Sample records for angle angular velocity

  1. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  2. Accuracy of visual estimates of joint angle and angular velocity using criterion movements.

    PubMed

    Morrison, Craig S; Knudson, Duane; Clayburn, Colby; Haywood, Philip

    2005-06-01

    A descriptive study to document undergraduate physical education majors' (22.8 +/- 2.4 yr. old) estimates of sagittal plane elbow angle and angular velocity of elbow flexion visually was performed. 42 subjects rated videotape replays of 30 movements organized into three speeds of movement and two criterion elbow angles. Video images of the movements were analyzed with Peak Motus to measure actual values of elbow angles and peak angular velocity. Of the subjects 85.7% had speed ratings significantly correlated with true peak elbow angular velocity in all three angular velocity conditions. Few (16.7%) subjects' ratings of elbow angle correlated significantly with actual angles. Analysis of the subjects with good ratings showed the accuracy of visual ratings was significantly related to speed, with decreasing accuracy for slower speeds of movement. The use of criterion movements did not improve the small percentage of novice observers who could accurately estimate body angles during movement.

  3. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  4. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  5. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  6. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  7. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  8. Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*

    PubMed Central

    GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.

    2006-01-01

    Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726

  9. Difference in perception of angular displacement according to applied waveforms.

    PubMed

    Kushiro, Keisuke; Goto, Fumiyuki

    2013-05-01

    This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.

  10. Kinematics of preferred and non-preferred handballing in Australian football.

    PubMed

    Parrington, Lucy; Ball, Kevin; MacMahon, Clare

    2015-01-01

    In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.

  11. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  12. Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor

    NASA Astrophysics Data System (ADS)

    Miklós, Á.; Szabó, Z.

    2015-01-01

    In this work, a novel design for small vibrotactors called the Dual Excenter is presented, which makes it possible to produce vibrations with independently adjustable frequency and amplitude. This feature has been realized using two coaxially aligned eccentric rotors, which are driven by DC motors independently. The prototype of the device has been built, where mechanical components are integrated on a frame with two optical sensors for the measurement of angular velocity and phase angle. The system is equipped with a digital controller. Simulations confirm the results of analytical investigations and they allow us to model the sampling method of the signals of the angular velocity and the phase angle between the rotors. Furthermore, we model the discrete behavior of the controller, which is a PI controller for the angular velocities and a PID controller for the phase angle. Finally, simulation results are compared to experimental ones, which show that the Dual Excenter concept is feasible.

  13. Research on the water-entry attitude of a submersible aircraft.

    PubMed

    Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian

    2016-01-01

    The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.

  14. Control of speed during the double poling technique performed by elite cross-country skiers.

    PubMed

    Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-01-01

    Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.

  15. Windage Jump of a Rocket Fired Nearly Vertically

    DTIC Science & Technology

    1947-12-16

    Angular Velocity and Small Initial Yaw", by A. 3. Peters, August l?u5. —~ >- .■^’i*’:v^-X ’^ In thj jliBs^.cal «ind ♦.hsory (■•• Gr»n...Deviations Since the angle of projection was taken as #/2, the angular deviation fron the vertical In the moving reference frame at time t^ is...the angle of projection may easily be rewovedc ?hat- ever the angle of projection, the results may be applied without change to the angular effects

  16. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).

  17. Effect of Reduced Stiffness Dance Flooring on Lower Extremity Joint Angular Trajectories During a Ballet Jump.

    PubMed

    Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer

    2015-09-01

    We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.

  18. Influence of joint angular velocity on electrically evoked concentric force potentiation induced by stretch-shortening cycle in young adults.

    PubMed

    Fukutani, Atsuki; Kurihara, Toshiyuki; Isaka, Tadao

    2015-01-01

    During a stretch- shortening cycle (SSC), muscle force attained during concentric contractions (shortening phase) is potentiated by the preceding eccentric contractions (lengthening phase). The purpose of this study was to examine the influence of joint angular velocity on force potentiation induced by SSC (SSC effect). Twelve healthy men (age, 24.2 ± 3.2 years; height, 1.73 ± 0.05 m; body mass, 68.1 ± 11.0 kg) participated in this study. Ankle joint angle was passively moved by a dynamometer, with range of motion from dorsiflexion (DF) 15° to plantarflexion (PF) 15°. Muscle contractions were evoked by tetanic electrical stimulation. Joint angular velocity of concentric contraction was set at 30°/s and 150°/s. Magnitude of SSC effect was calculated as the ratio of joint torque obtained by concentric contraction with preliminary eccentric contraction trial relative to that obtained by concentric contraction without preliminary eccentric contraction trial. As a result, magnitude of SSC effect calculated at three joint angles was significantly larger in the 150°/s condition than in the 30°/s condition (p < 0.05). These results indicate that the magnitude of SSC effect is affected by joint angular velocity, which is larger when joint angular velocity is larger. This phenomenon would be caused by insufficient duration to increase activation level in the large joint angular velocity condition. When the duration to increase activation level is insufficient due to short contraction duration, preactivation (one of the factors of SSC effect) leads to a significant increase in joint torque.

  19. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  20. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging.

    PubMed

    Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori

    2016-11-01

    To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Spherical Ornstein-Uhlenbeck Processes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael; Pumir, Alain

    2011-10-01

    The paper considers random motion of a point on the surface of a sphere, in the case where the angular velocity is determined by an Ornstein-Uhlenbeck process. The solution is fully characterised by only one dimensionless number, the persistence angle, which is the typical angle of rotation during the correlation time of the angular velocity. We first show that the two-dimensional case is exactly solvable. When the persistence angle is large, a series for the correlation function has the surprising property that its sum varies much more slowly than any of its individual terms. In three dimensions we obtain asymptotic forms for the correlation function, in the limits where the persistence angle is very small and very large. The latter case exhibits a complicated transient, followed by a much slower exponential decay. The decay rate is determined by the solution of a radial Schrödinger equation in which the angular momentum quantum number takes an irrational value, namely j=1/2(sqrt{17}-1). Possible applications of the model to objects tumbling in a turbulent environment are discussed.

  2. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke

    PubMed Central

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.

    2017-01-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250

  3. Elbow kinematics during sit-to-stand and stand-to-sit movements.

    PubMed

    Packer, T L; Wyss, U P; Costigan, P A

    1993-11-01

    The sit-to-stand and stand-to-sit movements of 10 healthy women (mean age 52.4 years) were subjected to a descriptive analysis that yielded a definition of phases, determination of the peak angles reached, maximum angular velocity during each movement, and the sequencing of key events. While subjects showed little intrasubject variability, intersubject variability was evident. Subjects differed in the joint angles and angular velocity recorded, but the sequence of flexion/extension and rotation events were unchanged. Changes in direction of flexion/extension and rotation tended to occur very close in time, if not at the same time. Copyright © 1993. Published by Elsevier Ltd.

  4. Shaking Takete and Flowing Maluma. Non-Sense Words Are Associated with Motion Patterns

    PubMed Central

    Koppensteiner, Markus; Stephan, Pia; Jäschke, Johannes Paul Michael

    2016-01-01

    People assign the artificial words takete and kiki to spiky, angular figures and the artificial words maluma and bouba to rounded figures. We examined whether such a cross-modal correspondence could also be found for human body motion. We transferred the body movements of speakers onto two-dimensional coordinates and created animated stick-figures based on this data. Then we invited people to judge these stimuli using the words takete-maluma, bouba-kiki, and several verbal descriptors that served as measures of angularity/smoothness. In addition to this we extracted the quantity of motion, the velocity of motion and the average angle between motion vectors from the coordinate data. Judgments of takete (and kiki) were related to verbal descriptors of angularity, a high quantity of motion, high velocity and sharper angles. Judgments of maluma (or bouba) were related to smooth movements, a low velocity, a lower quantity of motion and blunter angles. A forced-choice experiment during which we presented subsets with low and high rankers on our motion measures revealed that people preferably assigned stimuli displaying fast movements with sharp angles in motion vectors to takete and stimuli displaying slow movements with blunter angles in motion vectors to maluma. Results indicated that body movements share features with information inherent in words such as takete and maluma and that people perceive the body movements of speakers on the level of changes in motion direction (e.g., body moves to the left and then back to the right). Follow-up studies are needed to clarify whether impressions of angularity and smoothness have similar communicative values across different modalities and how this affects social judgments and person perception. PMID:26939013

  5. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.

    PubMed

    Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J

    2016-05-01

    Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.

  6. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.

    PubMed

    Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali

    2008-08-01

    The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.

  7. A novel approach to piecewise analytic agricultural machinery path reconstruction

    NASA Astrophysics Data System (ADS)

    Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz

    2017-12-01

    Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.

  8. Comparison of sequence of trunk and arm motions between short and long official distance groups in javelin throwing.

    PubMed

    Liu, Hui; Leigh, Steve; Yu, Bing

    2014-03-01

    The purpose of this study was to determine the effects of sequences of the trunk and arm angular motions on the performance of javelin throwing. In this study, 32 male and 30 female elite javelin throwers participated and were separated into a short official distance group or a long official distance group in each gender. Three-dimensional coordinates of 21 body landmarks and 3 marks on the javelin in the best trial were collected for each subject. Joint center linear velocities and selected trunk and arm segment and joint angles and angular velocities were calculated. The times of the initiations of the selected segment and joint angular motions and maximum angular velocities were determined. The sequences of the initiations of the selected segment and joint angular motions and maximum angular velocities were compared between short and long official distance groups and between genders. The results demonstrated that short and long official distance groups employed similar sequences of the trunk and arm motions. Male and female javelin throwers employed different sequences of the trunk and arm motions. The sequences of the trunk and arm motions were different from those of the maximal joint center linear velocities.

  9. Large Angle Satellite Attitude Maneuvers

    NASA Technical Reports Server (NTRS)

    Cochran, J. E.; Junkins, J. L.

    1975-01-01

    Two methods are proposed for performing large angle reorientation maneuvers. The first method is based upon Euler's rotation theorem; an arbitrary reorientation is ideally accomplished by rotating the spacecraft about a line which is fixed in both the body and in space. This scheme has been found to be best suited for the case in which the initial and desired attitude states have small angular velocities. The second scheme is more general in that a general class of transition trajectories is introduced which, in principle, allows transfer between arbitrary orientation and angular velocity states. The method generates transition maneuvers in which the uncontrolled (free) initial and final states are matched in orientation and angular velocity. The forced transition trajectory is obtained by using a weighted average of the unforced forward integration of the initial state and the unforced backward integration of the desired state. The current effort is centered around practical validation of this second class of maneuvers. Of particular concern is enforcement of given control system constraints and methods for suboptimization by proper selection of maneuver initiation and termination times. Analogous reorientation strategies which force smooth transition in angular momentum and/or rotational energy are under consideration.

  10. The Physics of Juggling.

    ERIC Educational Resources Information Center

    Magnusson, Bengt; Tiemann, Bruce

    1989-01-01

    Explores the basic physical laws of the juggling activity. Derives some equations involving height, angle, time, and distance for common juggling objects. Describes the relationships among height, length, mass, number of clubs, number of spins, angular velocity, time, and angle in club juggling. (YP)

  11. Prediction of projectile ricochet behavior after water impact.

    PubMed

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  12. Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.

    PubMed

    Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D

    2013-03-01

    To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.

    PubMed

    Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H

    2003-03-01

    The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

  14. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit.

    PubMed

    Li, Yao; Cao, Feng; Thang Vo Doan, Tat; Sato, Hirotaka

    2016-09-28

    The mechanisms and principles of insect flight have long been investigated by researchers working on micro and nano air vehicles (MAVs/NAVs). However, studies of insect flight maneuvers require high speed filming and high spatial resolution in a small experimental space, or the tethering of the insect to a fixed place. Under such artificial conditions, the insects may deviate its flying behavior from that of regular flight. In this study, we mounted a tiny wireless system, or 'backpack', on live beetles (Mecynorrhina torquata; length 62 ± 8 mm; mass 7.4 ± 1.3 g) freely flying in a large laboratory space. The backpack contains a micro inertial measurement unit (IMU) that was especially designed and manufactured for this purpose. Owing to the small mass (∼1.30 g) and dimensions (∼2.3 cm 2 ) of the backpack and the high accuracy of the IMU, we could remotely record the beetle in free flight. The free flight data revealed a strong linear correlation between the roll angle and yaw angular velocity. The strength of the correlation was quantified by the correlation coefficients and mean values. The change in roll angle preceded the change in yaw angular velocity. Moreover, there were frequent fluctuations in the roll angular velocity, which were uncorrelated with the yaw angular velocity. Apart from the strong correlation, these findings imply that Mecynorrhina torquata actively manipulates its roll rotation without coupling to the yaw rotation.

  15. Analysis of the 5 iron golf swing when hitting for maximum distance.

    PubMed

    Healy, Aoife; Moran, Kieran A; Dickson, Jane; Hurley, Cillian; Smeaton, Alan F; O'Connor, Noel E; Kelly, Philip; Haahr, Mads; Chockalingam, Nachiappan

    2011-07-01

    Most previous research on golf swing mechanics has focused on the driver club. The aim of this study was to identify the kinematic factors that contribute to greater hitting distance when using the 5 iron club. Three-dimensional marker coordinate data were collected (250 Hz) to calculate joint kinematics at eight key swing events, while a swing analyser measured club swing and ball launch characteristics. Thirty male participants were assigned to one of two groups, based on their ball launch speed (high: 52.9 ± 2.1 m · s(-1); low: 39.9 ± 5.2 m · s(-1)). Statistical analyses were used to identify variables that differed significantly between the two groups. Results showed significant differences were evident between the two groups for club face impact point and a number of joint angles and angular velocities, with greater shoulder flexion and less left shoulder internal rotation in the backswing, greater extension angular velocity in both shoulders at early downswing, greater left shoulder adduction angular velocity at ball contact, greater hip joint movement and X Factor angle during the downswing, and greater left elbow extension early in the downswing appearing to contribute to greater hitting distance with the 5 iron club.

  16. Functional phases and angular momentum characteristics of Tkatchev and Kovacs.

    PubMed

    Irwin, Gareth; Exell, Timothy A; Manning, Michelle L; Kerwin, David G

    2017-03-01

    Understanding the technical requirements and underlying biomechanics of complex release and re-grasp skills on high bar allows coaches and scientists to develop safe and effective training programmes. The aim of this study was to examine the differences in the functional phases between the Tkatchev and Kovacs skills and to explain how the angular momentum demands are addressed. Images of 18 gymnasts performing 10 Tkatchevs and 8 Kovacs at the Olympic Games were recorded (50 Hz), digitised and reconstructed (3D Direct Linear Transformation). Orientation of the functional phase action, defined by the rapid flexion to extension of the shoulders and extension to flexion of the hips as the performer passed through the lower vertical, along with shoulder and hip angular kinematics, angular momentum and key release parameters (body angle, mass centre velocity and angular momentum about the mass centre and bar) were compared between skills. Expected differences in the release parameters of angle, angular momentum and velocity were observed and the specific mechanical requirement of each skill were highlighted. Whilst there were no differences in joint kinematics, hip and shoulder functional phase were significantly earlier in the circle for the Tkatchev. These findings highlight the importance of the orientation of the functional phase in the preceding giant swing and provide coaches with further understanding of the critical timing in this key phase.

  17. Comparing performance and kinematics of throwing with a circular and whip-like wind up by experienced handball players.

    PubMed

    van den Tillaar, R; Zondag, A; Cabri, J

    2013-12-01

    The aim of this study was to compare the performance (throwing velocity of the ball) and kinematics of overarm throwing with the circular and whip-like wind up in elite handball players. Twenty-two elite handball players (11 men and 11 women) conducted both types of throws. The ball release velocity, maximal ball acceleration, maximal velocity of the end points of the five segments and maximal angles, angles at ball release and maximal angular velocities of the 11 joint movements and their timing during the throw were analyzed. Significantly higher ball release velocities (21.9 m/s vs 20.6 m/s) were reached together with higher maximal linear velocities of the end points of all segments and longer throwing time with the circular wind up than with the whip-like wind up. Furthermore, it seems that the timing and amount of maximal angular pelvis rotation was the main contributor to the difference in the maximal ball release velocity between the two wind ups. The findings support the observation that overarm throwing with the circular wind up results in higher ball releases but also a longer throwing movement in comparison to whip-like wind up throws. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Redundant unbalance compensation of an active magnetic bearing system

    NASA Astrophysics Data System (ADS)

    Hutterer, Markus; Kalteis, Gerald; Schrödl, Manfred

    2017-09-01

    To achieve a good running behavior of a magnetic levitated rotor, a well-developed position controller and different compensation methods are required. Two very important structures in this context are the reduction of the gyroscopic effect and the unbalance vibration. Both structures have in common that they need the angular velocity information for calculation. For industrial applications this information is normally provided by an angle sensor which is fixed on the rotor. The angle information is also necessary for the field oriented control of the electrical drive. The main drawback of external position sensors are the case of a breakdown or an error of the motor controller. Therefore, the magnetic bearing can get unstable, because no angular velocity information is provided. To overcome this problem the presented paper describes the development of a selfsensing unbalance rejection in combination with a selfsensing speed control of the motor controller. Selfsensing means in this context that no angle sensor is required for the unbalance or torque control. With such structures two redundant speed and angle information sources are available and can be used for the magnetic bearing and the motor controller without the usage of an angle sensor.

  19. Determination Method of Bridge Rotation Angle Response Using MEMS IMU.

    PubMed

    Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi

    2016-11-09

    To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.

  20. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    NASA Astrophysics Data System (ADS)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength available for the reflector is sufficient to withstand these internal stresses.

  1. Lumbar Corsets Can Decrease Lumbar Motion in Golf Swing

    PubMed Central

    Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji

    2013-01-01

    Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key points Rotational and extension forces on the lumbar spine may cause golf-related low back pain Wearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity. Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine. PMID:24149729

  2. Lumbar corsets can decrease lumbar motion in golf swing.

    PubMed

    Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji

    2013-01-01

    Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key pointsRotational and extension forces on the lumbar spine may cause golf-related low back painWearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity.Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine.

  3. How cosmic microwave background correlations at large angles relate to mass autocorrelations in space

    NASA Technical Reports Server (NTRS)

    Blumenthal, George R.; Johnston, Kathryn V.

    1994-01-01

    The Sachs-Wolfe effect is known to produce large angular scale fluctuations in the cosmic microwave background radiation (CMBR) due to gravitational potential fluctuations. We show how the angular correlation function of the CMBR can be expressed explicitly in terms of the mass autocorrelation function xi(r) in the universe. We derive analytic expressions for the angular correlation function and its multipole moments in terms of integrals over xi(r) or its second moment, J(sub 3)(r), which does not need to satisfy the sort of integral constraint that xi(r) must. We derive similar expressions for bulk flow velocity in terms of xi and J(sub 3). One interesting result that emerges directly from this analysis is that, for all angles theta, there is a substantial contribution to the correlation function from a wide range of distance r and that radial shape of this contribution does not vary greatly with angle.

  4. Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles

    DTIC Science & Technology

    2013-07-01

    tactical applications are inertial. The advantages of using quaternions rather than Euler angles to represent projectile attitude are discussed, and...projectiles generally don’t experience a wide range of heading angles , this has not a primary concern. The other major advantage of quaternions (or...DCMs) over Euler angles is their propagation equations are linear with respect to the quaternion and only depend on the IMU’s angular velocity. This

  5. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.

  6. Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.

    PubMed

    Damiano, Diane L; Laws, Edward; Carmines, Dave V; Abel, Mark F

    2006-01-01

    This study investigated the effects of spasticity in the hamstrings and quadriceps muscles on gait parameters including temporal spatial measures, knee position, excursion and angular velocity in 25 children with spastic diplegic cerebral palsy (CP) as compared to 17 age-matched peers. While subjects were instructed to relax, an isokinetic device alternately flexed and extended the left knee at one of the three constant velocities 30 degrees/s, 60 degrees/s and 120 degrees/s, while surface electromyography (EMG) electrodes over the biceps femoris and the rectus femoris recorded muscle activity. Patients then participated in 3D gait analysis at a self-selected speed. Results showed that, those with CP who exhibited heightened stretch responses (spasticity) in both muscles, had significantly slower knee angular velocities during the swing phase of gait as compared to those with and without CP who did not exhibit stretch responses at the joint and the tested speeds. The measured amount (torque) of the resistance to passive flexion or extension was not related to gait parameters in subjects with CP; however, the rate of change in resistance torque per unit angle change (stiffness) at the fastest test speed of 120 degrees/s showed weak to moderate relationships with knee angular velocity and motion during gait. For the subset of seven patients with CP who subsequently underwent a selective dorsal rhizotomy, knee angular extension and flexion velocity increased post-operatively, suggesting some degree of causality between spasticity and movement speed.

  7. The effect of angular velocity and cycle on the dissipative properties of the knee during passive cyclic stretching: a matter of viscosity or solid friction.

    PubMed

    Nordez, A; McNair, P J; Casari, P; Cornu, C

    2009-01-01

    The mechanisms behind changes in mechanical parameters following stretching are not understood clearly. This study assessed the effects of joint angular velocity on the immediate changes in passive musculo-articular properties induced by cyclic stretching allowing an appreciation of viscosity and friction, and their contribution to changes in torque that occur. Ten healthy subjects performed five passive knee extension/flexion cycles on a Biodex dynamometer at five preset angular velocities (5-120 deg/s). The passive torque and knee angle were measured, and the potential elastic energy stored during the loading and the dissipation coefficient were calculated. As the stretching velocity increased, so did stored elastic energy and the dissipation coefficient. The slope of the linear relationship between the dissipation coefficient and the angular velocity was unchanged across repetitions indicating that viscosity was unlikely to be affected. A difference in the y-intercept across repetitions 1 and 5 was indicative of a change in processes associated with solid friction. Electromyographical responses to stretching were low across all joint angular velocities. Torque changes during cyclic motion may primarily involve solid friction which is more indicative of rearrangement/slipping of collagen fibers rather than the redistribution of fluid and its constituents within the muscle. The findings also suggest that it is better to stretch slowly initially to reduce the amount of energy absorption required by tissues, but thereafter higher stretching speeds can be undertaken.

  8. Very Low Cost Expendable Harassment System Design Study. Volume 3

    DTIC Science & Technology

    1975-12-01

    Vst = W = wf. w = g a, = a O. 3D LO * n ■ 0 = thrust horsepower anailable (hp) thrust horsepower required (hp) airspeed (mph) stall...A-113 ^rr-r-^rfr^r- "- -—’^’ iääaääiäitämäiA Hi^l^Wt^MjMW^1^-^^^ APPENDIX A-6-2 DESIGN OUTPUT VST SL VST 3K WEIGHT VST (S=17,0... angular velocity change of rolling moment from a change in yaw angular velocity change of rolling moment from a change in sideslip angle change of

  9. Automatic State Space Aggregation Using a Density Based Technique

    DTIC Science & Technology

    2012-05-01

    learner: the position of the cart X , the velocity of the cart X ′, the angle each beam makes with the cart, θ1 and θ2, and the angular velocities of the...ulation of 100 neural networks per generation, with a maximum of 200 generations of learning. Neuroevolution is provided by Another NEAT Java Implementation

  10. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke.

    PubMed

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K

    2017-12-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.

  11. Rotation of the asymptotic giant branch star R Doradus

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.

    2018-05-01

    High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.

  12. Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering

    NASA Astrophysics Data System (ADS)

    Tao, P.; Jin, X. H.

    2018-05-01

    In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.

  13. The influence of muscles on knee flexion during the swing phase of gait.

    PubMed

    Piazza, S J; Delp, S L

    1996-06-01

    Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.

  14. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM-COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.

  15. Determination Method of Bridge Rotation Angle Response Using MEMS IMU

    PubMed Central

    Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi

    2016-01-01

    To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871

  16. Gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow.

    PubMed

    Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro

    2007-11-01

    This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.

  17. Reliability of the sub-components of the instrumented timed up and go test in ambulatory children with traumatic brain injury and typically developed controls.

    PubMed

    Newman, Mark A; Hirsch, Mark A; Peindl, Richard D; Habet, Nahir A; Tsai, Tobias J; Runyon, Michael S; Huynh, Toan; Zheng, Nigel

    2018-06-01

    Studies have evaluated the test-re-test reliability of subcomponents of the timed up and-go test in adults by using body-worn inertial sensors. However, studies in children have not been reported in the literature. To evaluate the within-session reliability of subcomponents of a newly developed electronically augmented timed 'upand-go' test (EATUG) in ambulatory children with traumatic brain injury (TBI) and children with typical development (TD). The timed up and go test was administered to twelve consecutive ambulatory children with moderate to severe TBI (6 males and 6 females, age 10.5 ± 1.5 years, range 8-13 years, during inpatient rehabilitation at 27.0 ± 11.8 days following injury) and 10 TD age and sex-matched children (5 males and 5 females, 10.4 ± 1.3 years, range 8-11 years). Participants wore a single chest-mounted inertial measurement sensor package with custom software that measured angular and acceleration velocity and torso flexion and extension angles, while they performed 6 trials of the EATUG test. Measures were derived from the overall time to complete the TUG test, angular velocity and angular displacement data for torso flexion and extension during sit-to-stand and stand-to-sit segments and both mean and peak angular velocities for two turning segments (i.e. turning around a cone and turning-before-sitting). Within-session reliability of the subcomponents of the TUG test for children with TBI assessed by the intra-class correlation coefficient was ICC (1,1) = 0.84, (range 0.82-0.96), and for TD children ICC (1,1) = 0.73, (range 0.53-0.89). Scores on Total Time, maximum torso flexion/extension angle and peak flexion angular velocity during sit-tostand, and peak turn angular velocity for both turns around the cone and turns before sitting were lower for children with TBI than for TD children (p ≤ 0.05). The EATUG test is a reliable measure of physical function in children with TBI who are being discharged from inpatient rehabilitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Phase Resolved Angular Velocity Control of Cross Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2015-11-01

    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  19. Constant angular velocity of the wrist during the lifting of a sphere.

    PubMed

    Chappell, P H; Metcalf, C D; Burridge, J H; Yule, V T; Pickering, R M

    2010-05-01

    The primary objective of the experiments was to investigate the wrist motion of a person while they were carrying out a prehensile task from a clinical hand function test. A six-camera movement system was used to observe the wrist motion of 10 participants. A very light sphere and a heavy sphere were used in the experiments to study any mass effects. While seated at a table, a participant moved a sphere over a small obstacle using their dominant hand. The participants were observed to move their wrist at a constant angular velocity. This phenomenon has not been reported previously. Theoretically, the muscles of the wrist provide an impulse of force at the start of the rotation while the forearm maintains a constant vertical force on a sphere. Light-heavy mean differences for the velocities, absolute velocities, angles and times taken showed no significant differences (p = 0.05).

  20. Kinematics of Visually-Guided Eye Movements

    PubMed Central

    Hess, Bernhard J. M.; Thomassen, Jakob S.

    2014-01-01

    One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain. PMID:24751602

  1. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    PubMed

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.

  2. Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity.

