inhibitor TIFA decreased Ang II -stimulated reactive oxygen species (ROS) generation, and antioxidant NAC completely abolished Ang II -induced CRP expression in U937 macrophages. The further study indicated that losartan, NAC, MEK1/2 inhibitor PD98059, p38MAPK inhibitor SB203580 obviously inhibited ERK1/2 and p38MAPK phosphorylation, and PD98059, SB203580 and NF-κB inhibitor PDTC reduced Ang II -induced mRNA and protein expression of CRP in U937 macrophages. These demonstrate that Ang II is capable of inducing CRP generation in macrophages via AT(1)-ROS-ERK1/2/p38MAPK-NF-κB signal pathway, which contributes to better understanding of the proinflammatory and proatherosclerotic actions of Ang II.

  18. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II.

    PubMed

    Ito, Takashi; Schaffer, Stephen; Azuma, Junichi

    2014-01-01

    Taurine, a ubiquitous endogenous sulfur-containing amino acid, possesses numerous pharmacological and physiological actions, including antioxidant activity, modulation of calcium homeostasis and antiapoptotic effects. There is mounting evidence supporting the utility of taurine as a pharmacological agent against heart disease, including chronic heart failure (CHF). In the past decade, angiotensin II blockade and β-adrenergic inhibition have served as the mainstay in the treatment of CHF. Both groups of pharmaceutical agents decrease mortality and improve the quality of life, a testament to the critical role of the sympathetic nervous system and the renin--angiotensin system in the development of CHF. Taurine has also attracted attention because it has beneficial actions in CHF, in part by its demonstrated inhibition of the harmful actions of the neurohumoral factors. In this review, we summarize the beneficial actions of taurine in CHF, focusing on its antagonism of the catecholamines and angiotensin II.

  19. Effects of angiotensin II and ionomycin on fluid and bicarbonate absorption in the rat proximal tubule

    SciTech Connect

    Chatsudthipong, V.; Chan, Y.L.

    1986-03-01

    Microperfusion of proximal convoluted tubule(PCT) and peritubular capillaries was performed to examine the effects of angiotensin II(Ang II) and ionomycin on fluid and bicarbonate absorption. Bicarbonate was determined by microcalorimetry and C-14 inulin was used as a volume marker. The rates of bicarbonate absorption (JHCO/sub 3/) was 143 peq/min x mm and fluid absorption(Jv) was 2.70 nl/min x mm, when PCT and capillary perfusate contained normal Ringer solution. Addition of Ang II (10/sup -6/M) to the capillary perfusate caused reductions of JHCO/sub 3/ and Jv by 35%. A similar effect was observed when ionomycin was added to the capillary perfusate. Ang II antagonist, (Sar/sup 1/, Ile/sup 8/)-Angiotensin II(10/sup -6/M), completely blocked the inhibitory effect of Ang II on Jv and JHCO/sub 3/. Removal of calcium from both luminal and capillary perfusate did not change the effect of Ang II on Jv and JHCO/sub 3/. Our results indicate that Ang II inhibits the sodium-hydrogen exchanger in the proximal tubule via interacting with angiotensin receptor. The mechanism of Ang II action may involve mobilization of intracellular calcium.

  20. Angiotensin II Facilitates Fibrogenic Effect of TGF-β1 through Enhancing the Down-Regulation of BAMBI Caused by LPS: A New Pro-Fibrotic Mechanism of Angiotensin II

    PubMed Central

    Shi, Xiao-Lan; Zhao, Xu-Wen; Luo, Hai-Hua; Li, Xu

    2013-01-01

    Angiotensin II has progressively been considered to play an important role in the development of liver fibrosis, although the mechanism isn't fully understood. The aim of this study was to investigate a possible pro-fibrotic mechanism, by which angiotensin II would enhance the pro-fibrotic effect of transforming growth factor beta 1 (TGF-β1) through up-regulation of toll-like receptor 4 (TLR4) and enhancing down-regulation of TGF-β1 inhibitory pseudo-receptor—BAMBI caused by LPS in hepatic stellate cells (HSCs). Firstly, the synergistic effects of angiotensin II, TGF-β1 and LPS on collagen 1α production were confirmed in vitro by ELISA, in which angiotensin II, LPS and TGF-β1 were treated sequentially, and in vivo by immunofluorescence, in the experiments single or multiple intra-peritoneally implanted osmotic mini-pumps administrating angiotensin II or LPS combined with intra-peritoneal injections of TGF-β1 were used. We also found that only LPS and TGF-β1 weren't enough to induce obvious fibrogenesis without angiotensin II. Secondly, to identify the reason of why angiotensin II is so important, the minute level of TLR4 in activated HSCs - T6 and primary quiescent HSCs of rat, up-regulation of TLR4 by angiotensin II and blockage by different angiotensin II receptor type 1 (AT1) blockers in HSCs were assayed by western blotting in vitro and immunofluorescence in vivo. Finally, BAMBI expression level, which is regulated by LPS-TLR4 pathway, was detected by qRT-PCR and results showed angiotensin II enhanced the down-regulation of BAMBI mRNA caused by LPS in vitro and in vivo, and TLR4 neutralization antibody blocked this interactive effect. These data demonstrated that angiotensin II enhances LPS-TLR4 pathway signaling and further down-regulates expression of BAMBI through up-regulation of TLR4, which results in facilitation of pro-fibrotic activity of TGF-β1. Angiotensin II, LPS and TGF-β1 act synergistically during hepatic fibrogenesis, showing

  1. Role of p47phox in Vascular Oxidative Stress and Hypertension Caused by Angiotensin II

    PubMed Central

    Landmesser, Ulf; Cai, Hua; Dikalov, Sergey; McCann, Louise; Hwang, Jinah; Jo, Hanjoong; Holland, Steven M.; Harrison, David G.

    2016-01-01

    Hypertension caused by angiotensin II is dependent on vascular superoxide (O2·–) production. The nicotin-amide adenine dinucleotide phosphate (NAD[P]H) oxidase is a major source of vascular O2·– and is activated by angiotensin II in vitro. However, its role in angiotensin II–induced hypertension in vivo is less clear. In the present studies, we used mice deficient in p47phox, a cytosolic subunit of the NADPH oxidase, to study the role of this enzyme system in vivo. In vivo, angiotensin II infusion (0.7 mg/kg per day for 7 days) increased systolic blood pressure from 105±2 to 151±6 mm Hg and increased vascular O2·– formation 2- to 3-fold in wild-type (WT) mice. In contrast, in p47phox−/− mice the hypertensive response to angiotensin II infusion (122±4 mm Hg; P<0.05) was markedly blunted, and there was no increase of vascular O2·– production. In situ staining for O2·– using dihydroethidium revealed a marked increase of O2·–production in both endothelial and vascular smooth muscle cells of angiotensin II–treated WT mice, but not in those of p47phox−/− mice. To directly examine the role of the NAD(P)H oxidase in endothelial production of O2·–, endothelial cells from WT and p47phox−/− mice were cultured. Western blotting confirmed the absence of p47phox in p47phox−/− mice. Angiotensin II increased O2·– production in endothelial cells from WT mice, but not in those from p47phox−/− mice, as determined by electron spin resonance spectroscopy. These results suggest a pivotal role of the NAD(P)H oxidase and its subunit p47phox in the vascular oxidant stress and the blood pressure response to angiotensin II in vivo. PMID:12364355

  2. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling.

    PubMed

    Du, Ning; Feng, Jiang; Hu, Li-Juan; Sun, Xin; Sun, Hai-Bing; Zhao, Yang; Yang, Yi-Ping; Ren, Hong

    2012-06-01

    Chronic stress and a high-fat diet are well-documented risk factors associated with the renin-angiotensin system in the development of breast cancer. The angiotensin II type 1 receptor (AT1R) is a novel component of the renin-angiotensin system. Several recent studies have focused on the function of AT1R in cell proliferation during cancer development. Thus, we hypothesized that angiotensin II (Ang Ⅱ) can promote proliferation of breast cancer via activated AT1R; the activation of AT1R may play an important role in promoting breast cancer growth, and AT1R blocker (ARB) may suppress the promotional effect on proliferation by antagonizing AT1R. The expression level of AT1R was found to be significantly upregulated in breast cancer cells by immunohistochemistry, but no correlation between AT1R expression and ER/PR/Her-2 expression was observed. The AT1R(+)-MCF-7 cell line exhibited high expression of AT1R protein, and we generated the AT1R(-)-MCF-7 cell line using RNA interference. ARBs, and in particular irbesartan, effectively inhibited the effects of Ang II on cell proliferation, cell cycle development and downstream AT1R signaling events, including the activation of the Ras-Raf-MAPK pathway and the transcription factors NF-κB and CREB. Irbesartan also significantly altered p53, PCNA and cyclin D1 expression, which was also influenced by activated AT1R in AT1R(+)-MCF-7 cells. These results suggest that ARBs may be useful as a novel preventive and therapeutic strategy for treating breast cancer.

  3. Therapeutic perspective: starting an angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in a diabetic patient.

    PubMed

    Jarred, Ghassan; Kennedy, R Lee

    2010-02-01

    There are extensive data confirming involvement of the renin-angiotensin system in microvascular and macrovascular complications of diabetes. Blockade of the system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) is regarded as the first-line approach to managing hypertension and end-organ protection in patients with diabetes. ACE inhibitors are still the preferred agents for most patients. Dose should be lower with renal impairment unless an agent which is not excreted by the kidneys is chosen. Dose should be titrated up to the maximum tolerated to optimize end-organ protection, and intermediate-acting agents should be given in a twice daily divided dose when higher doses are used. Electrolytes should be checked before commencing, 1-2 weeks later, and after each dose increment. A modest decrease in estimated glomerular filtration rate (eGFR) and increase in creatinine often occurs with ACE inhibitors or ARBs. The agents may need to be discontinued if eGFR decreases by >15%, if creatinine increases by >20%, or if hyperkalemia develops. Cough occurs in 5-10% of patients taking ACE inhibitor, but not with ARBs. Angioedema is probably equally common with ACE inhibitor or ARBs. It is not widely appreciated that ACE inhibitors may precipitate hypoglycaemia in patients taking glucose-lowering medication. The combination of ACE inhibitor and ARB is not routinely indicated for either hypertension or end-organ protection. While patients should not be denied the undoubted benefits of these important classes of drugs, we should also guard against their indiscriminate use in patients with diabetes. We must also ensure that patients receive appropriate counselling and monitoring.

  4. Therapeutic perspective: starting an angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in a diabetic patient

    PubMed Central

    Jarred, Ghassan; Kennedy, R. Lee

    2010-01-01

    There are extensive data confirming involvement of the renin-angiotensin system in microvascular and macrovascular complications of diabetes. Blockade of the system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) is regarded as the first-line approach to managing hypertension and end-organ protection in patients with diabetes. ACE inhibitors are still the preferred agents for most patients. Dose should be lower with renal impairment unless an agent which is not excreted by the kidneys is chosen. Dose should be titrated up to the maximum tolerated to optimize end-organ protection, and intermediate-acting agents should be given in a twice daily divided dose when higher doses are used. Electrolytes should be checked before commencing, 1–2 weeks later, and after each dose increment. A modest decrease in estimated glomerular filtration rate (eGFR) and increase in creatinine often occurs with ACE inhibitors or ARBs. The agents may need to be discontinued if eGFR decreases by >15%, if creatinine increases by >20%, or if hyperkalemia develops. Cough occurs in 5–10% of patients taking ACE inhibitor, but not with ARBs. Angioedema is probably equally common with ACE inhibitor or ARBs. It is not widely appreciated that ACE inhibitors may precipitate hypoglycaemia in patients taking glucose-lowering medication. The combination of ACE inhibitor and ARB is not routinely indicated for either hypertension or end-organ protection. While patients should not be denied the undoubted benefits of these important classes of drugs, we should also guard against their indiscriminate use in patients with diabetes. We must also ensure that patients receive appropriate counselling and monitoring. PMID:23148146

  5. Angiotensin II Levels in Gingival Tissues from Healthy Individuals, Patients with Nifedipine Induced Gingival Overgrowth and Non Responders on Nifedipine

    PubMed Central

    Balaji, Anitha; Balaji, Thodur Madapusi

    2015-01-01

    Context The Renin Angiotensin system has been implicated in the pathogenesis of Drug Induced Gingival Overgrowth (DIGO), a fibrotic condition, caused by Phenytoin, Nifedipine and Cyclosporine. Aim This study quantified Angiotensin II levels in gingival tissue samples obtained from healthy individuals, patients on Nifedipine manifesting/not manifesting drug induced gingival overgrowth. Materials and Methods Gingival tissue samples were obtained from healthy individuals (n=24), patients on nifidipine manifesting gingival overgrowth (n= 18) and patients on nifidipine not manifesting gingival overgrowth (n=8). Angiotensin II levels were estimated in the samples using a commercially available ELISA kit. Results Angiotensin II levels were significantly elevated in patients on Nifedipine manifesting gingival overgrowth compared to the other 2 groups (p<0.01). Conclusion The results of the study give an insight into the role played by Angiotensin II in the pathogenesis of drug induced gingival overgrowth. PMID:26436057

  6. Role of α1D -adrenoceptors in vascular wall hypertrophy during angiotensin II-induced hypertension.

    PubMed

    Gallardo-Ortíz, I A; Rodríguez-Hernández, S N; López-Guerrero, J J; Del Valle-Mondragón, L; López-Sánchez, P; Touyz, R M; Villalobos-Molina, R

    2015-09-01

    The in vivo effect of continuous angiotensin II (Ang II) infusion on arterial blood pressure, vascular hypertrophy and α1 -adrenoceptors (α1 -ARs) expression was explored. Alzet(®) minipumps filled with Ang II (200 ng kg(-1)  min(-1) ) were subcutaneously implanted in male Wistar rats (3 months-old). Groups of rats were also treated with losartan, an AT1 R antagonist, or with BMY 7378, a selective α1D -AR antagonist. Blood pressure was measured by tail-cuff; after 2 or 4 weeks of treatment, vessels were isolated for functional and structural analyses. Angiotensin II increased systolic blood pressure. Phenylephrine-induced contraction in aorta was greater (40% higher) in Ang II-treated rats than in the controls, and similar effect occurred with KCl 80 mm. Responses in tail arteries were not significantly different among the different groups. Angiotensin II decreased α1D -ARs without modifying the other α1 -ARs and induced an increase in media thickness (hypertrophy) in aorta, while no structural change occurred in tail artery. Losartan prevented and reversed hypertension and hypertrophy, while BMY 7378 prevented and reversed the aorta's hypertrophic response, without preventing or reversing hypertension. Findings indicate that Ang II-induced aortic hypertrophic response involves Ang II-AT1 Rs and α1D -ARs. Angiotensin II-induced α1D -AR-mediated vascular remodeling occurs independently of hypertension. Findings identify a α1D -AR-mediated process whereby Ang II influences aortic hypertrophy independently of blood pressure elevation. © 2016 John Wiley & Sons Ltd.

  7. Perinatal 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure Sensitizes Offspring to Angiotensin II-induced Hypertension

    PubMed Central

    Aragon, Andrea C.; Goens, M. Beth; Carbett, Eleanor; Walker, Mary K.

    2013-01-01

    In utero and lactational exposure of mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to cardiac hypertrophy and hydronephrosis in adulthood. We tested the hypothesis that perinatal TCDD exposure increases the susceptibility to cardiovascular disease when offspring are exposed to a common cardiovascular disease risk factor, angiotensin II (Ang II). Pregnant C57BL/6N mice were exposed to corn oil (control) or 6.0 µg/kg TCDD on gestation day 14.5. Male offspring were then exposed to a subpressor (0.1 mg/kg/d) or pressor (0.7 mg/kg/d) dose of Ang II at 3.5 mo and cardiac morphology and blood pressure analyzed, respectively. Perinatal TCDD exposure increased left ventricular cavity dilation during diastole, and wall thickness during diastole and systole. While Ang II stimulated an increase in wall thickness, the degree of increase was equivalent between control and TCDD offspring. In contrast, perinatal TCDD exposure did not alter basal blood pressure. However, Ang II increased systolic blood pressure more rapidly and to a greater degree in TCDD offspring. Further, Ang II stimulated renal myofibroblast differentiation and collagen deposition to a greater degree, and tended to increase procollagen I mRNA in TCDD offspring, compared to controls. These data suggest that perinatal TCDD exposure increases the susceptibility of offspring to renal fibrosis and hypertension in adulthood. PMID:18670907

  8. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure sensitizes offspring to angiotensin II-induced hypertension.