    PubMed

    Archer, R J; Campbell, A I; Ebbens, S J

    2015-09-14

    The ability to control the degree of spin, or rotational velocity, for catalytic swimming devices opens up the potential to access well defined spiralling trajectories, enhance cargo binding rate, and realise theoretically proposed behaviour such as chiral diffusion. Here we assess the potential to impart a well-defined spin to individual catalytic Janus swimmers by using glancing angle metal evaporation onto a colloidal crystal to break the symmetry of the catalytic patch due to shadowing by neighbouring colloids. Using this approach we demonstrate a well-defined relationship between the glancing angle and the ratio of rotational to translational velocity. This allows batches of colloids with well-defined spin rates in the range 0.25 to 2.5 Hz to be produced. With reference to the shape and thickness variations across the catalytically active shapes, and their propulsion mechanism we discuss the factors that can lead to the observed variations in rotational propulsion.

  3. A low-complexity attitude control method for large-angle agile maneuvers of a spacecraft with control moment gyros

    NASA Astrophysics Data System (ADS)

    Kawajiri, Shota; Matunaga, Saburo

    2017-10-01

    This study examines a low-complexity control method that satisfies mechanical constraints by using control moment gyros for an agile maneuver. The method is designed based on the fact that a simple rotation around an Euler's principal axis corresponds to a well-approximated solution of a time-optimal rest-to-rest maneuver. With respect to an agile large-angle maneuver using CMGs, it is suggested that there exists a coasting period in which all gimbal angles are constant, and a constant body angular velocity is almost along the Euler's principal axis. The gimbals are driven such that the coasting period is generated in the proposed method. This allows the problem to be converted into obtaining only a coasting time and gimbal angles such that their combination maximizes body angular velocity along the rotational axis of the maneuver. The effectiveness of the proposed method is demonstrated by using numerical simulations. The results indicate that the proposed method shortens the settling time by 20-70% when compared to that of a traditional feedback method. Additionally, a comparison with an existing path planning method shows that the proposed method achieves a low computational complexity (that is approximately 150 times faster) and a certain level of shortness in the settling time.

  4. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).

    PubMed

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-04-23

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.

  5. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR)

    PubMed Central

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  6. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  7. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation. [human tolerance to angular accelerations

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    Motion sickness susceptibility of four normal subjects was measured in terms of duration of exposure necessary to evoke moderate malaise (MIIA) as a function of velocity in a chair rotated about a central axis tilted 10 deg with respect to gravitational upright. The subjects had little or no susceptibility to this type of rotation at 2.5 and 5.0 rpm, but with further increases in rate, the MIIA endpoint was always reached and with ever shorter test durations. Minimal provocative periods for all subjects were found at 15 or 20 rpm. Higher rotational rates dramatically reversed the vestibular stressor effect, and the subjects as a group tended to reach a plateau of relatively low susceptibility at 40 and 45 rpm. At these higher velocities, furthermore, the subjects essentially lost their sensation of being tilted off vertical. In the second half of the study, the effect of tilt angle was varied while the rotation rate was maintained at a constant 17.5 rpm. Two subjects were completely resistant to symptoms of motion sickness when rotated at 2.5 deg off vertical; with greater off-vertical angles, the susceptibility of all subjects increased sharply at first, then tapered off in a manner reflecting a Fechnerian function.

  8. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  9. Angular momentum of the N2H+ cores in the Orion A cloud

    NASA Astrophysics Data System (ADS)

    Tatematsu, Ken'ichi; Ohashi, Satoshi; Sanhueza, Patricio; Nguyen Luong, Quang; Umemoto, Tomofumi; Mizuno, Norikazu

    2016-04-01

    We have analyzed the angular momentum of the molecular cloud cores in the Orion A giant molecular cloud observed in the N2H+ J = 1-0 line with the Nobeyama 45 m radio telescope. We have measured the velocity gradient using position-velocity diagrams passing through core centers, and made sinusoidal fits against the position angle. Twenty-seven out of 34 N2H+ cores allowed us to measure the velocity gradient without serious confusion. The derived velocity gradient ranges from 0.5 to 7.8 km s-1 pc-1. We marginally found that the specific angular momentum J/M (against the core radius R) of the Orion N2H+ cores tends to be systematically larger than that of molecular cloud cores in cold dark clouds obtained by Goodman et al., in the J/M-R relation. The ratio β of rotational to gravitational energy is derived to be β = 10-2.3±0.7, and is similar to that obtained for cold dark cloud cores in a consistent definition. The large-scale rotation of the ∫-shaped filament of the Orion A giant molecular cloud does not likely govern the core rotation at smaller scales.

  10. Experimental investigation of vortices shed by various wing fin configurations. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Iversen, J.; Moghadam, M.

    1981-01-01

    Forty-six different fins, which were members of twelve plan-form families, were tested. A two dimensional Boeing single element airfoil at an angle of attack of eight degrees and a sweepback angle of thirty-two was used to simulate a portion of the wing of a generator aircraft. Various free stream velocities were used to test any individual fin at its particular angle of attack. While the fin itself was mounted on the upper surface of the generator model, the angle of attack of each fin was varied until stall was reached and/or passed. The relative fin vortex strengths were measured in two ways. First, the maximum angular velocity of a four blade rotor placed in the fin vortex center was measured with the use of a stroboscope. Second, the maximum rolling moment on a following wing model placed in the fin vortex center was measured by a force balance.

  11. Fetlock joint kinematics differ with age in Thoroughbred [was thoroughbred] racehorses.

    PubMed

    Butcher, Michael T; Ashley-Ross, M A

    2002-05-01

    Fetlock joint kinematics during galloping in 2-, 3-, 4-, and 5-year-old Thoroughbreds in race training were quantified to determine if differences due to age could account for the observation that 2-year old Thoroughbred racehorses incur a high number of injuries to the bones and soft tissues in the distal forelimbs during training and at the outset of racing. Twelve Thoroughbred racehorses were videotaped in the sagittal plane at 250 frames/s during their daily galloping workout on a 7/8 mile sand-surface training track. Four galloping strides were recorded for each horse and subsequently digitized to determine fetlock joint angles of the leading forelimb during the limb support period of a stride. Four kinematic variables were measured from each stride's angular profile: angle of fetlock joint dorsi-flexion at mid-stance, negative angular velocity, positive angular velocity and time from hoof impact to mid-stance phase of limb support. The 2-year old Thoroughbreds had significantly quicker rates of dorsi-flexion of their fetlock joints than 3- (p=0.01), 4- (p=0.01), and 5-year old (p<0.01) Thoroughbreds following impact of the leading forelimb during moderate galloping (avg. 14 m/s). Higher rates of dorsi-flexion in young Thoroughbreds may reflect immaturity (lack of stiffness) of the suspensory apparatus tissues.

  12. The close circumstellar environment of Betelgeuse. V. Rotation velocity and molecular envelope properties from ALMA

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Decin, Leen; Richards, Anita M. S.; Harper, Graham M.; McDonald, Iain; O'Gorman, Eamon; Montargès, Miguel; Homan, Ward; Ohnaka, Keiichi

    2018-01-01

    We observed Betelgeuse using ALMA's extended configuration in band 7 (f ≈ 340 GHz, λ ≈ 0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(ν= 2, J = 8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of νeqsini = 5.47 ± 0.25 km s-1 at the equivalent continuum angular radius Rstar = 29.50 ± 0.14 mas. This corresponds to an angular rotation velocity of ω sini = (5.6 ± 1.3) × 10-9 rad s-1. The position angle of its north pole is PA = 48.0 ± 3.5°. The rotation period of Betelgeuse is estimated to P/ sini = 36 ± 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ≈ 10 au (45 mas or 1.5 × the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.

  13. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    NASA Astrophysics Data System (ADS)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  14. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  15. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  16. A contribution to calculation of the mathematical pendulum

    NASA Astrophysics Data System (ADS)

    Anakhaev, K. N.

    2014-11-01

    In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.

  17. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    PubMed

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yu; Scheeres, D. J.; Busch, Michael W.

    The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar telescopes. In this paper, Toutatis' spin state dynamics are estimated from observations of five flybys between 1992 and 2008. Observations were used to fit Toutatis' spin state dynamics in a least-squares sense, with the solar and terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis'more » Euler angles, angular velocity, moments of inertia, and the center-of-mass-center-of-figure offset. The spin state dynamics as well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate observations.« less

  19. LANDING QUALITY IN ARTISTIC GYMNASTICS IS RELATED TO LANDING SYMMETRY

    PubMed Central

    Marinšek, M.

    2013-01-01

    In gymnastics every exercise finishes with a landing. The quality of landing depends on subjective (e.g. biomechanical) and objective (e.g. mechanical characteristics of landing area) factors. The aim of our research was to determine which biomechanical (temporal, kinematic and dynamic) characteristics of landing best predict the quality of landing. Twelve male gymnasts performed a stretched forward and backward salto; also with 1/2, 1/1 and 3/2 turns. Stepwise multiple regression extracted five predictors which explained 51.5% of landing quality variance. All predictors were defining asymmetries between legs (velocities, angles). To avoid asymmetric landings, gymnasts need to develop enough height; they need higher angular momentum around the transverse and longitudinal axis and they need to better control angular velocity in the longitudinal axis. PMID:24744462

  20. A nonlinear estimator for reconstructing the angular velocity of a spacecraft without rate gyros

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Lightsey, W. D.

    1991-01-01

    A scheme for estimating the angular velocity of a spacecraft without rate gyros is presented. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble Space Telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented for verification.

  1. A comparison of pairs figure skaters in repeated jumps.

    PubMed

    Sands, William A; Kimmel, Wendy L; McNeal, Jeni R; Murray, Steven Ross; Stone, Michael H

    2012-01-01

    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters.

  2. Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi

    1996-09-01

    We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.

  3. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.

    PubMed

    Kim, Kyung; Song, Won-Kyung; Lee, Jeongsu; Lee, Hwi-Young; Park, Dae Sung; Ko, Byung-Woo; Kim, Jongbae

    2014-03-01

    It is necessary to analyze the kinematic properties of a paralyzed extremity to quantitatively determine the degree of impairment of hemiplegic people during functional activities of daily living (ADL) such as a drinking task. This study aimed to identify the kinematic differences between 16 hemiplegic and 32 able-bodied participants in relation to the task phases when drinking with a cup and the kinematic strategy used during motion with respect to the gravity direction. The subjects performed a drinking task that was divided into five phases according to Murphy's phase definition: reaching, forward transport, drinking, backward transport, and returning. We found that the groups differed in terms of the movement times and the joint angles and angular velocities of the shoulder, elbow, and wrist joints. Compared to the control group, the hemiplegic participants had a larger shoulder abduction angle of at most 17.1° during all the phases, a larger shoulder flexion angle of 7.6° during the reaching phase, and a smaller shoulder flexion angle of 6.4° during the backward transporting phase. Because of these shoulder joint patterns, a smaller elbow pronation peak angle of at most 13.1° and a larger wrist extension peak angle of 12.0° were found in the motions of the hemiplegic participants, as compensation to complete the drinking task. The movement in the gravity direction during the backward transporting phase resulted in a 15.9% larger peak angular velocity for elbow extension in the hemiplegic participants compared to that of the control group. These quantitative kinematic patterns help provide an understanding of the movements of an affected extremity and can be useful in designing rehabilitation robots to assist hemiplegic people with ADL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  5. The fingerprints of black holes—shadows and their degeneracies

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paganini, Claudio F.; Oancea, Marius A.

    2018-01-01

    We show that, away from the axis of symmetry, no continuous degeneration exists between the shadows of observers at any point in the exterior region of any Kerr–Newman black hole spacetime of unit mass. Therefore, except possibly for discrete changes, an observer can, by measuring the black holes shadow, determine the angular momentum and the charge of the black hole under observation as well as the observer’s radial position and angle of elevation above the equatorial plane. Furthermore, his/her relative velocity compared to a standard observer can also be measured. However, the black hole shadow does not allow for a full parameter resolution in the case of a Kerr–Newman–Taub–NUT black hole, as a continuous degeneration relating specific angular momentum, electric charge, Taub–NUT charge and elevation angle exists in this case.

  6. On spacecraft maneuvers control subject to propellant engine modes.

    PubMed

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  8. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  9. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    NASA Technical Reports Server (NTRS)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  10. Angle-dependent rotation of calcite in elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  11. A new approach to the human muscle model.

    PubMed

    Baildon, R W; Chapman, A E

    1983-01-01

    Hill's (1938) two component muscle model is used as basis for digital computer simulation of human muscular contraction by means of an iterative process. The contractile (CC) and series elastic (SEC) components are lumped components of structures which produce and transmit torque to the external environment. The CC is described in angular terms along four dimensions as a series of non-planar torque-angle-angular velocity surfaces stacked on top of each other, each surface being appropriate to a given level of muscular activation. The SEC is described similarly along dimensions of torque, angular stretch, overall muscle angular displacement and activation. The iterative process introduces negligible error and allows the mechanical outcome of a variety of normal muscular contractions to be evaluated parsimoniously. The model allows analysis of many aspects of muscle behaviour as well as optimization studies. Definition of relevant relations should also allow reproduction and prediction of the outcome of contractions in individuals.

  12. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also provides a general approach that can obtain non-equilibrium distributions as may exist in the upper regions of the thermosphere, above 500 km and into the exosphere. Finally, WATS serves as a mass spectrometer, with very low mass resolution of roughly 1 part in 3, but easily separating atomic oxygen from molecular nitrogen.

  13. Effect of bed height and use of hands on trunk angular velocity during the sit-to-stand transfer.

    PubMed

    Lindemann, Ulrich; van Oosten, Leon; Evers, Jordi; Becker, Clemens; van Dieen, Jaap H; van Lummel, Rob C

    2014-01-01

    The ability to rise from a chair or bed is critical to an individual's quality of life because it determines functional independence. This study was to investigate the effect of bed height and use of hands on trunk angular velocity and trunk angles during the sit-to-stand (STS) performance. Twenty-four older persons (median age 74 years) were equipped with a body-fixed gyroscopic sensor and stood up from a bed adjusted to different heights, with and without the use of hands at each height. Peak angular velocity and trunk range of motion decreased with increasing bed height (all p ≤ 0.038) and were lower using hands during STS transfer indicating less effort. In conclusion, gyroscopic sensor data of the STS transfer of older persons show differences as an effect of bed height and use of hands. These results provide the rationale for recommending a relatively high bed height for most of the older persons. To minimise the effort during sit-to-stand transfer performance from bed, it is necessary to understand the effect of bed height and use of hands. It is concluded that a relatively high bed height and the use of hands is helpful for most of the older persons during sit-to-stand transfer.

  14. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    NASA Technical Reports Server (NTRS)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  15. Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.

    PubMed

    Cowen, Stephen L; Nitz, Douglas A

    2014-01-01

    Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.

  16. Break-technique handheld dynamometry: relation between angular velocity and strength measurements.

    PubMed

    Burns, Stephen P; Spanier, David E

    2005-07-01

    To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.

  17. Indeterminacy of drag exerted on an arrow in free flight: arrow attitude and laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Matsumoto, T.; Ando, R.; Ortiz, J.; Sugiura, H.

    2017-11-01

    The aerodynamic properties of an arrow (A/C/E; Easton) were investigated in an extension of our previous work, in which the laminar-turbulent transition of the boundary layer on the arrow shaft was found to take place in the Re number range of 1.2 × 104 < Re < 2.0 × 104. In this paper, we focus on the influence of the arrow’s attitude on the transition. Two types of vane (Spin Wing vane and Gas Pro vane) are fletched, and their stabilizing effects are compared. Two support-interference-free tests are performed to provide aerodynamic properties such as the drag, lift and pitching moment coefficients. The static aerodynamic properties are measured in a wind tunnel with JAXA’s 60 cm magnetic suspension and balance system. When the arrow is aligned with the flow, the boundary layer remains laminar for Re < 1.5 × 104, and the drag coefficient is approximately 1.5 for 1.0 × 104 < Re < 1.5 × 104. If the arrow has an angle of attack of 0.75 ° with the flow, the transition to turbulence takes place at approximately Re = 1.1 × 104, and the drag coefficient increases to approximately 3.1. In addition, free flight experiments are performed. The arrow’s velocity and angular velocity are recorded using five high-speed video cameras. By analysing the recorded images, we obtain the initial and final velocities from which the drag coefficient is determined. The trajectory and attitude of the arrow in free flight are computed numerically by integrating the equations of motion for a rigid body using the initial data obtained from the video images. The laminar-turbulent transition of the boundary layer is shown to take place, if the maximum angle of attack exceeds about 0.4° at Re = 1.75 × 104. The crucial influence of the initial angular velocity on the angle of attack is also examined.

  18. Flatness-Based Tracking Control and Nonlinear Observer for a Micro Aerial Quadcopter

    NASA Astrophysics Data System (ADS)

    Rivera, G.; Sawodny, O.

    2010-09-01

    This paper deals with the design of a nonlinear observer and a differential flat based path tracking controller for a mini aerial quadcopter. Taking into account that only the inertial coordinates and the yaw angle are available for measurements, it is shown, that the system is differentially flat, allowing a systematic design of a nonlinear tracking control in open and closed loop. A nonlinear observer is carried out to estimate the roll and pitch angle as well as all the linear and angular velocities. Finally the performance of the feedback controller and observer are illustrated in a computer simulation.

  19. Velocity of lordosis angle during spinal flexion and extension.

    PubMed

    Consmüller, Tobias; Rohlmann, Antonius; Weinland, Daniel; Druschel, Claudia; Duda, Georg N; Taylor, William R

    2012-01-01

    The importance of functional parameters for evaluating the severity of low back pain is gaining clinical recognition, with evidence suggesting that the angular velocity of lordosis is critical for identification of musculoskeletal deficits. However, there is a lack of data regarding the range of functional kinematics (RoKs), particularly which include the changing shape and curvature of the spine. We address this deficit by characterising the angular velocity of lordosis throughout the thoracolumbar spine according to age and gender. The velocity of lumbar back shape changes was measured using Epionics SPINE during maximum flexion and extension activities in 429 asymptomatic volunteers. The difference between maximum positive and negative velocities represented the RoKs. The mean RoKs for flexion decreased with age; 114°/s (20-35 years), 100°/s (36-50 years) and 83°/s (51-75 years). For extension, the corresponding mean RoKs were 73°/s, 57°/s and 47°/s. ANCOVA analyses revealed that age and gender had the largest influence on the RoKs (p<0.05). The Epionics SPINE system allows the rapid assessment of functional kinematics in the lumbar spine. The results of this study now serve as normative data for comparison to patients with spinal pathology or after surgical treatment.

  20. Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot.

    PubMed

    Germanotta, Marco; Taborri, Juri; Rossi, Stefano; Frascarelli, Flaminia; Palermo, Eduardo; Cappa, Paolo; Castelli, Enrico; Petrarca, Maurizio

    2017-01-01

    Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT) showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i) the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP), and (ii) the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior). In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.

  1. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  2. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Angles-only navigation for autonomous orbital rendezvous

    NASA Astrophysics Data System (ADS)

    Woffinden, David C.

    The proposed thesis of this dissertation has both a practical element and theoretical component which aim to answer key questions related to the use of angles-only navigation for autonomous orbital rendezvous. The first and fundamental principle to this work argues that an angles-only navigation filter can determine the relative position and orientation (pose) between two spacecraft to perform the necessary maneuvers and close proximity operations for autonomous orbital rendezvous. Second, the implementation of angles-only navigation for on-orbit applications is looked upon with skeptical eyes because of its perceived limitation of determining the relative range between two vehicles. This assumed, yet little understood subtlety can be formally characterized with a closed-form analytical observability criteria which specifies the necessary and sufficient conditions for determining the relative position and velocity with only angular measurements. With a mathematical expression of the observability criteria, it can be used to (1) identify the orbital rendezvous trajectories and maneuvers that ensure the relative position and velocity are observable for angles-only navigation, (2) quantify the degree or level of observability and (3) compute optimal maneuvers that maximize observability. In summary, the objective of this dissertation is to provide both a practical and theoretical foundation for the advancement of autonomous orbital rendezvous through the use of angles-only navigation.

  4. HITPRO Tests and Analyses

    DTIC Science & Technology

    1976-09-01

    significant error here would perhaps be the angular velocity as seen by the computer because the optical angle is read to the nearest tenth milliradian ...Track 6. When the tape is reproduced, this signal is recovered from the tape and is compared to the crystal oscillator reference frequency. If a...34 Comparative Evaluation of the Electro-Hydraulic and All-Electric Stabilization Systems Developed for the M60A2 Tank," dated August 1974, by

  5. Automatic Classification of Tremor Severity in Parkinson's Disease Using a Wearable Device.

    PubMed

    Jeon, Hyoseon; Lee, Woongwoo; Park, Hyeyoung; Lee, Hong Ji; Kim, Sang Kyong; Kim, Han Byul; Jeon, Beomseok; Park, Kwang Suk

    2017-09-09

    Although there is clinical demand for new technology that can accurately measure Parkinsonian tremors, automatic scoring of Parkinsonian tremors using machine-learning approaches has not yet been employed. This study aims to fill this gap by proposing machine-learning algorithms as a way to predict the Unified Parkinson's Disease Rating Scale (UPDRS), which are similar to how neurologists rate scores in actual clinical practice. In this study, the tremor signals of 85 patients with Parkinson's disease (PD) were measured using a wrist-watch-type wearable device consisting of an accelerometer and a gyroscope. The displacement and angle signals were calculated from the measured acceleration and angular velocity, and the acceleration, angular velocity, displacement, and angle signals were used for analysis. Nineteen features were extracted from each signal, and the pairwise correlation strategy was used to reduce the number of feature dimensions. With the selected features, a decision tree (DT), support vector machine (SVM), discriminant analysis (DA), random forest (RF), and k -nearest-neighbor ( k NN) algorithm were explored for automatic scoring of the Parkinsonian tremor severity. The performance of the employed classifiers was analyzed using accuracy, recall, and precision, and compared to other findings in similar studies. Finally, the limitations and plans for further study are discussed.

  6. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

    1999-06-01

    Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

  7. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.

    1999-01-01

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  8. An activity recognition model using inertial sensor nodes in a wireless sensor network for frozen shoulder rehabilitation exercises.

    PubMed

    Lin, Hsueh-Chun; Chiang, Shu-Yin; Lee, Kai; Kan, Yao-Chiang

    2015-01-19

    This paper proposes a model for recognizing motions performed during rehabilitation exercises for frozen shoulder conditions. The model consists of wearable wireless sensor network (WSN) inertial sensor nodes, which were developed for this study, and enables the ubiquitous measurement of bodily motions. The model employs the back propagation neural network (BPNN) algorithm to compute motion data that are formed in the WSN packets; herein, six types of rehabilitation exercises were recognized. The packets sent by each node are converted into six components of acceleration and angular velocity according to three axes. Motor features such as basic acceleration, angular velocity, and derivative tilt angle were input into the training procedure of the BPNN algorithm. In measurements of thirteen volunteers, the accelerations and included angles of nodes were adopted from possible features to demonstrate the procedure. Five exercises involving simple swinging and stretching movements were recognized with an accuracy of 85%-95%; however, the accuracy with which exercises entailing spiral rotations were recognized approximately 60%. Thus, a characteristic space and enveloped spectrum improving derivative features were suggested to enable identifying customized parameters. Finally, a real-time monitoring interface was developed for practical implementation. The proposed model can be applied in ubiquitous healthcare self-management to recognize rehabilitation exercises.

  9. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  11. Circumstellar Disks Around Rapidly Rotating Be-type Stars

    NASA Astrophysics Data System (ADS)

    Touhami, Yamina

    2012-01-01

    Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.

  12. Angular and velocity distributions of tungsten sputtered by low energy argon ions

    NASA Astrophysics Data System (ADS)

    Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.

    2017-12-01

    Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.

  13. Characterization of thigh and shank segment angular velocity during jump landing tasks commonly used to evaluate risk for ACL injury.

    PubMed

    Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P

    2012-09-01

    The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.

  14. Boundary Between Stable and Unstable Regimes of Accretion

    NASA Astrophysics Data System (ADS)

    Blinova, A. A.; Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  15. Angular velocity affects trunk muscle strength and EMG activation during isokinetic axial rotation.

    PubMed

    Fan, Jian-Zhong; Liu, Xia; Ni, Guo-Xin

    2014-01-01

    To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO), internal oblique (IO), and latissimus dorsi (LD) bilaterally. In each direction, with the increase of angular velocity, peak torque decreased, whereas peak power increased. During isokinetic axial rotation, contralateral EO as well as ipsilateral IO and LD acted as primary agonists, whereas, ipsilateral EO as well as contralateral IO and LD acted as primary antagonistic muscles. For each primary agonist, the root mean square values decreased with the increase of angular velocity. Antagonist coactiviation was observed at each velocity; however, it appears to be higher with the increase of angular velocity. Our results suggest that velocity of rotation has great impact on the axial rotation torque and EMG activity. An inverse relationship of angular velocity was suggested with the axial rotation torque as well as root mean square value of individual trunk muscle. In addition, higher velocity is associated with higher coactivation of antagonist, leading to a decrease in torque with the increase of velocity.

  16. Importance of Thomas single-electron transfer in fast p-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  17. The Deterministic Mine Burial Prediction System

    DTIC Science & Technology

    2009-01-12

    or below the water-line, initial linear and angular velocities, and fall angle relative to the mine’s axis of symmetry. Other input data needed...c. Run_DMBP.m: start-up MATLAB script for the program 2. C:\\DMBP\\DMBP_src: This directory contains source code, geotechnical databases, and...approved for public release). b. \\Impact_35: The IMPACT35 model c. \\MakeTPARfiles: scripts for creating wave height and wave period input data from

  18. Swallowing Kinematics and Factors Associated with Laryngeal Penetration and Aspiration in Stroke Survivors with Dysphagia.

    PubMed

    Seo, Han Gil; Oh, Byung-Mo; Han, Tai Ryoon

    2016-04-01

    The purpose of this study was to investigate swallowing kinematics and explore kinematic factors related with penetration-aspiration in patients with post-stroke dysphagia. Videofluoroscopic images of 68 patients with post-stroke dysphagia and 34 sex- and age-matched healthy controls swallowing a thin liquid were quantitatively analyzed using two-dimensional motion digitization. The measurements included the movement distances and velocities of the hyoid and larynx, and the maximal tilt angles and angular velocities of the epiglottis. All velocity variables were significantly decreased in the stroke patients compared to the controls. There was a significant difference in the maximal horizontal displacement of the larynx, but there were no significant differences in other displacements of the larynx, the maximal displacements of the hyoid bone, and the maximum tilt angle of the epiglottis between the two groups. The maximal tilt angle of the epiglottis was lower in the aspiration subgroup than in the no penetration/aspiration and penetration subgroups as well as the controls. The maximal tilt angle from the y axis showed a dichotomous pattern at 90° of the angle, and all 11 patients with an angle <90° showed either penetration or aspiration. In the ROC curve of the angle for prediction of aspiration, the area under the curve was 0.725 (95 % CI 0.557-0.892, P = 0.008). This study suggested that sluggish rather than decreased hyolaryngeal movements during swallowing are a remarkable feature of post-stroke dysphagia. The association of reduced epiglottic movement with the risk of aspiration in patients with post-stroke dysphagia was supported by the quantitative analysis.

  19. Electron capture from circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lundsgaard, M. F. V.; Chen, Z.; Lin, C. D.; Toshima, N.

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle cphi between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen et al. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed cphi dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3d,4f,5g) states by protons at the same scaled velocity has nearly the same cphi dependence.

  20. Study of the dynamic of motion landing vehicles in the planet's atmosphere using inflatable braking device

    NASA Astrophysics Data System (ADS)

    Koryanov, Vsevolod; Harri, Ari-Matti; Kazakovtcev, Victor

    At present paper analyzes the dynamics of movement of the landing vehicle (LV) with an inflatable braking device (IBD). During the movement in the planet's atmosphere with LV with IBD are significant aerodynamic loads, which can lead to a change in a non-rigid shape and appearance of the shell IBD current asymmetries LV with IBD. The presence arising in the manufacture of structural LV asymmetry results in a stabilized descent in the process of turning the LV with IBD various dynamic phenomena, such as the vibrational-rotational resonance, the resonance autorotation, altering the dynamics of angular motion of the LV. As a result of work carried out, among others, the following conclusions: 1. In the first step of descent of landing vehicle possible high angles of attack, however, the very small quantities of the velocity head. 2. In the second phase of descent arise spatial angles of attack, caused by small structural asymmetries of LV. These angles of attack, together with increasing magnitude of the velocity head cause these significant increase in lateral load. The increase in the transverse load leads to an increase in the asymmetry of the external form, which causes an additional increase in the spatial angle of attack. Depending on the magnitude of the transverse stiffness IBD or leads to a certain additional increase in the spatial angle of attack, or a possible buckling landing vehicle. 3. In the third (final) stage of the descent at subsonic speed landing vehicle with additional inflatable braking device does not influence the stiffness braking, changing the dynamics of angular motion slightly. This is due to the small size of the ram on the subsonic long trajectory and, accordingly, small deformation additional inflatable braking device. This research was supported by the European Commission Seventh Framework Programme FP7/2007-2013 under grant agreement n 263255 RITD.

  1. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  2. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  3. Comment on ‘On the units radian and cycle for the quantity plane angle’

    NASA Astrophysics Data System (ADS)

    Leonard, B. P.

    2016-12-01

    In the referenced paper, Ian Mills addresses the confusion caused by the treatment of plane angle in the International System of Units (SI). As he points out, what the SI calls an ‘angle’ is not a dimensional physical quantity but, rather, the dimensionless numerical value of the angle when expressed in radians, thus creating widespread confusion regarding terminology and notation. For example, Mills shows that for the harmonic oscillator, if the conventional argument of the sinusoid represents an angle, it must be divided by a dimensional constant equal to one radian in order to correctly render it dimensionless, thereby greatly clarifying the notation. However, there is a problem with the author’s interpretation of frequency. Although, for uniform rotation, Mills correctly defines the revolution frequency as the number of complete revolutions, N, divided by the time interval, he takes the unit for N to be ‘cycle’ (which he defines as one revolution) rather than the correct unit: the number one. The unit for ‘frequency’ then appears to be ‘cycle per second’ (i.e. revolution per second), whereas it should be one per second, correctly called hertz. Thus Mills concludes that ‘frequency’ is the same physical quantity as angular velocity and calls for the ‘hertz’ to be redefined as 2π rad s-1, a non-coherent derived unit for angular velocity. This misinterpretation of frequency corrupts the remainder of the author’s discussion of the examples considered. In my comment, I explain and correct these and related errors.

  4. Investigation of the rolling motion of a hollow cylinder using a smartphone’s digital compass

    NASA Astrophysics Data System (ADS)

    Wattanayotin, Phattara; Puttharugsa, Chokchai; Khemmani, Supitch

    2017-07-01

    This study used a smartphone’s digital compass to observe the rolling motion of a hollow cylinder on an inclined plane. The smartphone (an iPhone 4s) was attached to the end of one side of a hollow cylinder to record the experimental data using the SensorLog application. In the experiment, the change of angular position was measured by the smartphone’s digital compass. The obtained results were then analyzed and calculated to determine various parameters of the motion, such as the angular velocity, angular acceleration, critical angle, and coefficient of static friction. The experimental results obtained from using the digital compass were compared with those obtained from using a gyroscope sensor. Moreover, the results obtained from both sensors were consistent with the calculations for the rolling motion. We expect that this experiment will be valuable for use in physics laboratories.

  5. A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.

    PubMed

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-02-27

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.

  6. A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling

    PubMed Central

    Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing

    2015-01-01

    With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642

  7. Doppler term in the galaxy two-point correlation function: Wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2018-03-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.

  8. Angular Distributions of Differential Electron Capture Cross Sections in Collisions Between Low-Velocity Highly-Charged Ions and Neutral Targets.

    NASA Astrophysics Data System (ADS)

    Waggoner, William Tracy

    1990-01-01

    Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second peak appearing outside the Coulomb angle, theta_{c} = Q/2E, which continues to grow in magnitude as the projectile energy decreases further. Results are compared with a model calculation employing a two state diabatic Coulomb curve crossing model and the classical deflection function.

  9. 47 CFR 73.128 - AM stereophonic broadcasting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnitude of the nth term of the difference signal ωsn=the nth order angular velocity of the sum signal ωdn=the nth order angular velocity of the difference signal ωc=the angular velocity of the carrier... presence of envelope modulation. (5) Maximum angular modulation, which occurs on negative peaks of the left...

  10. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    PubMed

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.

  11. A Gender-Based Kinematic and Kinetic Analysis of the Snatch Lift In Elite Weightlifters in 69-Kg Category

    PubMed Central

    Harbili, Erbil

    2012-01-01

    The objective of this study was to compare the kinematic and kinetic differences in snatch performances of elite 69-kg men and women weightlifters, the only category common to both genders. The heaviest lifts performed by 9 men and 9 women weightlifters competing in 69-kg weight class in Group A in the 2010 World Weightlifting Championship were analyzed. The snatch lifts were recorded using 2 cameras (PAL). Points on the barbell and body were manually digitized by using Ariel Performance Analysis System. The results showed that maximal extension angle of the ankle and knee during the first pull, the knee angle at the end of the transition phase, and maximal extension angle of the knee in the second pull were significantly greater in men (p < 0.05). The angular velocity of the hip was significantly greater in men during the first pull (p < 0.05). During the second pull, women showed significantly greater maximal angular velocity at the hip and ankle joints (p < 0.05). Moreover, the maximal vertical linear velocity of the barbell was significantly greater in women (p < 0.05). The absolute mechanical work and power output in the first pull and power output in the second pull were significantly greater in men (p < 0.05). However, the relative mechanical work was significantly greater in women during the second pull (p < 0.05). The results revealed that in 69-kg weight class, women were less efficient than men in the first pull, which is strength oriented, whereas they were as efficient as men in the second pull, which is more power oriented. Key points Women weightlifters should do assistant exercises to strengthen their ankle flexor and knee extensor muscles in order to increase their maximal strength in the first pull. Women weightlifters should be able to execute a deeper and faster knee flexion in the transition phase in order to obtain a greater explosive strength during the second pull. PMID:24149133

  12. A Simple Piece of Apparatus to Aid the Understanding of the Relationship between Angular Velocity and Linear Velocity

    ERIC Educational Resources Information Center

    Unsal, Yasin

    2011-01-01

    One of the subjects that is confusing and difficult for students to fully comprehend is the concept of angular velocity and linear velocity. It is the relationship between linear and angular velocity that students find difficult; most students understand linear motion in isolation. In this article, we detail the design, construction and…

  13. Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.

    PubMed

    Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H

    2015-01-01

    The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.

  14. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1994-01-01

    This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.

  15. Acquisition, Tracking, Pointing, and Line-of-Sight Control Laboratory Experiments for a Space-Based Bifocal Relay Mirror

    DTIC Science & Technology

    2002-01-01

    fixed coordinate frame. The spacecraft is subjected to large angle maneuvers ; therefore, a quaternion formulation is used. The spacecraft uses rate...steering mirrors (small inertia). The wheel control laws are based on quaternion error and angular velocity error feedback . The derivation of the...Agrawal, M. Romano Spacecraft Research and Design Center Naval Postgraduate School Monterey, CA 93943 R. L. Brunson**, J. D. Dillow, D. H. Nelson, J. J

  16. A New Guidance Method for a Delta V and Re-entry Constrained Orbit Transfer Problem

    DTIC Science & Technology

    2005-06-01

    a vehicle that undertakes a maneuver with the objective of precisely flying through a point in space at a particular time. The spacecraft must...for the Example Spacecraft . . . . 50 4-1 Graphical Results of Large Changes in Orbital Velocity . . . . . . . . . . . 62 4-2 Contours of Perigee...Orbit Relative to Rendezvous Point . . . . . . . . . . 98 6-2 Angular Rate and Angles for GEM-CR Maneuver with ∆θ = 90◦ . . . . . . 101 6-3 Position

  17. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  18. A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang

    2017-10-01

    Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.

  19. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    PubMed Central

    Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868

  20. DAVIS: A direct algorithm for velocity-map imaging system

    NASA Astrophysics Data System (ADS)

    Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.

    2018-05-01

    In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.

  1. Blending Velocities In Task Space In Computing Robot Motions

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.

    1995-01-01

    Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.

  2. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  3. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.

  4. The effects of obesity on balance recovery using an ankle strategy.

    PubMed

    Matrangola, Sara L; Madigan, Michael L

    2011-06-01

    Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7±0.6 kg/m(2)) and ten obese (BMI: 32.2±2.2 kg/m(2)) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand

    PubMed Central

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-01-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket velocity and the angular velocities of playing- and non-playing-side hip extension and ankle flexion were found in topspin forehands. In topspin backhands abduction of the arm had the greatest impact on the racket speed. The results can be used directly to improve training of table tennis techniques, especially topspin strokes. PMID:29769835

  6. Angular-velocity control approach for stance-control orthoses.

    PubMed

    Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan

    2009-10-01

    Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.

  7. Angular momentum exchange in white dwarf binaries accreting through direct impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepinsky, J. F.; Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, asmore » well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers of events/systems for which double white dwarfs may be a progenitor, e.g., Type Ia supernovae, Type.Ia supernovae, and AM CVn.« less

  8. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25

  9. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand.

    PubMed

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-06-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.

  10. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    PubMed Central

    Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki

    2013-01-01

    This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128

  11. Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey

    NASA Technical Reports Server (NTRS)

    Solomon, D.; Cohen, B.

    1992-01-01

    1. A rhesus and cynomolgus monkey were trained to run around the perimeter of a circular platform in light. We call this "circular locomotion" because forward motion had an angular component. Head and body velocity in space were recorded with angular rate sensors and eye movements with electrooculography (EOG). From these measurements we derived signals related to the angular velocity of the eyes in the head (Eh), of the head on the body (Hb), of gaze on the body (Gb), of the body in space (Bs), of gaze in space (Gs), and of the gain of gaze (Gb/Bs). 2. The monkeys had continuous compensatory nystagmus of the head and eyes while running, which stabilized Gs during the slow phases. The eyes established and maintained compensatory gaze velocities at the beginning and end of the slow phases. The head contributed to gaze velocity during the middle of the slow phases. Slow phase Gb was as high as 250 degrees/s, and targets were fixed for gaze angles as large as 90-140 degrees. 3. Properties of the visual surround affected both the gain and strategy of gaze compensation in the one monkey tested. Gains of Eh ranged from 0.3 to 1.1 during compensatory gaze nystagmus. Gains of Hb varied around 0.3 (0.2-0.7), building to a maximum as Eh dropped while running past sectors of interest. Consistent with predictions, gaze gains varied from below to above unity, when translational and angular body movements with regard to the target were in opposite or the same directions, respectively. 4. Gaze moved in saccadic shifts in the direction of running during quick phases. Most head quick phases were small, and at times the head only paused during an eye quick phase. Eye quick phases were larger, ranging up to 60 degrees. This is larger than quick phases during passive rotation or saccades made with the head fixed. 5. These data indicate that head and eye nystagmus are natural phenomena that support gaze compensation during locomotion. Despite differential utilization of the head and eyes in various conditions, Gb compensated for Bs. There are various frames of reference in which an estimate of angular velocity that drives the head and eyes could be based. We infer that body in space velocity (Bs) is likely to be represented centrally to provide this signal.

  12. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Task Space Angular Velocity Blending for Real-Time Trajectory Generation

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A. (Inventor)

    1997-01-01

    The invention is embodied in a method of controlling a robot manipulator moving toward a target frame F(sub 0) with a target velocity v(sub 0) including a linear target velocity v and an angular target velocity omega(sub 0) to smoothly and continuously divert the robot manipulator to a subsequent frame F(sub 1) by determining a global transition velocity v(sub 1), the global transition velocity including a linear transition velocity v(sub 1) and an angular transition velocity omega(sub 1), defining a blend time interval 2(tau)(sub 0) within which the global velocity of the robot manipulator is to be changed from a global target velocity v(sub 0) to the global transition velocity v(sub 1) and dividing the blend time interval 2(tau)(sub 0) into discrete time segments (delta)t. During each one of the discrete time segments delta t of the blend interval 2(tau)(sub 0), a blended global velocity v of the manipulator is computed as a blend of the global target velocity v(sub 0) and the global transition velocity v(sub 1), the blended global velocity v including a blended angular velocity omega and a blended linear velocity v, and then, the manipulator is rotated by an incremental rotation corresponding to an integration of the blended angular velocity omega over one discrete time segment (delta)t.

  14. Accurate human limb angle measurement: sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering

    NASA Astrophysics Data System (ADS)

    Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.

    2011-02-01

    Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.

  15. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  16. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  17. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  18. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  19. Segmentation of human upper body movement using multiple IMU sensors.

    PubMed

    Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane

    2016-08-01

    This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.

  20. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    NASA Astrophysics Data System (ADS)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  1. Test-retest reliability of sit-to-stand and stand-to-sit analysis in people with and without chronic non-specific low back pain.

    PubMed

    Pourahmadi, Mohammad Reza; Ebrahimi Takamjani, Ismail; Jaberzadeh, Shapour; Sarrafzadeh, Javad; Sanjari, Mohammad Ali; Bagheri, Rasool; Jannati, Elham

    2018-06-01

    Sit-to-stand (STD) and stand-to-sit (SIT) analysis can provide information on functional independence in daily activities in patients with low back pain (LBP). However, in order for measurements to be clinically useful, data on psychometric properties should be available. The main purpose was to investigate intra-rater reliability of STD and SIT tasks in participants with and without chronic non-specific LBP (CNLBP). The second purpose was to detect any differences in lumbar spine and hips sagittal plane kinematics and coordination between asymptomatic individuals and CNLBP patients during STD and SIT. Cross-sectional study. Twenty-three CNLBP patients and 23 demographically-matched controls were recruited. Ten markers were placed on specific anatomical landmarks. Participants were asked to perform STD and SIT at a preferred speed. Peak flexion angles, mean angular velocities, lumbar to hip movement ratios, and relative phase angles were measured. The procedure was repeated after 2 h and 6-8 days. Differences between two groups were analyzed using independent t-test. Intraclass correlation coefficient (ICC 3,k), standard error of measurement (SEM), and limits of agreement (LOAs) were also estimated. The ICC values showed moderate to excellent intra-rater reliability, with relatively low SEM values (≤10.17°). The 95% LOAs demonstrated that there were no differences between the measured parameters. Furthermore, CNLBP patients had limited sagittal plane angles, smaller angular velocities, and lumbar-hip dis-coordination compared to asymptomatic participants. The results indicated moderate to excellent test-retest reliability of STD and SIT analysis. Moreover, CNLBP patients had altered kinematics during STD and its reverse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of virtual reality on postural stability during movements of quiet stance.

    PubMed

    Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J

    2009-02-27

    Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.

  3. A methodologic approach for normalizing angular work and velocity during isotonic and isokinetic eccentric training.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.

  4. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.

  5. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Mechanisms underlying the perceived angular velocity of a rigidly rotating object.

    PubMed

    Caplovitz, G P; Hsieh, P-J; Tse, P U

    2006-09-01

    The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.

  7. Professional tennis players' serve: correlation between segmental angular momentums and ball velocity.

    PubMed

    Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit

    2013-03-01

    The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.

  8. Flow and pressure characteristics within a screw compressor

    NASA Astrophysics Data System (ADS)

    Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.

    2007-10-01

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.

  9. Modeling and experiment of three-degree-of-freedom actuators using piezoelectric buzzers

    NASA Astrophysics Data System (ADS)

    Chen, W. M.; Liu, T. S.

    2013-10-01

    This study presents innovative three-degree-of-freedom piezoelectric actuators. Under the piezoelectric force and dry friction, the piezoelectric actuators not only can move in the Z-axis direction, but also rotate around the Y-axis and Z-axis. The Z-axis displacement can reach 62 mm and the rotation angle around the Y-axis and Z-axis can reach 270° and 360°, respectively. Compared with the literature, this innovative actuator design achieves one-degree-of-freedom translation and two-degree-of-freedom rotation. Equations of motion are derived based on the piezoelectric properties and Newton’s law. Two types of actuators are created in this study. In the first type, the centers of four piezoelectric buzzers are attached to an arm while in the other type each rim of the four piezoelectric buzzers is attached to the arm. Experimental results are compared with theoretical results. According to the experimental results, the present actuator can accomplish a translational velocity of 11 mm s-1, a Y-axis angular velocity of 8.96 rad s-1, a Z-axis angular velocity of 2.63 rad s-1, and a force of 2.49 mN. By using four piezoelectric buzzers, this study creates piezoelectric actuators capable of both translational and rotational motions.

  10. The Zeldovich approximation and wide-angle redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.

  11. Gimbal-Angle Vectors of the Nonredundant CMG Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Bang, Hyochoong

    2018-05-01

    This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.

  12. Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance.

    PubMed

    Mina, Minas A; Blazevich, Anthony J; Giakas, Giannis; Seitz, Laurent B; Kay, Anthony D

    2016-11-01

    The acute influence of chain-loaded variable resistance exercise on subsequent free-weight one-repetition maximum (1-RM) back squat performance was examined in 16 recreationally active men. The participants performed either a free-weight resistance (FWR) or chain-loaded resistance (CLR) back squat warm-up at 85% 1-RM on two separate occasions. After a 5-min rest, the participants attempted a free-weight 1-RM back squat; if successful, subsequent 5% load additions were made until participants failed to complete the lift. During the 1-RM trials, 3D knee joint kinematics and knee extensor and flexor electromyograms (EMG) were recorded simultaneously. Significantly greater 1-RM (6.2 ± 5.0%; p < .01) and mean eccentric knee extensor EMG (32.2 ± 6.7%; p < .01) were found after the CLR warm-up compared to the FWR condition. However, no difference (p > .05) was found in concentric EMG, eccentric or concentric knee angular velocity, or peak knee flexion angle. Performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without changes in knee flexion angle or eccentric and concentric knee angular velocities; thus a real 1-RM increase was achieved as the mechanics of the lift were not altered. These results are indicative of a potentiating effect of CLR in a warm-up, which may benefit athletes in tasks where high-level strength is required.

  13. In vivo maximal fascicle-shortening velocity during plantar flexion in humans.

    PubMed

    Hauraix, Hugo; Nordez, Antoine; Guilhem, Gaël; Rabita, Giuseppe; Dorel, Sylvain

    2015-12-01

    Interindividual variability in performance of fast movements is commonly explained by a difference in maximal muscle-shortening velocity due to differences in the proportion of fast-twitch fibers. To provide a better understanding of the capacity to generate fast motion, this study aimed to 1) measure for the first time in vivo the maximal fascicle-shortening velocity of human muscle; 2) evaluate the relationship between angular velocity and fascicle-shortening velocity from low to maximal angular velocities; and 3) investigate the influence of musculo-articular features (moment arm, tendinous tissues stiffness, and muscle architecture) on maximal angular velocity. Ultrafast ultrasound images of the gastrocnemius medialis were obtained from 31 participants during maximal isokinetic and light-loaded plantar flexions. A strong linear relationship between fascicle-shortening velocity and angular velocity was reported for all subjects (mean R(2) = 0.97). The maximal shortening velocity (V(Fmax)) obtained during the no-load condition (NLc) ranged between 18.8 and 43.3 cm/s. V(Fmax) values were very close to those of the maximal shortening velocity (V(max)), which was extrapolated from the F-V curve (the Hill model). Angular velocity reached during the NLc was significantly correlated with this V(Fmax) (r = 0.57; P < 0.001). This finding was in agreement with assumptions about the role of muscle fiber type, whereas interindividual comparisons clearly support the fact that other parameters may also contribute to performance during fast movements. Nevertheless, none of the biomechanical features considered in the present study were found to be directly related to the highest angular velocity, highlighting the complexity of the upstream mechanics that lead to maximal-velocity muscle contraction. Copyright © 2015 the American Physiological Society.

  14. Form features provide a cue to the angular velocity of rotating objects

    PubMed Central

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2013-01-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  15. Form features provide a cue to the angular velocity of rotating objects.

    PubMed

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2014-02-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. A Computational Technique to Determine the Angular Displacement, Velocity and Momentum of a Human Body.

    ERIC Educational Resources Information Center

    Hay, James G.; Wilson, Barry D.

    The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…

  17. Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates.

    PubMed

    Brynteson, Matthew D; Butler, Laurie J

    2015-02-07

    We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.

  18. Evidence for intermuscle difference in slack angle in human triceps surae.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu

    2015-04-13

    This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    ERIC Educational Resources Information Center

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  20. A path planning method for robot end effector motion using the curvature theory of the ruled surfaces

    NASA Astrophysics Data System (ADS)

    Güler, Fatma; Kasap, Emin

    Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.

  1. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  2. A Methodologic Approach for Normalizing Angular Work and Velocity During Isotonic and Isokinetic Eccentric Training

    PubMed Central

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276

  3. Method for driving two-phase turbines with enhanced efficiency

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1985-01-01

    A method for driving a two phase turbine characterized by an output shaft having at least one stage including a bladed rotor connected in driving relation with the shaft is described. A two phase fluid is introduced into one stage at a known flow velocity and caused to pass through the rotor for imparing angular velocity thereto. The angular velocity of the rotor is maintained at a value such that the angular velocity of the tips of the blades of the rotor is a velocity equal to at least 50% of the velocity of the flow of the two phase fluid.

  4. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    PubMed

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α < 0.05). Pitchers with improper trunk rotation sequences (n = 33) demonstrated greater maximal shoulder external rotation angle (mean difference, 7.2° ± 2.9°, P = .016) and greater shoulder proximal force (mean difference, 9.2% ± 3.9% body weight, P = .021) compared with those with proper trunk rotation sequences (n = 22). No other variables differed significantly different between groups. High school baseball pitchers who demonstrated improper trunk rotation sequences demonstrated greater maximal shoulder external rotation angle and shoulder proximal force compared with pitchers with proper trunk rotation sequences. Improper sequencing of the trunk and torso alter upper extremity joint loading in ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).

  5. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to be 8.0 × 1017 cm-3 and 1.3 eV, respectively.

  6. Visual processing of rotary motion.

    PubMed

    Werkhoven, P; Koenderink, J J

    1991-01-01

    Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.

  7. Input profile for satellite orbit transfer by tether mechanism; Part I: Tether length profile using feed-forward procedure

    NASA Astrophysics Data System (ADS)

    Hokamoto, Shinji

    This study deals with orbital transfer of a satellite using a tether extension / retrieval mechanism. Instead of using propellant for the orbital transfer, the present concept uses electrical energy. By controlling the pitch motion of the tether system, we can achieve a prescribed velocity of the satellite at a prescribed position. By cutting the tether at that instant, we can inject the satellite into a designed new orbit. This paper considers co-planar motion and proposes a technique to achieve the desired tether length, pitch angle, and pitch angular rate at a designated position in orbit by using only tether length control. These three state variables are adjusted to their target values in three consecutive sections in the orbit; 1) control for the angular momentum of the pitching motion, which implies to adjust the tether length, 2) control for the pitch angle, and 3) control for the pitch angular rate. In each section, a pitch acceleration profile can be formed by using Fourier series as an alternative input for tether length profile. Their coefficients can be obtained without numerical iterations by using the simple initial / final relationships for the pitch angle and pitch angular rate. Therefore, this proposed procedure requires less computational cost than a numerical search, is easily applicable for different models and orbits, and can cope with physical restrictions of the system, such as tether tension or maximum tether length. Furthermore, the resulting final states precisely coincide with the target values. To demonstrate that the proposed procedure can successfully generate proper input profiles, this paper presents an orbital transfer problem as an example, and verifies its effectiveness. The simulation results show that the maximum tether length is less than 5km, and that the tether tension is kept positive during the mission.

  8. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  9. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  10. Pennation angle dependency in skeletal muscle tissue doppler strain in dynamic contractions.

    PubMed

    Lindberg, Frida; Öhberg, Fredrik; Granåsen, Gabriel; Brodin, Lars-Åke; Grönlund, Christer

    2011-07-01

    Tissue velocity imaging (TVI) is a Doppler based ultrasound technique that can be used to study regional deformation in skeletal muscle tissue. The aim of this study was to develop a biomechanical model to describe the TVI strain's dependency on the pennation angle. We demonstrate its impact as the subsequent strain measurement error using dynamic elbow contractions from the medial and the lateral part of biceps brachii at two different loadings; 5% and 25% of maximum voluntary contraction (MVC). The estimated pennation angles were on average about 4° in extended position and increased to a maximal of 13° in flexed elbow position. The corresponding relative angular error spread from around 7% up to around 40%. To accurately apply TVI on skeletal muscles, the error due to angle changes should be compensated for. As a suggestion, this could be done according to the presented model. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Effect of lordosis angle change after lumbar/lumbosacral fusion on sacrum angular displacement: a finite element study.

    PubMed

    Mao, Ningfang; Shi, Jian; He, Dawei; Xie, Yang; Bai, Yushu; Wei, Xianzhao; Shi, Zhicai; Li, Ming

    2014-11-01

    To assess and characterize the sacrum angular displacements in response to lumbar lordosis after lumbar/lumbosacral fusion. A finite element model of the lower lumbar spine-pelvis was established and used to simulate the posterior fusion at L3-L5 and L4-S1. The lordosis angle in the fusion segments was set to five different conditions with respect to the intact model: 10° less than intact, 5° less than intact, same as intact, 5° more than intact, and 10° more than intact. Variations of the sacrum angular displacements with lordosis changes were analyzed under loading setting of axial compression, flexion, extension, lateral bending, and axial rotation. Compared with the intact lordosis, both increased and decreased lumbar lordosis angles caused the sacrum angular displacements to be increased. The lordosis angle increased by 10° induced the most substantial increase in sacrum angular displacements. In addition, the sacrum angular displacements of the L4-S1 fusion model at different lordosis angles were higher than those of the L3-L5 fusion model. The sacrum angular displacements occur as a result of the fusion surgery (L4-S1) and the changes in lumbar lordosis.

  12. Fatigue influences lower extremity angular velocities during a single-leg drop vertical jump.

    PubMed

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Shiozawa, Junya; Toda, Yuka; Yamada, Kaori

    2017-03-01

    [Purpose] Fatigue alters lower extremity landing strategies and decreases the ability to attenuate impact during landing. The purpose of this study was to reveal the influence of fatigue on dynamic alignment and joint angular velocities in the lower extremities during a single leg landing. [Subjects and Methods] The 34 female college students were randomly assigned to either the fatigue or control group. The fatigue group performed single-leg drop vertical jumps before, and after, the fatigue protocol, which was performed using a bike ergometer. Lower extremity kinematic data were acquired using a three-dimensional motion analysis system. The ratio of each variable (%), for the pre-fatigue to post-fatigue protocols, were calculated to compare differences between each group. [Results] Peak hip and knee flexion angular velocities increased significantly in the fatigue group compared with the control group. Furthermore, hip flexion angular velocity increased significantly between each group at 40 milliseconds after initial ground contact. [Conclusion] Fatigue reduced the ability to attenuate impact by increasing angular velocities in the direction of hip and knee flexion during landings. These findings indicate a requirement to evaluate movement quality over time by measuring hip and knee flexion angular velocities in landings during fatigue conditions.