    PubMed

    Aragon, Andrea C; Goens, M Beth; Carbett, Eleanor; Walker, Mary K

    2008-01-01

    In utero and lactational exposure of mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to cardiac hypertrophy and hydronephrosis in adulthood. We tested the hypothesis that perinatal TCDD exposure increases the susceptibility to cardiovascular disease when offspring are exposed to a common cardiovascular disease risk factor, angiotensin II (Ang II). Pregnant C57BL/6N mice were exposed to corn oil (control) or 6.0 microg/kg TCDD on gestation day 14.5. Male offspring were then exposed to a subpressor (0.1 mg/kg/day) or pressor (0.7 mg/kg/day) dose of Ang II at 3.5 months and cardiac morphology and blood pressure analyzed, respectively. Perinatal TCDD exposure increased left ventricular cavity dilation during diastole, and wall thickness during diastole and systole. While Ang II stimulated an increase in wall thickness, the degree of increase was equivalent between control and TCDD offspring. In contrast, perinatal TCDD exposure did not alter basal blood pressure. However, Ang II increased systolic blood pressure more rapidly and to a greater degree in TCDD offspring. Further, Ang II stimulated renal myofibroblast differentiation and collagen deposition to a greater degree, and tended to increase procollagen I mRNA in TCDD offspring, compared to controls. These data suggest that perinatal TCDD exposure increases the susceptibility of offspring to renal fibrosis and hypertension in adulthood.

  9. Kallikrein generates angiotensin II but not bradykinin in the plasma of the urodele, Amphiuma tridactylum.

    PubMed

    Conlon, J M; Yano, K

    1995-03-01

    Incubation of heat-denatured plasma from the urodele, Amphiuma tridactylum (three-toed amphiuma) or from the anurans Rana ridibunda (European green frog) and Rana catesbeiana (American bullfrog) with either glass beads, porcine pancreatic kallikrein or trypsin did not generate bradykinin-like immunoreactivity. However, peptides were generated in kallikrein-treated amphiuma plasma that contracted vascular rings from the bullfrog systemic arch and had a spasmogenic action on the bullfrog urinary bladder. These peptides which were not generated in trypsin-treated plasma, were purified to homogeneity by reverse-phase HPLC and their primary structures established as: Asp-Arg-Val-Tyr-Val-His-Pro-Phe ([Asp1,Val5]angiotensin II) and Asn-Arg-Val-Tyr-Val-His-Pro-Phe ([Asn1,Val5]angiotensin II). Incubation of synthetic [Asn1,Val5]angiotensin II with amphiuma plasma resulted in deamidation to [Asp1,Val5]angiotensin II. The data suggest, therefore that amphiuma plasma contains an L-asparagine amidohydrolase (asparaginase), as previously described for the eel. Although bradykinin-related peptides have been isolated from frog skin, this study provides evidence tha the kallikrein-kinin system may be absent from the blood of amphibia.

  10. Altered melatonin production in TGR(mREN2)27 rats: on the regulation by adrenergic agonists, antagonists and angiotensin II in cultured pinealocytes.

    PubMed

    Enzminger, H; Witte, K; Lemmer, B

    2001-10-01

    Transgenic TGR(mREN2)27 rats (TGR), carrying an additional mouse renin gene, are characterized by severe hypertension, an inverse circadian blood pressure profile, a blunted response to photic entrainment signals, and an increased nocturnal production of the pineal hormone melatonin. In order to evaluate the contribution of the over-expressed renin-angiotensin system to the function of the pineal gland in TGR, we studied the adrenergic and angiotensin II (Ang II)-mediated regulation of melatonin synthesis using dispersed pinealocytes from TGR and from Sprague-Dawley control rats (SDR). Isoproterenol was more effective in stimulating melatonin release in pinealocytes from TGR than from SDR, whereas the maximum effect of norepinephrine (NE) stimulation did not differ between the strains. Prazosin reduced the NE-mediated melatonin release only in SDR but not in TGR pinealocytes. Competition experiments with (+/-)-, (+)-, (-)-propranolol and (+/-)-atenolol revealed one homogeneous population of beta1-adrenoceptors. Ang II had no significant effect on basal or isoproterenol-induced melatonin release in either strain. In conclusion, TGR pinealocytes were more sensitive to beta-adrenergic stimulation than SDR pinealocytes, but lacked the alpha1-adrenergic potentiation of beta-adrenergic induced melatonin release. The renin-angiotensin system was not directly involved in the regulation of melatonin synthesis by rat pinealocytes in vitro.

  11. Inhibitory effects of losartan and azelnidipine on augmentation of blood pressure variability induced by angiotensin II in rats.

    PubMed

    Jiang, Danfeng; Kawagoe, Yukiko; Kuwasako, Kenji; Kitamura, Kazuo; Kato, Johji

    2017-07-05

    Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    PubMed

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  13. Renoprotective Effect of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Diabetic Patients with Proteinuria.

    PubMed

    Hsu, Feng-Yi; Lin, Fang-Ju; Ou, Huang-Tz; Huang, Shih-Hui; Wang, Chi-Chuan

    2017-01-01

    Limited evidence exists on the choice of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) in diabetic patients with nephropathy. We aim to assess the renal effectiveness and safety of these drugs among diabetic nephropathy patients. This retrospective cohort study was conducted with diabetic nephropathy patients who initiated ACEI or ARB monotherapy. The primary outcome was a composite of end stage of renal disease and renal transplantation, and the secondary outcome was all-cause mortality. The safety endpoint was hyperkalemia. Three thousand seven hundred and thirty-nine ACEI users and 3,316 ARB users were identified. ARBs seemed to be inferior to ACEIs given their poorer renal outcome (HR 1.31; 95% CI, 1.15-1.50) and higher risk of hyperkalemia (HR 1.17; 95% CI, 1.04-1.32). Among the four ACEIs compared, captopril was an inferior treatment choice given its poorer renal outcomes (HR 1.42; 95% CI, 1.05-1.93) and higher mortality rate (HR 1.25; 95% CI, 1.01-1.55). Irbesartan appeared to be a poorer treatment choice among the three ARBs compared, given its inferior renal protective effect (HR 1.35; 95% CI, 1.03-1.78). Our findings suggest ACEIs as a relatively more renoprotective and safer treatment as compared to ARBs. Captopril and irbesartan may be inferior to the other ACEIs and ARBs respectively. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation.

    PubMed

    Taguchi, Kumiko; Hida, Mari; Narimatsu, Haruka; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2017-02-01

    In various diseases, including diabetes, extracellular vesicles (EVs) have been detected in circulation and tissues. EVs are small membrane vesicles released from various cell types under varying conditions. Recently, endothelial cell-derived EVs (EEVs) were identified as a marker of endothelial dysfunction in diabetes, but the ensuing mechanisms remain poorly understood. In this study, we dissected the ensuing pathways with respect to nitric oxide (NO) production under the condition of type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were stimulated with glucose alone and with glucose in combination with angiotensin II (Ang II) for 48 h. In supernatants from glucose + Ang II-stimulated HUVECs, release of EEVs was assessed using Western blotting with an anti-CD144 antibody. EEV release was significantly increased after stimulation of HUVECs, and high glucose + Ang II-derived EEVs impaired ACh-induced vascular relaxation responses and NO production in mice aortic rings. Furthermore, high glucose + Ang II-derived EEVs induced ERK1/2 signalling and decreased endothelial NO synthase (eNOS) protein expression in mice aortas. Furthermore, in the presence of the MEK/ERK1/2 inhibitor PD98059, high glucose plus Ang II treatment stimulated EEVs in HUVECs and those EEVs prevented the impairments of ACh-induced relaxation and NO production in mice aortas. These data strongly indicate that high glucose and Ang II directly affect endothelial cells and the production of EEVs; the resultant EEVs aggravate endothelial dysfunction by regulating eNOS protein levels and ERK1/2 signalling in mice aortas.

  15. Use of Antihypertensive Drugs and Ischemic Stroke Severity - Is There a Role for Angiotensin-II?

    PubMed

    Hwong, Wen Yea; Bots, Michiel L; Selvarajah, Sharmini; Abdul Aziz, Zariah; Sidek, Norsima Nazifah; Spiering, Wilko; Kappelle, L Jaap; Vaartjes, Ilonca

    2016-01-01

    The increase in angiotensin II (Ang II) formation by selected antihypertensive drugs is said to exhibit neuroprotective properties, but this translation into improvement in clinical outcomes has been inconclusive. We undertook a study to investigate the relationship between types of antihypertensive drugs used prior to a stroke event and ischemic stroke severity. We hypothesized that use of antihypertensive drugs that increase Ang II formation (Ang II increasers) would reduce ischemic stroke severity when compared to antihypertensive drugs that suppress Ang II formation (Ang II suppressors). From the Malaysian National Neurology Registry, we included hypertensive patients with first ischemic stroke who presented within 48 hours from ictus. Antihypertensive drugs were divided into Ang II increasers (angiotensin-I receptor blockers (ARBs), calcium channel blockers (CCBs) and diuretics) and Ang II suppressors (angiotensin-converting-enzyme inhibitors (ACEIs) and beta blockers). We evaluated stroke severity during admission with the National Institute of Health Stroke Scale (NIHSS). We performed a multivariable logistic regression with the score being dichotomized at 15. Scores of less than 15 were categorized as less severe stroke. A total of 710 patients were included. ACEIs was the most commonly prescribed antihypertensive drug in patients using Ang II suppressors (74%) and CCBs, in patients prescribed with Ang II increasers at 77%. There was no significant difference in the severity of ischemic stroke between patients who were using Ang II increasers in comparison to patients with Ang II suppressors (OR: 1.32, 95%CI: 0.83-2.10, p = 0.24). In our study, we found that use of antihypertensive drugs that increase Ang II formation was not associated with less severe ischemic stroke as compared to use of antihypertensive drugs that suppress Ang II formation.

  16. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    PubMed

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Angiotensin type 2 receptor stimulation increases renal function in female, but not male, spontaneously hypertensive rats.

    PubMed

    Hilliard, Lucinda M; Chow, Charis L E; Mirabito, Katrina M; Steckelings, U Muscha; Unger, Thomas; Widdop, Robert E; Denton, Kate M

    2014-08-01

    Accumulating evidence suggests that the protective pathways of the renin-angiotensin system are enhanced in women, including the angiotensin type 2 receptor (AT2R), which mediates vasodilatory and natriuretic effects. To provide insight into the sex-specific ability of pharmacological AT2R stimulation to modulate renal function in hypertension, we examined the influence of the AT2R agonist, compound 21 (100-300 ng/kg per minute), on renal function in 18- to 19-week-old anesthetized male and female spontaneously hypertensive rats. AT2R stimulation significantly increased renal blood flow in female hypertensive rats (PTreatment<0.001), without influencing arterial pressure. For example, at 300 ng/kg per minute of compound 21, renal blood flow increased by 14.3±1.8% from baseline. Furthermore, at 300 ng/kg per minute of compound 21, a significant increase in urinary sodium excretion was observed in female hypertensive rats (+180±59% from baseline; P<0.05 versus vehicle-treated rats). This was seen in the absence of any major change in glomerular filtration rate, indicating that the natriuretic effects of AT2R stimulation were likely the result of altered renal tubular function. Conversely, we did not observe any significant effect of AT2R stimulation on renal hemodynamic or excretory function in male hypertensive rats. Finally, gene expression studies confirmed greater renal AT2R expression in female than in male hypertensive rats. Taken together, acute AT2R stimulation enhanced renal vasodilatation and sodium excretion without concomitant alterations in glomerular filtration rate in female hypertensive rats. Chronic studies of AT2R agonist therapy on renal function and arterial pressure in hypertensive states are now required to establish the suitability of AT2R as a therapeutic target for cardiovascular disease, particularly in women. © 2014 American Heart Association, Inc.

  18. Cellular FLICE-inhibitory protein protects against cardiac remodeling induced by angiotensin II in mice.

    PubMed

    Li, Hongliang; Tang, Qi-Zhu; Liu, Chen; Moon, Mark; Chen, Manyin; Yan, Ling; Bian, Zhou-Yan; Zhang, Yan; Wang, Ai-Bing; Nghiem, Mai P; Liu, Peter P

    2010-12-01

    The development of cardiac hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response that may eventually lead to ventricular dilatation and heart failure. Cellular FLICE-inhibitory protein (cFLIP) is a homologue of caspase 8 without caspase activity that inhibits apoptosis initiated by death receptor signaling. Previous studies showed that cFLIP expression was markedly decreased in the ventricular myocardium of patients with end-stage heart failure. However, the critical role of cFLIP on cardiac remodeling remains unclear. To specifically determine the role of cFLIP in pathological cardiac remodeling, we used heterozygote cFLIP(+/-) mice and transgenic mice with cardiac-specific overexpression of the human cFLIP(L) gene. Our results demonstrated that the cFLIP(+/-) mice were susceptible to cardiac hypertrophy and fibrosis through inhibition of mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 signaling, whereas the transgenic mice displayed the opposite phenotype in response to angiotensin II stimulation. These studies indicate that cFLIP protein is a crucial component of the signaling pathway involved in cardiac remodeling and heart failure.

  19. Different reactivity to angiotensin II of peripheral and renal arteries in spontaneously hypertensive rats: effect of acute and chronic angiotensin converting enzyme inhibition

    NASA Technical Reports Server (NTRS)

    Guidi, E.; Hollenberg, N. K.

    1986-01-01

    We assessed renal blood flow and pressor responses to graded angiotensin II doses in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats ingesting a diet containing 1.6% sodium basally and after acute and chronic angiotensin converting enzyme (ACE) inhibition with captopril. In the basal state the pressor response to angiotensin II was enhanced (P<0.0005) and the renal vascular response was blunted (P<0.005) in SHR compared with WKY rats. After acute captopril administration the pressor response was enhanced in both strains, and the difference between them was maintained, while the renal vascular response was enhanced in both, but more in SHR, so that the renal vascular response in the SHR became larger than in WKY (P<0.0001). Chronic captopril treatment blunted both pressor and renal responses in WKY rats, but only the pressor response in SHR. The renal vessels of SHR seem to be different from those of WKY rats in reaction to exogenous angiotensin II, and in response to both acute administration of captopril (probably acting through blockade of angiotensin II production) and chronic administration of captopril (probably acting mainly through accumulation of kinin or production of prostaglandins).

  20. Angiotensin II impairs endothelial progenitor cell number and function in vitro and in vivo: implications for vascular regeneration.

    PubMed

    Endtmann, Cathleen; Ebrahimian, Talin; Czech, Thomas; Arfa, Omar; Laufs, Ulrich; Fritz, Mathias; Wassmann, Kerstin; Werner, Nikos; Petoumenos, Vasileios; Nickenig, Georg; Wassmann, Sven

    2011-09-01

    Endothelial progenitor cells (EPCs) contribute to endothelial regeneration. Angiotensin II (Ang II) through Ang II type 1 receptor (AT(1)-R) activation plays an important role in vascular damage. The effect of Ang II on EPCs and the involved molecular mechanisms are incompletely understood. Stimulation with Ang II decreased the number of cultured human early outgrowth EPCs, which express both AT(1)-R and Ang II type 2 receptor, mediated through AT(1)-R activation and induction of oxidative stress. Ang II redox-dependently induced EPC apoptosis through increased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase phosphorylation; decreased Bcl-2 and increased Bax expression; and activation of caspase 3 but had no effect on the low cell proliferation. In addition, Ang II impaired colony-forming and migratory capacities of early outgrowth EPCs. Ang II infusion diminished numbers and functional capacities of EPCs in wild-type (WT) but not AT(1)a-R knockout mice (AT(1)a(-/-)). Reendothelialization after focal carotid endothelial injury was decreased during Ang II infusion. Salvage of reendothelialization by intravenous application of spleen-derived progenitor cells into Ang II-treated WT mice was pronounced with AT(1)a(-/-) cells compared with WT cells, and transfusion of Ang II-pretreated WT cells into WT mice without Ang II infusion was associated with less reendothelialization. Transplantation of AT(1)a(-/-) bone marrow reduced atherosclerosis development in cholesterol-fed apolipoprotein E-deficient mice compared with transplantation of apolipoprotein E-deficient or WT bone marrow. Randomized treatment of patients with stable coronary artery disease with the AT(1)-R blocker telmisartan significantly increased the number of circulating CD34/KDR-positive EPCs. Ang II through AT(1)-R activation, oxidative stress, and redox-sensitive apoptosis signal-regulating kinase 1-dependent proapoptotic pathways impairs EPCs in

  1. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension.

    PubMed

    Wang, Hong-Wei; Huang, Bing S; White, Roselyn A; Chen, Aidong; Ahmad, Monir; Leenen, Frans H H

    2016-08-04

    Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. Intra-SFO infusion of AAV-MR- or AT1aR-siRNA prevented the Ang II-induced increase in AT1R mRNA expression in the SFO and decreased MR mRNA. Both MR- and AT1aR-siRNA prevented increases in ROS in the PVN and RVLM. MR- but not AT1aR-siRNA in the SFO prevented the Ang II-induced ROS in the SON. Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Chymase-dependent production of angiotensin II: an old enzyme in old hearts.