  13. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.

  14. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.

    PubMed

    Zhao, Wei; Ji, Songbai

    2017-04-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.

  15. Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles

    PubMed Central

    Zhao, Wei; Ji, Songbai

    2016-01-01

    Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles, and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction, and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29–17.89% in the whole-brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9%) but not pattern (correlation coefficient of 0.94–0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91% on average, with a typical range of 0–6%). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future. PMID:27644441

  16. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  17. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  18. Rapidly-Indexing Incremental-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  19. Procedure Selection and Patient Positioning Influence Spine Kinematics During High-Velocity, Low-Amplitude Spinal Manipulation Applied to the Low Back.

    PubMed

    Bell, Spencer; D'Angelo, Kevin; Kawchuk, Gregory N; Triano, John J; Howarth, Samuel J

    This investigation compared indirect 3-dimensional angular kinematics (position, velocity, and acceleration) of the lumbar spine for 2 different high-velocity, low-amplitude (HVLA) spinal manipulation procedures (lumbar spinous pull or push), and altered initial patient lower limb posture. Twenty-four participants underwent 6 HVLA procedures directed toward the presumed L4 vertebra, reflecting each combination of 2 variants of a spinal manipulation application technique (spinous pull and push) and 3 initial hip flexion angles (0°, 45°, and 90°) applied using a right lateral recumbent patient position. All contact forces and moments between the patient and the external environment, as well as 3-dimensional kinematics of the patient's pelvis and thorax, were recorded. Lumbar spine angular positions, velocities, and accelerations were analyzed within the preload and impulse stages of each HVLA trial. Lumbar spine left axial rotation was greater for the pull HVLA. The pull HVLA also generated a greater maximum (leftward) and lower minimum (rightward) axial rotation velocity and deceleration and greater leftward and rightward lateral bend velocities, acceleration, and deceleration components. Not flexing the hip produced the greatest amount of extension, as well as the lowest axial rotation and maximum axial rotation acceleration during the impulse. This investigation provides basic kinematic information for clinicians to understand the similarities and differences between 2 HVLA side-lying manipulations in the lumbar spine. Use of these findings and novel technology can drive future research initiatives that can both affect clinical decision making and influence teaching environments surrounding spinal manipulative therapy skill acquisition. Copyright © 2017. Published by Elsevier Inc.

  20. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  1. Angular photogrammetric analysis of the soft tissue profile in 12-year-old southern Chinese.

    PubMed

    Leung, Cindi Sy; Yang, Yanqi; Wong, Ricky Wk; Hägg, Urban; Lo, John; McGrath, Colman

    2014-12-24

    To quantify average angular measurements that define the soft tissue profiles of 12-year-old southern Chinese and to determine gender differences. A random population sample of 514 12-year-old children was recruited (about 10% of a Hong Kong Chinese birth cohort). Photographs were taken in natural head posture and 12 soft tissue landmarks were located on the photos to measure 12 angular measurements using ImageJ (V1.45s) for Windows. Approximately 10% of photographs were reanalyzed and method error was calculated. Angular norm values for the 12 parameters were determined and gender differences were assessed using 2 sample T-test with 95% confidence interval. The response rate was 54.1% (278/514). Norm values for the 12 angular measurements were generated. The greatest variability was found for the nasolabial (Cm-Sn-Ls) and labiomental (Li-Sm-Pg) angles. Gender differences were found in 4 angular parameters: vertical nasal angle (N-Prn/TV) (p < 0.05), cervicomental angle (G-Pg/C-Me) (p < 0.001), facial convexity angle (G-Sn-Pg) (p < 0.01) and total facial convexity angle (G-Prn-Pg)(p < 0.01). Norm values for 12 angular measurements among 12-year-old southern Chinese children were provided and some variability noted. Gender differences were apparent in several angular measurements. This study has implications in developing norm values for southern Chinese and for comparison with other ethnic groups.

  2. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  3. Non-Colinearity of Angular Velocity and Angular Momentum

    ERIC Educational Resources Information Center

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  4. Investigation of fluctuations in angular velocity in magnetic memory devices

    NASA Technical Reports Server (NTRS)

    Meshkis, Y. A.; Potsyus, Z. Y.

    1973-01-01

    The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.

  5. The generalized formula for angular velocity vector of the moving coordinate system

    NASA Astrophysics Data System (ADS)

    Ermolin, Vladislav S.; Vlasova, Tatyana V.

    2018-05-01

    There are various ways for introducing the concept of the instantaneous angular velocity vector. In this paper we propose a method based on introducing of this concept by construction of the solution for the system of kinematic equations. These equations connect the function vectors defining the motion of the basis, and their derivatives. Necessary and sufficient conditions for the existence and uniqueness of the solution of this system are established. The instantaneous angular velocity vector is a solution of the algebraic system of equations. It is built explicitly. The derived formulas for the angular velocity vector generalize the earlier results, both for a basis of an affine oblique coordinate system and for an orthonormal basis.

  6. Modelling of rotation-induced frequency shifts in whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Venediktov, V. Yu; Kukaev, A. S.; Filatov, Yu V.; Shalymov, E. V.

    2018-02-01

    We study the angular velocity sensors based on whispering gallery mode resonators. Rotation of such resonators gives rise to various effects that can cause a spectral shift of their modes. Optical methods allow this shift to be determined with high precision, which can be used practically to measure the angular velocity in inertial orientation and navigation systems. The basic principles of constructing the angular velocity sensors utilising these effects are considered, their advantages and drawbacks are indicated. We also study the interrelation between the effects and the possibility of their mutual influence on each other. Based on the analytical studies of the effects, we consider the possibility of their combined application for angular velocity measurements.

  7. Demonstrating the Direction of Angular Velocity in Circular Motion

    ERIC Educational Resources Information Center

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  8. Gaze and viewing angle influence visual stabilization of upright posture

    PubMed Central

    Ustinova, KI; Perkins, J

    2011-01-01

    Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978

  9. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less

  10. The validity of an assessment of maximum angular velocity of knee extension (KE) using a gyroscope.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Inaba, Yasuko; Kojima, Motonaga

    2012-01-01

    Although it is more important to assess the muscular power of the lower extremities than the strength, no simplified method for doing so has been found. The aim of this study was to assess the validity of the assessment of the angular velocity of KE using a gyroscope. Participants included 105 community-dwelling older people (55 women, 50 men, age ± standard deviation (SD) 75±5.3). Pearson correlation coefficients and Spearman rank-correlation coefficients were used to examine the relationships between the angular velocity of KE and functional performance measurements, a self-efficacy scale and health-related quality of life (HRQOL). The data from the gyroscope were significantly correlated with some physical functions such as muscle strength (r=0.304, p<0.01), and walking velocity (r=0.543, p<0.001). In addition, the joint angular velocity was significantly correlated with self-efficacy (r=0.219-0.329, p<0.01-0.05) and HRQOL (r=0.207-0.359, p<0.01-0.05). The absolute value of the correlation coefficient of angular velocity tended to be greater than that of the muscle strength for mobility functions such as walking velocity and the timed-up-and-go (TUG) test. In conclusion, it was found that the assessment of the angular velocity of the knee joint using a gyroscope could be a feasible and meaningful measurement in the geriatrics field. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Spacecraft attitude sensor

    NASA Technical Reports Server (NTRS)

    Davidson, A. C.; Grant, M. M. (Inventor)

    1973-01-01

    A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.

  12. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015.

    PubMed

    Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh

    2017-09-12

    We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

  13. The feasibility of measuring joint angular velocity with a gyro-sensor.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Nakano, Chika; Higashi, Takuya

    2008-01-01

    To determine the reliability of an assessment of joint angular velocity using a gyro-sensor and to examine the relationship between ankle angular velocity and physical functions. Cross-sectional. Kinesiology laboratory. Twenty healthy young adults (mean age, 22.5 y) and 113 community-dwelling older adults (mean age, 75.1 y). Not applicable. Maximal ankle joint velocity was measured using a gyro-sensor during heel-rising and jumping with knee extended. The intraclass correlation coefficient (ICC) was used to determine the intertester and intratester reliability. The Pearson correlation coefficient was used to examine the relationships between maximal ankle joint velocity and isometric muscle strength and isokinetic muscle power in young adults and also to examine the relationships between maximal ankle joint velocity and functional performance measurements such as walking time in older adults. High reliability was found for intertester (ICC=.96) and intratester reliability (ICC=.96). The data from the gyro-sensor highly correlated with muscle strength (r range, .62-.68; P<.01) and muscle power (r range, .45-.79; P range, .01-.05). In older subjects, mobility functions significantly correlated with the angular velocity of ankle plantarflexion. Measurement of ankle angular velocity using a gyro-sensor is both reliable and feasible, with the results representing a significant correlation to muscle power and performance measurements.

  14. Multijoint kinetic chain analysis of knee extension during the soccer instep kick.

    PubMed

    Naito, Kozo; Fukui, Yosuke; Maruyama, Takeo

    2010-04-01

    Although previous studies have shown that motion-dependent interactions between adjacent segments play an important role in producing knee extension during the soccer instep kick, detailed knowledge about the mechanisms underlying those interactions is lacking. The present study aimed to develop a 3-D dynamical model for the multijoint kinetic chain of the instep kick in order to quantify the contributions of the causal dynamical factors to the production of maximum angular velocity during knee extension. Nine collegiate soccer players volunteered to participate in the experiment and performed instep kicking movements while 3-D positional data and the ground reaction force were measured. A dynamical model was developed in the form of a linked system containing 8 segments and 18 joint rotations, and the knee extension/flexion motion was decomposed into causal factors related to muscular moment, gyroscopic moment, centrifugal force, Coriolis force, gravity, proximal endpoint linear acceleration, and external force-dependent terms. The rapid knee extension during instep kicking was found to result almost entirely from kicking leg centrifugal force, trunk rotation muscular moment, kicking leg Coriolis force, and trunk rotation gyroscopic-dependent components. Based on the finding that rapid knee extension during instep kicking stems from multiple dynamical factors, it is suggested that the multijoint kinetic chain analysis used in the present study is more useful for achieving a detailed understanding of the cause of rapid kicking leg movement than the previously used 2-D, two-segment kinetic chain model. The present results also indicated that the centrifugal effect due to the kicking hip flexion angular velocity contributed substantially to the generation of a rapid knee extension, suggesting that the adjustment between the kicking hip flexion angular velocity and the leg configuration (knee flexion angle) is more important for effective instep kicking than other joint kinematics.

  15. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    NASA Astrophysics Data System (ADS)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  16. Characteristic angles in the wetting of an angular region: deposit growth.

    PubMed

    Popov, Yuri O; Witten, Thomas A

    2003-09-01

    Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power gamma of distance close to the vertex and as a stronger power beta of distance further from the vertex. The power gamma depends only slightly on the opening angle alpha and stays roughly between -1/3 and 0. The power beta varies from -1 to 0 as the opening angle increases from 0 degrees to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.

  17. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  18. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  19. An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)

    NASA Technical Reports Server (NTRS)

    Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.

    1990-01-01

    Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.

  20. Coordination pattern of baseball pitching among young pitchers of various ages and velocity levels.

    PubMed

    Chen, Hsiu-Hui; Liu, Chiang; Yang, Wen-Wen

    2016-09-01

    This study compared the whole-body movement coordination of pitching among 72 baseball players of various ages and velocity levels. Participants were classified as senior, junior, and little according to their age, with each group comprising 24 players. The velocity levels of the high-velocity (the top eight) and low-velocity (the lowest eight) groups were classified according to their pitching velocity. During pitching, the coordinates of 15 markers attached to the major joints of the whole-body movement system were collected for analysis. Sixteen kinematic parameters were calculated to compare the groups and velocity levels. Principal component analysis (PCA) was conducted to quantify the coordination pattern of pitching movement. The results were as follows: (1) five position and two velocity parameters significantly differed among the age groups, and two position and one velocity parameters significantly differed between the high- and low-velocity groups. (2) The coordination patterns of pitching movement could be described using three components, of which the eigenvalues and contents varied according to age and velocity level. In conclusion, the senior and junior players showed greater elbow angular velocity, whereas the little players exhibited a wider shoulder angle only at the beginning of pitching. The players with high velocity exhibited higher trunk and shoulder rotation velocity. The variations among groups found using PCA and kinematics parameter analyses were consistent.

  1. Brushless Low-Speed dc Tachometer

    NASA Technical Reports Server (NTRS)

    Handlykken, M. B.

    1984-01-01

    Proposed tachometer produces voltages proportional to shaft angular velocity and (by differentiation) acceleration. Coil moving in homopolar field generates emf proportional to shaft angular velocity.

  2. Movement Variability Increases With Shoulder Pain When Compensatory Strategies of the Upper Body Are Constrained.

    PubMed

    López-Pascual, Juan; Page, Álvaro; Serra-Añó, Pilar

    2017-10-13

    This cross-sectional study analyzed the influence of chronic shoulder pain (CSP) on movement variability/kinematics during humeral elevation, with the trunk and elbow motions constrained to avoid compensatory strategies. For this purpose, 37 volunteers with CSP as the injured group (IG) and 58 participants with asymptomatic shoulders as the control group (CG) participated in the study. Maximum humeral elevation (Emax), maximum angular velocity (Velmax), variability of the maximum angle (CVEmax), functional variability (Func_var), and approximate entropy (ApEn) were calculated from the kinematic data. Patients' pain was measured on the visual analogue scale (VAS). Compared with the CG, the IG presented lower Emax and Velmax and higher variability (i.e., CVEmax, Func_var, and ApEn). Moderate correlations were achieved for the VAS score and the kinematic variables Emax, Velmax and variability of curve analysis, Func_varm, and ApEn. No significant correlation was found for CVEmax. In conclusion, CSP results in a decrease of angle and velocity and an increased shoulder movement variability when the neuromuscular system cannot use compensatory strategies to avoid painful positions.

  3. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  4. Spiral Structure Dynamics in Pure Stellar Disk Models

    NASA Astrophysics Data System (ADS)

    Valencia-Enríquez, D.; Puerari, I.

    2014-03-01

    In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion (σR,0) and the disk scale height (zd). We analyzed the growth of spiral structures using 1D and 2D Fourier Transform (FT1D and FT2D respectively). The FT1D was used to obtain the angular velocities of non-axisymmetric structures which grow in the stellar disks. In all of our simulations the measured angular velocity of spiral patterns are well confined by the resonances given by the curves Ω±κ/m. The FT2D gives the amplitude of a particular spiral structure represented by two Fourier frequencies: m, number of arms; and p, related to the pitch angle as atan(-m/p). We present, for the first time, plots of the Fourier amplitude |A(p,m)| as a function of time which clearly demonstrates the swing amplification mechanism in the simulated stellar disks. In our simulations, the spiral waves appear as leading spiral structures evolving towards open trailing patterns and fade out as tightly wound spirals.

  5. Varus Thrust and Knee Frontal Plane Dynamic Motion in Persons with Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Moisio, Kirsten C.; Almagor, Orit; Zhang, Yunhui; Cahue, September; Sharma, Leena

    2013-01-01

    Objective Varus thrust visualized during walking is associated with a greater medial knee and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about varus thrust presence determined by visual observation relates to quantitative gait kinematic We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Methods Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, BMI, gait speed, and knee static alignment. Results 236 persons [mean BMI: 28.5 kg/m2 (SD 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/sec, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Conclusion Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. PMID:23948980

  6. Validity of a small low-cost triaxial accelerometer with integrated logger for uncomplicated measurements of postures and movements of head, upper back and upper arms.

    PubMed

    Dahlqvist, Camilla; Hansson, Gert-Åke; Forsman, Mikael

    2016-07-01

    Repetitive work and work in constrained postures are risk factors for developing musculoskeletal disorders. Low-cost, user-friendly technical methods to quantify these risks are needed. The aims were to validate inclination angles and velocities of one model of the new generation of accelerometers with integrated data loggers against a previously validated one, and to compare meaurements when using a plain reference posture with that of a standardized one. All mean (n = 12 subjects) angular RMS-differences in 4 work tasks and 4 body parts were <2.5° and all mean median angular velocity differences <5.0 °/s. The mean correlation between the inclination signal-pairs was 0.996. This model of the new generation of triaxial accelerometers proved to be comparable to the validated accelerometer using a data logger. This makes it well-suited, for both researchers and practitioners, to measure postures and movements during work. Further work is needed for validation of the plain reference posture for upper arms. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.

    PubMed

    Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D

    2012-01-03

    This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  9. Misperceptions of angular velocities influence the perception of rigidity in the kinetic depth effect

    NASA Technical Reports Server (NTRS)

    Domini, F.; Caudek, C.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1997-01-01

    Accuracy in discriminating rigid from nonrigid motion was investigated for orthographic projections of three-dimension rotating objects. In 3 experiments the hypothesis that magnitudes of angular velocity are misperceived in the kinetic depth effect was tested, and in 4 other experiments the hypothesis that misperceiving angular velocities leads to misperceiving rigidity was tested. The principal findings were (a) the magnitude of perceived angular velocity is derived heuristically as a function of a property of the first-order optic flow called deformation and (b) perceptual performance in discriminating rigid from nonrigid motion is accurate in cases when the variability of the deformations of the individual triplets of points of the stimulus displays favors this interpretation and not accurate in other cases.

  10. Misperceptions of angular velocities influence the perception of rigidity in the kinetic depth effect.

    PubMed

    Domini, F; Caudek, C; Proffitt, D R

    1997-08-01

    Accuracy in discriminating rigid from nonrigid motion was investigated for orthographic projections of three-dimension rotating objects. In 3 experiments the hypothesis that magnitudes of angular velocity are misperceived in the kinetic depth effect was tested, and in 4 other experiments the hypothesis that misperceiving angular velocities leads to misperceiving rigidity was tested. The principal findings were (a) the magnitude of perceived angular velocity is derived heuristically as a function of a property of the first-order optic flow called deformation and (b) perceptual performance in discriminating rigid from nonrigid motion is accurate in cases when the variability of the deformations of the individual triplets of points of the stimulus displays favors this interpretation and not accurate in other cases.

  11. Evidence for changes in the angular velocity of the surface regions of the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing changes in the angular velocity of the surface regions of the sun and stars.

  12. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).

  13. Equivalent dynamic model of DEMES rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  14. Neuromuscular performance of maximal voluntary explosive concentric contractions is influenced by angular acceleration.

    PubMed

    Hahn, D; Bakenecker, P; Zinke, F

    2017-12-01

    Torque production during maximal voluntary explosive contractions is considered to be a functionally more relevant neuromuscular measure than steady-state torque, but little is known about accelerated concentric contractions. This study investigated torque, muscle activity, and fascicle behavior during isometric and fast concentric contractions of quadriceps femoris. Ten participants performed maximal voluntary explosive isometric, isovelocity, and additional concentric knee extensions at angular accelerations ranging from 700 to 4000° s -2 that resulted in an angular velocity of 300° s -1 at 40° knee flexion. Concentric torque at 40° knee flexion was corrected for inertia, and the corresponding isometric torque was matched to the time when the target knee angle of 40° was reached during concentric contractions. Electromyography of quadriceps femoris and hamstrings and ultrasound of vastus lateralis were measured to determine muscle activity, fascicle length, and fascicle velocity (FV). The faster the acceleration, the more torque was produced during concentric contractions at 40° knee flexion, which was accompanied by a reduction in FV. In comparison with isometric conditions, concentric quadriceps muscle activity was increased and torque during accelerations ≥3000° s -2 equaled the time-matched isometric torque. Our results provide novel evidence that acceleration influences torque production during maximal voluntary explosive concentric contractions. This is suggested to be due to series elasticity and reduced force depression. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction.

    PubMed

    Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain

    2009-10-01

    At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.

  16. Angular velocity estimation based on star vector with improved current statistical model Kalman filter.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He

    2016-11-20

    Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4  rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.

  17. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  18. Do peak torque angles of muscles change following anterior cruciate ligament reconstruction using hamstring or patellar tendon graft?

    PubMed

    Yosmaoğlu, Hayri Baran; Baltacı, Gül; Sönmezer, Emel; Özer, Hamza; Doğan, Deha

    2017-12-01

    This study aims to compare the effects of anterior cruciate ligament (ACL) reconstruction using autogenous hamstring or patellar tendon graft on the peak torque angle. The study included 132 patients (103 males, 29 females; mean age 29±9 year) who were performed ACL reconstruction with autogenous hamstring or patellar tendon graft. The peak torque angles in the quadriceps and hamstring muscles were recorded using an isokinetic dynamometer. Angle of peak knee flexion torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the hamstring tendon group. Angle of peak knee extension torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the patellar tendon group. There were no statistically significant differences in the flexion and extension peak torque angles between the operated and nonoperated knees at 60°/second in both groups. The angle of peak torque at relatively high angular velocities is affected after ACL reconstruction in patients with hamstring or patellar tendon grafts. The graft donor site directly influences this parameter. This finding may be important for clinicians in terms of preventing re-injury.

  19. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    PubMed

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  20. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    NASA Astrophysics Data System (ADS)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  1. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight

    NASA Technical Reports Server (NTRS)

    Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.

    1997-01-01

    Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system. Fewer subjects showed "stiff" behavior after space flight, where contractions in the phase-plane portraits pointed to an increase in control bandwidth. The changes appeared to result from adaptive modifications in the control of lower limb impedance. A simple 2nd-order model of the vertical COM motion indicated that changes in the effective vertical stiffness of the legs can predict key features of the postflight performance. Compliant responses may reflect inflight adaptation due to altered demands on the postural control system in microgravity, while stiff behavior may result from overcompensation postflight for the presumed reduction in limb stiffness inflight.

  2. Measurement of irregularities in angular velocities of rotating assemblies in memory devices on magnetic carriers

    NASA Technical Reports Server (NTRS)

    Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.

    1973-01-01

    Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.

  3. Orbit analysis of a geostationary gravitational wave interferometer detector array

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; de Araujo, Jose C. N.; Kuga, Helio K.; Alves, Márcio E. S.; Aguiar, Odylio D.

    2015-09-01

    We analyze the trajectories of three geostationary satellites forming the geostationary gravitational wave interferometer (GEOGRAWI) [1], a space-based laser interferometer mission aiming to detect and study gravitational radiation in the (10-4-10) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites’s relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation’s three arms with respect to a chosen reference frame and the time changes of the triangle’s enclosed angles. We find that during the time between two consecutive station-keeping maneuvers (about two weeks) the relative variations of the inter-satellite distances do not exceed a value of 0.05%, while the relative velocities between pairs of satellites remain smaller than about 0.7 m s-1. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than 3 arc-minutes, while the east-west angular variations of the three arms remain smaller than about 15 arc-minutes during the two-week period.

  4. Hysteresis compensation technique applied to polymer optical fiber curvature sensor for lower limb exoskeletons

    NASA Astrophysics Data System (ADS)

    Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz

    2017-12-01

    Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.

  5. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  6. A Study of Airplane Maneuvers with Special Reference to Angular Velocities

    NASA Technical Reports Server (NTRS)

    Reid, J E

    1923-01-01

    This investigation was undertaken by the National Advisory Committee for Aeronautics for the purpose of increasing our knowledge on the behavior of the airplane during various maneuvers and to obtain values of the maximum angular velocities and accelerations in flight. The method consisted in flying a JN4H airplane through various maneuvers while records were being taken of the control position, the air speed, the angular velocity and the acceleration along the Z axis. The results showed that the maximum angular velocity about the X axis of radians per second in a barrel roll. The maximum angular acceleration about the X axis of -2.10 radians per (second) to the 2nd power occurred in a spin, while the maximum about the Y axis was 1.40 radians per (second) to the 2nd power when pulling suddenly out of a dive. These results have direct application to the design of airplane parts, such as propeller shaft and instruments.

  7. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  8. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas [Theory of cumulative large-angle collisions in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, Drew P.

    Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less

  9. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas [Theory of cumulative large-angle collisions in plasmas

    DOE PAGES

    Higginson, Drew P.

    2017-08-12

    Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less

  10. Is There Any Real Observational Contradictoty To The Lcdm Model?

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe

    2011-01-01

    In this talk, I am going to question the two apparent observational contradictories to LCDM cosmology---- the lack of large angle correlations in the cosmic microwave background, and the very large bulk flow of galaxy peculiar velocities. On the super-horizon scale, "Copi etal. (2009)” have been arguing that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, LCDM cosmology. I am going to argue that the "ad-hoc” discrepancy is due to the sub-optimal estimator of the low-l multipoles, and a posteriori statistics, which exaggerates the statistical significance. On Galactic scales, "Watkins et al. (2008)” shows that the very large bulk flow prefers a very large density fluctuation, which seems to contradict to the LCDM model. I am going to show that these results are due to their underestimation of the small scale velocity dispersion, and an arbitrary way of combining catalogues. With the appropriate way of combining catalogue data, as well as the treating the small scale velocity dispersion as a free parameter, the peculiar velocity field provides unconvincing evidence against LCDM cosmology.

  11. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.

  12. Geodesics In A Spinning String Spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culetu, Hristu

    2006-11-28

    The geodesics equations for a rotating observer in a spinning string geometry are investigated using the Euler - Lagrange equations. For test particles with vanishing angular momentum, the radial equation of motion does not depend on the angular velocity {omega} but on the angular momentum of the string. A massless particle moves tachyonic but iteed tends asymptotically to unit velocity after a time of the order of few Planck time b. The spacetime has a horizon at r = 0, irrespective of the value of {omega} but its angular velocity is given by {omega} - 1/b. The Sagnac time delaymore » is computed proving to depend both on {omega} and the radius of the circular orbit. The velocity of an ingoing massive test particle approaches zero very close to the spinning string, as if it were rejected by it.« less

  13. Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques

    NASA Astrophysics Data System (ADS)

    Tang, Yujie; Li, Jian; Wang, Gangyi

    2018-02-01

    An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.

  14. Grating angle magnification enhanced angular sensor and scanner

    NASA Technical Reports Server (NTRS)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  15. Habituation of self-motion perception following unidirectional angular velocity steps.

    PubMed

    Clément, Gilles; Terlevic, Robert

    2016-09-07

    We investigated whether the perceived angular velocity following velocity steps of 80°/s in the dark decreased with the repetition of the stimulation in the same direction. The perceptual response to velocity steps in the opposite direction was also compared before and after this unidirectional habituation training. Participants indicated their perceived angular velocity by clicking on a wireless mouse every time they felt that they had rotated by 90°. The prehabituation perceptual response decayed exponentially with a time constant of 23.9 s. After 100 velocity steps in the same direction, this time constant was 12.9 s. The time constant after velocity steps in the opposite direction was 13.4 s, indicating that the habituation of the sensation of rotation is not direction specific. The peak velocity of the perceptual response was not affected by the habituation training. The differences between the habituation characteristics of self-motion perception and eye movements confirm that different velocity storage mechanisms mediate ocular and perceptual responses.

  16. Role of Cerebellum in Motion Perception and Vestibulo-ocular Reflex—Similarities and Disparities

    PubMed Central

    Shaikh, Aasef G.; Palla, Antonella; Marti, Sarah; Olasagasti, Itsaso; Optican, Lance M.; Zee, David S.; Straumann, Dominik

    2012-01-01

    Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP. PMID:22777507

  17. Astrometric Measurements of Triple Star System 15379+3006 STF 1963AB, STF 1963AC

    NASA Astrophysics Data System (ADS)

    Russell, Harker; Miller, Lindsey; Beltzer-Sweeney, Alexander; Shilts, Trey; Stojimirovic, Irena

    2018-04-01

    Research team PRSM reports astrometric measurements of the double star system WDS 15379+3006 (STF 1963AB, STF 1963AC) obtained using the iTelescope Network. By performing CCD astrometry, the team determined a position angle of 298.4° ± 0.1° with an angular separation of 05. 28" ± 0.1" for STF 1963AB, and a position angle of 116.1° ± 0.1° with an angular separation of 32.35" ± 0.1" for STF 1963AC. The angular separation and position angle have changed from previous measurements.

  18. Materials characterisation by angle-resolved scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-16

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaN x As 1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with Ge x Si 1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  19. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Moisio, K C; Almagor, O; Zhang, Y; Cahue, S; Sharma, L

    2013-11-01

    Varus thrust visualized during walking is associated with a greater medial knee load and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about how varus thrust presence determined by visual observation relates to quantitative gait kinematic data. We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation was captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, we used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, body mass index (BMI), gait speed, and knee static alignment. 236 persons [mean BMI: 28.5 kg/m(2) (standard deviation (SD) 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/s, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity.

    PubMed

    Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J

    2006-02-01

    We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.

  1. Head Movement Dynamics During Play and Perturbed Mother-Infant Interaction

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F; Messinger, Daniel S

    2015-01-01

    We investigated the dynamics of head movement in mothers and infants during an age-appropriate, well-validated emotion induction, the Still Face paradigm. In this paradigm, mothers and infants play normally for 2 minutes (Play) followed by 2 minutes in which the mothers remain unresponsive (Still Face), and then two minutes in which they resume normal behavior (Reunion). Participants were 42 ethnically diverse 4-month-old infants and their mothers. Mother and infant angular displacement and angular velocity were measured using the CSIRO head tracker. In male but not female infants, angular displacement increased from Play to Still-Face and decreased from Still Face to Reunion. Infant angular velocity was higher during Still-Face than Reunion with no differences between male and female infants. Windowed cross-correlation suggested changes in how infant and mother head movements are associated, revealing dramatic changes in direction of association. Coordination between mother and infant head movement velocity was greater during Play compared with Reunion. Together, these findings suggest that angular displacement, angular velocity and their coordination between mothers and infants are strongly related to age-appropriate emotion challenge. Attention to head movement can deepen our understanding of emotion communication. PMID:26640622

  2. Experimental determination of the Yawing Moment due to Yawing Contributed by the Wing, Fuselage, and Vertical Tail of a Midwing Airplane Model

    DTIC Science & Technology

    1943-06-01

    derivative Cnr, the rate of change of yawing-momer.t coefficient with yawing angular velocity, contributed ’by the wing, the fuselage, and the...derivative Cn , the rate of change of yawing--moraent coefficient with yawing angular velocity. Al- though theoretical methods for obtaining the...yaw. T CD -3 SYMBOLS ’n rate of change of yawing-moment coefficient with yawing angular velocity per unit of rh/2V ÖCn/d (^-’ \\ 27 J P

  3. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  4. Negative refraction angular characterization in one-dimensional photonic crystals.

    PubMed

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  5. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    PubMed Central

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332

  6. Single-axis gyroscopic motion with uncertain angular velocity about spin axis

    NASA Technical Reports Server (NTRS)

    Singh, S. N.

    1977-01-01

    A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.

  7. Relationship between the size of a camphor-driven rotor and its angular velocity.

    PubMed

    Koyano, Yuki; Gryciuk, Marian; Skrobanska, Paulina; Malecki, Maciej; Sumino, Yutaka; Kitahata, Hiroyuki; Gorecki, Jerzy

    2017-07-01

    We consider a rotor made of two camphor disks glued below the ends of a plastic stripe. The disks are floating on a water surface and the plastic stripe does not touch the surface. The system can rotate around a vertical axis located at the center of the stripe. The disks dissipate camphor molecules. The driving momentum comes from the nonuniformity of surface tension resulting from inhomogeneous surface concentration of camphor molecules around the disks. We investigate the stationary angular velocity as a function of rotor radius ℓ. For large ℓ the angular velocity decreases for increasing ℓ. At a specific value of ℓ the angular velocity reaches its maximum and, for short ℓ it rapidly decreases. Such behavior is confirmed by a simple numerical model. The model also predicts that there is a critical rotor size below which it does not rotate. Within the introduced model we analyze the type of this bifurcation.

  8. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  9. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  10. Measuring average angular velocity with a smartphone magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  11. Rotating Hele-Shaw cell with a time-dependent angular velocity

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  12. A kinematic and kinetic analysis of the sit-to-stand transfer using an ejector chair: implications for elderly rheumatoid arthritic patients.

    PubMed

    Munro, B J; Steele, J R; Bashford, G M; Ryan, M; Britten, N

    1998-03-01

    Twelve elderly female rheumatoid arthritis patients (mean age = 65.5 +/- 8.6 yr) were assessed rising from an instrumented Eser Ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without the ejector mechanism operating. Sagittal plane motion, ground reaction forces, and vertical chair arm rest forces were recorded during each trial with the signals synchronised at initial subject head movement. When rising from a high seat, subjects displayed significantly (p < 0.05) greater time to seat off; greater trunk, knee and ankle angles at seat off; increased ankle angular displacement; decreased knee angular displacement; and decreased total net and normalised arm rest forces compared to rising from a low seat. When rising using the ejector mechanism, time to seat off and trunk and knee angle at seat off significantly increased, whereas trunk and knee angular displacement, and total net and normalised arm rest forces significantly decreased compared to rising unassisted. Regardless of seat height or ejector mechanism use, there were no significant differences in the peak, or time to peak horizontal velocity of the subjects' total body centre of mass, or net knee and ankle moments. It was concluded that increased seat height and use of the ejector mechanism facilitated sit-to-stand transfers performed by elderly female rheumatoid arthritic patients. However, using the ejector chair may be preferred by these patients compared to merely raising seat height because it does not necessitate the use of a footstool, a possible obstacle contributing to falls.

  13. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted on an angle of attack approaching 45 deg show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required much higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effect appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this.

  14. Deployment of a multi-link flexible structure

    NASA Astrophysics Data System (ADS)

    Na, Kyung-Su; Kim, Ji-Hwan

    2006-06-01

    Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each joint. Hamilton's principle is used to determine the equations of motion and the finite element method is adopted to analyze the system. Newmark time integration and Newton-Raphson iteration methods are used to solve for the non-linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip displacements of a Timoshenko beam are compared with those of an Euler-Bernoulli beam.

  15. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Lin; Park, Sungsu

    2005-09-01

    This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.

  16. Conical Probe Calibration and Wind Tunnel Data Analysis of the Channeled Centerbody Inlet Experiment

    NASA Technical Reports Server (NTRS)

    Truong, Samson Siu

    2011-01-01

    For a multi-hole test probe undergoing wind tunnel tests, the resulting data needs to be analyzed for any significant trends. These trends include relating the pressure distributions, the geometric orientation, and the local velocity vector to one another. However, experimental runs always involve some sort of error. As a result, a calibration procedure is required to compensate for this error. For this case, it is the misalignment bias angles resulting from the distortion associated with the angularity of the test probe or the local velocity vector. Through a series of calibration steps presented here, the angular biases are determined and removed from the data sets. By removing the misalignment, smoother pressure distributions contribute to more accurate experimental results, which in turn could be then compared to theoretical and actual in-flight results to derive any similarities. Error analyses will also be performed to verify the accuracy of the calibration error reduction. The resulting calibrated data will be implemented into an in-flight RTF script that will output critical flight parameters during future CCIE experimental test runs. All of these tasks are associated with and in contribution to NASA Dryden Flight Research Center s F-15B Research Testbed s Small Business Innovation Research of the Channeled Centerbody Inlet Experiment.

  17. Comparative Analysis of the Tour Jete and Aerial with Detailed Analysis of Aerial Takeoff Mechanics

    NASA Astrophysics Data System (ADS)

    Pierson, Mimi; Coplin, Kim

    2006-10-01

    Whether internally as muscle tension or from external sources, forces are necessary for all motion. This research focused on athletic rotations where conditions of flight are established during takeoff. By studying reaction forces that produce torques, moments of inertia, and linear and angular differences between distinct rotations around different principle axes of the body (tour jete in ballet - longitudinal axis; aerial in gymnastics - anteroposterior axis), and by looking at the values of angular momentum in the specific mechanics of aerial takeoff, we can gain insight into possible causes of injury, flaws in technique and limitations of athletes. Results showed significant differences in the horizontal and vertical components of takeoff between the tour jete and the aerial, and a realization that torque was produced in different biomechanical planes. Both rotations showed braking forces before takeoff to counteract forward momentum and increase vertical lift, but the angle of applied force varied, and the horizontal components of velocity and force and vertical velocity as well as moment of inertia throughout flight were consistently greater for the aerial. Breakdown of aerial takeoff highlighted the relative importance of the takeoff phases, showing that completion depends fundamentally upon the rotation of the rear foot and torso twisting during takeoff rather than the last foot in contact with the ground.

  18. Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan

    2017-02-01

    Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.

  19. Toward Realistic Dynamics of Rotating Orbital Debris, and Implications for Lightcurve Interpretation

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Cowardin, H.; Hill, N.

    2011-01-01

    Optical observations of rotating space debris near GEO contain important information on size, shape, composition, and rotational states, but these aspects are difficult to extract due to data limitations and the high number of degrees of freedom in the modeling process. For tri-axial rigid debris objects created by satellite fragmentations, the most likely initial rotation state has a large component of initial angular velocity directed along the intermediate axis of inertia, leading to large angular reorientations of the body on the timescale of the rotation period. This lends some support to the simplest possible interpretation of light curves -- that they represent sets of random orientations of the objects of study. However, effects of internal friction and solar radiation are likely to cause significant modification of rotation states within a time as short as a few orbital periods. In order to examine the rotational dynamics of debris objects under the influences of these effects, a set of seven first-order coupled equations of motion were assembled in state form: three are Euler equations describing the rates of change of the components of angular velocity in the body frame, and four describe the rates of change of the components of the unit quaternion. Quaternions are a four-dimensional extension of complex numbers that form a seamless, singularity-free representation of body orientation on S3. The Euler equations contain explicit terms describing torque from solar radiation in terms of spherical harmonics, and terms representing effects of a prescribed rate of internal friction. Numerical integrations of these equations of motion are being performed, and results will be presented. Initial tests show that internal friction without solar radiation torque leads to rotation about the maximum principal axis of inertia, as required, and solar radiation torque is expected to lead to spin-up of objects. Because the axis of maximum rotational inertia tends to be roughly coincident with the normal to the largest projected cross-sectional area, internal friction is expected to lead to reduced variation of light curve amplitudes at a given phase angle, but a large dependence of the same on phase angle. At a given phase angle, databases are generated which contain reflected intensities for comprehensive sets of equally-likely orientations, represented as unit quaternions. When projected onto three dimensions (S2) and color-coded by intensity, the set is depicted as points within a solid, semi-transparent unit sphere, within which all possible reflected intensities for an object at a given phase angle may be inspected simultaneously. Rotational sequences are represented by trajectories through the sphere. Databases are generated for each of a set of phase angles separately, forming a comprehensive dataset of reflected intensities spanning all object orientations and solar phase angles. Symmetries in the problem suggest that preferred rotation states are likely, defined relative to the object-sun direction in inertial space and relative to the maximum principal axis of inertia in the body coordinate system. Such rotation states may greatly simplify the problem of light curve interpretation by reducing the number of degrees of freedom in the problem.

  20. Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2008-02-29

    forces and moments are expressed as functions of angle of attack, sideslip angle, angular rates, and control surface deflection. L, M, and N are...invertible. As for matrix B, the control surfaces of the reusable launch vehicle are designed to control each axes angular rate of aircraft...literature as being invertible. As for matrix B, the control surfaces of the UAV are designed to control angular rate along each axis of the aircraft

  1. The complex phase gradient method applied to leaky Lamb waves.

    PubMed

    Lenoir, O; Conoir, J M; Izbicki, J L

    2002-10-01

    The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

  2. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  3. Features selection and classification to estimate elbow movements

    NASA Astrophysics Data System (ADS)

    Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.

    2015-11-01

    In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.

  4. On the folding phenomenon of comet tail rays

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.

    1982-01-01

    It is shown that the folding phenomenon of the comet tail rays is compatible with the Ferraro isorotation law if the comet tail magnetic field has no azimuthal component, that is, Bphi (the polar angle) equals zero. Considering electric drift due to convectional electric fields, a formula is obtained for the angular rate of a ray closure which reduces to that of Ness and Donn (1966) if the velocity profile across the tail is linear. The magnetic field B of approximately 20-40 gammas in the coma and less than about 10 gammas in the distant tail is estimated under typical solar wind conditions at 1 AU.

  5. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    NASA Astrophysics Data System (ADS)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as were captured by the UAV platform (view zenith angles up to 30°), already a huge improvement could be obtained when compared to solely using spectra simulated at nadir position. The results of this study show that the estimation of LAI and LCC by numerical inversion of the PROSAIL model can be improved when multi-angular observations are introduced. However, for the potato crop, PROSAIL inversion for measured data only showed moderate accuracy and slight improvements.

  6. Models of angular momentum input to a circumterrestrial swarm from encounters with heliocentric planetesimals

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Davis, D. R.

    1984-01-01

    Preliminary experiments show that heliocentric planetesimals passing through the Earth environment possess significant angular momentum. However it also appears that these same planetesimals impacting a circularized circumterrestrial planetesimal swarm would likely remove angular momentum (though possibly increasing mean kinetic energy), presumably promoting both swarm infall upon the Earth and escape to heliocentric space. Only a distribution of highly eccentric satellite orbits with mean tangential velocities of a few tens of percent of local circular velocity would be immune against angular momentum loss to passing heliocentric planetesimals.

  7. How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy.

    PubMed

    Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio

    2015-09-18

    In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.

  8. How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy

    PubMed Central

    Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio

    2015-01-01

    In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606

  9. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  10. A probabilistic approach for mine burial prediction

    NASA Astrophysics Data System (ADS)

    Barbu, Costin; Valent, Philip; Richardson, Michael; Abelev, Andrei; Plant, Nathaniel

    2004-09-01

    Predicting the degree of burial of mines in soft sediments is one of the main concerns of Naval Mine CounterMeasures (MCM) operations. This is a difficult problem to solve due to uncertainties and variability of the sediment parameters (i.e., density and shear strength) and of the mine state at contact with the seafloor (i.e., vertical and horizontal velocity, angular rotation rate, and pitch angle at the mudline). A stochastic approach is proposed in this paper to better incorporate the dynamic nature of free-falling cylindrical mines in the modeling of impact burial. The orientation, trajectory and velocity of cylindrical mines, after about 4 meters free-fall in the water column, are very strongly influenced by boundary layer effects causing quite chaotic behavior. The model's convolution of the uncertainty through its nonlinearity is addressed by employing Monte Carlo simulations. Finally a risk analysis based on the probability of encountering an undetectable mine is performed.

  11. SPH/N-Body simulations of small (D = 10km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Brož, M.; Nesvorný, D.; Enke, B.; Durda, D.; Walsh, K.; Richardson, D. C.

    2017-11-01

    We report on our study of asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We focused on parent bodies with diameters Dpb = 10km . Simulations were performed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact velocities and impact angles (125 runs in total). Resulting size-frequency distributions are significantly different from scaled-down simulations with Dpb = 100km targets (Durda et al., 2007). We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions for N-body simulations of small asteroid families. Finally, we discuss a number of uncertainties related to SPH simulations.

  12. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS-MORVEL overlap substantially and that the two sets of angular velocities differ insignificantly. Thus we combine the two sets of angular velocities to estimate ABS-MORVEL, an optimal set of global angular velocities consistent with both hotspot tracks and seismic anisotropy. ABS-MORVEL has more compact confidence limits than either SKS-MORVEL or HS4-MORVEL.

  13. A study of emergency American football helmet removal techniques.

    PubMed

    Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E

    2012-09-01

    The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  15. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  16. Implementing a Low-Cost Long-Range Unmanned Underwater Vehicle: The SeaDiver Glider

    DTIC Science & Technology

    2007-01-09

    25 2. Position estimation.............................................................................26 3. Angular ...calculation velocity..............................................................27 4. Angular calculation position...25 Figure 14. Angular Positions.............................................................................................27

  17. Design and Experimental Performance of a Two Stage Partial Admission Turbine, Task B.1/B.4

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Boynton, J. L.; Akian, R. A.; Shea, Dan; Roschak, Edmund; Rojas, Lou; Orr, Linsey; Davis, Linda; King, Brad; Bubel, Bill

    1992-01-01

    A three-inch mean diameter, two-stage turbine with partial admission in each stage was experimentally investigated over a range of admissions and angular orientations of admission arcs. Three configurations were tested in which first stage admission varied from 37.4 percent (10 of 29 passages open, 5 per side) to 6.9 percent (2 open, 1 per side). Corresponding second stage admissions were 45.2 percent (14 of 31 passages open, 7 per side) and 12.9 percent (4 open, 2 per side). Angular positions of the second stage admission arcs with respect to the first stage varied over a range of 70 degrees. Design and off-design efficiency and flow characteristics for the three configurations are presented. The results indicated that peak efficiency and the corresponding isentropic velocity ratio decreased as the arcs of admission were decreased. Both efficiency and flow characteristics were sensitive to the second stage nozzle orientation angles.

  18. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  19. Angular rate optimal design for the rotary strapdown inertial navigation system.

    PubMed

    Yu, Fei; Sun, Qian

    2014-04-22

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.

  20. Laser Pulse Shaping for Low Emittance Photo-Injector

    DTIC Science & Technology

    2012-06-01

    It depends on the product of the beam’s transverse size and angular divergence, , (I.2) where is the standard deviation of the electron...shows the pendulum’s phase velocity as a function of the position θp. As the pendulum oscillates back and forth, its phase, or angular , velocity and...the angular divergence and size of the optical beam. The radius of the optical beam follows the equation 24 To guarantee proper transfer

  1. On the shelf resonances of the Gulf of Carpentaria and the Arafura Sea

    NASA Astrophysics Data System (ADS)

    Webb, D. J.

    2012-09-01

    A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea, and the additional insights that come from extending the analysis into the complex angular velocity plane. When the model is forced at the shelf edge with physically realistic real values of the angular velocity, the response functions at points within the region show maxima and other behaviour which imply that resonances are involved but provide little additional information. The study is then extended to complex angular velocities, and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the response at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.

  2. Radial and latitudinal gradients in the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1988-01-01

    The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.

  3. Diffraction effects on angular response of X-ray collimators

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Barrus, D. M.; Fenimore, E.

    1976-01-01

    Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.

  4. Ship heading and velocity analysis by wake detection in SAR images

    NASA Astrophysics Data System (ADS)

    Graziano, Maria Daniela; D'Errico, Marco; Rufino, Giancarlo

    2016-11-01

    With the aim of ship-route estimation, a wake detection method is developed and applied to COSMO/SkyMed and TerraSAR-X Stripmap SAR images over the Gulf of Naples, Italy. In order to mitigate the intrinsic limitations of the threshold logic, the algorithm identifies the wake features according to the hydrodynamic theory. A post-detection validation phase is performed to classify the features as real wake structures by means of merit indexes defined in the intensity domain. After wake reconstruction, ship heading is evaluated on the basis of turbulent wake direction and ship velocity is estimated by both techniques of azimuth shift and Kelvin pattern wavelength. The method is tested over 34 ship wakes identified by visual inspection in both HH and VV images at different incidence angles. For all wakes, no missed detections are reported and at least the turbulent and one narrow-V wakes are correctly identified, with ship heading successfully estimated. Also, the azimuth shift method is applied to estimate velocity for the 10 ships having route with sufficient angular separation from the satellite ground track. In one case ship velocity is successfully estimated with both methods, showing agreement within 14%.

  5. Design optimization of a vaneless ``fish-friendly'' swirl injector for small water turbines

    NASA Astrophysics Data System (ADS)

    Airody, Ajith; Peterson, Sean D.

    2015-11-01

    Small-scale hydro-electric plants are attractive options for powering remote sites, as they draw energy from local bodies of water. However, the environmental impact on the aquatic life drawn into the water turbine is a concern. To mitigate adverse consequences on the local fauna, small-scale water turbine design efforts have focused on developing ``fish-friendly'' facilities. The components of these turbines tend to have wider passages between the blades when compared to traditional turbines, and the rotors are designed to spin at much lower angular velocities, thus allowing fish to pass through safely. Galt Green Energy has proposed a vaneless casing that provides the swirl component to the flow approaching the rotor, eliminating the need for inlet guide vanes. We numerically model the flow through the casing using ANSYS CFX to assess the evolution of the axial and circumferential velocity symmetry and uniformity in various cross-sections within and downstream of the injector. The velocity distributions, as well as the pressure loss through the injector, are functions of the pitch angle and number of revolutions of the casing. Optimization of the casing design is discussed via an objective function consisting of the velocity and pressure performance measures.

  6. Double pendulum model for a tennis stroke including a collision process

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  7. Reconstruction of head impacts in FIS World Cup alpine skiing.

    PubMed

    Steenstrup, Sophie Elspeth; Mok, Kam-Ming; McIntosh, Andrew S; Bahr, Roald; Krosshaug, Tron

    2018-06-01

    Prior to the 2013/2014 season, the International Ski Federation (FIS) increased the helmet testing speed from 5.4 to 6.8 m/s for alpine downhill, super-G and giant slalom. Whether this increased testing speed reflects head impact velocities in real head injury situations on snow is unclear. We therefore investigated the injury mechanisms and gross head impact biomechanics in seven real head injury situations among World Cup (WC) alpine skiers. We analysed nine head impacts from seven head injury videos from the FIS Injury Surveillance System, throughout nine WC seasons (2006-2015) in detail. We used commercial video-based motion analysis software to estimate head impact kinematics in two dimensions, including directly preimpact and postimpact, from broadcast video. The sagittal plane angular movement of the head was also measured using angle measurement software. In seven of nine head impacts, the estimated normal to slope preimpact velocity was higher than the current FIS helmet rule of 6.8 m/s (mean 8.1 (±SD 0.6) m/s, range 1.9±0.8 to 12.1±0.4 m/s). The nine head impacts had a mean normal to slope velocity change of 9.3±1.0 m/s, range 5.2±1.1 to 13.5±1.3 m/s. There was a large change in sagittal plane angular velocity (mean 43.3±2.9 rad/s (range 21.2±1.5 to 64.2±3.0 rad/s)) during impact. The estimated normal to slope preimpact velocity was higher than the current FIS helmet rule of 6.8 m/s in seven of nine head impacts. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Radiographic angles in hallux valgus: differences between measurements made manually and with a computerized program.

    PubMed

    Piqué-Vidal, Carlos; Maled-García, Ignaci; Arabi-Moreno, Juanjo; Vila, Joan

    2006-03-01

    The objective of this study was to compare angular measurements in the evaluation of hallux valgus deformities using a goniometer and a computerized program to assess degree of concordance between the two methods and determine the reliability of manual measurements. Angles measured included the hallux valgus angle (HVA), the intermetatarsal angle (IMA), the distal metatarsal articular angle (DMAA), and the proximal phalangeal articular angle (PPAA), also called the hallux valgus interphalangeus angle or interphalangeal angle. Measurements were made on preoperative weightbearing radiographs in 176 patients with symptomatic hallux valgus. Manual measurements were made with a goniometer by an orthopaedic surgeon. An independent experienced technician used digitized images to perform angular measurements with the Autocad software program (Autodesk Inc., San Rafael, CA). HVA values obtained with the two techniques were similar. However, significantly higher mean values were obtained with the Autocad for the IMA and PPAA measurements, and higher mean values were obtained for the DMAA measurement with the manual technique. Whereas differences were more or less randomly distributed for the HVA, in the remaining patients, measurements were clearly related to the measurement technique, i.e., for the DMAA, the manual technique had a tendency to show higher values, and for the IMA and PPAA the manual technique showed lower values than the computer. Correlations between both techniques for the different angular measurements were as follows: HVA, -0.179 (p = 0.018); DMMA, -0.294 (p < 0.001); PPAA, -0.876 (p < 0.001); and IMA, -0.661 (p < 0.001). The intraclass correlation coefficient (ICC) showed that the concordance between manual and Autocad angular measurements was excellent for the HVA (ICC = 0.89) and DMAA (ICC = 0.80) and very poor for the PPAA (ICC = 0.11) and IMA (ICC = 0.42). Angular measurements made on weightbearing radiographs with the Autocad in patients with hallux valgus deformities were more reliable than those made with a goniometer. Although for large angles, such as HVA and DMAA, results obtained with both measurement techniques were similar. Manual measurements, however, may underestimate the true values of the smaller IMA and PPAA angles.

  9. Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults.

    PubMed

    Misu, Shogo; Asai, Tsuyoshi; Ono, Rei; Sawa, Ryuichi; Tsutsumimoto, Kota; Ando, Hiroshi; Doi, Takehiko

    2017-09-01

    The heel is likely a suitable location to which inertial sensors are attached for the detection of gait events. However, there are few studies to detect gait events and determine temporal gait parameters using sensors attached to the heels. We developed two methods to determine temporal gait parameters: detecting heel-contact using acceleration and detecting toe-off using angular velocity data (acceleration-angular velocity method; A-V method), and detecting both heel-contact and toe-off using angular velocity data (angular velocity-angular velocity method; V-V method). The aim of this study was to examine the concurrent validity of the A-V and V-V methods against the standard method, and to compare their accuracy. Temporal gait parameters were measured in 10 younger and 10 older adults. The intra-class correlation coefficients were excellent in both methods compared with the standard method (0.80 to 1.00). The root mean square errors of stance and swing time in the A-V method were smaller than the V-V method in older adults, although there were no significant discrepancies in the other comparisons. Our study suggests that inertial sensors attached to the heels, using the A-V method in particular, provide a valid measurement of temporal gait parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Characterizing Knee Loading Asymmetry in Individuals Following Anterior Cruciate Ligament Reconstruction Using Inertial Sensors

    PubMed Central

    Sigward, Susan M.; Chan, Ming-Sheng M.; Lin, Paige E.

    2016-01-01

    Limitations in the ability to identify knee extensor loading deficits during gait in individuals following anterior cruciate ligament reconstruction (ACLr) may underlie their persistence. A recent study suggested that shank angular velocity, directly output from inertial sensors, differed during gait between individuals post-ACLr and controls. However, it is not clear if this kinematic variable relates to knee moments calculated using joint kinematics and ground reaction forces. Heel rocker mechanics during loading response of gait, characterized by rapid shank rotation, require knee extensor control. Measures of shank angular velocity may be reflective of knee moments. This study investigated the relationship between shank angular velocity and knee extensor moment during gait in individuals (n=19) 96.7±16.8 days post-ACLr. Gait was assessed concurrently using inertial sensors and a marker-based motion system with force platforms. Peak angular velocity and knee extensor moment were strongly correlated (r=0.75, p<0.001) and between limb ratios of angular velocity predicted between limb ratios of extensor moment (r2=0.57 ,p<0.001) in the absence of between limb differences in spatiotemporal gait parameters. The strength of these relationships indicate that shank kinematic data offer meaningful information regarding knee loading and provide a potential alternative to full motion analysis systems for identification of altered knee loading following ACLr PMID:27395452

  11. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  12. Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.