    PubMed

    Froogh, Ghezal; Pinto, John T; Le, Yicong; Kandhi, Sharath; Aleligne, Yeabsra; Huang, An; Sun, Dong

    2017-02-01

    Age-dependent alteration of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) are well documented. By contrast, RAS-independent generation of Ang II in aging and its responses to exercise have not been explored. To this end, we examined the effects of chymase, a secretory serine protease, on the angiotensin-converting enzyme (ACE)-independent conversion of Ang I to Ang II. We hypothesized that age-dependent alteration of cardiac Ang II formation is chymase dependent in nature and is prevented by exercise training. Experiments were conducted on hearts isolated from young (3 mo), aged sedentary (24 mo), and aged rats chronically exercised on a treadmill. In the presence of low Ang I levels and downregulation of ACE expression/activity, cardiac Ang II levels were significantly higher in aged than young rats, suggesting an ACE-independent response. Aged hearts also displayed significantly increased chymase expression and activity, as well as upregulation of tryptase, a biological marker of mast cells, confirming a mast cell-sourced increase in chymase. Coincidently, cardiac superoxide produced from NADPH oxidase (Nox) was significantly enhanced in aged rats and was normalized by exercise. Conversely, a significant reduction in cardiac expression of ACE2 followed by lower Ang 1-7 levels and downregulation of the Mas receptor (binding protein of Ang 1-7) in aged rats were completely reversed by exercise. In conclusion, local formation of Ang II is increased in aged hearts, and chymase is primarily responsible for this increase. Chronic exercise is able to normalize the age-dependent alterations via compromising chymase/Ang II/angiotensin type 1 receptor/Nox actions while promoting ACE2/Ang 1-7/MasR signaling.

  3. Control of Adipogenesis by the Autocrine Interplays between Angiotensin 1–7/Mas Receptor and Angiotensin II/AT1 Receptor Signaling Pathways*

    PubMed Central

    Than, Aung; Leow, Melvin Khee-Shing; Chen, Peng

    2013-01-01

    Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1–7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1–7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1–7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1–7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1–7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1–7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders. PMID:23592774

  4. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia

    PubMed Central

    Burke, Suzanne D.; Zsengellér, Zsuzsanna K.; Khankin, Eliyahu V.; Lo, Agnes S.; Rajakumar, Augustine; DuPont, Jennifer J.; McCurley, Amy; Moss, Mary E.; Zhang, Dongsheng; Clark, Christopher D.; Seely, Ellen W.; Kang, Peter M.; Stillman, Isaac E.; Jaffe, Iris Z.

    2016-01-01

    Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes. PMID:27270170

  5. Angiotensin II promotes iron accumulation and depresses PGI2 and NO synthesis in endothelial cells: effects of losartan and propranolol analogs

    PubMed Central

    Mak, I. Tong; Landgraf, Kenneth M.; Chmielinska, Joanna J.; Weglicki, William B.

    2013-01-01

    Angiotensin may promote endothelial dysfunction through iron accumulation. To research this, bovine endothelial cells (ECs) were incubated with iron (30 μmol·L−1) with or without angiotensin II (100 nmol·L−1). After incubation for 6 h, it was observed that the addition of angiotensin enhanced EC iron accumulation by 5.1-fold compared with a 1.8-fold increase for cells incubated with iron only. This enhanced iron uptake was attenuated by losartan (100 nmol·L−1), D-propranolol (10 μmol·L−1), 4-HO-propranolol (5 μmol·L−1), and methylamine, but not by vitamin E or atenolol. After 6 h of incubation, angiotensin plus iron provoked intracellular oxidant formation (2′7′-dichlorofluorescein diacetate (DCF-DA) fluorescence) and elevated oxidized glutathione; significant loss of cell viability occurred at 48 h. Stimulated prostacyclin release decreased by 38% (6 h) and NO synthesis was reduced by 41% (24 h). Both oxidative events and functional impairment were substantially attenuated by losartan or D-propranolol. It is concluded that angiotensin promoted non-transferrin-bound iron uptake via AT-1 receptor activation, leading to EC oxidative functional impairment. The protective effects of D-propranolol and 4-HO-propranolol may be related to their lysosomotropic properties. PMID:23067376

  6. Angiotensin II modulates tyr-phosphorylation of IRS-4, an insulin receptor substrate, in rat liver membranes.

    PubMed

    Villarreal, Rodrigo S; Alvarez, Sergio E; Ayub, Maximiliano Juri; Ciuffo, Gladys M

    2006-12-01

    Angiotensin II (Ang II), a major regulator of blood pressure, is also involved in the control of cellular proliferation and hypertrophy and might exhibit additional actions in vivo by modulating the signaling of other hormones. As hypertension and Insulin (Ins) resistance often coexist and are risk factors for cardiovascular diseases, Ang II and Insulin signaling cross-talk may have an important role in hypertension development. The effect of Ins on protein tyrosine phosphorylation was assayed in rat liver membrane preparations, a rich source of Ins receptors. Following stimulation, Ins (10(-7) M) induced tyr-phosphorylation of different proteins. Insulin consistently induced tyr-phosphorylation of a 160 kDa protein (pp160) with maximum effect between 1 and 3 min. The pp160 protein was identified by anti-IRS-4 but not by anti-IRS-1 antibody. Pre-stimulation with Ang II (10(-7) M) diminishes tyr-phosphorylation level of pp160/IRS-4 in a dose-dependent manner. Okadaic acid, the PP1A and PP2A Ser/Thr phosphatase inhibitor, increases pp160 phosphorylation induced by Ins and prevents the inhibitory effect of Ang II pre-stimulation. Genistein, a tyrosine kinase inhibitor, diminishes tyr-phosphorylation level of IRS-4. PI3K inhibitors Wortmanin and LY294002, both increase tyr-phosphorylation of IRS-4, either in the presence of Ins alone or combined with Ang II. These results suggest that Ins and Ang II modulate IRS-4 tyr-phosphorylation in a PI3K-dependent manner. In summary, we showed that Ins induces tyr-phosphorylation of IRS-4, an effect modulated by Ang II. Assays performed in the presence of different inhibitors points toward a PI3K involvement in this signaling pathway.

  7. p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice.

    PubMed

    Lai, En Yin; Solis, Glenn; Luo, Zaiming; Carlstrom, Mattias; Sandberg, Kathryn; Holland, Steven; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2012-02-01

    Myogenic and angiotensin contractions of afferent arterioles generate reactive oxygen species. Resistance vessels express neutrophil oxidase-2 and -4. Angiotensin II activates p47(phox)/neutrophil oxidase-2, whereas it downregulates NOX-4. Therefore, we tested the hypothesis that p47(phox) enhances afferent arteriolar angiotensin contractions. Angiotensin II infusion in p47(phox) +/+ but not -/- mice increased renal cortical NADPH oxidase activity (7±1-12±1 [P<0.01] versus 5±1-7±1 10(3) · RLU · min(-1) · μg protein(-1) [P value not significant]), mean arterial pressure (77±2-91±2 [P<0.005] versus 74±2-77±1 mm Hg [P value not significant]), and renal vascular resistance (7.5±0.4-10.1±0.7 [P<0.01] versus 7.9±0.4-8.3±0.4 mm Hg/mL · min(-1) · gram kidney weight(-1) [P value not significant]). Afferent arterioles from p47(phox) -/- mice had a lesser myogenic response (3.1±0.4 versus 1.4±0.2 dynes · cm(-1) · mm Hg(-1); P<0.02) and a lesser (P<0.05) contraction to 10(-6) M angiotensin II (diameter change +/+: 9.3±0.2-3.4±0.6 μm versus -/-: 9.9±0.6-7.5±0.4 μm). Angiotensin and increased perfusion pressure generated significantly (P<0.05) more reactive oxygen species in p47(phox) +/+ than -/- arterioles. Angiotensin II infusion increased the maximum responsiveness of afferent arterioles from p47(phox) +/+ mice to 10(-6) M angiotensin II yet decreased the response in p47(phox) -/- mice. The angiotensin infusion increased the sensitivity to angiotensin II only in p47(phox) +/+ mice. We conclude that p47(phox) is required to enhance renal NADPH oxidase activity and basal afferent arteriolar myogenic and angiotensin II contractions and to switch afferent arteriolar tachyphylaxis to sensitization to angiotensin during a prolonged angiotensin infusion. These effects likely contribute to hypertension and renal vasoconstriction during infusion of angiotensin II.

  8. Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice.