    1993-01-01

    1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.

  13. Alignment of angular velocity sensors for a vestibular prosthesis.

    PubMed

    Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M

    2012-02-13

    Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.

  14. State Derivation of a 12-Axis Gyroscope-Free Inertial Measurement Unit

    PubMed Central

    Lu, Jau-Ching; Lin, Pei-Chun

    2011-01-01

    The derivation of linear acceleration, angular acceleration, and angular velocity states from a 12-axis gyroscope-free inertial measurement unit that utilizes four 3-axis accelerometer measurements at four distinct locations is reported. Particularly, a new algorithm which derives the angular velocity from its quadratic form and derivative form based on the context-based interacting multiple model is demonstrated. The performance of the system was evaluated under arbitrary 3-dimensional motion. PMID:22163791

  15. Rotations of large inertial cubes, cuboids, cones, and cylinders in turbulence

    NASA Astrophysics Data System (ADS)

    Pujara, Nimish; Oehmke, Theresa B.; Bordoloi, Ankur D.; Variano, Evan A.

    2018-05-01

    We conduct experiments to investigate the rotations of freely moving particles in a homogeneous isotropic turbulent flow. The particles are nearly neutrally buoyant and the particle size exceeds the Kolmogorov scale so that they are too large to be considered passive tracers. Particles of several different shapes are considered including those that break axisymmetry and fore-aft symmetry. We find that regardless of shape the mean-square particle angular velocity scales as deq -4 /3, where de q is the equivalent diameter of a volume-matched sphere. This scaling behavior is consistent with the notion that velocity differences across a length de q in the flow are responsible for particle rotation. We also find that the probability density functions (PDFs) of particle angular velocity collapse for particles of different shapes and similar de q. The significance of these results is that the rotations of an inertial, nonspherical particle are only functions of its volume and not its shape. The magnitude of particle angular velocity appears log-normally distributed and individual Cartesian components show long tails. With increasing de q, the tails of the PDF become less pronounced, meaning that extreme events of angular velocity become less common for larger particles.

  16. Catching a Rolling Stone: Dynamics and Control of a Spacecraft and an Asteroid

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Shen, Haijun; Jesick, Mark C; Cornelius, David M

    2013-01-01

    In a recent report, a robotic spacecraft mission is proposed for the purpose of collecting a small asteroid, or a small part of a large one, and transporting it to an orbit in the Earth-Moon system. Such an undertaking will require solutions to many of the engineering problems associated with deflection of an asteroid that poses a danger to Earth. In both cases, it may be necessary for a spacecraft to approach an asteroid from a nearby position, hover for some amount of time, move with the same angular velocity as the asteroid, descend, perhaps ascend, and finally arrest the angular velocity of the asteroid. Dynamics and control in each of these activities is analyzed in order to determine the velocity increments and control torque that must be provided by a reaction control system, and the mass of the propellant that will be consumed. Two attitude control algorithms are developed, one to deal with synchronizing the spacecraft s angular velocity with that of the asteroid, and the other to arrest the asteroid s angular velocity. A novel approach is proposed for saving fuel in the latter case.

  17. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    PubMed Central

    Li, Zong-Tao; Wu, Tie-Jun; Lin, Can-Long; Ma, Long-Hua

    2011-01-01

    A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform. PMID:22164058

  18. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  19. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).

    PubMed

    Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A

    2015-10-01

    The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.

  20. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  1. Comparison of CME three-dimensional parameters derived from single and multi-spacecraft

    NASA Astrophysics Data System (ADS)

    LEE, Harim; Moon, Yong-Jae; Na, Hyeonock; Jang, Soojeong

    2014-06-01

    Several geometrical models (e.g., cone and flux rope models) have been suggested to infer three-dimensional parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by 90±10 degrees. In this study, we compare the 3-D parameters of these CMEs from three different methods: (1) a triangulation method using STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using STEREO/SECCHI data, and (3) an ice cream cone model using SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle γ between the propagation direction and the plan of the sky). We find that the radial velocities and the γ-values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different with the correlation coefficients of CC > 0.4. We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected.

  2. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  3. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  4. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  5. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  6. Angular momentum transfer in low velocity oblique impacts - Implications for asteroids

    NASA Technical Reports Server (NTRS)

    Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.

    1991-01-01

    An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.

  7. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  8. SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Watkins, W; Kim, T

    2015-06-15

    Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less

  9. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors*

    PubMed Central

    Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D.

    2016-01-01

    The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. PMID:27729450

  10. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.

    PubMed

    Yamada, Akira; Terakawa, Mitsuhiro

    2015-04-10

    We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.

  11. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players.

    PubMed

    Giatsis, George; Panoutsakopoulos, Vassilios; Kollias, Iraklis A

    2018-05-01

    The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints' range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.

  12. Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System

    PubMed Central

    Yu, Fei; Sun, Qian

    2014-01-01

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115

  13. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  14. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  15. Development of a sliding mode control model for quiet upright stance.

    PubMed

    Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J

    2016-02-01

    Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. A Homing Missile Control System to Reduce the Effects of Radome Diffraction

    NASA Technical Reports Server (NTRS)

    Smith, Gerald L.

    1960-01-01

    The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.

  17. Differential processing: towards a unified model of direction and speed perception.

    PubMed

    Farrell-Whelan, Max; Brooks, Kevin R

    2013-11-01

    In two experiments, we demonstrate a misperception of the velocity of a random-dot stimulus moving in the presence of a static line oriented obliquely to the direction of dot motion. As shown in previous studies, the perceived direction of the dots is shifted away from the orientation of the static line, with the size of the shift varying as a function of line orientation relative to dot direction (the statically-induced direction illusion, or 'SDI'). In addition, we report a novel effect - that perceived speed also varies as a function of relative line orientation, decreasing systematically as the angle is reduced from 90° to 0°. We propose that these illusions both stem from the differential processing of object-relative and non-object-relative component velocities, with the latter being perceptually underestimated with respect to the former by a constant ratio. Although previous proposals regarding the SDI have not allowed quantitative accounts, we present a unified formal model of perceived velocity (both direction and speed) with the magnitude of this ratio as the only free parameter. The model was successful in accounting for the angular repulsion of motion direction across line orientations, and in predicting the systematic decrease in perceived velocity as the line's angle was reduced. Although fitting for direction and speed produced different best-fit values of the ratio of underestimation of non-object-relative motion compared to object-relative motion (with the ratio for speed being larger than that for direction) this discrepancy may be due to differences in the psychophysical procedures for measuring direction and speed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo

    PubMed Central

    Preuschl, Emanuel; Hassmann, Michaela; Baca, Arnold

    2016-01-01

    The jumping front-leg axe-kick is a valid attacking and counterattacking technique in Taekwondo competition (Streif, 1993). Yet, the existing literature on this technique is sparse (Kloiber et al., 2009). Therefore, the goal of this study was to determine parameters contributing significantly to maximum linear speed of the foot at impact. Parameters are timing of segment and joint angular velocity characteristics and segment lengths of the kicking leg. Moreover, we were interested in the prevalence of proximal-to-distal-sequencing. Three-dimensional kinematics of the kicks of 22 male Taekwondo-athletes (age: 23.3 ± 5.3 years) were recorded via a motion capturing system (Vicon Motion Systems Limited, Oxford, UK). The participants performed maximum effort kicks onto a rack-held kicking pad. Only the kick with the highest impact velocity was analysed, as it was assumed to represent the individual’s best performance. Significant Pearson correlations to impact velocity were found for pelvis tilt angular displacement (r = 0.468, p < 0.05) and for hip extension angular velocity (r = -0.446, p < 0.05) and for the timing of the minima of pelvis tilt velocity (r = -0.426, p < 0.05) and knee flexion velocity (r = -0.480, p < 0.05). Backward step linear regression analysis suggests a model consisting of three predictor variables: pelvis tilt angular displacement, hip flexion velocity at target contact and timing of pelvic tilt angular velocity minimum (adjusted R2 = 0.524). Results of Chi-Squared tests show that neither for the leg-raising period (χ2 = 2.909) of the technique, nor for the leg-lowering period a pattern of proximal-to-distal sequencing is prevalent (χ2 = 0.727). From the results we conclude that the jumping front-leg axe-kick does not follow a proximal-to-distal pattern. Raising the leg early in the technique and apprehending the upper body to be leant back during the leg-lowering period seems to be beneficial for high impact velocity. Furthermore, striking by extending the hip rather than by flexing the knee could raise impact velocity. Key points Angular velocity characteristics of the pelvis segment and the kicking leg’s hip and knee joint show no proximal-to-distal sequencing, neither for the leg-raising or leg-lowering period in a jumping front-leg axe-kick. Anthropometric parameters of taekwondo athlete’s do not influence their impact velocities. In order to raise the impact velocity in the jumping front-leg axe-kick an athlete should avoid tilting back with the torso. Instead, an upright position should be maintained. In the leg-lowering period, we suggest hitting the target by using hip extension with a rather straight knee, instead of flexing the knee. PMID:26957931

  19. Topology-Optimized Multilayered Metaoptics

    NASA Astrophysics Data System (ADS)

    Lin, Zin; Groever, Benedikt; Capasso, Federico; Rodriguez, Alejandro W.; Lončar, Marko

    2018-04-01

    We propose a general topology-optimization framework for metasurface inverse design that can automatically discover highly complex multilayered metastructures with increased functionalities. In particular, we present topology-optimized multilayered geometries exhibiting angular phase control, including a single-piece nanophotonic metalens with angular aberration correction, as well as an angle-convergent metalens that focuses light onto the same focal spot regardless of the angle of incidence.

  20. Study on pixel matching method of the multi-angle observation from airborne AMPR measurements

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han

    2015-10-01

    For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.

  1. An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings

    NASA Technical Reports Server (NTRS)

    Yntema, Robert T; Milwitzky, Benjamin

    1952-01-01

    An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more severe than impacts in symmetrical landings with the same sinking speed. The results also indicate the effects of landing-gear location, airplane inertia, initial wing lift, side drift velocity, attitude, and initial rolling velocity on the severity of both initial and subsequent landing-gear impacts. A comparison of the severity of impacts on auxiliary gears for tricycle and quadricycle configurations is also presented.

  2. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  3. Do isokinetic angular velocity and contraction types affect the predictors of different anaerobic power tests?

    PubMed

    Yapici, Aysegul; Findikoglu, Gulin; Dundar, Ugur

    2016-04-01

    The purpose of this study was to investigate the most important predictor isokinetic muscle strength determined by different angular velocities and contraction types (i.e. concentric and eccentric) for selected anaerobic power tests in volleyball players. Twenty male and ten female amateur volleyball players participated in this study. Selected anaerobic power tests included Wingate Anaerobic Test (WAnT), squat jump (SJ) and countermovement jump (CMJ). Peak torque values were obtained at 60, 120, 240˚/s for concentric contraction of quadriceps (Qconc) and Hamstring (Hconc) and at 60˚/s for eccentric contraction of quadriceps (Qecc) and Hconc. Moderate to good correlations (r:0.409 to r:0.887) were found between anaerobic tests and isokinetic data including peak torque and total work of both Hconc and Qconc at 60, 120, 240°/s and Qecc at 60°/s (P<0.05). Qconc measured at each of 60, 120, 240°/s was found to be the only significant predictor for anaerobic tests in linear regression models (P<0.05). Correlation coefficient s for Qconc increased with increasing velocity for each of the anaerobic tests. Correlation coefficient of Qconc was highest for CMJ followed by SJ and WAnT at the same angular velocity. As a distinctive feature, both Qecc and Hconc at 60˚/s were significantly predictors for CMJ and SJ. Qconc peak torque was the single significant predictor for WAnT, SJ and CMJ and strength of the relation increases with increasing angular velocity. However, both Qecc and Hconc were significant indicators for CMJ and SJ. Training with higher isokinetic angular velocities and with eccentric contraction is desirable in a training program that has a goal of improving anaerobic performance in volleyball players.

  4. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors.

    PubMed

    Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D

    2016-12-02

    The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A 3 B 3 DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α 3 β 3 γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A 3 B 3 DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A 3 B 3 DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Dopaminergic modulation of arm swing during gait among Parkinson’s disease patients

    PubMed Central

    Sterling, Nicholas W.; Cusumano, Joseph P.; Shaham, Noam; Piazza, Stephen J.; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M.; Huang, Xuemei

    2015-01-01

    Background Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson’s disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. This study investigated the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Methods Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Results Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p=0.0018), but not faster- (p=0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p=0.0046) and lower maximum cross-correlation (p=0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p=0.0182), but not faster- (p=0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p=0.0386), whereas maximum cross-correlation showed no change (p=0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R=−0.73824, p=0.0011). Conclusions This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression. PMID:25502948

  6. Dopaminergic modulation of arm swing during gait among Parkinson's disease patients.

    PubMed

    Sterling, Nicholas W; Cusumano, Joseph P; Shaham, Noam; Piazza, Stephen J; Liu, Guodong; Kong, Lan; Du, Guangwei; Lewis, Mechelle M; Huang, Xuemei

    2015-01-01

    Reduced arm swing amplitude, symmetry, and coordination during gait have been reported in Parkinson's disease (PD), but the relationship between dopaminergic depletion and these upper limb gait changes remains unclear. We aimed to investigate the effects of dopaminergic drugs on arm swing velocity, symmetry, and coordination in PD. Forearm angular velocity was recorded in 16 PD and 17 control subjects (Controls) during free walking trials. Angular velocity amplitude of each arm, arm swing asymmetry, and maximum cross-correlation were compared between control and PD groups, and between OFF- and ON-medication states among PD subjects. Compared to Controls, PD subjects in the OFF-medication state exhibited lower angular velocity amplitude of the slower- (p = 0.0018), but not faster- (p = 0.2801) swinging arm. In addition, PD subjects demonstrated increased arm swing asymmetry (p = 0.0046) and lower maximum cross-correlation (p = 0.0026). Following dopaminergic treatment, angular velocity amplitude increased in the slower- (p = 0.0182), but not faster- (p = 0.2312) swinging arm among PD subjects. Furthermore, arm swing asymmetry decreased (p = 0.0386), whereas maximum cross-correlation showed no change (p = 0.7436). Pre-drug angular velocity amplitude of the slower-swinging arm was correlated inversely with the change in arm swing asymmetry (R = -0.73824, p = 0.0011). This study provides quantitative evidence that reduced arm swing and symmetry in PD can be modulated by dopaminergic replacement. The lack of modulations of bilateral arm coordination suggests that additional neurotransmitters may also be involved in arm swing changes in PD. Further studies are warranted to investigate the longitudinal trajectory of arm swing dynamics throughout PD progression.

  7. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental lithosphere (σ=14.7° ). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29° ) and Eurasia (vRMS=3 mm a-1, σ=33° ), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ˜5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. We will investigate if these relationships still hold with the new expanded data set and with the alternative set of relative plate angular velocities. We have found systematic differences between the SKS orientations and our predicted plate motion azimuths underneath the Arabia plate, which suggests to us either plate-scale mantle flow process not directly associated with that plate's absolute motion or intrinsic lithospheric anisotropy. We will discuss more of such discrepancies underneath other plates using the enlarged data set.

  8. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  9. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  10. The influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect.

    PubMed

    Nickalls, R W

    1996-09-01

    Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.

  11. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jinhye; Moon, Y.-J.; Lee, Harim, E-mail: jinhye@khu.ac.kr

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are asmore » follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.« less

  12. The role of biomechanics in maximising distance and accuracy of golf shots.

    PubMed

    Hume, Patria A; Keogh, Justin; Reid, Duncan

    2005-01-01

    Golf biomechanics applies the principles and technique of mechanics to the structure and function of the golfer in an effort to improve golf technique and performance. A common recommendation for technical correction is maintaining a single fixed centre hub of rotation with a two-lever one-hinge moment arm to impart force on the ball. The primary and secondary spinal angles are important for conservation of angular momentum using the kinetic link principle to generate high club-head velocity. When the golfer wants to maximise the distance of their drives, relatively large ground reaction forces (GRF) need to be produced. However, during the backswing, a greater proportion of the GRF will be observed on the back foot, with transfer of the GRF on to the front foot during the downswing/acceleration phase. Rapidly stretching hip, trunk and upper limb muscles during the backswing, maximising the X-factor early in the downswing, and uncocking the wrists when the lead arm is about 30 degrees below the horizontal will take advantage of the summation of force principle. This will help generate large angular velocity of the club head, and ultimately ball displacement. Physical conditioning will help to recruit the muscles in the correct sequence and to optimum effect. To maximise the accuracy of chipping and putting shots, the golfer should produce a lower grip on the club and a slower/shorter backswing. Consistent patterns of shoulder and wrist movements and temporal patterning result in successful chip shots. Qualitative and quantitative methods are used to biomechanically assess golf techniques. Two- and three-dimensional videography, force plate analysis and electromyography techniques have been employed. The common golf biomechanics principles necessary to understand golf technique are stability, Newton's laws of motion (inertia, acceleration, action reaction), lever arms, conservation of angular momentum, projectiles, the kinetic link principle and the stretch-shorten cycle. Biomechanics has a role in maximising the distance and accuracy of all golf shots (swing and putting) by providing both qualitative and quantitative evidence of body angles, joint forces and muscle activity patterns. The quantitative biomechanical data needs to be interpreted by the biomechanist and translated into coaching points for golf professionals and coaches. An understanding of correct technique will help the sports medicine practitioner provide sound technical advice and should help reduce the risk of golfing injury.

  13. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.

  14. Optimum instantaneous impulsive orbital injection to attain a specified asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    A nalysis of the necessary conditions of Battin for instantaneous orbital injection, with consideration of the uniqueness of his solution, and of the further problem which arises in the degenerate case when radius vector and asymptotic vector are separated by 180 deg. It is shown that when the angular separation between radius vector and asymptotic velocity vector satisfies theta not equal to 180 deg, there are precisely two insertion-velocity vectors which permit attainment of the target asymptotic velocity vector, one yielding posigrade, the other retrograde motion. When theta equals to 180 deg, there is a family of insertion-velocity vectors which permit attainment of a specified asymptotic velocity vector with a unique insertion-velocity vector for every arbitrary orientation of a target unit angular momentum vector.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, Joshua N.; Albrecht, Simon; Johnson, John Asher

    We show that the exoplanet HAT-P-7b has an extremely tilted orbit, with a true angle of at least 86 deg. with respect to its parent star's equatorial plane, and a strong possibility of retrograde motion. We also report evidence for an additional planet or companion star. The evidence for the unparalleled orbit and the third body is based on precise observations of the star's apparent radial velocity (RV). The anomalous RV due to rotation (the Rossiter-McLaughlin effect) was found to be a blueshift during the first half of the transit and a redshift during the second half, an inversion ofmore » the usual pattern, implying that the angle between the sky-projected orbital and stellar angular momentum vectors is 182.{sup 0}5 +- 9.{sup 0}4. The third body is implicated by excess RV variation of the host star over 2 yr. Some possible explanations for the tilted orbit of HAT-P-7b are a close encounter with another planet, the Kozai effect, and resonant capture by an inward-migrating outer planet.« less

  16. Complementary filter implementation in the dynamic language Lua

    NASA Astrophysics Data System (ADS)

    Sadowski, Damian; Sawicki, Aleksander; Lukšys, Donatas; Slanina, Zdenek

    2017-08-01

    The article presents the complementary filter implementation, that is used for the estimation of the pitch angle, in Lua script language. Inertial sensors as accelerometer and gyroscope were used in the study. Methods of angles estimation using acceleration and angular velocity sensors were presented in the theoretical part of the article. The operating principle of complementary filter has been presented. The prototype of Butterworth's analogue filter and its digital equivalent have been designed. Practical implementation of the issue was performed with the use of PC and DISCOVERY evaluation board equipped with STM32F01 processor, L3GD20 gyroscope and LS303DLHC accelerometer. Measurement data was transmitted by UART serial interface, then processed with the use of Lua software and luaRS232 programming library. Practical implementation was divided into two stages. In the first part, measurement data has been recorded and then processed with help of a complementary filter. In the second step, coroutines mechanism was used to filter data in real time.

  17. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  18. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity.

    PubMed

    Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T

    2008-09-01

    Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.

  19. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  20. Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.

    PubMed

    Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu

    2017-07-22

    GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.

  1. Hourly average values of solar wing parameters (flow rate and ion temperatures) according to data of measurements of the Venera-9 and Venera-10 automatic interplanetary stations on an Earth-Venus during the period June 1975 - April 1976

    NASA Technical Reports Server (NTRS)

    Vaysberg, O. L.; Dyachkov, A. V.; Smirnov, V. N.; Tsyrkin, K. B.; Isaeva, R. A.

    1980-01-01

    Four electrostatic analyzers with channel electron multipliers as detectors were used to measure solar wind ionic flow. The axes of the fields of vision of two of these analyzers were directed along the axis of the automatic interplanetary station, oriented towards the Sun, while the other two were turned in one plane at angles of +15 deg and -15 deg. The full hemisphere of the angular diagram of each analyzer was approximately 5 deg. The energetic resolution was approximately 6%, and the geometric energy was 0.002 sq cm ave. keV. Each analyzer covered an energetic range of approximately 10 in eight energetic intervals. Spectral distributions were processed in order to obtain the velocity and temperature of the protons. Tabular data show the hour interval (universal time) and the average solar wind velocity in kilometers per second.

  2. Anatomy of F1-ATPase powered rotation.

    PubMed

    Martin, James L; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D

    2014-03-11

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank).

  3. Anatomy of F1-ATPase powered rotation

    PubMed Central

    Martin, James L.; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D.

    2014-01-01

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank). PMID:24567403

  4. Effect of right ventricular pacing on cardiac apex rotation assessed by a gyroscopic sensor.

    PubMed

    Marcelli, Emanuela; Cercenelli, Laura; Parlapiano, Mario; Fumero, Roberto; Bagnoli, Paola; Costantino, Maria Laura; Plicchi, Gianni

    2007-01-01

    To quantify cardiac apex rotation (CAR), the authors recently proposed the use of a Coriolis force sensor (gyroscope) as an alternative to other complex techniques. The aim of this study was to evaluate the effects of right ventricular (RV) pacing on CAR. A sheep heart was initially paced from the right atrium to induce a normal activation sequence at a fixed heart rate (AAI mode) and then an atrioventricular pacing was performed (DOO mode, AV delay = 60 ms). A small gyroscope was epicardially glued on the cardiac apex to measure the angular velocity (Ang V). From AAI to DOO pacing mode, an increase (+9.2%, p < 0.05) of the maximum systolic twisting velocity (Ang VMAX) and a marked decrease (-19.9%, p < 0.05) of the maximum diastolic untwisting velocity (Ang VMIN) resulted. RV pacing had negligible effects (-3.1%, p = 0.09) on the maximum angle of CAR, obtained by integrating Ang V. The hemodynamic parameters of systolic (LVdP/dtMAX) and diastolic (LVdP/dtMIN) cardiac function showed slight variations (-3.8%, p < 0.05 and +3.9%, p < 0.05, respectively). Results suggest that cardiac dyssynchrony induced by RV pacing can alter the normal physiological ventricular twist patterns, particularly affecting diastolic untwisting velocity.

  5. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  6. Theoretical issues on the spontaneous rotation of axisymmetric plasmas

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Zhou, T.

    2014-09-01

    An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes besides the appropriate diffusive and the inward angular momentum transparent terms.

  7. Processing of angular motion and gravity information through an internal model.

    PubMed

    Laurens, Jean; Straumann, Dominik; Hess, Bernhard J M

    2010-09-01

    The vestibular organs in the base of the skull provide important information about head orientation and motion in space. Previous studies have suggested that both angular velocity information from the semicircular canals and information about head orientation and translation from the otolith organs are centrally processed in an internal model of head motion, using the principles of optimal estimation. This concept has been successfully applied to model behavioral responses to classical vestibular motion paradigms. This study measured the dynamic of the vestibuloocular reflex during postrotatory tilt, tilt during the optokinetic afternystagmus, and off-vertical axis rotation. The influence of otolith signal on the VOR was systematically varied by using a series of tilt angles. We found that the time constants of responses varied almost identically as a function of gravity in these paradigms. We show that Bayesian modeling could predict the experimental results in an accurate and consistent manner. In contrast to other approaches, the Bayesian model also provides a plausible explanation of why these vestibulooculo motor responses occur as a consequence of an internal process of optimal motion estimation.

  8. The effect of kinematic parameters on inelastic scattering of glyoxal.

    PubMed

    Duca, Mariana D

    2004-10-08

    The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.

  9. A Neural Circuit for Angular Velocity Computation

    PubMed Central

    Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  10. A neural circuit for angular velocity computation.

    PubMed

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  11. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less

  12. Influence of different shortening velocities preceding stretch on human triceps surae moment generation in vivo.

    PubMed

    De Monte, Gianpiero; Arampatzis, Adamantios

    2008-07-19

    The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.

  13. Bounded extremum seeking for angular velocity actuated control of nonholonomic unicycle

    DOE PAGES

    Scheinker, Alexander

    2016-08-17

    Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less

  14. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  15. Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation.

    PubMed

    Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan

    2016-01-01

    Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

  16. Six-degree-of-freedom multi-axes positioning apparatus

    DOEpatents

    Bieg, L.F.X.

    1999-05-11

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD. 9 figs.

  17. Six-degree-of-freedom multi-axes positioning apparatus

    DOEpatents

    Bieg, Lothar F. X.

    1999-01-01

    A six-degree-of-freedom multi-axes positioning apparatus is comprised of a geometry of six independent angle connectors. Each angle connector connects two fixed length rods to a pivot on one of two opposing platforms. The combination of an angle connector, at least two pivots and at least two rods having free ends connected to the pivots comprises a leg assembly. The spatial location of the upper platform is changed in relation to the lower platform by angular changes within each angle connector. This angular change results in degrees of motion within the apparatus defined as X, Y, Z, Tip, Tilt, and Rotation, or a combination of the above. This invention is known as a ROTOPOD.

  18. ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework.

    PubMed

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand

    2012-01-01

    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.

  19. Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems.

    PubMed

    Yamada, Hirotaka; Moriyasu, Kengo; Sato, Hiroto; Hatanaka, Hidekazu

    2017-12-11

    The speckle reduction for laser projectors has been vigorously studied because speckle causes a serious deterioration in image quality. Most speckle reduction methods can be categorized into wavelength diversity, angular diversity and polarization diversity, which are usually treated independently. In this paper, it is shown that the effect of wavelength diversity and angular diversity on speckle reduction is not independent, and that the effect of wavelength also depends on incidence and observation angles on screen. The speckle reduction effect by wavelength diversity is smaller when the angular diversity is larger. Also, the speckle reduction effect is investigated on various screens including matte and silver screens, and it is shown that the effect of wavelength diversity is larger on matte screen than on silver screen.

  20. Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    NASA Technical Reports Server (NTRS)

    Fedor, J. V.

    1981-01-01

    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.