    PubMed

    Jennings, Brett L; Anderson, Larry J; Estes, Anne M; Yaghini, Fariborz A; Fang, Xiao R; Porter, Jason; Gonzalez, Frank J; Campbell, William B; Malik, Kafait U

    2012-02-01

    Cytochrome P450 1B1 contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the kidney, as well as in salt and water homeostasis, and blood pressure regulation, we determined the contribution of cytochrome P450 1B1 to renal dysfunction and injury associated with angiotensin II-induced hypertension in male Cyp1b1(+/+) and Cyp1b1(-/-) mice. Angiotensin II infusion (700 ng/kg per minute) given by miniosmotic pumps for 13 and 28 days increased systolic blood pressure in Cyp1b1(+/+) mice; this increase was significantly reduced in Cyp1b1(-/-) mice. Angiotensin II increased renal Cyp1b1 activity, vascular resistance, and reactivity to vasoconstrictor agents and caused endothelial dysfunction in Cyp1b1(+/+) but not Cyp1b1(-/-) mice. Angiotensin II increased water consumption and urine output, decreased urine osmolality, increased urinary Na(+) and K(+) excretion, and caused proteinuria and albuminuria in Cyp1b1(+/+) mice that was diminished in Cyp1b1(-/-) mice. Infusion of angiotensin II for 28 but not 13 days caused renal fibrosis, tubular damage, and inflammation in Cyp1b1(+/+) mice, which was minimized in Cyp1b1(-/-) mice. Angiotensin II increased levels of 12- and 20-hydroxyeicosatetraenoic acids; reactive oxygen species; and activity of NADPH oxidase, extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src in the kidneys of Cyp1b1(+/+) but not Cyp1b1(-/-) mice. These data suggest that increased thirst, renal dysfunction, and injury and inflammation associated with angiotensin II-induced hypertension in mice depend on cytochrome P450 1B1 activity, thus indicating that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension.

  9. New probes for angiotensin II receptors. Synthesis, radioiodination and biological properties of biotinylated and haptenated angiotensin derivatives.

    PubMed Central

    Bonnafous, J C; Tence, M; Seyer, R; Marie, J; Aumelas, A; Jard, S

    1988-01-01

    The present work delineates the basis for chemical modifications which can be introduced on the angiotensin II (AII) molecule to design probes suitable for indirect affinity techniques, especially for receptor purification. Using the solid-phase synthesis strategy, biotin or dinitrophenyl moieties have been added at the N-terminus of AII, with aminohexanoic acid as spacer arm. The resulting probes, (6-biotinylamido)hexanoyl-AII (Bio-Ahx-AII) and dinitrophenylaminohexanoyl-AII (Dnp-Ahx-AII), were prepared in their monoiodinated and highly labelled radioiodinated forms, with possible sulphoxidation of biotin. In addition to their ability to interact with streptavidin and anti-Dnp antibodies respectively, the two ligands displayed almost unchanged affinities for hepatic AII receptors as compared with AII. Bio-Ahx-AII and Dnp-Ahx-AII behaved as agonists on several AII-sensitive systems. The potential applications of these probes, receptor purification, cell labelling and sorting and histochemical receptor visualization, are discussed. PMID:3415650

  10. New probes for angiotensin II receptors. Synthesis, radioiodination and biological properties of biotinylated and haptenated angiotensin derivatives.

    PubMed

    Bonnafous, J C; Tence, M; Seyer, R; Marie, J; Aumelas, A; Jard, S

    1988-05-01

    The present work delineates the basis for chemical modifications which can be introduced on the angiotensin II (AII) molecule to design probes suitable for indirect affinity techniques, especially for receptor purification. Using the solid-phase synthesis strategy, biotin or dinitrophenyl moieties have been added at the N-terminus of AII, with aminohexanoic acid as spacer arm. The resulting probes, (6-biotinylamido)hexanoyl-AII (Bio-Ahx-AII) and dinitrophenylaminohexanoyl-AII (Dnp-Ahx-AII), were prepared in their monoiodinated and highly labelled radioiodinated forms, with possible sulphoxidation of biotin. In addition to their ability to interact with streptavidin and anti-Dnp antibodies respectively, the two ligands displayed almost unchanged affinities for hepatic AII receptors as compared with AII. Bio-Ahx-AII and Dnp-Ahx-AII behaved as agonists on several AII-sensitive systems. The potential applications of these probes, receptor purification, cell labelling and sorting and histochemical receptor visualization, are discussed.

  11. A Fluorometric Method of Measuring Carboxypeptidase Activities for Angiotensin II and Apelin-13

    PubMed Central

    Liu, Pan; Wysocki, Jan; Serfozo, Peter; Ye, Minghao; Souma, Tomokazu; Batlle, Daniel; Jin, Jing

    2017-01-01

    Degradation of the biologically potent octapeptide angiotensin Ang II-(1-8) is mediated by the activities of several peptidases. The conversion of Ang II to the septapeptide Ang-(1-7) is of particular interest as the latter also confers organ protection. The conversion is catalyzed by angiotensin-converting enzyme 2 and other enzymes that selectively cleave the peptide bond between the proline and the phenylalanine at the carboxyl terminus of Ang II. The contribution of various enzyme activities that collectively lead to the formation of Ang-(1-7) from Ang II, in both normal conditions and in disease states, remains only partially understood. This is largely due to the lack of a reliable and sensitive method to detect these converting activities in complex samples, such as blood and tissues. Here, we report a fluorometric method to measure carboxypeptidase activities that cleave the proline-phenylalanine dipeptide bond in Ang II. This method is also suitable for measuring the conversion of apelin-13. The assay detects the release of phenylalanine amino acid in a reaction with the yeast enzyme of phenylalanine ammonia lyase (PAL). When used in cell and mouse organs, the assay can robustly measure endogenous Ang II and apelin-13-converting activities involved in the renin-angiotensin and the apelinergic systems, respectively. PMID:28378780

  12. Facilitated diffusion of angiotensin II from perivascular interstitium to AT1 receptors of the arteriole. A regulating step in vasoconstriction.

    PubMed

    Schalekamp, Maarten A D H; Danser, A H Jan

    2011-05-01

    A kinetic model for the binding of angiotensin (Ang) II to AT1 receptors (AT1R) in arterioles in vivo did suggest a novel mechanism of stimulus amplification. To further clarify the role of this mechanism in the functioning of the local renin-angiotensin systems, as opposed to circulating Ang II. The model was refined in order to account for geometric characteristics of the vascular smooth muscle (VSM) cells in arterioles with a single VSM cell layer. Results show that, unlike experiments in vitro, the graph of AT1R occupancy, that is, [Rec(occ)]/[Rec(total)] where [Rec(total)]=[Rec(occ)]+[Rec(free)], as a function of log [Ang II], is shifted to the left at higher [Rec(total)]. This leads to the concept of association rate amplification (ASRA) and facilitated Ang II diffusion. Considering that abluminal Ang II has to cross a diffusion fluid-barrier 1-10 times the glycocalyx to reach VSM AT1R, it appears that the ASRA factor is 1500 to 150 respectively, whereas more than 90% of Ang II is captured, at 10% occupancy, and with [Ang II] as low as 10(-15)-10(-14) mol/ml. Due to the presence of endothelium, intraluminal [Ang II] needs to be 20-30 times higher. ASRA favors a low [Ang II] threshold for AT1R stimulation, but it also favors a flat stimulus/response curve by promoting receptor-mediated endocytosis and receptor downregulation. The model predicts that, in small resistance vessels, abluminal rather than intraluminal Ang II is important for maintaining vasoconstrictor tone. ASRA minimizes the overflow of de-novo generated tissue Ang II into the circulation. It explains why Ang II acts at levels far below K(D), why AT1R blockers are effective in hypertension even when [Ang II] is low, and why the constrictor action of Ang II appears so much suppressed by sodium depletion. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

  13. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker.

    PubMed

    Furuhashi, Masato; Moniwa, Norihito; Mita, Tomohiro; Fuseya, Takahiro; Ishimura, Shutaro; Ohno, Kohei; Shibata, Satoru; Tanaka, Marenao; Watanabe, Yuki; Akasaka, Hiroshi; Ohnishi, Hirofumi; Yoshida, Hideaki; Takizawa, Hideki; Saitoh, Shigeyuki; Ura, Nobuyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2) is highly expressed in the kidney and converts angiotensin (Ang) II to Ang-(1-7), a renoprotective peptide. Urinary ACE2 has been shown to be elevated in patients with chronic kidney disease. However, the effects of antihypertensive agents on urinary ACE2 remain unclear. Of participants in the Tanno-Sobetsu cohort study in 2011 (n = 617), subjects on no medication (n = 101) and hypertensive patients treated with antihypertensive agents, including the calcium channel blockers amlodipine and long-acting nifedipine; the ACE inhibitor enalapril; and the Ang II receptor blockers losartan, candesartan, valsartan, telmisartan, and olmesartan, for more than 1 year (n = 100) were enrolled, and urinary ACE2 level was measured. Glucose and hemoglobin A1c were significantly higher in patients treated with enalapril, telmisartan or olmesartan than in the control subjects. Urinary albumin-to-creatinine ratio (UACR) was significantly higher in patients treated with enalapril than in the control subjects. Urinary ACE2 level was higher in the olmesartan-treated group, but not the other treatment groups, than in the control group. Urinary ACE2 level was positively correlated with systolic blood pressure (r = 0.211; P = 0.003), UACR (r = 0.367; P < 0.001), and estimated salt intake (r = 0.260; P < 0.001). Multivariable regression analysis after adjustment of age, sex, and the correlated indices showed that the use of olmesartan was an independent predictor of urinary ACE2 level. In contrast with other antihypertensive drugs, olmesartan may uniquely increase urinary ACE2 level, which could potentially offer additional renoprotective effects. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Angiotensin II Triggered p44/42 Mitogen-Activated Protein Kinase Mediates Sympathetic Excitation in Heart Failure Rats

    PubMed Central

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Weiss, Robert M.; Felder, Robert B.