  1. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding ``hydrodynamics-only'' models. A simple analytical model supports our numerical results, indicating that the inclusion of neutrino transport reduces the entropy-driven (lepton-driven) convection growth rates and asymptotic velocities by a factor ~3 (50) at the neutrinosphere and a factor ~250 (1000) at ρ = 1012 g cm-3, for both our 15 and 25 M⊙ models. Moreover, when transport is included, the initial postbounce entropy gradient is smoothed out by neutrino diffusion, whereas the initial lepton gradient is maintained by electron capture and neutrino escape near the neutrinosphere. Despite the maintenance of the lepton gradient, proto-neutron star convection does not develop over the 100 ms duration typical of all our simulations, except in the instance where ``low-test'' intial conditions are used, which are generated by core-collapse and bounce simulations that neglect neutrino-electron scattering and ion-ion screening corrections to neutrino-nucleus elastic scattering. Models favoring the development of proto-neutron star convection either by starting with more favorable, albeit artificial (low-test), initial conditions or by including transport corrections that were ignored in our ``fiducial'' models were considered. Our conclusions nonetheless remained the same. Evidence of proto-neutron star convection in our two-dimensional entropy snapshots was minimal, and, as in our fiducial models, the angle-averaged convective velocities when neutrino transport was included remained orders of magnitude smaller than their counterparts in the corresponding hydrodynamics-only models.

  2. Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses.

    PubMed

    Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M

    2004-11-02

    The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.

  3. Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debes, John H.; Poteet, Charles A.; Hines, Dean

    2017-02-01

    We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope ( HST ), using the newly commissioned BAR5 occulter. These HST /STIS observations achieved an inner working angle of ∼0.″2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya’smore » azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22.°7 yr{sup −1} in a counterclockwise direction, equivalent to a period of 15.9 yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.« less

  4. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    PubMed Central

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  5. Hst Measurements Of Main Belt Comet 300163

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.

    2012-10-01

    Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.

  6. Normal and tumoral melanocytes exhibit q-Gaussian random search patterns.

    PubMed

    da Silva, Priscila C A; Rosembach, Tiago V; Santos, Anésia A; Rocha, Márcio S; Martins, Marcelo L

    2014-01-01

    In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, failures in its regulation potentiates numerous diseases. Here, cell migration assays on plastic 2D surfaces were performed using normal (Melan A) and tumoral (B16F10) murine melanocytes in random motility conditions. The trajectories of the centroids of the cell perimeters were tracked through time-lapse microscopy. The statistics of these trajectories was analyzed by building velocity and turn angle distributions, as well as velocity autocorrelations and the scaling of mean-squared displacements. We find that these cells exhibit a crossover from a normal to a super-diffusive motion without angular persistence at long time scales. Moreover, these melanocytes move with non-Gaussian velocity distributions. This major finding indicates that amongst those animal cells supposedly migrating through Lévy walks, some of them can instead perform q-Gaussian walks. Furthermore, our results reveal that B16F10 cells infected by mycoplasmas exhibit essentially the same diffusivity than their healthy counterparts. Finally, a q-Gaussian random walk model was proposed to account for these melanocytic migratory traits. Simulations based on this model correctly describe the crossover to super-diffusivity in the cell migration tracks.

  7. A new method for testing the scale-factor performance of fiber optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengxin; Yu, Haicheng; Li, Jing; Li, Chao; Shi, Haiyang; Zhang, Bingxin

    2015-10-01

    Fiber optical gyro (FOG) is a kind of solid-state optical gyroscope with good environmental adaptability, which has been widely used in national defense, aviation, aerospace and other civilian areas. In some applications, FOG will experience environmental conditions such as vacuum, radiation, vibration and so on, and the scale-factor performance is concerned as an important accuracy indicator. However, the scale-factor performance of FOG under these environmental conditions is difficult to test using conventional methods, as the turntable can't work under these environmental conditions. According to the phenomenon that the physical effects of FOG produced by the sawtooth voltage signal under static conditions is consistent with the physical effects of FOG produced by a turntable in uniform rotation, a new method for the scale-factor performance test of FOG without turntable is proposed in this paper. In this method, the test system of the scale-factor performance is constituted by an external operational amplifier circuit and a FOG which the modulation signal and Y waveguied are disconnected. The external operational amplifier circuit is used to superimpose the externally generated sawtooth voltage signal and the modulation signal of FOG, and to exert the superimposed signal on the Y waveguide of the FOG. The test system can produce different equivalent angular velocities by changing the cycle of the sawtooth signal in the scale-factor performance test. In this paper, the system model of FOG superimposed with an externally generated sawtooth is analyzed, and a conclusion that the effect of the equivalent input angular velocity produced by the sawtooth voltage signal is consistent with the effect of input angular velocity produced by the turntable is obtained. The relationship between the equivalent angular velocity and the parameters such as sawtooth cycle and so on is presented, and the correction method for the equivalent angular velocity is also presented by analyzing the influence of each parameter error on the equivalent angular velocity. A comparative experiment of the method proposed in this paper and the method of turntable calibration was conducted, and the scale-factor performance test results of the same FOG using the two methods were consistent. Using the method proposed in this paper to test the scale-factor performance of FOG, the input angular velocity is the equivalent effect produced by a sawtooth voltage signal, and there is no need to use a turntable to produce mechanical rotation, so this method can be used to test the performance of FOG at the ambient conditions which turntable can not work.

  8. Angular distribution of electrons from powerful accelerators

    NASA Astrophysics Data System (ADS)

    Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.

    2007-07-01

    A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ≈0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.

  9. Air To Air Helicopter Fire Control Equations and Software Generation.

    DTIC Science & Technology

    1979-11-01

    A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the

  10. Surface plasmon resonance sensor using vari-focal liquid lens under angular interrogation

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Bang, Yousung; Lee, Jooho; Jang, Wonjae; Won, Yong Hyub

    2017-02-01

    In this paper, a surface plasmon resonance sensor for the detection of refractive index variation is presented. A novel waveguide type surface plasmon resonance sensing configuration with focal length variable liquid lens is introduced. The method of surface plasmon resonance sensor is based on the waveguide type with incident angle variation. The incident angle is varied by using an electrowetting liquid lens which is possible to actively change focal length as applying voltage. The optical system, which is adapted to electrowetting lens can continuously change the incident angle of light from 73 to 78 degrees with compact size. The surface plasmon waves are excited between metal and dielectric interface. The sensing surfaces are prepared by a coating of gold metal above high refractive index glass substrate. The incident light which is 532nm monochromatic light source passes through a noble metal coated substrate to detect intensity with incident angle variation. An analysis to distinguish the contribution of light with various incident angle is focused on the angular characteristics of the surface plasmon sensor under wavelength interrogation. The resonance angle is determined corresponding to sensing material refractive index with high sensitivity. The result suggests that the performance of surface plasmon resonance sensor can be improved by real time varying incident angle. From this presented study, it provides a different approach for angular interrogation surface plasmon resonance sensor and can be miniaturized for a portable device.

  11. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  12. Dynamics and stability of directional jumps in the desert locust.

    PubMed

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  13. Quantification and visualization of coordination during non-cyclic upper extremity motion.

    PubMed

    Fineman, Richard A; Stirling, Leia A

    2017-10-03

    There are many design challenges in creating at-home tele-monitoring systems that enable quantification and visualization of complex biomechanical behavior. One such challenge is robustly quantifying joint coordination in a way that is intuitive and supports clinical decision-making. This work defines a new measure of coordination called the relative coordination metric (RCM) and its accompanying normalization schemes. RCM enables quantification of coordination during non-constrained discrete motions. Here RCM is applied to a grasping task. Fifteen healthy participants performed a reach, grasp, transport, and release task with a cup and a pen. The measured joint angles were then time-normalized and the RCM time-series were calculated between the shoulder-elbow, shoulder-wrist, and elbow-wrist. RCM was normalized using four differing criteria: the selected joint degree of freedom, angular velocity, angular magnitude, and range of motion. Percent time spent in specified RCM ranges was used asa composite metric and was evaluated for each trial. RCM was found to vary based on: (1) chosen normalization scheme, (2) the stage within the task, (3) the object grasped, and (4) the trajectory of the motion. The RCM addresses some of the limitations of current measures of coordination because it is applicable to discrete motions, does not rely on cyclic repetition, and uses velocity-based measures. Future work will explore clinically relevant differences in the RCM as it is expanded to evaluate different tasks and patient populations. Copyright © 2017. Published by Elsevier Ltd.

  14. Reactive Collisions in Crossed Molecular Beams

    DOE R&D Accomplishments Database

    Herschbach, D. R.

    1962-02-01

    The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)

  15. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  16. Universal Plug-n-Play Sensor Integration for Advanced Navigation

    DTIC Science & Technology

    2012-03-22

    Orientation (top) and Angular Velocity (bottom) . . . . . . . . . 79 IV.6 Execution of AHRS script with roscore running on separate machine . . . . . . 80...single host case only with two hosts in this scenario. The script is running 78 Figure IV.5: Plot of AHRS Orientation (top) and Angular Velocity (bottom...Component-Based System using ROS . . . . . . . . . 59 3.6 Autonomous Behavior Using Scripting . . . . . . . . . . . . . . . . . . . . 60 3.6.1 udev

  17. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    DTIC Science & Technology

    2017-03-09

    generate electromagnetic effects which can disrupt the electronic components contained inside the round. Finite element analyses were conducted to...which affect the magnetic field inside the cylinder were analyzed by varying the angular velocities and the electromagnetic properties (permeability and...the magnetic field distribution inside the cylinder was affected by angular velocity and the electromagnetic properties of the cylinder. 15

  18. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  19. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.

  20. Validation of the MCNP6 electron-photon transport algorithm: multiple-scattering of 13- and 20-MeV electrons in thin foils

    NASA Astrophysics Data System (ADS)

    Dixon, David A.; Hughes, H. Grady

    2017-09-01

    This paper presents a validation test comparing angular distributions from an electron multiple-scattering experiment with those generated using the MCNP6 Monte Carlo code system. In this experiment, a 13- and 20-MeV electron pencil beam is deflected by thin foils with atomic numbers from 4 to 79. To determine the angular distribution, the fluence is measured down range of the scattering foil at various radii orthogonal to the beam line. The characteristic angle (the angle for which the max of the distribution is reduced by 1/e) is then determined from the angular distribution and compared with experiment. Multiple scattering foils tested herein include beryllium, carbon, aluminum, copper, and gold. For the default electron-photon transport settings, the calculated characteristic angle was statistically distinguishable from measurement and generally broader than the measured distributions. The average relative difference ranged from 5.8% to 12.2% over all of the foils, source energies, and physics settings tested. This validation illuminated a deficiency in the computation of the underlying angular distributions that is well understood. As a result, code enhancements were made to stabilize the angular distributions in the presence of very small substeps. However, the enhancement only marginally improved results indicating that additional algorithmic details should be studied.

  1. Evaluation of a flow direction probe and a pitot-static probe on the F-14 airplane at high angles of attack and sideslip

    NASA Technical Reports Server (NTRS)

    Larson, T. J.

    1984-01-01

    The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.

  2. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C., E-mail: mponce@astro.rit.edu, E-mail: jafsma@rit.edu, E-mail: jalombar@allegheny.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick anglemore » with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.« less

  3. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  4. Optimum Projection Angle for Attaining Maximum Distance in a Soccer Punt Kick

    PubMed Central

    Linthorne, Nicholas P.; Patel, Dipesh S.

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player’s optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player’s preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key points The optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°. The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle. PMID:24149315

  5. Chaotic gas turbine subject to augmented Lorenz equations.

    PubMed

    Cho, Kenichiro; Miyano, Takaya; Toriyama, Toshiyuki

    2012-09-01

    Inspired by the chaotic waterwheel invented by Malkus and Howard about 40 years ago, we have developed a gas turbine that randomly switches the sense of rotation between clockwise and counterclockwise. The nondimensionalized expressions for the equations of motion of our turbine are represented as a starlike network of many Lorenz subsystems sharing the angular velocity of the turbine rotor as the central node, referred to as augmented Lorenz equations. We show qualitative similarities between the statistical properties of the angular velocity of the turbine rotor and the velocity field of large-scale wind in turbulent Rayleigh-Bénard convection reported by Sreenivasan et al. [Phys. Rev. E 65, 056306 (2002)]. Our equations of motion achieve the random reversal of the turbine rotor through the stochastic resonance of the angular velocity in a double-well potential and the force applied by rapidly oscillating fields. These results suggest that the augmented Lorenz model is applicable as a dynamical model for the random reversal of turbulent large-scale wind through cessation.

  6. Wind-tunnel calibration of a combined pitot-static tube and vane-type flow-angularity indicator at Mach numbers of 1.61 and 2.01

    NASA Technical Reports Server (NTRS)

    Sinclair, Archibald R; Mace, William D

    1956-01-01

    A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.

  7. Does choice of angular velocity affect pain level during isokinetic strength testing of knee osteoarthritis patients?

    PubMed

    Almosnino, S; Brandon, S C E; Sled, E A

    2012-12-01

    Thigh musculature strength assessment in individuals with knee osteoarthritis is routinely performed in rehabilitative settings. A factor that may influence results is pain experienced during testing. To assess whether pain experienced during isokinetic testing in individuals with knee osteoarthritis is dependent on the angular velocity prescribed. Experimental, repeated measures. University laboratory. Thirty-five individuals (19 women, 16 men) with tibiofemoral osteoarthritis. Participants performed three randomized sets of five maximal concentric extension-flexion repetitions at 60°/s, 90°/s and 120°/s. Pain intensity was measured immediately after the completion of each set. Strength outcomes for each set were the average peak moment. Across gender, pain level was not significantly affected by testing velocity (P=0.18, η(p)(2) =0.05). There was a trend of women reporting more pain than men across all testing velocities, however this comparison did not reach statistical significance (P=0.18, η(p)(2)=0.05). There was a significant main effect of testing velocity on strength, with the highest level attained at 60°/s. However, no difference in strength was noted when testing was performed at 90°/s or 120°/s. A large variation in pain scores within and across conditions and gender was noted, suggesting that at the current stage: 1) isokinetic angular velocity prescription be performed on an individual patient basis; and 2) improvements in the manner pain is recorded are needed in order to reduce the variations in pain scores. Individual prescription of angular velocity may be necessary for optimal strength output and reduction of pain during effort exertion in this patient population.

  8. Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting

    NASA Technical Reports Server (NTRS)

    Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.

    1995-01-01

    Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.

  9. Angular Impulse and Balance Regulation During the Golf Swing.

    PubMed

    Peterson, Travis J; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-08-01

    Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse generated by both the rear and target legs was greater for the driver than the 6-iron. Mechanisms used to regulate angular impulse generation between clubs varied across players and required coordination between the legs. Increases in net angular impulse with a driver involved increases in target leg RFh. Rear leg RFh-angle was maintained between clubs whereas target leg RFh became more aligned with the target line. Net linear impulse perpendicular to the target line remained near zero, preserving balance, while net linear impulse along the target line decreased in magnitude. These results indicate that the net angular impulse was regulated between clubs by coordinating force generation of the rear and target legs while sustaining balance throughout the task.

  10. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    NASA Astrophysics Data System (ADS)

    Lii, Patrick; Romanova, Marina; Lovelace, Richard

    2014-01-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  11. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    PubMed

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  12. Design and Calibration of the ARL Mach 3 High Reynolds Number Facility

    DTIC Science & Technology

    1975-01-01

    degrees Rankine. Test rhombus determinations included lateral and longitudinal Mach number distributions and flow angularity measurements. A...43 3. THE TUNNEL EMPTY MACH NUMBER DISTRIBUTION 45 4. THE CENTERLINE RMS MACH NUMBER 46 5. FLOW ANGULARITY MEASUREMENTS 46 6. BLOCKAGE TESTS... Angularity Wedge Scale Drawing of Flow Angularity Cone Normalized Surface Pressure Difference versus Angle of Attack at xp/xr = - 0.690 for po

  13. Angular dependence of DRAM upset susceptibility

    NASA Technical Reports Server (NTRS)

    Guertin, S. M.; Swift, G. M.; Edmonds, L. D.

    2000-01-01

    Heavy ion irradiations of two types of commercial DRAMs reveal unexpected angular responses. One device's cross section varied by two orders of magnitude with azimuthal angle. Accurate prediction of space rates requires accommodating this effect.

  14. Test-retest reliability of lower limb isokinetic endurance in COPD: A comparison of angular velocities

    PubMed Central

    Ribeiro, Fernanda; Lépine, Pierre-Alexis; Garceau-Bolduc, Corine; Coats, Valérie; Allard, Étienne; Maltais, François; Saey, Didier

    2015-01-01

    Background The purpose of this study was to determine and compare the test-retest reliability of quadriceps isokinetic endurance testing at two knee angular velocities in patients with chronic obstructive pulmonary disease (COPD). Methods After one familiarization session, 14 patients with moderate to severe COPD (mean age 65±4 years; forced expiratory volume in 1 second (FEV1) 55%±18% predicted) performed two quadriceps isokinetic endurance tests on two separate occasions within a 5–7-day interval. Quadriceps isokinetic endurance tests consisted of 30 maximal knee extensions at angular velocities of 90° and 180° per second, performed in random order. Test-retest reliability was assessed for peak torque, muscle endurance, work slope, work fatigue index, and changes in FEV1 for dyspnea and leg fatigue from rest to the end of the test. The intraclass correlation coefficient, minimal detectable change, and limits of agreement were calculated. Results High test-retest reliability was identified for peak torque and muscle total work at both velocities. Work fatigue index was considered reliable at 90° per second but not at 180° per second. A lower reliability was identified for dyspnea and leg fatigue scores at both angular velocities. Conclusion Despite a limited sample size, our findings support the use of a 30-maximal repetition isokinetic muscle testing procedure at angular velocities of 90° and 180° per second in patients with moderate to severe COPD. Endurance measurement (total isokinetic work) at 90° per second was highly reliable, with a minimal detectable change at the 95% confidence level of 10%. Peak torque and fatigue index could also be assessed reliably at 90° per second. Evaluation of dyspnea and leg fatigue using the modified Borg scale of perceived exertion was poorly reliable and its clinical usefulness is questionable. These results should be useful in the design and interpretation of future interventions aimed at improving muscle endurance in COPD. PMID:26124656

  15. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1, PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  16. Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization

    DTIC Science & Technology

    2016-03-01

    acceleration of the shifting masses experiences a Coriolis Effect due to the angular velocity of the spacecraft. However, the perpendicular component of...angular velocity. If we neglect the Coriolis Effect in absolute acceleration, both terms become zero. Then, Equation 4.22 becomes ( )0 0 0 0 0...METHOD ......................................................83  C.  EXPLORATION OF THE ALTITUDE AND INCLINATION EFFECTS ON THE CONTROL

  17. Knee Muscle Strength at Varying Angular Velocities and Associations with Gross Motor Function in Ambulatory Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Hong, Wei-Hsien; Chen, Hseih-Ching; Shen, I-Hsuan; Chen, Chung-Yao; Chen, Chia-Ling; Chung, Chia-Ying

    2012-01-01

    The aim of this study was to evaluate the relationships of muscle strength at different angular velocities and gross motor functions in ambulatory children with cerebral palsy (CP). This study included 33 ambulatory children with spastic CP aged 6-15 years and 15 children with normal development. Children with CP were categorized into level I (n =…

  18. The cosmic web and the orientation of angular momenta

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Hoffman, Yehuda; Knebe, Alexander; Steinmetz, Matthias; Gottlöber, Stefan; Metuki, Ofer; Yepes, Gustavo

    2012-03-01

    We use a 64 h-1 Mpc dark-matter-only cosmological simulation to examine the large-scale orientation of haloes and substructures with respect to the cosmic web. A web classification scheme based on the velocity shear tensor is used to assign to each halo in the simulation a web type: knot, filament, sheet or void. Using ˜106 haloes that span ˜3 orders of magnitude in mass, the orientation of the halo's spin and the orbital angular momentum of subhaloes with respect to the eigenvectors of the shear tensor is examined. We find that the orbital angular momentum of subhaloes tends to align with the intermediate eigenvector of the velocity shear tensor for all haloes in knots, filaments and sheets. This result indicates that the kinematics of substructures located deep within the virialized regions of a halo is determined by its infall which in turn is determined by the large-scale velocity shear, a surprising result given the virialized nature of haloes. The non-random nature of subhalo accretion is thus imprinted on the angular momentum measured at z= 0. We also find that the haloes' spin axis is aligned with the third eigenvector of the velocity shear tensor in filaments and sheets: the halo spin axis points along filaments and lies in the plane of cosmic sheets.

  19. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  20. Inverse problems for torsional modes.

    USGS Publications Warehouse

    Willis, C.

    1984-01-01

    Considers a spherically symmetric, non-rotating Earth consisting of an isotropic, perfect elastic material where the density and the S-wave velocity may have one or two discontinuities in the upper mantle. Shows that given the velocity throughout the mantle and the crust and given the density in the lower mantle, then the freqencies of the torsional oscillations of one angular order (one torsional spectrum), determine the density in the upper mantle and in the crust uniquely. If the velocity is known only in the lower mantle, then the frequencies of the torsional oscillations of two angular orders uniquely determine both the density and the velocity in the upper mantle and in the crust. In particular, the position and size of the discontinuities in the density and velocity are uniquely determined by two torsional spectra.-Author

  1. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    NASA Astrophysics Data System (ADS)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  2. A New MEMS Gyroscope Used for Single-Channel Damping

    PubMed Central

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-01-01

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638

  3. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOEpatents

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  4. Quantification of toy sword kinematics with male pediatric volunteers.

    PubMed

    Beeman, Stephanie M; Rowson, Steven; Duma, Stefan M

    2014-01-01

    While extensive research in toy safety has been performed, data is unavailable with regard to the kinematics of toy swords. To improve upon design criteria, knowledge of a child’s physical capacity is essential. The purpose of this study was to quantify the linear and angular velocities generated by children swinging toy swords. A total of 36 male subjects, ages 4-14 years old, each participated in one trial. Subjects were instructed to swing a toy sword as fast and hard as possible for ~10 seconds. A Vicon motion analysis system was used to capture subject and sword kinematics. Peak linear and angular sword velocities were calculated. A strong correlation was identified between age and velocity. The 8-14 year old males were not significantly different. The 4 year old males generated significantly lower velocities than the 8-14 year old males. The 6 year old males produced significantly lower velocities than the 10- 14 year old males. It was concluded that age had a significant effect on the linear and angular velocities generated by children. The trends observed within this study likely result from typical pediatric and adolescent development. By accounting for the physical capabilities of a specific population, toys can be designed with decreased inherent risks of injury.

  5. Interaction between thorax, lumbar, and pelvis movements in the transverse plane during gait at three velocities.

    PubMed

    Yang, Ya-Ting; Yoshida, Yasuyuki; Hortobágyi, Tibor; Suzuki, Shuji

    2013-06-01

    We determined the angular range of motion and the relative timing of displacement in the thorax, lumbar spine, and pelvis in the transverse plane during treadmill walking at three velocities. Nine healthy young females walked on a treadmill for three minutes at 0.40, 0.93, and 1.47 m/s. The position of seven reflective markers and three rigs placed on the thorax, lumbar spine, and pelvis were recorded at 200 Hz by an eight-camera motion capture system. As gait velocity increased, stride length increased, cycle time decreased, and angular displacement in the thorax and L1 decreased but increased at the pelvis and L5 (all P < .05). The time of maxi- mal angular rotation occurred in the following sequence: pelvis, L5, L3, L1, and thorax (P < .001). The thorax and L1 and L3 were in-phase for shorter duration as gait velocity increased, and this reduction was especially large, approx. 32% (P < .05), between thorax and pelvis. As gait velocity increased, the pelvis rotated earlier, causing the shortening of in-phase duration between thorax and pelvis. These data suggest that, as gait velocity increases, pelvis rotation dictates trunk rotation in the transverse plane during gait in healthy young females.

  6. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  7. Three-dimensional Shock Structure of the Orion KL Outflow with IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Kaplan, Kyle; Yuk, In-Soo; Park, Byeong-Gon; Mace, Gregory; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-12-01

    We report a study of the three-dimensional (3D) outflow structure of a 15″ × 13″ area around the H2 peak 1 in Orion KL with slit-scan observations (13 slits) using the Immersion Grating Infrared Spectrograph. The datacubes have a high-velocity resolution (˜7.5 km s-1), provide high-contrast imaging within ultra-narrow bands, and enable the detection of the main stream of the previously reported H2 outflow fingers. We identified 31 distinct fingers in the H2 1-0 S(1) λ2.122 μm emission. The line profile at each finger shows multiple-velocity peaks with a strong low-velocity component around the systemic velocity at {V}{LSR} = +8 km s-1 and high-velocity emission (| {V}{LSR}| = 45-135 km s-1), indicating a typical bow-shock. The observed radial velocity gradients of ˜4 km s-1 arcsec-1 agree well with the velocities inferred from large-scale proper motions, where the projected motion is proportional to the distance from a common origin. We construct a conceptual 3D map of the fingers with estimated inclination angles of 57°-74°. The extinction difference (ΔA v > 10 mag) between blueshifted and redshifted fingers indicates high internal extinction. The extinction, the overall angular spread, and the scale of the flow argue for an ambient medium with a very high density (105-106 cm-3), consistent with molecular line observations of the Orion Molecular Cloud core. The radial velocity gradients and the 3D distributions of the fingers together support the hypothesis of a simultaneous radial explosion of the Orion KL outflow. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  8. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  9. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    PubMed

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  10. Quantitative angle-insensitive flow measurement using relative standard deviation OCT

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-01

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo.

  11. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos||VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).

  12. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach

    PubMed Central

    Zeng, Xiaozheng; McGough, Robert J.

    2009-01-01

    The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640

  13. On the Shelf Resonances of the Gulf of Carpentaria and the Arafura Sea

    NASA Astrophysics Data System (ADS)

    Webb, D. J.

    2012-02-01

    A numerical model is used to investigate the resonances of the Gulf of Carpentaria and the Arafura Sea. The model is forced at the shelf edge, first with physically realistic real values of angular velocity. The response functions at points within the region show maxima and other behaviour which imply that resonances are involved but it is difficult to be more specific. The study is then extended to complex angular velocities and the results then show a clear pattern of gravity wave and Rossby wave like resonances. The properties of the resonances are investigated and used to reinterpret the responses at real values of angular velocity. It is found that in some regions the response is dominated by modes trapped between the shelf edge and the coast or between opposing coastlines. In other regions the resonances show cooperative behaviour, possibly indicating the importance of other physical processes.

  14. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  15. Angular distributions of plasma edge velocity and integrated intensity: Update on specific impulse for Ablative Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Pakhomov, Andrew V.

    2005-04-01

    This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.

  16. Representational momentum, centripetal force, and curvilinear impetus.

    PubMed

    Hubbard, T L

    1996-07-01

    In 3 experiments, observers witnessed a target moving along a circular orbit and indicated the location at which the target vanished. The judged vanishing point was displaced forward in the direction of implied momentum and inward in the direction of implied centripetal force. In general, increases in either the angular velocity of the target or the radius length of the orbit increased the magnitude of forward displacement. If both angular velocity and radius length were varied, then increases in either angular velocity or radius length also increased the magnitude of inward displacement. The displacement patterns were consistent with hypotheses that analogues of momentum and centripetal force were incorporated into the representational system. A framework is proposed that accounts for (a) the forward and inward displacements and (b) naive-physics data on the spiral tube problem previously interpreted as suggesting a belief in a naive curvilinear-impetus principle.

  17. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  18. Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  19. Limited Angle Dual Modality Breast Imaging

    NASA Astrophysics Data System (ADS)

    More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.

    2007-06-01

    We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.

  20. An active-optics image-motion compensation technology application for high-speed searching and infrared detection system

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing

    2018-03-01

    An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.

  1. New dynamic variables for rotating spacecraft

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    This paper introduces two new seven-parameter representations for spacecraft attitude dynamics modeling. The seven parameters are the three components of the total system angular momentum in the spacecraft body frame; the three components of the angular momentum in the inertial reference frame; and an angle variable. These obey a single constraint as do parameterizations that include a quaternion; in this case the constraint is the equality of the sum of the squares of the angular momentum components in the two frames. The two representations are nonsingular if the system angular momentum is non-zero and obeys certain orientation constraints. The new parameterizations of the attitude matrix, the equations of motion, and the relation of the solution of these equations to Euler angles for torque-free motion are developed and analyzed. The superiority of the new parameterizations for numerical integration is shown in a specific example.

  2. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  3. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    NASA Astrophysics Data System (ADS)

    Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.

    2012-08-01

    We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.

  4. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.

    PubMed

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-08-19

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.

  5. Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel

    PubMed Central

    Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua

    2016-01-01

    This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178

  6. Development of mirrors for precision laser gyros

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger

    1987-11-01

    Substrate polishing and interference-layer deposition techniques for the preparation of laser-gyro mirrors to operate at laser wavelength 633 nm and incidence angle 30 deg are investigated experimentally. The importance of high reflectivity and low backscatter for accurate laser-gyro angular-velocity measurement is explained, and the methods used to measure these parameters are outlined. Results for uncoated quartz glass, Zerodur, and Si monocrystal; thin Ag layers; alternate layers of SiO2 and TiO2, and Ag with a thin layer of SiO2 are presented in graphs and micrographs and characterized in detail. It is predicted that further improvements in polishing, the use of ion-beam deposition techniques, and perhaps the replacement of TiO2 with Ta2O5 will give mirrors with lower backscatter values.

  7. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)

    2001-01-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  8. Results on the Performance of a Broad Band Focussing Cherenkov Counter

    DOE R&D Accomplishments Database

    Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.

    1980-01-01

    The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.

  9. Cosmic Vorticity and the Origin Halo Spins

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen

    2013-04-01

    In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.

  10. Aeolian Removal of Dust Types from Photovoltaic Surfaces on Mars

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.; Marabito, Mark

    1990-01-01

    Dust elevated in local or global dust storms on the Martian surface could settle on photovoltaic (PV) surfaces and seriously hamper their performance. Using a recently developed technique to apply a uniform dust layer, PV surface materials were subjected to simulated Martian winds in an attempt to determine whether natural Aeolian processes on Mars would sweep off the settled dust. Three different types of dust were used; an optical polishing powder, basaltic "trap rock", and iron (III) oxide crystals. The effects of wind velocity, angle of attack, height above the Martian surface, and surface coating material were investigated. It was found that arrays mounted with an angle of attack approaching 45 degrees show the most efficient clearing. Although the angular dependence is not sharp, horizontally mounted arrays required significantly higher wind velocities to clear off the dust. From this test it appears that the arrays may be erected quite near the ground, but previous studies have suggested that saltation effects can be expected to cause such arrays to be covered by soil if they are set up less than about a meter from the ground. Particle size effects appear to dominate over surface chemistry in these experiments, but additional tests are required to confirm this. Providing that the surface chemistry of Martian dusts is not drastically different from simulated dust and that gravity differences have only minor effects, the materials used for protective coatings for photovoltaic arrays may be optimized for other considerations such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.

  11. A Rigorous Solution for Finite-State Inflow throughout the Flowfield

    NASA Astrophysics Data System (ADS)

    Fei, Zhongyang

    In this research, the Hseih/Duffy model is extended to all three velocity components of inflow across the rotor disk in a mathematically rigorous way so that it can be used to calculate the inflow below the rotor disk plane. This establishes a complete dynamic inflow model for the entire flow field with finite state method. The derivation is for the case of general skewed angle. The cost of the new method is that one needs to compute the co-states of the inflow equations in the upper hemisphere along with the normal states. Numerical comparisons with exact solutions for the z-component of flow in axial and skewed angle flow demonstrate excellent correlation with closed-form solutions. The simulations also illustrate that the model is valid at both the frequency domain and the time domain. Meanwhile, in order to accelerate the convergence, an optimization of even terms is used to minimize the error in the axial component of the induced velocity in the on and on/off disk region. A novel method for calculating associate Legendre function of the second kind is also developed to solve the problem of divergence of Q¯mn (ieta) for large eta with the iterative method. An application of the new model is also conducted to compute inflow in the wake of a rotor with a finite number of blades. The velocities are plotted at different distances from the rotor disk and are compared with the Glauert prediction for axial flow and wake swirl. In the finite-state model, the angular momentum does not jump instantaneously across the disk, but it does transition rapidly across the disk to correct Glauert value.

  12. Properties of solar ephemeral regions at the emergence stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun, E-mail: shuhongyang@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2014-01-20

    For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 10{sup 15} Mx s{sup –1}, 1.1 km s{sup –1}, 0.9 km s{sup –1}, and 0.°6 minute{sup –1}, respectively.more » At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 10{sup 18} Mx, 4.7 Mm, 1.1 Mm, and 12.°9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.« less

  13. Improved multi-directional eddy current inspection test apparatus for detecting flaws in metal articles

    DOEpatents

    Nance, Roy A.; Hartley, William H.; Caffarel, Alfred J.

    1984-01-01

    Apparatus is described for detecting flaws in a tubular workpiece in a single scan. The coils of a dual coil bobbin eddy current inspection probe are wound at a 45.degree. angle to the transverse axis of the probe, one coil having an angular position about the axis about 90.degree. relative to the angular position of the other coil, and the angle of intersection of the planes containing the coils being about 60.degree..

  14. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  15. Measuring the velocity field from type Ia supernovae in an LSST-like sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odderskov, Io; Hannestad, Steen, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk

    2017-01-01

    In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with nomore » information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ{sub 8}. This makes the peculiar velocity power spectrum from type Ia supernovae a promising new observable, which deserves further attention.« less

  16. Test benches for studying the properties of car tyres

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. Yu.; Fedotov, A. I.; Vlasov, V. G.

    2017-12-01

    The article describes the design of the measuring systems of test benches used to study the properties of elastic tyres. The bench has two autonomous systems - for testing the braking properties of elastic tyres rolling in a plane parallel way and for testing tyre slip properties. The system for testing braking properties determines experimental characteristics of elastic tyres as the following dependencies: longitudinal response vs time, braking torque vs slip, angular velocity vs slip, and longitudinal response vs slip. The system for studying tyre slip properties determines both steady (dependence of the lateral response in a contact area on the slipping angle) and non-steady characteristics (time variation of the slipping angle as a result of turning from -40 to +40 degrees) of tyre slip. The article presents the diagrams of bench tests of elastic tyres. The experimental results show metrological parameters and functional capabilities of the bench for studying tyre properties in driving and braking modes. The metrological indices of the recorded parameters of the measuring system for studying tyre properties are presented in the table.

  17. New mathematical definition and calculation of axial rotation of anatomical joints.

    PubMed

    Miyazaki, S; Ishida, A

    1991-08-01

    In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.

  18. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.

    PubMed

    Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan

    2008-03-28

    Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.

  19. Analytical study of body waves in orthorhombic media and comparison with SKS-phase observations from selected stations

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Bokelmann, Götz

    2016-04-01

    Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).

  20. Preliminary comparison between real-time in-vivo spectral and transverse oscillation velocity estimates

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per; Hansen, Jens Munk; Lindskov Hansen, Kristoffer; Bachmann Nielsen, Michael; Jensen, Jørgen Arendt

    2011-03-01

    Spectral velocity estimation is considered the gold standard in medical ultrasound. Peak systole (PS), end diastole (ED), and resistive index (RI) are used clinically. Angle correction is performed using a flow angle set manually. With Transverse Oscillation (TO) velocity estimates the flow angle, peak systole (PSTO), end diastole (EDTO), and resistive index (RITO) are estimated. This study investigates if these clinical parameters are estimated equally good using spectral and TO data. The right common carotid arteries of three healthy volunteers were scanned longitudinally. Average TO flow angles and std were calculated { 52+/-18 ; 55+/-23 ; 60+/-16 }°. Spectral angles { 52 ; 56 ; 52 }° were obtained from the B-mode images. Obtained values are: PSTO { 76+/-15 ; 89+/-28 ; 77+/-7 } cm/s, spectral PS { 77 ; 110 ; 76 } cm/s, EDTO { 10+/-3 ; 14+/-8 ; 15+/-3 } cm/s, spectral ED { 18 ; 13 ; 20 } cm/s, RITO { 0.87+/-0.05 ; 0.79+/-0.21 ; 0.79+/-0.06 }, and spectral RI { 0.77 ; 0.88 ; 0.73 }. Vector angles are within +/-two std of the spectral angle. TO velocity estimates are within +/-three std of the spectral estimates. RITO are within +/-two std of the spectral estimates. Preliminary data indicates that the TO and spectral velocity estimates are equally good. With TO there is no manual angle setting and no flow angle limitation. TO velocity estimation can also automatically handle situations where the angle varies over the cardiac cycle. More detailed temporal and spatial vector estimates with diagnostic potential are available with the TO velocity estimation.

  1. Inference of stress and texture from angular dependence of ultrasonic plate mode velocities

    NASA Technical Reports Server (NTRS)

    Thompson, R. B.; Smith, J. F.; Lee, S. S.

    1986-01-01

    The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.

  2. The normalized magnetic helicity spectrum as a function of the angle between the local mean magnetic field and the flow direction of the solar wind: First results using high resolution magnetic field data from the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.

    2011-12-01

    This year, for the first time, the reduced normalized magnetic helicity spectrum has been analyzed as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind using wavelet techniques. In fast wind, at scales localized near kρp = 1 and kc/ωpp = 1, where ρp is the thermal proton gyro-radius and c/ωpp is the proton inertial length, the analysis reveals two distinct populations of fluctuations. There is a population of fluctuations at oblique angles, centered about an angle of 90 degrees, which are right hand polarized in the spacecraft frame and are believed to be associated with kinetic Alfven waves although the signal covers a wide range of oblique angles and a satisfactory interpretation of their spectrum through comparison with theory has not yet been obtained. A second population of fluctuations is found at angles near zero degrees which are left-hand polarized in the spacecraft frame. The data indicates that these are parallel propagating electromagnetic waves consisting either of left-hand polarized ion cyclotron waves propagating predominantly away from the sun or right-hand polarized whistler waves propagating predominantly toward the sun along the local mean magnetic field. As a consequence of the Doppler shift, both types of waves have the same polarization in the spacecraft frame. Unfortunately, the wave polarization in the plasma frame is difficult to determine using magnetic field data alone. Whether the observed waves are right- or left hand polarized in the plasma frame is a fundamental problem for future investigations. The analyses of spacecraft data performed so far have assumed that the solar wind velocity is directed radially outward from the sun. However, in the ecliptic plane at 1 AU, the flow direction typically deviates from the radial direction by a few degrees, sometimes more, and this adversely affects measurements of the angular helicity spectrum. To correct this, new measurements obtained using data from the Wind spacecraft use the scale dependent local mean solar wind velocity when computing the angle from the data. The first results from this study are presented here.

  3. Cross sections of relativistic radiative electron capture by use of the strong-potential Born calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hino, K.; Watanabe, T.

    1987-07-15

    The relativistically extended strong-potential Born (SPB) formalism is applied to the radiative electron capture process caused by the bombardment of a heavy and highly stripped charged particle with relativistically high velocity. The results are compared with those by use of nonrelativistic SPB calculations and with those by use of the relativistic Born calculation (Sauter's formula), which includes no distortion effects between a heavy projectile ion and an active electron. Even if the strong distortion effects are taken into consideration, the shapes of photon angular distributions in the laboratory frame still nearly depend on sin/sup 2/theta/sub L/(theta/sub L/ is the anglemore » of the emitted photon) in the vicinity of the angle of 90/sup 0/, which is the same as the results by use of Sauter's formula. The higher the charge of a projectile ion becomes, however, the greater the discrepancy between the angular shape of our results and that of Sauter's becomes at both smaller and larger angles than at 90/sup 0/. As is expected, the magnitudes of the differential and the total cross sections are drastically influenced by the distortion effects ascribable to a large charge of a heavy projectile ion such as U/sup 92+/. Our results are in good agreement with recent experiments. In addition, the Coulomb off-shell factor introduced by the SPB theory is found playing important roles in the case of the relativistic radiative electron capture process because the results calculated by using the relativistic impulse approximation are too underestimated.« less

  4. HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly frommore » an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.« less

  5. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2014-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 deg is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  6. Noise suppression for the differential detection in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin

    2017-10-01

    The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.

  7. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  8. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  9. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  10. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrutia, J. M.; Stenzel, R. L.

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less

  11. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.

    1988-01-01

    The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.

  12. One-dimensional angular-measurement-based stitching interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Xue, Junpeng; Gao, Bo

    In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less

  13. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    PubMed

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  14. One-dimensional angular-measurement-based stitching interferometry

    DOE PAGES

    Huang, Lei; Xue, Junpeng; Gao, Bo; ...

    2018-04-05

    In this paper, we present one-dimensional stitching interferometry based on the angular measurement for high-precision mirror metrology. The tilt error introduced by the stage motion during the stitching process is measured by an extra angular measurement device. The local profile measured by the interferometer in a single field of view is corrected using the measured angle before the piston adjustment in the stitching process. Comparing to the classical software stitching technique, the angle measuring stitching technique is more reliable and accurate in profiling mirror surface at the nanometer level. Experimental results demonstrate the feasibility of the proposed stitching technique. Basedmore » on our measurements, the typical repeatability within 200 mm scanning range is 0.5 nm RMS or less.« less

  15. Terrestrial-passage theory: failing a test.

    PubMed

    Reed, Charles F; Krupinski, Elizabeth A

    2009-01-01

    Terrestrial-passage theory proposes that the 'moon' and 'sky' illusions occur because observers learn to expect an elevation-dependent transformation of visual angle. The transformation accompanies daily movement through ordinary environments of fixed-altitude objects. Celestial objects display the same visual angle at all elevations, and hence are necessarily non-conforming with the ordinary transformation. On hypothesis, observers should target angular sizes to appear greater at elevation than at horizon. However, in a sample of forty-eight observers there was no significant difference between the perceived angular size of a constellation of stars at horizon and that predicted for a specific elevation. Occurrence of the illusion was not restricted to those observers who expected angular expansion. These findings fail to support the terrestrial-passage theory of the illusion.

  16. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  17. Generation of Optical Vortices by Nonlinear Inverse Thomson Scattering at Arbitrary Angle Interactions

    NASA Astrophysics Data System (ADS)

    Taira, Yoshitaka; Katoh, Masahiro

    2018-06-01

    We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.

  18. Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia.

    PubMed

    Cruces, Pablo Daniel; Arini, Pedro David

    2017-12-01

    Early detection of acute ischaemia through non-invasive methods remains a challenge in health research. Ischaemic condition caused by a decrease in the blood supply in a cardiac region induces hypoxia and metabolic abnormalities that contribute to the electrical instability of the heart and to the development of slow conduction in damaged tissue. Herein, a percutaneous transluminal coronary angiography (PTCA) is considered as a model of supply ischaemia. We use the concept of quaternion to develop a robust method for assessing the angular velocity of cardiac vector in the orthogonal XYZ leads obtained from 92 patients undergoing the PTCA procedure. The maxima of angular velocity in both ventricular depolarization and repolarization are combined with traditional linear velocity indexes in order to obtain a detector of ischaemic episodes (Ischaemia Detector, ID). ID achieves 98%/100% of sensitivity/specificity when differentiating healthy subjects from patients with early ischaemia. Furthermore, it also shows high accuracy when the comparison is made between ischaemic subjects and patients with different non-ischaemic pathologic ST-deviations which are known to cause false positives, reaching 95%/98% of sensitivity/specificity. Moreover, the study of significant reductions (p<0.001) of angular velocity components allows extraction of distinct ischaemic common features which are useful for analyzing the dependence of vectorcardiogram signal on each site of occlusion. The sensitivity of injury location reaches values of 88% (RCA), 87% (LAD) and 80% (LCx). The high performance of the proposed method establishes a promising outcome for application in computerized assistance in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  20. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  1. Large-Angle Magnetic Suspension (LAMS)

    NASA Technical Reports Server (NTRS)

    Oglevie, Ronald E.; Eisenhaure, David B.; Downer, James R.

    1988-01-01

    Spherical LAMS is magnetic syspension that provides dual functions of magnetic bearing and rotorgimbal system. Provides two degrees of angular freedom within single magnetic suspension system. Approach employs spherically-shaped magnetic-gap surfaces to achieve much-larger angular freedom than available from previous suspensions.

  2. Opto-Mechanical Design of a Chromotomographic Imager Direct-Vision Prism Element

    DTIC Science & Technology

    2013-03-01

    The paramount conclusion to be made from these relationships is that the angular dispersion must be known for all wavelengths of interest in order to...respect to the range of angular spread of approximately 4◦ seen in Figure 3.4, the angular error in the measurement is as much as 2.4 minutes of arc...angle is the maximum angular difference between the surface normal, N̂, and the incident ray direction vector, î, for which refraction occurs across a

  3. Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Del Genio, Anthony D.; Zhou, Wei

    1994-01-01

    The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.

  4. Signal processing related to the vestibulo-ocular reflex during combined angular rotation and linear translation of the head

    NASA Technical Reports Server (NTRS)

    McCrea, R. A.; Chen-Huang, C.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The contributions of vestibular nerve afferents and central vestibular pathways to the angular (AVOR) and linear (LVOR) vestibulo-ocular reflex were studied in squirrel monkeys during fixation of near and far targets. Irregular vestibular afferents did not appear to be necessary for the LVOR, since when they were selectively silenced with galvanic currents the LVOR was essentially unaffected during both far- and near-target viewing. The linear translation signals generated by secondary AVOR neurons in the vestibular nuclei were, on average, in phase with head velocity, inversely related to viewing distance, and were nearly as strong as AVOR-related signals. We suggest that spatial-temporal transformation of linear head translation signals to angular eye velocity commands is accomplished primarily by the addition of viewing distance multiplied, centrally integrated, otolith regular afferent signals to angular VOR pathways.

  5. Quantum treatment of the capture of an atom by a fast nucleus incident on a molecule

    NASA Astrophysics Data System (ADS)

    Shakeshaft, Robin; Spruch, Larry

    1980-04-01

    The classical double-scattering model of Thomas for the capture of electrons from atoms by fast ions yields a cross section σ which dominates over the single scattering contribution for sufficiently fast ions. The magnitude of the classical double-scattering σ differs, however, from its quantum-mechanical (second-Born) analog by an order of magnitude. Further, a "fast ion" means an ion of some MeV, and at those energies the cross sections are very low. On the other hand, as noted by Bates, Cook, and Smith, the double-scattering cross section for the capture of atoms from molecules by fast ions dominates over the single-scattering contribution for incident ions of very much lower energy; roughly, one must have the velocity of the incident projectile much larger than a characteristic internal velocity of the particles in the target. It follows that we are in the asymptotic domain not at about 10 MeV but at about 100 eV. For the reaction H+ + CH4-->H+2 + CH3 with incident proton energies of 70 to 150 eV, the peak in the angular distribution as determined experimentally is at almost precisely the value predicted by the classical model, but the theoretical total cross section is about 30 times too large. Using a quantum version of the classical model, which involves the same kinematics and therefore preserves the agreement with the angular distribution, we obtain somewhat better agreement with the experimental total cross section, by a factor of about 5. (To obtain very good agreement, one may have to perform a really accurate calculation of large-angle elastic scattering of protons and H atoms by CH3, and take into account interference effects.) In the center-of-mass frame, for sufficiently high incident energy, the first of the two scatterings involves the scattering of H+ by H through an angle of very close to 90°, and it follows that the nuclei of the emergent H+2 ion will almost all be in the singlet state. We have also calculated the cross section for the reaction D+ + CH4-->(HD)+ + CH3.

  6. The crunch factor's role in golf-related low back pain.

    PubMed

    Cole, Michael H; Grimshaw, Paul N

    2014-05-01

    The golf swing exposes the spine to complex torsional, compressive, and shearing loads that increase a player's risk of injury. The crunch factor (CF) has been described as a measure to evaluate the risk of low back injuries in golfers and is based on the notion that lateral flexion and axial trunk rotation jointly contribute to spinal degeneration. However, few studies have evaluated the appropriateness of this measure in golfers with low back pain (LBP). To objectively examine the usefulness of the CF as a measure for assessing the risk of low back injury in golfers. Field-based research using a cross-sectional design. This research used three-dimensional motion analysis to assess the golf swings of 12 golfers with LBP and 15 asymptomatic controls. Three-dimensional kinematics were derived using Vicon Motus, and the CF was calculated as the instantaneous product of axial trunk rotation velocity and lateral trunk flexion angle. Maximum CFs and their timings were not significantly different between the symptomatic and asymptomatic groups. Furthermore, for those golfers who produced higher CFs (irrespective of the group), the increased magnitude could not be attributed to an increased axial angular trunk velocity or lateral flexion angle, but rather to a concomitant increase in both of these variables. The findings suggested that although the fundamental concepts that underpin the CF seem sensible, this measure does not appear to be sensitive enough to distinguish golfers with LBP from the asymptomatic players. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Jet slurry erosion performance of composite clad and its characterization

    NASA Astrophysics Data System (ADS)

    B, Lohit R.; Horakeri, Gururaj S.; Bhovi, Prabakhar M.

    2016-09-01

    In the present work, development of composite cladding consists of Cr23C6 (chromium carbide) as reinforcement particles 20 wt. % in Ni-based matrix 80 wt. % on austenitic stainless steel through exposure of microwave radiation has been carried out. The jet slurry erosion test was performed on microwave composite clad. The functional performance of composite clad has been evaluated for different parametric conditions like varying impingement velocity and impact angle. The increasing weight loss trend was observed with time for the first 30 min. after that the individual trend decreased; at high impingement velocity and maximum impact angle. SEM micrographs of eroded clad samples at various impact angle and impingement velocity were discussed. The maximum weight loss occurred at 90° angle and velocity of 60 m/s, and minimum at 30° angle and velocity of 20 m/s.

  8. Comparison of Fixed-Stabilizer, Adjustable-Stabilizer and All-Moveable Horizontal Tails

    DTIC Science & Technology

    1945-10-01

    the thrust axis and wind direction at Infinity, degrees; primed to indicate that a is corrected for ground interference effects 5 angular ...deflection of control surface, degrees i+- maximum angular deflection of stabilizer measured with reference to thrust axis, degrees hnax...5e maximum negative angular deflection of elevator, degrees E downwash angle at teil, degrees; primed to indicate that e Is

  9. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    ERIC Educational Resources Information Center

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  10. Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises.

    PubMed

    Denis, Romain; Wilkinson, Jennifer; De Vito, Giuseppe

    2011-09-01

    The purpose of this study was to investigate whether changes in angular velocity would alter vastus lateralis (VL) and rectus femoris (RF) oxygenation status during maximal isokinetic knee extension exercises. Eleven recreationally active male participants randomly performed ten maximal knee extensions at 30, 60, 120 and 240° s(-1). Tissue oxygenation index (TOI) and total haemoglobin concentration ([tHb]) were acquired from the VL and RF muscles by means of near-infrared spectroscopy (NIRS). Breath-by-breath pulmonary oxygen consumption (VO(2p)) was recorded throughout the tests. Peak torque and VO(2p) significantly decreased as a function of velocity (P<0·05). Interestingly, RF and VL TOI significantly increased as a function of velocity (P<0·05), whereas [tHb] significantly decreased as a function of velocity (P<0·05). A greater number of muscle fibre recruited at slow velocity, where the torque and VO(2p) were the highest, might explain the lower VL and RF TOI observed herein. Furthermore, the increase in local blood flow (suggested by [tHb] changes) during isokinetic knee extension exercises performed at slow angular velocity might have been induced by a higher intramuscular pressure during the contraction phases as well as a greater microcirculatory vasodilatation during relaxation phases. Implementing slow-velocity isokinetic exercises in rehabilitation or other training programmes could delay the short-term anoxia generated by such exercises and result in muscle metabolism enhancement. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  11. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.

    PubMed

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  12. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  13. Role of muscle pulleys in producing eye position-dependence in the angular vestibuloocular reflex: a model-based study

    NASA Technical Reports Server (NTRS)

    Thurtell, M. J.; Kunin, M.; Raphan, T.; Wall, C. C. (Principal Investigator)

    2000-01-01

    It is well established that the head and eye velocity axes do not always align during compensatory vestibular slow phases. It has been shown that the eye velocity axis systematically tilts away from the head velocity axis in a manner that is dependent on eye-in-head position. The mechanisms responsible for producing these axis tilts are unclear. In this model-based study, we aimed to determine whether muscle pulleys could be involved in bringing about these phenomena. The model presented incorporates semicircular canals, central vestibular pathways, and an ocular motor plant with pulleys. The pulleys were modeled so that they brought about a rotation of the torque axes of the extraocular muscles that was a fraction of the angle of eye deviation from primary position. The degree to which the pulleys rotated the torque axes was altered by means of a pulley coefficient. Model input was head velocity and initial eye position data from passive and active yaw head impulses with fixation at 0 degrees, 20 degrees up and 20 degrees down, obtained from a previous experiment. The optimal pulley coefficient required to fit the data was determined by calculating the mean square error between data and model predictions of torsional eye velocity. For active head impulses, the optimal pulley coefficient varied considerably between subjects. The median optimal pulley coefficient was found to be 0.5, the pulley coefficient required for producing saccades that perfectly obey Listing's law when using a two-dimensional saccadic pulse signal. The model predicted the direction of the axis tilts observed in response to passive head impulses from 50 ms after onset. During passive head impulses, the median optimal pulley coefficient was found to be 0.21, when roll gain was fixed at 0.7. The model did not accurately predict the alignment of the eye and head velocity axes that was observed early in the response to passive head impulses. We found that this alignment could be well predicted if the roll gain of the angular vestibuloocular reflex was modified during the initial period of the response, while pulley coefficient was maintained at 0.5. Hence a roll gain modification allows stabilization of the retinal image without requiring a change in the pulley effect. Our results therefore indicate that the eye position-dependent velocity axis tilts could arise due to the effects of the pulleys and that a roll gain modification in the central vestibular structures may be responsible for countering the pulley effect.

  14. Comparison of trunk kinematics in trunk training exercises and throwing.

    PubMed

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  15. Vestibular response to pseudorandom angular velocity input: progress report.

    PubMed

    Lessard, C S; Wong, W C

    1987-09-01

    Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. One of NASA's efforts to resolve the space adaptation syndrome is to model the vestibular response for both basic knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyze the vestibular system when subjected to a pseudorandom angular velocity input.

  16. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  17. COSMIC VORTICITY AND THE ORIGIN HALO SPINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan

    2013-04-01

    In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less

  18. Modeling of functional trunk muscle performance: interfacing ergonomics and spine rehabilitation in response to the ADA.

    PubMed

    Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R

    1997-10-01

    The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.

  19. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity.

    PubMed

    Stackman, R W; Taube, J S

    1998-11-01

    Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.

  20. Velocity-free attitude coordinated tracking control for spacecraft formation flying.

    PubMed

    Hu, Qinglei; Zhang, Jian; Zhang, Youmin

    2018-02-01

    This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

Top