    2009-01-01

    Angiotensin II (ANG II), acting via angiotensin type 1 receptors (AT1-R) in the brain, activates the sympathetic nervous system in heart failure (HF). We recently reported that ANG II stimulates mitogen-activated protein kinase (MAPK) to upregulate brain AT1-R in HF rats. In this study we tested the hypothesis that ANG II-activated MAPK signaling pathways contribute to sympathetic excitation in HF. Intracerebroventricular (ICV) administration of PD98059 and UO126, two selective p44/42 MAPK inhibitors, induced significant decreases in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in HF rats, but had no effect on these variables in SHAM rats. Pretreatment with losartan attenuated the effects of PD98059. ICV administration of the p38 MAPK inhibitor SB203580 and the c-Jun N-terminal kinase inhibitor SP600125 had no effect on MAP, HR or RSNA in HF. The phosphatidylinositol-3 kinase inhibitor LY294002 induced a small decrease in MAP and HR, but no change in RSNA. Immunofluorescent staining demonstrated increased p44/42 MAPK activity in neurons of the paraventricular nucleus of the hypothalamus (PVN) of HF rats, co-localized with Fra-like activity (indicating chronic neuronal excitation). ICV PD98059 and UO126 reduced Fra-like activity in PVN neurons in HF rats. In confirmatory acute studies, ICV ANG II increased MAP, HR and RSNA in baroreceptor-denervated rats and Fra-LI immunoreactivity in the PVN of neurally intact rats. Central administration of PD98059 markedly reduced these responses. These data demonstrate that intracellular p44/42 MAPK activity contributes to ANG II-induced PVN neuronal excitation and augmented sympathetic nerve activity in rats with HF. PMID:18574076

  15. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension.

    PubMed

    Zhang, Jiandong; Patel, Mehul B; Griffiths, Robert; Mao, Alice; Song, Young-soo; Karlovich, Norah S; Sparks, Matthew A; Jin, Huixia; Wu, Min; Lin, Eugene E; Crowley, Steven D

    2014-12-01

    Immune system activation contributes to the pathogenesis of hypertension and the resulting progression of chronic kidney disease. In this regard, we recently identified a role for proinflammatory Th1 T-lymphocyte responses in hypertensive kidney injury. Because Th1 cells generate interferon-γ and tumor necrosis factor-α (TNF-α), we hypothesized that interferon-γ and TNF-α propagate renal damage during hypertension induced by activation of the renin-angiotensin system. Therefore, after confirming that mice genetically deficient of Th1 immunity were protected from kidney glomerular injury despite a preserved hypertensive response, we subjected mice lacking interferon-γ or TNF-α to our model of hypertensive chronic kidney disease. Interferon deficiency had no impact on blood pressure elevation or urinary albumin excretion during chronic angiotensin II infusion. By contrast, TNF-deficient (knockout) mice had blunted hypertensive responses and reduced end-organ damage in our model. As angiotensin II-infused TNF knockout mice had exaggerated endothelial nitric oxide synthase expression in the kidney and enhanced nitric oxide bioavailability, we examined the actions of TNF-α generated from renal parenchymal cells in hypertension by transplanting wild-type or TNF knockout kidneys into wild-type recipients before the induction of hypertension. Transplant recipients lacking TNF solely in the kidney had blunted hypertensive responses to angiotensin II and augmented renal endothelial nitric oxide synthase expression, confirming a role for kidney-derived TNF-α to promote angiotensin II-induced blood pressure elevation by limiting renal nitric oxide generation.

  16. Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei

    2012-01-01

    The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255

  17. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  18. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats

    PubMed Central

    Chen, Aidong; Huang, Bing S; Wang, Hong-Wei; Ahmad, Monir; Leenen, Frans H H

    2014-01-01

    Circulating Ang II activates an aldosterone-mineralocorticoid receptor (MR) – angiotensin II (Ang II) – angiotensin type 1 receptor (AT1R) pathway in the hypothalamus. To obtain insights into the actual neuronal projections involved, adeno-associated virus carrying small interfering RNA against either AT1aR (AAV-AT1aR-siRNA) or MR (AAV-MR-siRNA) were infused into the paraventricular nucleus (PVN) in Wistar rats. Intra-PVN infusion of AAV-AT1aR-siRNA or AAV-MR-siRNA decreased AT1R or MR expression in the PVN but not in the subfornical organ (SFO) or supraoptic nucleus (SON). Subcutaneous infusion of Ang II at 500 ng kg−1 min−1 for 2 weeks increased mean arterial pressure by 60–70 mmHg, and increased AT1R and MR expression in the SFO, SON and PVN. Intra-PVN AT1aR-siRNA prevented the Ang II-induced increase in AT1R but not MR expression in the PVN, and MR-siRNA prevented MR but not AT1R expression in the PVN. The increases in AT1R and MR expression in both the SFO and the SON were not changed by the two AAV-siRNAs. Specific knockdown of AT1R or MR in the PVN by AAV-siRNA each prevented most of the Ang II-induced hypertension. Prevention of the subcutaneous Ang II-induced increase in MR but not the increase in AT1R by knockdown of MR and vice versa suggests an independent regulation of MR and AT1R expression in the PVN. Both AT1R and MR activation in the PVN play a critical role in Ang II-induced hypertension in rats. PMID:24973408

  19. Fibroblast growth factor stimulates angiotensin converting enzyme expression in vascular smooth muscle cells. Possible mediator of the response to vascular injury.

    PubMed Central

    Fishel, R S; Thourani, V; Eisenberg, S J; Shai, S Y; Corson, M A; Nabel, E G; Bernstein, K E; Berk, B C

    1995-01-01

    Angiotensin converting enzyme (ACE) activity contributes to the vascular response to injury because ACE inhibition limits neointima formation in rat carotid arteries after balloon injury. To investigate the mechanisms by which ACE may contribute to vascular smooth muscle cell (VSMC) proliferation, we studied expression of ACE in vivo after injury and in vitro after growth factor stimulation. ACE activity 14 d after injury was increased 3.6-fold in the injured vessel. ACE expression, measured by immunohistochemistry, became apparent at 7 d in the neointima and at 14 d was primarily in the most luminal neointimal cells. To characterize hormones that induce ACE in vivo, cultured VSMC were exposed to steroids and growth factors. Among steroids, only glucocorticoids stimulated ACE expression with an 8.0 +/- 2.1-fold increase in activity and a 6.5-fold increase in mRNA (30 nM dexamethasone for 72 h). Among growth factors tested, only fibroblast growth factor (FGF) stimulated ACE expression (4.2 +/- 0.7-fold increase in activity and 1.6-fold increase in mRNA in response to 10 ng/ml FGF for 24 h). Dexamethasone and FGF were synergistic at the indicated concentrations inducing 50.6 +/- 12.4-fold and 32.5-fold increases in activity and mRNA expression, respectively. In addition, when porcine iliac arteries were transfected with recombinant FGF-1 (in the absence of injury), ACE expression increased in neointimal VSMC, to the same extent as injured, nontransfected arteries. The data suggest a temporal sequence for the response to injury in which FGF induces ACE, ACE generates angiotensin II, and angiotensin II stimulates VSMC growth in concert with FGF. Images PMID:7814638

  20. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II

    PubMed Central

    Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement. PMID:28119542

  1. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II.

    PubMed

    Wu, Zhiyong; Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement.

  2. Preparation and one-step purification of mono-125I-angiotensin II for radioligand binding assays

    SciTech Connect

    Speth, R.C.; Husain, A.

    1984-04-01

    A one-step purification of mono-/sup 125/I-angiotensin II prepared by the chloramine T procedure is described. The purification is effected on a cellulose cation exchange column with isocratic elution by 50 mM sodium acetate, pH 5.0. The purity of the mono-/sup 125/I-angiotensin II was determined by thin layer chromatography, high pressure liquid chromatography, enzymatic digestion, radioreceptor assay, and radioimmunoassay. Preparation and purification of mono-/sup 125/I-angiotensin II by this procedure offers significant advantages over existing methods for its preparation in terms of purity, simplicity, efficiency, and cost.

  3. Anthocyans-rich Aronia melanocarpa extract possesses ability to protect endothelial progenitor cells against angiotensin II induced dysfunction.

    PubMed

    Parzonko, Andrzej; Oświt, Aleksandra; Bazylko, Agnieszka; Naruszewicz, Marek

    2015-12-15

    Endothelial progenitor cells (EPC) may provide protection against atherosclerosis and plaque rupture by their innate ability to replace dysfunctional or damaged endothelial cells in plaque microvessels. There is evidence that angiotensin II may impair the angiogenic functions of EPCs in the atherosclerotic plaque by accelerating senescence and inhibiting their proliferation through oxidative stress induction. In this study, we examined whether chokeberry (Aronia melanocarpa) fruit extract, containing mainly anthocyanins with potent antioxidative properties, could protect EPCs against angiotensin-induced oxidative stress. EPCs were isolated from peripheral blood of young healthy volunteers and cultivated on fibronectin-coated plates in the presence or absence of angiotensin II (1 µM) and chokeberry extract (1-25 µg/ml). EPCs exposed to chokeberry extract prior to angiotensin II showed a significant increase of proliferation and telomerase activity, and a decrease in the percentage of senescent cells and intracellular ROS formation in comparison to angiotensin II treated cells. Furthermore, extract increased migration ability, adhesion to fibronectin and the angiogenic potential of EPC in vitro diminished by angiotensin II in a concentration-dependent manner. That effect was related to the activation of the Nrf2 transcription factor and the increase of HO-1 expression. Our results suggested that chokeberry extract may protect EPCs against angiotensin II-induced dysfunction and could play a potential role in the prevention of coronary artery disease. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin ii receptor blockade

    PubMed Central

    Kazama, Itsuro; Mori, Yoko; Baba, Asuka; Nakajima, Toshiyuki

    2014-01-01

    Patient: Female, 56 Final Diagnosis: Thyroiditis – silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Unknown etiology Background: Hyper- or hypothyroidism sometimes causes pretibial myxedema characterized by non-pitting infiltration of a proteinaceous ground substance. However, in those patients, the “pitting” type of pretibial edema as a result of increased sodium and fluid retention or vascular hyper-permeability rarely occurs, except in cases complicated by heart failures due to severe cardiomyopathy or pulmonary hypertension. Case Report: A 56-year-old woman developed bilateral pretibial pitting edema, followed by occasional sweating, palpitations, and shortness of breath, which persisted for more than 2 months. The diagnosis of hyperthyroidism due to silent thyroiditis was supported by elevated levels of free thyroxine (T4) and triiodothyronine (T3), with a marked decrease in thyroid-stimulating hormone (TSH), and the negative results for TSH receptor antibodies with typical findings of destructive thyrotoxicosis. Despite her “pitting” type of pretibial edema, a chest radio-graph demonstrated the absence of cardiomyopathy or congestive heart failure. Oral administration of angiotensin II receptor blocker (ARB) was initiated for her systolic hypertension, with a relatively higher elevation of plasma renin activity compared to that of the aldosterone level. Although the symptoms characteristic to hyperthyroidism, such as increased sweating, palpitations and shortness of breath, slowly improved with a spontaneous resolution of the disease, ARB quickly resolved the pretibial pitting edema shortly after the administration.. Conclusions: In this case, increased activity of the renin-angiotensin-aldosterone system stimulated by thyroid hormone was likely responsible for the patient’s pitting type of edema. The pharmacological

  5. Simultaneous determination of hydrochlorothiazide and several angiotensin-II-receptor antagonists by capillary electrophoresis.

    PubMed

    Hillaert, S; Van den Bossche, W

    2003-02-26

    We have investigated the capability of the capillary zone electrophoretic (CZE) and micellar electrokinetic capillary chromatographic (MEKC) methods to simultaneously separate hydrochlorothiazide and six angiotensin-II-receptor antagonists (ARA-IIs): candesartan, eprosartan mesylate, irbesartan, losartan potassium, telmisartan, and valsartan. The CZE and MEKC methods are suitable for the qualitative and quantitative determination of combined HCT/ARA-IIs in pharmaceutical formulations. Depending on the ARA-II, at least one of the two methods can be used for each combination. The two methods have been validated in terms of their linearity of response, reproducibility, and accuracy.

  6. How does the angiotensin II type 1 receptor 'trump' the type 2 receptor in blood pressure control?

    PubMed

    Schalekamp, Maarten A D H; Danser, A H Jan

    2013-04-01

    A kinetic model for the binding of angiotensin II (Ang II) to AT1 receptors (AT1Rs) in arterioles did suggest a novel mechanism of association rate amplification and facilitated Ang II diffusion in vivo. To examine how this mechanism, acting on AT1R, will affect the stimulation of AT2R. The model distinguishes between the diffusion of plasma Ang II across the endothelium layer (thickness 10(-4) - 5 × 10(-4) cm) into the vascular smooth muscle (VSM) layer (5 × 10(-4) cm), and the diffusion of tissue Ang II from perivascular interstitium (thickness of micromilieu fluid layer at abluminal VSM surface 10(-6) - 10(-5) cm, i.e. 1 to 10 times the glycocalyx). Thus, Ang II concentration [Ang II] is taken to be 0 at the abluminal and adluminal VSM cell surfaces, respectively. Tissue Ang II is defined as originating from local generation and/or from the capillary circulation. [Ang II]/AT1R and [Ang II]/AT2R occupancy curves for the two directions of diffusion are constructed from the model-based calculations. Ang II, at 10(-15)-10(-13) mol/ml (~1-100 pg/ml), is much less likely to react with vascular AT2R than AT1R, though it has similar affinity for the receptor types. With plasma [Ang II] = 10(-15)-10(-13) mol/ml, AT2R occupancy is less than 10% of maximum on endothelium, and virtually 0 on VSM, whereas AT1R occupancy on VSM is virtually 0 at plasma [Ang II] < 10(-14) mol/ml, and between 0 and 30% at plasma [Ang II] = 10(-13) mol/ml. With tissue [Ang II] = 10(-15)-10(-13) mol/ml, VSM AT2R occupancy is close to 0, whereas VSM AT1R occupancy is 40-60% in the absence of endocytotic AT1R down-regulation, and up to 70-90% in its presence. The threshold concentration of Ang II needed for response is much higher for AT2R than for AT1R. Plasma Ang II rather than tissue Ang II is the agonist of AT2R, and the reverse applies to AT1R. Thus, AT2R stimulation may come into play only at unusually high circulating levels of Ang II.

  7. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla.

    PubMed

    Israel, A; Strömberg, C; Tsutsumi, K; Garrido, M R; Torres, M; Saavedra, J M

    1995-01-01

    Angiotensin II (ANG) receptor subtypes were characterized by quantitative autoradiography after incubation with the ANG agonist [124I]Sar1-ANG in rat adrenal medulla. ANG receptors are highly localized in adrenal medulla. Specific binding was displaced by 4% and by 95% with the AT, receptor blocker losartan and the AT2 receptor competitor CGP 42112A, respectively. Analysis of competition curves indicated relative binding potencies for the AT2 population of CGP 42112A>PD 123319> PD 123177. ANG stimulated +-nositol phosphate formation in a dose-dependent manner in rat adrenal medulla. Losartan at concentrations of 10(-9) to 10(-5) M antagonized the effect of ANG, whereas PD 123177 or PD 123319 had no antagonistic action. However, at a higher concentration (10(-5) M) PD 123177 or PD 123319 potentiated the effect of ANG on InsP1-accumulation. In the presence of PD 123319 (10(-5) M) ANG dose-response curve was shifted to the left with no change in the maximal effect. This affect was blocked by the addition of losartan (10(-5) M). On the contrary, the addition of CGP 42112A (10(-6) M) inhibited ANG-induced increase in InsP1-accumulation. On the other hand, ANG and CGP 42112A reduced basal cyclic GMP formation, this effect was partially reverted by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. Our results further demonstrate the presence of two ANG receptor subtypes in adrenal medulla: ANG binding to AT, receptor stimulates inositol phospholipid metabolism, whereas ANG binding to AT2 receptors decreases both inositol phosphate production and cGMP formation.

  8. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in